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Preface

Computer-aided design (CAD) and finite element analysis (FEA) tools are extensively used
in industrial design processes. The idea of isogeometric analysis (IGA) is to bring those
worlds closer together. Combining them significantly increases the efficiency of the design
and development processes. The general idea of the IGA approach is to use non-uniform
rational B-splines (NURBS) that are used to represent the geometry in the CAD tool also
as a basis for numerical analysis of the partial differential equations (PDE) via FEA. The
simplest setting is to use the space spanned by NURBS as a search/test space in the standard
Galerkin method.

Nowadays, increasing the efficiency of turbo-engines and therefore decreasing the emissions
of mainly CO2 and NOx is a field of very active research. Therefore, design optimization of
turbomachines, largely based on numerical simulations, is extensively performed in industry.
An additional motivation for solving the underlying flow problems by IGA is its ability to
exactly represent the complex shapes of domains, which is an important feature for flow
solvers that need to accurately resolve boundary layers.

The topic of this thesis project: application of isogeometric analysis to compressible flow
problems is very broad and it is beyond the scope of this thesis to answer all questions arising
during the pilot implementation of an IGA solver for compressible flows. Therefore, it was
decided to set the implementation of a B-spline-based IGA solver for the compressible Euler
equations as the main goal. To achieve this goal several intermediate milestones were set. The
first was the implementation of a simple B-spline basis generator and evaluator. The next
step was to solve the Poisson problem with IGA. The next step consisted in implementing
the solver for the convection-diffusion equation in stationary and time-dependent variants.
Those steps led to the final milestone - the implementation of the compressible inviscid flow
solver based on the IGA approach.

It is well known that the standard Galerkin finite element method as well as its iso-
geometric counterpart suffer from infamous oscillatory behaviour for convection-dominated
problems and problems including discontinuities or steep gradients in the domain. Therefore,
the algebraic flux correction (AFC) stabilization was implemented to avoid oscillations and
non-physical values in the solution. The main novelty of this thesis is to combine AFC with
IGA for the compressible Euler equations.

All solvers implemented during the thesis work were successfully validated using com-
mon benchmark problems. This work sets a base for further research and development that
will hopefully lead to a productive implementation of IGA-based optimisation in industrial
turbomachinery design.

I would like to express my sincere gratitude to my advisor Dr. Matthias Möller for the
support of my project. His patience and expertise were a source of indispensable help. Besides
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University in Linz (JKU) and Dr. Angelos Mantzaflaris from Johann Radon Institute for
Computational and Applied Mathematics (RICAM) of Austrian Academy of Sciences (ÖAW)
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Chapter 1

Introduction

Nowadays, computer-aided design (CAD) and finite element analysis (FEA) software pack-
ages are widely used by the engineering community in design and optimization processes.
Preparation of the geometry obtained from CAD software for the FEA is a long, manual pro-
cess that is not suitable for automation. The aim of the isogeometric analysis (IGA) approach
is to bring the CAD and the FEA worlds closer together and to allow to avoid the manual
transition between them. This would enable the automation of design optimization processes.

Most of the CAD systems use non-uniform rational B-splines (NURBS) to represent the
geometries. The idea of isogeometric analysis is to use the NURBS basis functions that are
used to represent the geometry, as a basis for analysis. In the simplest setting, NURBS func-
tions are used as basis functions for test and trial spaces in the standard Galerkin formulation.
This method has two significant advantages over the standard FEA. Firstly, the geometry of
the domain is represented exactly as designed in the CAD system, while for standard FEA
the geometry is typically approximated by a surface triangulation unless special isogeometric
curved elements are adopted. Secondly, slight modifications of the shape of the domain do not
require a costly re-meshing. However, the isogeometric analysis has one major bottle-neck:
the matrix assembly is more costly than that of the standard FEM as the basis functions can
have much wider overlap of supports.

The advantages of the isogeometric analysis become even more significant for compressible
flow problems, where the behaviour of the fluid close to boundaries is very important. A very
special and sophisticated field where IGA can be used to analyse compressible fluid flows is
turbomachinery. The optimization of the turbomachines is a very important research topic
since many years. Turbomachines are used in many applications, starting from the aerospace
engineering, over energy production and ending at the automotive industry. In all those
fields efficiency plays a crucial role because of high ecological and economical expectations.
Reducing the emissions of, inter alia, CO2 and NOx is a field of research of very high priority.
This motivates the choice of the topic of this thesis.

