
Delft Center for Systems and Control

Modelling, Simulation, and Scal-
able Analysis of Transportation
Networks via MMPS Systems
Hybrid Methods and Modelling Frameworks

M.J.A. Bartels

M
as

te
ro

fS
cie

nc
e

Th
es

is





Modelling, Simulation, and Scalable
Analysis of Transportation Networks

via MMPS Systems
Hybrid Methods and Modelling Frameworks

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

M.J.A. Bartels

September 25, 2025

Faculty of Mechanical Engineering (ME) · Delft University of Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering (ME) for acceptance a thesis entitled

Modelling, Simulation, and Scalable Analysis of Transportation
Networks via MMPS Systems

by
M.J.A. Bartels

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: September 25, 2025

Supervisor(s):
dr.ir. A.J.J. van den Boom

ir. S. Markkassery

Reader(s):
dr. M. Guo

dr. B. Atasoy





Abstract

This thesis explores the analysis, periodicity, and scalable modelling of Max-Min-Plus-Scaling
(MMPS) systems, a versatile approach to modelling Discrete Event (DE) systems. Unlike tra-
ditional continuous-time or discrete-time systems that evolve through differential or difference
equations, DE systems progress through discrete events. MMPS systems rely only on max-
imisation, minimisation, addition, and scaling, making them highly suitable for modelling
processes with synchronisation and/or competition such as energy delivery, transportation,
and manufacturing.

The work is divided into three main segments. First, a new Mixed-Integer Linear Program-
ming (MILP)-based method is developed for analysing growth rates and fixed points of general
implicit MMPS systems. This extends an existing MILP formulation for homogeneous and
non-expansive explicit MMPS systems, introducing adaptations for general implicit cases.
A dedicated preprocessing step and search strategy are introduced, resulting in an analysis
method that significantly reduces computational requirements. Secondly, the dynamical and
stability behaviour of periodic MMPS systems with periods greater than one is examined.
A new canonical form is proposed, enabling the use of existing analysis tools on periodic
systems, along with a method for determining the stability of periodic orbits. Thirdly, a
modelling framework for transportation systems is introduced, featuring a connectable, node-
based toolbox and an algorithm that transforms high-level system descriptions into sets of
equations.

All developed methods, theories, and tools are demonstrated on a real-world 4-node trans-
portation system. The results confirm the efficiency of the new MILP approach, reveal peri-
odic behaviour and stable periodic orbits, and highlight fixed points, all within the proposed
transportation network framework.

The thesis follows a logical progression, starting with the mathematical preliminaries of
MMPS systems, then presenting the main contributions, and concluding with key insights.
Overall, it delivers new theoretical results for MMPS system analysis alongside practical
tools and examples for modelling complex discrete-event systems, with a particular focus on
transportation applications.

Master of Science Thesis M.J.A. Bartels



ii

M.J.A. Bartels Master of Science Thesis



Table of Contents

Acknowledgements vii

1 Introduction 1

1-1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-2-1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-2-2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1-3 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries of MMPS Systems 5

2-1 Discrete Event Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-2 Fundamentals of Dioids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2-2-1 Max-Plus Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2-2-2 Vectors and Matrices in Max-Plus Algebra . . . . . . . . . . . . . . . . . 7

2-2-3 Min-Plus Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-3 MMPS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Analysis of MMPS Systems 15

3-1 Explicit MMPS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3-2 Implicit MMPS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-2-1 Time Invariance of Implicit MMPS Systems . . . . . . . . . . . . . . . . 17

3-2-2 Solvability of Implicit MMPS Systems . . . . . . . . . . . . . . . . . . . 17

Master of Science Thesis M.J.A. Bartels



iv Table of Contents

3-3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3-3-1 Power Algorithm for Implicit MMPS Systems . . . . . . . . . . . . . . . 18

3-3-2 LPP Algorithm for Implicit MMPS Systems . . . . . . . . . . . . . . . . 19

4 Stability of Max-Min-Plus-Scaling Systems 23

4-1 Steady State Behaviour of Explicit MMPS Systems . . . . . . . . . . . . . . . . 24

4-2 Bounded Buffer Stability of Explicit MMPS Systems . . . . . . . . . . . . . . . 24

4-3 Bounded Buffer Stability of Implicit MMPS Systems . . . . . . . . . . . . . . . 26

4-4 Maximal Invariant Set of a Linearised MMPS Systems . . . . . . . . . . . . . . 27

5 Scalable Analysis of MMPS Systems 29

5-1 Introduction to Mixed Integer Linear Programming Problems . . . . . . . . . . . 29

5-2 MILP for Implicit MMPS Systems . . . . . . . . . . . . . . . . . . . . . . . . . 31

5-2-1 MILP for Explicit Topical MMPS Systems . . . . . . . . . . . . . . . . . 33

5-2-2 MILP for Implicit MMPS Systems . . . . . . . . . . . . . . . . . . . . . 35

5-3 Search Tree for Footprint Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 37

5-4 MILP Search Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5-4-1 Preprocessing for Search Space Reduction . . . . . . . . . . . . . . . . . 40

5-4-2 Recursive MILP Search Strategy . . . . . . . . . . . . . . . . . . . . . . 41

5-4-3 Analysis of MILP Method . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Periodicity of MMPS Systems 49

6-1 Periodicity in MMPS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6-2 Bounds on Periods in Max-Plus and Min-Plus Systems . . . . . . . . . . . . . . 51

6-3 Periodic Behaviour in General implicit MMPS Systems . . . . . . . . . . . . . . 53

6-3-1 Unknown Period Length of Periodic MMPS Systems . . . . . . . . . . . 55

6-3-2 Normalised Periodic MMPS Systems . . . . . . . . . . . . . . . . . . . . 57

6-3-3 Stability of Periodic MMPS Systems . . . . . . . . . . . . . . . . . . . . 59

7 Modelling Framework for Transportation Networks 63

7-1 Basics of Modular Transportation Systems . . . . . . . . . . . . . . . . . . . . . 63

7-1-1 Introduction to Modular Transport Nodes . . . . . . . . . . . . . . . . . 64

7-1-2 Introduction to MMPS Sub-Systems . . . . . . . . . . . . . . . . . . . . 67

7-1-3 Risks of Asynchronicity in Transportation Systems . . . . . . . . . . . . . 72

7-2 Switching MMPS Systems as a Single System . . . . . . . . . . . . . . . . . . . 73

M.J.A. Bartels Master of Science Thesis



Table of Contents v

7-3 Transportation Network Framework . . . . . . . . . . . . . . . . . . . . . . . . . 76

7-3-1 Basic Central Node Structure . . . . . . . . . . . . . . . . . . . . . . . . 77

7-3-2 Basic Connection Node Types . . . . . . . . . . . . . . . . . . . . . . . 79

7-3-3 Advanced Node Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 86

7-4 Generating the System of Equations from a Transport Graph . . . . . . . . . . . 87

7-4-1 Cycle Assignment and High-level System Assembly . . . . . . . . . . . . 88

7-4-2 System Construction from a Transport Graph . . . . . . . . . . . . . . . 88

8 Case Study: Transportation System 91

8-1 Introduction to a 4-Node Transportation System . . . . . . . . . . . . . . . . . . 91

8-2 Mathematical Derivation of the 4-Node Transportation System . . . . . . . . . . 94

8-2-1 Determining the Active Mode . . . . . . . . . . . . . . . . . . . . . . . . 94

8-2-2 Deriving Truck Departure Times . . . . . . . . . . . . . . . . . . . . . . 101

8-2-3 Derivation of Quantity States for the 4-Node Transportation System . . . 107

8-2-4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8-3 Simulation and Analysis of the 4-Node Transportation Network . . . . . . . . . . 111

8-3-1 Initialisation of the System . . . . . . . . . . . . . . . . . . . . . . . . . 111

8-3-2 Growth Rate, Fixed Points, and Periodicity Analysis . . . . . . . . . . . . 112

8-3-3 System Simulations for Periodic Behaviour . . . . . . . . . . . . . . . . . 116

8-3-4 Stability of the Transportation System . . . . . . . . . . . . . . . . . . . 122

8-3-5 Maximal Invariant Set of the Transportation System . . . . . . . . . . . 124

9 Conclusions and Contributions 127

9-1 On Scalable Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9-2 On Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9-3 On Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9-4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10 Recommendations for Future Work 131

A System of Equations for Alternative Transportation Nodes 133

A-1 End Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A-2 Transfer Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A-3 Pass-through Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Master of Science Thesis M.J.A. Bartels



vi Table of Contents

B System Matrices Example 7.3 147

C MATLAB: Full MILP Search Algorithm 151

D MATLAB: Generating a System of Equations from an Adjacency Matrix 163

E MATLAB: 4-node Transportation System 189

References 209

Glossary 211

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

M.J.A. Bartels Master of Science Thesis



Acknowledgements

Over the past year or so, I have been working on my thesis. It was something that I did
not look forward to during my bachelor’s and my master’s. Focusing on just one subject and
really diving deep into the matter seemed like an endless journey, for which I did not know if
I had what it took to finish it. However, now that I have finished it, I feel a sense of pride. I
have dedicated over 1500 hours to MMPS systems and have spent countless times explaining
to friends and family what it is that I do. Where more time than not, they were probably
left more confused than before. This thesis has been both a challenge and a passion, shaping
not only my academic skills but also my time here in Delft. Completing my Master’s feels
like a bittersweet moment: as much as I look forward to finishing, it also marks the end of
an unforgettable chapter in this city. A time which I have enjoyed deeply. And I don’t think
I would have been able to do it without all the support around me.

To start, I would like to thank my supervisors, Ton van den Boom and Sreeshma Markkassery,
who have helped me throughout the entire process with their guidance and advice. Ton, the
passion which which you speak about MMPS systems is extraordinary to see. It is this passion
that has helped me see new opportunities to explore and give motivation whenever I didn’t
have it. To Sreeshma, you were always there to help and guide me during the entire process.
Your encouragement and involvement have always been greatly appreciated. Every little or
large bit of feedback was always given with the best intentions and without, I don’t know
how long it would have taken me on my own if ever. So Ton and Sreeshma, thank you.

To my girlfriend, Carine, who has supported me throughout my thesis with fun dates, dinners
and lots of laughs. You were always able to cheer me up whenever my thesis was not going
my way. But also helping me take breaks when things were going my way to keep a somewhat
healthy work-life balance.

To my study friends, master friends, and 154 board members, Niels, Peter, Maartje, Essan,
Sabine, Sep, Guus, Rutger, Nelis, Jessie, Els, Floris, Demi, Coen and especially Vicky, who
is my fellow MMPS warrior. Without you, the countless days in landscape would have made
me go crazy. I am very thankful I had all of you around me to take breaks with, sit in the
sun, bitch about whatever wasn’t working or just being. Without you, I don’t think I would
be able to call myself an engineer.

To my roommates, Floris, Ruben, Victor, Kasper and Johan, you have always made my house
feel like a home. Even though with my busy schedule I was gone a lot, when I was home, I

Master of Science Thesis M.J.A. Bartels



viii Acknowledgements

always enjoyed our time together to unwind. Were it drinking a beer on our roof terrace or
playing games, I always had a blast, allowing me to start the next day fresh and relaxed.

To Heren 5, my hockey team, thank you for being there every Tuesday and Sunday, giving
me the chance to blow off steam, stay fit, and escape my MMPS/ME bubble for a while. Not
only keeping me moving, but also reminding me of the joy of good company, shared laughs,
and the occasional questionable third half/ fifth quarter.

To my siblings, Olle and Imke, as siblings, we do not always get along, something that anyone
with siblings will know. But thank you for always being there and having my back. Even
though you have no clue what it is I do, but still support me regardless.

To my parents, without whom I would not have made it so far. Their undying support for
what I do has always been a stable foundation on which I could build, and even though what
I do sometimes sounds like magic to them, they understand the effort it takes to do it all, for
which I am very thankful.

Thank you all.

Mees

Delft, University of Technology
September 25, 2025

M.J.A. Bartels Master of Science Thesis



ix

Master of Science Thesis M.J.A. Bartels



x Acknowledgements

M.J.A. Bartels Master of Science Thesis



“Failure is only the opportunity to begin again. Only this time, more wisely”
— Uncle Iroh





Chapter 1

Introduction

This Chapter provides an overview of what is discussed in this thesis. It begins with some
relevant background information in Section 1-1, followed by the presentation of academic
relevance and research questions in Section 1-2, where the research approach is also described.
The chapter finishes with a document outline in Section 1-3.

1-1 Background

Every day, everybody comes into contact with control theory and control systems. All around
us, we can find implementations of systems and control, sometimes more recognisable than
others. Examples of control systems around us are energy delivery, transportation, manufac-
turing, medical devices and much more. In order to use and control these systems, a good
model of the system is vital. Models allow us to capture the dynamics of a system, design a
controller and control the real-world system to the desired output. Typically, these models
are based on differential equations in conventional algebra and evolve over time due to the
influence of various phenomena such as physical, chemical or biological phenomena.

However, a distinct subclass of systems, known as Discrete Event System (DES), evolve
through discrete events rather than continuous time [1]. Examples include logistics networks,
manufacturing lines, and urban railway systems [2]. Using conventional algebra to model
such systems often leads to complex, non-linear descriptions that are difficult to work with.
Max-plus and min-plus algebra can simplify this, as the synchronisation and competition
effects that make DE systems highly non-linear become linear in these frameworks, greatly
easing modelling and analysis.

When a DES is modelled purely as a max-plus or min-plus system, however, much of the
modelling flexibility is lost. MMPS systems address this by combining max-plus, min-plus,
and conventional algebra into a single powerful framework. This allows synchronisation,
competition, and accumulation to be represented in the same system description, opening
up a wide range of applications. MMPS systems capture both temporal states, such as the
arrival time of vehicles and quantity states, such as the number of goods in that vehicle, while

Master of Science Thesis M.J.A. Bartels



2 Introduction

keeping a linear structure in their representation. They are mathematically equivalent to
continuous piecewise-affine systems, making them a natural fit for modelling and controlling
systems with hybrid dynamics.

1-2 Problem Description

The research into MMPS systems is currently in its infancy, meaning that there are a lot of
unanswered questions regarding all domains of modelling, control, and stability. This means
that there are also numerous opportunities to expand the current state of the art. In order
to guide this research, some research questions are posed. Currently, the Urban Railway
System (URS) is the only working example of MMPS systems in practice. This research will
focus on extending this list of examples as well as diving into the analysis of MMPS systems.
Since this becomes more complex, the larger the system gets. The concept of periodicity is
also addressed, which leads to the following research questions.

1-2-1 Research Questions

1. How can a hybrid approach combining search trees, LPP, and MILP reduce the com-
putational complexity of analysing Max-Min-Plus-Scaling Systems?

(a) How can the existing explicit MILP algorithm be extended to also apply to general
implicit MMPS systems?

(b) How can a search tree be used to systematically explore and prune the search for
eigenvalues of MMPS systems to avoid redundant or infeasible paths?

2. How can new theoretical insights into the structure and dynamics of MMPS systems
contribute to more effective analysis of periodic system behaviour?

(a) How can periodic MMPS systems be transformed to allow for periodicity and
stability analysis?

(b) How can the stability of periodic orbits be guaranteed?

3. Is it possible to model, simulate and analyse a transportation network such that it
closely resembles reality?

(a) Can the system equations be written in such a way as to incorporate all different
arrival and departure patterns?

(b) What insights can be obtained from analysing the dynamical behaviour of a 4-node
transportation network?

(c) How can the system be generalised to allow for more complex modelling, simulation
and analysis?

(d) Can a framework be created to allow for easy implementation of a generalised
transportation network?

M.J.A. Bartels Master of Science Thesis



1-3 Document Outline 3

1-2-2 Approach

In Section 1-1 and 1-2, the background for this research is presented, and the research ques-
tions are posed. Before those questions can be addressed, the topic itself needs to be explored
in more detail. This starts with a review of the current theory and literature, including an
overview of the mathematical foundations of MMPS systems. Current analysis techniques
are discussed, along with the known stability criteria for MMPS systems.
The next Chapter, Chapter 5, tackles research question 1. It begins by extending the existing
MILP algorithm for topical MMPS systems to apply to general implicit MMPS systems, which
answers research question 1(a). To make practical use of this MILP, a suitable search method
is then developed, answering research question 1(b). Combining these elements results in a
complete, stand-alone algorithm, which answers research question 1 as a whole.
The focus then shifts to the periodicity of MMPS systems. A general definition of periodic
points, orbits, and behaviour is introduced, followed by a short discussion of the MMPS
subclasses: max-plus and min-plus systems. This is extended to full MMPS systems, where
existing analysis techniques currently fall short. A new canonical form is proposed that
enables the use of all relevant methods, answering question 2(a). This also leads to new
stability criteria for periodic orbits, addressing research question 2(b).
To include transport networks in the MMPS framework, a generalised implementation is de-
veloped that allows subsystems to be connected easily. The solvability and time invariance
of these subsystems are investigated to ensure a working framework. Several example sub-
systems are provided to demonstrate practical use, answering research questions 3(c) and
3(d).
Finally, a detailed case study is carried out on a four-node transportation network to validate
the earlier results. The system is modelled, addressing the challenge of describing all arrival
and departure patterns and answering research question 3(a). An extensive analysis then
follows, answering research question 3(b).

1-3 Document Outline

This thesis is organised to provide a clear and logical flow of reasoning, guiding the reader
through the concepts in a natural way. The chapters are presented below in the order they
appear, along with a short summary of their content. Chapters 2–4 give an overview of the
existing literature, while Chapters 5–8 contain the main academic contributions of this work.

• Chapter 2 - Preliminaries of MMPS Systems: Introduces the algebraic frame-
works max-plus and min-plus in both the scalar case as well as for matrices and vectors,
which are a foundation of MMPS systems. MMPS functions and systems are introduced
for the explicit and implicit case, but also for autonomous and controlled cases.

• Chapter 3 - Analysis of MMPS Systems: Contains key theory regarding system
properties such as time-invariance, monotonicity and non-expansiveness is discussed.
Differences between explicit and implicit systems are discussed, as well as the solvability
conditions for implicit MMPS systems are given. Eigenvalue analysis is presented, and
normalisation is introduced.

Master of Science Thesis M.J.A. Bartels



4 Introduction

• Chapter 4 - Stability of MMPS systems: Presents existing theory on bounded-
buffer stability, maximal invariant sets, and the conditions under which MMPS systems
remain stable over time is reviewed. The discussion also covers linearisation, highlighting
the differences between implicit and explicit system formulations.

• Chapter 5 - Scalable Analysis of MMPS systems: Gives an introduction to MILP
and the differences with Linear Programming Problem (LPP) are discussed. The con-
cept of MMPS systems, modes and dominant modes is introduced. A new algorithm for
general time-invariant implicit MMPS systems is presented and derived. This chapter
also introduces a search algorithm to effectively use the newly introduced MILP. The
chapter finishes with some analysis on this new method as well as a run time comparison
between the MILP and LPP methods for MMPS systems.

• Chapter 6 - Periodicity of MMPS systems: Extends the concept of periodicity to
MMPS systems with a period of more than 1. Some remarks are made, and examples
are given. The maximum period length for max-plus systems is extended to min-plus
systems. The periodic behaviour of general MMPS systems is investigated. First, a new
canonical form is introduced to allow for the application of current analysis methods.
The concept of semi-dominant modes is introduced. Finally, the effects of periodic in
MMPS systems on normalisation and linearisation are investigated, where a stability
criterion for periodic MMPS systems is presented.

• Chapter 7 - Modelling framework for Transportation Networks: Presents the
basics of modular sub-systems for transportation networks. Both time invariance and
solvability are discussed. A method of transforming a switching MMPS system into a
single MMPS system under certain conditions is presented. After this, a framework for
the modelling of transportation systems is given. First, several nodes are presented, then
an algorithm to turn a high-level system description into a proper system of equations
is presented.

• Chapter 8 - Case Study Transportation Systems: Models a complex transporta-
tion system as well as performs an extensive analysis using all newly presented methods
and techniques. The model is validated through simulation and demonstrates the real-
world application potential.

• Chapter 9 - Conclusions and Contributions: Offers a brief reflection on each
research question, summarising the corresponding answers and providing a concise
overview of the work conducted throughout the thesis.

• Chapter 10 - Recommendations for Future Work: Discusses direction for future
research

M.J.A. Bartels Master of Science Thesis



Chapter 2

Preliminaries of MMPS Systems

The goal of this chapter is to build a clear and complete mathematical foundation for under-
standing MMPS systems. Section 2-1 starts by introducing what a discrete event system is.
Section 2-2 starts with the basics of max-plus algebra, covering what defines the algebra, how
its operators behave, and its key properties, all introduced in the scalar case. Which then
gets expanded to vectors and matrices.

Then the focus is shifted to min-plus algebra by analogy, which also gets expanded to vectors
and matrices. The chapter concludes with an introduction to MMPS systems by breaking it
up into its individual components, which then brings it together in a vector-valued form in
Section 2-3.

2-1 Discrete Event Systems

DES form a broad class of dynamical systems characterised by their evolution being driven
by discrete events rather than continuous flows or fixed time steps. These systems stand in
contrast to the more familiar discrete-time systems [3].

In discrete-time systems, state changes occur at predetermined intervals based on a fixed
sampling time that remains constant over a given time series. However, in discrete-event
systems, state changes are triggered by specific events, which can happen at irregular intervals.
As a result, the time between successive events is not fixed, and the system’s dynamics are
inherently event-driven. This means that the state itself has the dimension of time, and
the steps equate to the counter for the events. Notice that this is flipped with respect to
discrete-time systems.

Examples of DES include manufacturing systems, traffic networks, and communication pro-
tocols, where the timing and sequencing of events are crucial to their operation [2]. Under-
standing these systems is essential for modelling and analysing processes where discrete events
dominate the dynamics.

Master of Science Thesis M.J.A. Bartels



6 Preliminaries of MMPS Systems

2-2 Fundamentals of Dioids

Dioids provide a mathematical framework to model and analyse systems like discrete event
systems. It incorporates operations that are tailored for certain applications, such as schedul-
ing, optimisation, and control theory.

Semirings are an algebraic structure often used for modelling systems such as formal language,
optimisation problems and hybrid systems.

Definition 2.1. (Semiring [1])
A semiring is a nonempty set R endowed with two binary operations ⊕R and ⊗R such that

• ⊕R is associative and commutative with zero element εR;

• ⊗R is associative, distributes over ⊕R, and has unit element eR;

• εR is absorbing for ⊗R.

Such a semiring is denoted by R = (R,⊕R,⊗R, εR, eR).

Associative means that it does not matter how elements are grouped. So the ordering is not
important. Multiplication is associative since (4× 3)× 2 = 4× (3× 2). Commutative means
that the order of the elements in the operation does not matter. For example, addition is
commutative, since 5 + 3 = 8 = 3 + 5.

Dioids are a special subclass of semiring. Dioids have as an extra condition that their addition
is idempotent, which means that a⊕R a = a.

2-2-1 Max-Plus Algebra

Max-Plus algebra is a type of dioid that operates using maximisation and addition on the
set of real numbers extended with −∞ as such: Rε = R ∪ {−∞}. The two operations are
denoted by ⊗ (’otimes’) and ⊕ (’oplus’) respectively so

a⊕ b = max(a, b)
a⊗ b = a + b

(2-1)

where a, b ∈ Rε. ε
def= −∞ and e

def= 0 are defined as the neutral elements with respect to ⊗
and ⊕ [1]. In some literature, Rε is referred to as Rmax; they are, however, the same.

These operations form the basis of max-plus algebra and exhibit properties analogous to those
of conventional algebra, such as associativity and distributivity.

The set Rε together with the operations ⊕ and ⊗ is called max-plus algebra and is denoted
by

Rmax = (Rε,⊕,⊗, ε, e) (2-2)

Just as in conventional algebra, ⊗ has priority over ⊕.

M.J.A. Bartels Master of Science Thesis



2-2 Fundamentals of Dioids 7

Both operations are commutative since clearly

max(a, b) = max(b, a)
a + b = b + a

(2-3)

For max-plus algebra, it is easy to see that there is no inverse element for ⊕. Take a⊕ b = b,
if one is given b, one can never know what a was, only that it was less than b.

A definition for max-plus algebraic powers is introduced. For a ∈ Rε and n ∈ R, note that if
n is an element of R and not Z+, so it is also possible to have negative powers or powers of
non-natural numbers. Then the max-plus power is defined as [1];

a⊗n = a + a + · · ·+ a︸ ︷︷ ︸
n times

= n× a (2-4)

For a⊗0, this will be defined as e = 0. Which makes sense if one looks at (2-4). Then also
by definition ε⊗e = e = 0 and ε⊗r = ε for r > e. Max-plus algebraic powers have priority
over max-plus multiplication and max-plus addition, which is equivalent to the priorities of
conventional algebraic operations.

2-2-2 Vectors and Matrices in Max-Plus Algebra

The current max-plus operations ⊕ and ⊗ can be extended to matrices and matrix opera-
tions[1]. Define a n ×m matrix A ∈ Rn×m

ε , where n, m ∈ Z+ and define n
def= {1, 2, . . . , n}.

Then the matrix A can be written as

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...
an1 an2 · · · anm

 (2-5)

Where the ijth element of matrix A, aij will often be denoted by [A]ij , ∀i ∈ n, j ∈ m.

The three most frequently used matrix operations are summation, multiplication and matrix
powers. These operations are defined as follows

Definition 2.2. (Max-plus matrix summation [1])
The sum of matrices A, B ∈ Rn×m

ε , denoted by A⊕B, is defined as

[A⊕B]ij = [A]ij ⊕ [B]ij = max ([A]ij , [B]ij) (2-6)

Definition 2.3. (Max-plus matrix multiplication [1])
For matrices A ∈ Rn×l

ε and B ∈ Rl×m
ε , the matrix product A⊗B is defined as

[A⊗B]ik =
l⊕

j=1
aij ⊗ bjk

= max
j∈l

(aij + bjk)
(2-7)

Master of Science Thesis M.J.A. Bartels



8 Preliminaries of MMPS Systems

Definition 2.4. (Max-plus matrix power [1])
For a matrix A ∈ Rn×m

ε The kth power of the matrix, A⊗k, is defined as

A⊗k def= A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

(2-8)

In Subsection 2-2-1, the neutral elements for max-plus scalar operations are defined. The
same can be done for the corresponding matrix operations. Define an identity matrix E in
max-plus algebra as well as a null matrix E .

E =


e ε . . . ε
ε e . . . ε
...

... . . . ...
ε ε . . . e

 E =


ε ε . . . ε
ε ε . . . ε
...

... . . . ...
ε ε . . . ε

 (2-9)

Where E ∈ Rn×n
ε and E ∈ Rn×m

ε .

It is also easy to see that these matrices for any A ∈ Rn×m
ε satisfy

A⊕ E(n, m) = A = E(n, m)⊕A

A⊗ E(m, m) = A = E(n, n)⊗A
(2-10)

Note that for k ≥ 1 the following holds

A⊗ E(m, k) = E(n, k) and E(k, n)⊗A = E(k, m) (2-11)

Furthermore, combining Definition 2.4 and (2-9) we define the following

A⊗0
n×n

def= En×n (2-12)

Scalar–vector products are always interpreted element-wise. This applies to both the ⊗ and
⊕ operators, meaning that multiplying a scalar with a vector using either of these operators
results in each element of the vector being scaled individually. Lastly, a matrix A ∈ Rn×m

ε is
called regular if A contains at least one element different from ε in each row.

2-2-3 Min-Plus Algebra

Another dioid is min-plus algebra. This algebra is very similar to the max-plus algebra, except
for the ⊕R operation and the zero element.

In max-plus algebra, ε = −∞ is used as the zero element and extends the set of real numbers
R. In min-plus this is done, but with +∞. Define ⊤ =∞ as the zero element and let R⊤ be
R ∪ {⊤}. Then in min-plus algebra, the addition term ⊕R is denoted by ⊕′ (’oplus prime’)
performs the min operation. The times operation ⊗R is denoted by ⊗′ (’otimes prime’)
performs the plus operation;

a⊕′ b = min(a, b)
a⊗′ b = a⊗ b = a + b

(2-13)

M.J.A. Bartels Master of Science Thesis



2-2 Fundamentals of Dioids 9

The set R⊤ together with the operations ⊕′ and ⊗′ is called min-plus algebra and is denoted
by

Rmin =
(
R⊤,⊕′,⊗′,⊤, e

)
(2-14)

A few mathematical equivalences regarding max-plus and min-plus representations are given
below, which can help simplify modelling and analysis;

• −min(a, b) = max(−a,−b)

• −max(a, b) = min(−a,−b)

• min(a, min(b, c)) = min(min(a, b), c)

• max(c, min(a, b)) = min(max(c, a), max(c, b))

• min(c, max(a, b)) = max(min(c, a), min(c, b))

This new min-plus algebra can also be extended to matrices and vectors in a similar way as
with max-plus algebra, except the maximisation is changed to a minimisation, resulting in
the following definitions for min-plus matrix summations and additions;

Definition 2.5. (Min-plus matrix summation and addition [1])
The sum of matrices A, B ∈ Rn×m

⊤ , denoted by A⊕′ B, is defined as

[A⊕′ B]ij = [A]ij ⊕′ [B]ij = min ([A]ij , [B]ij) (2-15)

The multiplication of matrices A ∈ Rm×n
⊤ , B ∈ Rn×p

⊤ denoted by A⊗′ B, is defined as[
A⊗′ C

]
ij = min

k
([A]ik + [C]kj) (2-16)

Lastly, the min-plus identity (E′) and zero (E ′) matrices are given by;

E′ =


e ⊤ . . . ⊤
⊤ e . . . ⊤
...

... . . . ...
⊤ ⊤ . . . e

 E ′ =


⊤ ⊤ . . . ⊤
⊤ ⊤ . . . ⊤
...

... . . . ...
⊤ ⊤ . . . ⊤

 (2-17)

Where E′ ∈ Rn×n
⊤ and E ′ ∈ Rn×m

⊤ . It is also easy to see that these matrices for any A ∈ Rn×m
⊤

satisfy
A⊕ E ′(n, m) = A = E ′(n, m)⊕A

A⊗ E′(m, m) = A = E′(n, n)⊗A
(2-18)

Note that for k ≥ 1 the following holds

A⊗ E ′(m, k) = E ′(n, k) and E ′(k, n)⊗A = E ′(k, m) (2-19)

Master of Science Thesis M.J.A. Bartels



10 Preliminaries of MMPS Systems

2-3 MMPS Systems

An MMPS system is a DES. The state has the dimension of time, while the counter k is
the event counter. This section introduces all the different operations that are possible in an
MMPS system, then this is extended to MMPS function and eventually MMPS systems. As
the name MMPS already suggests, all possible operations are maximisation, minimisation,
addition and scaling, where each operation has its own purpose when modelling systems as
an MMPS system.

Let us start by taking a close look at all the different operations which can appear in a MMPS
function [3]. The arrow will represent an operation with processing time τi starting at x1(k)
and finishing at x2(k), so both in the same event cycle k.

Maximization 1

Figure 2-1: Maximisation 1 operator example

Consider an operation x1(k + 1) that can not start until operation x1(k) has finished, as well
as until the start signal u1(k + 1) for operation x1(k + 1) has been given. Thus, here the max
operation comes into play. x1(k + 1) = max(x1(k) + τ, u1(k + 1))

Maximization 2

Figure 2-2: maximisation 2 operator example

If there is a third operation with starting time x3(k) and that can only start when operations
one and two are finished, then this is also a max operation. x3(k) = max(x1(k)+τ1, x2(k)+τ2)

M.J.A. Bartels Master of Science Thesis



2-3 MMPS Systems 11

Minimization 1

Figure 2-3: minimisation 2 operator example

If there is a third operation with starting time x3(k) and that can start when operation one
of the previous operations has finished, then this is a min operation. x3(k) = min(x1(k) +
τ1, x2(k) + τ2)

Addition 1

Figure 2-4: Addition operator example

Here, the relation between x1(k) and x2(k) is represented by the plus operation. x2(k) takes
as long as x1(k) plus τ so x2(k) = x1(k) + τ

Scaling 1

Figure 2-5: Scaling 1 operation example

When the operations processing time τ is an affine function of the state x, i.e τ(k) = α+βT x(k)
where α ∈ R+ and β ∈ Rn

+ and where n is the dimension of the state. Then the relation
between x1(k) and x1(k) includes a scaling operation. x2(k) = x1(k) + α + βT x(k)

Master of Science Thesis M.J.A. Bartels



12 Preliminaries of MMPS Systems

Scaling 2

Figure 2-6: Scaling 2 operation example

When a state is split into two at a certain ratio. This is also a scaling operation. Let’s say
x1(k) gets split in x2(k) and x3(k) at a ratio of η and 1 − η respectively. Then the scaling
operation is give as x2(k) = ηx1(k), x3(k) = (1− η)x1(k)

To use these operations consistently, the set of real numbers is extended with ⊤ and ε by
defining Rc = R ∪ {−∞} ∪ {∞}.

Together, these operations form the basis of MMPS functions. Which is defined as follows

Definition 2.6. (Max-Min-Plus-Scaling function [3])
A MMPS function is a function f : Rm

c → Rc is given by

f = xi|α|max (fk, fl) |min (fk, fl)| fk + fl | β · fk (2-20)

with i = 1, . . . , m, α, β ∈ R and fk and fl both Rm
c → Rc MMPS functions. Where | stands

for ’or’. Notice that this is a recursive definition. As one could have an infinite amount of
nested MMPS functions.

Definition 2.7. (Well defined MMPS function [3])
An MMPS function f : Rm → Rn is well defined if the following holds:

χ ∈ Rm =⇒ f(χ) ∈ Rn (2-21)

Consider the following vector

χ(k) =
[
xT (k), xT (k − 1), . . . , xT (k −M), uT (k), wT (k)

]T
(2-22)

where χ ∈ X ⊆ Rnχ , x ∈ Rn is the state vector. u ∈ Rp is the control input and w ∈ Rz is an
external signal. The MMPS system is then described by

x(k) = f(χ(k)) (2-23)

Where f is a vector-valued MMPS function in variable χ and with event counter k.

M.J.A. Bartels Master of Science Thesis



2-3 MMPS Systems 13

Within the DES framework, MMPS systems have states that represent the starting and
ending times of operations for event cycle k. However, in the general framework, the states
may also include quantity states. For example number of people in a train or the goods in
a production system. The basic operations will stay the same in this case. The state vector
will just increase

x(k) =
[

xt(k)
xq(k)

]
(2-24)

Where xt(k) represents the time instances at which the kth event occurs and xq(k) represents
the values of the quantities at the kth event occurrence.

As shown earlier, it is possible to describe an MMPS system in either implicit or explicit form.
In the implicit case, the system includes a state vector such as in (2-22), where the state
evolution depends on the current state. This is generally considered an undesirable property,
as it complicates both computation and analysis. In many cases, an implicit MMPS system
can be transformed into an explicit one through substitution. However, this transformation
typically leads to an increase in system size and/or introduces a nested structure.

Master of Science Thesis M.J.A. Bartels



14 Preliminaries of MMPS Systems

M.J.A. Bartels Master of Science Thesis



Chapter 3

Analysis of MMPS Systems

In the previous chapter, all the background for MMPS systems is given. This chapter fo-
cuses on the tools currently available for analysing the dynamical behaviour of MMPS sys-
tems. Section 3-1 discusses system properties such as time invariance, monotonicity and
non-expansiveness, mainly for general vector-based systems. Section 3-2 dives into implicit
MMPS systems; how they can be represented using a matrix-based description, which greatly
simplifies analysis. It also discusses the system requirements for an implicit MMPS system
to be solvable. Section 3-3 introduces the concept of additive eigenvalues for MMPS systems
and how one can obtain them; first via the power algorithm, and then also via an LPP based
approach for which normalisation is required and thus also introduced.

3-1 Explicit MMPS Systems

Explicit systems are systems where the state of the system only depends on the previous
states and inputs. Explicit systems are a simplified version of implicit systems, which are
easier to analyse. This section briefly introduces some properties of explicit MMPS system,
such as time invariance and monotonicity.

1 and 0 are used to denote a column vector with all elements equal to one and zero of the
appropriate dimension, respectively. In some cases, the length of the vector is specified; this
is done with a subscript. As an example, with 1n, a vector of length n with all elements equal
to one is meant.

The properties of time-invariance, monotonicity and non-expansiveness are important prop-
erties for the analysis of DES. These properties are defined as follows for general vector-based
functions;

Definition 3.1. (Homogeneity, monotonicity and non-expansive systems [4])
Consider a system of the form x(k + 1) = f(x(k)). This system is homogeneous if

f(x(k − 1) + h1) = f(x(k − 1)) + h1 ∀h ∈ R (3-1)

Master of Science Thesis M.J.A. Bartels



16 Analysis of MMPS Systems

f is monotonic if for any
x ≤ y then f(x) ≤ f(y) (3-2)

Lastly, f is non-expansive in the ℓ-norm if

∥f(x)− f(y)∥ℓ ≤ ∥x− y∥ℓ (3-3)

For explicit MMPS systems, there are necessary conditions defined for when an MMPS system
is time invariant, monotonic and/or non-expansive, which can be found in [4]. When an
MMPS system is time invariant, monotonic and non-expansive, it is called topical.

3-2 Implicit MMPS Systems

The previous section provided a brief look at explicit MMPS systems and some of their basic
properties. In contrast, the majority of MMPS systems encountered in practical applica-
tions are implicit. In these systems, the next state depends not only on previous states and
inputs, but also on the current state itself. This self-dependence adds complexity to both
the mathematical analysis and numerical processing of the system. The function-based de-
scription for MMPS systems introduced in Section 2-3 is hard to work with and error-prone;
that is why an easy-to-work-with canonical form was developed. This form is called the
ABCD canonical form, where the MMPS system has been transformed into a matrix-based
state space description. This canonical form considers implicit MMPS systems of the form
x(k) = f(x(k), x(k − 1)).

Definition 3.2. (ABCD-canonical form for implicit MMPS systems [5])
The implicit ABCD canonical form describes an MMPS system as follows

x(k) = A⊗
(
B ⊗′ (C · x(k − 1) + D · x(k))

)
(3-4)

Where x ∈ Rn, A ∈ Rn×m
ε , B ∈ Rm×p

⊤ , C ∈ Rp×n, D ∈ Rp×n and k ∈ Z+

Any implicit MMPS system can be written in this ABCD form [5]. Please note that this is
not a unique description, as the ordering of the affine terms inside an MMPS function does
not matter, so it is the same true for the ABCD canonical form. The presented ABCD form
makes no distinction between the temporal states and the quantity states, but as is known,
an MMPS system can have both, so we define a more specific form.

Definition 3.3. (Implicit ABCD canonical form with temporal and quantity states [5])
The implicit ABCD canonical form with temporal and quantity states MMPS system is de-

scribed by[
xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11 D12
D21 D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]))

(3-5)

M.J.A. Bartels Master of Science Thesis



3-2 Implicit MMPS Systems 17

where xt ∈ Rnt , xq ∈ Rnq , At ∈ Rnt×mt
ε , Aq ∈ Rnq×mq

ε , Bt ∈ Rmt×pt
⊤ , Bq ∈ Rmq×pq

⊤ , C11, D11 ∈
Rpt×nt , C12, D12 ∈ Rpt×nq , C21, D21 ∈ Rpq×nt , and C22, D22 ∈ Rpq×nq . The notations ε and
⊤ represent matrices of appropriate sizes with all elements equal to ε and ⊤ respectively.
Alternatively, can one consider the different operations and elements as separate entities.
This becomes useful when trying to change or identify certain properties. This is called the
extended state MMPS system and is defined as follows;

Definition 3.4. (Extended state MMPS system)
An MMPS system can be represented in the following extended state form

x(k) = A⊗ y(k)
y(k) = B ⊗′ z(k)
z(k) = C · x(k − 1) + D · x(k)

(3-6)

3-2-1 Time Invariance of Implicit MMPS Systems

For Implicit MMPS systems to be time-invariant, they must also be additively partly homo-
geneous [5]. A property already introduced in Section 3-1. Following [5], explicit systems in
the ABCD canonical form with temporal and quantity states are time-invariant if∑

i∈nt

[C11 D11]ℓi = 1, ∀ℓ ∈ pt,
∑
i∈nt

[C21 D21]ti = 0, ∀t ∈ pq (3-7)

Where [CD] represents the concatenation of the two matrices and not the matrix product.
The proof can be found in [5].
For implicit MMPS systems, proofs and conditions for monotonicity and non-expansiveness
do not exist yet.

3-2-2 Solvability of Implicit MMPS Systems

Implicit MMPS systems are difficult to work with. In general, however, writing the implicit
system into an explicit one is possible. This will result in a nested MMPS system, which
might be even more tedious to analyse, because the order of the system and complexity will
increase quickly. However, not all implicit systems are solvable. An implicit MMPS system
x(k) = f(x(k − 1), x(k)) is solvable when [5]

xi(k) = fi (x(k − 1), x1(k), x2(k), . . . , xi−1(k))∀i ∈ n̄ (3-8)

Since a solution for xi(k) can be found by a finite successive substitution. In other words,
the solution of xi(k) should not depend on xi(k). There is also another equivalent condition
which uses structure matrices [5]. Which is as follows;
Take structure matrices SA, SB, SD as;

[SA]i,j =
{

1 if [A]i,j ̸= ε
0 if [A]i,j = ε

[SB]i,j =
{

1 if [B]i,j ̸= ⊤
0 if [B]i,j = ⊤

[SD]i,j =
{

1 if [D]i,j ̸= 0
0 if [D]i,j = 0

(3-9)

Master of Science Thesis M.J.A. Bartels



18 Analysis of MMPS Systems

If there exists a matrix T ∈ Rn×n such that F = T ·SA ·SB ·SD ·T −1, where F is a strict lower
triangle matrix, there always exists a unique solution x(k), k > 0 for the implicit MMPS
system for any state x(k − 1). Proof can be found in [5]. For any further analysis, it is
assumed that the implicit MMPS system is solvable.

3-3 Eigenvalues and Eigenvectors

In conventional state space systems, analysis of their behaviour is often done using their eigen-
values and eigenvectors. Just like in conventional state-space systems, MMPS systems have
eigenvalues that can be analysed to provide insights into their behaviour. Contrary to conven-
tional multiplicative eigenvalues, MMPS systems are characterised by additive eigenvalues.
Defined as follows;

Definition 3.5. (Additive eigenvalues and eigenvectors [4])
The time-invariant MMPS system x(k) = f(x(k − 1), x(k)), x ∈ Rn and f : Rn → Rn, with
both temporal and quantity states, has an additive eigenvalue if there exists a real number
λ ∈ R and a vector v ∈ Rn such that

f(v) = v + λ · [1⊤
nt

0⊤
nq

]⊤ (3-10)

where nc is the number of time states and nq is the number of time states. Then the scalar λ
is called the eigenvalue and the vector v is called the eigenvector.

Notice that since MMPS systems have additive eigenvalues and vectors, if v is an eigenvector
then so is v + h · [1⊤

nt
0⊤

nq
]⊤ ∀h ∈ R. The eigenvalue of an MMPS system is also often

referred to as the growth rate of the system. Whereas the eigenvector is often referred to
as the fixed point. An eigenvalue whose existence solely depends on the structure of the
matrices A, B, C and D is called a structural eigenvalue. This means that any numerical
changes to the matrices will not change the existence of the additive eigenvalue. For topical
MMPS systems, it is also known that there can only ever be a single additive eigenvalue [4].
The next two sections investigate two methods of obtaining the growth rate and fixed points
of implicit MMPS systems. The first one is the Power Algorithm. The second method relies
on normalising the MMPS system and solving a set of LPP problems.

3-3-1 Power Algorithm for Implicit MMPS Systems

The power algorithm relies on the system eventually ending in a periodic regime during
simulation. It checks the difference between two state vectors, and once all time states have
grown with the same amount and all quantity states remain the same over event cycles, a
stationary regime has been found, and the algorithm terminates. The algorithm can be found
in Algorithm 1.

One important note about the power algorithm is that when applied to an implicit MMPS
system, the state can move to the growth rate in an asymptotic manner, which can lead to a
never-stopping algorithm. That is why a maximum number of iterations can be beneficial.

M.J.A. Bartels Master of Science Thesis



3-3 Eigenvalues and Eigenvectors 19

Algorithm 1 Power Algorithm [4]

1. Take an arbitrary initial vector x(0) = x0 ̸= ε · 1; that is, x0 has at least one finite
element.

2. Iterate x(k) = f(x(k−1)) until there are integers p, q with p > q ≥ 0 and a real number
c, such that xt(p) = xt(q)⊗ c and xq(p) = xq(q), i.e., until a periodic regime is reached.

3. Compute as the eigenvalue λ = c/(p− q) (division in conventional sense).

4. Compute as an eigenvector v =
p−q⊕
j=1

(
λ⊗(p−q−j) ⊗ x(q + j − 1)

)

3-3-2 LPP Algorithm for Implicit MMPS Systems

Before the second algorithm is introduced, normalising an MMPS system must be introduced.
After which, an LPP problem is presented to find the eigenvalue. Normalisation in an MMPS
sense means that the system is transformed to have an eigenvalue of zero and an eigenvector
at 0, thus when initialising the normalised system at the eigenvector 0, the system stays
there. For this, it is important to know what a diagonal matrix looks like in an MMPS sense.
Thus, they are defined below;

Definition 3.6. (Max-plus and min-plus diagonal matrices [4])
Given a vector v ∈ Rn we define the max-plus diagonal matrix d⊗(v) and the min-plus diagonal
matrix d⊗′(v) as

d⊗(v) =


v1 ε · · · ε

ε v2
...

... . . . ...
ε · · · · · · vn

 , d⊗′(v) =


v1 ⊤ · · · ⊤

⊤ v2
...

... . . . ...
⊤ · · · · · · vn

 (3-11)

The inverse of the max-plus diagonal matrix is d⊗(−v) and for min-plus d⊗′(−v). Then the
max-plus identity matrix E is also given by d⊗(0). For the min-plus identity matrix one gets
d⊗′(0)

Also, define the row-major order of a matrix. This means the mapping of a matrix to a
column vector as such vec(A) = [AT

1 AT
2 . . . AT

n ]T with A ∈ Rn×m
c where Ai, i ∈ n denotes the

ith row of matrix A.

Take a system of the form (3.3), if this system has an additive eigenvalue λ and additive
eigenvector (xte, xqe, yte, yqe, zte, zqe). Then the following must hold;

zte = C11 · (xte − λ1) + C12 · xqe + D11 · xte + D12 · xqe

zqe = C21 · (xte − λ1) + C22 · xqe + D21 · xte + D22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe

xte = At ⊗ yte, xqe = Aq ⊗ yqe

(3-12)

Master of Science Thesis M.J.A. Bartels



20 Analysis of MMPS Systems

Let xe =
[

x⊤
te x⊤

qe

]⊤
, ye =

[
y⊤

te y⊤
qe

]⊤
, ze =

[
z⊤

te z⊤
qe

]⊤
and s =

[
1⊤

nt 0⊤
nq

]⊤
. Define xe,λ = xe− sλ and Aλ =

[
At,λ ε

ε Aq

]
, At,λ = Aitjt −λ,∀it ∈

nt, ∀jt ∈ mt.

Then (3-12) can be transformed to

we = (C + D) · xe,λ

ye = B ⊗′ (we + D · sλ)
xe,λ = Aλ ⊗ ye

(3-13)

where we = ze −D · sλ. ye = B ⊗′ (we + D · sλ) can then be written as

ye = B′ ⊗′ we (3-14)

With d = D · s and B′ = B + λ1m · d⊤. Next, some diagonal matrices must be defined as
such;

X = d⊗ (xe,λ) , X−1 = d⊗ (−xe,λ)
Y = d⊗ (ye) , Y −1 = d⊗ (−ye)

Y ′ = d⊗′ (ye) ,
(
Y ′)−1 = d⊗′ (−ye)

W ′ = d⊗′ (we) ,
(
W ′)−1 = d⊗′ (−we)

(3-15)

Then it follows that the following is true;

X−1 ⊗ xe,λ = 0 Y −1 ⊗ ye = 0
(Y ′)−1 ⊗′ ye = 0 (W ′)−1 ⊗′ we = 0 (3-16)

By combining (3-13) and (3-15), one ends up with

X−1 ⊗ xe,λ = X−1 ⊗Aλ ⊗ ye

= X−1 ⊗Aλ ⊗ Y︸ ︷︷ ︸
Ã

⊗Y −1 ⊗ ye

Y −1 ⊗′ ye =
(
Y ′)−1 ⊗′ B ⊗′ ze

= Y −1 ⊗′ B′ ⊗′ W︸ ︷︷ ︸
B̃

⊗′ (W ′)−1 ⊗′ we

(3-17)

Due to the (3-16), this reduces to

0 = B̃ ⊗′ 0, 0 = Ã⊗ 0 (3-18)

And so the normalized MMPS system is found [4];

z̃(k) = (C · x̃(k − 1) + D · x̃(k)), ỹ(k) = B̃ ⊗′ z̃(k), x̃(k) = Ã⊗ ỹ(k) (3-19)

M.J.A. Bartels Master of Science Thesis



3-3 Eigenvalues and Eigenvectors 21

This system has an eigenvalue λ̃ = 0 and an eigenvector of

ṽe =
(
x̃⊤

e , ỹ⊤
e , z̃⊤

e

)⊤
=
(
0⊤, 0⊤, 0⊤

)⊤
. This new normalised system will stay at zero when

initiated at the eigenvector, which is also zero. Furthermore

x(k) = x̃(k) + (kλ)s + xe

y(k) = ỹ(k) + (kλ)s + ye

z(k) = z̃(k) + (kλ)s + ze

(3-20)

It also follows from (3-18) that each row of Ã has at least one zero on each row, as well as
having all the other non-zero entries being smaller than zero. B̃ also has at least one element
equal to zero in each row. Every other non-zero entry is larger than zero.

min
l

[B̃]jl = 0 ∀j, max
j

[Ã]ij = 0 ∀i (3-21)

Now that the system can be normalised, this property can be used in the development of the
LPP algorithm. An MMPS system can have multiple additive eigenvalues and eigenvectors.
This is similar to how non-linear systems in standard algebra can have several equilibrium
points.

Let S be the number of additive eigenvalues. For each θ ∈ {1, . . . , S}, let λθ be the additive
eigenvalue, and Ãθ, B̃θ the corresponding normalized matrices.

To describe the structure of these configurations, footprint matrices are introduced. A foot-
print matrix shows the pattern of zeros in a normalised matrix and acts as a kind of blueprint.
In the LPP algorithm, these matrices are used to guide the search for the growth rate and
fixed point for a given system setup.

The footprint matrices are defined as follows;

GAθ
=
[

GAtθ
0

0 GAqθθ

]
, GBθ

=
[

GBtθ
0

0 GBqqθ

]

[GAtθ
]ij =


1 if

[
Ãtθ

]
ij

= 0

0 if
[
Ãtθ

]
ij

< 0
, [GBtθ

]jl =


1 if

[
B̃tθ

]
jl

= 0

0 if
[
B̃tθ

]
jl

> 0

[
GAqθ

]
rs

=

 1 if
[
Ãqθ

]
rs

= 0
0 if

[
Ãqθ

]
rs

< 0
,
[
GBqθ

]
st

=

 1 if
[
B̃qθ

]
st

= 0
0 if

[
B̃qθ

]
st

> 0

(3-22)

with 0 being a zero matrix of appropriate size. So a footprint matrix pair essentially refers to
a system configuration. These footprint matrices are used by the LPP to find the eigenvalues.
This is needed since the system configuration, which results in a valid growth rate and fixed
point, is not known a priori, thus all configurations must be checked one by one by the LPP
in the form of a recursive LPP implementation. Since there are mnt

t pmt
t m

nq
q pm

q number of
footprint matrices, this is also the number of LPPs which need to be solved. Since any
element in A equal to ε and any element in B equal to ⊤ act as the zero element, it means
that those elements can never be equal to zero in a normalised system. This means that any
footprint matrix where an element corresponding to a ε or ⊤ is equal to 1 is never valid and

Master of Science Thesis M.J.A. Bartels



22 Analysis of MMPS Systems

thus they can be removed from the list of possible footprint matrix, drastically reducing the
number of possible footprint matrix pairs to;

n∏
i=1

ai ·
m∏

j=1
bj (3-23)

Where ai denotes the number of finite elements in row i of matrix A and bj denotes the number
of finite elements in row j of matrix B. The LPP to find the eigenvalues and eigenvectors is
given by [5];

min
xe,ye,we

λ

s.t. − [sλ]i − [x]i + [y]j ≤ −[A]ij if [GAθ
]ij = 0

− [sλ]i − [x]i + [y]j = −[A]ij if [GAθ
]ij = 1

[y]j − [d]ℓλ− [w]ℓ ≤ [B]jℓ if [GBθ
]jℓ = 0

[y]j − [d]ℓλ− [w]ℓ = [B]jℓ if [GBθ
]jℓ = 1

d = D · s, w = (C + D) · x

(3-24)

Where s =
[

1⊤
nt 0⊤

nq

]⊤
. Vector s acts as a state classification vector denoting the difference

between a temporal state and a quantity state. As it turns out, for a found valid footprint
matrix pair, the solution to the LPP given by (λ∗, v∗) might not be the only one that satisfies
the constraints of (3-24). Take the set of equalities and inequalities from the LPP and
substitute the value for λ∗. One will end up with

Heq · v = heq, Hineq · v ≤ hineq (3-25)

Matrix Heq is a square matrix with a rank of at least one less than m+n+p, since the system
is shift-invariant in the direction of s =

[
1⊤

nt 0⊤
nq

]⊤
. When the rank is even lower, there

are more directions in which the system is shift-invariant. This results in a set of fixed points
for a given eigenvalue λ∗. Where the direction vectors are given by g1, g2, . . . , gf with

g1 =

 s
B ⊗′ ((C + D) · s)

(C + D) · s

 (3-26)

This looks similar to s. However, it incorporates the extended states ye and we as well. The
fixed-point set V is given by

V = {v | Hineq · v ≤ hineq } (3-27)

With v = v∗ + σ1g1 + σ2g2 + . . . σf gf and σ1 ∈ R, σi > 1 ∀i ̸= 1. σi can be constrained
to a specific range. Finding this range can be done using the inequality constraints. So in
this subspace, the system is shift-invariant for that specific growth rate [5]. When one is only
considering explicit MMPS systems, both the Power algorithm and the LPP algorithm are
still valid to use. However, no one simply sets D = 0, which must have the same size as C.

M.J.A. Bartels Master of Science Thesis



Chapter 4

Stability of Max-Min-Plus-Scaling
Systems

The stability of any system is vital for understanding the system’s behaviour. Knowing
whether states will converge or diverge is critical for making any decisions about systems.
This chapter deals with the stability of MMPS systems, both implicit and explicit. Section 4-1
focuses on the steady state behaviour of MMPS systems, differentiating between how temporal
state and quantity state behave under steady state. Then Section 4-2 introduces how to
linearise an explicit MMPS system as well as determine the valid linearization region and
presents existing theory regarding the stability criteria for explicit MMPS systems. Section 4-
3 does the same but for implicit MMPS systems. Finishing the chapter, Section 4-4 describes
a method how the maximal invariant set of a linearised MMPS system can be determined.

A DE system is stable when all the time states of the system grow at the same rate. This
also means that the system is bounded-buffer stable [6]. Bounded buffer stability means that
the system’s buffer (or state values) remains within a finite range over time, ensuring that it
does not grow uncontrollably regardless of inputs or disturbances.

To quantify this bound, the Hilbert projective norm is used. The Hilbert projective norm
measures how much two positive vectors differ in their relative proportions, ignoring their
overall scale, which is defined as follows:

Definition 4.1. (Hilbert projective norm [1])
The Hilbert projective norm of a vector x ∈ Rn is defined as

∥x∥P = max
i∈n

(xi)−min
j∈n

(xj) (4-1)

This norm looks at the maximum difference between vectors. Therefore, evaluating whether
the states do or do not diverge.

An autonomous DE system is bounded buffer stable if for every initial time state xt0 ∈ Rnt

there exists a bound M(x0) ∈ R such that the temporal state is bounded in the Hilbert
projective norm. i.e. ∥xt(k)∥P ≤M(x0) ∀k ∈ Z+.

Master of Science Thesis M.J.A. Bartels



24 Stability of Max-Min-Plus-Scaling Systems

4-1 Steady State Behaviour of Explicit MMPS Systems

Take a time-invariant explicit MMPS system, with both temporal and quantity states.

x(k) =
[

xt(k)
xq(k)

]
=
[

ft (χt(k), χq(k))
fq (χt(k), χq(k))

]
(4-2)

Due to the different nature of the two states, temporal and quantitative, they will also have
different stationary behaviour. A time signal is usually non-decreasing; thus, in general, a
time signal will not reach an equilibrium. Instead for time signals are considered to have a
stationary regime as a steady state [3]. That is, the growth of xt becomes constant. That is
for xt and χt a stationary regime is reached if for a certain event kss the growth of xt and χt

becomes constant as:
χt(k) = χt(k − 1) + τt,ss1, for k ≥ kss (4-3)

Where τt,ss ∈ R, and χt ∈ Rm

For the quantity states, the behaviour is different; instead of continuously growing, the state
should eventually stabilise and become constant, as expected in normal steady-state condi-
tions. This results in:

χq(k) = χq(k − 1), for k ≥ kss (4-4)

Combining this one ends up with the following stationarity condition:[
χt(k)
χq(k)

]
=
[

χss,t + kτss,t1
χss,q

]
, for k ≥ kss (4-5)

Which will give the steady state values xss,t, xss,q, χss,t, χss,q, τss,t [3]

This is similar to fixed points and growth rates in autonomous systems. However, unlike
autonomous systems that operate without external influence, this scenario also accounts for
inputs and disturbances. This can easily be seen by the fact that the system works with
χ(k) instead of x(k) in the MMPS functions ft and fq. Notice that if the system in (4-2)
only depends on the previous and/or current state, i.e. χ(k) = [x(k − 1), x(k)], then the
stationarity conditions as the same as for eigenvalues and eigenvectors.

4-2 Bounded Buffer Stability of Explicit MMPS Systems

Chapter 3 shows how to normalize an MMPS system with respect to different growth rates.
This normalised system can be transformed into a linearised system in conventional algebra.
Which then can be used to determine the stability of an MMPS system around a specific
fixed point. However, this linearised system is only valid within a to be specified polyhedron
Ωθ. Take an normalized implicit MMPS system:

x̃θ(k) = Ãθ ⊗
(
B̃θ ⊗′ (C · x̃θ(k − 1))

)
(4-6)

For θ ∈ {1, . . . , S}, and where Ãθ ∈ Rn×m, B̃θ ∈ Rm×p, C ∈ Rp×n. Then this explicit MMPS
system can be linearised as such:

M.J.A. Bartels Master of Science Thesis



4-2 Bounded Buffer Stability of Explicit MMPS Systems 25

Definition 4.2. (Linearization of an explicit MMPS system [6])
Any normalised explicit MMPS system can be linearised as follows:

x̃θ(k) = Mθ · x̃θ(k − 1), Mθ = GAθ
·GBθ

· C (4-7)

for all x̃(k) ∈ Ωθ, k ∈ Z+

Notice that GAθ
and GBθ

are the footprint matrices with exactly one entry equal to one in
each row. It is only possible to have multiple entries equal to one when the equilibrium point
is on the boundary of two or more regions.

The linearization is only valid when x̃(k) ∈ Ωθ, k ∈ Z+. Ωθ can be described by a set of
linear inequalities. However, before that is possible, the Kronecker vector product should be
introduced. This will be defined below;

Definition 4.3. (Vector Kronecker product [5])
The Kronecker product of a matrix A ∈ Rn×m and a vector 1p, A ⊠ 1p, stacks p copies of
every row of the matrix A vertically. 1p ⊠ A stacks p copies of the entire matrix vertically.

Now that the Kronecker product has been introduced, the structure of the inequalities that
define the polyhedral region Ωθ can be examined. Ωθ is described by:

Ωθ = {x̃|H · x̃ ≤ h}, H =
[

U
−L

]
, h =

[
b̃
−ã

]
(4-8)

Where
U = ((GBu ⊠ 1p)− (1m ⊠ Ip)) · C, b̃ = vec

(
B̃u

)
L = ((GAu ⊠ 1m)− (1n ⊠ Im)) ·GBθ

· C, ã = vec
(
Ãu

) (4-9)

The proof can be found in [6]. Note that any constraints with both time and quantity states
can be eliminated. This is because their upper bound in b̃ will be ε and their lower bound in
ã will be ⊤. This is a result of the structure of the block diagonal matrices B̃θ and Ãθ.

This linearised system can be used to investigate whether the original system is bounded
buffer stable. This will be done using stability criteria for conventional systems. This means
that the linearised system for θ ∈ {1, . . . , S} is bounded buffer stable if Mθ has multiplicative
eigenvalues of less than or equal to 1, and all Jordan blocks of multiplicative eigenvalues
of one are 1 × 1. This also means that the linearization is not bounded buffer stable if one
multiplicative eigenvalue is larger than one or the Jordan block of the multiplicative eigenvalue
of magnitude one is larger than 1× 1 [6].
Since v∗ is shift invariant in the direction of s, it means that Mθ has at least one multiplicative
eigenvalue equal to one. Thus, the states of the system will not always converge back to the
equilibrium point 0. If it is stable, the states will also not keep growing and will not diverge
from each other. This has as a result that the Hilbert projective norm will be bounded for a
stable linearised system. The MMPS system is bounded buffer stable at the temporal growth
rate λθ within the region Ωθ. Additionally, a stable linearised system ensures that none
of the states grows unbounded, meaning the quantity states x̃q(k) remain bounded. From
the transformation between the normalised state and actual state, it follows that if x̃q(k) is
bounded, then xq(k) is also bounded.

Master of Science Thesis M.J.A. Bartels



26 Stability of Max-Min-Plus-Scaling Systems

4-3 Bounded Buffer Stability of Implicit MMPS Systems

Implicit MMPS systems are more complex than explicit ones due to additional dependency
on the current state. This Section focuses on the linearization and bounded buffer stability
of implicit MMPS systems.

Take a solvable normalized implicit MMPS system with multiple growth rates λθ,

x̃θ(k) = Ãθ ⊗
(
B̃θ ⊗′ (C · x̃θ(k − 1) + D · x̃θ(k))

)
(4-10)

for θ ∈ {1, . . . , S}, and Aθ ∈ Rn×m, Bθ ∈ Rm×p, C, D ∈ Rp×n with both temporal and
quantity states. Just like in the explicit case seen in Section 4-2, it is possible to linearise the
implicit MMPS system as such;

Definition 4.4. (Linearization of an implicit MMPS system [6])
Any normalised implicit MMPS system can be linearised as follows:

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(4-11)

for all x̃(k) ∈ Ωθ, k ∈ Z+. If the inverse (I −M1)−1 exists.

Luckily, this inverse always exists for any solvable implicit MMPS system [5]. Notice that
here again the footprint matrices GAθ

and GBθ
appear. Both matrices have exactly one entry

equal to one in each row.

Just like with the explicit system, Ωθ is the region where the linearization is valid. This
region, which is given by a set of linear inequalities as given below:

Ωθ = {x̃|H · x̃ ≤ h}, H =
[

U
−L

]
, h =

[
b̃
−ã

]
U = ((GBθ

⊠ 1p)− (1m ⊠ Ip)) · (C + D ·Mθ)
L = ((GAθ

⊠ 1m)− (1n ⊠ Im)) ·GBθ
· (C + D ·Mθ)

b̃ = vec
(
B̃θ

)
, ã = vec

(
Ãθ

)
(4-12)

The proof can be found in [5].

Mθ will have at least one eigenvalue equal to one, with eigenvector v1. This makes sense as Mθ

is the linearisation of the normalised Implicit MMPS system, and by normalising, the system
has been made invariant in the direction of v1. Just as with the explicit linearization, the
implicit linearization can also be used to investigate whether the original system is bounded-
buffer stable.

This will be done using stability criteria for conventional systems. This means that the lin-
earised system for θ ∈ {1, . . . , S} is bounded buffer stable if Mθ has multiplicative eigenvalues
of less than or equal to 1, and all Jordan blocks of multiplicative eigenvalues of one are 1× 1.

M.J.A. Bartels Master of Science Thesis



4-4 Maximal Invariant Set of a Linearised MMPS Systems 27

This also means that it is not locally Max-Plus bounded buffer stable if one multiplicative
eigenvalue is larger than one or the Jordan block of the multiplicative eigenvalue of magnitude
one is larger than 1× 1 [6].
As previously stated, Mθ has at least one multiplicative eigenvalue equal to one. Thus, the
states of the system will not always converge back to the equilibrium point 0. If it is stable,
the states will also not keep growing and will not diverge from each other. This has as a result
that the Hilbert projective norm will be bounded for a stable linearised system. The MMPS
system is bounded buffer stable at the temporal growth rate λθ within the region Ωθ. Addi-
tionally, a stable linearised system ensures that none of the states grows unbounded, meaning
the quantity states x̃q(k) remain bounded. From the transformation between the normalised
state and actual state, it follows that if x̃q(k) is bounded, then xq(k) is also bounded.

As was seen in Section 3-2, implicit MMPS systems can have multiple fixed points with the
same growth rate. This also results in the system matrix Mθ being the same for all vectors in
the fixed-point set, which corresponds to the growth rate λθ. Even though the system matrix
is the same for the different fixed points xei , it is not necessarily the case for the regions Ωθi

.
It is, however, easy to obtain the correct region when changing between these fixed points.
Start with the the region Ωθi

:= {x̃ | H · x̃ ≤ hi} of fixed point xei . Then for a different fixed
point xej from the set of feasible fixed points V, which by definition belongs to the same
growth rate, the region is given by Ωθj

=
{
x̃ | H · x̃ ≤ h1 + H ·

(
xei − xej

)}

4-4 Maximal Invariant Set of a Linearised MMPS Systems

The linearisations given in Section 4-2 and 4-3 are only valid if the state x̃θ(k) lies within Ωθ.
However it is not guaranteed that if x̃θ(k) lies in Ωθ, that x̃θ(k+1) does as well. This is a large
motivator to find these invariant sets. Since then, by definition, the next state will always be
inside Ωθ and the linearisation remains valid. It is assumed that the linearisation of the system
is stable. The set O∞ denoted the largest sub set of Ωθ, such that once x̃(0) ∈ O∞, x̃(k)
remains there for all k > 0. The largest invariant set O∞ has to be determined numerically.
In order to find this set, first, the definition of the precursor set must be given;

Definition 4.5. (Precursor set [7])
The precursor set for an autonomous system denoted by O is given by:

Pre(O) = {x ∈ Rn : Mθ · x ∈ O} (4-13)

This means that the precursor set of Ωθ is given by:

Pre (Ωθ) := H ·Mθ · x̃ ≤ h (4-14)

Then Algorithm 2 can iteratively approximate the largest invariant set of Ωθ.

Master of Science Thesis M.J.A. Bartels



28 Stability of Max-Min-Plus-Scaling Systems

Algorithm 2 Maximal positive invariant set [5]
Input: Mθ, Ωθ

Output: O∞
O0 ← Ωθ, k ← −1
Repeat
k ← k + 1
Ok+1 ← Pre (Ok) ∩ Ok

Until: Ok+1 = Ok

O∞ ← Ωk

It can happen that Algorithm 2 will not terminate in a finite number of steps. However,
in most cases, both for explicit and implicit MMPS systems, the algorithm does provide a
solution in a finite number of steps and results in the largest invariant set of the linearised
system. Often it even is the entire set of Ωθ [5].

M.J.A. Bartels Master of Science Thesis



Chapter 5

Scalable Analysis of MMPS Systems

In the previous chapters, all the necessary background for MMPS systems was introduced.
This chapter builds on that foundation and focuses on a new contribution: a MILP algorithm
specifically designed for implicit MMPS systems. The goal is to significantly reduce the
computational complexity involved in analysing such systems. Section 5-1 starts with an
introduction to MILP, explaining the basics and the key differences between MILP and LPP
problems. Then, in Section 5-2, the core MILP algorithm is presented. The discussion begins
with the case of explicit systems, for which the existing theory is available. From this point
onward, the contributions of this thesis start by extending the algorithm to handle implicit
MMPS systems. The main challenges that arise in this extension, as well as the strategy
developed to address them, are discussed in Section 5-3. Finally, Section 5-4 brings everything
together into a complete MILP-based method for analysing implicit MMPS systems. It begins
with a preprocessing step to reduce the feasible search space, followed by the full recursive
MILP algorithm. The chapter concludes with an analysis of the complete MILP algorithm for
implicit MMPS systems, including a runtime comparison against the current state-of-the-art
LPP approach.

5-1 Introduction to Mixed Integer Linear Programming Problems

In the field of optimisation, there are several classes of problems defined. Problem classes
include, for example, linear, nonlinear, convex, and semidefinite programming problems. The
class tells you something about the shape of the problem, which also tells you how complex
solving it is and what techniques and algorithms are available for a specific class of problem.
Linear programming problems are the easiest class of optimisation problems to solve. They
require a linear objective function and linear constraints. These constraints can be a combina-
tion of inequality constraints and equality constraints. Mathematically, a linear programming
problem is defined as follows:

Definition 5.1. (Linear programming problem [8])
A linear programming problem is defined by a linear objective function which needs to be

Master of Science Thesis M.J.A. Bartels



30 Scalable Analysis of MMPS Systems

minimised, while respecting the linear constraints:

min
x

c⊤x

s.t. A · x ≤ b

x ∈ Rn

(5-1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn

A solver is tasked with minimising the value given by c⊤x by deciding the values in x, where
the elements in x are called the decision variables. While, of course, simultaneously ensuring
that A · x ≤ b remains true at all times. Current solvers are so fast at solving LPPs, that
LPP problems with thousands of variables can be solved in seconds, and even problems with
millions of variables in minutes to hours.
Another class of problems are the class of integer linear programming problems. Here, both
the objective function and the constraints are still linear; however, the decision variables are
all integers. An example of this could be how many products you can fit in a specific box.
This slightly changes Definition 5.1 to:

Definition 5.2. (Integer linear programming problem [8])
An integer linear programming problem is defined by a linear objective function which needs
to be minimised, while respecting the linear constraints with integer decision variables:

min
x

c⊤x

s.t. A · x ≤ b

x ∈ Zn

(5-2)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn

It is also possible that these integer variables are binary, so only 0 or 1. This often occurs
within system modelling, where the binary variable represents activation conditions such as
something being ’on’ or ’off’. This can easily be added in the constraints by bounding the
integer variable to the range of [0,1].
MILPs, as the name suggests, combine both continuous linear programming problems and
integer linear programming problems into one. This has as an effect that the decision vector
will consist of both integer and continuous values. This is extremely useful in examples
like optimising systems with hybrid dynamics. It is also not hard to see how combining
Definition 5.1 and 5.2 can lead to a definition for an MILP problem, which is done below:

Definition 5.3. (Mixed integer Linear Programming problems [8])
An MILP is defined by a linear objective function which needs to be minimised, while respecting
the linear constraints with both continuous and integer decision variables:

min
x

cT x

s.t. Ax ≤ b

x =
[

x⊤
r x⊤

i

]⊤
xr ∈ Rnr xi ∈ Zni

(5-3)

where A ∈ Rm×(nr+ni), b ∈ Rm, c ∈ Rnr+ni

M.J.A. Bartels Master of Science Thesis



5-2 MILP for Implicit MMPS Systems 31

This looks very similar to Definition 5.1 and 5.2. However, one issue with integer optimi-
sation is the difficulty of solving. Since the number of feasible integer assignments grows
exponentially with the number of integer variables, solving mixed-integer linear programming
becomes increasingly challenging as the size of the problem increases. In general, MILPs
are classified as NP-hard problems, which means that there is no known algorithm that can
solve all assignments efficiently [9]. As a result, finding a solution to an MILP can take much
more time than an LPP, as LPPs can be solved in polynomial time [8]. Luckily, there are
smart ways of searching through the search space to find a solution. For more details on the
workings of MILP methods, searches, and algorithms, look into chapter 11 of [10]. Section 5-2
and 5-3 will dive deeper into the workings of an MILP algorithm for MMPS systems analysis.

5-2 MILP for Implicit MMPS Systems

Before jumping into how MILP is used for analysing MMPS systems, one might wonder why
an optimisation-based approach is needed in the first place. When analysing MMPS systems,
one of the key questions is: what are the possible eigenvalues, and what are the regions (or
modes) the system can operate in? These questions matter, because they tell us how the
system behaves in the long term and whether certain behaviours are stable or not, as was
previously discussed in Chapter 3 and 4.
A brute-force way to answer this is to check every possible region and see if a valid eigenvector-
eigenvalue pair exists there. This essentially means solving a separate linear optimisation
problem for every possible operating region. The number of operating regions is given by the
number of footprint matrix pairs, which is given by: [5]

n∏
i=1

ai ·
m∏

j=1
bj (5-4)

Where ai denotes the number of finite elements in row i of matrix A and bj denotes the
number of finite elements in row j of matrix B. Notice that this scales quadratically when the
system size increases, and so, it becomes very time-consuming and does not scale well with
the system size. In theory, using the LPP approach presented in [5] gives you all possible
answers, but it is not practical for larger systems.
Luckily, for topical systems, it is known that there is only one valid eigenvalue region. So
instead of checking all the tiny regions one by one, is it possible to search the space in a way
that zooms in on the correct region, cutting down unnecessary work. Instead of solving a
bunch of LPPs, topical systems can be analysed with a single MILP. This is already shown
in [4].
In analysing the behaviour of MMPS systems, a relevant theoretical concept is the concept of
modes. Intuitively, modes capture which entries of the system matrices are effectively active
at a given event cycle. The formal definition is as follows:

Definition 5.4. (Mode of an MMPS system [11])
Consider an MMPS system described by:

x(k) = A⊗ (B ⊗′ z(k))
z(k) = C · x(k − 1) + D · x(k)

(5-5)

Master of Science Thesis M.J.A. Bartels



32 Scalable Analysis of MMPS Systems

Here, x(k) = [x1(k), . . . , xn(k)]⊤ and z(k) = [z1(k), . . . , zp(k)]⊤. The mode of the system at
event k refers to which entries of the matrices A and B are actively used in computing each
xi(k).
More specifically, for each i, the value of xi(k) is determined by some combination of indices
j and l such that:

xi(k) = [A]i,j + [B]j,l + zl(k) (5-6)
This combination (j, l) is what we call the mode for index i at time k. It tells us which "path"
through the system is currently active for computing that particular state component. The full
system mode at time k is the collection of all such active index pairs across all i.

To illustrate, suppose row i of A contains a max over three possible terms. At event k, only
one of these terms actually attains the maximum and contributes to xi(k). Similarly, each row
of B may involve a min over several candidates, but again only one determines the outcome.
The resulting choice of active entries across all rows forms the system’s mode at that event.

Example 5.1. (Modes of an MMPS system)
Consider an MMPS system, described by the following equations:

x1(k) = 5x2(k − 1)− 2x3(k − 1)
x2(k) = min (x1(k) + 5, 2x2(k − 1) + x3(k − 1)− 4)
x3(k) = max (x2(k − 1)− 3, x1(k) + x3(k − 1) + 6)

(5-7)

This MMPS system consists of 4 different modes, where depending on the current state, the
system evolves according to the dynamics of these modes. These 4 modes are given as follows:

x1(k) = 5x2(k − 1)− 2x3(k − 1)
x2(k) = x1(k) + 5
x3(k) = x2(k − 1)− 3

(5-8)

x1(k) = 5x2(k − 1)− 2x3(k − 1)
x2(k) = x1(k) + 5
x3(k) = x1(k) + x3(k − 1) + 6

(5-9)

x1(k) = 5x2(k − 1)− 2x3(k − 1)
x2(k) = 2x2(k − 1) + x3(k − 1)− 4
x3(k) = x2(k − 1)− 3

(5-10)

x1(k) = 5x2(k − 1)− 2x3(k − 1)
x2(k) = 2x2(k − 1) + x3(k − 1)− 4
x3(k) = x1(k) + x3(k − 1) + 6

(5-11)

When a system is stable, every state grows with the same amount, also known as the growth
rate. This means that if a system is stable and in its stationary regime, the system will be in
the same mode every successive event cycle. Such a mode is called a dominant mode. When
looking for the fixed points of a system, one can do this by using these modes. It is known
that a topical system will only have one fixed point and one growth rate [4]. Thus, it is known
that there is only one mode possible where the definition of a fixed point and growth rate can
be satisfied. To recall, the definition of a fixed point is given by:

M.J.A. Bartels Master of Science Thesis



5-2 MILP for Implicit MMPS Systems 33

Definition 5.5. (Fixed point and growth rate of MMPS systems)
The time-invariant MMPS system x(k) = f(x(k), x(k − 1)), x ∈ Rn and f : Rn → Rn

with both time and quantity state has a fixed point if there exists a λ ∈ R and a vector v ∈ Rn

such that
f(v) = v + λ

[
1nt

0nq

]
(5-12)

Where nt is the number of time states and nq is the number of quantity states. Then λ is
called the growth rate and v the fixed point of the system f .

The MILP exploits the fact that only one mode can sustain a growth rate. The next section
explains how this works.

5-2-1 MILP for Explicit Topical MMPS Systems

Having introduced the concepts of MILP problems and modes, this Section now turns to
the derivation of an MILP-based algorithm for determining the growth rate and fixed points
of explicit topical MMPS systems. The central idea is to identify the dominant modes of
operation that sustain a particular growth rate. More precisely, the goal is to determine
the growth rate λ, the fixed point x, and the active entries in the matrices A and B that
characterise the operating mode of the system. The growth rate is obtained by solving an
optimisation problem that minimises λ subject to the system dynamics and the additional
requirement that the system remains in a stationary regime. So, very generally, the problem
which needs to be solved is:

min λ

subject to System dynamics
System in stationary regime

(5-13)

However, optimisation solvers are not able to easily handle the ⊗ and ⊗′ operations. That
is why the problem must be formulated such that it allows us to use existing solvers. Begin
by rewriting the MMPS system into the extended state MMPS system form as defined in
Section 3-2:

x(k) = A⊗ y(k)
y(k) = B ⊗′ z(k)
z(k) = C · x(k − 1)

(5-14)

In the stationary regime, the following must hold:

xe + sλ = A⊗ ye

ye = B ⊗′ ze

ze = C · xe

(5-15)

Where s =
[

1⊤
nt 0⊤

nq

]⊤
.

The subscript e will be omitted from now on for ease of notation.
To express this using conventional affine constraints, the fact that only one entry per row of

Master of Science Thesis M.J.A. Bartels



34 Scalable Analysis of MMPS Systems

A and B will be responsible for the max and min is used, which means there is only one active
element.
To track this active element in A and B, binary variables are introduced, pj,l ∈ {0, 1} and
qi,j ∈ {0, 1}. Where:

• pj,l = 1 indicates that entry in column l is responsible for the minimum in row j of B

• qi,j = 1 indicates that entry in column j is responsible for the maximum in row i of A

⊤ and ϵ can never be the minimum or maximum value, so every pj,l or qi,j that corresponds
to ⊤ or ϵ in B or A is automatically equal to 0. As is already known, only one entry will be
the minimum or maximum, so to ensure that only one pj,l and one qi,j are equal to one per
row, the following constraints must be added:

−
∑

l

pjl ≤ −1 ∀j, −
∑

j

qij ≤ −1 ∀i (5-16)

To understand all constraints corresponding to y = B ⊗′ z, it is sufficient to only look at the
jth element of y, yj . This can be written as

yj = min
l

(Bjl + zl) (5-17)

Since yj is defined as the minimum over all l;

Bjl + zl ≥ yj ∀l (5-18)

Must be true, and that equality holds only for the active l∗ that activates the minimum. In
other words;

Bjl∗ + zl∗ = yj (5-19)

defines the unique entry of row j of B that is responsible for the values of yj . In order to
encode this into an optimisation problem. We use the following inequalities:

Bjl + zl ≤ yj ∀l (5-20)

This condition always holds for the minimising l∗, but it does not generally hold for any other
l ̸= l∗. Therefore, by introducing the binary variable pj,l, the constraint can be relaxed for all
l ̸= l∗ as follows:

−yj + zl + Mpjl ≤ −Bjl + M ∀l (5-21)

Where M is a sufficiently large constant. Since pjl is only equal to 1 for l∗ this results in a
equality constraint for Bj,l∗ As:

Bjl∗ + zl∗ ≤ yj

Bjl∗ + zl∗ ≥ yj
(5-22)

Both can only be true if the equality holds. But for all other l, the inequality is:

−yj + zl + Mpjl ≤ −Bjl + M ∀l (5-23)

M.J.A. Bartels Master of Science Thesis



5-2 MILP for Implicit MMPS Systems 35

Simplified to:
−yj + zl ≤ −Bjl + M ∀l (5-24)

Which is always true if M is large enough. Of course, this needs to be done for all elements
in y:

yj − zl ≤ Bjl ∀j, l
−yj + zl + Mpjl ≤ −Bjl + M ∀j, l

(5-25)

In conclusion, the first constraint ensures that yj ≤ Bj,l + zl, which must always be true.
The second constraint ensures that only the element responsible for the current mode is an
equality constraint, which is ultimately the goal.

For x + sλ = A⊗ y, the exact same can be done; however, now the signs need to be flipped
as it involves the maximum. This results in the following constraints:

−sλ− xi + yj ≤ −Aij ∀i, j

sλ + xi − yj + Mqij ≤ Aij + M ∀i, j
(5-26)

Lastly, the constraints for z = C · x must be determined. This function is already in con-
ventional algebra, and thus the constraint can easily be added. This results in the final
optimisation problem [4]:

min
x,y,z,p,q

λ

subject to yj − zl ≤ Bjl ∀j, l
yj + zl + Mpjl ≤ −Bjl + M ∀j, l
−sλ− xi + yj ≤ −Aij ∀i, j
sλ + xi − yj + Mqij ≤ Aij + M ∀i, j
−
∑
l

pjl ≤ −1 ∀j, −
∑
j

qij ≤ −1 ∀i

z = C · x

(5-27)

Where x ∈ Rn, y ∈ Rj , z ∈ Rl, p ∈ {0, 1}j×l, q ∈ {0, 1}i×j .

The solver gets the freedom to choose the state x and the mode by choosing p and q such that
it returns a growth rate and a fixed point which correspond to that dominant mode. Notice
that p and q represent which mode is active based on the locations of the ones in every row.
Also, notice that this method does not rely on the fact that the system is topical. This means
that this algorithm will also work on non-topical explicit MMPS systems. However, since
non-topical explicit MMPS systems can have multiple eigenvalues and eigenvectors, and the
algorithm only gives one answer, one can never be sure whether the dominant mode, fixed
point and growth rate which was found is the only one or whether there are more to be found.
This is an issue that will be tackled in Section 5-3.

5-2-2 MILP for Implicit MMPS Systems

The algorithm that was presented in the previous section only works for explicit MMPS
systems. However, it can also be adapted to work for implicit systems. Again, these implicit
systems might have multiple eigenvalues and eigenvectors, and the algorithm will only provides
one.

Master of Science Thesis M.J.A. Bartels



36 Scalable Analysis of MMPS Systems

The objective again is to find a growth rate and fixed point of the system, and as a bonus,
find the mode of the system, which is responsible for this fixed point and growth rate. So
what are xe and λ in the in extended MMPS form:

xe + s · λ = A⊗ ye

ye = B ⊗′ ze

ze = C · xe + D · (xe + s · λ)
(5-28)

Finding the growth rate will be done by minimising it while subject to the system’s dynamical
constraints, as well as constraining the system to be in a stationary regime similar to the
explicit case. However, now while (5-13) is subject to (5-28).

Again, due to simplification in notation, the subscript e will be omitted from now on.
In order to change the algorithm from Subsection 5-2-1, z is rewritten as:

z = (C + D) · x + D · s · λ (5-29)

Then let w be

w = (C + D) · x (5-30)

and let d be

d = D · s (5-31)

Then z = w + d · λ. Which means that

y = B ⊗′ (w + d · λ) (5-32)

As a result, the constraints related to the ⊗′ in the MILP change to:

yj − dlλ− wl ≤ Bjl ∀j, l

yj + dlλ + wl + Mpjl ≤ −Bjl + M ∀j, l
(5-33)

The constraint x + s ·λ = A⊗y is the same in both the explicit and implicit extended MMPS
form. This means that the constraints related to x+s ·λ = A⊗y, in the optimisation problem
stay the same. The last thing to change has to do with z. Since z is no longer present in
the current constraints, but has been changed to w. This results in z = C · x becoming
w = (C + D) · x. Resulting in the final optimisation problem:

min
x,y,z,p,q

λ

subject to yj − dlλ− wl ≤ Bjl ∀j, l
yj + dlλ + wl + Mpjl ≤ −Bjl + M ∀j, l
−sλ− xi + yj ≤ −Aij ∀i, j
sλ + xi − yj + Mqij ≤ Aij + M ∀i, j
−
∑
l

pjl ≤ −1 ∀j, −
∑
j

qij ≤ −1 ∀i

w = (C + D) · x d = D · s

(5-34)

M.J.A. Bartels Master of Science Thesis



5-3 Search Tree for Footprint Matrices 37

Where x ∈ Rn, y ∈ Rj , w ∈ Rl, p ∈ {0, 1}j×l, q ∈ {0, 1}i×j , notice that when D = 0,
the algorithms are the same, meaning that this new algorithm works for all types of MMPS
systems, both explicit and implicit, and also topical and non-topical.

5-3 Search Tree for Footprint Matrices

The current approach to finding all valid eigenmodes is to check each possible footprint matrix
pair individually using a brute force LPP method. This works, but the downside is that the
number of these checks grows rapidly with system size. For example, when analysing the
URS, increasing the size of the system from 4 to 6 stations already pushes the number of
LPPs from 64 to over 1000. This makes full analysis impractical for larger systems [5]. As is
now known, the MILP proposed in Subsection 5-2-2 can only give one solution, but it can be
much quicker to analyse a full system; it is not known if the system has been fully analysed
using the MILP from Subsection 5-2-2.

To address this, a different approach is taken: instead of checking all possible modes one by
one, we use the MILP to guide the search. Since a single MILP only returns one solution,
an iterative approach is needed to fully analyse the system. This is done by modifying the
constraints to block previously found modes. If the MILP remains feasible, a new mode is
discovered.

By using a search tree that explores the space of possible footprint matrix pairs, the MILP can
be systematically guided. Each branch of the tree excludes or includes a specific combination
of active entries, allowing the algorithm to explore the mode space efficiently and find all
possible growth rates, fixed points and dominant modes.

Figure 5-1 helps to visualize this concept. Here, the entire search space is visualised as a large
rectangle; there are 3 feasible solutions to the MILP and so 3 dominant modes in the system.
However, only 1 can be viewed as optimal by the MILP, which here is indicated by the red
dot. If the MILP is run on this problem, the algorithm will find the red solution since it is
the optimal one in the entire search space. If, however, the search space gets limited to only
the blue region, then there is only one feasible solution present in the new sub-search space,
which means that it will also be the optimal solution to the MILP, so the MILP will find
it and return it. Thus giving us a new dominant mode, which otherwise would have been
invisible to us. If, then again, the search space is changed, but now to the green region, the
solution in that region will be found. And so by only looking at a part of the search space, it
becomes possible to uncover all feasible solutions, which was our goal.

Master of Science Thesis M.J.A. Bartels



38 Scalable Analysis of MMPS Systems

Figure 5-1: Example of partitioning the search space to find all feasible solutions

By changing the search space in a systematic way, the hope is to find all feasible solutions in
a timely manner. Our search space can be seen as all the possible modes of the system. This
means that it is possible to limit the search space of the MILP by placing extra constraints on
p and q. As p and q tell which affine term of the MMPS function of a specific state is present
in the dominant mode. By imposing that a specific affine term is present in the dominant
mode, the search space is effectively restricted. In order to develop some intuition on how and
why this works, let us first focus on only a single 3x3 p matrix. If the MILP finds a feasible
solution, it will return a p matrix with exactly one 1 in every row. Since there is only 1 affine
term from every MMPS function of every state active at any point in a cycle. This could, for
example, lead to a p matrix of the form 1 0 0

0 1 0
0 1 0

 (5-35)

Again, remember that this 1 refers to that entry in B being in the dominant mode. However,
as the aim is to know all dominant modes, let us consider all possible permutations of p. This
can be visualised using a tree where every level of the tree corresponds to the same row in
p, and every ’column’ refers to the location where the 1 can be. So every path down is a
permutation of the matrix p. The tree of a 3x3 matrix is visualised in Figure 5-2, notice that
the red path corresponds to the matrix given in (5-35). The entire tree represents the search
space of p.

M.J.A. Bartels Master of Science Thesis



5-3 Search Tree for Footprint Matrices 39

Figure 5-2: Tree representation of all possible permutations of a 3x3 p matrix

Now, by predetermining the location of the 1 in one of the rows. The first row in this case,
due to ease of visualisation, it reduced the search space. So instead of giving the MILP a
blank p matrix, one row is already filled in, like you can see in (5-36) and then see whether
the MILP can find a feasible solution.

p =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 fix one row−→ p =

 0 1 0
∗ ∗ ∗
∗ ∗ ∗

 (5-36)

This is equivalent to restricting the search space to only the blue area in Figure 5-3.

Figure 5-3: Example of restricting the search space of the MILP

Then, if there is a feasible solution, one must go one level deeper, or one row down, and fix
the location of the active term in this new row. Since it is known that there is at least one
solution in this new subspace. However, it is not certain if there are more. If there is no
feasible solution, there is no need to explore the branch further since there is no solution in
that entire sub-space. This means that the entire branch can be pruned and discarded. This
would mean that one has eliminated, in this case, 1

3 of the entire search space with just a
single MILP call.
Notice that a standard MILP solver typically performs a similar process internally. This
policy is now replicated and extended externally to systematically explore the entire search
space, as the goal is to identify all feasible solutions. This section was designed to gain some
intuition with regards to search trees, branches, pruning and the p and q matrices. In the next
section, this principle will be used to design a smart search algorithm which will be combined
with the MILP to create a full analysis algorithm for large, complex implicit MMPS systems.

Master of Science Thesis M.J.A. Bartels



40 Scalable Analysis of MMPS Systems

5-4 MILP Search Tree Algorithm

As has been shown, the complexity of the problem grows quickly with the number of finite
entries in the system matrices A and B, leading to an explosion in possible modes to check.
While brute-force methods explore all footprint matrix pairs by solving an optimisation prob-
lem for each, this quickly becomes impractical for anything but small systems.

However, in practice, only a very small number of these modes can result in stationary
behaviour, i.e. a fixed point. This means that a lot of finite entries in A and B are never
present in any of the dominant modes, or a specific combination of affine terms is never
possible together. This results in the LPP algorithm doing a lot of unnecessary work, slowing
down analysis or even making it impossible due to the size. As described in Section 5-3, a
search tree method can be used to explore, and most importantly, prune all possible modes
more efficiently.

5-4-1 Preprocessing for Search Space Reduction

Before formulating the full MILP problem, it is useful to first reduce the size of the search
space. The idea is that many of the affine terms appearing in the system matrices never play
a role in any dominant mode, yet they still contribute to the complexity of the optimisation
as they unnecessarily inflate the MILP search tree. By identifying and removing such terms
in advance, the resulting MILP becomes significantly easier to solve.

The preprocessing step therefore, focuses on pruning away never dominant affine terms in
A and B. Each affine term is tested individually by assuming its presence in a dominant
mode and solving the MILP optimisation problem. If a feasible solution is found under this
assumption, it indicates that the affine term is active in at least one dominant mode. If no
feasible solution is found, it follows that in all modes where this affine term would appear, it
can never be dominant. In that case, the affine term is discarded and replaced by either ϵ or
⊤, depending on whether it originates from A or B.

Importantly, one does not need to test any rows of A or B that only contain a single affine
term. Since this term will always be active in any mode, and thus also in any dominant mode.
This preprocessing is performed as described in Algorithm 3.

This preprocessing leaves us with only those affine terms that participate in at least one dom-
inant mode. All other terms are excluded from further consideration in the MILP, resulting
in a leaner and more efficient problem formulation. In other words, if [B]jl was infeasible, it
is known that pjl = 0, and if [A]ij was infeasible, then qij = 0 for all future analysis.

Preprocessing can be further accelerated by using the results from earlier steps. Since solving
an MILP can be time-consuming due to the large number of integer variables, any reduction in
the feasible search space will improve performance. If a particular affine term has already been
identified as infeasible, meaning it cannot appear in any dominant mode, the corresponding
binary variable can be fixed to zero in subsequent MILP calls. So for example, if it is known
that [A]1,2 will never be in a dominant mode, the variable q1,2 can be set to zero for all next
preprocessing steps since it is known that [A]1,2 will never be in any dominant mode. This
effectively reduces the number of free integer variables, which, as a result, speeds up each
individual MILP solve and makes the overall preprocessing process more efficient.

M.J.A. Bartels Master of Science Thesis



5-4 MILP Search Tree Algorithm 41

Algorithm 3 Preprocessing Step for MILP Feasibility Analysis
1: for all (i, j) such that [A]ij ̸= ε and ai ̸= 1 do
2: Set qij ← 1
3: Run MILP (5-34)
4: if feasible then
5: Store (i, j) with label A in feasible list
6: else
7: Store (i, j) with label A in infeasible list
8: end if
9: end for

10: for all (j, ℓ) such that [B]jℓ ̸= ⊤ and bj ̸= 1 do
11: Set pjℓ ← 1
12: Run MILP (5-34)
13: if feasible then
14: Store (j, ℓ) with label B in feasible list
15: else
16: Store (j, ℓ) with label B in infeasible list
17: end if
18: end for

5-4-2 Recursive MILP Search Strategy

Now that there is a list of all affine terms that are present in at least one dominant mode, all
these modes must be identified. This is achieved by combining the MILP algorithm of (5-34)
and the tree search from Section 5-3. Before constructing the search tree, rows containing
only a single finite entry are removed from this list, as that entry is guaranteed to be active
in all modes. This includes the rows that contain a single finite term by design, but also the
rows where preprocessing showed that only one affine term ever appears in a dominant mode,
even if the row initially had multiple finite terms. Thus, pj,l or pi,j can be fixed for these
rows. The remaining rows are combined into a table that is sorted in descending order based
on the number of finite entries per row. Later on in this Section, it will be explained why this
is better than an ascending order. This can, for example, look something like:

Number of column indices RowIndex ColumnIndices Source
4 5 [6,7,8,9] B
4 12 [21,22,23,24] B
3 8 [8,9,10] A
2 14 [31,32] B
2 18 [45,46] A

Table 5-1: Example of a search path table for dominant mode exploration

Table 5-1 is the basis of the search route to all feasible solutions, as all possible dominant
modes are contained within these rows and columns. By choosing one column index for
each row to equal 1, you end up with a complete p and q matrix. To explore all possible
combinations, each row is treated as a branching point. This is the same as in Section 5-3,

Master of Science Thesis M.J.A. Bartels



42 Scalable Analysis of MMPS Systems

however, now with both p and q combined in a single tree. It is not needed to check every
combination individually, but also not efficient to do so. For the analysis and optimisation,
a depth-first search method will be used. A depth-first search has several advantages in this
context:

• Memory efficiency: A depth-first search is more efficient in memory usage, which is
beneficial as the systems at play are already large, so any memory-saving method is a
win.

• Natural recursion: Depth-first search lends itself very well for recursive implementation.
This is good since it allows for easy implementation and easy backtracking in case of
infeasibility.

The full search algorithm can be found in pseudo code in Algorithm 4, and is explained in a
more easily readable manner below:

1. Initialise by selecting the first row of the table. Let v be the current row index and w
the first column index associated with v.

2. Depending on the source set, add one of the following constraints to the MILP:

either qvw = 1 if source is A, or pvw = 1 if source is B

3. Solve the MILP.

• If the MILP is infeasible:
1. Remove the pair (v, w) from the table.
2. Remove the added constraint.
3. Move to the next column index w′ associated with the same row v, and repeat

from step 2.
4. If all column indices for row v have been tried, backtrack to the previous row

and continue with its next untried column index.
• If the MILP is feasible:

1. Proceed to the next row in the table.
2. Repeat from step 1 with the new row index.

4. Continue this process until all feasible solutions are found. i.e. the entire tree is explored

With this new analysis strategy, instead of checking every possible mode to see if it is domi-
nant, the process becomes more focused. It starts by finding modes that are already known to
be dominant and then, in a sense, explores the neighbourhood around them to discover addi-
tional dominant modes. One might wonder if, with this neighbourhood search, all dominant
modes are found and nothing is missed. However, this method guarantees that all dominant
modes are found since the preprocessing only eliminates affine terms individually, which are
never in a dominant mode. The full search checks every valid configuration involving the
remaining affine terms. Only if a combination of several affine terms does not lead to a valid

M.J.A. Bartels Master of Science Thesis



5-4 MILP Search Tree Algorithm 43

solution is it removed. But this is only the subset that includes that combination, so the
rest is left in the search space. This ensures that no dominant modes are missed. To make
the search process more efficient, the table of candidate rows is ordered from the most to the
fewest available column indices. In other words, the rows with the most freedom (i.e., most
possible active entries) are handled first. This has two advantages.

First, it allows the algorithm to prune large parts of the search tree early on. Since these
high-flexibility rows contribute the most to the total number of mode combinations, restricting
them first eliminates many potential branches at once.

Second, adding constraints for these rows early reduces the number of binary variables in the
MILP more quickly. This not only shrinks the size of the problem, but also simplifies the
remaining search steps, making each MILP solve faster and more tractable.

In the worst-case scenario, where every remaining combination leads to a feasible solution,
this strategy no longer saves MILP calls. That is because then every branch and leaf must be
visited, and every branch and leaf visited equates to an MILP call. In such cases, ordering
the rows in ascending order would result in a shallower tree with fewer total leaves, making
the full analysis cheaper. However, real-world systems typically only have a limited number
of dominant modes, meaning many branches will be infeasible and thus pruned. Therefore,
sorting in descending order remains the smart and efficient strategy for exploring the solution
space.

Let us take a look at a numerical example to see how the algorithm works:

Example 5.2. (MILP search tree algorithm in practice)
Consider the linear time-invariant MMPS system given by (5-37) taken from [11]. This is a
non-topical MMPS system with 2 different growth rates and 5 different dominant modes. This
example will show numerically how the new proposed MILP search algorithm works and how
it is able to find all these dominant modes within a fraction of the time the LPP algorithm
needs.

[
x1(k)
x2(k)

]
=
[

ε ε ε ε 0 0
0 0 0 0 2 3.5

]
︸ ︷︷ ︸

A

⊗





0 10 ⊤ ⊤
⊤ 1.5 ⊤ ⊤
⊤ ⊤ 1.5 11.5
⊤ ⊤ ⊤ 1.5
⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ 0


︸ ︷︷ ︸

B

⊗′




−1 2
0 1
0 1
1 0


︸ ︷︷ ︸

C

·
[

x1(k − 1)
x2(k − 1)

]



(5-37)

First, notice that there are 4 rows with more than one finite entry in A and B combined: rows
A1, A2, B1 and B3. With 2, 6, 2 and 2 finite terms respectively, resulting in 48 different

Master of Science Thesis M.J.A. Bartels



44 Scalable Analysis of MMPS Systems

footprint matrix pairs and thus 48 different modes.
Start by performing the preprocessing set, which results in 12 MILP calls, one for every affine
term in a row with more than one affine term. This reveals that [A]1,6, [A]2,2, [A]2,3, [A]2,4,
[A]2,6 are never present in an dominant mode. This means that only a fraction of the 48
different modes remain as candidates for being dominant. The search path table can be seen
in Table 5-2, where it is clear there are now 6 modes left which have the potential to be
dominant.

Number of column indices RowIndex ColumnIndices Source
2 1 [1,2] B
2 2 [1,5] A
2 3 [3,4] B

Table 5-2: Search path table for dominant mode after preprocessing

After running the main search algorithm, 5 dominant modes are obtained. This gets achieved
after running the MILP solver 10 times. This resulted in the following dominant modes.

for λ = 2 : GA1 =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
GB1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


(5-38)

for λ = 2 : GA2 =
[

0 0 0 0 1 0
0 0 0 0 1 0

]
, GB2 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


(5-39)

for λ = 10 : GA3 =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
, GB3 =



0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1


(5-40)

for λ = 10 : GA4 =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
, GB4 =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 1


(5-41)

M.J.A. Bartels Master of Science Thesis



5-4 MILP Search Tree Algorithm 45

for λ = 10 : GA5 =
[

0 0 0 0 1 0
1 0 0 0 0 0

]
, GB5 =



0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 1


(5-42)

This entire analysis was done in 0.218 seconds by performing a total of 22 MILP calls as
opposed to the otherwise required 48 LPP calls, which took 5.4 seconds.

5-4-3 Analysis of MILP Method

Now that the MILP-based search tree algorithm has been introduced, it is important to
understand how it compares to the existing brute-force method in terms of computational
effort. While the proposed approach can drastically reduce the number of optimisation calls
needed, it is not always guaranteed to be faster overall.

This is mainly because of the fundamental difference in complexity between the two methods:
solving an LPP is fast and reliable, while solving an MILP is significantly more expensive. This
section breaks down the performance of the MILP method, highlighting both best- and worst-
case scenarios, and shows under which conditions it offers a clear advantage. Additionally, we
look at the solver used to run the MILPs, explaining why it was chosen and how it performs in
practice. A series of example systems is used to compare the actual runtime of both methods,
giving a more practical sense of the trade-offs involved.

For the new proposed strategy, the runtime is given by two parts. The preprocessing and the
tree search. The prepossessing will require running:

number MILP calls during preprocessing =
n∑

i=1
ai +

m∑
j=1

bj (5-43)

Where again ai denotes the number of finite elements in row i of matrix A and bj denotes
the number of finite elements in row j of matrix B. In the worst case, all finite elements of A
and B are present in a dominant mode, which means that the prepossessing has yielded no
reduction in the number of MILPs which need to be evaluated by the algorithm. Then the
MILP algorithm is run, and since there was no reduction in the tree since it is known that
every element of A and B is present in a dominant mode. This means that every leaf of the
tree must be evaluated since no branches can be pruned. The number of MILPs here depends
on the construction of the tree, as described in the previous section. Again, a descending
order in terms of the number of column indices is used. Combine ai and bj and sort these
values in descending order into the list {n1, n2, . . . , nk}.

Then the total number of leaves and thus MILP calls is given by:

N =
k∑

l=2

l∏
m=1

nm (5-44)

Master of Science Thesis M.J.A. Bartels



46 Scalable Analysis of MMPS Systems

For example, if {n1, n2, n3} = {4, 3, 2}, then:

N = (3× 4) + (2× 3× 4) = 36.

Combining this with the preprocessing step results in the worst-case total number of MILP
calls needed:

maximum number of MILP calls =
n∑

i=1
ai +

m∑
j=1

bj +
k∑

l=2

l∏
m=1

nm. (5-45)

The number of LPP calls is given by:

number of LPP calls =
n∏

i=1
ai ·

m∏
j=1

bj (5-46)

Comparing the two shows that in the worst case, the number of LPPs is much less than the
number of MILPs, which is not ideal. This makes sense, however, since the LPP strategy
only checks final footprint matrix pairs, and the MILP also checks sub-filled pairs in the form
of free variables in p and q. Remember that this worst case is where there is no reduction in
the number of candidate dominant modes. This is not a realistic assumption to make, as in
practice, there are a lot of affine terms which will never be in a dominant mode. In the best
case, only the preprocessing step is needed, as that reveals that there is only one dominant
mode, and thus the number of MILPs will be given by:

n∑
i=1

ai +
m∑

j=1
bj (5-47)

Which looks very similar to the number of LPPs given in (5-4). However, the product has
become a summation, which makes the total number of calls much less, especially for larger
systems. The actual reduction due to the preprocessing can not be known a priori, as the
number of dominant modes is not known a priori. As a result, only after the preprocessing
can one know the reduction. When this reduction is not significant, the MILP algorithm
can have a much longer run time than the original LPP algorithm. This can easily be seen
by the maximum number of MILP calls given by (5-45). One noteworthy aspect of the
MILP algorithm, is that as you go deeper into the search tree, the number of free integer
variables decreases. This reduction simplifies the MILP, causing it to behave more like an
LPP, which leads to faster solution times. If the reduction in the search space due to the
preprocessing is not significant enough, one can consider using a hybrid approach. This is
where one combined the preprocessing with the current LPP strategy. After the preprocessing,
all potentially feasible modes are checked using a set of LPPs instead of employing the MILP
search algorithm. This will be beneficial since when the preprocessing yields no significant
reduction in the number of potentially dominant modes, the number of MILPs which need
to be called is similar to the number of LPPs. As is known, MILPs of similar size to LPPs
generally have a longer run time. Again, this can only be beneficial if there are a lot of
dominant modes and the preprocessing reduction is very limited.

The full MILP search tree algorithm, including preprocessing, was implemented using MAT-
LAB. As a solver, Mosek was used. Mosek was chosen as it has an easy integration with

M.J.A. Bartels Master of Science Thesis



5-4 MILP Search Tree Algorithm 47

MATLAB, has a free educational license, but most importantly, Mosek is very good at han-
dling large order differences in its constraints. Where other solvers generally like variables to
be between 10−2 and 104, so an order difference of 106, Mosek has no issue in handling order
differences of up to 1010−1012. This is an advantage since the systems used in Chapter 7 and
8 have these large order differences in their system equations, which are translated to large
order differences in the constraints of the optimisation problems when analysing the systems.

A time comparison is made between using the current LPP method and the new proposed
MILP method. Example 5.2, the URS from [5] and the transportation system from Chap-
ter 8 serve as the benchmark. Both methods use the same solver, Mosek, to ensure a valid
comparison. The results can be found in Table 5-3. It is very clear to see that for all three
systems, the new MILP method is much faster.