1.1 Scope of the thesis

The topic of this thesis: application of isogeometric analysis to the flow problems is very broad
and it would not be possible to answer all questions arising during the pilot implementation of
IGA solver for compressible flows in the time of one master project. Therefore, it was decided
to set the implementation of an IGA-based solver for the compressible Euler equations as the
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main goal. To achieve this goal several intermediate milestones were set. The first was to
implement a Matlab code capable of building and evaluating the B-spline basis. For the sake
of simplicity it was decided to use less complex counterparts of NURBS - B-splines instead
of NURBS during this thesis project. Solver for the Poisson’s problem was implemented and
generalized towards arbitrary geometries. Those two goals were accomplished during the lit-
erature study. Our experiments with the Matlab code suggested the use of an external, highly
optimized library for efficiency reasons, to enable the numerical simulation of compressible
flows. Therefore, the choice of suitable library was done as the next step.

It was considered helpful to implement and investigate the behaviour of solvers of simpler
problems that are causing similar difficulties for the numerical schemes as the Euler equations
prior to the implementation of the inviscid compressible flow solver. The first problem anal-
ysed was the stationary convection-diffusion equation. It is widely known that the Galerkin
FEM with standard Lagrange basis functions as well as its IGA counterpart [1] are not capa-
ble of solving convection-dominated problems without generating spurious oscillations unless
a suitable stabilization method is employed. Although a general practice is to use SUPG
stabilization, it was decided to use stabilization methods of AFC-type. Another requirement
at this stage was to find a proper projection of initial and boundary data to the considered
B-spline spaces. Standard L2 projection generated non-physical under- and over-shoots and
therefore it was decided to implement a so-called constrained L2 projection to overcome this
deficiency.

The next milestone was to generalize the solver for convection-diffusion equation towards
time-dependent problems. For this purpose several time discretization schemes were imple-
mented including Strong Stability Preserving Runge-Kutta (SSP-RK) methods. The im-
plementation of AFC-type stabilization methods was adjusted to be capable of stabilizing
time-dependent problems. The last step to achieve the final goal was to generalize the solver
towards systems of conservation laws. Implementation of boundary conditions for the Eu-
ler equations was an additional difficulty to pass. All solvers were validated using common
benchmark problems.

1.2 State of the art

The isogeometric analysis was firstly proposed by Hughes et al. in [2]. The complete descrip-
tion of the method can be found in the book [1] published by this group few years later. The
method has been originally developed in the field of mechanical problems, then extended to
incompressible flows and fluid structure interaction problems [1]. Currently, there are several
groups all over the world that are working on the topics connected with isogeometric analysis.
According to the author’s best knowledge there were not many published attempts to apply
IGA to compressible flow problems. One of them was described by Trontin in [3]. There were
successful works towards application of hierarchical splines and adaptive refinement in IGA
presented by Vuong in [4]. Brunero in [5] successfully used Discontinuous Galerkin method
for multi-patch problems.

It is a well known fact that the standard Galerkin finite element method applied to
convection-dominated problems tends to produce non-physical oscillations near steep gra-
dients or discontinuities. It was shown by Hughes et al. in [1] that the same problem occurs
also in IGA. There are several stabilization methods that overcome this limitation. The most
common is the streamline upwind/Petrov–Galerkin (SUPG) method introduced by Brooks
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and Hughes in [6]. Harari and Hughes introduced the Galerkin/least-squares (GLS) and the
Galerkin/gradient-least-squares (GGLS) in [7]. Bubble stabilization was proposed by Russo
in [8]. Codina in [9] proposed stabilization based on a sub-grid scale approach and an algebraic
approximation to the sub-scales. In this thesis an algebraic flux correction (AFC) method-
ology is used for stabilization. It was introduced by Kuzmin and Turek in [10]. Two types
of limiting techniques that are considered in this thesis: TVD-type limiting and FCT-type
limiting were introduced in [11] and [12], respectively. The method was generalized to systems
of conservation laws in [13]. The comprehensive summary of this family of methods can be
found in [14] and [15]. It is worth mentioning that AFC has been successfully generalised
to quadratic Lagrangian finite elements but this approach turned out to be impractical and
rather inefficient [16]. According to this work, there is a possibility of application of AFC for
higher order basis functions, however for FEM it was very hard to implement due to negative
values attained by basis functions. For the B-spline (NURBS) basis this problem will not
occur.