LPP (Solver: Mosek) MILP (Solver: Mosek)
Example 5.2 5.4 sec 0.2 sec

URS(4 stations) 12.7 sec 0.9 sec
TPS >25 years 2.5 hours

Table 5-3: Runtime comparison between the current LPP analysis method and the new MILP
method on the URS and the Transportation System (TPS)

Master of Science Thesis M.J.A. Bartels



48 Scalable Analysis of MMPS Systems

Algorithm 4 Dominant Mode Identification via MILP Search
Require: System matrices A, B, C, D and state classification vector s

1: Perform preprocessing as described by Algorithm 3
2: for all [A]i,j in infeasible list do
3: Set qij ← 0
4: end for
5: for all [B]j,ℓ in infeasible list do
6: Set pjℓ ← 0
7: end for
8: Construct table search_path with feasible list:

(Number of column indices, row index, column candidates, source)
9: Sort search_path by descending number of column indices

10: Call DFS-Search(search_path, 1)

11: function DFS-Search(search_path, row = 1)
12: if row > number of rows in search_path then
13: return found dominant mode
14: end if
15: Let v ← current row index in search_path at row
16: Let columns← column candidates for row v
17: for all w in columns do
18: if source for (v, w) is A then
19: Set qvw ← 1
20: else if source for (v, w) is B then
21: Set pvw ← 1
22: end if
23: Run MILP (5-34)
24: if MILP is feasible then
25: Call DFS-Search(search_path, row + 1)
26: else
27: Remove constraint for (v, w)
28: Remove pair (v, w) from search_path
29: continue with next w
30: end if
31: end for
32: return backtrack to previous row (if any)
33: end function

M.J.A. Bartels Master of Science Thesis



Chapter 6

Periodicity of MMPS Systems

This chapter investigates the periodicity of MMPS systems. As established in Chapter 3,
MMPS systems can exhibit a growth rate with period 1, where successive states increase at
the same rate in every cycle. This chapter focuses on systems with periods greater than 1.
Section 6-1 introduces definitions for such systems, formally defines the concept of a periodic
orbit, and presents examples. Section 6-2 reviews existing results by deriving upper bounds
for the period length in max-plus systems, based on the system size and structure. From
this point onward, the contributions of this thesis begin; an bound upper periodic bound is
established for min-plus systems, and the more general case of periodic MMPS systems is
addressed in Section 6-3. This section introduces an extended periodic form that enables the
use of existing analysis methods, and further examines the normalised behaviour of periodic
MMPS systems and the stability of their periodic orbits.

6-1 Periodicity in MMPS Systems

From MMPS systems, it is known that if the system is stable, successive states after some
k > K cycles will all grow with the same amount [4]. This is known as the growth rate. Some
MMPS systems do not have such a growth rate, but can still be stable. Furthermore, some
MMPS systems are stable with a certain growth rate, but they also have something more;
they are periodic.
These systems are referred to as periodic MMPS systems. For example, let us say that the
state of a system evolves as follows:

x(0) =
[
0
0

]
, x(1) =

[
3
5

]
, x(2) =

[
5
6

]
, x(3) =

[
9
9

]
. (6-1)

Observe that over 3 cycles, all states of this system have grown by 9. This means a growth rate
of 9 over 3 cycles. However, this does not mean a growth rate of 3 per cycle as the system does
not grow uniformly at each cycle. Even after some transient time, this behaviour can remain.
This non-uniform yet eventually cyclic behaviour is a critical property of periodic MMPS

Master of Science Thesis M.J.A. Bartels



50 Periodicity of MMPS Systems

systems. Such behaviour requires more analysis than other non-periodic MMPS systems.
Instead of a fixed point, these points are called periodic points of an MMPS system, which
are formally defined as:

Definition 6.1. (Periodic point of an MMPS systems [12])
Consider an MMPS system of the form

x(k) = f(x(k − 1), x(k)) (6-2)

Then the vector z is a periodic point of f if for some µ ∈ R

fp(z(k − 1), z(k), . . . , z(k + p)) = z(k − 1) + µ1 (6-3)

The smallest p that satisfies this condition is called the period of f and the periodic point
z(k − 1)

Notice that Definition 6.1 implies that z(k + p) = z(k) + µ1. This additive form will be used,
as it clearly shows how periodic behaviour works in MMPS systems.
Once a periodic point is found, the whole sequence of states it produces by evolving the system
repeatedly becomes important. These states are called the periodic orbit of the system. Which
is defined as follows;

Definition 6.2. (Periodic orbit of an MMPS system [12])
The sequence z(k), k = 0, 1, . . . , with z(0) being a periodic point of f and z(k) = f(z(k −
1), z(k)), 0 ≤ k ≤ p is called the periodic orbit of f.

The existence of a periodic orbit in an MMPS system does not exclude the possibility of a
fixed point. Depending on the initial state, the system may converge to either a fixed point
or a periodic trajectory. This is very clearly visible in Example 6.1.

Example 6.1. (Periodic MMPS system with p = 1 and p > 1)
Consider an MMPS system of the form[

x1(k + 1)
x2(k + 1)

]
=
[

min (max (x2(k) + 1, 1) , 2)
max (min (x1(k)− 1, 1) , 0)

]
(6-4)

Which in ABC form becomes

[
x1(k + 1)
x2(k + 1)

]
=
[

0 1 ϵ ϵ
ϵ ϵ 0 0

]
⊗




1 2 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ −1 1 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0

⊗′





0 1
0 0
0 0
1 0
0 0
0 0


[

x1(k)
x2(k)

]



(6-5)

Depending on the initial condition, this system converges to a periodic stable growth trajectory
with a period of either 1 or 2.

• Periodic trajectory (period of 2):

x0 =
[
1
1

]
−→ x1 =

[
2
0

]
−→ x2 =

[
1
1

]
−→ x3 =

[
2
0

]
−→ . . .

M.J.A. Bartels Master of Science Thesis



6-2 Bounds on Periods in Max-Plus and Min-Plus Systems 51

• Periodic trajectory (period of 1):

x0 =
[

0
−1

]
−→ x1 =

[
1
0

]
−→ x2 =

[
1
0

]
−→ . . .

6-2 Bounds on Periods in Max-Plus and Min-Plus Systems

The previous section introduced a general definition of periodicity in the context of MMPS
systems, covering periodic points, orbits, and growth rates. While that formulation applies
to all MMPS systems, this section focuses more on a specific case of MMPS systems; max-
plus and min-plus linear systems, where additional algebraic properties allow for guarantees
regarding the upper bound on the period of the system, which is particularly useful when
analysing convergence and long-term behaviour.
For max-plus systems, an upper bound on the period length is given by [13]. Which is

max
S

lcm(S) (6-6)

where S is a subset of {1, 2, . . . , n} such that
∑

j∈S
j ≤ n, where n refers to the number of states

present in the system.
Take for example n = 7, then the upper-bound is given by:

max(lcm(2, 2, 3), lcm(3, 4), lcm(2, 5), lcm(2, 3), . . .) = lcm(3, 4) = 12 (6-7)

Meaning that a max-plus system with 7 states can have at most a period of 12. Since this
upper bound depends on the system dimension, it is tighter for systems with fewer states.
For instance, consider the following max-plus system with 3 states:

Example 6.2. (Periodicity of max plus linear Systems)
Take the max-plus linear system:

x(k) =

 ϵ 0 ϵ
ϵ ϵ 0
1 ϵ ϵ

⊗ x(k − 1) (6-8)

where x(k) ∈ R3. This system has 3 states, so n = 3, meaning that the maximum cycle length
is

max(lcm(1, 2), lcm(1), lcm(2), lcm(3)) = lcm(3) = 3 (6-9)
If one is to simulate this systems starting from x(0) = [0, 0, 0]⊤ the following state sequence
is obtained:

x(0) =

0
0
0

 , x(1) =

0
0
1

 , x(2) =

0
1
1

 , x(3) =

1
1
1

 . (6-10)

In this case, it is evident that after three cycles, all states have increased by 1. This implies a
growth rate of µ = 1, with a period of 3, equal to the maximum possible period for a system of
this size. Furthermore, there is no initial condition that leads to a periodic point with period
1, i.e. a fixed point. This can be confirmed by noting that the system only has a single mode,
and both the LPP and MILP algorithms yield no feasible solution for a fixed point.

Master of Science Thesis M.J.A. Bartels



52 Periodicity of MMPS Systems

In Example 6.2, the right starting point was chosen to immediately start inside the periodic
orbit. This is, of course, not always the case. It can take some cycles before the trajectory
enters a periodic orbit. This transition period is called the transient time. Let A ∈ Rn×n

ϵ be
an irreducible max-plus matrix with eigenvalue λ and period of p = p(A). Then there exists
an integer t(A) which is called the transient time, such that

A⊗(k+p) = λ⊗p ⊗A⊗k, ∀k ≥ t(A). (6-11)

This confirms that the state sequence eventually becomes periodic with a period length equal
to p. Even if the initial state lies outside the periodic orbit, after a finite number of cycles, the
system will converge to the periodic region [1]. For max-plus, the upper bound of the period
is known. Similarly, for min-plus linear systems, an upper bound can also be determined. We
now turn to a minor but useful observation, which also serves to mark the beginning of the
core contributions that follow:
Proposition 1. (Maximum period length of min-plus systems)
The upper bound to the period of Min-Plus linear systems is given by

max
S

lcm(S) (6-12)

where S is a subset of {1, 2, . . . , n} such that ∑
j∈S

j ≤ n

Proof. Max-plus and min-plus algebra are isomorphic to each other [14], which means that
any result for max-plus algebra and systems is also valid for Min-Plus algebra and min-plus
systems. Given that the upper bound for the period of max-plus linear systems is given by

max
S

lcm(S) (6-13)

where S is a subset of {1, 2, . . . , n} such that
∑

j∈S
j ≤ n, then the same holds for min-plus

linear systems.

Example 6.3. (Periodic behaviour of a min-plus linear system)
Take the min-plus linear system:

x(k + 1) =

 ⊤ 0.5 ⊤
−0.5 ⊤ −1.5
−1.5 −0.5 −0.5

⊗ x(k) (6-14)

where x(k) ∈ R3. This system has 3 states, so n = 3, meaning that the maximum cycle length
is

max(lcm(1, 2), lcm(1), lcm(2), lcm(3)) = lcm(3) = 3 (6-15)
when simulating this system starting from x(0) = [−1, 1.5, 0]⊤ the following state sequence is
obtained;

x(0) =

 −1
−1.5

0

 , x(1) =

 −2
−0.5
−1

 , x(2) =

 1
−1.5
−0.5

 , x(3) =

 −2
−0.5
−1

 . (6-16)

Here, it is very clear that states x(1) and x(3) are equal to each other. Meaning that µ = 0,
and thus also the eigenvalue λ = 0. This system has a period equal to 2, which is 1 less than
the maximum period length.

M.J.A. Bartels Master of Science Thesis



6-3 Periodic Behaviour in General implicit MMPS Systems 53

6-3 Periodic Behaviour in General implicit MMPS Systems

So far, a general definition of periodicity has been discussed as well as periodic bound in
max-plus and min-plus systems. However, for general MMPS systems, the situation becomes
more complex. In this section, we will consider implicit time-invariant MMPS systems of the
form [5]:

x(k) = A⊗
(
B ⊗′ (C · x(k − 1) + D · x(k))

)
(6-17)

and focus on systems that exhibit periodic behaviour with a period p > 1. These systems
satisfy:

x(k + p) = x(k) + µ1 (6-18)

for some periodic growth rate µ. While systems with a period of p = 1 are relatively easy
to analyse, systems with longer periods tend to be much harder and more time-consuming to
analyse.

To understand this, first recall Algorithm 1, the power algorithm. The power algorithm looks
at the difference between two states in the system evolution, and when x(r) = x(q) ⊗ (c · s)
with r < q and c ∈ N is true, one has found an eigenvalue and eigenvector. An important
observation is that x(r) and x(q) are not required to be consecutive cycles. When they are
not, the difference r−q reveals the period of the system’s eventual cyclic behaviour. However,
the other issues with the power algorithm remain. Namely, the power algorithm relies heavily
on the choice of starting point, which results in an unknown transient time and uncertainty
regarding how many eigenvalues and associated periodic regimes can be detected.

The MILP algorithm from Chapter 5 and the LPP algorithm from [5] only handle systems
with periods of 1. This is because the construction of the optimisation problems relies on
the property that in a fixed point, all states grow with the same growth rate. But when the
period of a system is more than 1, the growth per cycle per state is no longer fixed even once
you enter a periodic orbit. That is, (5-28) is no longer valid. It is also not possible to know
this deviation beforehand; thus, the current methods break down. Moreover, in a periodic
orbit, the sequence of active system modes changes across cycles, which further invalidates
the current methods. However, systems of the form (6-17) with periods greater than 1 can
be rewritten in a new form that incorporates the period internally. This form is called the
extended periodic ABCD form.

Master of Science Thesis M.J.A. Bartels



54 Periodicity of MMPS Systems

Definition 6.3. (Extended periodic ABCD form)
The extended periodic ABCD form rewrites a periodic MMPS system into an ABCD structure
that internalises the periodic behaviour, capturing the system’s dynamics over one full period.


x(k + 1)
x(k + 2)

...
x(k + p)


︸ ︷︷ ︸

x̂(n)

=


A ϵ . . . ϵ
ϵ A . . . ϵ
... . . . ϵ
ϵ ϵ . . . A


︸ ︷︷ ︸

Â

⊗




B ⊤ . . . ⊤
⊤ B . . . ⊤
... . . .
⊤ ⊤ . . . B


︸ ︷︷ ︸

B̂

⊗′




0 0 . . . C
0 0 . . . 0
... . . .
0 0 . . . 0


︸ ︷︷ ︸

Ĉ

·


x(k − p + 1)
x(k − p + 2)

...
x(k)


︸ ︷︷ ︸

x̂(n−1)

+


D 0 . . . 0

C D
...

0 . . . . . . 0
0 . . . C D


︸ ︷︷ ︸

D̂

·


x(k + 1)
x(k + 2)

...
x(k + p)


︸ ︷︷ ︸

x̂(n)




(6-19)

This new system
x̂(n) = Â⊗

(
B̂ ⊗′ (Ĉ · x̂(n− 1) + D̂ · x̂(n))

)
(6-20)

is an implicit MMPS system with period p = 1 so (6-18) changes to x̂(k + 1) = x̂(k) + µ1.
Notice that by rewriting the system into this new form, time invariance is preserved. As every
block row of [Ĉ D̂] contains exactly one C and one D matrix of the original system. And since
our original MMPS system is time invariant, so is the extended periodic ABCD form. Since
the extended MMPS system has a period of 1, the currently available analysis techniques can
be used to identify the growth rate and fixed point of the extended periodic MMPS system.
This can be done by solving a set of LPPs as defined in [5] or by using the proposed MILP
algorithm from Chapter 5. Then λ̂ and x̂e are the resulting growth rate and fixed point of
the extended MMPS system. The average growth rate over a period of the original system
becomes λ = λ̂/p. Notice that x̂e now captures the entire periodic orbit into a stacked state
vector. This means that all states in the periodic orbit can be considered as a periodic point,
so;

xe = x̂ek·n:(k+1)·n ∀ 0 ≤ k < p (6-21)

Where k ∈ Z+. After a periodic orbit is found using the extended periodic MMPS system,
the associated dominant mode of the extended periodic system can be obtained. Since the
extended system unfolds the original system over p cycles, the dominant mode can be decom-
posed into a sequence of modes corresponding to each cycle in the original system’s period.
These individual modes, when taken together, generate the periodic orbit, even though none
of them may be dominant on their own. We refer to these modes as the semi-dominant mode
of the original MMPS system.

Definition 6.4. (Semi-dominant mode of periodic MMPS systems)
Consider a periodic MMPS system with period p, meaning the system has at least one periodic
orbit of length p.

M.J.A. Bartels Master of Science Thesis



6-3 Periodic Behaviour in General implicit MMPS Systems 55

Within such a periodic orbit, several modes may be responsible for sustaining the system’s
periodic behaviour. We define a semi-dominant mode as any mode that is actively used
during at least one cycle within the periodic orbit.
Since the orbit has period p, it can involve at most p distinct modes over its full evolution.
Therefore, a given periodic orbit can have at most p semi-dominant modes.

Obtaining a semi-dominant mode from an extended periodic MMPS system is fairly straight-
forward once the dominant mode has been identified. After computing the dominant mode,
this mode can be associated with a pair of matrices, denoted either as:

• The structure matrices GÂ′GB̂′ from the LPP, or

• The corresponding binary MILP matrices q̂, p̂ from the MILP

These matrices are block-diagonal with p diagonal blocks, corresponding to each cycle in the
period. That is

GÂ =


G

(1)
A 0 · · · 0
0 G

(2)
A · · · 0

...
... . . . ...

0 0 · · · G
(p)
A

 , GB̂ =


G

(1)
B 0 · · · 0
0 G

(2)
B · · · 0

...
... . . . ...

0 0 · · · G
(p)
B

 (6-22)

Or similarly for the binary matrices

q̂ =


q(1) 0 · · · 0
0 q(2) · · · 0
...

... . . . ...
0 0 · · · q(p)

 , p̂ =


p(1) 0 · · · 0
0 p(2) · · · 0
...

... . . . ...
0 0 · · · p(p)

 (6-23)

Each diagonal block
(
q(i), p(i)

)
or
(
G

(i)
A , G

(i)
B

)
corresponds to the mode active at cycle i

within the period of length p. So each diagonal block
(
q(i), p(i)

)
or
(
G

(i)
A , G

(i)
B

)
corresponds

to a semi-dominant mode in the original MMPS system.

6-3-1 Unknown Period Length of Periodic MMPS Systems

If the period p of an MMPS system is not known in advance, it is still possible to write the
system in its extended periodic ABCD form. However, analysing the system becomes more
complex.

In this case, one must assume a value for p and check whether the system has a periodic
orbit of that length. Fortunately, for any chosen p, a single MILP call is enough to determine
whether such a period exists. If the MILP is infeasible, then it is certain that no periodic
orbit of length p exists. If the MILP is feasible, then at least one periodic orbit of that length
or of a periodic orbit of a factor of that length does exist. In that case, the full system must
be analysed in more detail, as described in Chapter 5.

There are two main strategies for checking different values of p:

Master of Science Thesis M.J.A. Bartels



56 Periodicity of MMPS Systems

• Check periods in increasing order (p = 1, 2, 3, . . . , pmax )

• Check periods in decreasing order from some maximum (p = pmax, pmax − 1, pmax −
2, . . . , 1 )

Each strategy has its advantages and disadvantages, and they both relate to a key property
of the extended periodic form, which is that if a system has a true period p, then all multiples
of p will also yield valid fixed points and growth rates in the MILP.

For example, suppose a system has a period p = 2, and the system is checked for all p ≤
pmax = 5. Then:

• At p = 2, we get a correct fixed point v and growth rate λ2.

• At p = 4, the MILP will again return the same fixed point v, but with growth rate
λ4 = 2 · λ2, which is just a scaled version of the real one, so it is a false positive.

This leads to an important distinction between the two checking strategies:

• Increasing order: By checking smaller periods first, it is possible to detect and filter
out false positives at larger periods by comparing fixed points. If a fixed point repeats
and its growth rate is a multiple of a smaller one, we know it is redundant.

• Decreasing order: If we go from large p down to a lower value of p, we risk accepting
false positives before the real period is found. To reduce the number of MILP calls in
this case, we can exploit a useful structure:

Definition 6.5. (Minimal covering set under divisibility)
Given a finite set of positive integers S ⊆ N, a subset M ⊆ S is called a minimal covering set
under divisibility if;

• For every s ∈ S, there exist an m ∈M such that s | m; that is, s exactly divides m.

• No element m ∈M divides another element m′ ∈M with m ̸= m′

Using this concept, one can limit MILP calls to just the minimal covering set under divisibility
M rather than all values in S. This significantly reduces computational effort. However,
because this approach checks larger periods first, it may return fixed points with incorrect
growth rates. As a result, each fixed point must be post-processed to check whether its growth
rate is a multiple of a lower one and correct it accordingly.
This naturally leads to the issue of how far the search should extend, or equivalently, the
maximum period length that needs to be considered. From [15], it is known that a maximum
period p(n) exists for n-dimensional Max-Min-Plus (MMP) systems; however, this bound has
not yet been determined. Since no bound is known for MMP systems, there is consequently
no bound known for MMPS systems either.

Closely related to the notion of maximum period length is the idea of transient time. In-
troduced in Section 6-2 for max-plus and min-plus systems, also for MMPS systems, we can
apply this concept.

M.J.A. Bartels Master of Science Thesis



6-3 Periodic Behaviour in General implicit MMPS Systems 57

Definition 6.6. (Transient time of an MMPS systems)
Consider a periodic MMPS function of the form

x(k) = f(x(k − 1), x(k)) (6-24)

with a period of p = p(f) and eigenvalue λ. Then there exists an integer t(f) which is called
the transient time, such that

fp(x(k), . . . , x(k + p)) = x(k)⊗ λ⊗p (6-25)

for all k ≥ t(f)

This definition allows us to reason not only about the periodic behaviour of MMPS systems,
but also about how long it takes to reach that behaviour. Although determining the exact
transient time t(f) is often difficult in practice, its existence provides a theoretical guarantee
that beyond a certain point, the system exhibits clean periodic dynamics. This is particularly
useful when analysing or designing systems that are expected to stabilise or repeat their
behaviour after a finite number of steps.

6-3-2 Normalised Periodic MMPS Systems

In some cases, it is beneficial to simplify the analysis of an MMPS system by transforming
it into a normalised form. [5] has shown how one can normalise an MMPS system with a
period of 1. The normalisation transforms the systems into a system with a growth rate of
λ = 0 and a fixed point of v = 0 as well. Chapter 3 shows in detail how this normalisation
can be performed. Periodic MMPS systems can also be normalised using this method. Then,
instead of using a fixed point to normalise the system, one has to use any one of the states
in a periodic orbit and perform the normalisation steps. After this is complete, one is left
with a normalised Ã and B̃. Note that this is the original system and not the extended
system. When simulating the normalised system, something interesting happens with the
state evolution. Instead of every state equaling zero, every pth state is equal to zero, where p
is the period of the system. Consider an periodic MMPS system with period p periodic orbit
z(0), . . . , z(p) of the form

x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) (6-26)

Normalise the system with respect to z(i). The resulting system is given by

x̃(k) = Ãi ⊗ (B̃i ⊗′ (C · x̃(k − 1) + D · x̃(k))) (6-27)

The state evolution of a normalised MMPS system with period p = 1 is as follows:

0 = Ã⊗ (B̃ ⊗′
0︷ ︸︸ ︷

(C · 0 + D · 0))︸ ︷︷ ︸
0

(6-28)

Master of Science Thesis M.J.A. Bartels



58 Periodicity of MMPS Systems

However, this is not the case for periodical normalised systems. Here, the state evolution is
such that only the first and the pth state are equal to zero.

x(1) = Ã⊗ (B̃ ⊗′ (C · 0 + D · x(1)))
x(2) = Ã⊗ (B̃ ⊗′ (C · x(1) + D · x(2)))

...
x(p) = 0 = Ã⊗ (B̃ ⊗′ (C · x(p− 1) + D · 0))

(6-29)

This occurs because normalising the system effectively removes the constant growth rate that
adds the same value to every state in each cycle. However, for periodic MMPS systems, the
growth per cycle varies; in some cycles a state will grow more than the growth rate λ and
in some cycles, it will grow less the the growth rate λ. However, since all states increase by
µ = λ · p over p cycles, the normalisation effectively resets the state to zero after p cycles, or
compensates for this growth if the initial state is non-zero.

When examining the obtained Ã and B̃ one should notice that

[B̃]j,ℓ ≥ 0 and [Ã]i,j ≤ 0 (6-30)

no longer hold per definition. Additionally, every row of Ã and B̃ is not required to have at
least one zero element anymore. On the contrary, the extended periodic ABCD form does
maintain these properties. Take, for example, the system from Example 6.2. When one
performs the normalization as described in Chapter 3 using the the periodic point z(0) =
[0, 0, 0]⊤ and growth rate λ = 1

3 , one ends up with the following Ã and B̃;

Ã =

ϵ −1
3 ϵ

ϵ ϵ −1
3

2
3 ϵ ϵ

 , B̃ =

0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0

 (6-31)

Since Example 6.2 is a max-plus linear system, B̃ is a min-plus identity matrix, which makes
sense since B is a min-plus identity matrix as well. It is very clearly visible that Ã does not
have at least one 0 in every row, and there are also entries larger than zeros present. If one
however, normalises the extended periodic form of this same system, which has a period of 3
and a growth rate of µ = 1, one does get a system with a system which abides (6-30) and has
at least one element equal to zero for every row of A and B. ˜̂

A and ˜̂
B are given as follows

with a fixed point of v v = [0, 0, 0, 0, 0, 1, 0, 1, 1]⊤:

˜̂
A =



ϵ 0 ϵ ϵ ϵ ϵ ϵ ϵ ϵ
ϵ ϵ 0 ϵ ϵ ϵ ϵ ϵ ϵ
0 ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ
ϵ ϵ ϵ ϵ 0 ϵ ϵ ϵ ϵ
ϵ ϵ ϵ ϵ ϵ 0 ϵ ϵ ϵ
ϵ ϵ ϵ 0 ϵ ϵ ϵ ϵ ϵ
ϵ ϵ ϵ ϵ ϵ ϵ ϵ 0 ϵ
ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ 0
ϵ ϵ ϵ ϵ ϵ ϵ 0 ϵ ϵ


˜̂
B =



0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0


(6-32)

M.J.A. Bartels Master of Science Thesis



6-3 Periodic Behaviour in General implicit MMPS Systems 59

This is fairly trivial for this example, since the system has only a single mode. Regardless of
the ordering of the periodic points in the extended fixed-point state, the resulting normalised
pair remains the same.

6-3-3 Stability of Periodic MMPS Systems

In this section, the bounded-buffer stability of a periodic MMPS system is examined. The
concept of bounded-buffer stability was already discussed in detail in Chapter 4. The notion
of boundedness with regard to the stability of DE systems refers to the buffer levels taking
on a constant value on average. This should result in the systems not overflowing. To
determine whether an MMPS system is bounded-buffer stable, with a given growth rate λ,
the system must be linearised. The first step in linearisation is normalisation. This is done by
normalising the extended periodic ABCD form in accordance with Chapter 3. After obtaining
the normalised system, one can continue with the linearisation. The definition of a linearised
system is given in Chapter 4, but is repeated below;

Definition 6.7. (Linearising an MMPS system [5])
A normalised implicit MMPS system can be transformed into a system in conventional algebra
for all x̃θ(k) ∈ Ωθ, k ∈ N by using the following:

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(6-33)

if the inverse (I −M)−1 exists.

The polyhedron Ωθ is the region in which the linearisation is valid. The coming section will
examine this polyhedron for extended periodic MMPS systems, as well as describe a method
to determine whether the system is bounded buffer stable. Recall from Chapter 4 that an
linearised MMPS system is;

• Bounded buffer stable if Mθ has multiplicative eigenvalues of less than or equal to 1,
and all Jordan blocks of multiplicative eigenvalues of one are 1× 1.

• Not bounded-buffer stable if one multiplicative eigenvalue is larger than one or the
Jordan block of the multiplicative eigenvalue of magnitude one is larger than 1× 1.

Proposition 2. (Stability of extended periodic ABCD MMPS systems)
Consider a periodic MMPS system in extended periodic ABCD form. Let GAθ1

, GBθ1
, be the

footprint matrices of the first semi-dominant mode in the periodic orbit, corresponding to the
growth rate θ and let C be the C matrix from the original system. Let Wn1 be the bottom-left
block in the first block column of the inverse of M = I −M1.
Then, the bounded buffer stability of the periodic orbit of the system can be determined by
computing the eigenvalues of the matrix:

Wn1 ·GAθ1
·GBθ1

· C (6-34)

Master of Science Thesis M.J.A. Bartels



60 Periodicity of MMPS Systems

If all eigenvalues are less than or equal to one and all Jordan blocks corresponding to the
magnitude one are 1× 1, the extended periodic system is bounded buffer stable.

Proof. From Definition 6.3 it follows that both GÃθ
and GB̃θ

are block diagonal matrices as
described by (6-22). From Definition 6.3 the shape of Ĉ and D̂ is also known. Thus M1 and
M2 can easily be constructed, which are given by (6-35) and (6-36) respectively.

M1 = GÂθ
·GB̂θ

· D̂ =
GAθ1

·GBθ1
·D 0 · · · 0

GAθ2
·GBθ2

· C GAθ2
·GBθ2

·D . . . ...
... . . . . . . 0
0 · · · GAθp

·GBθp
· C GAθp

·GBθp
·D

 (6-35)

M2 = GÂθ
·GB̂θ

· Ĉ =


0 · · · 0 GAθ1

·GBθ1
· C

0 . . . 0 0
... . . . . . . ...
0 · · · 0 0

 (6-36)

From Definition 6.7 it is clear that M1 must be subtracted from an identity matrix and
inverted in order to proceed with the linearisation. (I −M1) is visible in (6-37).

I −M1 = GÂθ
·GB̂θ

· D̂ =
I −GAθ1

·GBθ1
·D 0 · · · 0

GAθ2
·GBθ2

· C I −GAθ2
·GBθ2

·D . . . ...
... . . . . . . 0
0 · · · GAθp

·GBθp
· C I −GAθp

·GBθp
·D

 (6-37)

Notice that this is a lower block diagonal matrix. From [16] it is known that the inverse of
a lower block triangular matrix is also a lower block triangular matrix. For ease of notation
(I −M1) is replaced with M as such:

M =


V11 0 · · · 0

V21 V22
. . . ...

... . . . . . . 0
Vn1 · · · Vn,n−1 Vnn

 M−1 =


W11 0 . . . 0

W21 W22
. . . ...

... . . . . . . 0
Wn1 . . . Wn,n−1 Wnn

 (6-38)

Consider a block diagonal matrix

Z =
[
A 0
C D

]
(6-39)

M.J.A. Bartels Master of Science Thesis



6-3 Periodic Behaviour in General implicit MMPS Systems 61

Then the inverse of z is given by [16]:

z−1 =
[

A−1 0
−D−1CA−1 D−1

]
(6-40)

Now suppose that [C|D] = [Vn1 . . . Vn,n−1|Vnn] and

A =


V11 0 · · · 0

V21 V22
. . . ...

... . . . . . . 0
Vn−1,1 · · · Vn−1,n−2 Vn−1n−1

 (6-41)

Then −D−1CA−1 is given by:

V −1
nn

[
Vn1 . . . Vn,n−1

]


W11 0 . . . 0

W21 W22
. . . ...

... . . . . . . 0
Wn−1,1 . . . Wn−1,n−2 Wn−1n−1

 (6-42)

This can then be generalised to an equation to determine the inverse of the first block column
of M as such:

Wn1 = −V −1
nn

n−1∑
k=1

VnkWk1 (6-43)

When multiplying M−1 with M2, one ends up with:

Mθ = M−1 ·M2 =


0 . . . 0 W11 ·GAθ1

·GBθ1
· C

0 . . . 0 W21 ·GAθ1
·GBθ1

· C
... . . . . . . ...
0 . . . 0 Wn1 ·GAθ1

·GBθ1
· C

 (6-44)

To check the stability of the linearised system, one must calculate the eigenvalues of Mθ.
From [16], it is known that the eigenvalues of a block triangular matrix are equal to the union
of the eigenvalues of the diagonal blocks. Mθ is an upper block triangular matrix with all
diagonal blocks equal to zero, except the final block. This means that the stability of the
extended periodic ABCD form can be determined by examining the eigenvalues of the matrix:

Wn1 ·GAθ1
·GBθ1

· C (6-45)

If one finds that the eigenvalues of (6-34) are less than or equal to 1, and all Jordan blocks of
eigenvalues equal to 1 are 1× 1, one can conclude that the extended periodic MMPS system
is bounded-buffer stable. Determining the valid region for this linearised system can be done
in the same manner as described in Chapter 4, and will thus not be discussed here. The same
holds for the invariant set. To illustrate these concepts, the following example examines the
eigenvalues of a linearised extended periodic MMPS system.

Master of Science Thesis M.J.A. Bartels



62 Periodicity of MMPS Systems

Example 6.4. (Eigenvalues of linearised extended periodic MMPS system)
Consider the system from Example 6.1 in extended periodic ABCD form. This system nor-
malised with respect to x̂e = [1, 1, 2, 0]⊤, results in the following ˜̂

A and ˜̂
B:

˜̂
A =


0 0 ϵ ϵ ϵ ϵ ϵ ϵ
ϵ ϵ 0 −1 ϵ ϵ ϵ ϵ
ϵ ϵ ϵ ϵ 0 −1 ϵ ϵ
ϵ ϵ ϵ ϵ ϵ ϵ 0 0



˜̂
B =



0 1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 1 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0



(6-46)

Then, in accordance with Proposition 2, linearising the system results in the following Mθ:

Mθ =


0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1

 (6-47)

Which is a block matrix with all blocks zero except the final block column. Where the stability of
the linearisation only depends on the eigenvalues of the bottom right block. These eigenvalues
are 1 and 1, both with a Jordan block of 1×1, which means that this extended periodic MMPS
system is bounded-buffer stable.

It can happen that a periodic MMPS system has a state that blows up, and then is corrected
in the next cycle. Such a state evolution could look something like;

x0 =
[
1
1

]
→ x1 =

[
∞
1

]
→ x2 =

[
2
2

]
→ x3 =

[
∞
2

]
→ . . . (6-48)

The entire periodic orbit is stable, while internally, some modes are not. Therefore, it is also
worth linearising the original system based on its semi-dominant modes. In doing so, one can
determine if these semi-dominant modes are bounded-buffer stable by checking the Hilbert
projective norm of the state.

∥xtθ(k)∥P = ∥x̃tθ(k − p) + xteθ + λθ · k · p · 1∥P
= ∥x̃tθ(k − p) + xteθ∥P ≤ ∥x̃t(k)∥P + ∥xteθ∥P

(6-49)

Which is bounded buffer stable if the eigenvalues of the linearised system are less than, or
equal to 1, and all Jordan blocks of eigenvalues equal to 1 are 1 × 1. In this case, it is not
guaranteed that the linearisation regions align or even overlap. This needs to be carefully
verified for each region. If the regions are disconnected, determining a maximum invariant
set around the periodic orbit becomes significantly more challenging, as transitions between
the regions are no longer straightforward. In such cases, it must be proven that switching
between regions actually occurs, and under what conditions, before any meaningful analysis
of the invariant set can be done.

M.J.A. Bartels Master of Science Thesis



Chapter 7

Modelling Framework for
Transportation Networks

This chapter introduces a way to turn a simple transport system into a recursive extended
system. The main contributions are a general framework for modular MMPS sub-systems and
a systematic way of turning a high-level system description in the form of an adjacency graph
into a system of equations. Section 7-1 introduces the basics for modular MMPS sub-systems;
what do they look like, and what properties should hold for time invariance and solvability.
Furthermore, the Section dives into the scenario where there is no synchronisation within a
system. Section 7-2 proposes a method how switching MMPS systems can be written as a
single MMPS system. This is then used in Chapter 8 in practice on a real-world system.
Finishing off the chapter are Section 7-3 and Section 7-4, which deal with a toolbox of nodes
one can choose from in order to easily construct a system of equations of a transportation
system. In Section 7-3, some different nodes are introduced and derived. Thereafter, some
other more advanced nodes are briefly discussed but not derived. Section 7-4 then uses these
nodes to construct a system of equations in ABCD form, from a high-level system description
consisting of a graph together with the nodes’ properties.

7-1 Basics of Modular Transportation Systems

Modelling a large transportation network is a time-consuming task. Deriving all the equations
can be tedious, and transforming the equations into the ABCD form for easy simulation and
analysis is prone to mistakes. Therefore, an easier way of modelling these systems should be
developed.

Just like in the URS[5], a modular system is ideal to allow for more complex modelling,
relying on patterns and other properties to reuse specific elements. However, unlike the URS,
a transportation system often lacks a regular structure, making it difficult to simply stack
identical nodes or matrices.

Master of Science Thesis M.J.A. Bartels



64 Modelling Framework for Transportation Networks

Figure 7-1: Example of a system with three nodes for modular modelling

This section presents a method for achieving a modular transportation system. Such a method
will allow one to take sub-systems and easily connect them. This is useful in the case of
parallel development, expanding existing systems or even the construction of completely new
systems. This section will discuss a general way of modelling large transportation networks
by relying on pre-constructed sub-systems, nodes and patterns. First, this will be done on a
small node-based level, which will then be expanded to a subsystem level.

7-1-1 Introduction to Modular Transport Nodes

Before diving into modular sub-systems, the general idea will be presented using a very simple
3-node transportation system. Take the network seen in Figure 7-1. A vehicle drives between
node 1 and 2, and node 2 and 3 delivering goods. In this system, there is an inflow of goods
(γi) at the left and right nodes, also named ’end nodes’, which needs to be delivered via the
vehicles to the other end node, where they are delivered with an outflow of goods (φi). Each
node has two stacks that can be used for storage while waiting to be picked up. Two stacks
for each node, as this easily encodes the origin and destination of the goods. Knowing which
flows take goods from which exact stack is not necessary.

In this small case, it is relatively easy to derive all the state equations. However, if the system
becomes larger, this might not be the case. Notice, that even in this small system, there are
already repeating nodes; i.e. nodes 1 and 3 have the same dynamics, they both have an in-
and outflow of goods, two stacks, one vehicle delivering and picking up goods, and they have
the same interactions and behaviour within the node. With larger systems, repeating nodes
are even more common. The following question arises: how can this system be modelled more
easily while keeping this repetition in mind?

Let us separate one node of this system, node 1 in this case, visible in Figure 7-2. The
dynamical behaviour of this node remains unchanged regardless of whether it is directly
connected to some other node. Now this node has an input u11 and an output y11, where the
subscript 11 refers to in- or output 1 of node 1. This input must contain all the information
the dynamical equations need to give a unique result. The output y11 can be any state or
combination of states, whichever is needed by either the user or a connected node. The
exact dynamics of this node are not relevant. But for this node, we can define a state vector
x1 ∈ Rn1 . The dynamics of this single node can be described by an MMPS function in

M.J.A. Bartels Master of Science Thesis



7-1 Basics of Modular Transportation Systems 65

Figure 7-2: Separated node 1 from Figure 7-1

ABCDE form:[
x1,t(k)
x1,q(k)

]
=
[

A1,t ε
ε A1,q

]
︸ ︷︷ ︸

A

⊗
([

B1,t ⊤
⊤ B1,q

]
︸ ︷︷ ︸

B

⊗′
([

C1,11 C1,12
C1,21 C1,22

]
︸ ︷︷ ︸

C

·
[

x1,t(k − 1)
x1,q(k − 1)

]

+
[

D1,11 D1,12
D1,21 D1,22

]
︸ ︷︷ ︸

D

·
[

x1,t(k)
x1,q(k)

]
+
[

E1,11 E1,12
E1,21 E1,22

]
︸ ︷︷ ︸

E

·
[

u11,t(k)
u11,q(k)

]))

(7-1)

The output of this node, y, is specified through another MMPS function, whose form can be
selected as desired, which is given by:

y11(k) = F1 ⊗ (H1 ⊗′ (K1 · x1(k − 1) + L1 · x1(k))) (7-2)

Suppose that every node of the system in Figure 7-1 is modelled as an independent MMPS
system, in such a way that the output of one node is exactly the input of the node it is
connected to. Then one can simply ’connect’ the blocks and obtain the system of equations
that govern the system. To demonstrate this, the system from Figure 7-1 will be partitioned
into three subsystems, as shown in Figure 7-3. Note that the subsystems are simply the
individual nodes in this case.

Master of Science Thesis M.J.A. Bartels



66 Modelling Framework for Transportation Networks

Figure 7-3: Partitioning of example system

For each node, one can derive the governing equations and model ever node individually as
such:

x1(k) = A1 ⊗ (B1 ⊗′ (C1 · x1(k − 1) + D1 · x1(k) + E1 · u11(k)))
y11(k) = F1 ⊗ (H1 ⊗′ (K1 · x1(k − 1) + L1 · x1(k)))

x2(k) = A2 ⊗ (B2 ⊗′ (C2 · x2(k − 1) + D2 · x2(k) + E12 · u12(k)) + E22 · u22(k)))
y12(k) = F12 ⊗ (H12 ⊗′ (K12 · x2(k − 1) + L12 · x2(k)))
y22(k) = F22 ⊗ (H22 ⊗′ (K22 · x2(k − 1) + L22 · x2(k)))

x3(k) = A3 ⊗ (B3 ⊗′ (C3 · x3(k − 1) + D3 · x3(k) + E3 · u13(k)))
y13(k) = F3 ⊗ (H3 ⊗′ (K3 · x3(k − 1) + L3 · x3(k)))

(7-3)

Again, the exact equations are not relevant; only the structure is. Since node 1 and node 3 are
the same, it is known that A1 and A3 have the same structure, potentially different variables.
Such as different travel times or capacities. This also holds for the B, C, D, E, F , H K
and L matrices. These independent systems can be connected to obtain the original 3-node
transportation system. The system appears to be an open-loop system; however, the outputs
of one subsystem are the inputs of another, which means that this is actually a closed-loop
system.

M.J.A. Bartels Master of Science Thesis



7-1 Basics of Modular Transportation Systems 67

Combining the equations into the description of the entire system results in:

x1(k)
x2(k)
x3(k)
y11(k)
y12(k)
y22(k)
y13(k)


=



A1 ϵ ϵ ϵ ϵ ϵ ϵ
ϵ A2 ϵ ϵ ϵ ϵ ϵ
ϵ ϵ A3 ϵ ϵ ϵ ϵ
ϵ ϵ ϵ F1 ϵ ϵ ϵ
ϵ ϵ ϵ ϵ F12 ϵ ϵ
ϵ ϵ ϵ ϵ ϵ F22 ϵ
ϵ ϵ ϵ ϵ ϵ ϵ F3


⊗





B1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ B2 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ B3 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ H1 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ H12 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ H22 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ H3



⊗′





C1 0 0 0 0 0 0
0 C2 0 0 0 0 0
0 0 C3 0 0 0 0

K1 0 0 0 0 0 0
0 K12 0 0 0 0 0
0 K22 0 0 0 0 0
0 0 K13 0 0 0 0





x1(k − 1)
x2(k − 1)
x3(k − 1)
y11(k − 1)
y12(k − 1)
y22(k − 1)
y13(k − 1)


+



D1 0 0 0 E11 0 0
0 D2 0 E12 0 0 E22
0 0 D3 0 0 E13 0

L1 0 0 0 0 0 0
0 L12 0 0 0 0 0
0 L22 0 0 0 0 0
0 0 L13 0 0 0 0





x1(k)
x2(k)
x3(k)
y11(k)
y12(k)
y22(k)
y13(k)






(7-4)

Notice that the system of (7-3), which appeared to be open loop, is actually a closed loop
once the nodes are reconnected, as is visible in (7-4). Additionally, notice that the state of
the system has increased. This system was just a small example of a small system to grasp
the idea. In the next section, a more formal way, that also works for larger subsystems, will
be discussed.

7-1-2 Introduction to MMPS Sub-Systems

Large systems can be divided into smaller, interconnected sub-systems to simplify modelling
and analysis. This section formalises how to represent and connect MMPS sub-systems,
enabling efficient handling of complex networks. Key properties, like time invariance and
solvability are discussed, along with how to describe both open- and closed-loop interconnected
systems.

Instead of single nodes, MMPS sub-systems will be considered. An MMPS sub-system is a
smaller, self-contained part of a larger MMPS system that can be modelled independently.
When multiple sub-systems interact, they exchange information through defined inputs and
outputs. By connecting these sub-systems, we can build complex systems while keeping the
modelling and analysis manageable.

Take system 1 and system 2 visible in Figure 7-4. These systems can, for example, represent
the logistics network in 2 different countries that have formed a partnership, and now they
will be viewed as a single system. It is possible to reformulate all equations of the entire new

Master of Science Thesis M.J.A. Bartels



68 Modelling Framework for Transportation Networks

Figure 7-4: Example of two subsystems being connected

system, or something smarter can be done, as briefly introduced in Subsection 7-1-1. The red
arrows y1 and y2 indicate some information which needs to be transferred between the two
sub-systems. This can be a state from the sub-system or a combination of states.

Suppose that the original systems 1 and 2 can be described by:

x1(k) = f1(x1(k − 1), x1(k), u1(k))
x2(k) = f2(x2(k − 1), x2(k), u2(k))

(7-5)

Where x1 ∈ Rn, x2 ∈ Rm, u1 ∈ Rp, u2 ∈ Rq, f1 is an MMPS function f1 : Rn+p → Rn and f2
is an MMPS function f2 : Rm+q → Rm.

The information being sent between the systems, y1 and y2 is given by:

y1(k) = g1(x1(k − 1), x1(k))
y2(k) = g2(x2(k − 1), x2(k))

(7-6)

Where g1 is an MMPS function g1 : R2n → Rp and g2 is an MMPS function g2 : R2m → Rq.
Then by setting

u1(k) = y2(k)
u2(k) = y1(k)

(7-7)

The two sub-systems are connected and turned into a single closed-loop system.

More generally, consider an MMPS sub-system i with n connections to other sub-systems,
then this system can be described by:

xi(k) = Ai ⊗Bi

⊗′

Ci · xi(k − 1) + Di · xi(k) + Ei · u(k) +
n∑

j=1
Eij uj(k)


yi(k) = Fi ⊗

(
Hi ⊗′ (Ki · xi(k − 1) + Li · x(k))

) (7-8)

M.J.A. Bartels Master of Science Thesis



7-1 Basics of Modular Transportation Systems 69

Where u(k) is a regular input to the sub-system, uj(k) is the input from the jth sub-system.
xi(k) is the state of the sub-system and yi(k) is the output. Given the implicit nature of an
MMPS sub-system, properties for monotonicity and non-expansiveness have not been derived
in known literature yet. Thus, they will not be discussed here. However, the condition for
time-invariance can be determined. [17] has derived the time-invariant conditions for implicit
MMPS systems with inputs. Now, not only should partial-additive homogeneity hold for
all temporal and quantity signals as well as the input, but also for all signals from other
sub-systems. This expands the current time-invariance condition. The conditions for time-
invariance of an MMPS sub-system are defined by:

Theorem 7.1. (Time invariance of an implicit MMPS sub-system)
An implicit MMPS sub-system described by (7-8) in the ABCDE form is time invariant when
the following properties hold∑

j∈nt

[
Ci,11 Di,11 Ei,11 [Ei1,11 . . . Ein,11]

]
ℓj

= 1, ∀ℓ ∈ pt

∑
j∈nq

[
Ci,21 Di,21 Ei,21 [Ei1,21 . . . Ein,21]

]
tj

= 0,∀t ∈ pq
(7-9)

Proof. This is an extension of the time-invariant condition proposed in [17], by logically
adding the sub-system connection channels.

Another property that must be investigated is the property of solvability. From Chapter 3,
recall that an MMPS system is solvable if there exists a matrix T ∈ Rn×n such that F =
T · SA · SB · SD · T −1 is a lower triangular matrix. Where

[SA]i,j =
{

1 if [A]i,j ̸= ε
0 if [A]i,j = ε

[SB]i,j =
{

1 if [B]i,j ̸= ⊤
0 if [B]i,j = ⊤

[SD]i,j =
{

1 if [D]i,j ̸= 0
0 if [D]i,j = 0

(7-10)

This condition must also hold for any sub-system. However, connecting solvable sub-systems
can result in an unsolvable system. To understand this, an ABCDE form for connected
sub-systems must be introduced.

Proposition 3. (Open loop integrated sub-system model)
The set of independent sub-systems can be made into an open loop integrated sub-system model
described as follows;

[
x(k)
y(k)

]
=
[
A ϵ
ϵ F

]
︸ ︷︷ ︸

Ā

⊗


[
B ⊤
⊤ H

]
︸ ︷︷ ︸

B̄

⊗′


[

C 0
K 0

]
︸ ︷︷ ︸

C̄

[
x(k−1)
y(k−1)

]
+
[
D E
L 0

]
︸ ︷︷ ︸

D̄

[
x(k)
y(k)

]
+
[
Eu

0

]
︸ ︷︷ ︸

Ē

[
u(k)

]



(7-11)
Where x(k) and y(k) contains all xi(k)’s and yi(k);s appended respectively, A, B, C, D, F ,
H, K, L are a block diagonal matrices of all Ai, Bi, Ci, Di, Fi, Hi, Ki and Li respectively.

Master of Science Thesis M.J.A. Bartels



70 Modelling Framework for Transportation Networks

E connects the correct yi with the correct ui, so the shape depends on the configuration of the
specific use case.

Proof. This is an extension of the ABCDE canonical from proposed in [11] by logically ap-
pending the states and matrices.

Whether or not a system is solvable boils down to whether an explicit mapping of the form
(7-12) exists or not.

x(k) = f(x(k), x(k − 1), u(k))⇒ x(k) = g(x(k − 1), u(k)) (7-12)

The external input u(k), in an open-loop system, does not depend on the state x(k), so it does
not matter if it is a controlled system or an autonomous system when looking at the notion
of solvability. In the case of a system consisting of a set of sub-systems, if all sub-systems
are solvable, connecting them into a single system can result in an unsolvable system. The K
and L matrices essentially determine where a cycle update happens, as they determine which
components of the current state are used for the output of a given sub-system. When this
output yi(k) gets put back into the system via the E matrix, a circuit can be created, which
means one has an unsolvable system. In the case of a transportation system, this happens
when a vehicle route does not get a cycle update at one of the nodes.

One can prevent this by designing the outputs of the sub-systems such that after one full
round, a cycle update occurs. For transportation networks, it is easy to see when this should
happen. This must happen when a vehicle is back at its starting location. In general, this
will mean that for a given output pair (yij , yji), one outputs the current state and one the
previous state. So Lij = 0 while Lji ̸= 0. While this is not necessarily a requirement, it is a
good rule of thumb. For example, for pass-through nodes/ subsystems, this is not the case,
as the same vehicle must continue on in the same cycle. When there are n sub-systems, then
there are at minimum n output vectors one must connect and at most n · (n − 1) if every
sub-system is connected to every other sub-system.

In most practical applications, yij will simply be a state vector, either of current states,
previous states or a combination of the two. This has as a result that F and H are the
max-plus and min-plus identity matrices, respectively. Writing a system in terms of sub-
systems will result in an inflated system description since all outputs y(k) are explicitly taken
as a state. If one is to derive a description of a system from scratch, all these states can
be internalised into the normal state description of x(k). However, this does not necessarily
mean that there are extra modes introduced, which would slow down any analysis. It does
however, mean modelling larger systems will become easier.

In Proposition 3, only an open loop system was taken. However, in control theory, closed
loop systems are equally, if not more important. Suppose the system of (7-11) is turned into
a closed-loop system with a reference signal. Then this new system is given by:

Proposition 4. (Integrated closed-loop sub-system model with reference)
Combining the closed loop control signal for MMPS systems with the integrated sub-system
model to the ABCDR form allows for a closed loop system description of a sub-system model

M.J.A. Bartels Master of Science Thesis



7-1 Basics of Modular Transportation Systems 71

as follows;

 x(k)
y(k)
u(k)

 =

 A ε ε
ε Fy ε
ε ε Fu


︸ ︷︷ ︸

A

⊗


 B ⊤ ⊤
⊤ Hy ⊤
⊤ ⊤ Hu


︸ ︷︷ ︸

B

⊗′


 C 0 0

K 0 0
K0 0 L0


︸ ︷︷ ︸

C

·

 x(k − 1)
y(k − 1)
u(k − 1)



+

 D Ey Eu

L 0 0
K1 0 L1


︸ ︷︷ ︸

D

·

 x(k)
y(k)
u(k)

+

 R11 R12
0 0

R21 R22


︸ ︷︷ ︸

R

·r(k)




(7-13)

Proof. This is an extension of the open loop integrated sub-system model proposed in Propo-
sition 3 by logically adding the closed loop controller and rearranging the system matrices.

Similar to the open-loop integrated sub-system model, a time-invariance condition can also
be derived for the closed-loop case. In contrast to the open loop system, now the states for
the input u(k) must also adhere to the time invariance properties, as well as the reference
input r(k) must also be included. The condition for a time invariant integrated closed loop
implicit MMPS sub-system model with reference can be found in Theorem 7.2

Theorem 7.2. (Time invariance of a integrated closed loop implicit MMPS sub-system model
with reference)
A closed loop implicit MMPS sub-system described by (7-13) in the ABCDR form is time
invariant when the following properties hold:

∑
i∈n̄t+ūt

 C11 0 0 D11 Ey,11 Eu,11 R11,11 R12,11
k11 0 0 L11 0 0 0 0

K0,11 0 L0,11 K1,11 0 L1,11 R21,11 R22,11


t,ℓi

= 1, ∀ℓ ∈ p̄t

∑
i∈n̄t+ūt

 C21 0 0 D21 Ey,21 Eu,21 R11,21 R12,21
k21 0 0 L21 0 0 0 0

K0,21 0 L0,21 K1,21 0 L1,21 R21,21 R22,21


q,ℓi

= 0, ∀ℓ ∈ p̄t

(7-14)

Proof. This is an extension of the time-invariant condition for closed loop MMPS systems
proposed by [17]. By logically adding the sub-system connection channels.

Since in the closed-loop case the input u(k) is a function of both the state x(k) and itself u(k),
solvability is not always guaranteed, given of course, that the open-loop system is solvable.
The input u(k) can be seen an extra state or set of states, and so, in closing the loop, solvability
must be verified again. Since the solvability conditions only pertain to A, B and D using
the theory from Subsection 3-2-2, it can easily be verified whether the closed loop system is
solvable. Also notice that R can never violate the solvability.

Master of Science Thesis M.J.A. Bartels



72 Modelling Framework for Transportation Networks

Figure 7-5: Arrival times of an unstable system [18]

7-1-3 Risks of Asynchronicity in Transportation Systems

A key property to note is the property of asynchronicity. Depending on the designed use case,
one might be tempted to model a transportation system using an integrated sub-system model
without forcing synchronisation between different vehicles or nodes. This section will briefly
discuss why this practice should generally be avoided. In [18], some interesting results are
obtained when simulating a 4-node transportation network with a bidirectional flow of goods.
The premise was to remove the synchronisation requirement. This led to a stabilisation in
quantity states but also to non-uniform state growth within a cycle for the time states. These
two behaviours seem to contradict each other, as non-uniform state growth within a cycle
indicates an unstable system, whilst stabilising quantity states indicate stable behaviour. This
system, however, was not stable; removing synchronisation will always lead to an unstable
system, unless the growth rate of the disconnected circuits are identical. This can be seen
when one looks at the physical interpretation of the system’s quantity states. Taking a look
at Figure 7-5, one sees the arrival times of the unstable system from [18]; the departure times
look very similar. Notice that arrival 43 is modelled as processing the goods from arrival
41 in, for example, cycle 15. Since the state equations only consider the cycle index and not
the actual arrival times, the model assumes the goods from arrival 41 are already present in
that cycle. In reality, however, these goods arrive about 100 time units later, by which point
arrival 43 has already advanced by roughly 8 cycles. So goods are processed at another plant
while they have not arrived yet. This is inherent to systems without proper synchronisation.
Once again, this is because the state evolution is based on cycles and not actual times. The
system therefore, processes goods that either are not there or believe goods have not yet
arrived but already have. This poses a significant challenge that must be addressed carefully
in the design process.

If one wishes to have a non-synchronous system. This is possible only for a short while,

M.J.A. Bartels Master of Science Thesis



7-2 Switching MMPS Systems as a Single System 73

while actively detecting when the system is no longer valid. In this scenario, one can model
the system as a switching MMPS system such that when a buffer is empty or overflowing,
it switches to another synchronised system, or one that can upscale to process the excess.
Alternatively, one can consider an alternative modelling method, one that is better suited for
unsynchronised systems.

7-2 Switching MMPS Systems as a Single System

Switching Max-Min-Plus-Scaling (S-MMPS) systems are discrete event systems that can
switch between various modes of operation, where every mode is described by its own MMPS
system. This mode can be determined based on the previous states, the current state, the
previous mode or even by some external signal. It can also happen that this switching signal is
arbitrary and can not be determined in advance. Modelling systems as S-MMPS systems can
be very useful in flexible systems such as flexible production systems, traffic light intersections
or transportation systems. S-MMPS systems are defined as follows:

Definition 7.1. (Switching MMPS systems [19])
A Switching MMPS system can be described by:

x(k) = A(ℓ(k))⊗
(
B(ℓ(k))⊗′ (C(ℓ(k)) · x(k − 1) + D(ℓ(k)) · x(k))

)
(7-15)

Where the matrices A(ℓ) ∈ Rn×m
ε , B(ℓ) ∈ Rm×p

⊤ , C(ℓ(k)) ∈ Rp×n, D(ℓ(k)) ∈ Rp×n are the
system matrices for the ℓ-th mode, ℓ ∈ {1, . . . , nL}. and nL is the number of modes the system
has.

Switching systems are hard to analyse due to their switching behaviour, even if the switching
signal is known beforehand. Furthermore, two stable systems can still become unstable under
the wrong switching rule and vice versa [20].

Suppose one has nL different switching modes and the switching signal is known and can
be written as an MMPS function. Then it is possible to write the S-MMPS system as an
extended regular MMPS system as such:

Proposition 5. (A S-MMPS system as as single MMPS system)
Any Switching MMPS system with nL different switching modes, that has a switching signal

ℓ(k) that can be represented as one or more MMPS functions, can be written as a single
MMPS system.

Proof. Introduce a state c(k) ∈ RnL . Since ℓ(k) can be represented as an MMPS function,
one can design an MMPS system such that ci = 0 if mode i is active and ci << 0 if mode i
is not active. Which can be described by

c(k) = Ac⊗Bc⊗′ (Ccc · c(k−1) + Dcc · c(k) + Ccx ·x(k−1) + Dcx ·x(k−1) + E ·uc(k)) (7-16)

This means that for all x(k), there exist exactly one i ∈ {1, . . . , nL}
such that ci = 0 and cj ≪ 0 ∀j ∈ {1, . . . , nL}, j ̸= i

Master of Science Thesis M.J.A. Bartels



74 Modelling Framework for Transportation Networks

Then

[
x(k)
c(k)

]
=
[

A1 . . . AnL E
E . . . E Ac

]
⊗




B1 ⊤ ⊤
. . . ...

⊤ BnL ⊤
⊤ . . . ⊤ Bc

 ⊗′




C1 0
...

...
CnL 0
Ccx Ccc

 ·
[

x(k − 1)
c(k − 1)

]
+


D1 Dc1
...

...
DnL DcnL

Dcx Dcc

 ·
[

x(k)
c(k)

]
+


E1 0
...

...
EnL 0
Ecx Ecc

 ·
[

u(k)
uc(k)

]


(7-17)
Is the S-MMPS system reformulated into a regular MMPS system. Where Ai ∈ Rn×m

ε ∀i ̸= c,
Ac ∈ RnL×q

ε , Bi ∈ Rm×l
⊤ ∀i ̸= c, Bc ∈ Rq×k

⊤ , Ci, Di ∈ Rl×n ∀i = {1, . . . , nL},Dci ∈ Rl×nL ,
Ccc, Dcc ∈ Rk×nL , Ccx, Dcx ∈ Rk×n, Ei ∈ Rl×nu ∀i ̸= cx, cc, Ecx ∈ Rk×nu , Ecc ∈ Rk×nL

And the matrix Dci ∈ Rm×n has all entries zero except for the ith column, which is filled with
a large constant M .

If the switching signal can be represented as an MMPS function, then one can construct the
mode variables ci such that they are 0 when the system is in mode i and < 0 if the system is
not in mode i.
Now suppose that mode i is active. ci = 0 and cj < 0 ∀j ∈ {1, . . . , nL}, j ̸= i. Take
Dck ∈ Rp×nL as a matrix filled with zeros and M in the kth column as such:

Dck =

kthcolumn︷ ︸︸ ︷
0 · · · 0 M
0 · · · 0 M
...

...
...

...
0 · · · 0 M

0 · · · 0
0 · · · 0
...

...
...

0 · · · 0

 (7-18)

Then Dci · ci = 0 while Dcj · cj <<< 0. Since this large negative vector will be added to
Cj · x(k − 1) + Dj · x(k), it means that (7-19) is true if M is large enough.

Aj⊗Bj⊗′Cj ·x(k−1)+Dj ·x(k)+Dcj ·c(k) < Ai⊗Bi⊗′Ci ·x(k−1)+Di ·x(k)+Dci ·c(k) (7-19)

Even though time states are continuous. There is always a finite difference between the state
of the active mode and the inactive mode. Since there is a difference, there also must exist
an M large enough to make (7-19) true for all i, j, k. Also, when one or more of the switching
modes have a growth rate of zero, this method still works because it does not explicitly rely
on the growth rate. The switching is based on the switching state c, which determines the
state independently of any growth rate of a mode.

It still remains unclear how large M should be, as this depends on the system and the starting
position. This method is useful, for example for systems with different operating modes where
the system is bound to different rules, interactions or dynamics in the different modes. Below
one will find a small example of an S-MMPS system turned into a single MMPS system.

M.J.A. Bartels Master of Science Thesis



7-2 Switching MMPS Systems as a Single System 75

Example 7.1. (Transforming a SMMPS system into a single MMPS system)
Consider a switching MMPS system with 2 modes
Where mode 1 is given by:

x(k) =
[
1 2
3 4

]
⊗
([

2 1
4 2

]
⊗′
([

1
2 0
1
2

1
2

]
x(k − 1) +

[
0 1

2
0 0

]
x(k)

))
(7-20)

And mode 2 is given by:

x(k) =
[
6 7
8 9

]
⊗
([
−1 2
5 4

]
⊗′
([

0 3
4

1 0

]
x(k − 1) +

[
0 1

4
0 0

]
x(k)

))
(7-21)

The system has a switching input which is given by uc(k), which is one when the system is in
mode 1 and two when the system is in mode 2.

Then c1(k) and c2(k) are given by:

c1(x) = min
(
0, 1− uc(k), uc(k)− 1

)
,

c2(x) = min
(
0, 2− uc(k), uc(k)− 2

)
.

(7-22)

Then, using Proposition 5, the S-MMPS system can be written as a single MMPS system as
such:

[
x(k)
c(k)

]
=



1 2 ϵ ϵ ϵ ϵ
3 4 ϵ ϵ ϵ ϵ
ϵ ϵ 6 7 ϵ ϵ
ϵ ϵ 8 9 ϵ ϵ
ϵ ϵ ϵ ϵ 0 ϵ
ϵ ϵ ϵ ϵ ϵ 0


⊗





2 1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
4 2 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ −1 2 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 5 4 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 1 −1 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 2 −2


⊗′





1
2 0 0 0
1
2

1
2 0 0

0 3
4 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


·
[
x(k − 1)
c(k − 1)

]
+



0 1
2 M 0

0 0 M 0
0 1

4 0 M
0 0 0 M
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


·
[
x(k)
c(k)

]
+



0
0
0
0
−1
1
0
2
−2


·
[
uc(k)

]




(7-23)

Where M is a sufficiently large number.

Master of Science Thesis M.J.A. Bartels



76 Modelling Framework for Transportation Networks

7-3 Transportation Network Framework

This section describes several building blocks one can use for easy construction of a trans-
portation network. A transportation network is a very general concept which can refer to
any kind of logistical system. Thus, the hereafter-referred vehicles can, depending on the
real-world equivalent, be any type of vehicle from trucks to ships, from drones to trains. This
section begins with describing a central node, which can be considered the basis node from
which a system can be built. This central node has 3 arms connecting to any other node,
allowing for complex modelling. The second part of this section highlights 4 other types of
nodes which can be connected to such a central node or even to each other in some cases.
Lastly, other, more complex nodes are briefly introduced, which allow for even more detailed
modelling.
Since nodes have been ’cut loose’ from their network, it might become unclear which part of
the state equations belongs to the node dynamics and which are simply inputs to the system.
As the inputs are referred to by their physical interpretation, such as a departure time instead
of an input. To quickly see what states belong to the input of the node, it is decided to make
these states blue. For example, take the arrival time at node 1 as the departure time of a
specific vehicle at node 2 plus travel time τ . This will then be denoted by

a1(k) = d2(k) + τ (7-24)

Here d2(k) clearly is the departure time from another node, and thus will be considered as
an input to the node; hence it has been made blue.
Several variables are used during the modelling, instead of introducing them every time they
are listed in Table 7-1

Variable Definition
τij Travel time from node i to node j

ρmax,i Maximum capacity of vehicle i
ui Unloading speed of vehicle i
φ Outflow of goods per unit of time
Li Loading speed of vehicle i

βi, (1− βi) Fraction of the load of vehicle i going to another vehicle
γ Inflow of goods per unit of time

Table 7-1: Common variable definition

Since the modelling happens in a DE framework, it is important to note what the different
elements refer to. All the states represent the time at which a specific event occurs for the
kth time. Take, for example a1,1(2) = 5, where a1,1 is the arrival time of vehicle 1 at node
1. a1,1(2) = 5 means that vehicle 1 has arrived for the second time at node 1 at time 5.
Which could refer to any time quantity, hours, seconds, this all depends on the definition of
the designer. This means that k is the cycle counter of the system. Quantity states represent
a quantity at a specific event in a specific cycle and are always connected to a time state. So
if s is a quantity state referring to the number of parcels waiting to be picked up and is linked
to some arrival time, s(4) = 10 will mean that in cycle 4, 10 parcels are waiting to be picked
up at the moment the arrival happens.

M.J.A. Bartels Master of Science Thesis



7-3 Transportation Network Framework 77

A few last remarks about how the different nodes are modelled. The first subscript of a state
says what node it is referring to, and the second is from where it came or in other words,
refers to a specific vehicle. All nodes have been checked and are time-invariant. It has been
assumed that for all vehicles, the unloading speed is higher than the loading speed. This
makes modelling easier as the restricting speed will always be the loading speed.

7-3-1 Basic Central Node Structure

This subsection describes the working of a central node without a stack. The central node
has 3 arms which extend out to a connection node. It is not necessary to know what type
of connection node is present for the working of the central node; they are, in a sense,
independent of each other. A visual representation can be found in Figure 7-6. Note that
node 4 is the central node and nodes 1, 2 and 3 are only present as a visual aid. The
interactions of several connection nodes are described in Subsection 7-3-2.

Figure 7-6: Visual representation of a 3-armed central node

In the case where there is no storage stack present at the central node, it is required that all
goods that come in in cycle k also leave the node in the same cycle k. Goods can flow in all
directions, so goods coming from node 1 can go to node 2 and 3, goods coming from node
2 can go to node 1 and 3 and goods coming from node 3 can go to node 1 and 2. A fixed
fraction of the incoming goods at each node is always routed to specific downstream nodes.
For example, the goods arriving from node 1, denoted by ρ1(k), are consistently split between
nodes 2 and 3. A constant fraction β1 ∈ [0, 1] is directed to node 2, meaning that β1ρ1(k)
goods are sent to node 2, while the remaining (1− β1)ρ1(k) goods are sent to node 3. β2 and
β3 naturally denote the fractional splits between the goods arriving from node 2 and node 3
respectively. The arrival of vehicles 1, 2 and 3 at node 4, denoted by a41(k), a42(k), a43(k) in
cycle k respectively, is described as follows:

a41(k) = d1(k) + τ14

a42(k) = d2(k) + τ24

a43(k) = d3(k) + τ34

(7-25)

Master of Science Thesis M.J.A. Bartels



78 Modelling Framework for Transportation Networks

Where di(k) denotes the departure time of the vehicle departing from node i.

The times when a vehicle’s 1, 2 and 3 are empty at node 4 in cycle k are given by e41(k),
e42(k), e43(k) respectively. Which can be described as follows:

e41(k) = a41(k) + ρ1(k)
u1

e42(k) = a42(k) + ρ2(k)
u2

e43(k) = a43(k) + ρ3(k)
u3

(7-26)

Where ρi is the load of vehicle i when arriving at node 4.

The departure times are a bit more complex. Only the departure time of vehicle 1 will be
explained; however, for the other vehicles the same holds. It is assumed that vehicle 1 can
start loading the goods from vehicle 2 only when both vehicles 1 and 2 are empty. The same
holds for vehicle 1 and vehicle 3. Then vehicle 1 can leave when the last truck is emptied,
plus the time it takes to load the goods destined for vehicle 1. This leads to the following
departure time:

d41(k) = max
(

max(e41(k), e42(k)) + β2ρ2(k)
L1

, max(e41(k), e43(k)) + β3ρ3(k)
L1

)
(7-27)

However, it can also happen that the empty times are so close together that one pair is still
loading while the other vehicle has already emptied itself. In other words, vehicle 1 is still
loading the final goods from vehicle 2, but vehicle 3 has already finished emptying. In this
case, vehicle 1 can leave at the moment loading started plus the time it takes to load all the
goods from vehicle 2, plus the time it takes to load all the goods from vehicle 3. The moment
loading started is denoted by δ1:

δ1(k) = min
(

max(e41(k), e42(k)), max(e41(k), e43(k))
)

(7-28)

And the time it takes to load all goods destined for vehicle 1 is given by:

β2ρ2(k) + β3ρ3(k)
L1

(7-29)

Resulting in the final departure time d41(k):

d41(k) = max
(
e41(k) + β2ρ2(k)

L1
, e42(k) + β2ρ2(k)

L1
, e41(k) + β3ρ3(k)

L1
, e43(k) + β3ρ3(k)

L1
,

δ1 + β2ρ2(k) + β3ρ3(k)
L1

)
(7-30)

M.J.A. Bartels Master of Science Thesis



7-3 Transportation Network Framework 79

The departure times of vehicles 2 and 3 are very similar and can be found below:

d42(k) = max
(
e42(k) + β1ρ1(k)

L2
, e41(k) + β1ρ1(k)

L2
, e42(k) + (1− β3)ρ3(k)

L2
,

e43(k) + (1− β3)ρ3(k)L3
,

δ2 + β1ρ1(k) + (1− β3)ρ3(k)
L2

)
d43(k) = max

(
e43(k) + (1− β1)ρ1(k)

L3
, e41(k) + (1− β1)ρ1(k)

L3
, e43(k) + (1− β2)ρ2(k)

L3
,

e42(k) + (1− β2)ρ2(k)
L3

, δ3 + (1− β1)ρ1(k) + (1− β2)ρ2(k)
L3

)
δ2(k) = min

(
max(e42(k), e41(k)), max(e42(k), e43(k))

)
δ3(k) = min

(
max(e43(k), e41(k)), max(e43(k), e42(k))

)
(7-31)

Lastly, the vehicle loads at departure are needed. These can also easily be derived since they
are the fractional loads assigned to them from the arriving vehicles:

ρ41(k) = β2ρ2(k) + β3ρ3(k)
ρ42(k) = β1ρ1(k) + (1− β3)ρ3(k)
ρ43(k) = (1− β1)ρ1(k) + (1− β2)ρ2(k)

(7-32)

7-3-2 Basic Connection Node Types

There are numerous types of nodes one can design by tweaking the iterations one desires.
In this section, four different connection nodes are described. They are an input node, an
output node, a transfer node without stack and a pass-through node. Several other types of
nodes and their equations of state can be found in Appendix A. The nodes are all referred
to as node n and are connected to either one or two nodes. Then the one or two refers to
whichever node or input is taken.

Input node

An input node is a node where a vehicle will arrive empty and only pick up goods. This, for
example, can be a producer of goods, such as a farmer or a manufacturing plant. Such a node
has an input at a rate of γ goods per unit of time. These goods get stored in a stack s. When
a vehicle arrives, it will transfer goods from the stack to its internal storage ρ; when the stack
is empty or the vehicle is full, it will leave again. In Figure 7-7, a visual representation can
be seen of such a node.

Master of Science Thesis M.J.A. Bartels



80 Modelling Framework for Transportation Networks

Figure 7-7: Visual representation of an input Node

Firstly, the function to determine the arrival time is modelled. This is quite easy as the arrival
time of vehicle 1 at node n is just the departure time of vehicle 1 at the previous node plus
the travel time τ1n. resulting in:

an1(k) = d1(k) + τ1n (7-33)

The size of the stack sn(k) at departure can be determined by taking the stack of the previous
cycle sn(k − 1) and looking at what was added and taken away in that cycle. dn1(k) denotes
the departure of vehicle 1 from node n. So what was added as a result of the constant input
is given by:

γ(dn1(k)− dn1(k − 1)) (7-34)

This is the time difference between the departure of the vehicle in the previous cycle and the
current cycle, multiplied by the input rate γ. To determine what was taken, the difference
between the arrival and departure of the current cycle is taken and multiplied by the loading
rate L1.

L1(dn1(k)− an1(k)) (7-35)

Combining the two yields the function for the stack as:

sn(k) = sn(k − 1) + γ(dn1(k)− dn1(k − 1))− L1(dn1(k)− an1(k)) (7-36)

A vehicle will depart either when it is full or when the stack is empty. First, let’s look at
when a vehicle leaves because it is full. Since the vehicle arriving will be empty, one can take
the arrival time and simply add the time it takes to fill up the vehicle. This time can be
obtained by dividing the capacity of the vehicle ρmax,1 by the loading speed L1, ρmax,1

L1
. Thus,

the departure of a full truck in cycle k is given by:

dfull(k) = an1(k) + ρmax,1
L1

(7-37)

To determine the departure when the stack is empty, one must consider the amount of goods
that one wants to load and the amount of goods that can be loaded in that time. The amount
of goods one loads can be found by taking the stop-time, i.e. dn1(k)−an1(k), and multiplying
it by the loading speed:

goods that where loaded = L1(dn1(k)− an1(k)) (7-38)

M.J.A. Bartels Master of Science Thesis



7-3 Transportation Network Framework 81

Then the goods that want to be loaded are goods that were left on the stack the previous
cycle, so sn(k − 1) and the goods that were added due to the input. Which is given by
γ(dn1(k)− dn1(k − 1)).

goods that want to load = s(k − 1) + γ(dn1(k)− dn1(k − 1)) (7-39)

For the stack to be emptied, the goods that can be loaded and the goods that are loaded
must be equal, so:

L1(dn1(k)− an1(k)) = s(k − 1) + γ(dn1(k)− dn1(k − 1)) (7-40)

Here we are interested in finding the departure time dn1(k), so by performing some algebraic
operations, one can find the departure time, which is given as follows:

dn1(k) = (L1 − γ)−1 · (sn(k − 1) + L1an1(k)− γdn1(k − 1)) (7-41)

Then, by combining the two found equations, one can obtain the final departure time. Since
the stack can be larger than what a vehicle can take, one must make sure that if that happens,
the vehicle will leave as soon as it is full. One can obtain this by taking the minimum of both
of the presented departure times:

dn1(k) = min
(

an1(k) + ρmax,1
L

, (L1 − γ)−1 · (sn(k − 1) + L1an1(k)− γdn1(k − 1))
)

(7-42)

Lastly, the load of the vehicle ρn1(k) must be determined. This was already presented in
(7-38) and is the difference between the departure and arrival times, multiplied by the load
speed:

ρn1(k) = L1(dn1(k)− an1(k)) (7-43)

This results in the final description of the input node, as can be found below:

an1(k) = d1(k) + τ1n

sn(k) = sn(k − 1) + γ(dn1(k)− dn1(k − 1))− L1(dn1(k)− an1(k))

dn1(k) = min
(

an1(k) + ρmax,1
L

, (L1 − γ)−1 · (sn(k − 1) + L1an1(k)− γdn1(k − 1))
)

ρn1(k) = L1(dn1(k)− an1(k))

(7-44)

It is essential to ensure that L1 is significantly larger than γ. Otherwise, the node will be
unstable. This is intuitive; if the inflow of goods exceeds the loading capacity of the vehicle,
it becomes impossible for the vehicle to transport all incoming goods, leading to unbounded
growth of the stack at the node.

Master of Science Thesis M.J.A. Bartels



82 Modelling Framework for Transportation Networks

Output node

An output node is very similar to an input node. However, in this case a vehicle will arrive
with goods and will drop off everything, after which it leaves. This could, for example, be an
end user like the last stop of a delivery driver or a supermarket that receives resupplies daily.
Such an output node has an output of goods at a rate of φ goods per unit of time. Again,
these goods are stored in the stack s until they are delivered. When a vehicle arrives, it starts
unloading and transfers all its goods to the stack. The moment the vehicle is empty, it will
leave again. In Figure 7-8, a visual representation can be seen of such a node.

Figure 7-8: Visual representation of an output node

The arrival time for the output node an1(k) is the same as for the input node. It is equal to
the departure of vehicle 1 at the node of origin d1(k) with the travel time τ1n added, resulting
in:

an1(k) = d1(k) + τ1n (7-45)

The departure time of vehicle 1 at an output node is the moment the entire load has been
unloaded. The time it takes to unload is given by the load divided by the unloading speed.
Unloading can start as soon as vehicle 1 has arrived at the output node. Thus, the departure
of vehicle 1 at an output node is given by:

dn1(k) = an1(k) + ρ1(k)
u1

(7-46)

An output node also has a stack, as the inflow of goods from a vehicle might not be able
to immediately leave the node. The size of the stack is modelled at the moment the vehicle
leaves. The stack size sn(k) can be determined by taking the stack of the previous cycle
sn(k − 1) and looking at what was added and removed. The entire vehicle load ρ1(k). What
was removed is given by:

φ(dn1(k)− dn1(k − 1)) (7-47)

This is the time difference between the departure of the vehicle in the previous cycle and the
current cycle, multiplied by the output rate φ. This results in the following equation for the
stack size:

sn(k) = sn(k − 1) + ρ1(k)− φ(dn1(k)− dn1(k − 1)) (7-48)

M.J.A. Bartels Master of Science Thesis



7-3 Transportation Network Framework 83

It is important to make sure the outflow of goods is much larger than the inflow of goods.
Otherwise, the inflow can not be outputted, which will result in an increasing stack size,
resulting in an unstable system. One must also consider that the stack can never become
negative, since it is not possible to output goods that you do not have. Therefore, we must
make sure the stack never becomes negative. This resulting in the following final stack
equation:

sn(k) = max (sn(k − 1) + ρ1(k)− φ(dn1(k)− dn1(k − 1)), 0) (7-49)

This results in the final description of the output node:

an1(k) = d1(k) + τ1n

sn(k) = max (sn(k − 1) + ρ1(k)− φ(dn1(k)− dn1(k − 1)), 0)

dn1(k) = an1(k) + ρ1(k)
u1

(7-50)

Transfer node without stack

A transfer node without a stack is a node where all goods are transferred from one vehicle to
another. This can be, for example two drivers exchanging trailers at a border, or goods going
to another type of vehicle of similar size. Since this node is connected to two other nodes,
node 1 and node 2, there are two vehicles involved. A visual representation of such a transfer
scenario is shown in Figure 7-9.

Figure 7-9: Visual representation of a transfer node without stack

The arrival time of vehicle 1 at node n an1(k) is given by the departure time at node 1 plus
the travel time τ1n. For vehicle 2, the same holds with respect to node 2. Resulting in arrival
times:

an1(k) = d1(k) + τ1n

an2(k) = d2(k) + τ2n
(7-51)

The time when a vehicle is empty is given by the time it takes to unload all the goods plus
the arrival time, which for both vehicles is given by en1(k) and en2(k):

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

(7-52)

Master of Science Thesis M.J.A. Bartels



84 Modelling Framework for Transportation Networks

A vehicle can leave once all the goods for that vehicle are loaded. Which is the total load
of the other vehicle. The time it takes to load these goods is given by dividing the load by
the loading speed. Loading can only start when both vehicles are empty. Once all goods
are loaded, the vehicle will immediately leave. Thus the departure times of vehicle 1 and 2,
dn1(k) and dn2(k) respectively, are given by:

dn1(k) = max (en1(k), en2(k)) + ρ2(k)
L1

dn2(k) = max (en1(k), en2(k)) + ρ1(k)
L2

(7-53)

Finally, the loads of the departing vehicles, ρn1(k) and ρn2(k), correspond to the loads of the
vehicles arriving from the opposite direction. In other words, each departing vehicle continues
with the load brought in by the other arriving vehicle:

ρn1(k) = ρ2(k)
ρn2(k) = ρ1(k)

(7-54)

This results in the final description for a transfer node without a stack:

an1(k) = d1(k) + τ1n

an2(k) = d2(k) + τ2n

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

dn1(k) = max (en1(k), en2(k)) + ρ2(k)
L1

dn2(k) = max (en1(k), en2(k)) + ρ1(k)
L2

ρn1(k) = ρ2(k)
ρn2(k) = ρ1(k)

(7-55)

Pass-through node

A pass-through node is a node where, depending on the design, one or two vehicles pass
through without interacting and simply continue their journey. While this type of node may
not have a direct practical application on its own, it can be useful for modelling purposes. For
instance, it allows two central nodes to be combined into a single node with four connections
instead of three. Additionally, pass-through nodes become relevant when inputs or outputs
are added, such as at customer locations where goods are picked up or dropped off while the
vehicle continues on its route. Such a node is visualised in Figure 7-10.

M.J.A. Bartels Master of Science Thesis



7-3 Transportation Network Framework 85

Figure 7-10: Visual representation of a Pass-through node

As mentioned earlier, depending on the use case, a pass-through node can either involve two
vehicles passing through independently or a single vehicle travelling back and forth in a cycle.
In this model, we consider the latter case; a single vehicle that travels between node 1 and
node 2 through the pass-through node n in each cycle.

Here, an1(k) denotes the arrival time at node n of the vehicle travelling from node 1 to node 2
during cycle k, while an2(k) denotes the arrival time at node n for the return trip from node
2 to node 1 in the same cycle. Both values are determined by the departure time from the
origin node and the corresponding travel time:

an1(k) = d1(k) + τ1n

an2(k) = d2(k) + τ2n
(7-56)

In general, when using this basic pass-through node setup, it is preferable to define travel
times directly between node 1 and node 2 and between node 2 and node 1. Splitting these
times across the pass-through node can lead to confusion, since the node only serves as a
modelling construct and not as a physical location. However, if additional actions take place
at the pass-through node, such as picking up or dropping off goods, this simplification no
longer applies because the node then represents a meaningful location in the network.

Since there are no actions performed at a pass-through node, the departure times are equal
to the arrival times:

dn1(k) = an2(k)
dn2(k) = an1(k)

(7-57)

Lastly, the loads of the vehicles are mathematically swapped. In reality, of course, the vehicle
simply continues on its journey:

ρn1(k) = ρ2(k)
ρn2(k) = ρ1(k)

(7-58)

This results in the complete description of a pass-through node:

Master of Science Thesis M.J.A. Bartels



86 Modelling Framework for Transportation Networks

an1(k) = d1(k) + τ

an2(k) = d2(k) + τ

dn1(k) = an2(k)
dn2(k) = an1(k)
ρn1(k) = ρ2(k)
ρn2(k) = ρ1(k)

(7-59)

7-3-3 Advanced Node Extensions

In this section, potential extensions to the existing node framework are discussed that go
beyond the basic node types introduced earlier. This includes considerations for more complex
node configurations, such as nodes with more than three arms, as well as the challenges and
methods involved in modelling multiple vehicles on the same route. These extensions open up
new possibilities for designing more realistic and scalable transport systems, while highlighting
some of the mathematical and modelling complexities that arise. In Appendix A, one can
find a visual representation as well as the system of equations for the following node types:

• In- and output node

• Transfer node with stack

• Transfer node with input

• Transfer node with output

• Transfer node with input and output

• Pass-through node with input

• Pass-through node with output

• Pass-through node with input and output

Of course, one can design an infinite number of nodes, thus listing them all would be impos-
sible.
If one is to increase the central node to more than 3 arms, one has one of two options.
By connecting two central nodes using a pass-through node with zero travel time. One
has essentially created a 4 armed central node. However, the division of goods per arm
becomes less trivial. The other option is to model one from scratch. For this, it is required
to know which vehicle arrives first, second, etc. Determining this using only maximisation
and minimisation is possible, but it can quickly increase in size when the number of vehicles
increases.
One option is to use the following expression to extract the kth smallest value from a finite
set X using only min and max, where X is the set of all relevant arrival times:

sk(X) = max
S⊆X

|S|=n−k+1

min(S) (7-60)

M.J.A. Bartels Master of Science Thesis



7-4 Generating the System of Equations from a Transport Graph 87

This formula returns the kth smallest element in the set X = {x1, . . . , xn} without explicit
sorting. The idea is that every subset of size n − k + 1 must contain at least one of the k
smallest elements. The smallest element in such a subset can therefore be no larger than
x(k), and the subset that just includes x(k) (but none of the larger values) will yield it as the
minimum. Taking the maximum over all minima returns x(k).

Example 7.2. (Obtain kht smallest value using only max and min operations)
Let X = {7, 4, 5, 1} and suppose we want the third smallest value (k = 3). Then we take all
subsets of size n− k + 1 = 2:

min{7, 4} = 4 min{7, 5} = 5 min{7, 1} = 1
min{4, 5} = 4 min{4, 1} = 1 min{5, 1} = 1

(7-61)

Taking the maximum over these values gives s3(X) = max{4, 5, 1, 4, 1, 1} = 5, which is indeed
the third smallest element.

Currently, all nodes are designed to support only a single vehicle operating on a given route
at a time. However in practice, one might want to allow for several vehicles to run on the
same route. This will require complete remodelling of the system and nodes depending on
the intended operational behaviour. For example, introducing minimum headways between
vehicles and extra states to differentiate between different vehicles. This might be useful when
goods are transferred to smaller vehicles, as the capacity must remain similar so as not to
run into stability issues.

Extending the node framework to accommodate additional arms or multiple vehicles intro-
duces significant complexity but also provides a pathway toward more realistic and flexible
transport network models. While simple approaches like combining nodes can increase the
number of arms, more accurate modelling requires detailed ordering of vehicle arrivals and
advanced handling of interactions such as minimum headways in the case of multi-vehicle
routes.

7-4 Generating the System of Equations from a Transport Graph

The previous section has introduced several different transport nodes and has also briefly
touched upon more complex nodes and how to further extend this framework. In this section,
an algorithm is introduced that describes how a transport network composed of various node
types can be translated into a set of equations that define the system dynamics. The network
consists of nodes stored in the database, including input nodes, output nodes, transfer nodes,
pass-through nodes, and the central node. Each node corresponds to a subsystem, and arcs
between nodes represent the movement of vehicles and goods.

It begins by assigning vehicle cycles and assembling a high-level structure of the system. This
is followed by a detailed breakdown of the algorithm used to transform the graph into system
matrices. Appendix D provides the full MATLAB implementation of this process.

Master of Science Thesis M.J.A. Bartels



88 Modelling Framework for Transportation Networks

7-4-1 Cycle Assignment and High-level System Assembly

Now that several types of node structures and subsystems have been introduced, the next
step is to construct a full transport system by connecting these components. This section
explains how the overall system model is built, how vehicle cycles are determined, and what
considerations must be made during system construction.

The algorithm allows users to define a system using a high-level input consisting of an ad-
jacency matrix and associated node properties. The adjacency matrix encodes the network
structure: it is a symmetric matrix with entries of 1 indicating the presence of an arc between
two nodes, and 0 otherwise. Since the system is undirected, an arc from node i to node j
implies an arc from j to i as well, and thus the matrix is symmetric by construction.

The node properties include information such as travel times, node types, and flow capacities.
If node types are not provided, the user will be prompted to assign them manually. The
algorithm also validates vehicle information, which is especially important when pass-through
nodes are present. In such cases, the number of effective vehicles on a route may not be
immediately obvious. The validation step ensures that the number and routing of vehicles
are consistent with the overall system structure.

Once the input is validated, the algorithm generates a complete MMPS system description.
This model can then be analysed or simulated directly.

A challenging part of system construction is determining where cycle updates occur. Each
vehicle follows a cyclic route, and its state must be updated at the right moment to indicate
the end of one cycle and the beginning of the next. When a vehicle returns to its starting
node, a new cycle begins. For standard routes without pass-through nodes, cycle update
points are relatively easy to define and add. Every node is assigned an index based on the
adjacency matrix. The rule applied is that a cycle update occurs when a vehicle arrives at
the lower-numbered node in the cycle. This ensures that each cycle is updated only once.
However, this rule must be adjusted when pass-through nodes are present in a given route. In
these routes, going to a lower-number node triggering a cycle update is no longer sufficient,
as multiple cycle updates can occur in a single route. To fix this, the cycle update is defined
to occur upon arrival at the lowest-numbered end node of the route. This approach ensures
that routes with pass-through nodes only have a single cycle update.

7-4-2 System Construction from a Transport Graph

This section outlines the process of converting a transport network into a system of equations.
Each node in the network corresponds to a subsystem, and arcs between nodes represent
vehicles. Based on the graph structure, node types and the sub-system matrices. Appendix D
Shows the full Matlab implementation.

The algorithm can be broken down into 4 main stages:

1. Graph and node inputs

2. Truck assignment

3. Parameter filling and block gathering

M.J.A. Bartels Master of Science Thesis



7-4 Generating the System of Equations from a Transport Graph 89

4. Matrix construction and cycle management

The algorithm describing this process is given below:

Algorithm 5 System construction from a transport graph
1: Input: Graph adjacency matrix, node data with types and parameters
2: Output: Complete system matrices (A, B, C, D)

3: procedure BuildTransportSystem
4: Validate input:

• Check if the Adjacency matrix is executable with the current database
• Ensure node types are correct and required parameters are present

5: Assign trucks to arcs:
• For each undirected arc (i, j), assign a unique truck
• If node j is a pass-through, treat arcs (i→ j) and (j → k) as a single truck route

6: Attach truck parameters to nodes: For each truck, assign capacity, loading, and
unloading rates

7: Fill local system templates:
• For each node, retrieve symbolic matrices from the template database (e.g., A, B,

C, D, Ek, F , H, K, L)
• Replace symbolic entries with node and truck parameters

8: Assemble global matrices:
• Build block-diagonal matrices Abig, Bbig, Cbig, Dbig, Fbig, Hbig

9: Construct communication matrix E:
• For each connection between nodes, place the corresponding Ek block in E such that

it aligns the connected arms
10: Determine cycle update rules via K and L:

• For pass-through connections, update the cycle at the lowest-numbered endpoint
• For regular nodes, place KL blocks in K or L based on the direction (e.g., toward

the lower-numbered node)
11: Concatenate final system:

Afull =
[
Abig 0

0 Fbig

]
, Bfull =

[
Bbig 0

0 Hbig

]
, Cfull =

[
Cbig 0
K 0

]
, Dfull =

[
Dbig E

L 0

]

12: end procedure

To illustrate how the algorithm operates in practice, the following example shows the con-
struction of a system based on a simple transport network. This example highlights how the
proposed individual building blocks are concatenated into a complete symbolic system.

Example 7.3. (3 node system example using Algorithm 5)
Consider a transportation system of 3 nodes with 1 input node with an inflow of γ, 1 transfer

Master of Science Thesis M.J.A. Bartels



90 Modelling Framework for Transportation Networks

Figure 7-11: Graphical representation of the example system with 3 nodes

node without a stack and and 1 output node with an outflow of φ. This system can be
visualised, as can be seen in Figure 7-11. It can also be represented as an adjacency graph as
such:

G =

0 1 0
1 0 1
0 1 0

 (7-62)

When using Algorithm 5, G is given as a first input. Then the node information is gathered,
where the user in this example inputs the following parameters:

• Node 1: type = input node, Inflow rate = 5, travel time to node = 10

• Node 2: type = transfer node without stack, travel time to node from connection 1 =
10, travel time to node from connection 2 = 8

• Node 3: type = output node, outflow rate = 5, travel time to node = 8

After which, the number of vehicles will be calculated, which in this example is 2. The next
step requires input of the vehicle parameters, which are, for example given as follows:

• Vehicle 1: capacity = 50, loading rate = 40, unloading rate = 25

• Vehicle 2: capacity = 50, loading rate = 35, unloading rate = 30

This is then used by Algorithm 5 to give system matrices. However, they are too large to
show here, so they have been moved to Appendix B. The matrices are given by Afull ∈ R24×27

ε ,
Bfull ∈ R27×28

⊤ , Cfull, Dfull ∈ R28×24. These are verified to be the correct matrices.

M.J.A. Bartels Master of Science Thesis



Chapter 8

Case Study: Transportation System

In this chapter, a transportation system of 4 nodes and 3 trucks is modelled, simulated and
analysed. In this chapter, all concepts, techniques and new insights of the previous chapter,
such as periodicity, the MILP algorithm and the modelling nodes are applied. Since the
URS currently is the only working application of MMPS systems, this chapter introduces a
transportation system modelled as an MMPS system. Section 8-1 introduces the basis of
the system, with some constraints and assumptions. Section 8-2 derives the entire model,
while explaining why specific choices are made. Section 8-3 finishes the chapter, where the
transportation model is used for analysis and simulation. First, the system parameters are
chosen, after which the growth rate and fixed points of the system are identified. The system
is simulated, and the stability of the system is investigated, including the calculation of the
maximal invariant set.

8-1 Introduction to a 4-Node Transportation System

This section introduces a 4-node transportation system served by three trucks. The nodes
are connected as can be seen in Figure 8-1. Truck 1 drives between nodes 1 and 4, truck 2
drives between nodes 2 and 4, and truck 3 drives between nodes 3 and 4. There is an inflow
of goods at node 1 and an outflow of goods at nodes 2 and 3. The goods do not have a
fixed destination, so they can be brought to either node 2 or node 3. At node 4, goods are
transferred from truck 1 to either truck 2 or truck 3, such that when truck 1 leaves, all the
goods have been transferred to truck 2 and 3. When a truck arrives full, it will leave again
once it is empty. When a truck arrives empty, it will either leave when it is full or when there
are no more goods to take. At nodes 1, 2 and 3, there are storage stacks available. This
system will be modelled as a DE MMPS system, where the state x(k) denotes the time at
which the kth event has occurred. Notice that this is different from the URS in the case study
in [5], where k denotes the train number. For this system to work, it is important that the
capacity of truck 1 is not larger than the capacity of trucks 2 and 3 combined. Otherwise,
truck 1 will never leave node 4, resulting in a deadlock.
Several system parameters are defined below:

Master of Science Thesis M.J.A. Bartels



92 Case Study: Transportation System

Figure 8-1: Graphical representation of the 4-node 3-truck system

• The capacity of truck i is given by Ci for i ∈ {1, 2, 3}

• The capacity of truck 1 is less than or equal the capacity of trucks 2 and 3 combined.
i.e. C1 ≤ C2 + C3

• The inflow of goods per unit of time at node 1 is given by γ1

• The outflow of goods per unit of time at nodes 2 and 3 is given by φ2 and φ3 respectively

• The travel time from node j to node k is denoted by τjk

• The unloading and loading speeds of truck i are given by ui and Li respectively

On top of that, some assumptions must be made before modelling this system, which are;

• It is assumed that L1 > γ1

• It is assumed that u2, u3 > γ1

• There is no storage stack at node 4, so the transfer of goods can only start once truck
1 and truck 2 or 3 have arrived.

It is assumed that it is unknown what the capacities of the trucks are; the same holds for the
loading and unloading speeds. This introduces an extra layer of complexity compared to the
models from Chapter 7, as it is not known a priori whether the loading or unloading speed is
the limiting factor during goods transfer. This will drastically increase the size of the system;
however, it allows full flexibility in adjusting all parameters.

At node 4, there are three trucks that will arrive at some point. The arrival time of truck 1
coming from node 1 arriving at node 4 is given by a41(k). The arrival time of truck 2 coming
from node 2 arriving at node 4 is given by a42(k). Lastly, the arrival time of truck 3 coming
from node 3 arriving at node 4 is given by a43(k). The arrival time of truck 1 coming from

M.J.A. Bartels Master of Science Thesis



8-1 Introduction to a 4-Node Transportation System 93

node 4, going back to node 1, is given by a1(k). For the other two trucks, the same holds.
The arrival time of truck 2 coming from node 4 going back to node 2 is given by a2(k), and
the arrival time of truck 3 coming from node 4 going back to node 3 is given by a3(k).

For the departure times, the same notation is used. So the departure d1(k) represents the
departure from node 1 towards node 4, and d41(k) represents the departure from node 4
towards node 1. Similarly, d2(k) and d42(k) correspond to departures between nodes 2 and
4, and d3(k) and d43(k) correspond to those between nodes 3 and 4.

The number of goods in the truck at departure is tracked. The number of goods in truck 1 at
departure at node 1 is given by ρ1(k) and the number of goods in trucks 2 and 3 at departure
at node 4 is given by ρ42,real(k) and ρ43,real(k) respectively. At any other departure, the
trucks are empty, so these will not need to be tracked. During the modelling and simulation,
it was discovered that in some very specific cases, the calculated truck loads were off, which is
why in those cases the calculated truck load ρ42,calc(k) and ρ43,calc(k) needed to be repaired.
Depending on system properties such as loading speeds and capacities, the system can be in
one of three modes. This means that this system is technically a switching MMPS system,
and using Section 7-2, the system will be modelled as a single MMPS system. This means
that there are three extra states that indicate which mode the system is currently operating
in. These states are c1(k), c2(k) and c3(k), where ci(k) indicates whether mode i is active or
not. In total, the system will have 51 states: 12 time states, 6 quantity states, 3 mode states
and 30 supporting states. These supporting states could have all been integrated into each
proper state. however, for modelling purposes, it was chosen not to do so.

Before modelling the entire system, it is helpful to define some auxiliary states that will
simplify later formulations. These auxiliary states are part of the supporting states and will
occur so often that it is good to introduce them first. Specifically, the following are introduced:

• Lf (k): the time at which the first truck can start loading in cycle k.

• Ls(k): the time at which the second truck can start loading in cycle k.

• af (k): the arrival time of the first truck that will receive goods in cycle k.

• as(k): the arrival time of the second truck that will receive goods in cycle k.

These additional states serve as a foundation for modelling the interactions between arrivals
and loading processes later in the system dynamics and are given as follows;

af (k) = min(a42(k), a43(k))
as(k) = max(a42(k), a43(k))
Lf (k) = max(a41(k), min(a42(k), a43(k)))
Ls(k) = max(a41(k), a42(k), a43(k))

(8-1)

Notice that Lf (k) and af (k) and Ls(k), and as(k) will be the same if truck 1 arrives first;
however will be different if truck 2 and or 3 arrives before truck 1.

Master of Science Thesis M.J.A. Bartels



94 Case Study: Transportation System

8-2 Mathematical Derivation of the 4-Node Transportation Sys-
tem

In this section, the mathematical derivation of the 4-node transportation system is conducted.
The section starts with deriving the equations for all the time states and derives a method
for determining the different operating modes. After the time state, the quantity states are
derived, after which the system is validated on time invariance and solvability.
The arrival time of a truck is given by the departure time at the previous node plus the travel
time. One cycle of the system consists of all trucks travelling from a node and returning to
their starting node. Since the trucks start at nodes 1,2, and 3, it means that their route also
ends here, and a cycle update must take place. Thus, the arrival times at node 1, 2 and 3 are
given by:

a1(k) = d41(k − 1) + τ41

a2(k) = d42(k − 1) + τ42

a3(k) = d43(k − 1) + τ43

(8-2)

While the arrival times of the trucks at node 4 are given by:
a41(k) = d1(k) + τ14

a42(k) = d2(k) + τ24

a43(k) = d3(k) + τ34

(8-3)

Next, the departure times of all trucks can be modelled. This is very challenging and complex
as the system has three different modes at node 4, which depend on the arrival times of the
trucks at node 4, as well as the capacities and loading and unloading speeds.

• Mode 1: Both truck 2 and truck 3 arrive and start loading, but partway through, the
available goods run out. Neither truck is fully loaded, but since there is nothing left to
load, they both leave at the same time, so both are partially filled.

• Mode 2: One truck arrives after the other, but thanks to either a faster loading speed
or smaller capacity, it finishes loading first and leaves before the truck that got there
earlier.

• Mode 3: The first truck to arrive gets fully loaded and leaves. The second truck,
arriving later, only gets a partial load because there are not enough goods left.

Figure 8-2 provides a visual breakdown of the conditions that lead to each of the three modes.

8-2-1 Determining the Active Mode

To model this behaviour correctly, Proposition 5 is used. To distinguish between the different
modes of operation, mode state variables c1(k), c2(k), and c3(k) are introduced. Each ci(k)
corresponds to mode i and is defined such that:

• ci(k) = 0 if mode i is active at time step k,

• ci(k) < 0 if mode i is not active at time step k.

This section focuses on defining the conditions under which each mode becomes active.

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 95

Figure 8-2: Graphical representation of the different modes of the transportation system

Characterising Activation of Mode 1

The goal is to derive an MMPS function for c1(k):

c1(k) = f(x(k − 1), x(k)) (8-4)
where f is an MMPS function such that:

c1(k) = 0 if mode 1 is active
c1(k) < 0 if mode 1 is not active

(8-5)

In order to achieve this, the function is split into several parts to make modelling and deriva-
tion easier. Mode 1 is active when all goods are placed in a truck without one of the two
trucks becoming full. So it must be checked whether this is possible. To do so, first look at
how many goods have been loaded between the time the first truck starts loading and when
the second truck starts loading. Since it is not known in advance whether truck 1’s unloading
speed or the loading speed of the first arriving truck will be the bottleneck, the minimum of
the two must be taken as goods cannot be loaded before they are unloaded. So the number
of goods that have been loaded is given by:

(Ls(k)− Lf (k)) ·min(lf , u1) (8-6)

Where lf refers to the load speed of the first arriving truck. Then the goods that are still left
to be loaded are given by:

ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1) (8-7)

Then it must be checked that loading these goods in both trucks will not make any of them
full. Since now two trucks are loading, the time it takes to load all present goods is less than
when only 1 truck is loading. So the loading speed is given by:

min(L1 + L2, L1 + u1, L2 + u1, 2u1) (8-8)

So the time all goods have been loaded in mode 1 is given by:
ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k) (8-9)

Master of Science Thesis M.J.A. Bartels



96 Case Study: Transportation System

It must be checked that both truck 2 and truck 3 are not filled before this moment is reached,
as then the system will not be in this mode. The time it takes to fill truck 2 and truck 3
completely are given by:

Lf (k) + Cf

min(lf , u1)

Ls(k) + Cs

min(ls, u1)

(8-10)

Where Cf is the capacity of the first truck to be filled, Cs is the capacity of the second truck
to start loading, and ls is the load speed of the second truck to start loading. Notice that
Cf and Cs are either C2 or C3 and not new capacities. Similarly, ls and lf are also already
established loading speeds of either L2 or L3. It all depends on which truck arrives first and
which arrives second.

Now to check whether no truck would be filled to capacity, the time it takes to load all goods
in mode 1 given by (8-9) must be less than the time it takes to fill either one of the truck
completely given by (8-10) This means that the following inequality constraints must hold
when mode 1 is active:

ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k) ≤ Lf (k) + Cf

min(lf , u1)
ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1)
min(L1 + L2, L3 + u1, L2 + u1, , 2u1) + Ls(k) ≤ Ls(k) + Cs

min(ls, u1)

(8-11)

It must also be checked that the first arriving truck has not taken so much that the second
truck will not receive anything, which would mean the system is in mode 3. This is done by
checking whether the departure time of the last truck to start loading, in the case where the
last truck receives all remaining goods, is earlier than when both trucks load simultaneously.
The time when the second arriving truck is done loading the remainder is given by:

ρ1(k)− Cf

min(ls, u1) + Ls(k) (8-12)

Then the finishing time of the simultaneous loading is given by:

ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k) (8-13)

(8-13) must be larger than (8-12) since then the time when both trucks are done loading
simultaneously is later than when the first arrival takes its capacity and the second takes the
remainder, resulting in the following inequality condition:

ρ1(k)− (Ls(k)− Lf (k)) ·min(lf , u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k) ≥ ρ1(k)− Cf

min(ls, u1) + Ls(k) (8-14)

These three conditions together, found in (8-11) and (8-14), are all true when mode 1 is active,
but at least one is not when mode 1 is not active. To translate this into an MMPS function,
the conditions are divided into two: one where truck 2 starts loading first and one where
truck 3 starts loading first. This way, the variables Cf , Cs, lf and ls are known. Only the
case where truck 2 arrives first will be discussed in detail, as the alternative case is analogous.