1.2.1 Software packages

There exist several packages implementing the isogeometric analysis approach. Although
most of them are still under development they provide useful toolboxes for solving problems
by the IGA approach. In this section examples of existing packages are briefly described.

PetIGA [17] is a free software that implements IGA in C. It can considered as an extension
of PETSc (the Portable, Extensible Toolkit for Scientific Computation). An important feature
of this package is its support of parallelism [18].

Another package is GeoPDEs [19]. It implements IGA (also with T-spline basis) in
Octave (compatible with Matlab) and is available under the GNU GPL license. It provides
several modules for solving problems from the fields of linear elasticity, fluid mechanics and
electromagnetism [20].

Igatools [21] is an open source C++ package implementing IGA. The developers state
that it is computationally very efficient and that it supports parallelism. A very important
advantage of this package is its extensive documentation [22].

Igafem [23] is an open source implementation of IGA conceived mostly for linear elasticity
problems. It is implemented in Matlab and has a user-friendly graphical user interface (GUI).
An important feature of this package is the support of not only NURBS basis functions but
of T-splines basis functions as well [23].

The last example: G+SMO [24] (Geometry + Simulation Modules) is an open source,
object-oriented, templated C++ library. It implements IGA with B-spline, Bernstein and
NURBS bases and also hierarchical and truncated hierarchical B-spline bases. What makes
this library particularly attractive for using it as software basis for this thesis is its assembler
of matrices for stationary convection-diffusion-reaction equations, which can be used as robust
assembly module for all matrices needed for solving the flow problems considered in this thesis.

Although there exist several well developed software packages, small Matlab codes were
written as illustrating examples in the first two chapters. Writing the code from scratch
allowed the author of this thesis to get a deeper understanding of IGA. However, more complex
problems could not be solved in reasonably short time using the own code so it was decided
to use the G+SMO package instead.
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Chapter 2

B-splines and NURBS

Short theoretical introduction to B-splines and NURBS is provided in this chapter to acquaint
the reader with the general ideas and nomenclature. Several important properties of B-splines
are presented here as well. The Matlab code written by the author was used to illustrate the
chapter with several examples.

2.1 Piecewise polynomial approximation

Polynomial approximations are widely used in numerical mathematics. Examples of polyno-
mial interpolations are the Lagrange interpolation, the Newton interpolation and the Oscu-
latory interpolation. The polynomial approximations gained high popularity due to the fact
that they can be easily evaluated, differentiated and integrated. On the other hand, there are
some limitations that become crucial in application to several classes of problems. Namely,
if the function that is to be approximated behaves badly anywhere across the interval to be
approximated then the approximation is of poor quality everywhere in this interval [25]. This
leads to the idea of piecewise polynomial interpolation. The basic definitions connected with
the interpolation with use of piecewise polynomial functions (PP functions) are presented
below.

It is important to mention here that we define the degree of polynomial as the highest
degree of its terms when the polynomial is expressed in canonical form consisting of a linear
combination of monomials, while the order of polynomial is the highest degree among the
basis functions used to express the polynomial in terms of a given polynomial vector space.
It is, therefore, relative to the basis of the polynomial vector space in which the considered
polynomial is included [25].

Let ξ = (ξj)
l+1
1 denote a strictly increasing sequence of points and let k be a positive

integer. If P1, ..., Pl is any sequence of l polynomials, each of order p, then we define the
corresponding piecewise polynomial (PP) function f of order p as [26]:

f(x) = Pj(x) if ξj < x < ξj+1 for j = 1, ..., l (2.1)

The points ξj are called breaks of f . It is important to mention that for the breaks ξ2, ..., ξl
function f has two values: f(ξ+

j ) and f(ξ−j ). The space of all the PP functions of order p for
a break sequence ξ will be denoted by Π<p,ξ.