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 97

Thus now Cf = C2, Cs = C3, lf = L2 and ls = L3. Filling in Cf , Cs, lf , ls and rearranging
(8-11) and (8-14) to the form:

f1(k) = ρ1(k)− (Ls(k)− Lf (k)) ·min(L2, u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k)− Ls(k)− ρ1(k)− C2

L3

f2(k) = −ρ1(k)− (Ls(k)− Lf (k)) ·min(L2, u1)
min(L1 + L2, lf + u1, 2u1) − Ls(k) + Lf (k) + C2

L2

f3(k) = −ρ1(k)− (Ls(k)− Lf (k)) ·min(L2, u1)
min(L1 + L2, lf + u1, 2u1) − Ls(k) + Ls(k) + C3

L3

(8-15)

This way, when f1(k), f2(k), and f3(k) are all larger than zero, mode 1 should be active,
while when one is less than zero, mode 1 should not be active.
Then, by taking the minimum of f1(k), f2(k) and f3(k) together with af (k)− a42(k), we end
up with a state that is zero when mode 1 is active and when truck 2 arrives first. Call this
state c1,t2f where t2f stands for truck 2 first. c1,t2f is then given by:

c1,t2f = min(f1(k) · 105, f2(k) · 105, f3(k) · 105, af (k)− a42(k)) (8-16)

Notice that af (k)−a42(k) is always less than zero unless truck 2 arrives first, then it is exactly
zero. Adding this makes sure that c1,t2f can only ever be equal to zero when truck 2 arrives
first and is negative otherwise. Also, notice that f1(k), f2(k) and f3(k) have been multiplied
with 105. This is to make the c1,t2f function steep such that when mode 1 is not active, at
least one if f1(k), f2(k) and f3(k) is negative, thus by multiplying with 105 the entire c1,t2f
function quickly become very negative, which is useful in obtaining the correct departure
time.
The condition when mode 1 is active and truck 3 arrives first is denoted by c1,t3f is given by :

c1,t3f = min(f4(k) · 105, f5(k) · 105, f6(k) · 105, af (k)− a43(k)) (8-17)

With f4(k), f5(k), f6(k);

f4(k) = ρ1(k)− (Ls(k)− Lf (k)) ·min(L3, u1)
min(L1 + L2, L3 + u1, L2 + u1, 2u1) + Ls(k)− Ls(k)− ρ1(k)− C3

L2

f5(k) = −ρ1(k)− (Ls(k)− Lf (k)) ·min(L3, u1)
min(L1 + L2, lf + u1, 2u1) − Ls(k) + Lf (k) + C3

L3

f6(k) = −ρ1(k)− (Ls(k)− Lf (k)) ·min(L3, u1)
min(L1 + L2, lf + u1, 2u1) − Ls(k) + Ls(k) + C2

L2

(8-18)

If either c1,t2f or c1,t3f is equal to zero, mode 1 is active; the other one will then by definition
be less than zero. By taking the maximum, it makes sure that if one is active, it will be
detected. Resulting in condition for c1(k):

c1(k) = max
(

min
(
f1(k) · 105, f2(k) · 105, f3(k) · 105, (af (k)− a42(k)

)
· 108),

min
(
f4(k) · 105, f5(k) · 105, f6(k) · 105, (af (k)− a43(k)

)
· 108)) (8-19)

Note that the condition (af (k)− a4i(k)) has been scaled by a factor of 108. This is again to
ensure that c1(k) is negative when mode 1 is not active.

Master of Science Thesis M.J.A. Bartels



98 Case Study: Transportation System

Characterising Activation of Mode 2

It is easier to derive the condition for mode 2. This mode is active when the truck that starts
loading second is fully loaded before the first truck has finished loading the rest of the goods.
The goal is to derive an MMPS function for c2(k):

c2(k) = f(x(k − 1), x(k)) (8-20)

where f is an MMPS function such that:

c2(k) = 0 if mode 2 is active
c2(k) < 0 if mode 2 is not active

(8-21)

The time when the second truck that starts loading, is full is given by the time at which
loading starts plus the capacity of that truck divided by the loading speed, which is given by:

Cs

min(ls, u1) + Ls(k) (8-22)

The time it takes the other truck is given by the remaining goods ρ1(k)− Cs divided by the
loading speed of that truck plus the time when loading started. This is given by:

Lf (k) + ρ1(k)− Cs

min(lf , u1) (8-23)

Thus, when the following holds, mode 2 should be active:

Cs

min(ls, u1) + Ls(k) ≤ Lf (k) + ρ1(k)− Cs

min(lf , u1) (8-24)

In the same way as for c1(k), this condition is divided into two separate parts, one where
truck 2 starts loading first and one where truck 3 starts loading first. This way, the variables
Cf , Cs, lf and ls are known. Only the case for truck 2 arriving first will be discussed in detail,
since the other case is very similar. So now Cf = C2, Cs = C3, lf = L2 and ls = L3. Rewrite
(8-24) into the form f7(k) ≥ 0 as such:

f7(k) = Lf (k) + ρ1(k)− C3
min(L2, u1) −

C3
min(L3, u1) − Ls(k) ≥ 0 (8-25)

Thus, when f7(k) is larger than zero, mode 2 should be active, and when f7(k) is less than
zero, mode 2 will not be active. In the same way as for c1(k), one can construct c2,t2f by taking
the minimum of f7(k) and af (k)− a42(k) while multiplying with 105 and 108 respectively to
steepen the slope of the condition as such:

c2,t2f = min(f7(k) · 105, (af (k)− a42(k)) · 108) (8-26)

For the case where truck 3 is loading first, the same thing can be done as such:

f8(k) = Lf (k) + ρ1(k)− C2
min(L3, u1) −

C2
min(L2, u1) − Ls(k) ≥ 0 (8-27)

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 99

c2,t3f = min(f8(k) · 105, (af (k)− a43(k)) · 108) (8-28)

If either c2,t2f or c2,t3f is equal to zero, mode 2 is active, and the other one will then by
definition be less than zero, so taking the maximum makes sure that if one is active, it is
detected. Resulting in condition for c2(k):

c2(k) = max
(

min
(
f7(k) · 105, (af (k)− a42(k)

)
· 108),

min
(
f8(k) · 105, (af (k)− a43(k)

)
· 108)) (8-29)

Characterising Activation of Mode 3

Mode 3 describes a situation where the first truck to begin loading is filled to its full capacity,
while the second truck takes the remaining goods and leaves partially filled. The goal is to
derive an MMPS function for c3(k):

c3(k) = f(x(k − 1), x(k)) (8-30)

where f is an MMPS function such that:

c3(k) = 0 if mode 3 is active
c3(k) < 0 if mode 3 is not active

(8-31)

Mode 3 is active when the first truck that starts loading is filled to its capacity, and the second
truck that starts loading takes all the remaining goods. Thus, the activation condition for
mode 3 looks very similar to that of mode 2, however, Lf (k) and Ls(k) have been switched,
as the truck that starts loading first must take its full capacity, and the truck that starts
loading second must take the remainder. This condition is given by:

Lf (k) + Cf (k)
min(u1, lf ) ≤ Ls(k) + ρ1(k)− Cf (k)

min(u1, ls) (8-32)

In the same way as for c1(k) and c2(k), this condition is divided into two separate scenarios:
one where truck 2 starts loading first, and one where truck 3 starts loading first. This way,
the variables Cf , Cs, lf and ls are known. Only the case for truck 2 arriving first will be
discussed in detail since the other case is very similar. So now Cf = C2, Cs = C3, lf = L2
and ls = L3. Rewrite (8-24) into the form f9(k) ≥ 0 as such:

f9(k) = Ls(k) + ρ1(k)− C3
min(L2, u1) −

C3
min(L3, u1) − Lf (k) ≥ 0 (8-33)

Therefore, when f9(k) is larger than zero, mode 3 should be active, and when f9(k) is less than
zero, mode 3 should not be active. In the same way as for c1(k) and c2(k) can one construct
c3,t2f by taking the minimum of f9(k) and af (k)−a42(k), while multiplying with 105 and 108,
respectively to steepen the slope of the condition, yielding the following condition:

c3,t2f = min(f9(k) · 105, (af (k)− a43(k)) · 108) (8-34)

Master of Science Thesis M.J.A. Bartels



100 Case Study: Transportation System

For truck 3 loading first, the same thing can be done, yielding the following condition:

f10(k) = Ls(k) + ρ1(k)− C2
min(L3, u1) −

C2
min(L2, u1) − Lf (k) ≥ 0 (8-35)

With
c3,t3f = min(f10(k) · 105, (af (k)− a42(k)) · 108) (8-36)

If either c3,t2f or c3,t3f is equal to zero, mode 3 is active, and the other one will then by
definition be less than zero. Thus, taking the maximum makes sure that if one is active, it is
detected. Resulting in condition for c3(k):

c3(k) = max
(

min
(
f9(k) · 105, (af (k)− a42(k)

)
· 108),

min
(
f10(k) · 105, (af (k)− a43(k)

)
· 108)) (8-37)

In the special case that both trucks 2 and 3 arrive at the same time at node 4 and one of
the trucks will be filled completely, something that can happen when the capacities of truck
2 and 3 are far apart, the system activates both mode 2 and mode 3. This is not correct and
will be corrected with the use of a delta function. This delta function is used to assign the
truck with the largest capacity to be virtually the first to arrive, which is then used to correct
this error. Since a true Dirac delta function cannot be constructed as an MMPS function, an
approximation is taken, which looks like a steep triangle function, which is given by:

δ(k) = max
(
0, min(1− (af (k)− as(k)) · 108, 1 + (af (k)− as(k)) · 108)

)
(8-38)

This means that the delta function is equal to one when both trucks 2 and 3 arrive at node
4 at the same time. It is zero everywhere else, except when the arrival times are nearly
identical; within a range of 10−8. Then the delta function returns something between zero
and one. This delta function, together with the difference in capacities, is integrated into the
condition for mode 3 as follows:

c3(k) = max
(

min
(
f9(k) · 105, f9(k) · 105 + (C2 − C3) · δ(k) · 108, (af (k)− a42(k)

)
· 108),

min
(
f10(k) · 105, f10(k) · 105 + (C3 − C2) · δ(k) · 108, (af (k)− a43(k)

)
· 108))

(8-39)

In the case of simultaneous arrival, the goal is to have mode 2 active with the truck with the
largest capacity marked as the first to start loading. This way, the truck with the smaller
capacity will leave first and be full, while the other truck leaves last with the remaining goods,
which also makes logical sense. However, in this case, mode 3 will have a false positive where
the f9 or f10 will detect the system to be in mode 3. This is the f function corresponding
to the truck with the largest capacity arriving second. The term (Ci − Cj) · δ(k) · 108 makes
sure that when this happens, the false positive is suppressed, and mode 3 is deactivated. The
other way around, (Cj − Ci) · δ(k) · 108 is always positive, thus it never influences the other
sub-conditions.

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 101

8-2-2 Deriving Truck Departure Times

With the three operating modes clearly defined, focus can be shifted to determining the
corresponding departure times of truck 2 and truck 3 at node 4. These departure times vary
depending on which mode is active, as each mode leads to different loading dynamics and
completion conditions. For each mode, a specific expression is derived that captures how long
the trucks spend at the node before continuing their journey.

Departure Time in Mode 1

In mode 1, both truck 2 and truck 3 are partially loaded and leave the node at the same
time, since loading stops when the available goods run out. Denote their shared departure
time at node 4 by d4.1(k). This departure time is given by the time at which the last truck
starts loading, plus the time it takes to load all goods that are still left. The departure time
depends on which truck starts loading first and which starts loading second. This is similar to
the mode detection, where the arrival and loading times also influence how the active mode
is detected. First, the general departure time will be given, then all possibilities based on
the limiting loading/unloading speed will be given. The goods that have already been loaded
onto the first truck before the second truck starts loading is given by:

(Ls(k)− Lf (k)) · lf (8-40)

This means that the goods that are still left are given by:

ρ1(k)− (Ls(k)− Lf (k)) · lf (8-41)

Dividing this by the total loading speed of both trucks gives the total loading time. Then,
adding this to the start time of when the second truck starts loading gives us the departure
time:

ρ1(k)− (Ls(k)− Lf (k)) · lf
total load speed + Ls(k) (8-42)

There are different possible scenarios of combinations of loading speeds by which the departure
time can be calculated. The departure time is taken as the maximum of all 7 possible
combinations, which are given in the table below:

lf total load speed
L2 L2 + L3

 Truck 2 arriving firstu1 u1 + L3
L2 L2 + u1
u1 2 · u1 Truck 2 or 3 arriving first
L3 L2 + L3

 Truck 3 arriving firstL3 u1 + L3
u1 L2 + u1

Table 8-1: All 7 different loading and unloading combinations in mode 1

Master of Science Thesis M.J.A. Bartels



102 Case Study: Transportation System

To ensure only options with the correct truck order are considered, (af − a4i(k)) · 108 is used
again. This steep term makes sure that all scenarios where the ordering of the trucks is not
in line with the true ordering are pushed far down, making sure the maximum is never taken
with a departure time with wrong ordering. This gives the final departure time for mode 1:

d4.1(k) = max
(ρ1(k)− (Ls(k)− Lf (k)) · L2

L2 + L3
+ Ls(k) + (af (k)− a42(k)) · 1e8,

ρ1(k)− (Ls(k)− Lf (k)) · u1
u1 + L3

+ Ls(k) + (af (k)− a42(k)) · 1e8,

ρ1(k)− (Ls(k)− Lf (k)) · L2
L2 + u1

+ Ls(k) + (af (k)− a42(k)) · 1e8,

ρ1(k)− (Ls(k)− Lf (k)) · u1
2u1

+ Ls(k),

ρ1(k)− (Ls(k)− Lf (k)) · L3
L2 + L3

+ Ls(k) + (af (k)− a43(k)) · 1e8,

ρ1(k)− (Ls(k)− Lf (k)) · L3
u1 + L3

+ Ls(k) + (af (k)− a43(k)) · 1e8,

ρ1(k)− (Ls(k)− Lf (k)) · u1
L2 + u1

+ Ls(k) + (af (k)− a43(k)) · 1e8
)

(8-43)

Departure Time in Mode 2

In mode 2, the departure of trucks 2 and 3 depends on which truck is the first that start
loading or the second that start loading. So the departure time for truck 2 in mode 2 at node
4 (d422(k)) is different from the departure time for truck 3 in mode 2 at node 4 (d432(k)).
However, the derivation is the same; the variables are changed to align with truck 3 instead of
truck 2. That is why only the derivation for truck 2 will be done, after which both departure
times are presented.

If truck 2 is the first to start loading, it takes all the goods that truck 3 does not take. These
goods are ρ1(k) − C3. Then, dividing this by the loading speed and adding the time when
loading starts gives us the time when truck 2 should leave:

Lf (k) + ρ1(k)− C3
min(L2, u1) (8-44)

When truck 2 is the second to start loading, it will be full at departure. It starts loading at
Ls(k) and will leave once the time has passed to fill to capacity. Therefore, this departure
time is given by:

Ls(k) + C2
min(L2, u1) (8-45)

To determine whether truck 2 starts loading first or second, the terms (a42(k)−as(k))·108 and
(af (k)−a42(k)) ·108 are added to the corresponding departure times, and the maximum over
all options is taken to obtain the correct departure time. This again pushed the departure
time corresponding to the wrong arrival order down, making sure only the departure options

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 103

of the correct arrival order are considered, leading to:

d422(k) = max
(
Ls(k) + C2

u1
+ (a42(k)− as(k)) · 108

Ls(k) + C2
L2

+ (a42(k)− as(k)) · 108,

Lf (k) + ρ1(k)− C3
u1

+ (af (k)− a42(k)) · 108

Lf (k) + ρ1(k)− C3
L2

+ (af (k)− a42(k)) · 108
)

(8-46)

In the case of simultaneous arrival, this poses a problem. In this case both (a42(k)−as(k))·108

and (af (k)−a42(k))·108 are equal to zero and also for truck 3, it means that the max operator
takes the departure time of a full truck for both of them. This is, of course, not what it desired.
So the delta function of (8-38) can be used in the same way again by making sure the departure
time of the truck with the largest capacity becomes infeasible. This is integrated into the
departure time as follows:

d422(k) = max
(

min(Ls(k) + C2
u1

+ (a42(k)− as(k)) · 1e10,

Ls(k) + C2
u1

+ (a42(k)− as(k)) · 108 + (C3 − C2) · 108 · δ(k)),

min(Ls(k) + C2
L2

+ (a42(k)− as(k)) · 108,

Ls(k) + C2
L2

+ (a42(k)− as(k)) · 108 + (C3 − C2) · 1e8 · δ(k)),

Lf (k) + ρ1(k)− C3
u1

+ (af (k)− a42(k)) · 108

Lf (k) + ρ1(k)− C3
L2

+ (af (k)− a42(k)) · 108
)

(8-47)

The departure time of truck 3 in mode 2 is given by:

d432(k) = max
(

min
(
Ls(k) + C3

u1
+ (a43(k)− as(k)) · 108,

Ls(k) + C3
u1

+ (a43(k)− as(k)) · 108 + (C2 − C3) · 108 · δ(k)
)
,

min
(
Ls(k) + C3

L3
+ (a43(k)− as(k)) · 108,

Ls(k) + C3
L3

+ (a43(k)− as(k)) · 108 + (C2 − C3) · 108 · δ(k)
)
,

Lf (k) + ρ1(k)− C2
u1

+ (af (k)− a43(k)) · 108

Lf (k) + ρ1(k)− C2
L3

+ (af (k)− a43(k)) · 108
)

(8-48)

Master of Science Thesis M.J.A. Bartels



104 Case Study: Transportation System

Departure Time in Mode 3

Just like in mode 2, in mode 3, the departure times of the first and second arriving trucks
are different. Thus, the departure time for truck 2 in mode 3 at node 4, d423(k), is different
from the departure time for truck 3 in mode 3 at node 4, d433(k). However, the derivation is
exactly the same; the variables are changed to align with truck 3 instead of truck 2. That is
why only the derivation for truck 2 will be done, after which both will be fully presented.

If truck 2 starts loading first, it will either take all the goods that truck 1 has brought if this
is less than its capacity, or it will be filled to capacity. So this departure time is given by:

Lf (k) + min(ρ1(k), C2)
min(u1, L2) (8-49)

When truck 2 starts loading last, it will take all the remaining goods, if any. If there are no
remaining goods, truck 2 will immediately leave again. In that scenario, the departure time is
given by the start loading time Ls(k). Otherwise, it will take the remaining goods ρ1(k)−C3,
divide it by the loading speed and add the start loading time to get the departure time as
such:

Ls(k) + ρ1(k)− C3
min(L2, u1) (8-50)

To determine whether truck 2 starts loading first or second (a42(k)−as(k)) ·108 and (af (k)−
a42(k)) · 108 are used by adding them to the corresponding departure time and taking the
max over all options will give us the correct departure time. This again pushed the departure
time corresponding to the wrong arrival order down, making sure only the departure options
of the correct arrival order are considered, leading to:

d423(k) = max
(

min
(
Lf (k) + C2

L2
+ (af (k)− a42(k)) · 1e10,

Lf (k) + ρ1(k)
L2

+ (af (k)− a42(k)) · 1e10
)
,

min
(
Lf (k) + C2

u1
+ (af (k)− a42(k)) · 1e10,

Lf (k) + ρ1(k)
u1

+ (af (k)− a42(k)) · 1e10
)
,

Ls(k) + (a42(k)− as(k)) · 1e10,

Ls(k) + ρ1(k)− C3
L2

+ (a42(k)− as(k)) · 1e10,

Ls(k) + ρ1(k)− C3
u1

+ (a42(k)− as(k)) · 1e10
)

(8-51)

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 105

The departure time of truck 3 in mode 3 is given by:

d433(k) = max
(

min
(
Lf (k) + C3

L3
+ (af (k)− a43(k)) · 1e10,

Lf (k) + ρ1(k)
L3

+ (af (k)− a43(k)) · 1e10
)
,

min
(
Lf (k) + C3

u1
+ (af (k)− a43(k)) · 1e10,

Lf (k) + ρ1(k)
u1

+ (af (k)− a43(k)) · 1e10
)
,

Ls(k) + (a43(k)− as(k)) · 1e10,

Ls(k) + ρ1(k)− C2
L3

+ (a43(k)− as(k)) · 1e10,

Ls(k) + ρ1(k)− C2
u1

+ (a43(k)− as(k)) · 1e10
)

(8-52)

Computation of Remaining Departure Times

Now that the mode-dependent behaviours are clearly defined, the final expressions for the
departure times of all trucks can be derived. Some of these departure times depend on which
mode is active and must be formulated in a way that selects the correct value for each case.

Using the state variables corresponding to each mode c1(k), c2(k), and c3(k), which are zero
when their corresponding mode is active, and negative otherwise, using the maximisation
operation, one can naturally select the correct departure time. This approach allows all
possible mode-specific departure times to be encoded in a single equation for each truck.

The resulting expressions cover:

• Truck 2 and truck 3 departing from node 4 under different modes,

• Truck 1 departing from node 4 when all goods are removed,

• Truck 1 departing from node 1 based on either reaching full capacity or exhausting the
available goods,

• Trucks 2 and 3 departing from nodes 2 and 3, respectively, once unloaded.

Master of Science Thesis M.J.A. Bartels



106 Case Study: Transportation System

From c1(k), c2(k), c3(k), it is known that they are negative when that mode is not active and
zero when that mode is active. By adding them to the different departure time options and
taking the maximum, one ends up with the correct departure time given below:

d42(k) = max
(
d4.1(k) + c1(k),

d422(k) + c2(k),

d423(k) + c3(k)
)

d43(k) = max
(
d4.1(k) + c1(k),

d432(k) + c2(k),

d433(k) + c3(k)
)

(8-53)

Truck 1 leaves node 1 when all goods have been removed, and so it leaves together with the
departure of the last truck, which is either truck 2 or truck 3. The departure time for truck
1 at node 4 is given by:

d41(k) = max(d42(k), d43(k)) (8-54)

This choice can introduce a small modelling error in cases where truck 1 does not deliver
enough goods to fill even the first arriving outbound truck. In those situations, truck 1 still
waits for the second truck to arrive before leaving, even if there is nothing to transfer between
them.

In reality, this would not happen. If truck 1 cannot bring enough goods to load both outbound
trucks meaningfully, there is no reason to send the second one at all. That kind of inefficient
behaviour would be avoided in any practical setup.

By choosing appropriate system parameters, it is possible to prevent this edge case from
happening in the model too, keeping the simulated behaviour in line with how things would
actually work.

For the departure of truck 1 at node 1, there are 2 options: the truck will depart when there
are no more goods in the stack, or when the truck is full.

When a truck is filled, the time it takes will be equal to C1
L1

. This is added to the arrival time,
resulting in the departure time of the full truck. To determine the departure time of truck 1
when all goods have been taken the goods we must first look at how many goods there are to
take. All goods that can enter the truck are given by: s1(k) = s1(k−1)+γ1 (d1(k)− d1(k − 1)).
What can enter is given by L1 (d1(k)− a1(k)). Setting these two equations equal to one
another will give the departure d1(k) when all goods can enter:

d1(k) = (L1 − γ1)−1(s1(k − 1) + L1a1(k)− γ1d1(k − 1)) (8-55)

Combining the two yields:

d1(k) = min
(
a1(k) + C1

L1
, (L1 − γ1)−1 ·

(
s1(k − 1) + L1a1(k)− γ1d1(k − 1)

))
(8-56)

At nodes 2 and 3, the trucks will depart the moment they are empty. The time it takes
to empty the truck is given by dividing the load by the unloading speed. Then, adding the

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 107

arrival time will result in the departure time. The departure times of the trucks at nodes 2
and 3 are given by:

d2(k) = a2(k) + ρ42,real(k − 1)
u2

d3(k) = a3(k) + ρ43,real(k − 1)
u3

(8-57)

8-2-3 Derivation of Quantity States for the 4-Node Transportation System

In addition to all the time states and mode behaviour, it is essential to track how goods move
through the system over cycles. This includes the quantities loaded onto and unloaded from
each truck, as well as the accumulation of goods in stacks at nodes 1, 2, and 3. In this section,
the state variables that represent the amount of goods processed by the system, which are
the truckloads and the stack levels at nodes 1, 2, and 3, are defined.

Determining the Truckloads for Each Truck

The quantity of goods loaded into each truck depends on its loading duration and speed.
For truck 1 at node 1, the calculation is straightforward: the truckload is the product of the
loading time and the loading speed. For truck 1 at node 1, this is given by:

ρ1(k) = L1 · (d1(k)− a1(k)) (8-58)

For trucks 2 and 3 at node 4, this is a bit more challenging. The time when loading starts
is given by max(a41(k), a42(k)) and max(a41(k), a43(k)) respectively. Then, depending on
whether the unloading speed of truck 1, or the loading speed of truck 2 or 3 is the bottleneck
in goods transfer, the calculated truck loads for trucks 2 and 3 are given by:

ρ42,calc(k) = min
(
L2 · (d42(k)− a42(k)),

L2 · (d42(k)− a41(k)),
u1 · (d42(k)− a42(k)),

u1 · (d42(k)− a41(k))
)

ρ43,calc(k) = min
(
L3 · (d43(k)− a43(k)),

L3 · (d43(k)− a41(k)),
u1 · (d43(k)− a43(k)),

u1 · (d43(k)− a41(k))
)

(8-59)

However, when the arrival times are very close together, in the order of 10−6 units of time
difference, the mode detection has a slight round off error. This results in the system thinking
that both trucks are full, resulting in the creation of goods. In order to correct this, ρ42,calc(k)

Master of Science Thesis M.J.A. Bartels



108 Case Study: Transportation System

and ρ43,calc(k) are checked and potentially compensated accordingly. As was previously men-
tioned, when this happens, the truck with the largest capacity must be corrected. Again, the
delta function (8-38) is used. Since the delta function is a steep triangle function, it means
that the delta function is non-zero when the arrival times are close together. This means
that in a similar manner to c3(k), the delta function can be used. A new auxiliary state
ρ4i,comp for i = {1, 2} is used which will return the correct truck load for truck i if truck i has
the largest capacity and will return a larger truck load if the capacity of truck i is the smaller
of the two as such:

ρ42,comp(k) = max(ρ1(k)− ρ43,calc(k), ρ1(k)− ρ43,calc(k) + (C3 − C2) · δ(k))
ρ43,comp(k) = max(ρ1(k)− ρ42,calc(k), ρ1(k)− ρ42,calc(k) + (C2 − C3) · δ(k))

(8-60)

Then by taking the minimum with the calculated truck loads ρ42,calc and ρ43,calc, the wrong
truckload is corrected while the correct truck load remains unaffected as follows:

ρ42,real(k) = min(ρ42,calc(k), ρ42,comp(k))
ρ43,real(k) = min(ρ43,calc(k), ρ43,comp(k))

(8-61)

This wrong truckload can be attributed to a wrongly chosen departure time, which means
that it has an effect that the truck with the largest capacity will have to wait unnecessarily
at node 4. However, this will result in the arrival times being further apart in the next cycle.

Determining the Stack Sizes at Departure

The stack at each node stores goods temporarily between truck arrivals and departures. These
stacks act as buffers that absorb differences in timing or speed between input and loading
processes and output and unloading processes. The number of goods in the stack at node 1
s1(k) is given by what was there previous cycle plus what was taken out and or brought in.
What was put in via the input is given by

γ1(d1(k)− d1(k − 1)) (8-62)

What was taken out is given by:
L1(d1(k)− a1(k)) (8-63)

Combining this plus what was left in the stack from the previous cycle results in an equation
for the stack size at node 1:

s1(k) = s1(k − 1) + γ1 (d1(k)− d1(k − 1))− L1 (d1(k)− a1(k)) (8-64)

The stacks at nodes 2 and 3, s2(k), s3(k), can be determined similarly. However, the way
goods are added and removed from the stack is reversed. Thus, the goods that are added to
the stack are given by:

u2(d2(k)− a2(k))
u3(d3(k)− a3(k))

(8-65)

The number of goods that are taken out of the stack are given by:

φ2(d2(k)− d2(k − 1))
φ3 (d3(k)− d3 (k − 1))

(8-66)

M.J.A. Bartels Master of Science Thesis



8-2 Mathematical Derivation of the 4-Node Transportation System 109

For these stacks, it is also important to make sure they never become negative, since this is
not physically possible, and so the maximum with zero must be taken to ensure this, resulting
in the following equations for s2(k) and s3(k):

s2(k) = max
(
0, s2(k − 1)− φ2 (d2(k)− d2 (k − 1)) + u2(d2(k)− a2(k))

)
s3(k) = max

(
0, s3(k − 1)− φ3 (d3(k)− d3 (k − 1)) + u3(d3(k)− a3(k))

) (8-67)

8-2-4 Model Validation

The state space equations for the transportation system given in Section 8-2 are hard to work
with. Since it is an implicit MMPS system, obtaining the dependencies for each state can be
tedious. The transportation system can be written into the MMPS ABCD canonical form.
This allows for easy validation, analysis and simulation. Matrices A, B, C, and D are too
large to depict here. However, they have been constructed in the following shape:

[
xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11 D12
D21 D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

])) (8-68)

Where At ∈ R37×76
ε , Aq ∈ R14×21

ε , Bt ∈ R76×97
⊤ , Bq ∈ R21×24

⊤ , C11, D11 ∈ R97×37, C12, D12 ∈
R97×14, C21, D21 ∈ R24×37 and C22, D22 ∈ R24×14. The state vector x(k) is given by:

x(k) =
[
a1(k), a2(k), a3(k), a41(k), a42(k), a43(k), af (k), as(k), Lf (k), Ls(k),
d1(k), d2(k), d3(k), d41(k), d42(k), d43(k), d4.1(k), d422(k), d423(k),
d432(k), d433(k), f(k), c1(k), c2(k), c3(k), s1(k), s2(k), s3(k),
ρ1(k), ρ42,calc(k), ρ43,calc(k), δ(k), ρ42,comp(k), ρ42,real(k),

ρ43,comp(k), ρ43,real(k)
]⊤

(8-69)

Where f(k) ∈ R16 consists of all subparts of the mode detection states fi for i = {1, . . . , 16}.

Since the system contains a finite D matrix, the system is implicit. To check whether the
system is time invariant, and any of the analysis methods can be applied, the conditions of
(3-7) must hold, which can be found below as well. When this is true, it can be concluded
that the system is time-invariant.

∑
i∈nt

[C11D11]ℓi = 1, ∀ℓ ∈ pt,
∑
i∈nt

[C21D21]ti = 0, ∀t ∈ pq (8-70)

Because the sub-matrices of C and D are too large, they have been omitted. However, after
verification of (3-7), it can be seen that this condition holds, and thus it can be concluded that

Master of Science Thesis M.J.A. Bartels



110 Case Study: Transportation System

the system is time invariant. Validating this result can be done by using the code provided
in Appendix E, where sub-matrices C11, D11, C21 and D21 are identified and the validity of
(8-70) is checked.

Secondly, the solvability of the system is checked. By transforming the A, B and D matrices
into structure matrices SA, SB, SD respectively, following [5]. For the system to be solvable,
there must exist a transformation matrix T such that F = T · SA · SB · SD · T −1 is strictly
lower triangular. This condition is equivalent to checking if there are any cycles present in
the communications graph of S⊗, which is defined as:

[S⊗]i,j =
{

[S]i,j if [S]i,j ̸= 0
ε if [S]i,j = 0 (8-71)

where S = SA · SB · SD [17]. This matrix is too large to show on a page. However, the
communications graph of S⊗ does not contain any cycles. From this, it can be concluded that
the system is solvable.

Finally, some last remarks about the system. The values 105 and 108 are used as they are
large enough to achieve their goal with the used variable sizes, while also leaving enough
room in the machine precision to accurately calculate the system states. Picking a gain that
is too high can cause numerical issues. MATLAB, where the simulation runs, has a machine
precision of 16 digits. Thus, if the gain is too large, most of those digits get used up by the
big values, leaving nothing to capture the small differences in departure times.

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 111

8-3 Simulation and Analysis of the 4-Node Transportation Network

Now that the system is modelled and validated, it can be simulated and analysed which will
be done in this Section. First, the system parameters will be chosen, after which the growth
rate, fixed point and periodic orbits will be determined. Then, the system will be initialised
in these fixed points and periodic orbits, after which the stability and invariant set for all
different dominant modes will be determined.

8-3-1 Initialisation of the System

In order to simulate and analyse the transportation system, it must be initialised. Initialising
the system is relatively straightforward. All state information must be present and correct,
and the system parameters must be determined. The chosen system parameters can be found
in (8-72).

In- and output flow rates:

γ1 = 75
11.75 , φ2 = 5, φ3 = 5

Loading speeds:
L1 = 40, L2 = 20, L3 = 20

Unloading speeds:
u1 = 40, u2 = 20, u3 = 20

Travel times:
τ14 = 2, τ41 = 2, τ24 = 4, τ42 = 4, τ34 = 4, τ43 = 4

Capacities:
C1 = 75, C2 = 50, C3 = 50

(8-72)

The assumptions introduced in Section 8-1 are respected throughout this analysis. While the
numerical values of the system parameters can be adjusted to some extent, these stability
conditions must be satisfied to ensure the system remains operable and can evolve without
congestion or deadlocks. These conditions guarantee that the system can operate in a consis-
tent, repeatable manner without infinite accumulation of goods or blocked vehicle movements.
Meaning the system operates in a stable manner.

The following conditions serve as practical stability requirements for the 4-node system:

• C1 < C2 + C3: Ensures that node 4 does not retain any goods after each delivery
cycle. This condition guarantees that vehicle 1 can always return to node 1 without
encountering a deadlock due to residual goods not being able to fit in truck 1 or 2 in
the same cycle.

• γ1 ≪ L1: Implies that the arrival rate of incoming goods is significantly lower than the
loading capacity at node 1. This allows for smooth intake and prevents build-up at the
source.

Master of Science Thesis M.J.A. Bartels



112 Case Study: Transportation System

• γ1 ≪ u2, u3: Ensures that the unload rates at nodes 2 and 3 are significantly higher than
the arrival rate of goods into the system. This condition allows goods to be processed
and forwarded through the system without a build-up of goods and a stack increasing
towards infinity.

• γ1 ≤ φ2 + φ3: Guarantees that the total outflow capacity from nodes 2 and 3 is at least
as large as the inflow rate at node 1. Without this condition, a continuous accumulation
of goods in the stacks would occur, eventually leading to saturation.

Together, these conditions ensure that all goods entering the system can eventually be pro-
cessed and removed, enabling feasible and stable operating conditions across time.

To determine which states must be known in the initial condition, it is necessary to find all
states in the state equation that depend on the state at cycle k − 1. These represent the
minimal set of states required to ensure a valid state evolution. An equivalent approach is
to inspect the matrix C: each column containing a finite non-zero entry indicates that the
corresponding state (which is the row in the state vector) must be initialised.

Using this approach, the following states must be included in the initial state x0:

d41(0), d42(0), d43(0), ρ42,real(0), ρ43,real(0), s1(0), s2(0), s3(0)

All system states can be uniquely determined if these 8 values are known, along with the
specific system parameters.

8-3-2 Growth Rate, Fixed Points, and Periodicity Analysis

Now that the system is fully defined, the growth rate, fixed points and period lengths can be
determined. This system has around 6 sextillion (6 · 1021) different footprint matrix pairs.
This is an enormous amount which is impossible to analyse using the LPP strategy from [5].
Remember that during modelling, it was assumed that the loading and unloading rates were
unknown, and one would not know which would be the bottleneck. This introduced a lot of
extra possible affine terms to the system, which has now resulted in a lot of unreachable modes
and extra footprint matrix pairs to check once the system parameters have been chosen. Note
that modes here are as defined by Definition 5.4 and do not refer to the 3 interaction modes
described in Subsection 8-2-1. When removing all these unreachable terms, the size of the
system can be reduced significantly, to around 9 trillion (9 · 1012) different footprint matrix
pairs. Even if one tries to solve this using the LPP method at 0.1 seconds per LPP, it would
still take approximately 28 years to evaluate every footprint matrix pair. Which is why the
proposed MILP strategy from Chapter 5 will be applied. Furthermore, the periodicity of
the system will also be evaluated using the extended periodic ABCD canonical form from
Chapter 6 for p = 1 and p = 2. The analysis was performed in MATLAB using Mosek as the
solver.

Analysis of Dominant Modes for p = 1

After prepossessing using the MILP, it was found that out of all the finite entries in the rows
with more than one finite entry, 24 were present in at least one dominant mode. This reduced

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 113

the number of potentially dominant modes from around 9 trillion to 4096. After running the
entire MILP and exploring the entire tree, 1024 footprint matrix pairs are found to yield a
growth rate. This analysis took around 2.5 hours. All 1024 footprint matrix pairs yield a
growth rate of λ∗ = 11.75. This eigenvalue can somewhat be expected as it must be at least
more than the maximal round trip travel time, which is it, as this is given by 8. All 1024
footprint matrix pairs GAθ

and GBθ
yield an eigenvector. After accounting for numerical

rounding with a tolerance of 10−5, only 3 unique eigenvectors remain. Which will be denoted
by V = {v1, v2, v3} where vi = (x⊤

e,i, y⊤
e,i, w⊤

e,i).

Now that only the unique eigenvectors remain, it will be checked whether they are truly
eigenvectors. By verifying whether the following holds for all eigenvectors:

xe + s · λ∗ = A⊗ (B ⊗′ (C · xe + D · (xe + s · λ∗))) (8-73)

This is true for all found eigenvector eigenvalue pairs, so all eigenvector eigenvalue pairs are
confirmed to be true eigenvalues and eigenvectors. However, all found solutions might not be
all solutions. As the constraints can have more invariant directions where eigenvectors can
lie. By substituting the eigenvalue λ∗ into the equality and inequality constraints of the LPP
in Subsection 3-3-2, the following will be obtained:

Heq · v = heq, Hineq · v ≤ hineq (8-74)

The true matrices are too large to display here, however their sizes are; Heq ∈ R199×199, heq ∈
R199×1, Hineq ∈ R40×199 and hineq ∈ R40×1. The set of fixed-points can be described by Vλ∗ =
{v | Hineq · v ≤ hineq }[5] where v = v∗ + σ1g1 + σ2g2 + · · · + σf gf as per Subsection 3-3-2
where the number of different terms of gi is related to the rank deficiency of Heq. For exactly
half of them, which is 512, the rank deficiency is equal to 1, while for the other half, the rank
deficiency is equal to 1. This means that there are 1 to 2 direction vectors to describe all
fixed points for this system. Thus, the rank of the matrix Ve =

[
v1 v2 v3

]
must be a

maximum of 2, where each column of Ve is an eigenvector. However, after investigation, one
of the 3 eigenvectors is simply the time-shifted version of another vector. This means that
Ve is actually just {v1, v2}. The rank of Ve is equal to 2. So the solution to the MILPs has
yielded all existing direction vectors. The last vector could be constructed from the matrix
Heq. Finally, the eigenvector for the growth rate λ = 11.75 can be described by:

v = v∗ + σ1 · g1 + σ2 · g2 (8-75)

Since the system is time invariant, the first scaling factor σ1 is always unbounded in both
directions [5]. The direction vectors g1 and g2 can be determined quite easily. Since v consists
of x, y, w, it is important to make sure gi is of the same size. The first invariant direction g1

is given by s =
[

1⊤
nt

0⊤
nq

]⊤
which in terms of g leads to:

g1 =

 g1,x

g1,y

g1,w

 (8-76)

where g1,w = (C +D) ·s, g1,y = B⊗′ ((C +D) ·s) and g1,x = s g1 and g2 are too large to show
here. The second direction vector, g2, can be found when examining the found eigenvectors

Master of Science Thesis M.J.A. Bartels



114 Case Study: Transportation System

v1 and v2. The inflow into the system was chosen such that truck 1 is always full and there is
no accumulation of goods in stack s1(k). This makes the stack size s1(k) the second direction
vector. In other words, s1(k) is completely decoupled from the system dynamics. This means
that g2,x is a zero vector with a single 1 at the location of state s1(k), which is entry x(41).
Then g2,w = (C + D) · g2,x, g2,y = B ⊗′ ((C + D) · g2,x). This also results in the bound for σ2
being; 0 ≤ σ2 <∞.
It might look strange that half of the Heq matrices have a rank deficiency of 1, while the other
half have a deficiency of 2. Normally, the expectation is that all Heq matrices share the same
rank deficiency. This difference, however, has an explanation.
In the cases where the deficiency is 1, the dominant mode of the system makes the departure
time of truck 1 at node 1, (8-56), picks the second affine term and taking the entire stack
with it. For that to happen, the stack size must stay below the capacity of truck 1.
But the parameters were chosen so that the inflow matches the capacity exactly over one
cycle. That means it makes no difference in (8-56) whether the first or second affine term
is taken. For Heq, though, this choice does matter. If the first term is taken, the other
direction vector appears, but if the second term is taken, it doesn’t. However, in both cases,
the direction vector corresponding to the stack size s1(k) is a valid shift-invariant direction.

Analysis of Dominant Modes for p = 2

When analysing the system in extended periodic ABCD form, the number of possible footprint
matrix pairs increases drastically. Specifically, the number of pairs scales quadratically with
the period p under consideration. For example, what was previously 9 · 1012 possible pairs for
p = 1, becomes 81 · 1024 for p = 2.
In contrast, the preprocessing step scales linearly with the size of the system, not the period.
This makes it far more efficient for pruning the search space. In the previous case, the
preprocessing step required 71 MILP calls. For p = 2, this increased to 142 calls. While each
MILP instance grows in size (and therefore runtime), the preprocessing remains tractable. In
total, preprocessing for p = 2 took around 1 hour, and reduced the number of candidate pairs
from 81 · 1024 down to approximately 3.5 · 1011.
Although this is a significant reduction, it is still not enough. Exploring the entire tree of
3.5 · 1011 possible valid pairs would still be computationally infeasible, as with 0.1 seconds
per call, it would take around 100 years. Therefore, a manual pruning step was used based
on insights from the p = 1 case and knowledge of the system.
From prior analysis, it is known that when both truck 2 and truck 3 arrive at the same time,
no periodic behaviour exists. However, all such pairs remain in the current search space.
Additionally, for p = 2, we are only interested in periodic orbits of length at most 2. Since
the starting point of the orbit is arbitrary due to the ability to permute the block ordering
of GA, GB, and xe, this introduces redundant twin solutions and unnecessarily inflates the
search space.
To eliminate these redundant cases, we manually constrain the MILP by setting specific
integer variables in p and q to zero. This targeted reduction brings the number of valid
footprint matrix pairs down to just 576.
It is important to note that:

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 115

• Any solution found for p = 1 remains valid here, as discussed in Chapter 6.

• Any detected periodic orbit for p = 2 actually appears twice in the search space, once
per possible starting point. Meaning twin solutions exist, and one is always omitted
due to the manual pruning.

After running the entire MILP and exploring the reduced tree, 9 footprint matrix pairs are
found to yield a growth rate. The total analysis took just over 2 hours in total. All 9 footprint
matrix pairs yield a growth rate of λ̂ = 23.5. This eigenvalue can somewhat be expected as
the system is twice the size of the original system with p = 1, which had an eigenvalue
of λ∗ = 11.75. All 9 solutions represent a periodic orbit; this means that the permuted
block ordering of GA, GB, and xe must also be a valid footprint matrix for a fixed point.
Additionally, the pairs found for p = 1 would also have been valid, but since the system is
twice the size, all permutations of pairs would also be valid, which yields a further 10242

pairs. The same analysis can be done for the case of p = 2 as was done for p = 1; now
only the periodic solutions found here will be considered, since they have a real difference
with respect to the solutions found in Section 8-3-2. Also, note that the twin pairs of the
found eigenvectors will not be considered. The set of found eigenvectors will be denoted by
V = {v1, v2, . . . , v9} where vi = (x⊤

e,i, y⊤
e,i, w⊤

e,i).

All eigenvectors are verified whether they are truly eigenvectors. By verifying whether the
following is true for all eigenvectors:

xe + s · λ∗ = A⊗ (B ⊗′ (C · xe + D · (xe + s · λ∗))) (8-77)

This is true for all found eigenvector eigenvalue pairs, so all eigenvector eigenvalue pairs are
confirmed to be true eigenvalues and eigenvectors. However, all found solutions might not be
all solutions. As the constraints can have more invariant directions where eigenvectors can
lie. By substituting the eigenvalue λ∗ into the equality and inequality constraints of the LPP
in Subsection 3-3-2, the following will be obtained:

Heq · v = heq, Hineq · v ≤ hineq (8-78)

The true matrices are too large to display here, however their sizes are; Heq ∈ R398×398, heq ∈
R398×1, Hineq ∈ R80×398 and hineq ∈ R80×1. Notice that this is exactly twice as large as
the H, h matrices found in Section 8-3-2. The set of fixed-points can be described by Vλ∗ =
{v | Hineq · v ≤ hineq }[5] where v = v∗ + σ1g1 + σ2g2 + · · · + σf gf as per Subsection 3-3-2.
Where the number of different terms is related to the rank deficiency of Heq. For all of them,
the rank deficiency is equal to 3. This means that there are 3 direction vectors to describe all
fixed points for this system. Thus, the rank of the matrix Ve =

[
v1 v2 . . . v9

]
must be

a maximum of 3, where each column of Ve is an eigenvector. However, after accounting for
numerical rounding with a tolerance of 10−5, only 4 unique eigenvectors remain, where one
was simply another vector time-shifted. This means that Ve is actually just {v1, v2, v3}. The
rank of Ve is equal to 3. So the solution to the LPP has yielded all existing directions. This
means that an eigenvector can be described by:

v = v∗ + σ1 · g1 + σ2 · g2 + σ3 · g3 (8-79)

Since the system is time invariant, the first scaling factor σ1 is always unbounded in both
directions. The direction vectors g1 and g2 can be determined quite easily. Since v is made

Master of Science Thesis M.J.A. Bartels



116 Case Study: Transportation System

up of x, y, w, it is important to make sure gi is of the same size. The first invariant direction
is given by s =

[
1⊤

nt
0⊤

nq

]⊤
Which in terms of g leads to:

g1 =

 g1,x

g1,y

g1,w

 (8-80)

where g1,w = (C + D) · s, g1,y = B ⊗′ ((C + D) · s) and g1,x = s g1 and g2 are too large
to show here. g2 can also be found when examining the found eigenvectors. The inflow into
the system was chosen such that truck 1 is always full and there is no accumulation of goods
in stack s1(k). The stack size s1(k) is the second direction vector. This means that g2,x is
a zero vector with a single 1 at the location of state s2(k), which is state 41 and 92. Then
g2,w = (C + D) · g2,x, g2,y = B ⊗′ ((C + D) · g2,x). This also results in the bound for σ2
being; 0 ≤ σ2 < ∞. The other shift invariant direction is a direction which corresponds to
the behaviour where the time difference between truck 2 and 3 arriving at node 4 is a lot
smaller; this also has the effect that the truck loads are more similar. This was found by
analysing the found eigenvectors.

8-3-3 System Simulations for Periodic Behaviour

In the previous Section, the growth-rate fixed points and period of the system were analysed
and identified. It was found that the system has a periodic region with a period equal to 1
and a periodic region with a period equal to 2. In this Section, the system will be simulated,
where the aim is to obtain uniform behaviour. This means that the stop time at a node
will be the same over every cycle, as well as the quantity states remaining constant over
every cycle. This corresponds to the number of goods entering the system being equal to
the number of goods leaving it. The eigenvector of the system will be taken to simulate the
system. First, the system with a period of 1 is simulated and then the system with a period
of 2. For simulating the system with a period of 2, one of the periodic points will be taken
as the starting point.

Simulation for Period p = 1

Using the fixed point v1 found in Subsection 8-3-2, the system will be simulated for k = 10.
The simulation yields Figure 8-3, 8-4, 8-5 and 8-6. What is clearly visible in the figures is
that all quantity states are constant over the event cycles with ρ1(k) = 75, ρ42, ρ43 = 37.5,
s1(k) = 50 and s2(k), s3(k) = 0. The arrival times and departure times are all parallel with
a uniform growth rate of λ∗ = 11.75. This indicates a uniform timetable for when trucks will
arrive and depart. Figure 8-6 shows that truck 1 is always the first one to arrive at node 4,
while trucks 2 and 3 arrive simultaneously at a later time, and all trucks leave simultaneously
as well. This indicates that the system with these chosen parameters is in mode 1.

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 117

Figure 8-3: Truck arrival times of the uniform transportation network with 10 cycles with a
period of 1

Figure 8-4: Truck departure times of the uniform transportation network with 10 cycles with a
period of 1

Master of Science Thesis M.J.A. Bartels



118 Case Study: Transportation System

Figure 8-5: Quantity states of the uniform transportation network with 10 states with a period
of 1

Figure 8-6: Trucks present at node 4 of the periodic transportation network with 10 states with
a period of 2

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 119

Simulation for Period p = 2

Using the fixed point v1 found in Section 8-3-2, the system will be simulated for k = 10, but
now for p = 2. The simulation yields Figure 8-7, 8-8, 8-9 and 8-10. What is clearly visible
in the figures is that the quantity states s1(k), s2(k), s3(k) and ρ1(k) are constant over the
event cycles with ρ1(k) = 75 s1(k) = 50 and s2(k), s3(k) = 0. However, the quantity states
ρ42(k) and ρ43(k) oscillate during each event cycle, switching values with each other while
remaining bounded between 28.75 and 46.25. The arrival and departure times of the trucks
follow parallel trajectories with a uniform average growth rate of λ∗ = 11.75, except for the
arrival times at node 4 of trucks 2 and 3. These arrival times alternate between growth rates
of 10.875 and 12.625 on successive cycles, averaging out to the same λ∗ = 11.75. A similar
pattern occurs for the departure times of trucks 2 and 3 at nodes 2 and 3, respectively.
These shifts are in phase with each other but out of phase relative to the truck indices. This
behaviour is a bit hard to see in Figure 8-7 and 8-8, which is why Figure 8-11 and 8-12 are
zoomed-in versions, where this behaviour is more clearly visible.

Despite the oscillations, the system still resembles a consistent timetable in which truck
arrivals and departures follow a predictable pattern, though not identical in every cycle. As
shown in Figure 8-6, truck 1 consistently arrives first at node 4, while trucks 2 and 3 arrive
slightly later, alternating their order. All trucks then depart simultaneously. This behaviour
indicates that, for the given parameters, the system operates in mode 1.

Figure 8-7: Truck arrival times of the periodic transportation network with 10 cycles with a
period of 2

Master of Science Thesis M.J.A. Bartels



120 Case Study: Transportation System

Figure 8-8: Truck departure times of the periodic transportation network with 10 cycles with a
period of 2

Figure 8-9: Quantity states of the periodic transportation network with 10 states with a period
of 2

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 121

Figure 8-10: Trucks present at node 4 of the uniform transportation network with 10 states with
a period of 2

Figure 8-11: Zoomed in truck arrival times of the periodic transportation network

Master of Science Thesis M.J.A. Bartels



122 Case Study: Transportation System

Figure 8-12: Zoomed in truck departure times of the periodic transportation network

8-3-4 Stability of the Transportation System

The concept of stability for MMPS systems was extensively discussed in Chapter 4. Bounded
buffer stability in terms of MMPS systems refers to the boundedness of the difference between
the time states at each event k. According to the definition for DE systems, a DE is bounded
buffer stable if these buffer levels remain constant over time. In Subsection 8-3-3, the trans-
portation system was simulated, and the growth rates, fixed points and periodic orbits were
identified. This section will investigate whether these points and orbits are bounded-buffer
stable or not. To conclusively determine whether an implicit MMPS system with a given
growth rate λ is bounded-buffer stable; the system must first be normalised and then lin-
earised. The normalisation procedure follows the same process as in Subsection 3-3-2. The
resulting normalised form of an implicit MMPS system is given by the following expression:

x̃(k) = Ã⊗
(
B̃ ⊗′ (C · x̃(k − 1) + D · x̃(k))

)
(8-81)

Once the system has been normalised, the system can be linearised using the theory provided
by Section 4-3. This definition will be shown again below:

Definition 8.1. (Linearisation of an MMPS system [5])
Any normalised MMPS system can be transformed into a linear representation in conventional
algebra for all x̃(k) ∈ Ωθ, k ∈ Z+ as follows:

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(8-82)

if the inverse (I −M) exist, where Ωθ is a polyhedron wherein the linearisation is valid

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 123

Stability of the Fixed Points with p = 1

Simulating the system initialised in the found fixed point yields a constant growth in the time
states and constant quantity states. This is an indication that the system is stable for this
fixed point. However, it is only possible to know for sure by checking the bounded buffer
stability for the linearised systems. All 1024 fixed points with dominant modes are checked to
see whether they are bounded buffer stable. This means that for all found dominant modes,
the system will be normalised and linearised. When performing these steps and checking the
eigenvalues, the multiplicity of the eigenvalues equal to 1, and the Jordan blocks, the following
results were obtained:

• All 1024 linearizations are bounded-buffer stable.

• 512 Mθ matrices have 2 multiplicative eigenvalues equal to 1.

• 512 Mθ matrices have 1 multiplicative eigenvalue equal to 1.

• None of the the Mθ matrices have eigenvalues larger than 1.

So all found fixed points and accompanying footprint matrices GAθ
and GBθ

yield a bounded
buffer stable system. This large number can be attributed to some redundancy inside the
system, resulting in a large number of footprint matrix pairs yielding the same result. The
1024 unique footprint matrix combinations are obtained by a total of 65 unique GAθ

matrices
and 17 unique GBθ

matrices; they all yield a growth rate of λ = 11.25.

Stability of the Periodic Orbits with p = 2

The simulated system with a periodic orbit also appears to be stable; however, this must be
verified by checking the bounded buffer stability of each linearization. All 9 periodic orbits
with dominant modes are checked to see whether they are bounded buffer stable. This means
that for all found dominant modes, the system will be normalised and linearised. Again, the
twin pairs will not be checked as this method validates the entire periodic orbit as a whole,
and so it is not needed to check the twins. Also, only the periodic orbit will be checked and
not the semi-dominant modes, as the entire orbit is of interest, and not whatever happens in
between. When performing these steps and checking the eigenvalues, the multiplicity of the
eigenvalues equal to 1, and the Jordan blocks, the following results were obtained:

• All 9 linearisations of the periodic orbit are bounded buffer stable.

• All Mθ matrices have 3 multiplicative eigenvalues equal to 1.