In many cases there are additional constraints concerning the continuity between pieces
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of the function, i.e. [26]:

Di−1f(ξ+
j ) = Di−1f(ξ−j ) for i = 1, ..., vj , j = 2, ..., l (2.2)

for some vector v = (vj)
l
2 of non-negative integers. The operator Di denotes the i-th deriva-

tive. Each component vj of the vector corresponds to the required continuity at break ξj .
The subspace of Π<p,ξ which fulfils these conditions is denoted by Π<p,ξ,v [25].

It would be very convenient to find a universal way to define the basis for arbitrary Π<p,ξ,v.
This leads to the idea of basis splines or B-splines.

2.2 B-splines

2.2.1 B-spline basis functions

The B-splines were originally defined with the use of divided differences. Let ξ = (ξj) be a
non-decreasing sequence of knot values. The j-th B-spline of order p for the knot sequence
ξ is defined as [26]:

Nj,p,ξ(x) = (ξj+p − ξj)[ξj , ..., ξj+p](· · · − x)p−1
+ ∀x ∈ R (2.3)

It can be proven that every space Π<p,ξ,v has a basis consisting of B-splines defined above
[25].

For practical reasons another way of defining the B-splines is more useful. The Cox-de
Boor formula is a recursive formula allowing to define and evaluate B-splines. Again, let
ξ = (ξj) be a non-decreasing sequence of knot values. The recursive definition starts with
piecewise constant functions (p = 0) [1]:

Ni,0,ξ(x) =

{
1 if ξi ≤ x < ξi+1

0 otherwise
(2.4)

For p > 0 they are defined by [1]:

Ni,p,ξ(x) =
x− ξi
ξi+p − ξi

Ni,p−1,ξ(x) +
ξi+p+1 − x
ξi+p+1 − ξi+1

Ni+1,p−1,ξ(x) (2.5)

For the simpler representation the index ξ in Ni,p,ξ(x) is often omitted.
Knot vectors can contain the same values multiple times. Then the multiplicity mi is

the number of occurrences of the i-th knot. A knot vector is called open if the first and the
last knot value appears p+ 1 times. The knot vectors are called uniform if all the knots are
equally spaced and non-uniform otherwise. In case of a uniform knot vector the internal
basis functions are just translates of each other [1].

Fig. 2.1 presents example: basis functions of orders p = 0, 1, 2 for an open, uniform knot
vector ξ = [0, 0, 0, 1, 2, 3, 4, 4, 4].

While building the basis functions from vectors containing knots with multiplicities higher
than one a 0 will occur in the denominator in the formula (2.5). In this case we need to
introduce the convention that each term with denominator equal to 0 is equal to 0.

It is important at this point to mention several properties of B-spline basis functions. First
of all, each basis function is point-wise non-negative over the whole domain,
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Figure 2.1: Basis function of orders p = 0, 1, 2 for open, uniform knot vector
ξ = [0, 0, 0, 1, 2, 3, 4, 4, 4].

i.e. Ni,p(x) ≥ 0 ∀x, i [1]. The second important property of B-splines is the partition of
unity, i.e. [1]:

n∑
i=1

Ni,p(x) = 1 ∀ x ∈ [ξ1, ξn+p+1] (2.6)

The third important property is the size and the placement of the support of the function
(values of x for which the function is non-zero). The support of B-spline basis functions of
order p is always p+ 1 knot spans (intervals between knots, in case of repeated knots some
spans can be of length zero). More precisely [1]:

Ni,p(x) 6= 0 iff ξi < x < ξi+p+1 (2.7)

A very important property of B-splines is a connection between continuity at knots and their
multiplicity. For B-splines of order p at the knot with multiplicity mi the basis functions have
p −mi continuous derivatives. For example for the uniform knot vector (with multiplicities
1 for each knot value) we have at least Cp−1 continuity everywhere in the interior of the
interval. On the other hand, for open knot vector we have C−1 continuity on both ends of the
interval which means that the functions are discontinuous at those points which is a natural
termination of a domain [1].
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Fig. 2.2 presents another example: quadratic basis functions for an open, non-uniform
knot vector ξ = [0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 6, 6]. It is easy to see that the functions are C1-
continuous at knots 1, 3 and 4 , where the multiplicity is 1 and only C0-continuous at knots
2 and 5 where the multiplicity is 2.
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Figure 2.2: Quadratic basis functions for open, non-uniform knot vector
ξ = [0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 6, 6].

The last important property is that derivatives of B-spline basis functions can be easily
represented in terms of lower-order bases. It comes directly from the recursive definition (2.5).
The derivative of the i-th basis function of order p is given by [1]:

d

dx
Ni,p(x) =

p

ξi+p − ξi
Ni,p−1(x)− p

ξi+p+1 − ξi+1
Ni+1,p−1(x) (2.8)

This property can be easily generalized for higher order derivatives [1].

2.2.2 B-spline geometries

First of all, we consider B-spline curves in Rd. They are constructed by taking a linear
combination of the basis functions. The coefficients are vector-valued and they are called
control points.

For a given basis consisting of n functions Ni,p(ξ) of order p defined with the use of knot
vector ξ and corresponding n control points Bi ∈ Rd, i = 1, ..., n a B-spline curve is given
by [1]:

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi (2.9)

It is important to mention that from now on x will not be used any more to denote coordinates
in the parameter space to avoid confusion with the naturally used notation for the physical
space, i.e. x, y, z. This is why we will use ξ, η, ζ to denote the coordinates in the parameter
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space. We also keep the index i in Bi bold to underline the fact that it denotes which control
point is considered and is not referring to one of its components. Piecewise linear interpolation
of control points is called a control polygon [1].

Fig. 2.3 presents the example of the B-spline curve created from the basis functions shown
in Fig. 2.2 and the control polygon: B1 = [0, 0]T , B2 = [3, 3]T , B3 = [5, 1]T , B4 = [7, 1]T ,
B5 = [7, 5]T , B6 = [5, 5]T , B7 = [0, 3]T , B8 = [1, 3]T , B9 = [0, 2]T , B10 = [0, 1]T . At the
endpoints the curve is C−1-continuous which is a physical termination of the curve and makes
it interpolatory at the endpoints. It can be easily seen that at the points corresponding to
the knot values with multiplicity 2 the curve is only C0-continuous, while at all other points
it is at least C1-continuous. The knots mapped onto the physical space partition the curve
into elements (knot spans).
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Figure 2.3: The B-spline curve created from quadratic basis functions shown in Fig. 2.2 and
the control polygon: B1 = [0, 0]T , B2 = [3, 3]T , B3 = [5, 1]T , B4 = [7, 1]T , B5 = [7, 5]T ,
B6 = [5, 5]T , B7 = [0, 3]T , B8 = [1, 3]T , B9 = [0, 2]T , B10 = [0, 1]T . The blue line represent
the curve, the control polygon with control points is marked with green colour. The red
points on the curve correspond to the knots mapped to the physical space.

There are several useful properties of B-spline curves that gave this method of represent-
ing geometries wide popularity in Computer Aided Design (CAD). First of all, the affine
transformation of a B-spline curve (for example translation, rotation, scaling, stretching or
shearing) can be done by just applying it to the control points of the curve. This property
is called affine covariance. Due to the compact support of the basis functions, moving a
single control point affects no more than p+ 1 knot spans of the curve. Finally, the curve has
p−mi continuous derivatives at the given knot [1].
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Let us consider B-spline surfaces in Rd. Now Bi,j, i = 1, ..., n, j = 1, ...,m form a control
net. For knot vectors ξ and η, n basis functions of order p, Ni,p(ξ) and m basis functions of
order q, Mj,q(η), the B-spline surface is defined as [1]:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.10)

Fig. 2.4 represents the turbine blade profile described by quadratic B-splines. Knot
vectors ξ = [0, 0, 0, 0.5, 1, 1, 1] and η = [0, 0, 0, 1, 1, 1] were used to generate the basis. The
control net is given by the points presented in the table below:

j=1 j=2 j=3

i=1 (1.45,0.40) (-3.55,0.30) (1.45,-0.70)
i=2 (1.95,0.42) (3.45,0.00) (3.45,-1.00)
i=3 (5.95,0.50) (6.25,0.35) (6.95,0.30)
i=4 (8.45,1.80) (8.50,1.80) (8.45,1.65)
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Figure 2.4: The B-spline surface representing the profile of the turbine blade.