• None of the the Mθ matrices have eigenvalues larger than 1.

The 9 unique footprint matrix combinations are obtained by a total of 1 unique GAθ
matrix

and 9 unique GBθ
matrices; however, they all yield a growth rate of λ = 11.25. But remember

that the twins are not considered, so this number is, in actuality, at least double.

Master of Science Thesis M.J.A. Bartels



124 Case Study: Transportation System

8-3-5 Maximal Invariant Set of the Transportation System

In the previous section, the bounded-buffer stability of both the fixed points and periodic
orbits was investigated. All found fixed points and periodic orbits were found to be bounded
buffer stable. In this section, the invariant set for each linearised system is determined, as it
is interesting to know whether the system will stay in a specific linearization region or not.
This region is called the maximal invariant set and was discussed in Chapter 4. This set
can be obtained by running Algorithm 2, where Pre (Ωθ) = {x ∈ Rn | H ·M · x ≤ h}[5]. The
algorithm is presented again below;

Algorithm 6 Maximal positive invariant set [5]
Input: Mθ, Ωθ

Output: O∞
O0 ← Ωθ, k ← −1
Repeat
k ← k + 1
Ok+1 ← Pre (Ok) ∩ Ok

Until: Ok+1 = Ok

O∞ ← Ωk

Maximal Invariant Set of Fixed Points p=1

To assess the bounded-buffer stability of the fixed points, the maximal invariant set was
approximated for each of the 1024 linearised systems using Algorithm 6. Each system, defined
by a fixed point and its associated matrix Mθ and region Ωθ = {x ∈ Rn | H · x ≤ h}, was
tested for invariance. The algorithm was allowed to run for a maximum of 50 iterations per
system. This number is arbitrarily chosen, but will turn out to be large enough. Due to the
large number of linearizations, 1024, it is not worthwhile to visualise all results in a large
table.

Out of the 1024 cases, all terminated within a maximum of 16 iterations. However the some
resulted in empty invariant sets. There are 312 linearisations which resulted in a non-empty
invariant set, while the remaining 712 converged to an empty set. Most did terminate in much
less time, only needing 1-5 iterations. Having stable linearisations with an empty invariant
set. This is most likely attributable to the linearisation being mathematically stable due to
the redundancy; however, not sustainable during state evolutions.

An important observation is that there is no direct link between the multiplicity of eigenvalues
equal to one and the existence of a non-empty invariant set.

Maximal Invariant Set of Periodic Orbits p=2

For periodic orbits of period p = 2, the maximal invariant set can be approximated in the
same way as for fixed points. Each periodic orbit gives rise to a linearised system that
can be analysed using Algorithm 6, with the goal of evaluating bounded-buffer stability and
identifying invariant regions in the state space.

M.J.A. Bartels Master of Science Thesis



8-3 Simulation and Analysis of the 4-Node Transportation Network 125

A total of 9 periodic orbits were identified through simulation and linearisation procedures,
and each corresponding linearised system was tested for invariance using the same setup: a
maximum of 50 iterations and the region defined by Ωθ = {x ∈ Rn | H · x ≤ h}. In contrast
to the fixed-point case, all 9 periodic systems yielded non-empty invariant sets, confirming
their stability under the given dynamics.

The invariant sets were found with the number of iterations, ranging from just 1 to a maximum
of 9 iterations. This shows that the algorithm converged rapidly for all periodic orbits and
suggests a high degree of regularity in their dynamic behaviour.

The results are summarized in Table 8-2, where for each orbit the following is listed: the
number of eigenvalues equal to 1, whether the system is bounded-buffer stable, the rank
deficiency of Heq, whether an invariant set was found, how many iterations it took, and
whether the final set was empty.

These findings highlight that, unlike the fixed-point case, all periodic linearizations resulted
in stable behaviour with non-empty invariant regions.

# Multiplicity e.v. 1Mθ BB stable? Heq rank def. O∞ found Iter Empty
1 3 Yes 3 Yes 1 No
2 3 Yes 3 Yes 1 No
3 3 Yes 3 Yes 2 No
4 3 Yes 3 Yes 1 No
5 3 Yes 3 Yes 1 No
6 3 Yes 3 Yes 9 No
7 3 Yes 3 Yes 2 No
8 3 Yes 3 Yes 2 No
9 3 Yes 3 Yes 1 No

Table 8-2: Analysis of the stability of 9 periodic orbits of the transportation system

Master of Science Thesis M.J.A. Bartels



126 Case Study: Transportation System

M.J.A. Bartels Master of Science Thesis



Chapter 9

Conclusions and Contributions

In this Chapter, the research carried out in this thesis is concluded. A reflection on the posed
research questions from Chapter 1 is given. Each main research question with its accompa-
nying sub-questions will be discussed in a dedicated section. This means that Section 9-1
reflects on research question 1. Section 9-2 will reflect on research question 2, and Section 9-3
on research question 3. Finishing off the chapter is Section 9-4, where an overview of all
concrete academic contributions is given.

9-1 On Scalable Analysis

This section addresses the first research question and its sub-questions by reflecting on the
results presented in Chapter 5. The research question and its sub-questions are stated as
follows:

• How can a hybrid approach combining search trees, LPP, and MILP reduce the com-
putational complexity of analysing Max-Min-Plus-Scaling Systems?

(a) How can the existing explicit MILP algorithm be extended to also apply to general
implicit MMPS systems?

(b) How can a search tree be used to systematically explore and prune the search for
eigenvalues of MMPS systems to avoid redundant or infeasible paths?

For the first sub-question, the existing MILP algorithm for explicit MMPS systems can be
extended to apply to general implicit MMPS systems. By drawing inspiration from the
normalisation of implicit MMPS systems, and the derivation of the original MILP, it was
possible to extend the MILP to also find an eigenvalue and eigenvector of an implicit MMPS
system. Answering the first sub-question. However, as is known from general MMPS systems,
they can have multiple eigenvalues and eigenvectors. This means that in the search space,
there can be more than one feasible solution. As the goal is to find all feasible solutions, the

Master of Science Thesis M.J.A. Bartels



128 Conclusions and Contributions

second sub-question comes into play. By externalising a depth-first search method, all feasible
solutions can be found. With infeasible systems, the infeasible is often quickly detected,
meaning that a search into an infeasible direction is caught quickly. Due to this infeasibility
occurring somewhere in the search space, which can be represented by a tree, it also allows
for early pruning in the infeasible directions, greatly reducing the computational complexity
if there are only a handful of feasible solutions.
Concluding the first research question, it is possible to greatly reduce the computational
complexity of analysing growth rates and fixed points in MMPS systems by applying an
MILP algorithm with a depth-first search strategy, together with a prepossessing step that
yields a large reduction in the search space. If the reduction due to the preprocessing is not
large enough, then switching the solution to solving according to the regular LPP strategy on
the reduced search space still leads to a significant reduction in computational power required.

9-2 On Periodicity

In this section, the second research question is addressed. With the accompanying sub-
questions. This research was performed in Chapter 6. Let us first recall the research question:
How can new theoretical insights into the structure and dynamics of MMPS systems con-
tribute to more effective analysis of periodic system behaviour?

(a) How can periodic MMPS systems be transformed to allow for periodicity and stability
analysis?

(b) How can the stability of periodic orbits be guaranteed?

The introduction of the extended periodic ABCD form makes it possible to represent any
periodic MMPS system as an equivalent extended MMPS system with a period of one. With
the period reduced to one, the existing analysis methods for MMPS systems can be applied
directly, including the MILP algorithm introduced in Chapter 5.
In practice, the period of a system is not always known in advance. For max-plus and min-plus
systems, the maximum possible period length is known, which allows for a recursive search
using the extended periodic ABCD form until this bound is reached. For general MMPS
systems, however, such a bound has not yet been determined.
Because the extended periodic ABCD form captures the entire periodic orbit, existing stability
criteria can be used to assess and guarantee the stability of the full orbit. Notably, only a
subset of the extended system needs to be considered for this purpose, as analysis of its
structure shows that stability depends on only part of the system.

9-3 On Modelling

In this Section, the third research question is addressed, with the accompanying sub-questions.
This research was performed in Chapter 7 and 8. Let us first recall the research question:
Is it possible to model, simulate and analyse a transportation network such that it closely
resembles reality?

M.J.A. Bartels Master of Science Thesis



9-4 Contributions 129

(a) Can the system equations be written in such a way as to incorporate all different arrival
and departure patterns?

(b) What insights can be obtained from analysing the dynamical behaviour of a 4-node
transportation network?

(c) How can the system be generalised to allow for more complex modelling, simulation
and analysis?

(d) Can a framework be created to allow for easy implementation of a generalised trans-
portation network?

The case study revealed that the 4-node system was challenging to model due to its six distinct
operating modes, determined by arrival times, capacities, and loading/unloading speeds. To
address this, a method was developed for expressing a switching MMPS system as a single
MMPS system description, enabling the modelling of these complex interactions.

Some operating modes overlapped, but with careful derivations, these overlapping regions
were removed, allowing the system to be analysed effectively. The resulting model served
as a strong test case for applying the theories developed in both Chapter 5 and Chapter 6.
The MILP approach proved effective, and periodic behaviour was successfully identified. This
demonstrated that the MMPS framework can be applied beyond the URS.

The work also showed that a more general modelling framework is possible. By introduc-
ing MMPS subsystems and deriving time-invariance and solvability conditions for them, the
modelling process can be parallelised. Additionally, a node-based framework was created,
allowing users to describe a system at a high level and automatically obtain the full set of
system equations. This is achieved using a database and a structure similar to the URS to
construct the system matrices.

In conclusion, this case study demonstrates that it is possible to model, simulate, and analyse
a transport network in a way that closely resembles real-world operations. Including an
extension to allow for even more general transportation systems to be modelled as MMPS
systems.

9-4 Contributions

This thesis contributed to the research in the field of Systems and Control and Discrete Event
Systems, specifically to Max-Min-Plus-Scaling system through the following results:

• Developed an MILP formulation for identifying growth rates and fixed points in implicit
MMPS systems.

• Developed a search algorithm for applying the MILP algorithm to implicit MMPS sys-
tems.

• Developed a Recursive standalone program to analyse general MMPS systems much
more efficiently than the current state of the art.

Master of Science Thesis M.J.A. Bartels



130 Conclusions and Contributions

• Greatly reduced the computational load for analysing MMPS systems.

• Proposed an extended periodic ABCD for for periodic MMPS systems with a period
large than 1.

• Derived stability criteria for periodic orbit of MMPS systems.

• Proposed MMPS sub-systems description for transportation systems as well as for gen-
eral MMPS systems.

• Proposed solvability and time invariance conditions for both open-loop and closed loop
MMPS sub-system integrations.

• Proposed a method of writing switching MMPS systems into a single system description.

• Developed a framework for modelling transportation networks using individual nodes.

• Developed a standalone program to transform a high-level transportation system de-
scription into a full MMPS system of equations in ABCD form.

• Derived a complex 4-node transportation system.

• Analysed the 4-node transportation system using theoretical results regarding the MILP
algorithm and periodicity.

M.J.A. Bartels Master of Science Thesis



Chapter 10

Recommendations for Future Work

The research presented in this thesis provides a solid foundation for the analysis, modelling,
and simulation of MMPS systems, but there are still many open directions worth exploring.
Some relate to deepening the theoretical understanding of these systems, while others aim to
extend the modelling framework and make it more practical for real-world applications. The
following list outlines several promising directions for future work.

• Derive conditions for monotonicity and non-expansiveness in implicit MMPS
systems

For explicit MMPS systems, the conditions for monotonicity and non-expansiveness are al-
ready well established. Extending these results to implicit MMPS systems could reveal a
new subclass of topical implicit systems. If such conditions are found, the eigenvalue search
described in Chapter 5 would no longer be necessary for these cases, as a single growth rate
would be guaranteed. In practice, this would allow the MILP formulation to be used as the
sole analysis step, significantly simplifying computations.

• Reduce the search space for large or extended MMPS systems

The current combination of MILP and preprocessing steps greatly reduces the search space
for growth rates and fixed points. However, many infeasible paths remain after preprocessing,
and these are still explored to some degree. Especially in extended periodic MMPS systems,
where the number of feasible solutions can grow rapidly. Developing new pruning strategies
or more aggressive preprocessing rules could shrink the search space further, leading to faster
analysis in large-scale or periodic systems.

• Derive an upper bound on the period length of MMPS systems

Master of Science Thesis M.J.A. Bartels



132 Recommendations for Future Work

In max-plus and min-plus systems, an upper bound on the possible period length is known.
For general MMPS systems, no such bound exists. Establishing one would have multiple
benefits: it would limit the search for fixed points and growth rates, improve the efficiency
of the periodicity analysis in Chapter 6, and provide theoretical insight into the possible
complexity of MMPS dynamics.

• Perform stability analysis on stochastic MMPS systems

All results in this thesis are based on deterministic systems, yet many real-world processes have
inherent randomness, such as variable travel times or uncertain arrival patterns. Extending
the analysis to stochastic MMPS systems would make the theory more applicable to practice.
This could involve defining probabilistic stability concepts, adapting MILP formulations to
handle uncertainty, or using Monte Carlo methods to assess performance.

• Integrate control strategies into the transportation framework

The transportation modelling framework developed here focuses on analysis and simulation
but does not yet include active control. Introducing control mechanisms would turn the
framework into a decision-support tool. This would also enable direct testing of control
algorithms in realistic network scenarios.

• Add more complex goods-routing logic

The URS already supports complex routing of goods and materials. Bringing similar func-
tionality into the transportation framework would expand its realism. Making the simulations
more reflective of real supply chain and logistics challenges.

• Integrate the Vehicle Routing Problem (VRP) into the transport framework

The VRP is a well-known challenge in operations research and is central to many logistics
applications. Embedding VRP formulations directly into the transportation framework would
allow combined modelling of vehicle scheduling, route selection, and network dynamics. This
integration could also support hybrid optimisation approaches that combine MMPS analysis
with combinatorial optimisation techniques.

In summary, there are many opportunities to expand both the theoretical scope and the
practical usability of the methods developed in this thesis. Some directions aim to deepen
the mathematical foundations of MMPS systems, while others seek to push the modelling
framework closer to the complexity of real-world operations.

M.J.A. Bartels Master of Science Thesis



Appendix A

System of Equations for Alternative
Transportation Nodes

A-1 End Nodes

Figure A-1: Visual representation of an in- and output node

Master of Science Thesis M.J.A. Bartels



134 System of Equations for Alternative Transportation Nodes

Parameter Definitions

Parameter Definition
an1(k) Arrival time at node n from node 1
en1(k) Empty time at node n from node 1
dn1(k) Departure time at node n to node 1
d1(k) Departure time at node 1 to node n
si(k) Stack size of input goods
so(k) Stack size of output goods
ρ(k) Load when departing node n to node 1
ρ1(k) Load when departing node 1 to node n
ρmax Truck capacity

τ Travel time from node 1 to node n
u Unloading speed
L Loading speed
γ Inflow rate at node n
φ Outflow rate at node n

Table A-1: Parameter definition for the state equations of the input and output node

State Equations

an1(k) = d1(k) + τ

en1(k) = an1(k) + ρ1(k)
u

dn1(k) = min
(
en1(k) + ρmax

L
, (L− γ)−1 · (si(k − 1) + L · en1(k)− γ · dn1(k − 1)

)
si(k) = si(k − 1) + γ · (dn1(k)− dn1(k − 1))− L · (dn1(k)− en1(k))
so(k) = max(0, so(k − 1) + ρ1(k)− φ · (dn1(k)− dn1(k − 1))
ρ(k) = L · (dn1(k)− en1(k))

(A-1)

M.J.A. Bartels Master of Science Thesis



A-2 Transfer Nodes 135

A-2 Transfer Nodes

General Parameter Definitions for Transfer Nodes and Pass-through Nodes

Parameter Definition
an1(k) Arrival time at node n from node 1
en1(k) Empty time at node n from node 1
dn1(k) Departure time at node n to node 1
d1(k) Departure time at node 1 to node n
d2(k) Departure time at node 2 to node n
an2(k) Arrival time at node n from node 2
en2(k) Empty time at node n from node 2
dn2(k) Departure time at node n to node 2
s21(k) Stack size of goods to node 1
s12(k) Stack size of goods to node 2
t1(k) Switching signal: truck 1 takes all goods if it arrives first
t2(k) Switching signal: truck 2 takes all goods if it arrives first

ρn1(k) Load when departing node n to node 1
ρn2(k) Load when departing node n to node 2
ρ1(k) Load when departing node 1 to node n
ρ2(k) Load when departing node 2 to node n

τ1 Travel time from node 1 to node n
τ2 Travel time from node 2 to node n
u1 Unloading speed between node n and node 1
u2 Unloading speed between node n and node 2
L1 Loading speed between node n and node 1
L2 Loading speed between node n and node 2

ρ1,max Capacity on route between node n and node 1
ρ2,max Capacity on route between node n and node 2

M A sufficiently large constant

Table A-2: General Parameter Definition for Transfer Nodes and Pass-Through Nodes

Transfer Node with Stack

Figure A-2: Visual representation of a transfer node with stack

Master of Science Thesis M.J.A. Bartels



136 System of Equations for Alternative Transportation Nodes

State Equations

an1(k) = d1(k) + τ1

an2(k) = d2(k) + τ2

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

s21(k) = s21(k − 1) + ρ2(k)− L1 (dn1(k)− en1(k))
s12(k) = s12(k − 1) + ρ1(k)− L2 (dn2(k)− en2(k)

dn1(k) = min(en1(k) + ρ1,max
L1

, L−1
1 (s21(k − 1) + ρ2(k)) + en1(k),

L−1
1 s21(k − 1) + en1(k) + t1(k))

dn2(k) = min
(
en2(k) + ρ2,max

L2
, L−1

2 (s12(k − 1) + ρ1(k)) + en2(k),

L−1
2 s12(k − 1) + en2(k) + t2(k)

)
t1(k) = max

(
0, (L−1

1 S21(k − 1) + en1(k)− an2(k)) ·M
)

t2(k) = max
(
0,
(
L−1

2 s12(k − 1) + en2(k)− an1(k)
)
·M

)
ρ1(k) = L1 · (dn1(k)− en1(k))
ρ2(k) = L2 · (dn2(k)− en2(k))

(A-2)

Transfer Node with Input

Figure A-3: Visual representation of a transfer node with input

M.J.A. Bartels Master of Science Thesis



A-2 Transfer Nodes 137

Transfer Node with Input Specific Parameter Definitions

Parameter Definition
γ Inflow rate at node n
β Fraction from input to truck for node 2

1− β Fraction from input to truck for node 1

Table A-3: Parameter definition for the state equations of the transfer node with stack and input

State Equations

an1(k) = d1(k) + τ1

an2(k) = d2(k) + τ2

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

s12(k) = s12(k − 1) + βγ (dn2(k)− dn2(k − 1)) +
u1 (en1(k)− an1(k))− L2 (dn2(k)− en2(k))

s21(k) = s21(k − 1) + (1− β)γ (dn1(k)− dn1(k − 1)) +
u2 (en2(k)− an2(k))− L1(dn1(k)− en1(k))

dn1(k) = min
(
en1(k) + ρmax

L1
, (L1 − βγ)−1(s21(k − 1) + L2en2(k)+

u2 (en2(k)− an2(k))− βγdn1(k − 1)),

en1(k) + L−1
1

1− βγ
L1

(s21(k − 1) + βγ (en1 (k)− dn1 (k − 1))) + t1(k)
)

dn2(k) = min
(
en2(k) + ρmax

L2
, (L1 − (1− β)γ)−1(s12(k − 1) + L1en1(k)+

u1(en1(k)− an1(k))− (1− β)γdn2(k − 1)),

en1(k) + L−1
2

1− (1−β)γ
L2

(s12(k − 1) + (1− β)γ(en2(k)− dn2(k − 1)) + t2(k)
)

t1(k) = max
(
0, (e1(k)− L−1

1
1− βγ

L1

(s21 (k − 1) + βγ (e1 (k)− d1 (k − 1)))− a2 (k))M
)

t2(k) = max
(
0, (en1(k) + L−1

2

1− (1−β)γ
L2

(s12(k − 1) + (1− β)γ(en2(k)−

dn2(k − 1)))− an1(k)) ·M
)

(A-3)

Master of Science Thesis M.J.A. Bartels



138 System of Equations for Alternative Transportation Nodes

Transfer Node with Output

Figure A-4: Visual representation of transfer node with output

Transfer Node with Output Specific Parameter Definitions

Parameter Definition
φ Outflow rate of goods at node n
α Fraction of goods from node 1 to truck 2

1− α Fraction of goods from node 1 to output stack
β Fraction of goods from node 2 to truck 1

1− β Fraction of goods from node 2 to output stack

Table A-4: Parameter definition for the state equations of the transfer node with stack and
output

M.J.A. Bartels Master of Science Thesis



A-2 Transfer Nodes 139

State Equations

an1(k) = d1(k) + τ1

an2(k) = d2(k) = τ2

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

so(k) = max
(
0, so(k − 1)− φ(dl(k)− dl(k − 1)) + αρ1(k) + βρ2(k)

)
dl(k) = max(d1(k), d2(k))

s21(k) = s21(k − 1) + (1− β)ρ2(k)− L1(dn1(k)− en1(k))
s12(k) = s12(k − 1) + (1− α)ρ1(k)− L2(dn2(k)− en2(k))

dn1(k) = min
(
en1(k) + ρ1,max

L1
, L−1

1 (s21(k − 1) + (1− β)ρ2(k)) + en1,

L−1
1 (s21(k − 1)) + en1 + t1(k)

)
dn2(k) = min

(
en2(k) + ρ2,max

L2
, L−1

2 (s12(k − 1) + (1− α)ρ1(k)) + en2,

L−1
2 (s12(k − 1)) + en2 + t2(k)

)
t1(k) = max

(
0, (L−1

1 (s21(k − 1) + en1(k)− an2(k)) ·M
)

t2(k) = max
(
0, (L−1

2 (s12(k − 1) + en2(k)− an1(k)) ·M
)

ρn1(k) = L1 · (dn1(k)− en1(k))
ρn2(k) = L2 · (dn2(k)− en2(k))

(A-4)

Transfer Node with Input and Output

Figure A-5: Visual representation transfer node with input and output

Master of Science Thesis M.J.A. Bartels



140 System of Equations for Alternative Transportation Nodes

Transfer Node with Input and Output Specific Parameter Definitions

Parameter Definition
dl(k) Departure time of last truck
so(k) Stack of goods for output

φ Outflow rate at node n
γ Inflow rate at node n
α Fraction from node 1 to truck 2

1− α Fraction from node 1 to output stack
β Fraction from node 2 to truck 1

1− β Fraction from node 2 to output stack
σ Fraction of input to node 1

1− σ Fraction of input to node 2

Table A-5: Parameter definition for the state equations of the transfer node with stack and
output

M.J.A. Bartels Master of Science Thesis



A-2 Transfer Nodes 141

State Equations

an1(k) = d1(k) + τ1

an2(k) = d2(k) + τ2

en1(k) = an1(k) + ρ1(k)
u1

en2(k) = an2(k) + ρ2(k)
u2

ρn1(k) = L1(dn1(k)− en1(k))
ρn2(k) = L2(dn2(k)− en2(k))
s21(k) = s21(k − 1) + σγ(dn1(k)− dn1(k − 1)) + (1− β)ρ2(k)− L1(dn1(k)− en1(k))
s12(k) = s12(k − 1) + (1− σ)γ(dn2(k)− dn2(k − 1)) + (1− α)ρ1(k)− L2(dn2(k)− en2(k))

so(k) = max
(
0, so(k − 1)− φ(dl(k)− dl(k − 1)) + βρ2(k) + αρ1(k)

)
dl(k) = max(dn1(k), dn2(k))

dn1(k) = min
(
an1(k) + ρ1,max

L1
, (L1 − σγ)−1(s21(k − 1) + (1− β)ρ2(k)− σγdn1(k − 1)+

L1en1(k)), (L1 − σγ)−1(s21(k − 1)− σγdn1(k − 1) + L1en1(k)) + t1(k)
)

dn2(k) = min
(
an2(k) + ρ2,max

L2
, (L2 − σγ)−1(s12(k − 1) + (1− α)ρ1(k)− (1− σ)γdn2(k − 1)

+ L2en2(k)), (L2 − σγ)−1(s12(k − 1)− (1− σ)γdn2(k − 1) + L2en2(k)) + t2(k)
)

t1(k) = max
(
0,
(
en1(k)− L−1

1
1− βγ

L1

(s21 (k − 1) + βγ (en1 (k)− dn1 (k − 1)))− an2 (k)
)
M
)

t2(k) = max
(
0,
(
en1(k) + L−1

2

1− (1−β)γ
L2

(s12(k − 1)+

(1− β)γ(en2(k)− dn2(k − 1)))− an1(k)
)
M
)

(A-5)

Master of Science Thesis M.J.A. Bartels



142 System of Equations for Alternative Transportation Nodes

A-3 Pass-through Nodes

Pass-through Node with Input

Figure A-6: Visual representation of a pass-through node with input

Pass-through Node with Input Specific Parameter Definitions

Parameter Definition
γ Inflow rate at node n
β Fraction from input to truck 1

Table A-6: Parameter definition for the state equations of the Pass-through node with stack and
input

State Equations

an1(k) = d1(k) + τ1

an2(k) = d2(t) + τ2

ρn1(k) = ρ2(k) + L2 (dn1(k)− an2(k))
ρn2(k) = ρ1(k) + L1 (dn2(k)− an1(k))
s21(k) = s21(k − 1) + βγ (dn1(k)− dn1(k − 1))− L1 (dn1(k)− an2(k))
s12(k) = s12(k − 1) + (1− β)γ (dn2(k)− dn2(k − 1))− L2 (dn2(k)− an1(k))

dn1(k) = min
(

a2(k) + ρ1,max − ρ2(k)
L1

,

(L1 − βγ)−1 (s21(k − 1)− βγdn1(k − 1) + L1an2(k))
)

dn2(k) = min
(

a1(k) + ρ2,max − ρ1(k)
L1

,

(L2 − (1− β)γ)−1 (s12(k − 1)− (1− β)γdn2(k − 1) + L1an1(k))
)

(A-6)

M.J.A. Bartels Master of Science Thesis



A-3 Pass-through Nodes 143

Pass-through Node with Output

Figure A-7: Visual representation pass-through node with output

Pass-through Node with Output Specific Parameter Definitions

Parameter Definition
dl(k) Departure time of last truck
so(k) Stack of goods for output

φ Outflow rate at node n
1− α Fraction of goods from node 2 to truck 1

α Fraction of goods from node 2 to output stack
1− β Fraction of goods from node 1 to truck 2

β Fraction of goods from node 1 to output stack

Table A-7: Parameter definition for the state equations of the Pass-through node with stack and
input

State Equations

an1(k) = d1(k) + τ

an2(k) = d2(k) + τ

ρn1(k) = (1− α)ρ2(k)
ρn2(k) = (1− β)ρ1(k)

dn1(k) = an2(k) + αρ2(k)
u2

dn2(k) = an1(k) + βρ1(k)
u1

dl(k) = max (dn1(k), dn2(k))
so(k) = max(0, so(k − 1)− φ (dl(k)− dl(k − 1) + αρ2(k) + βρ1(k))

(A-7)

Master of Science Thesis M.J.A. Bartels



144 System of Equations for Alternative Transportation Nodes

Pass-through Node with Input and Output

Figure A-8: Visual representation of a pass-through node with input and output

Pass-through Node with Input and Output Specific Parameter Definitions

Parameter Definition
φ Outflow rate at node n
γ Inflow rate at node n

1− α Fraction of goods from node 2 to truck 1
α Fraction of goods from node 2 to output stack

1− β Fraction of goods from node 1 to truck 2
β Fraction of goods from node 1 to output stack
σ Fraction of input to node 1

1− σ Fraction of input to node 2

Table A-8: Parameter definition for the state equations of the Pass-through node with stack,
input and output

M.J.A. Bartels Master of Science Thesis



A-3 Pass-through Nodes 145

State Equations

an1(k) = d1(k) + τ

an2(k) = d2(k) + τ

ρn1(k) = ρ2(k)− u2 (en1(k)− an2(k)) + L1 (dn1(k)− en1(k))
ρn2(k) = ρ1(k)− u1 (en2(k)− an1(k)) + L2 (dn2(k)− en2(k))

en1 (k) = an2 (k) + αρ2 (k)
u2

en2(k) = an1(k) + βρ1(k)
u1

s21(k) = s21(k − 1) + σγ(dn1(k)− dn1(k − 1))− L1 (dn1(k)− en2(k))
s12(k) = s12(k − 1) + (1− σ)γ(dn2(k)− dn2(k − 1))− L2(dn2(k)− en1(k))

dn1(k) = min
(
an2(k) + ρmax − (1− α)ρ2(k)

L1
,

(L1 − βγ)−1 (s21(k − 1)− σγdn1(k − 1) + L1en2(k))
)

dn2(k) = min
(
an1(k) + ρmax − (1− β)ρ1(k)

L2
,

(L2 − (1− β)γ)−1 (s12(k − 1)− (1− σ)γdn2(k − 1) + L1en1(k))
)

dL(k) = max
(
dn1(k), dn2(k)

)
So(k) = max

(
0, So(k − 1)− φ(dl(k)− dl(k − 1) + αρ2(k) + βρ1(k)

)

(A-8)

Master of Science Thesis M.J.A. Bartels



146 System of Equations for Alternative Transportation Nodes

M.J.A. Bartels Master of Science Thesis



Appendix B

System Matrices Example 7.3

Afull =


10 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε 10 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε 0 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε 8 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε 0 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε 8 ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 0 ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0



Master of Science Thesis M.J.A. Bartels



148 System Matrices Example 7.3

Bfull =


0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 1.25 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0



M.J.A. Bartels Master of Science Thesis



149

Cfull =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.028 −0.142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0



Master of Science Thesis M.J.A. Bartels



150 System Matrices Example 7.3

Dfull =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
40 0 −35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−40 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.033
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −5 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.033 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



M.J.A. Bartels Master of Science Thesis



Appendix C

MATLAB: Full MILP Search
Algorithm

1 clear
2 close all
3
4
5 % === Define all the variables and system matrices in ABCD form including

s ===
6
7
8 % === Create structure matrices for solvability and MILP search route ===
9

10 S_A = double ( ( A ~= −inf ) ) ;
11 S_B = double ( ( B ~= inf ) ) ;
12 S_D = double ( ( D ~= 0) ) ;
13 S_s = S_A ∗ S_B ∗ S_D ;
14
15
16 % === locate all branching point for the MILP ===
17
18
19 % Find column positions of 1s in each row
20 cols_A = arrayfun ( @ ( i ) find ( S_A (i , : ) == 1) , ( 1 : size ( S_A , 1) ) ’ , ’

UniformOutput’ , false ) ;
21 cols_B = arrayfun ( @ ( i ) find ( S_B (i , : ) == 1) , ( 1 : size ( S_B , 1) ) ’ , ’

UniformOutput’ , false ) ;
22
23 % Prepare all data
24 values = [ sum_A ; sum_B ] ;
25 rows = [ ( 1 : size ( S_A , 1 ) ) ’ ; ( 1 : size ( S_B , 1 ) ) ’ ] ;
26 cols = [ cols_A ; cols_B ] ;
27 source = [ repmat ( " A " , size ( S_A , 1 ) , 1) ; repmat ( " B " , size ( S_B , 1 ) , 1) ] ;
28

Master of Science Thesis M.J.A. Bartels



152 MATLAB: Full MILP Search Algorithm

29 % Create table
30 search_path = table ( values , rows , cols , source , . . .
31 ’VariableNames’ , {’Value’ , ’RowIndex’ , ’ColumnIndices’ , ’Source’}) ;
32
33 % Remove rows where Value == 1 and sort in descending order
34 search_path = search_path ( search_path . Value ~= 1 , : ) ;
35 search_path = sortrows ( search_path , ’Value’ , ’descend’ ) ;
36
37
38 % === Check solvitility of the system by searching for cycles ===
39 G = digraph ( transpose ( S_s ) ) ;
40 hasCycle = ~isdag ( G ) ;
41
42
43 if hasCycle
44 warning ( ’There are cycles in the communications graph.’ ) ;
45 else
46 disp ( ’There are no cycles in the communications graph.’ ) ;
47 end
48
49 % === Determine state dependencies for simulation ===
50
51 executionOrder = toposort ( G ) ;
52 inDegree = indegree ( G ) ;
53 levels = zeros ( size ( executionOrder ) ) ;
54
55 % Assign nodes to levels
56 for i = 1 : length ( executionOrder )
57 node = executionOrder ( i ) ;
58 predNodes = predecessors (G , node ) ;
59 if isempty ( predNodes )
60 levels ( i ) = 1 ;
61 else
62 levels ( i ) = max ( levels ( ismember ( executionOrder , predNodes ) ) ) + 1 ;
63 end
64 end
65
66 % Group nodes by levels
67 maxLevel = max ( levels ) ;
68 executionCell = cell ( maxLevel , 1) ;
69 for lvl = 1 : maxLevel
70 group = executionOrder ( levels == lvl ) ;
71 % fprintf(’Execution Group %d: %s\n’, lvl, num2str(group));
72 executionCell{lvl} = group ;
73 end
74
75
76
77
78 % === check for time invariance ===
79
80 C_11 = %add submatrices depending on system construction
81 D_11 = %add submatrices depending on system construction

M.J.A. Bartels Master of Science Thesis



153

82 C_21 = %add submatrices depending on system construction
83 D_21 = %add submatrices depending on system construction
84
85 CD_11 = [ C_11 , D_11 ] ;
86 CD_21 = [ C_21 , D_21 ] ;
87
88 sum_time_time_invariance = sum ( CD_11 , 2 ) ;
89 sum_quantitity_time_invariance = sum ( CD_21 , 2 ) ;
90
91 if sum ( sum_time_time_invariance ) == length ( sum_time_time_invariance ) &&

sum ( sum_quantitity_time_invariance ) == 0
92 disp ( ’The system is Time Invariant’ ) ;
93 else
94 warning ( ’Warning: The system is Not Time Invariant!’ ) ;
95 end
96
97 % === simulate the system ===
98 % === Simulation is optional ===
99

100 x0 = [ ] ;
101
102
103 x_state = zeros (X , k ) ;
104 x_state ( : , 1 ) = x0 ;
105
106
107 for i = 2 : k
108 for level = 1 : length ( executionCell )
109 rowsToCompute = executionCell{level } ;
110 x_intermediate = maxplus (A , minplus (B , ( C∗x_state ( : , i−1)+ D∗x_state

( : , i ) ) ) ) ;
111 x_state ( rowsToCompute , i ) = x_intermediate ( rowsToCompute ) ;
112 end
113 end
114
115
116
117 % === MILP preprocessing ===
118
119 feasible_indices = {} ;
120 nonfeasible_indices = {} ;
121
122
123 for i = 1 : height ( search_path )
124 row_idx = search_path{i , 2} ;
125 col_indices = search_path{i , 3 } { : } ;
126 source = search_path{i , 4} ;
127
128 for j = 1 : length ( col_indices )
129 col_idx = col_indices ( j ) ;
130 input_cell = {row_idx , col_idx , source } ;
131 fprintf ( ’Trying row %d, col %d, source %s\n’ , row_idx , col_idx ,

source ) ;

Master of Science Thesis M.J.A. Bartels



154 MATLAB: Full MILP Search Algorithm

132
133 [ feasible , lam_opt_single , x_opt_single , ~ , ~ , ~ , ~ ] =

MILP_MMPS_MOSEK_full_search (A , B , C , D , s , input_cell , [ ] ,
nonfeasible_indices ) ;

134
135 if feasible
136 fprintf ( ’feasible result at row %d, col %d, source %s\n’ ,

row_idx , col_idx , source ) ;
137 feasible_indices ( end+1, : ) = {row_idx , col_idx , source } ;
138 else
139 fprintf ( ’NON-feasible result at row %d, col %d, source %s\n’ ,

row_idx , col_idx , source ) ;
140 nonfeasible_indices ( end+1, : ) = {row_idx , col_idx , source } ;
141 end
142 end
143 end
144
145 input_table = cell2table ( feasible_indices , ’VariableNames’ , {’RowIndex’ ,

’ColumnIndices’ , ’Source’}) ;
146
147 % Group by RowIndex and Source
148 [ group_keys , ~ , group_ids ] = unique ( input_table ( : , {’RowIndex’ , ’Source’

}) , ’rows’ ) ;
149
150 % Initialize result containers
151 Value = zeros ( height ( group_keys ) , 1) ;
152 RowIndex = group_keys . RowIndex ;
153 ColumnIndices = cell ( height ( group_keys ) , 1) ;
154 Source = group_keys . Source ;
155
156 % For each group , compute value and col block
157 for i = 1 : height ( group_keys )
158 group_mask = ( group_ids == i ) ;
159 cols = input_table . ColumnIndices ( group_mask ) ;
160 ColumnIndices{i} = sort ( cols ( : ) ’ ) ;
161 Value ( i ) = numel ( cols ) ;
162 end
163
164 % Build output table
165 main_table = table ( Value , RowIndex , ColumnIndices , Source ) ;
166
167 % Split into two tables
168 split_idx = main_table . Value == 1 ;
169 single_value_table = main_table ( split_idx , : ) ;
170 main_table = main_table (~ split_idx , : ) ;
171
172 % Sort by Value descending
173 main_table = sortrows ( main_table , ’Value’ , ’descend’ ) ;
174 search_path = main_table ;
175
176 % === run the entire MILP search on search_path ===

M.J.A. Bartels Master of Science Thesis



155

177 [ feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all ,
p_opt_all , q_opt_all ] = search_tree_algorithm_full ( single_value_table ,
search_path , A , B , C , D , s ) ;

178
179 % === Remove first p and q matrices as they are empty due to matlabs

tensor filling method ===
180 p_opt_all = p_opt_all ( : , : , 2 : end ) ;
181 q_opt_all = q_opt_all ( : , : , 2 : end ) ;

1 function [ feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all
, p_opt_all , q_opt_all ] = search_tree_algorithm_full (
single_value_table , search_path , A , B , C , D , s )

2
3 % === initialize outputs ===
4 feasible_paths = {} ;
5 lambda_opt_all = [ ] ;
6 x_opt_all = [ ] ;
7 y_opt_all = [ ] ;
8 w_opt_all = [ ] ;
9 p_opt_all = [ ] ;

10 q_opt_all = [ ] ;
11
12 % === Start Depth First Search from level 1 ===
13 [ feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all ,

p_opt_all , q_opt_all ] = dfs_algorithm (1 , [ ] , search_path ,
feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all ,
p_opt_all , q_opt_all , A , B , C , D , s , single_value_table ) ;

14
15 % === Show all feasible paths found ===
16 disp ( ’All feasible paths:’ ) ;
17 for i = 1 : length ( feasible_paths )
18 disp ( feasible_paths{i }) ;
19 end
20 end

1 function [ feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all ,
p_opt_all , q_opt_all ] = dfs_algorithm ( level , current_path , search_path
, feasible_paths , lambda_opt_all , x_opt_all , y_opt_all , w_opt_all ,
p_opt_all , q_opt_all , A , B , C , D , s , single_value_table )

2
3 %=== Add global step counter ===
4 persistent dfs_counter
5 if isempty ( dfs_counter )
6 dfs_counter = 0 ;
7 end
8
9 % === terminate route if bottom level of search_path has been reached

===
10 if level > height ( search_path )
11 fprintf ( ’Feasible path found:\n’ ) ;
12 disp ( current_path ) ;
13 feasible_paths{end+1} = current_path ;
14 return ;

Master of Science Thesis M.J.A. Bartels



156 MATLAB: Full MILP Search Algorithm

15 end
16
17 row_val = search_path . RowIndex ( level ) ;
18 col_list = search_path . ColumnIndices{level } ;
19 source_val = search_path . Source{level } ;
20
21 for col_val = col_list
22 dfs_counter = dfs_counter + 1 ;
23 fprintf ( ’[Step %d] Trying row %d, col %d, source %s\n’ ,

dfs_counter , row_val , col_val , source_val ) ;
24 path_try = [ current_path ; {row_val , col_val , source_val } ] ;
25
26 % === Run MILP ===
27 [ feasible , lambda_opt , x_opt , y_opt , w_opt , p_opt , q_opt ] =

MILP_MMPS_MOSEK_full_search (A , B , C , D , s , path_try ,
single_value_table , [ ] ) ;

28 if level == height ( search_path ) && feasible
29 lambda_opt_all ( end+1) = lambda_opt ;
30 x_opt_all ( : , end+1) = x_opt ;
31 y_opt_all ( : , end+1) = y_opt ;
32 w_opt_all ( : , end+1) = w_opt ;
33 p_opt_all ( : , : , end+1) = p_opt ;
34 q_opt_all ( : , : , end+1) = q_opt ;
35 end
36
37 if feasible
38 % === Go deeper and capture updated feasible_paths ===
39 [ feasible_paths , lambda_opt_all , x_opt_all , y_opt_all ,

w_opt_all , p_opt_all , q_opt_all ] = dfs_algorithm ( level + 1 ,
path_try , search_path , feasible_paths , lambda_opt_all ,

x_opt_all , y_opt_all , w_opt_all , p_opt_all , q_opt_all , A , B , C
, D , s , single_value_table ) ;

40 else
41 fprintf ( ’Infeasible at row %d, col %d, source %s -

backtracking\n’ , row_val , col_val , source_val ) ;
42 end
43 end
44 end

1 function [ feasible , lambda_opt , x_opt , y_opt , w_opt , p_opt , q_opt ] =
MILP_MMPS_MOSEK_full_search (A , B , C , D , s , search_path , single_value_table ,
non_feasible_input_cells )

2
3 eps = 1e3 ; % choose own M such that it is large enough
4
5 M_D = max ( abs ( D (~ isinf ( D ) ) ) ) + eps ;
6 M_C = max ( abs ( C (~ isinf ( C ) ) ) ) + eps ;
7 M_B = max ( abs ( B (~ isinf ( B ) ) ) ) + eps ;
8 M_A = max ( abs ( A (~ isinf ( A ) ) ) ) + eps ;
9

10 M = max ( [ M_A , M_B , M_C , M_D ] ) ;
11
12 [ n , m ] = size ( A ) ;

M.J.A. Bartels Master of Science Thesis



157

13 [ ~ , l_dim ] = size ( B ) ;
14 d = D ∗ s ;
15
16 % === Variable indexing ===
17 num_lambda = 1 ;
18 num_x = n ;
19 num_y = m ;
20 num_w = l_dim ;
21 num_p = m ∗ l_dim ;
22 num_q = n ∗ m ;
23
24 idx_lambda = 1 ;
25 idx_x = @ ( i ) idx_lambda + i ;
26 idx_y = @ ( j ) idx_lambda + n + j ;
27 idx_w = @ ( l ) idx_lambda + n + m + l ;
28 idx_p = @ (j , l ) idx_lambda + n + m + l_dim + (j−1)∗l_dim + l ;
29 idx_q = @ (i , j ) idx_lambda + n + m + l_dim + num_p + (i−1)∗m + j ;
30
31 total_vars = num_lambda + num_x + num_y + num_w + num_p + num_q ;
32
33 % === Constraint matrix ===
34 Aineq = [ ] ;
35 bineq = [ ] ;
36 Aeq = [ ] ;
37 beq = [ ] ;
38
39 % === Constraints 1-2 ===
40 for j = 1 : m
41 for l = 1 : l_dim
42 if isinf ( B (j , l ) ) ; continue ; end
43
44 % Constraint 1
45 row = sparse (1 , total_vars ) ;
46 row ( idx_lambda ) = −d ( l ) ;
47 row ( idx_y ( j ) ) = 1 ;
48 row ( idx_w ( l ) ) = −1;
49 Aineq = [ Aineq ; row ] ;
50 bineq = [ bineq ; B (j , l ) ] ;
51
52 % Constraint 2
53 row = sparse (1 , total_vars ) ;
54 row ( idx_lambda ) = d ( l ) ;
55 row ( idx_y ( j ) ) = −1;
56 row ( idx_w ( l ) ) = 1 ;
57 row ( idx_p (j , l ) ) = M ;
58 Aineq = [ Aineq ; row ] ;
59 bineq = [ bineq ; −B (j , l ) + M ] ;
60 end
61 end
62
63 % === Constraints 3-4 ===
64 for i = 1 : n
65 for j = 1 : m

Master of Science Thesis M.J.A. Bartels



158 MATLAB: Full MILP Search Algorithm

66 if A (i , j ) == −inf ; continue ; end
67
68 % Constraint 3
69 row = sparse (1 , total_vars ) ;
70 row ( idx_lambda ) = −s ( i ) ;
71 row ( idx_x ( i ) ) = −1;
72 row ( idx_y ( j ) ) = 1 ;
73 Aineq = [ Aineq ; row ] ;
74 bineq = [ bineq ; −A (i , j ) ] ;
75
76 % Constraint 4
77 row = sparse (1 , total_vars ) ;
78 row ( idx_lambda ) = s ( i ) ;
79 row ( idx_x ( i ) ) = 1 ;
80 row ( idx_y ( j ) ) = −1;
81 row ( idx_q (i , j ) ) = M ;
82 Aineq = [ Aineq ; row ] ;
83 bineq = [ bineq ; A (i , j ) + M ] ;
84 end
85 end
86
87 % === Constraint 5: w = (C+D)x ===
88 for l = 1 : l_dim
89 row = sparse (1 , total_vars ) ;
90 row ( idx_w ( l ) ) = 1 ;
91 for i = 1 : n
92 row ( idx_x ( i ) ) = −(C (l , i ) + D (l , i ) ) ;
93 end
94 Aeq = [ Aeq ; row ] ;
95 beq = [ beq ; 0 ] ;
96 end
97
98 % === Constraint 6: sum_j qij = 1 for all i ===
99 for i = 1 : n

100 row = sparse (1 , total_vars ) ;
101 for j = 1 : m
102 row ( idx_q (i , j ) ) = 1 ;
103 end
104 Aeq = [ Aeq ; row ] ;
105 beq = [ beq ; 1 ] ;
106 end
107
108
109 % === Constraint 7: sum_j pij = 1 for all i ===
110 for j = 1 : m
111 row = sparse (1 , total_vars ) ;
112 for l = 1 : l_dim
113 row ( idx_p (j , l ) ) = 1 ;
114 end
115 Aeq = [ Aeq ; row ] ;
116 beq = [ beq ; 1 ] ;
117 end
118

M.J.A. Bartels Master of Science Thesis



159

119 % === Constraint: fix q and p for the rows known to have one option
from the single constraint search ===

120
121 for i = 1 : size ( single_value_table , 1)
122 row_idx = single_value_table{i , 2} ;
123 col_idx = double ( single_value_table{i , 3}{1}) ;
124 source = single_value_table{i , 4} ;
125
126 row = sparse (1 , total_vars ) ; % 1 x total_vars
127
128 if strcmp ( source , ’A’ )
129 row ( idx_q ( row_idx , col_idx ) ) = 1 ;
130 elseif strcmp ( source , ’B’ )
131 row ( idx_p ( row_idx , col_idx ) ) = 1 ;
132 else
133 error ( ’Unknown source type: %s’ , source ) ;
134 end
135
136 Aeq = [ Aeq ; row ] ;
137 beq = [ beq ; 1 ] ;
138 end
139
140
141 % === Constraint: fix q and p for the rows known to have no option

from the single constraint search only in constraints search===
142
143 for i = 1 : size ( non_feasible_input_cells , 1)
144 row_idx = non_feasible_input_cells{i , 1} ;
145 col_idx = double ( non_feasible_input_cells{i , 2}) ;
146 source = non_feasible_input_cells{i , 3} ;
147
148 row = sparse (1 , total_vars ) ; % 1 x total_vars
149
150 if strcmp ( source , ’A’ )
151 row ( idx_q ( row_idx , col_idx ) ) = 1 ;
152 elseif strcmp ( source , ’B’ )
153 row ( idx_p ( row_idx , col_idx ) ) = 1 ;
154 else
155 error ( ’Unknown source type: %s’ , source ) ;
156 end
157
158 Aeq = [ Aeq ; row ] ;
159 beq = [ beq ; 0 ] ;
160 end
161 % === Constraint: set q and p rows with search path ===
162 for i = 1 : size ( search_path , 1)
163 row_idx = search_path{i , 1} ;
164 col_idx = search_path{i , 2} ;
165 source = search_path{i , 3} ;
166
167 row = sparse (1 , total_vars ) ; % 1 x total_vars
168
169 if strcmp ( source , ’A’ )

Master of Science Thesis M.J.A. Bartels



160 MATLAB: Full MILP Search Algorithm

170 row ( idx_q ( row_idx , col_idx ) ) = 1 ;
171 elseif strcmp ( source , ’B’ )
172 row ( idx_p ( row_idx , col_idx ) ) = 1 ;
173 else
174 error ( ’Unknown source type: %s’ , source ) ;
175 end
176
177 Aeq = [ Aeq ; row ] ;
178 beq = [ beq ; 1 ] ;
179 end
180
181 % === Constraint 8: Bjl = inf -> pjl = 0 ===
182 for j = 1 : m
183 for l = 1 : l_dim
184 if isinf ( B (j , l ) )
185 row = sparse (1 , total_vars ) ;
186 row ( idx_p (j , l ) ) = 1 ;
187 Aeq = [ Aeq ; row ] ;
188 beq = [ beq ; 0 ] ;
189 end
190 end
191 end
192
193 % === Constraint 9: Aij = -inf -> qij = 0 ===
194 for i = 1 : n
195 for j = 1 : m
196 if A (i , j ) == −inf
197 row = sparse (1 , total_vars ) ;
198 row ( idx_q (i , j ) ) = 1 ;
199 Aeq = [ Aeq ; row ] ;
200 beq = [ beq ; 0 ] ;
201 end
202 end
203 end
204
205
206
207 % === Objective: min lambda ===
208 c = zeros ( total_vars , 1 ) ;
209 c ( idx_lambda ) = 1 ;
210
211
212 row = sparse (1 , total_vars ) ;
213 row ( idx_lambda ) = −1;
214 Aineq = [ Aineq ; row ] ;
215 bineq = [ bineq ; −1];
216
217 % === Integer indices ===
218 bin_indices = [ ] ;
219 for j = 1 : m
220 for l = 1 : l_dim
221 bin_indices ( end+1) = idx_p (j , l ) ;
222 end

M.J.A. Bartels Master of Science Thesis



161

223 end
224 for i = 1 : n
225 for j = 1 : m
226 bin_indices ( end+1) = idx_q (i , j ) ;
227 end
228 end
229
230 % === Variable bounds ===
231 blx = −inf ( total_vars , 1) ;
232 bux = inf ( total_vars , 1) ;
233 blx ( bin_indices ) = 0 ;
234 bux ( bin_indices ) = 1 ;
235
236 % === Build MOSEK model ===
237 prob . c = c ;
238 prob . a = [ Aineq ; Aeq ] ;
239 prob . blc = [−inf ( size ( bineq ) ) ; beq ] ;
240 prob . buc = [ bineq ; beq ] ;
241 prob . blx = blx ;
242 prob . bux = bux ;
243 prob . ints . sub = bin_indices ;
244
245 param . MSK_IPAR_LOG = 1 ; % 0 to suppress output
246
247 % === Solve ===
248
249 [ ~ , res ] = mosekopt ( ’minimize’ , prob , param ) ;
250
251 if isfield ( res , ’sol’ ) && isfield ( res . sol , ’int’ ) && isfield ( res . sol .

int , ’solsta’ )
252 solsta = res . sol . int . solsta ;
253 prosta = res . sol . int . prosta ;
254
255 if strcmp ( solsta , ’PRIM_INFEASIBLE’ ) | | strcmp ( solsta , ’

DUAL_INFEASIBLE’ ) | | strcmp ( solsta , ’UNKNOWN’ ) | | . . .
256 strcmp ( prosta , ’PRIM_INFEASIBLE’ ) | | strcmp ( prosta , ’

DUAL_INFEASIBLE’ ) | | strcmp ( prosta , ’UNKNOWN’ )
257 fprintf ( ’MILP is infeasible or could not be solved. Problem

status: %s\n’ , prosta ) ;
258 fprintf ( ’MILP is infeasible or could not be solved. Solution

status: %s\n’ , solsta ) ;
259 disp ( ’current search path:’ )
260 disp ( search_path )
261 lambda_opt = [ ] ;
262 x_opt = [ ] ;
263 y_opt = [ ] ;
264 w_opt = [ ] ;
265 p_opt = [ ] ;
266 q_opt = [ ] ;
267 feasible = false ;
268
269 elseif strcmp ( solsta , ’INTEGER_OPTIMAL’ ) | | strcmp ( prosta , ’

PRIMAL_FEASIBLE’ )

Master of Science Thesis M.J.A. Bartels



162 MATLAB: Full MILP Search Algorithm

270 fprintf ( ’MILP solved optimally.\n’ ) ;
271
272 x = res . sol . int . xx ;
273
274 % === Extract outputs ===
275 lambda_opt = x ( idx_lambda ) ;
276 x_opt = x ( idx_x ( 1 : n ) ) ;
277 y_opt = x ( idx_y ( 1 : m ) ) ;
278 w_opt = x ( idx_w ( 1 : l_dim ) ) ;
279
280 % Optional outputs
281 p_opt = zeros (m , l_dim ) ;
282 q_opt = zeros (n , m ) ;
283 for j = 1 : m
284 for l = 1 : l_dim
285 p_opt (j , l ) = x ( idx_p (j , l ) ) ;
286 end
287 end
288
289 for i = 1 : n
290 for j = 1 : m
291 q_opt (i , j ) = x ( idx_q (i , j ) ) ;
292 end
293 end
294 feasible = true ;
295
296
297 else
298 fprintf ( ’Solution status: %s\n’ , solsta ) ;
299 lambda_opt = [ ] ;
300 x_opt = [ ] ;
301 y_opt = [ ] ;
302 w_opt = [ ] ;
303 p_opt = [ ] ;
304 q_opt = [ ] ;
305 feasible = false ;
306 disp ( ’current search path:’ )
307 disp ( search_path )
308 end
309 else
310 fprintf ( ’No solution status returned - likely infeasible or

solver failed early.\n’ ) ;
311 error ( ’something went wrong. solver error’ )
312 end
313 end

M.J.A. Bartels Master of Science Thesis



Appendix D

MATLAB: Generating a System of
Equations from an Adjacency Matrix

1 clear
2 close all
3
4 database = database ( ) ;
5
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%% input graph and node data %%%%%%%%%%%%
9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12
13 use_example = input ( ’Enter 1 to use the example graph , or 0 to provide

your own: ’ ) ;
14
15
16 if ~use_example
17 disp ( ’you have choosen to provide your own system’ )
18 choice = input ( ’Enter 1 to input adjacency matrix manually , 2 to load

from a .mat file: ’ ) ;
19
20 if choice == 1
21 graph_input = input ( ’Please enter the adjacency matrix (square

matrix): ’ ) ;
22 if ~ismatrix ( graph_input ) | | size ( graph_input , 1 ) ~= size (

graph_input , 2 )
23 error ( ’Input must be a square matrix.’ ) ;
24 end
25 graph = double ( graph_input > 0) ;
26
27 elseif choice == 2

Master of Science Thesis M.J.A. Bartels



164 MATLAB: Generating a System of Equations from an Adjacency Matrix

28 [ file , path ] = uigetfile ( ’*.mat’ , ’Select the .mat file
containing the adjacency matrix’ ) ;

29 if isequal ( file , 0 )
30 error ( ’No file selected’ ) ;
31 end
32 data = load ( fullfile ( path , file ) ) ;
33
34 % Try to find adjacency matrix inside loaded data
35 vars = fieldnames ( data ) ;
36 graph = [ ] ;
37 for i = 1 : length ( vars )
38 candidate = data . ( vars{i }) ;
39 if ismatrix ( candidate ) && size ( candidate , 1 ) == size ( candidate

, 2 )
40 graph = double ( candidate > 0) ;
41 fprintf ( ’Using variable "%s" from the file as adjacency

matrix.\n’ , vars{i }) ;
42 break ;
43 end
44 end
45
46 if isempty ( graph )
47 error ( ’No suitable square matrix found in the loaded .mat

file.’ ) ;
48 end
49
50 elseif use_example
51 error ( ’Invalid choice. Enter 1 or 2.’ ) ;
52 end
53
54 else
55 disp ( ’you have choosen to use the example graph’ )
56 graph = [ 0 1 0 1 ;
57 1 0 1 0 ;
58 0 1 0 0 ;
59 1 0 0 0 ] ;
60
61 nodes = struct ( ) ;
62 nodes (1 ) . type = ’transfer_without’ ;
63 nodes (1 ) . tau1 = 5 ;
64 nodes (1 ) . tau2 = 5 ;
65
66 nodes (2 ) . type = ’pass_through’ ;
67 nodes (2 ) . tau1 = 5 ;
68 nodes (2 ) . tau2 = 5 ;
69
70 nodes (3 ) . type = ’output’ ;
71 nodes (3 ) . outflow = 5 ;
72 nodes (3 ) . tau1 = 5 ;
73
74 nodes (4 ) . type = ’input’ ;
75 nodes (4 ) . inflow = 5 ;
76 nodes (4 ) . tau1 = 5 ;

M.J.A. Bartels Master of Science Thesis



165

77 end
78
79
80 sim_input = input ( ’Simulate the system? (true/false): ’ , ’s’ ) ;
81 sim_system = strcmpi ( sim_input , ’true’ ) ;
82 plot_input = input ( ’Plot the system graph? (true/false): ’ , ’s’ ) ;
83 plot_system_graph = strcmpi ( plot_input , ’true’ ) ;
84
85
86 if ~exist ( ’nodes’ , ’var’ )
87 nodes = ensure_nodes_exist ( graph ) ;
88 end
89
90 if plot_system_graph
91 Network = digraph ( graph ) ;
92
93 % Extract node type labels
94 labels = arrayfun ( @ ( n ) n . type , nodes , ’UniformOutput’ , false ) ;
95
96 % Plot graph without default labels
97 h = plot ( Network , . . .
98 ’Layout’ , ’circle’ , . . .
99 ’EdgeColor’ , ’b’ , . . .