Several important properties of B-spline surfaces come from their tensor product nature.
The basis, as in case of B-spline curves, is point-wise non-negative and fulfils the partition of
unity property, i.e. [1]:

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η) = 1 ∀ (ξ, η) ∈ [ξ1, ξn + p+ 1]× [η1, ηm + q + 1] (2.11)

The continuity in given parametric direction can be determined using the knot vector in this
direction in the same way as in case of B-spline curves. The support is still compact for
Ni,p(ξ)Mj,q(η) it is exactly [ξi, ξi+p+1]× [ηj , ηj+q+1] [1].

Finally, let us consider B-spline solids. Now Bi,j,k, i = 1, ..., n, j = 1, ...,m, k = 1, ..., l
form a control lattice. For knot vectors ξ, η and ζ, n basis functions of order p, Ni,p(ξ),
m basis functions of order q, Mj,q(η) and l basis functions of order r, Lk,r(ζ) the B-spline
solid is defined as [1]:

S(ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k (2.12)
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Fig. 2.5 presents the B-spline solid representing the shape of a twisted turbine blade.
There are three layers (cross-sections) of control lattice at z = 0, 1, 2 and each of them is the
same as the control net in the Fig. 2.4 and only to the one at z = 2 the rotation of π/10
around (0, 0) is applied. The knot vector in the ζ direction was ζ = [0, 0, 0, 1, 1, 1] while the
two knot vectors in the other directions were the same as in the previous example.
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Figure 2.5: The B-spline solid representing the twisted turbine blade.

This is a trivariate generalization of the B-spline surfaces. Therefore, all properties of the
B-spline solids are generalizations of the properties of B-spline surfaces [1].

2.2.3 h-, p-, k-refinements of B-splines

The possibility of increasing the order of the basis functions and of inserting additional knots
to the knot vector without changing the shape of the curve (surface, solid) is a very important
property of B-splines. In other words, we can enrich the basis without changing the shape of
the geometry.

The first operation that enriches the basis is knot insertion. Inserting additional l knots
to the knot vector will result in additional l basis functions (degrees of freedom, abbreviated
later as DOFs). This operation correspond to the classical h-refinement. It is important to
mention that those two operations, although very similar, are not identical. To reproduce the
classical h-refinement new knots must be inserted with multiplicity p to achieve C0 continuity
across the new boundaries [1].

Knot insertion can be performed as follows. First of all, we create an extended knot vector
ξ̃ = (ξ̃j) which consist of all elements of the ξ = (ξj) and l new knots to be inserted. The
first and the last element of the vector should be the same as in the original knot vector ξ.
The n+ l new basis functions are created with recursion formulas (2.4) and (2.5). The n+ l
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new control points B̃, that will keep the geometry unchanged, are a linear combination of the
original control points B [1]:

B̃ = LpB (2.13)

where Lp can be obtained by recursion:

L0
i,j =

{
1 if ξ̃i ∈ [ξj , ξj+1)
0 otherwise

(2.14)

and for q = 1, ..., p− 1:

Lq+1
i,j =

ξ̃i+q − ξj
ξj+q − ξj

Lqi,j +
ξj+q+1 − ξ̃i+q
ξj+q+1 − ξj+1

Lqi,j+1 (2.15)

It is allowed to increase the multiplicity of the knots to intentionally reduce the continuity
of the basis at those knots. By following the procedure described above the continuity of the
curve will be however preserved [1].

The left part of Fig. 2.6 shows the curve defined with knot vector ξ = [0, 0, 0, 1, 1, 1] and
the control points B1 = [0, 0]T , B2 = [0.5, 1]T , B3 = [1, 0]T . The curve, the new knots and the
new control polygon obtained after inserting a new knot at ξ = 0.5 are presented in the right
part of the figure. It can be easily seen that the curve is not modified by this operation. One
new control point was added to the control net (as a response for one new basis function).
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Figure 2.6: The knot insertion at 0.5 into the curve defined originally with the knot vector
ξ = [0, 0, 0, 1, 1, 1], p = 2 and the control points B1 = [0, 0]T , B2 = [0.5, 1]T , B3 = [1, 0]T .