100 ’NodeColor’ , ’r’ , . . .
101 ’LineWidth’ , 1 . 5 , . . .
102 ’MarkerSize’ , 8 , . . .
103 ’NodeLabel’ , {}) ;
104
105 for i = 1 : numel ( labels )
106 xpos = h . XData ( i ) ;
107 ypos = h . YData ( i ) ;
108 text ( xpos , ypos , labels{i } , . . .
109 ’HorizontalAlignment’ , ’center’ , . . .
110 ’VerticalAlignment’ , ’middle’ , . . .
111 ’FontSize’ , 10 , . . .
112 ’Rotation’ , 0 , . . .
113 ’Interpreter’ , ’none’ ) ;
114 end
115 title ( ’Graph of system network’ ) ;
116 end
117
118 %check if graph can be used with current blocks
119 A_upper = triu ( graph , 1) ;
120 deg = sum ( A_upper , 2) ;
121 nodes_more_than_3 = find ( deg > 3) ;
122
123 if ~isempty ( nodes_more_than_3 )
124 disp ( ’Nodes connected to more than 3 others (in one direction only):’

) ;
125 disp ( nodes_more_than_3 ) ;
126 error ( ’there are nodes with connected to more than 3 other nodes.

There is no building block for this in the toolbox’ )
127

Master of Science Thesis M.J.A. Bartels



166 MATLAB: Generating a System of Equations from an Adjacency Matrix

128 end
129
130 %check if all node data is present and nodes are connected propperly
131
132 validate_node_info ( nodes , graph )
133
134
135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136
137 %%%%%%%% ask user for truck data %%%%%%%%%%%%
138
139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140
141 N = size ( graph , 1) ;
142 [ arc_i , arc_j ] = find ( A_upper ) ; % List of unique undirected arcs
143 % Initialize connection lists
144 for n = 1 : N
145 nodes ( n ) . connections = {} ;
146 end
147
148 % Build the connection lists for each node
149 %first come first serve.
150 for idx = 1 : length ( arc_i )
151 i = arc_i ( idx ) ;
152 j = arc_j ( idx ) ;
153
154 % Add j to i’s connections and vice versa
155 nodes ( i ) . connections{end+1} = j ;
156 nodes ( j ) . connections{end+1} = i ;
157 end
158
159 num_arcs = length ( arc_i ) ;
160 truck_id = 1 ;
161 arc_to_truck = containers . Map ( ) ;
162 truck_arcs = {} ;
163
164 used_arcs = false ( num_arcs , 1) ;
165
166 for k = 1 : num_arcs
167 if used_arcs ( k ) , continue ; end
168
169 i = arc_i ( k ) ;
170 j = arc_j ( k ) ;
171
172 key1 = sprintf ( ’%d_%d’ , i , j ) ;
173 key2 = sprintf ( ’%d_%d’ , j , i ) ;
174
175 % Check if one node is a pass-through
176 if isfield ( nodes ( j ) , ’type’ ) && startsWith ( nodes ( j ) . type , ’pass-

through’ )
177 % Find other neighbors of j
178 neighbors = find ( graph (j , : ) == 1) ;
179 neighbors ( neighbors == i ) = [ ] ; % exclude i

M.J.A. Bartels Master of Science Thesis



167

180
181 if length ( neighbors ) ~= 1
182 error ( ’Pass-through node must have exactly two neighbors’ ) ;
183 end
184
185 k2 = neighbors (1 ) ; % the other arc
186 % Create arc list for this truck
187 key3 = sprintf ( ’%d_%d’ , j , k2 ) ;
188
189 % Find index in arc list
190 idx2 = find ( ( arc_i == min (j , k2 ) ) & ( arc_j == max (j , k2 ) ) ) ;
191
192 if isempty ( idx2 )
193 error ( ’Expected arc not found in arc list’ ) ;
194 end
195
196 used_arcs ( [ k , idx2 ] ) = true ;
197
198 arc_to_truck ( key1 ) = truck_id ;
199 arc_to_truck ( key2 ) = truck_id ;
200 arc_to_truck ( key3 ) = truck_id ;
201 arc_to_truck ( sprintf ( ’%d_%d’ , k2 , j ) ) = truck_id ;
202
203 truck_arcs{truck_id} = [ i j ; j k2 ] ; % store arcs
204
205 else
206 % Regular arc
207 used_arcs ( k ) = true ;
208 arc_to_truck ( key1 ) = truck_id ;
209 arc_to_truck ( key2 ) = truck_id ;
210 truck_arcs{truck_id} = [ i j ] ;
211 end
212
213 truck_id = truck_id + 1 ;
214 end
215
216 % get truck parameters from user
217 truck_params = struct ( ) ;
218 for t = 1 : length ( truck_arcs )
219 fprintf ( ’\nTruck %d connects the following arcs:\n’ , t ) ;
220 arcs = truck_arcs{t } ;
221 for a = 1 : size ( arcs , 1 )
222 fprintf ( ’ Node %d <--> Node %d\n’ , arcs (a , 1 ) , arcs (a , 2 ) ) ;
223 end
224
225 cap = input ( ’Enter capacity of truck: ’ ) ;
226 load = input ( ’Enter loading speed: ’ ) ;
227 unload = input ( ’Enter unloading speed: ’ ) ;
228
229 truck_params ( t ) . cap = cap ;
230 truck_params ( t ) . load = load ;
231 truck_params ( t ) . unload = unload ;
232 end

Master of Science Thesis M.J.A. Bartels



168 MATLAB: Generating a System of Equations from an Adjacency Matrix

233
234 %%%% Store truck info into node structs
235
236
237 for i = 1 : N
238 % Find arcs connected to this node
239 neighbors = find ( graph (i , : ) == 1) ;
240 trucks = [ ] ;
241
242 for j = neighbors
243 key = sprintf ( ’%d_%d’ , i , j ) ;
244 if isKey ( arc_to_truck , key )
245 trucks ( end+1) = arc_to_truck ( key ) ;
246 end
247 end
248
249 nodes ( i ) . truck_ids = unique ( trucks ) ;
250 nodes ( i ) . num_trucks = length ( nodes ( i ) . truck_ids ) ;
251
252 % Optionally store full parameters
253 for k = 1 : nodes ( i ) . num_trucks
254 tid = nodes ( i ) . truck_ids ( k ) ;
255 nodes ( i ) . truck ( k ) = truck_params ( tid ) ;
256 end
257 end
258
259 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
260
261 %%%%%%%%%%%% construct A B C D matrices %%%%%%%%%%%%%%%%
262
263 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
264
265
266 [ A_bigg , B_bigg , C_bigg , D_bigg , state_order ] = build_transport_network (

nodes , database ) ;
267
268
269 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
270
271 %%%%%%%%%%%%%%%%%%%% Simulate system %%%%%%%%%%%%%%%%%%%%%
272
273 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
274
275
276 x0 = zeros ( size ( A_bigg , 1 ) , 1 ) ;
277
278 num_steps = 10 ;
279
280 if sim_system
281 state = simulate_system ( A_bigg , B_bigg , C_bigg , D_bigg , x0 , num_steps ) ;
282 plot_state_evolution ( state , state_order ) ;
283 end
284

M.J.A. Bartels Master of Science Thesis



169

285
286
287 function state = simulate_system (A , B , C , D , x0 , num_steps )
288
289 k = num_steps ;
290
291 S_A = double ( ( A ~= −inf ) ) ;
292 S_B = double ( ( B ~= inf ) ) ;
293 S_D = double ( ( D ~= 0) ) ;
294 S_s = S_A ∗ S_B ∗ S_D ;
295
296 G = digraph ( transpose ( S_s ) ) ;
297 hasCycle = ~isdag ( G ) ;
298
299 %check if the system is solvable
300 if hasCycle
301 error ( ’There are cycles in the communications graph.’ ) ;
302 else
303 disp ( ’There are no cycles in the communications graph.’ ) ;
304 end
305
306 executionOrder = toposort ( G ) ;
307 levels = zeros ( size ( executionOrder ) ) ;
308
309 for i = 1 : length ( executionOrder )
310 node = executionOrder ( i ) ;
311 predNodes = predecessors (G , node ) ; % Get parent nodes
312 if isempty ( predNodes )
313 levels ( i ) = 1 ;
314 else
315 levels ( i ) = max ( levels ( ismember ( executionOrder , predNodes ) ) )

+ 1 ;
316 end
317 end
318
319 maxLevel = max ( levels ) ;
320 executionCell = cell ( maxLevel , 1) ;
321 for lvl = 1 : maxLevel
322 group = executionOrder ( levels == lvl ) ;
323 executionCell{lvl} = group ;
324 end
325
326
327 state = zeros ( size (A , 1 ) , k ) ;
328 state ( : , 1 ) = x0 ;
329 for i = 2 : k
330 for level = 1 : length ( executionCell )
331 rowsToCompute = executionCell{level } ;
332 x_intermediate = maxplus (A , minplus (B , ( C∗state ( : , i−1)+ D∗state

( : , i ) ) ) ) ;
333 state ( rowsToCompute , i ) = x_intermediate ( rowsToCompute ) ;
334 end
335 end

Master of Science Thesis M.J.A. Bartels



170 MATLAB: Generating a System of Equations from an Adjacency Matrix

336 end
337
338 function required_fields = required_fields_list ( )
339 required_fields = containers . Map ( ) ;
340 required_fields ( ’central’ ) = {’inflow’ , ’tau1’ , ’tau2’ , ’tau3’ } ;
341 required_fields ( ’input’ ) = {’inflow’ , ’tau1’ } ;
342 required_fields ( ’output’ ) = {’outflow’ , ’tau1’ } ;
343 required_fields ( ’in and output’ ) = {’inflow’ , ’outflow’ , ’tau1’ } ;
344
345 required_fields ( ’transfer_with’ ) = {’tau1’ , ’tau2’ } ;
346 required_fields ( ’transfer_without’ ) = {’tau1’ , ’tau2’ } ;
347 required_fields ( ’transfer_input’ ) = {’inflow’ , ’beta’ , ’tau1’ , ’tau2’ } ;
348 required_fields ( ’transfer_output’ ) = {’outflow’ , ’alpha’ , ’beta’ , ’

tau1’ , ’tau2’ } ;
349 required_fields ( ’transfer_in_and_output’ ) = {’inflow’ , ’outflow’ , ’

alpha’ , ’beta’ , ’sigma’ , ’tau1’ , ’tau2’ } ;
350
351 required_fields ( ’pass_through’ ) = {’tau1’ , ’tau2’ } ;
352 required_fields ( ’pass_through_input’ ) = {’inflow’ , ’beta’ , ’tau1’ , ’

tau2’ } ;
353 required_fields ( ’pass_through_output’ ) = {’outflow’ , ’alpha’ , ’beta’ ,

’tau1’ , ’tau2’ } ;
354 required_fields ( ’pass_through_in_and_output’ ) = {’inflow’ , ’outflow’ ,

’alpha’ , ’beta’ , ’sigma’ , ’tau1’ , ’tau2’ } ;
355 end
356
357 function validate_node_info ( nodes , graph )
358 required_fields = required_fields_list ( ) ;
359 degrees = sum ( graph , 2) ;
360
361 for i = 1 : numel ( nodes )
362 node = nodes ( i ) ;
363
364 % Type check
365 if ~isfield ( node , ’type’ ) | | isempty ( node . type )
366 error ( ’Node %d is missing the "type" field or it is empty.’ ,

i ) ;
367 end
368
369 % Normalize type
370 node_type = lower ( strtrim ( node . type ) ) ;
371
372 % Validate type
373 if ~isKey ( required_fields , node_type )
374 valid_types = strjoin ( keys ( required_fields ) , ’, ’ ) ;
375 error ( ’Node %d has unrecognized type "%s". Valid types: %s’ ,

. . .
376 i , node . type , valid_types ) ;
377 end
378
379 % Check required fields
380 expected = required_fields ( node_type ) ;
381 for j = 1 : numel ( expected )

M.J.A. Bartels Master of Science Thesis



171

382 fname = expected{j } ;
383 if ~isfield ( node , fname ) | | isempty ( node . ( fname ) )
384 error ( ’Node %d (type "%s") is missing or has empty

required field "%s".’ , . . .
385 i , node . type , fname ) ;
386 end
387 end
388
389 % Connectivity rule check
390 deg = degrees ( i ) ;
391 if startsWith ( node_type , ’pass_through’ ) | | startsWith ( node_type ,

’transfer’ )
392 if deg ~= 2
393 error ( ’Node %d (type "%s") must be connected to exactly 2

nodes , but is connected to %d.’ , . . .
394 i , node_type , deg ) ;
395 end
396 elseif strcmp ( node_type , ’central’ )
397 if deg ~= 3
398 error ( ’Node %d (type "central") must be connected to

exactly 3 nodes , but is connected to %d.’ , . . .
399 i , deg ) ;
400 end
401 elseif ismember ( node_type , {’input’ , ’output’ , ’in and output’})
402 if deg ~= 1
403 error ( ’Node %d (type "%s") must be connected to exactly 1

node, but is connected to %d.’ , . . .
404 i , node_type , deg ) ;
405 end
406 end
407 end
408 disp ( ’All nodes passed validation.’ ) ;
409 end
410
411
412 function M_filled = fill_template ( M_template , params )
413 % Replaces symbolic fields in the matrix template using the node

parameters
414 if isa ( M_template , ’sym’ )
415 syms_list = symvar ( M_template ) ;
416
417 for i = 1 : length ( syms_list )
418 sym_name = char ( syms_list ( i ) ) ;
419 replaced = false ;
420
421 % === Node-level parameter ===
422 if isfield ( params , sym_name )
423 val = params . ( sym_name ) ;
424 M_template = subs ( M_template , syms_list ( i ) , val ) ;
425 replaced = true ;
426
427 % === Truck parameters (Lk, uk, rho_mk) ===
428 else

Master of Science Thesis M.J.A. Bartels



172 MATLAB: Generating a System of Equations from an Adjacency Matrix

429 % Match Lk (loading), uk (unloading), rho_mk (capacity)
430 tokens = regexp ( sym_name , ’^(L|u|rho_m)(\d+)$’ , ’tokens’ )

;
431 if ~isempty ( tokens )
432 prefix = tokens {1}{1}; % L, u, or rho_m
433 idx = str2double ( tokens {1}{2}) ; % truck index
434 if isfield ( params , ’truck’ ) && length ( params . truck )

>= idx
435 truck = params . truck ( idx ) ;
436 switch prefix
437 case ’L’
438 val = truck . load ;
439 case ’u’
440 val = truck . unload ;
441 case ’rho_m’
442 val = truck . cap ;
443 otherwise
444 error ( [ ’Unknown symbolic truck field: ’

sym_name ] ) ;
445 end
446 M_template = subs ( M_template , syms_list ( i ) , val ) ;
447 replaced = true ;
448 else
449 error ( [ ’Truck index ’ num2str ( idx ) ’ not found in

params.truck’ ] ) ;
450 end
451 end
452 end
453
454 if ~replaced
455 error ( [ ’Missing parameter for symbol: ’ sym_name ] ) ;
456 end
457 end
458
459 M_filled = double ( M_template ) ;
460 else
461 M_filled = M_template ;
462 end
463 end
464
465
466 function [ A_bigg , B_bigg , C_bigg , D_bigg , state_order_all ] =

build_transport_network ( nodes , database )
467 E = −inf ;
468 T = inf ;
469 state_order_all = {} ;
470
471 N = length ( nodes ) ;
472 A_cells = {} ;
473 B_cells = {} ;
474 C_cells = {} ;
475 D_cells = {} ;
476 F_cells = {} ;

M.J.A. Bartels Master of Science Thesis



173

477 H_cells = {} ;
478 K_cells = {} ;
479 L_cells = {} ;
480 filled_Es = {} ;
481 arm_counts = zeros (N , 1) ;
482
483 for i = 1 : N
484 node = nodes ( i ) ;
485 type = node . type ;
486 template = database . ( type ) ;
487
488 A = fill_template ( template . A , node ) ;
489 B = fill_template ( template . B , node ) ;
490 C = fill_template ( template . C , node ) ;
491 D = fill_template ( template . D , node ) ;
492
493
494 A_cells{end+1} = A ;
495 B_cells{end+1} = B ;
496 C_cells{end+1} = C ;
497 D_cells{end+1} = D ;
498 F_cells{end+1} = template . F ;
499 H_cells{end+1} = template . H ;
500
501
502 ordered_states = template . state_order ;
503 for k = 1 : length ( ordered_states )
504 ordered_states{k} = [ ordered_states{k } , ’_’ , num2str ( i ) ] ;
505 end
506 state_order_all = [ state_order_all ; ordered_states ( : ) ] ;
507
508 % Count arms and store filled E matrices
509 k = 1 ;
510 while isfield ( template , [ ’E’ , num2str ( k ) ] )
511 Ek = fill_template ( template . ( [ ’E’ , num2str ( k ) ] ) , node ) ;
512 filled_Es{i , k} = Ek ;
513 k = k + 1 ;
514 end
515 arm_counts ( i ) = k − 1 ;
516 end
517
518 % Assemble block diagonal matrices
519 A_big = assemble_block_diag ( A_cells , E ) ;
520 B_big = assemble_block_diag ( B_cells , T ) ;
521 C_big = blkdiag ( C_cells { : } ) ;
522 D_big = blkdiag ( D_cells { : } ) ;
523 F_big = assemble_block_diag ( F_cells , E ) ;
524 H_big = assemble_block_diag ( H_cells , T ) ;
525
526
527 %%%%%%%%%%%%%%%% construction of E %%%%%%%%%%%%%%%%%
528
529 num_nodes = length ( nodes ) ;

Master of Science Thesis M.J.A. Bartels



174 MATLAB: Generating a System of Equations from an Adjacency Matrix

530 total_cols = 2 ∗ sum ( arm_counts ) ; % 2 columns per arm
531 total_rows = size ( D_big , 1 ) ;
532
533 E_big = zeros ( total_rows , total_cols ) ;
534
535 % Compute row offset for each node’s block in E_big
536 row_offsets = cumsum ( [ 0 ; cellfun ( @ ( c ) size (c , 1 ) , C_cells ) ’ ] ) ;
537
538 % Assign global arm indices
539 global_arm_counter = 0 ;
540 global_col_indices = cell (N , 1) ;
541 for i = 1 : N
542 global_col_indices{i} = global_arm_counter + ( 1 : arm_counts ( i ) ) ;
543 global_arm_counter = global_arm_counter + arm_counts ( i ) ;
544 end
545
546 % Place E blocks
547 for i = 1 : num_nodes
548 row_start = row_offsets ( i ) + 1 ;
549 row_end = row_offsets ( i+1) ;
550
551 for a = 1 : arm_counts ( i )
552 conn_node = nodes ( i ) . connections{a } ;
553 conn_arms = nodes ( conn_node ) . connections ;
554 conn_arm = find ( cellfun ( @ ( x ) isequal (x , i ) , conn_arms ) ) ;
555
556
557 if isempty ( conn_arm )
558 error ( " Could not find reciprocal connection from node %d

to node %d", conn_node , i);
559 end
560
561 % global column index of that arm
562 col_index = global_col_indices{conn_node }( conn_arm ) ;
563 col_start = ( col_index − 1) ∗ 2 + 1 ;
564 col_end = col_index ∗ 2 ;
565
566 % insert E block
567 E_block = filled_Es{i , a } ;
568 E_big ( row_start : row_end , col_start : col_end ) = E_block ;
569 end
570 end
571
572
573 %%%%%%%%%%%%%%%%% construct K and L %%%%%%%%%%%%%%%%%%%
574
575 end_nodes_passthrough = find_pass_through_endpoints_with_arms ( nodes ) ;
576
577
578 for i = 1 : N
579 num_arms = length ( nodes ( i ) . connections ) ;
580 conn_nodes = cell2mat ( nodes ( i ) . connections ) ;
581 node = nodes ( i ) ;

M.J.A. Bartels Master of Science Thesis



175

582 type = node . type ;
583 KLs = database . ( type ) . KL ;
584 connected_nodes_types = {nodes ( conn_nodes ) . type } ;
585
586 node_K_blocks = {} ;
587 node_L_blocks = {} ;
588 connects_to_pass_through = any ( cellfun ( @ ( s ) startsWith (s , ’

pass_through’ ) , connected_nodes_types ) ) ;
589
590 for a = 1 : num_arms
591 target_node = conn_nodes ( a ) ;
592 KL_block = KLs{a } ;
593 zero_block = zeros ( size ( KL_block ) ) ;
594
595 if startsWith ( type , ’pass_through’ )
596 node_K_blocks{end+1,1} = zero_block ;
597 node_L_blocks{end+1,1} = KL_block ;
598
599 elseif connects_to_pass_through
600 % Check if (node i, arm a) appears in first two columns

of any row in end_nodes_passthrough
601 is_K_side = any ( all ( end_nodes_passthrough ( : , 1 : 2 ) == [ i , a

] , 2) ) ;
602
603 if is_K_side
604 node_K_blocks{end+1,1} = KL_block ;
605 node_L_blocks{end+1,1} = zero_block ;
606 else
607 node_K_blocks{end+1,1} = zero_block ;
608 node_L_blocks{end+1,1} = KL_block ;
609 end
610
611 else
612 % Regular node
613 if target_node < i
614 node_K_blocks{end+1,1} = KL_block ;
615 node_L_blocks{end+1,1} = zero_block ;
616 else
617 node_K_blocks{end+1,1} = zero_block ;
618 node_L_blocks{end+1,1} = KL_block ;
619 end
620 end
621 end
622
623 % Stack vertically for this node
624 K_block = vertcat ( node_K_blocks { : } ) ;
625 L_block = vertcat ( node_L_blocks { : } ) ;
626
627 % Store block -diagonally
628 K_cells{end+1} = K_block ;
629 L_cells{end+1} = L_block ;
630 end
631

Master of Science Thesis M.J.A. Bartels



176 MATLAB: Generating a System of Equations from an Adjacency Matrix

632 % Build full block -diagonal matrices
633 K_big = blkdiag ( K_cells { : } ) ;
634 L_big = blkdiag ( L_cells { : } ) ;
635
636
637
638 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
639 %%%%%%%% concatinate all matrices %%%%%%%%%%%%%%%
640
641 [ mA , nA ] = size ( A_big ) ;
642 [ mF , nF ] = size ( F_big ) ;
643
644
645 A_bigg = −Inf ( mA + mF , nA + nF ) ;
646 A_bigg ( 1 : mA , 1 : nA ) = A_big ;
647 A_bigg ( mA+1:end , nA+1:end ) = F_big ;
648
649
650
651 [ mB , nB ] = size ( B_big ) ;
652 [ mH , nH ] = size ( H_big ) ;
653 B_bigg = Inf ( mB + mH , nB + nH ) ;
654 B_bigg ( 1 : mB , 1 : nB ) = B_big ;
655 B_bigg ( mB+1:end , nB+1:end ) = H_big ;
656
657 [ ~ , nE ] = size ( E_big ) ;
658 [ mL , ~ ] = size ( L_big ) ;
659 Z = zeros ( mL , nE ) ;
660
661 C_bigg = [ C_big , zeros ( size ( E_big ) ) ; K_big , Z ] ;
662 D_bigg = [ D_big , E_big ; L_big , Z ] ;
663
664 end
665
666 function M_big = assemble_block_diag ( blocks , default_val )
667
668 total_rows = 0 ;
669 total_cols = 0 ;
670 n_blocks = numel ( blocks ) ;
671 rows = zeros ( n_blocks , 1) ;
672 cols = zeros ( n_blocks , 1) ;
673
674 for i = 1 : n_blocks
675 [ rows ( i ) , cols ( i ) ] = size ( blocks{i }) ;
676 total_rows = total_rows + rows ( i ) ;
677 total_cols = total_cols + cols ( i ) ;
678 end
679
680 M_big = default_val ∗ ones ( total_rows , total_cols ) ;
681
682 row_offset = 0 ;
683 col_offset = 0 ;
684 for i = 1 : n_blocks

M.J.A. Bartels Master of Science Thesis



177

685 r = rows ( i ) ;
686 c = cols ( i ) ;
687 M_big ( row_offset + ( 1 : r ) , col_offset + ( 1 : c ) ) = blocks{i } ;
688 row_offset = row_offset + r ;
689 col_offset = col_offset + c ;
690 end
691 end
692
693 function end_node_info = find_pass_through_endpoints_with_arms ( nodes )
694 is_pass = arrayfun ( @ ( n ) startsWith ( n . type , ’pass_through’ ) , nodes ) ;
695 visited = false (1 , length ( nodes ) ) ;
696 end_node_info = zeros (0 , 4) ; % [node1 , arm1, node2 , arm2]
697
698 for i = 1 : length ( nodes )
699 if visited ( i ) | | is_pass ( i )
700 continue ;
701 end
702
703 for a = 1 : length ( nodes ( i ) . connections )
704 path = i ;
705 current = nodes ( i ) . connections{a } ;
706
707 if is_pass ( current )
708 % Follow pass-through chain
709 prev = i ;
710 while is_pass ( current )
711 path ( end+1) = current ;
712 visited ( current ) = true ;
713 next_candidates = setdiff ( [ nodes ( current ) . connections

{ : } ] , prev ) ;
714 if isempty ( next_candidates )
715 break ;
716 end
717 prev = current ;
718 current = next_candidates (1 ) ; % follow one direction
719 end
720 path ( end+1) = current ;
721
722 % Determine arms
723 node1 = path (1 ) ;
724 node2 = path ( end ) ;
725
726 arm1 = find ( cell2mat ( nodes ( node1 ) . connections ) == path (2 )

) ;
727 arm2 = find ( cell2mat ( nodes ( node2 ) . connections ) == path (

end−1) ) ;
728
729 if isempty ( arm1 ) | | isempty ( arm2 )
730 warning ( " Could not identify arms for nodes %d and %d

", node1 , node2);
731 continue ;
732 end
733

Master of Science Thesis M.J.A. Bartels



178 MATLAB: Generating a System of Equations from an Adjacency Matrix

734 pair = sort ( [ node1 , node2 ] ) ;
735 % Ensure unique entry (order -independent)
736 existing = ( end_node_info ( : , 1 ) == pair (1 ) & end_node_info

( : , 3 ) == pair (2 ) ) | . . .
737 ( end_node_info ( : , 1 ) == pair (2 ) & end_node_info

( : , 3 ) == pair (1 ) ) ;
738 if ~any ( existing )
739 if node1 <= node2
740 end_node_info ( end+1, : ) = [ node1 , arm1 , node2 ,

arm2 ] ;
741 else
742 end_node_info ( end+1, : ) = [ node2 , arm2 , node1 ,

arm1 ] ;
743 end
744 end
745 end
746 end
747 end
748 end
749
750
751 function plot_state_evolution ( state , state_order )
752 num_tracked_states = numel ( state_order ) ;
753 state = state ( 1 : num_tracked_states , : ) ; % Trim off extra non-

relevant rows
754
755 % Prepare groups
756 groups = struct ( . . .
757 ’arrivals’ , struct ( ’indices’ , [ ] , ’label’ , ’Arrivals’ , ’prefix’ ,

’a’ ) , . . .
758 ’departures’ , struct ( ’indices’ , [ ] , ’label’ , ’Departures’ , ’

prefix’ , ’d’ ) , . . .
759 ’loads’ , struct ( ’indices’ , [ ] , ’label’ , ’Loads’ , ’prefix’ , ’rho’ )

, . . .
760 ’stacks’ , struct ( ’indices’ , [ ] , ’label’ , ’Stacks’ , ’prefix’ , ’s’ )

. . .
761 ) ;
762
763 % Assign each state to a group
764 for i = 1 : num_tracked_states
765 name = state_order{i } ;
766 if startsWith ( name , ’a’ )
767 groups . arrivals . indices ( end+1) = i ;
768 elseif startsWith ( name , ’d’ )
769 groups . departures . indices ( end+1) = i ;
770 elseif startsWith ( name , ’rho’ )
771 groups . loads . indices ( end+1) = i ;
772 elseif startsWith ( name , ’s’ )
773 groups . stacks . indices ( end+1) = i ;
774 end
775 end
776
777 % Helper function to plot a group

M.J.A. Bartels Master of Science Thesis



179

778 function plot_group ( group )
779 if isempty ( group . indices ) , return ; end
780 figure ( ’Name’ , group . label ) ;
781 hold on ;
782 for idx = group . indices
783 plot ( state ( idx , : ) , ’LineWidth’ , 1 , ’DisplayName’ ,

state_order{idx }) ;
784 end
785 xlabel ( ’Cycle’ ) ;
786 ylabel ( ’Time’ ) ;
787 title ( [ group . label ’ over Time’ ] ) ;
788 legend ( ’Location’ , ’best’ ) ;
789 grid on ;
790 hold off ;
791 end
792
793 % Plot all groups
794 plot_group ( groups . arrivals ) ;
795 plot_group ( groups . departures ) ;
796 plot_group ( groups . loads ) ;
797 plot_group ( groups . stacks ) ;
798 end
799
800 function nodes = ensure_nodes_exist ( graph )
801 % Only run if nodes is empty or missing fields
802 fprintf ( ’No node data found. Starting interactive setup.\n’ ) ;
803 nodes = struct ( ) ;
804 required_fields = required_fields_list ( ) ;
805 degrees = sum ( graph , 2) ;
806 num_nodes = length ( degrees ) ;
807
808
809 for i = 1 : num_nodes
810 deg = degrees ( i ) ;
811 fprintf ( ’\nConfiguring Node %d (degree %d)\n’ , i , deg ) ;
812
813 % Suggest valid node types based on degree
814 if deg == 1
815 suggestions = {’input’ , ’output’ , ’in and output’ } ;
816 elseif deg == 2
817 suggestions = {’transfer_without’ , ’transfer_with’ , ’

pass_through’ , . . .
818 ’transfer_input’ , ’transfer_output’ , ’

transfer_in_and_output’ , . . .
819 ’pass_through_input’ , ’pass_through_output’ , ’

pass_through_in_and_output’ } ;
820 elseif deg == 3
821 suggestions = {’central’ } ;
822 else
823 error ( ’Node %d has invalid degree %d (only 1, 2 or 3

supported).’ , i , deg ) ;
824 end
825

Master of Science Thesis M.J.A. Bartels



180 MATLAB: Generating a System of Equations from an Adjacency Matrix

826 fprintf ( ’Possible types based on degree %d: %s\n’ , deg , strjoin (
suggestions , ’, ’ ) ) ;

827 % Use menu to avoid typing errors
828 indx = menu ( sprintf ( ’Select type for node %d (degree = %d):’ , i ,

deg ) , suggestions { : } ) ;
829 if indx == 0
830 error ( ’User cancelled node type selection.’ ) ;
831 end
832 node_type = suggestions{indx } ;
833 nodes ( i ) . type = node_type ;
834 fields = required_fields ( node_type ) ;
835
836 for j = 1 : numel ( fields )
837 field_name = fields{j } ;
838 val = input ( sprintf ( ’Enter value for %s: ’ , field_name ) ) ;
839 nodes ( i ) . ( field_name ) = val ;
840 end
841 end
842 end

1 function database = database ( )
2
3 syms tau1 tau2 tau3 rho_m1 L1 L2 L3 u1 u2 u3 outflow inflow beta1 beta2

beta3
4 aplha = sym ( ’aplha’ ) ;
5 beta = sym ( ’beta’ ) ;
6 sigma = sym ( ’sigma’ ) ;
7
8 T = inf ;
9 E = −inf ;

10
11
12 input . A = [ tau1 , E , E , E ;
13 E , 0 ,E , E ;
14 E , E , 0 , E ;
15 E , E , E , 0 ] ;
16
17 input . B = [ 0 ,T , T , T , T ;
18 T , 0 , T , T , T ;
19 T , T , rho_m1/L1 , 0 , T ;
20 T , T , T , T , 0 ] ;
21
22 input . C = [ 0 , 0 , 0 , 0 ;
23 0 ,1 , −inflow , 0 ;
24 0 , 0 , 0 , 0 ;
25 0 ,1/( L1−inflow ) ,−inflow /( L1−inflow ) , 0 ;
26 0 , 0 , 0 , 0 ] ;
27
28 input . D = [ 0 , 0 , 0 , 0 ;
29 L1 , 0 , inflow−L1 , 0 ;
30 1 , 0 , 0 , 0 ;
31 L1 /( L1−inflow ) , 0 , 0 , 0 ;
32 −L1 , 0 , L1 , 0 ] ;

M.J.A. Bartels Master of Science Thesis



181

33 input . E1 = [ 1 , 0 ;
34 0 , 0 ;
35 0 , 0 ;
36 0 , 0 ;
37 0 , 0 ] ;
38 input . state_order = {’a1’ ; ’s1’ ; ’d1’ ; ’rho1’ } ;
39 input . F = [ 0 , E ; E , 0 ] ;
40 input . H = [ 0 , T ; T , 0 ] ;
41 input . KL{1} = [ 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 1 ] ;
42
43
44 output . A = [ tau1 , E , E , E , E ;
45 E , 0 , 0 , E , E ;
46 E , E , E , 0 , E ;
47 E , E , E , E , 0 ] ;
48 output . B = [ 0 , T , T , T , T ;
49 T , 0 , T , T , T ;
50 T , T , 0 , T , T ;
51 T , T , T , 0 , T ;
52 T , T , T , T , 0 ] ;
53 output . C = [ 0 , 0 , 0 , 0 ;
54 0 ,1 , outflow , 0 ;
55 0 , 0 , 0 , 0 ;
56 0 , 0 , 0 , 0 ;
57 0 , 0 , 0 , 0 ] ;
58 output . D = [ 0 , 0 , 0 , 0 ;
59 0 ,0 , −outflow , 0 ;
60 0 , 0 , 0 , 0 ;
61 1 , 0 , 0 , 0 ;
62 0 , 0 , 0 , 0 ] ;
63 output . E1 = [ 1 , 0 ;
64 0 , 1 ;
65 0 , 0 ;
66 0 ,1/ u1 ;
67 0 , 0 ] ;
68 output . state_order = {’a1’ ; ’s1’ ; ’d1’ ; ’rho1’ } ;
69 output . F = [ 0 , E ; E , 0 ] ;
70 output . H = [ 0 , T ; T , 0 ] ;
71 output . KL{1} = [ 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 1 ] ;
72
73
74 transfer_without . A = [ tau1 , E , E , E , E , E , E , E , E , E ;
75 E , 0 , E , E , E , E , E , E , E , E ;
76 E , E , 0 , 0 , E , E , E , E , E , E ;
77 E , E , E , E , 0 , E , E , E , E , E
78 E , E , E , E , E , tau2 , E , E , E , E ;
79 E , E , E , E , E , E , 0 , E , E , E ;
80 E , E , E , E , E , E , E , 0 , 0 , E ;
81 E , E , E , E , E , E , E , E , E , 0
82 ] ;
83
84 transfer_without . B = [ 0 ,T , T , T , T , T , T , T , T , T ;
85 T , 0 , T , T , T , T , T , T , T , T ;

Master of Science Thesis M.J.A. Bartels



182 MATLAB: Generating a System of Equations from an Adjacency Matrix

86 T , T , 0 , T , T , T , T , T , T , T ;
87 T , T , T , 0 , T , T , T , T , T , T ;
88 T , T , T , T , 0 , T , T , T , T , T ;
89 T , T , T , T , T , 0 , T , T , T , T ;
90 T , T , T , T , T , T , 0 , T , T , T ;
91 T , T , T , T , T , T , T , 0 , T , T
92 T , T , T , T , T , T , T , T , 0 , T
93 T , T , T , T , T , T , T , T , T , 0 ] ;
94 transfer_without . C = zeros (10 ,8 ) ;
95 transfer_without . D = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
96 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
97 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
98 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
99 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;

100 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
101 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ;
102 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
103 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
104 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
105
106 transfer_without . E1 = [ 1 , 0 ;
107 0 ,1/ u1 ;
108 0 , 0 ;
109 0 , 0 ;
110 0 , 0 ;
111 0 , 0 ;
112 0 , 0 ;
113 0 ,1/ L2 ;
114 0 ,1/ L2 ;
115 0 , 1 ] ;
116 transfer_without . E2 = [ 0 , 0 ;
117 0 , 0 ;
118 0 ,1/ L1 ;
119 0 ,1/ L1 ;
120 0 , 1 ;
121 1 , 0 ;
122 0 ,1/ u2 ;
123 0 , 0 ;
124 0 , 0 ;
125 0 , 0 ] ;
126
127 transfer_without . state_order = {’a1’ ; ’e1’ ; ’d1’ ; ’rho1’ ; ’a2’ ; ’e2’ ; ’d2’ ; ’

rho2’ } ;
128 transfer_without . F = [ 0 , E , E , E ; E , 0 , E , E ; E , E , 0 , E ; E , E , E , 0 ] ;
129 transfer_without . H = [ 0 , T , T , T ; T , 0 , T , T ; T , T , 0 , T ; T , T , T , 0 ] ;
130 transfer_without . KL{1} = [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ;
131 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ; ] ;
132
133 transfer_without . KL{2} = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ;
134 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ;
135
136
137

M.J.A. Bartels Master of Science Thesis



183

138 center_without . A = [ tau1 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E ,
E , E , E , E , E ;

139 E , 0 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

140 E , E , 0 , 0 , 0 , 0 , 0 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

141 E , E , E , E , E , E , E , 0 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

142 E , E , E , E , E , E , E , E , tau2 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E ,
E , E , E , E , E ;

143 E , E , E , E , E , E , E , E , E , 0 , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

144 E , E , E , E , E , E , E , E , E , E , 0 , 0 , 0 , 0 , 0 , E , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

145 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , E , E , E , E , E , E , E , E , E , E , E
, E , E , E ;

146 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , tau3 , E , E , E , E , E , E , E , E ,
E , E , E , E , E ;

147 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , E , E , E , E , E , E , E , E , E
, E , E , E ;

148 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , 0 , 0 , 0 , 0 , E , E , E , E
, E , E , E ;

149 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , E , E , E
, E , E , E ;

150 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , E , E
, 0 , 0 , 0 ;

151 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , 0 , E
, 0 , 0 , 0 ;

152 E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E , E
, 0 , 0 , 0 , 0 ; ] ;

153
154
155 center_without . B = [ 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
156 T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
157 T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
158 T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
159 T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
160 T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
161 T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
162 T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
163 T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;
164 T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T

;

Master of Science Thesis M.J.A. Bartels



184 MATLAB: Generating a System of Equations from an Adjacency Matrix

165 T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T
;

166 T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T
;

167 T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T , T
;

168 T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T , T
;

169 T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T , T
;

170 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T , T
;

171 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T , T
;

172 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T , T
;

173 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T , T
;

174 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T , T
;

175 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T , T
;

176 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T , T
;

177 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T , T
;

178 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T , T
;

179 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T , T
;

180 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T
;

181 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T
, 0 ;

182 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T
, 0 , 0 ;

183 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , 0 , T
;

184 T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , 0 , T
, 0 ] ;

185 center_without . C = zeros (27 ,15) ;
186 center_without . D = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
187 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
188 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
189 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
190 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
191 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ;
192 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
193 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
194 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
195 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
196 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
197 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;

M.J.A. Bartels Master of Science Thesis



185

198 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
199 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ;
200 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ;
201 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
202 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
203 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
204 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ;
205 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
206 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ;
207 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
208 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ;
209 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
210 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
211 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
212 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ;
213
214 center_without . E1 = [ 1 , 0 ;
215 0 ,1/ u1 ;
216 0 , 0 ;
217 0 , 0 ;
218 0 , 0 ;
219 0 , 0 ;
220 0 , 0 ;
221 0 , 0 ;
222 0 , 0 ;
223 0 , 0 ;
224 0 , beta1/L2 ;
225 0 , beta1/L2 ;
226 0 , 0 ;
227 0 , 0 ;
228 0 , beta1/L2 ;
229 0 , beta1 ;
230 0 , 0 ;
231 0 , 0 ;
232 0 ,(1−beta1 ) /L3 ;
233 0 ,(1−beta1 ) /L3 ;
234 0 , 0 ;
235 0 , 0 ;
236 0 ,(1−beta1 ) /L3 ;
237 0,1−beta1 ;
238 0 , 0 ;
239 0 , 0 ;
240 0 , 0 ] ;
241
242 center_without . E2 = [ 0 , 0 ; 0 , 0 ; 0 , beta2/L1 ; 0 , beta2/L1 ; 0 , 0 ; 0 , 0 ; 0 , beta2/L1 ; 0 ,

beta2 ;
243 1 ,0 ; 0 , 1/ u2 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ;
244 0 ,0;0 ,(1 − beta2 ) /L3 ;0 ,(1 − beta2 ) /L3 ;0 ,(1 − beta2 ) /L3 ;0 ,1 − beta2 ; 0 , 0 ; 0 , 0 ; 0 , 0 ] ;
245
246
247 center_without . E3 = [ 0 , 0 ;
248 0 , 0 ;
249 0 , 0 ;

Master of Science Thesis M.J.A. Bartels



186 MATLAB: Generating a System of Equations from an Adjacency Matrix

250 0 , 0 ;
251 0 , beta3/L1 ;
252 0 , beta3/L1 ;
253 0 , beta3/L1 ;
254 0 , beta3 ;
255 0 , 0 ;
256 0 , 0 ;
257 0 , 0 ;
258 0 , 0 ;
259 0 ,(1−beta3 ) /L2 ;
260 0 ,(1−beta3 ) /L2 ;
261 0 ,(1−beta3 ) /L2 ;
262 0 ,(1−beta3 ) ;
263 1 , 0 ;
264 0 ,1/ u3 ;
265 0 , 0 ;
266 0 , 0 ;
267 0 , 0 ;
268 0 , 0 ;
269 0 , 0 ;
270 0 , 0 ;
271 0 , 0 ;
272 0 , 0 ;
273 0 , 0 ] ;
274
275 center_without . state_order = {’a1’ ; ’e1’ ; ’d1’ ; ’rho1’ ; ’a2’ ; ’e2’ ; ’d2’ ; ’rho2’

; ’a3’ ; ’e3’ ; ’d3’ ; ’rho3’ ; ’delta1’ ; ’delta2’ ; ’delta3’ } ;
276 center_without . F = [ 0 , E , E , E , E , E ; E , 0 , E , E , E , E ; E , E , 0 , E , E , E ; E , E , E , 0 , E , E ; E , E , E

, E , 0 , E ; E , E , E , E , E , 0 ] ;
277 center_without . H = [ 0 , T , T , T , T , T ; T , 0 , T , T , T , T ; T , T , 0 , T , T , T ; T , T , T , 0 , T , T ; T , T , T

, T , 0 , T ; T , T , T , T , T , 0 ] ;
278 center_without . KL{1} = [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
279 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; ] ;
280
281 center_without . KL{2} = [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
282 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; ] ;
283
284 center_without . KL{3} = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ;
285 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ] ;
286
287
288
289 pass_through . A = [ tau1 , E , E , E , E , E ;
290 E , 0 , E , E , E , E ;
291 E , E , 0 , E , E , E ;
292 E , E , E , tau2 , E , E ;
293 E , E , E , E , 0 , E ;
294 E , E , E , E , E , 0 ] ;
295
296 pass_through . B = [ 0 ,T , T , T , T , T ;
297 T , 0 , T , T , T , T ;
298 T , T , 0 , T , T , T ;
299 T , T , T , 0 , T , T ;

M.J.A. Bartels Master of Science Thesis



187

300 T , T , T , T , 0 , T ;
301 T , T , T , T , T , 0 ] ;
302 pass_through . C = zeros ( 6 , 6 ) ;
303
304 pass_through . D = [ 0 , 0 , 0 , 0 , 0 , 0 ;
305 0 , 0 , 0 , 1 , 0 , 0 ;
306 0 , 0 , 0 , 0 , 0 , 0 ;
307 0 , 0 , 0 , 0 , 0 , 0 ;
308 1 , 0 , 0 , 0 , 0 , 0 ;
309 0 , 0 , 0 , 0 , 0 , 0 ; ] ;
310
311 pass_through . E1 = [ 1 , 0 ;
312 0 , 0 ;
313 0 , 0 ;
314 0 , 0 ;
315 0 , 0 ;
316 0 , 1 ] ;
317
318 pass_through . E2 = [ 0 , 0 ;
319 0 , 0 ;
320 0 , 1 ;
321 1 , 0 ;
322 0 , 0 ;
323 0 , 0 ] ;
324
325 pass_through . state_order = {’a1’ ; ’d1’ ; ’rho1’ ; ’a2’ ; ’d2’ ; ’rho2’ } ;
326
327 pass_through . F = [ 0 , E , E , E ; E , 0 , E , E ; E , E , 0 , E ; E , E , E , 0 ] ;
328 pass_through . H = [ 0 , T , T , T ; T , 0 , T , T ; T , T , 0 , T ; T , T , T , 0 ] ;
329 pass_through . KL{1} = [ 0 , 1 , 0 , 0 , 0 , 0 ;
330 0 , 0 , 1 , 0 , 0 , 0 ; ] ;
331
332 pass_through . KL{2} = [ 0 , 0 , 0 , 0 , 1 , 0 ;
333 0 , 0 , 0 , 0 , 0 , 1 ] ;
334
335 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
336 database = struct ( ) ;
337 database . input = input ;
338 database . output = output ;
339 database . transfer_without = transfer_without ;
340 database . center_without = center_without ;
341 database . pass_through = pass_through ;
342
343 end

Master of Science Thesis M.J.A. Bartels



188 MATLAB: Generating a System of Equations from an Adjacency Matrix

M.J.A. Bartels Master of Science Thesis



Appendix E

MATLAB: 4-node Transportation
System

1 clear
2 close all
3
4 % Define all the variables
5 k = 15 ; nt = 21 ; nc = 16 ; nq = 14 ;
6
7 %Inflow at each end node. Parcels / unit of time
8 gamma_1 = 75/11 . 75 ;
9

10 %Outflow at each end node. Parcels / unit of time
11 phi_2 = 5 ; phi_3 = 5 ;
12
13 %Load speed of each truck. Parcels / unit of time
14 L_1 = 40 ; L_2 = 20 ; L_3 = 20 ;
15
16 % Unload speed of each truck. Parcels / unit of time
17 u_1 = 40 ; u_2 = 20 ; u_3 = 20 ;
18
19 %Travel times between nodes. tau_ij from node i to node j
20 tau_14 = 2 ; tau_41 = 2 ; tau_24 = 4 ; tau_42 = 4 ; tau_34 = 4 ; tau_43 = 4 ;
21
22 %Truck capacity
23 C_1 = 75 ; C_2 = 50 ; C_3 = 50 ;
24
25 T = Inf ;
26 E = −Inf ;
27
28 [ A , B , C , D ] = system_matrices_ABCD_No_Cf_Cs_cleaned ( gamma_1 , phi_2 , phi_3 , L_1

, L_2 , L_3 , u_1 , u_2 , u_3 , tau_14 , tau_41 , tau_24 , tau_42 , tau_34 , tau_43 , C_1 , C_2
, C_3 ) ;

29

Master of Science Thesis M.J.A. Bartels



190 MATLAB: 4-node Transportation System

30
31 % === create structure matrices ===
32
33 S_A = double ( ( A ~= −inf ) ) ;
34 S_B = double ( ( B ~= inf ) ) ;
35 S_D = double ( ( D ~= 0) ) ;
36
37 S_s = S_A ∗ S_B ∗ S_D ;
38 G = digraph ( transpose ( S_s ) ) ;
39 hasCycle = ~isdag ( G ) ;
40
41 % === check solvability ===
42 if hasCycle
43 warning ( ’There are cycles in the communications graph.’ ) ;
44 else
45 disp ( ’There are no cycles in the communications graph.’ ) ;
46 end
47
48
49 % === compute execution order of the implicit states ===
50 cycles = allcycles ( G ) ;
51 executionOrder = toposort ( G ) ;
52 inDegree = indegree ( G ) ;
53 levels = zeros ( size ( executionOrder ) ) ;
54
55 % Assign nodes to levels
56 for i = 1 : length ( executionOrder )
57 node = executionOrder ( i ) ;
58 predNodes = predecessors (G , node ) ; % Get parent nodes
59 if isempty ( predNodes )
60 levels ( i ) = 1 ;
61 else
62 levels ( i ) = max ( levels ( ismember ( executionOrder , predNodes ) ) ) + 1 ;
63 end
64 end
65
66 % Group nodes by levels
67 maxLevel = max ( levels ) ;
68 executionCell = cell ( maxLevel , 1) ;
69 for lvl = 1 : maxLevel
70 group = executionOrder ( levels == lvl ) ;
71 fprintf ( ’Execution Group %d: %s\n’ , lvl , num2str ( group ) ) ;
72 executionCell{lvl} = group ;
73 end
74
75
76
77 % === check for time invariance ===
78 %%
79 C_11 = C ( 1 : 8 3 , 1 : 37 ) ;
80 D_11 = D ( 1 : 8 3 , 1 : 37 ) ;
81
82 C_21 = C ( 8 4 : end , 1 : 3 7 ) ;

M.J.A. Bartels Master of Science Thesis



191

83 D_21 = D ( 8 4 : end , 1 : 3 7 ) ;
84
85
86 CD_11 = [ C_11 , D_11 ] ;
87 CD_21 = [ C_21 , D_21 ] ;
88
89 sum_time_time_invariance = sum ( CD_11 , 2 ) ;
90 sum_quantitity_time_invariance = sum ( CD_21 , 2 ) ;
91
92 if sum ( sum_time_time_invariance ) == length ( sum_time_time_invariance ) &&

sum ( sum_quantitity_time_invariance ) == 0
93 disp ( ’The system is Time Invariant’ ) ;
94 else
95 warning ( ’Warning: The system is Not Time Invariant!’ ) ;
96 end
97
98
99

100 % === simulate the system ===
101
102
103 eig_vec1 = [ 0 ; 2 ; 2 ; 3 . 8 7 5 ; 7 . 8 7 5 ; 7 . 8 7 5 ; 7 . 8 7 5 ; 7 . 8 7 5 ; 7 . 8 7 5 ; 7 . 8 7 5 ; 1 . 8 7 5 ;
104 3 . 8 7 5 ; 3 . 8 7 5 ; 9 . 7 5 ; 9 . 7 5 ; 9 . 7 5 ; 9 . 7 5 ; 1 0 . 3 7 5 ; 1 0 . 3 7 5 ; 1 0 . 3 7 5 ; 1 0 . 3 7 5 ; 9 . 7 5 ;
105 9 . 1 2 5 ; 1 0 . 3 7 5 ; 1 0 . 3 7 5 ; 9 . 7 5 ; 9 . 1 2 5 ; 1 0 . 3 7 5 ; 1 0 . 3 7 5 ; 9 . 1 2 5 ; 1 0 . 3 7 5 ;
106 9 . 1 2 5 ; 1 0 . 3 7 5 ; 9 . 1 2 5 ; 1 0 . 3 7 5 ; 9 . 1 2 5 ; 1 0 . 3 7 5 ; 0 ; − 1 2 5 0 0 0 ;
107 − 1 2 5 0 0 0 ; 1 0 ; 0 ; 0 ; 7 5 ; 3 7 . 5 ; 3 7 . 5 ; 1 ; 3 7 . 5 ; 3 7 . 5 ; 3 7 . 5 ; 3 7 . 5 ] ’ ;
108
109
110 eig_vec2= [ 3 7 . 3 7 6 2 5 ; 3 9 . 3 7 6 2 5 ; 3 9 . 3 7 6 2 5 ; 4 1 . 2 5 1 2 5 ; 4 4 . 7 5 2 5 ; 4 5 . 7 5 ;
111 4 4 . 7 5 2 5 ; 4 5 . 7 5 ; 4 4 . 7 5 2 5 ; 4 5 . 7 5 ; 3 9 . 2 5 1 2 5 ; 4 0 . 7 5 2 5 ; 4 1 . 7 5 ; 4 7 . 1 2 6 2 5 ; 4 7 . 1 2 6 2 5 ;
112 4 7 . 1 2 6 2 5 ; 4 7 . 1 2 6 2 5 ; 4 6 . 0 0 2 5 ; 4 7 . 2 5 2 5 ; 4 8 . 2 5 ; 4 7 ; 4 7 . 1 2 6 2 5 ; 4 7 ; 4 7 . 2 5 2 5 ; 4 8 . 2 5 ;
113 4 7 . 1 2 6 2 5 ; 4 7 ; 4 7 . 2 5 2 5 ; 4 8 . 2 5 ; 4 6 . 0 0 2 5 ; 4 8 . 2 5 ; 4 6 . 0 0 2 5 ; 4 8 . 2 5 ; 4 7 ; 4 7 . 2 5 2 5 ;
114 4 7 ; 4 7 . 2 5 2 5 ; 0 ; − 2 2 4 7 5 0 ; − 2 5 2 5 0 ; 1 0 0 ; 0 ; 0 ; 7 5 ; 4 7 . 4 7 5 ; 2 7 . 5 2 5 ; 0 ; 4 7 . 4 7 5 ;
115 4 7 . 4 7 5 ; 2 7 . 5 2 5 ; 2 7 . 5 2 5 ] ;
116
117 x_state = zeros ( nt+nc+nq , k ) ;
118 x_state ( : , 1 ) = eig_vec1 ;
119
120 if C_1 > C_2 + C_3
121 error ( " Capacity of truck 1 is to large . It will bring to many goods

for the rest to take . The model " + . . .
122 " will fail in this situation . Make sure : C_1 < C_2 + C_3 " )
123 end
124
125
126 for i = 2 : k
127
128 for level = 1 : length ( executionCell )
129 rowsToCompute = executionCell{level } ;
130 x_intermediate = maxplus (A , minplus (B , ( C∗x_state ( : , i−1)+ D∗x_state

( : , i ) ) ) ) ;
131 x_state ( rowsToCompute , i ) = x_intermediate ( rowsToCompute ) ;
132 end

Master of Science Thesis M.J.A. Bartels



192 MATLAB: 4-node Transportation System

133 end

1 function C = maxplus (A , B )
2 [ m , n ] = size ( A ) ;
3 [ n2 , p ] = size ( B ) ;
4 if n ~= n2
5 error ( ’Matrix dimensions must match for multiplication’ ) ;
6 end
7 C = −inf (m , p ) ; % Initialize with - infinity
8 for i = 1 : m
9 for j = 1 : p

10 C (i , j ) = max ( A (i , : ) + B ( : , j ) ’ ) ;
11 end
12 end
13 end

1 function C = minplus (A , B )
2 T = inf ;
3 ar = size (A , 1 ) ;
4 ac = size (A , 2 ) ;
5 br = size (B , 1 ) ;
6 bc = size (B , 2 ) ;
7 C = T . ∗ ones ( ar , bc ) ;
8 if ac==br
9 for i= 1 : ar

10 for j= 1 : bc
11 for k = 1 : ac
12 C (i , j )= min ( C (i , j ) , A (i , k )+B (k , j ) ) ;
13 end
14 end
15 end
16 else
17 disp ( ’minplus matrix multiplication not possible’ )
18 end
19 end

1 function [ A , B , C , D ] = system_matrices_ABCD_No_Cf_Cs_cleaned ( gamma_1 , phi_2 ,
phi_3 , L_1 , L_2 , L_3 , u_1 , u_2 , u_3 , tau_14 , tau_41 , tau_24 , tau_42 , tau_34 ,
tau_43 , C_1 , C_2 , C_3 )

2
3 % === initialiting the matrices ===
4 T = Inf ;
5 E = −Inf ;
6
7 D_time = zeros (90 ,51) ;
8 C_time = zeros (90 ,51) ;
9 D_quantity = zeros (24 ,51) ;

10 C_quantity = zeros (24 ,51) ;
11 B = T ∗ ones (97 ,114) ;
12 A = E ∗ ones (51 ,97) ;
13
14
15

M.J.A. Bartels Master of Science Thesis



193

16 % === D time states ===
17
18 %arrival formula
19 D_time (4 , 11 ) = 1 ;
20 D_time (5 , 12 ) = 1 ;
21 D_time (6 , 13 ) = 1 ;
22
23 %arrival first and last
24 D_time ( 7 , 5 ) = 1 ;
25 D_time ( 8 , 6 ) = 1 ;
26 D_time ( 9 , 4 ) = 1 ;
27
28
29 %departure formulas
30 %d1
31 D_time (10 ,1 ) = 1 ; % second part min d1
32 D_time (11 ,1 ) = L_1 / ( L_1 − gamma_1 ) ;
33
34 %d2
35 D_time (12 ,2 ) = 1 ;
36
37 %d3
38 D_time (13 ,3 ) = 1 ;
39
40 %d41
41 D_time (14 ,15) = 1 ;
42 D_time (15 ,16) = 1 ;
43
44
45 %d42
46 D_time (16 ,17) = 1 ;
47 D_time (16 ,38) = 1 ;
48 D_time (17 ,18) = 1 ;
49 D_time (17 ,39) = 1 ;
50 D_time (18 ,19) = 1 ;
51 D_time (18 ,40) = 1 ;
52
53
54 %d43
55 D_time (19 ,17) = 1 ;
56 D_time (19 ,38) = 1 ;
57 D_time (20 ,20) = 1 ;
58 D_time (20 ,39) = 1 ;
59 D_time (21 ,21) = 1 ;
60 D_time (21 ,40) = 1 ;
61
62
63 % d4.1
64 D_time (22 ,44) = 1/( L_2+L_3 ) ;
65 D_time (22 ,10) = (−L_2 /( L_2+L_3 ) ) +1;
66 D_time (22 ,9 ) = L_2 /( L_2+L_3 ) ;
67 D_time (22 ,7 ) = 1e8 ;
68 D_time (22 ,5 ) = −1e8 ;

Master of Science Thesis M.J.A. Bartels



194 MATLAB: 4-node Transportation System

69 D_time (23 ,44) = 1/( u_1+L_3 ) ;
70 D_time (23 ,10) = (−u_1 /( u_1+L_3 ) ) +1;
71 D_time (23 ,9 ) = u_1 /( u_1+L_3 ) ;
72 D_time (23 ,7 ) = 1e8 ;
73 D_time (23 ,5 ) = −1e8 ;
74 D_time (24 ,44) = 1/( u_1+L_2 ) ;
75 D_time (24 ,10) = (−L_2 /( u_1+L_2 ) ) +1;
76 D_time (24 ,9 ) = L_2 /( u_1+L_2 ) ;
77 D_time (24 ,7 ) = 1e8 ;
78 D_time (24 ,5 ) = −1e8 ;
79 D_time (25 ,44) = 1/(2∗ u_1 ) ;
80 D_time (25 ,10) = (−u_1 /(2∗ u_1 ) ) + 1 ;
81 D_time (25 ,9 ) = u_1 /(2∗ u_1 ) ;
82 D_time (26 ,44) = 1/( L_2+L_3 ) ;
83 D_time (26 ,10) = (−L_3 /( L_2+L_3 ) ) +1;
84 D_time (26 ,9 ) = L_3 /( L_2+L_3 ) ;
85 D_time (26 ,7 ) = 1e8 ;
86 D_time (26 ,6 ) = −1e8 ;
87 D_time (27 ,44) = 1/( u_1+L_3 ) ;
88 D_time (27 ,10) = (−L_3 /( u_1+ L_3 ) ) +1;
89 D_time (27 ,9 ) = L_3 /( u_1+L_3 ) ;
90 D_time (27 ,7 ) = 1e8 ;
91 D_time (27 ,6 ) = −1e8 ;
92 D_time (28 ,44) = 1/( u_1+L_2 ) ;
93 D_time (28 ,10) = (−u_1 /( L_2+u_1 ) ) +1;
94 D_time (28 ,9 ) = u_1 /( L_2+u_1 ) ;
95 D_time (28 ,7 ) = 1e8 ;
96 D_time (28 ,6 ) = −1e8 ;
97
98 %d422
99 D_time (29 ,10) = 1 ;

100 D_time (29 ,5 ) = 1e8 ;
101 D_time (29 ,8 ) = −1e8 ;
102 D_time (30 ,10) = 1 ;
103 D_time (30 ,5 ) = 1e8 ;
104 D_time (30 ,8 ) = −1e8 ;
105 D_time (31 ,9 ) = 1 ;
106 D_time (31 ,44) = 1/u_1 ;
107 D_time (31 ,7 ) = 1e8 ;
108 D_time (31 ,5 ) = −1e8 ;
109 D_time (32 ,9 ) = 1 ;
110 D_time (32 ,44) = 1/L_2 ;
111 D_time (32 ,7 ) = 1e8 ;
112 D_time (32 ,5 ) = −1e8 ;
113
114 %d423
115 D_time (33 ,9 ) = 1 ;
116 D_time (33 ,7 ) = 1e8 ;
117 D_time (33 ,5 ) = −1e8 ;
118 D_time (34 ,9 ) = 1 ;
119 D_time (34 ,44) = 1/L_2 ;
120 D_time (34 ,7 ) = 1e8 ;
121 D_time (34 ,5 ) = −1e8 ;

M.J.A. Bartels Master of Science Thesis



195

122 D_time (35 ,9 ) = 1 ;
123 D_time (35 ,7 ) = 1e8 ;
124 D_time (35 ,5 ) = −1e8 ;
125 D_time (36 ,9 ) = 1 ;
126 D_time (36 ,44) = 1/u_1 ;
127 D_time (36 ,7 ) = 1e8 ;
128 D_time (36 ,5 ) = −1e8 ;
129 D_time (37 ,10) = 1 ;
130 D_time (37 ,5 ) = 1e8 ;
131 D_time (37 ,8 ) = −1e8 ;
132 D_time (38 ,10) = 1 ;
133 D_time (38 ,44) = 1/L_2 ;
134 D_time (38 ,5 ) = 1e8 ;
135 D_time (38 ,8 ) = −1e8 ;
136 D_time (39 ,10) = 1 ;
137 D_time (39 ,44) = 1/u_1 ;
138 D_time (39 ,5 ) = 1e8 ;
139 D_time (39 ,8 ) = −1e8 ;
140
141
142 %d432
143 D_time (40 ,10) = 1 ;
144 D_time (40 ,6 ) = 1e8 ;
145 D_time (40 ,8 ) = −1e8 ;
146 D_time (41 ,10) = 1 ;
147 D_time (41 ,6 ) = 1e8 ;
148 D_time (41 ,8 ) = −1e8 ;
149 D_time (42 ,9 ) = 1 ;
150 D_time (42 ,44) = 1/u_1 ;
151 D_time (42 ,7 ) = 1e8 ;
152 D_time (42 ,6 ) = −1e8 ;
153 D_time (43 ,9 ) = 1 ;
154 D_time (43 ,44) = 1/L_3 ;
155 D_time (43 ,7 ) = 1e8 ;
156 D_time (43 ,6 ) = −1e8 ;
157
158 %d433
159 D_time (44 ,9 ) = 1 ;
160 D_time (44 ,7 ) = 1e8 ;
161 D_time (44 ,6 ) = −1e8 ;
162 D_time (45 ,9 ) = 1 ;
163 D_time (45 ,44) = 1/L_3 ;
164 D_time (45 ,7 ) = 1e8 ;
165 D_time (45 ,6 ) = −1e8 ;
166 D_time (46 ,9 ) = 1 ;
167 D_time (46 ,7 ) = 1e8 ;
168 D_time (46 ,6 ) = −1e8 ;
169 D_time (47 ,9 ) = 1 ;
170 D_time (47 ,44) = 1/u_1 ;
171 D_time (47 ,7 ) = 1e8 ;
172 D_time (47 ,6 ) = −1e8 ;
173 D_time (48 ,10) = 1 ;
174 D_time (48 ,6 ) = 1e8 ;

Master of Science Thesis M.J.A. Bartels



196 MATLAB: 4-node Transportation System

175 D_time (48 ,8 ) = −1e8 ;
176 D_time (49 ,10) = 1 ;
177 D_time (49 ,44) = 1/L_3 ;
178 D_time (49 ,6 ) = 1e8 ;
179 D_time (49 ,8 ) = −1e8 ;
180 D_time (50 ,10) = 1 ;
181 D_time (50 ,44) = 1/u_1 ;
182 D_time (50 ,6 ) = 1e8 ;
183 D_time (50 ,8 ) = −1e8 ;
184
185
186 % === conditions steps (f) ===
187
188 D_time (51 ,44) = 1/ ( L_2 + L_3 ) ;
189 D_time (51 ,10) = (−L_2 /( L_2+L_3 ) ) +1;
190 D_time (51 ,9 ) = L_2 /( L_2+L_3 ) ;
191 D_time (52 ,44) = 1/ ( u_1 + L_3 ) ;
192 D_time (52 ,10) = (−u_1 /( u_1+L_3 ) ) +1;
193 D_time (52 ,9 ) = u_1 /( u_1+L_3 ) ;
194 D_time (53 ,44) = 1/ (2 ∗ u_1 ) ;
195 D_time (53 ,10) = (−u_1 /(2 ∗ u_1 ) ) +1;
196 D_time (53 ,9 ) = u_1 /(2 ∗ u_1 ) ;
197 D_time (54 ,44) = 1/ ( L_2 + u_1 ) ;
198 D_time (54 ,10) = (−L_2 /( L_2+u_1 ) ) + 1 ;
199 D_time (54 ,9 ) = L_2 /( L_2+u_1 ) ;
200 D_time (55 ,44) = 1/L_3 ;
201 D_time (55 ,10) = 1 ;
202 D_time (56 ,44) = 1/u_1 ;
203 D_time (56 ,10) = 1 ;
204 D_time (57 ,9 ) = 1 ;
205 D_time (58 ,9 ) = 1 ;
206 D_time (59 ,10) = 1 ;
207 D_time (60 ,10) = 1 ;
208 D_time (61 ,44) = 1/ ( L_2 + L_3 ) ;
209 D_time (61 ,10) = (−L_3 /( L_2+L_3 ) ) + 1 ;
210 D_time (61 ,9 ) = L_3 /( L_2+L_3 ) ;
211 D_time (62 ,44) = 1/ ( u_1 + L_2 ) ;
212 D_time (62 ,10) = (−u_1 /( u_1+L_2 ) ) + 1 ;
213 D_time (62 ,9 ) = u_1 /( u_1+L_2 ) ;
214 D_time (63 ,44) = 1/ (2 ∗ u_1 ) ;
215 D_time (63 ,10) = (−u_1 /(2 ∗ u_1 ) ) + 1 ;
216 D_time (63 ,9 ) = u_1 /(2 ∗ u_1 ) ;
217 D_time (64 ,44) = 1/ ( L_3 + u_1 ) ;
218 D_time (64 ,10) = (−L_3 /( L_3+u_1 ) ) + 1 ;
219 D_time (64 ,9 ) = L_3 /( L_3+u_1 ) ;
220 D_time (65 ,44) = 1/L_2 ;
221 D_time (65 ,10) = 1 ;
222 D_time (66 ,9 ) = 1 ;
223 D_time (67 ,10) = 1 ;
224 D_time (68 ,9 ) = 1 ;
225 D_time (68 ,44) = 1/u_1 ;
226 D_time (69 ,9 ) = 1 ;
227 D_time (69 ,44) = 1/L_2 ;

M.J.A. Bartels Master of Science Thesis



197

228 D_time (70 ,10) = 1 ;
229 D_time (71 ,10) = 1 ;
230 D_time (72 ,9 ) = 1 ;
231 D_time (72 ,44) = 1/L_3 ;
232 D_time (73 ,10) = 1 ;
233 D_time (74 ,10) = 1 ;
234 D_time (74 ,44) = 1/u_1 ;
235 D_time (75 ,10) = 1 ;
236 D_time (75 ,44) = 1/L_2 ;
237 D_time (76 ,9 ) = 1 ;
238 D_time (77 ,9 ) = 1 ;
239 D_time (78 ,10) = 1 ;
240 D_time (78 ,44) = 1/L_3 ;
241 D_time (79 ,9 ) = 1 ;
242
243 %condition1
244 D_time (80 ,22) = 1e5 ;
245 D_time (80 ,23) = −1e5 ;
246 D_time (80 ,7 ) = 1e8 ;
247 D_time (80 ,5 ) = −1e8 ;
248 D_time (81 ,22) = −1e5 ;
249 D_time (81 ,24) = 1e5 ;
250 D_time (81 ,7 ) = 1e8 ;
251 D_time (81 ,5 ) = −1e8 ;
252 D_time (82 ,22) = −1e5 ;
253 D_time (82 ,25) = 1e5 ;
254 D_time (82 ,7 ) = 1e8 ;
255 D_time (82 ,5 ) = −1e8 ;
256 D_time (84 ,26) = 1e5 ;
257 D_time (84 ,27) = −1e5 ;
258 D_time (84 ,7 ) = 1e8 ;
259 D_time (84 ,6 ) = −1e8 ;
260 D_time (85 ,26) = −1e5 ;
261 D_time (85 ,28) = 1e5 ;
262 D_time (85 ,7 ) = 1e8 ;
263 D_time (85 ,6 ) = −1e8 ;
264 D_time (86 ,26) = −1e5 ;
265 D_time (86 ,29) = 1e5 ;
266 D_time (86 ,7 ) = 1e8 ;
267 D_time (86 ,6 ) = −1e8 ;
268
269 %condition2
270 D_time (87 ,30) = 1e5 ;
271 D_time (87 ,31) = −1e5 ;
272 D_time (87 ,7 ) = 1e8 ;
273 D_time (87 ,5 ) = −1e8 ;
274 D_time (88 ,32) = 1e5 ;
275 D_time (88 ,33) = −1e5 ;
276 D_time (88 ,7 ) = 1e8 ;
277 D_time (88 ,6 ) = −1e8 ;
278
279 %condition3
280

Master of Science Thesis M.J.A. Bartels



198 MATLAB: 4-node Transportation System

281 D_time (89 ,34) = 1e5 ;
282 D_time (89 ,35) = −1e5 ;
283 D_time (89 ,5 ) = 1e8 ;
284 D_time (89 ,8 ) = −1e8 ;
285 D_time (90 ,36) = 1e5 ;
286 D_time (90 ,37) = −1e5 ;
287 D_time (90 ,6 ) = 1e8 ;
288 D_time (90 ,8 ) = −1e8 ;
289
290 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
291
292
293 %stack at departure formulas
294 D_quantity (1 , 11 ) = gamma_1 − L_1 ;
295 D_quantity ( 1 , 1 ) = L_1 ;
296 D_quantity (2 , 12 ) = u_2−phi_2 ;
297 D_quantity ( 2 , 2 ) = −u_2 ;
298 D_quantity (3 , 13 ) = u_3−phi_3 ;
299 D_quantity ( 3 , 3 ) = −u_3 ;
300
301 %rho1
302 D_quantity (4 , 11 ) = L_1 ;
303 D_quantity ( 4 , 1 ) = −L_1 ;
304 %rho42
305 D_quantity (5 , 15 ) = L_2 ;
306 D_quantity ( 5 , 5 ) = −L_2 ;
307 D_quantity (6 , 15 ) = L_2 ;
308 D_quantity ( 6 , 4 ) = −L_2 ;
309 D_quantity (7 , 15 ) = u_1 ;
310 D_quantity ( 7 , 5 ) = −u_1 ;
311 D_quantity (8 , 15 ) = u_1 ;
312 D_quantity ( 8 , 4 ) = −u_1 ;
313
314
315 %rho43
316 D_quantity (9 , 16 ) = L_3 ;
317 D_quantity ( 9 , 6 ) = −L_3 ;
318 D_quantity (10 ,16) = L_3 ;
319 D_quantity (10 ,4 ) = −L_3 ;
320 D_quantity (11 ,16) = u_1 ;
321 D_quantity (11 ,6 ) = −u_1 ;
322 D_quantity (12 ,16) = u_1 ;
323 D_quantity (12 ,4 ) = −u_1 ;
324
325 %delta1
326 %row 13 is left emty
327 D_quantity (14 ,7 ) = −1e5 ;
328 D_quantity (14 ,8 ) = 1e5 ;
329 D_quantity (15 ,7 ) = 1e5 ;
330 D_quantity (15 ,8 ) = −1e5 ;
331
332 %row 16 is left empty for s
333

M.J.A. Bartels Master of Science Thesis



199

334 %rho comp2
335 D_quantity (17 ,44) = 1 ;
336 D_quantity (17 ,46) = −1;
337 D_quantity (18 ,44) = 1 ;
338 D_quantity (18 ,46) = −1;
339 D_quantity (18 ,47) = C_3 − C_2 ;
340
341 %rho real2
342 D_quantity (19 ,45) = 1 ;
343 D_quantity (20 ,48) = 1 ;
344
345 %rho comp3
346 D_quantity (21 ,44) = 1 ;
347 D_quantity (21 ,45) = −1;
348 D_quantity (22 ,44) = 1 ;
349 D_quantity (22 ,45) = −1;
350 D_quantity (22 ,47) = C_2 − C_3 ;
351
352 %rho real3
353 D_quantity (23 ,46) = 1 ;
354 D_quantity (24 ,50) = 1 ;
355
356 D = [ D_time ; D_quantity ] ;
357
358 D (83 ,7 ) = 1e7 ;
359 D (83 ,5 ) = −1e7 ;
360 row_90_new = zeros (1 , size (D , 2) ) ;
361 D = [ D ( 1 : 8 9 , : ) ; row_90_new ; D ( 9 0 : end , : ) ] ;
362 D (90 ,34) = 1e5 ;
363 D (90 ,35) = −1e5 ;
364 D (90 ,5 ) = 1e8 ;
365 D (90 ,8 ) = −1e8 ;
366 D (90 ,47) = −1e8 ∗ ( C_3−C_2 ) ;
367 row_92_new = zeros (1 , size (D , 2) ) ;
368 D = [ D ( 1 : 9 1 , : ) ; row_92_new ; D ( 9 2 : end , : ) ] ;
369 D (92 ,36) = 1e5 ;
370 D (92 ,37) = −1e5 ;
371 D (92 ,6 ) = 1e8 ;
372 D (92 ,8 ) = −1e8 ;
373 D (92 ,47) = −1e8 ∗ ( C_2 − C_3 ) ;
374 row_87_new = zeros (1 , size (D , 2) ) ;
375 D = [ D ( 1 : 8 6 , : ) ; row_87_new ; D ( 8 7 : end , : ) ] ;
376 D (87 ,7 ) = 1e7 ;
377 D (87 ,6 ) = −1e7 ;
378 row_41_new = zeros (1 , size (D , 2) ) ;
379 D = [ D ( 1 : 4 0 , : ) ; row_41_new ; D ( 4 1 : end , : ) ] ;
380 row_43_new = zeros (1 , size (D , 2) ) ;
381 D = [ D ( 1 : 4 2 , : ) ; row_43_new ; D ( 4 3 : end , : ) ] ;
382 D (41 ,10) = 1 ;
383 D (41 ,6 ) = 1e8 ;
384 D (41 ,8 ) = −1e8 ;
385 D (41 ,47) = ( C_2− C_3 ) ∗ 1e5 ;
386 D (43 ,10) = 1 ;

Master of Science Thesis M.J.A. Bartels



200 MATLAB: 4-node Transportation System

387 D (43 ,6 ) = 1e8 ;
388 D (43 ,8 ) = −1e8 ;
389 D (43 ,47) = ( C_2− C_3 ) ∗ 1e5 ;
390 row_30_new = zeros (1 , size (D , 2) ) ;
391 D = [ D ( 1 : 2 9 , : ) ; row_30_new ; D ( 3 0 : end , : ) ] ;
392 row_32_new = zeros (1 , size (D , 2) ) ;
393 D = [ D ( 1 : 3 1 , : ) ; row_32_new ; D ( 3 2 : end , : ) ] ;
394 D (30 ,10) = 1 ;
395 D (30 ,5 ) = 1e8 ;
396 D (30 ,8 ) = −1e8 ;
397 D (30 ,47) = ( C_3− C_2 ) ∗ 1e5 ;
398 D (32 ,10) = 1 ;
399 D (32 ,5 ) = 1e8 ;
400 D (32 ,8 ) = −1e8 ;
401 D (32 ,47) = ( C_3− C_2 ) ∗ 1e5 ;
402
403
404 % === Create C matrix ===
405 C_time (1 , 14) = 1 ;
406 C_time (2 , 15 ) = 1 ;
407 C_time (3 , 16 ) = 1 ;
408
409 %d1
410 C_time (11 ,41) = 1/( L_1−gamma_1 ) ;
411 C_time (11 ,11) = −gamma_1 / ( L_1 − gamma_1 ) ;
412
413
414 %d2
415 C_time (12 ,49) = 1/u_2 ;
416
417 %d22
418 C_time (13 ,51) = 1/u_3 ;
419
420 %s1
421 C_quantity (1 , 41 ) = 1 ;
422 C_quantity (1 , 11 ) = −gamma_1 ;
423
424 %s2
425 C_quantity (2 , 42 ) = 1 ;
426 C_quantity (2 , 12 ) = phi_2 ;
427
428 %s3
429 C_quantity (3 , 43) = 1 ;
430 C_quantity (3 , 13 ) = phi_3 ;
431
432 C = [ C_time ; C_quantity ] ;
433 row_90_new = zeros (1 , size (C , 2) ) ;
434 C = [ C ( 1 : 8 9 , : ) ; row_90_new ; C ( 9 0 : end , : ) ] ;
435 row_92_new = zeros (1 , size (C , 2) ) ;
436 C = [ C ( 1 : 9 1 , : ) ; row_92_new ; C ( 9 2 : end , : ) ] ;
437 row_87_new = zeros (1 , size (C , 2) ) ;
438 C = [ C ( 1 : 8 6 , : ) ; row_87_new ; C ( 8 7 : end , : ) ] ;
439 row_43_new = zeros (1 , size (C , 2) ) ;

M.J.A. Bartels Master of Science Thesis



201

440 C = [ C ( 1 : 4 2 , : ) ; row_43_new ; C ( 4 3 : end , : ) ] ;
441 row_41_new = zeros (1 , size (C , 2) ) ;
442 C = [ C ( 1 : 4 0 , : ) ; row_41_new ; C ( 4 1 : end , : ) ] ;
443 row_32_new = zeros (1 , size (C , 2) ) ;
444 C = [ C ( 1 : 3 1 , : ) ; row_32_new ; C ( 3 2 : end , : ) ] ;
445 row_30_new = zeros (1 , size (C , 2) ) ;
446 C = [ C ( 1 : 2 9 , : ) ; row_30_new ; C ( 3 0 : end , : ) ] ;
447
448
449
450 % === Create B matrix ===
451
452 for i = [ 1 , 2 , 3 , 4 , 5 , 6 ]
453 B (i , i ) = 0 ;
454 end
455
456 %af
457 B ( 7 , 7 ) = 0 ;
458 B ( 7 , 8 ) = 0 ;
459
460 %as
461 B ( 8 , 7 ) = 0 ;
462 B ( 9 , 8 ) = 0 ;
463
464 %lf
465 B (10 ,9 ) = 0 ;
466 B (11 ,7 ) = 0 ;
467 B (11 ,8 ) = 0 ;
468
469 %ls
470 %uses that of af,as,ls
471
472 %d1
473 B (12 ,10) = C_1/L_1 ;
474 B (12 ,11) = 0 ;
475 %d2
476 B (13 ,12) = 0 ;
477
478 %d3
479 B (14 ,13) = 0 ;
480
481 %d41
482 B (15 ,14) = 0 ;
483 B (16 ,15) = 0 ;
484
485 %d42
486 B (17 ,16) = 0 ;
487 B (18 ,17) = 0 ;
488 B (19 ,18) = 0 ;
489
490 %d43
491 B (20 ,19) = 0 ;
492 B (21 ,20) = 0 ;

Master of Science Thesis M.J.A. Bartels



202 MATLAB: 4-node Transportation System

493 B (22 ,21) = 0 ;
494
495 %d4.1
496 B (23 ,22) = 0 ;
497 B (24 ,23) = 0 ;
498 B (25 ,24) = 0 ;
499 B (26 ,25) = 0 ;
500 B (27 ,26) = 0 ;
501 B (28 ,27) = 0 ;
502 B (29 ,28) = 0 ;
503
504 %d422
505 B (30 ,29) = ( C_2/u_1 ) ; %- (C_2 * 1e5);
506 B (31 ,30) = ( C_2/L_2 ) ; %- (C_2 * 1e5);
507 B (32 ,31) = −C_3/u_1 ;
508 B (33 ,32) = −C_3/L_2 ;
509
510 %d423
511 B (34 ,33) = C_2/L_2 ;
512 B (34 ,34) = 0 ;
513 B (35 ,35) = C_2/u_1 ;
514 B (35 ,36) = 0 ;
515 B (36 ,37) = 0 ;
516 B (37 ,38) = −C_3/L_2 ;
517 B (38 ,39) = −C_3/u_1 ;
518
519 %d432
520 B (39 ,40) = C_3/u_1 ; %- (C_3 * 1e5);
521 B (40 ,41) = C_3/L_3 ; %- (C_3 * 1e5);
522 B (41 ,42) = −C_2/u_1 ;
523 B (42 ,43) = −C_2/L_3 ;
524
525 %d433
526 B (43 ,44) = C_3/L_3 ;
527 B (43 ,45) = 0 ;
528 B (44 ,46) = C_3/u_1 ;
529 B (44 ,47) = 0 ;
530 B (45 ,48) = 0 ;
531 B (46 ,49) = −C_2/L_3 ;
532 B (47 ,50) = −C_2/u_1 ;
533
534 %c1 parts
535 B (48 ,51) = 0 ;
536 B (49 ,52) = 0 ;
537 B (50 ,53) = 0 ;
538 B (51 ,54) = 0 ;
539 B (52 ,55) = 0 ;
540 B (53 ,56) = 0 ;
541 B (54 ,57) = 0 ;
542 B (55 ,58) = 0 ;
543 B (56 ,59) = 0 ;
544 B (57 ,60) = 0 ;
545 B (58 ,61) = 0 ;

M.J.A. Bartels Master of Science Thesis



203

546 B (59 ,62) = 0 ;
547 B (60 ,63) = 0 ;
548 B (61 ,64) = 0 ;
549 B (62 ,65) = 0 ;
550 B (63 ,66) = 0 ;
551 B (64 ,67) = 0 ;
552
553 %c2 parts
554 B (65 ,68) = 0 ;
555 B (66 ,69) = 0 ;
556 B (67 ,70) = 0 ;
557 B (68 ,71) = 0 ;
558 B (69 ,72) = 0 ;
559 B (70 ,73) = 0 ;
560
561 %c3 parts
562 B (71 ,74) = 0 ;
563 B (72 ,75) = 0 ;
564 B (73 ,76) = 0 ;
565 B (74 ,77) = 0 ;
566 B (75 ,78) = 0 ;
567 B (76 ,79) = 0 ;
568
569 %c1
570 B (77 ,80) = 0 ;
571 B (77 ,81) = 0 ;
572 B (77 ,82) = 0 ;
573 B (77 ,83) = 0 ;
574
575 B (78 ,84) = 0 ;
576 B (78 ,85) = 0 ;
577 B (78 ,86) = 0 ;
578
579 %c2
580 B (79 ,87) = 0 ;
581 B (79 ,83) = 0 ;
582
583 B (80 ,88) = 0 ;
584
585 %c3
586 B (81 ,89) = 0 ;
587
588 B (82 ,90) = 0 ;
589 B (82 ,83) = 0 ;
590
591 %s1
592 B (83 ,91) = 0 ;
593
594 %s2
595 B (84 ,92) = 0 ;
596 B (85 ,106) = 0 ;
597
598 %s3

Master of Science Thesis M.J.A. Bartels



204 MATLAB: 4-node Transportation System

599 B (86 ,93) = 0 ;
600
601 %rho1
602 B (87 ,94) = 0 ;
603
604 %rho42
605 B (88 ,95) = 0 ;
606 B (88 ,96) = 0 ;
607 B (88 ,97) = 0 ;
608 B (88 ,98) = 0 ;
609
610 %rho43
611 B (89 ,99) = 0 ;
612 B (89 ,100) = 0 ;
613 B (89 ,101) = 0 ;
614 B (89 ,102) = 0 ;
615
616 %delta1
617 B (90 ,103) = 0 ;
618 B (91 ,104) = 1 ;
619 B (91 ,105) = 1 ;
620
621 new_col_90 = T ∗ ones ( size (B , 1) , 1) ;
622 B = [ B ( : , 1 : 8 9 ) , new_col_90 , B ( : , 90 : end ) ] ;
623 B (81 ,90) = 0 ;
624 new_col_92 = T ∗ ones ( size (B , 1) , 1) ;
625 B = [ B ( : , 1 : 9 1 ) , new_col_92 , B ( : , 92 : end ) ] ;
626 B (82 ,92) = 0 ;
627 new_col_87 = T ∗ ones ( size (B , 1) , 1) ;
628 B = [ B ( : , 1 : 8 6 ) , new_col_87 , B ( : , 87 : end ) ] ;
629 B (78 ,87) = 0 ;
630 B (80 ,87) = 0 ;
631 B (81 ,87) = 0 ;
632 new_col_41 = T ∗ ones ( size (B , 1) , 1) ;
633 B = [ B ( : , 1 : 4 0 ) , new_col_41 , B ( : , 41 : end ) ] ;
634 new_col_43 = T ∗ ones ( size (B , 1) , 1) ;
635 B = [ B ( : , 1 : 4 2 ) , new_col_43 , B ( : , 43 : end ) ] ;
636 B (39 ,41) = C_3/u_1 ;
637 B (40 ,43) = C_3/L_3 ;
638 new_col_30 = T ∗ ones ( size (B , 1) , 1) ;
639 B = [ B ( : , 1 : 2 9 ) , new_col_30 , B ( : , 30 : end ) ] ;
640 new_col_32 = T ∗ ones ( size (B , 1) , 1) ;
641 B = [ B ( : , 1 : 3 1 ) , new_col_32 , B ( : , 32 : end ) ] ;
642 B (30 ,30) = ( C_2/u_1 ) ;
643 B (31 ,32) = ( C_2/L_2 ) ;
644 B (92 ,114) = 0 ;
645 B (93 ,115) = 0 ;
646 B (94 ,116) = 0 ;
647 B (94 ,117) = 0 ;
648 B (95 ,118) = 0 ;
649 B (96 ,119) = 0 ;
650 B (97 ,120) = 0 ;
651 B (97 ,121) = 0 ;

M.J.A. Bartels Master of Science Thesis



205

652
653 % === create A matrix ===
654
655 A ( 1 , 1 ) = tau_41 ;
656 A ( 2 , 2 ) = tau_42 ;
657 A ( 3 , 3 ) = tau_43 ;
658 A ( 4 , 4 ) = tau_14 ;
659 A ( 5 , 5 ) = tau_24 ;
660 A ( 6 , 6 ) = tau_34 ;
661 %af
662 A ( 7 , 7 ) = 0 ;
663 %as
664 A ( 8 , 8 ) = 0 ;
665 A ( 8 , 9 ) = 0 ;
666
667 %lf
668 A (9 , 10 ) = 0 ;
669 A (9 , 11 ) = 0 ;
670 %ls
671 A (10 ,8 ) = 0 ;
672 A (10 ,9 ) = 0 ;
673 A (10 ,10) = 0 ;
674 %d1
675 A (11 ,12) = 0 ;
676
677 %d2
678 A (12 ,13) = 0 ;
679
680 %d3
681 A (13 ,14) = 0 ;
682
683 %d41
684 A (14 ,15) = 0 ;
685 A (14 ,16) = 0 ;
686
687 %d42
688 A (15 ,17) = 0 ;
689 A (15 ,18) = 0 ;
690 A (15 ,19) = 0 ;
691
692 %d43
693 A (16 ,20) = 0 ;
694 A (16 ,21) = 0 ;
695 A (16 ,22) = 0 ;
696
697 %d4.1
698 A (17 ,23) = 0 ;
699 A (17 ,24) = 0 ;
700 A (17 ,25) = 0 ;
701 A (17 ,26) = 0 ;
702 A (17 ,27) = 0 ;
703 A (17 ,28) = 0 ;
704 A (17 ,29) = 0 ;

Master of Science Thesis M.J.A. Bartels



206 MATLAB: 4-node Transportation System

705
706 %d422
707 A (18 ,30) = 0 ;
708 A (18 ,31) = 0 ;
709 A (18 ,32) = 0 ;
710 A (18 ,33) = 0 ;
711
712 %d423
713 A (19 ,34) = 0 ;
714 A (19 ,35) = 0 ;
715 A (19 ,36) = 0 ;
716 A (19 ,37) = 0 ;
717 A (19 ,38) = 0 ;
718
719 %d432
720 A (20 ,39) = 0 ;
721 A (20 ,40) = 0 ;
722 A (20 ,41) = 0 ;
723 A (20 ,42) = 0 ;
724
725 %d433
726 A (21 ,43) = 0 ;
727 A (21 ,44) = 0 ;
728 A (21 ,45) = 0 ;
729 A (21 ,46) = 0 ;
730 A (21 ,47) = 0 ;
731
732 %conditions
733 %c1 parts
734 A (22 ,48) = 0 ;
735 A (22 ,49) = 0 ;
736 A (22 ,50) = 0 ;
737 A (22 ,51) = 0 ;
738
739 A (23 ,52) = −C_2/L_3 ;
740 A (23 ,53) = −C_2/u_1 ;
741 A (24 ,54) = C_2/L_2 ;
742 A (24 ,55) = C_2/u_1 ;
743 A (25 ,56) = C_3/L_3 ;
744 A (25 ,57) = C_3/u_1 ;
745 A (26 ,58) = 0 ;
746 A (26 ,59) = 0 ;
747 A (26 ,60) = 0 ;
748 A (26 ,61) = 0 ;
749 A (27 ,62) = −C_3/L_2 ;
750 A (27 ,53) = −C_3/u_1 ;
751 A (28 ,63) = C_3/L_3 ;
752 A (28 ,55) = C_3/u_1 ;
753 A (29 ,64) = C_2/L_2 ;
754 A (29 ,57) = C_2/u_1 ;
755
756 %c2 parts
757 A (30 ,65) = −C_3/u_1 ;

M.J.A. Bartels Master of Science Thesis



207

758 A (30 ,66) = −C_3/L_2 ;
759 A (31 ,67) = C_3/u_1 ;
760 A (31 ,68) = C_3/L_3 ;
761 A (32 ,65) = −C_2/u_1 ;
762 A (32 ,69) = −C_2/L_3 ;
763 A (33 ,67) = C_2/u_1 ;
764 A (33 ,70) = C_2/L_2 ;
765
766 %c3 parts
767 A (34 ,71) = −C_3/u_1 ;
768 A (34 ,72) = −C_3/L_2 ;
769 A (35 ,73) = C_3/u_1 ;
770 A (35 ,74) = C_3/L_3 ;
771 A (36 ,71) = −C_2/u_1 ;
772 A (36 ,75) = −C_2/L_3 ;
773 A (37 ,73) = C_2/u_1 ;
774 A (37 ,76) = C_2/L_2 ;
775
776 %c1
777 A (38 ,77) = 0 ;
778 A (38 ,78) = 0 ;
779
780 %c2
781 A (39 ,79) = 0 ;
782 A (39 ,80) = 0 ;
783
784 %c3
785 A (40 ,81) = 0 ;
786 A (40 ,82) = 0 ;
787
788 %stacks
789 A (41 ,83) = 0 ;
790 A (42 ,84) = 0 ;
791 A (42 ,85) = 0 ;
792 A (43 ,85) = 0 ;
793 A (43 ,86) = 0 ;
794
795 %truck loads
796 A (44 ,87) = 0 ;
797 A (45 ,88) = 0 ;
798 A (46 ,89) = 0 ;
799
800 %delta1
801 A (47 ,90) = 0 ;
802 A (47 ,91) = 0 ;
803 A (48 ,92) = 0 ;
804 A (48 ,93) = 0 ;
805 A (49 ,94) = 0 ;
806 A (50 ,95) = 0 ;
807 A (50 ,96) = 0 ;
808 A (51 ,97) = 0 ;

Master of Science Thesis M.J.A. Bartels



208 MATLAB: 4-node Transportation System

M.J.A. Bartels Master of Science Thesis



References

[1] B. Heidergott, G. J. Olsder, and J. van der Woude, Eds., Max Plus at Work: Modeling
and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applica-
tions (Princeton Series in Applied Mathematics), eng. Princeton: Princeton University
Press, 2014.

[2] B. D. Schutter and T. v. d. Boom, “Max-plus algebra and max-plus linear discrete
event systems: An introduction,” in 2008 9th International Workshop on Discrete Event
Systems, May 2008, pp. 36–42.

[3] T. v. d. Boom, A. Gupta, B. D. Schutter, and R. Beek, “Max-Min-Plus-Scaling Sys-
tems in a Discrete-Event Framework with an Application in Urban Railway,” IFAC-
PapersOnLine, 22nd IFAC World Congress, vol. 56, no. 2, pp. 7906–7911, Jan. 2023.

[4] S. Markkassery, T. v. d. Boom, and B. D. Schutter, “Eigenvalues of Time-invariant
Max-Min-Plus-Scaling Discrete-Event Systems,” in 2024 European Control Conference
(ECC), Jun. 2024, pp. 2017–2022.

[5] S. Markkassery, T. v. d. Boom, and B. D. Schutter, “Dynamics of Implicit Time-
Invariant Max-Min-Plus-Scaling Discrete-Event Systems,” en, 2025, To be Published.

[6] S. Markkassery, T. v. d. Boom, and B. D. Schutter, “Stability of Time-invariant Max-
Min-Plus-Scaling Discrete-Event Systems with Diverse States,” IFAC-PapersOnLine,
17th IFAC Workshop on discrete Event Systems WODES 2024, vol. 58, no. 1, pp. 60–
65, Jan. 2024.

[7] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid
Systems, en, ISBN: 9781139061759 Publisher: Cambridge University Press, Jun. 2017.

[8] S. P. Boyd and L. Vandenberghe, Convex optimization, en, Version 29. Cambridge New
York Melbourne New Delhi Singapore: Cambridge University Press, 2023.

[9] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness (A series of books in the mathematical sciences), eng, 27. print. New
York [u.a]: Freeman, 2009.

Master of Science Thesis M.J.A. Bartels



210 REFERENCES

[10] T. v. d. Boom and B. D. Schutter, Optimization for Systems and Control (Lecture
Notes for the course SC42056). Delft Center for Systems and Control Delft University
of Technology Mekelweg 2, 2628 CD Delft, The Netherlands, Sep. 2022.

[11] S. R. Daams, “Control Strategies for Max-Min-Plus-Scaling Systems,” en, 2024.
[12] G. Olsder, “On structural properties of min-max systems,” springer, Jun. 1994, pp. 237–

246.
[13] G. J. Olsder, “On min-max-plus systems, nonexpansive mappings and periodic solu-

tions,” en, Jan. 2001.
[14] S. A. Rosyada, Siswanto, and V. Y. Kurniawan, “Bases in Min-Plus Algebra,” en, ISSN:

2352-5398, Atlantis Press, Nov. 2021, pp. 313–316.
[15] Y. Cheng, “A Survey of the Theory of Min-Max Systems,” en, in Lecture Notes in Com-

puter Science, ISSN: 0302-9743, 1611-3349, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 616–625.

[16] D. C. Lay, S. R. Lay, and J. McDonald, Linear algebra and its applications, Fifth edition.
Boston: Pearson, 2016.

[17] V. M. van Heijningen, “Solving solvability of implicit max-min-plus-scaling systems,”
en, 2025.

[18] J. van Drunen, M. Cooper, J. Wempe, and M. van Gils, “Optimizing logistic systems
using max-min-plus scaling in ABCD canonical form,” en, Jun. 2025.

[19] T. v. d. Boom, S. Markkassery, and B. D. Schutter, “Bounds on the growth rate of time-
invariant switching max-min-plus-scaling discrete-event systems,” IFAC-PapersOnLine,
26th International Symposium on Mathematical Theory of Networks and Systems MTNS
2024, vol. 58, no. 17, pp. 404–409, Jan. 2024.

[20] B. D. Schutter and M. Heemels, Modeling and Control of Hybrid Systems (Lecture Notes
for the course SC42075). Delft, The Netherlands: Delft Center for Systems and Con-
trol, Delft University of Technology en Hybrid & Networked Systems group, Eindhoven
University of Technology, 2021.

M.J.A. Bartels Master of Science Thesis



Glossary

List of Acronyms

DE Discrete Event
DES Discrete Event System
LPP Linear Programming Problem
MILP Mixed-Integer Linear Programming
MMPS Max-Min-Plus-Scaling
S-MMPS Switching Max-Min-Plus-Scaling
MMP Max-Min-Plus
URS Urban Railway System
VRP Vehicle Routing Problem
ME Mechanical Engineering
TPS Transportation System

List of Symbols

⊠ Kronecker product operator
λ Additive eigenvalue or growth rate
N Set of positive integers including 0
P Max-plus Hilbert projective norm
R Set of real numbers
Rϵ Set of real numbers including ϵ

R⊤ Set of real numbers including ⊤
Rc Set of real numbers including ϵ and ⊤
Z Set of integers
Z+ Set of positive integers

Master of Science Thesis M.J.A. Bartels



212 Glossary

µ Multiplicative eigenvalue or periodic point
⊕ Max-plus addition operator (’o-plus’)
⊕′ Min-plus addition operator (’o-plus-prime’)
⊗ Max-plus multiplication operator (’o-times’)
⊗′ Min-plus multiplication operator (’o-times-prime’)
⊤ Min-plus zero element ⊤ =∞
ε Max-plus zero element ε = −∞
e Max-plus and min-plus one element e = 0
M A sufficiently large number
nq Number of quantity states
nt Number of time states
v Additive or multiplicative eigenvector or fixed point

M.J.A. Bartels Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Background
	Problem Description
	Research Questions
	Approach

	Document Outline

	Preliminaries of MMPS Systems
	Discrete Event Systems
	Fundamentals of Dioids
	Max-Plus Algebra
	Vectors and Matrices in Max-Plus Algebra
	Min-Plus Algebra

	MMPS Systems

	Analysis of MMPS Systems
	Explicit MMPS Systems
	Implicit MMPS Systems
	Time Invariance of Implicit MMPS Systems
	Solvability of Implicit MMPS Systems

	Eigenvalues and Eigenvectors
	Power Algorithm for Implicit MMPS Systems
	LPP Algorithm for Implicit MMPS Systems


	Stability of Max-Min-Plus-Scaling Systems
	Steady State Behaviour of Explicit MMPS Systems
	Bounded Buffer Stability of Explicit MMPS Systems
	Bounded Buffer Stability of Implicit MMPS Systems
	Maximal Invariant Set of a Linearised MMPS Systems

	Scalable Analysis of MMPS Systems
	Introduction to Mixed Integer Linear Programming Problems
	MILP for Implicit MMPS Systems
	MILP for Explicit Topical MMPS Systems
	MILP for Implicit MMPS Systems

	Search Tree for Footprint Matrices
	MILP Search Tree Algorithm
	Preprocessing for Search Space Reduction
	Recursive MILP Search Strategy
	Analysis of MILP Method


	Periodicity of MMPS Systems
	Periodicity in MMPS Systems
	Bounds on Periods in Max-Plus and Min-Plus Systems
	Periodic Behaviour in General implicit MMPS Systems
	Unknown Period Length of Periodic MMPS Systems
	Normalised Periodic MMPS Systems
	Stability of Periodic MMPS Systems


	Modelling Framework for Transportation Networks
	Basics of Modular Transportation Systems
	Introduction to Modular Transport Nodes
	Introduction to MMPS Sub-Systems
	Risks of Asynchronicity in Transportation Systems

	Switching MMPS Systems as a Single System
	Transportation Network Framework
	Basic Central Node Structure
	Basic Connection Node Types
	Advanced Node Extensions

	Generating the System of Equations from a Transport Graph
	Cycle Assignment and High-level System Assembly
	System Construction from a Transport Graph


	Case Study: Transportation System
	Introduction to a 4-Node Transportation System
	Mathematical Derivation of the 4-Node Transportation System
	Determining the Active Mode
	Deriving Truck Departure Times
	Derivation of Quantity States for the 4-Node Transportation System
	Model Validation

	Simulation and Analysis of the 4-Node Transportation Network
	Initialisation of the System
	Growth Rate, Fixed Points, and Periodicity Analysis
	System Simulations for Periodic Behaviour
	Stability of the Transportation System
	Maximal Invariant Set of the Transportation System


	Conclusions and Contributions
	On Scalable Analysis
	On Periodicity
	On Modelling
	Contributions

	Recommendations for Future Work

	Appendices
	System of Equations for Alternative Transportation Nodes
	End Nodes
	Transfer Nodes
	Pass-through Nodes

	System Matrices Example 7.3
	MATLAB: Full MILP Search Algorithm
	MATLAB: Generating a System of Equations from an Adjacency Matrix
	MATLAB: 4-node Transportation System

	Back Matter
	References
	Glossary
	List of Acronyms
	List of Symbols