Another way to enrich the basis is order elevation. This results in a richer basis of higher
order. When we increase the order from p to p+1 we need to increase the multiplicity of every
knot by one to preserve the continuity properties of the curve (for example discontinuities).
Assuming that we have n distinct knot values in the original knot vector, we have to add n
new knots (as multiplicities) which results with n− 1 new degrees of freedom (one is lost as
p is increased by one). The procedure to obtain the new control points is not as simple as in
the case of knot insertion. The description of several approaches can be found in [27]. Order
elevation corresponds to the classical p-refinement as it increases the order of the basis. The
main difference is that the classical p-refinement starts with C0 at every element boundary
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which is not a necessity in case of the order elevation which works for all combination of
continuities [1].

The left part of Fig. 2.7 presents again the curve defined with knot vector ξ = [0, 0, 0, 1, 1, 1]
and the control points B1 = [0, 0]T , B2 = [0.5, 1]T , B3 = [1, 0]T . The curve, the new knots
and the new control polygon obtained after elevating the order from p = 2 to p = 3 are
presented in the right part of the figure. It can be easily seen that the curve was not changed
during this operation. One new control point was added to the control net (as a response for
one new basis function).
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Figure 2.7: The order elevation from p = 2 to p = 3 for the curve defined originally with the
knot vector ξ = [0, 0, 0, 1, 1, 1] and the control points B1 = [0, 0]T , B2 = [0.5, 1]T , B3 = [1, 0]T .

In case of B-splines order elevation and knot insertion do not commute. For example if
we firstly insert a new knot value ξ̃ to a curve of order p then we have Cp−1 continuity at ξ̃
and then we increase the order to q such that the continuity is preserved, we get still Cp−1

at ξ̃. Changing the order of operations, we firstly increase the order to q and then insert the
new knot value ξ̃. Then, the result of those operations is Cq−1 at ξ̃ [1].

The latter approach (firstly increase the order and then insert the new knot) is called
k-refinement. This technique is unique for isometric analysis and has no analogue in classical
FEA. It results in both higher order and higher continuity.

2.3 NURBS

Although in this thesis we will restrict the discussion to B-splines it is important to mention
that there are some geometries that can not be represented exactly with the use of B-splines.
An example of such geometry is a circle. Therefore, a further development has been done
which resulted in defining Non-Uniform Rational B-Splines (NURBS). NURBS allow
to represent much wider array of shapes than B-splines. It is important to note here that
the theory and implementations presented in the further chapters of this thesis need to be
carefully generalized to NURBS. This generalization is not in the scope of this thesis and
therefore the methods presented in the thesis are not proven to work for NURBS directly.

Construction of NURBS can be easily understood as a projective transformation of B-
splines in Rd+1 to Rd (see Fig. 2.8). We denote the B-spline curve, called projective curve,
by Cw(ξ) and its control points, called projective control points, by Bw

i while the NURBS
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Figure 2.8: A circle in R2 constructed by the projective transformation of a piecewise
quadratic B-spline in R3. Source: [1].

curve is denoted by C(ξ) and its control points by Bi. Control points of the NURBS curve
can be obtained from the control points of the B-spline curve by following relation [1]:

(Bi)j = (Bw
i )j/wi j = 1, ..., d (2.16)

wi = (Bw
i )d+1 (2.17)

where (Bi)j is the j-th component of vector Bi and wi is a corresponding so-called weight
(positive in most of the practical applications). We define the weighting function as [1]:

W (ξ) =
n∑
i=1

Ni,p(ξ)wi (2.18)

where Ni,p(ξ) are the standard B-spline basis functions. Now, we can define the NURBS basis
functions as [1]:

Rpi (ξ) =
Ni,p(ξ)wi
W (ξ)

(2.19)
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The NURBS curve can be obtained as [1]:

(C(ξ))j =
(Cw(ξ))j
W (ξ)

j = 1, ..., d (2.20)

or as:

C(ξ) =
n∑
i=1

Rpi (ξ)Bi (2.21)

The latter formula is the one used in practice. Analogously, we can obtain NURBS surfaces
and NURBS solids using the rational basis functions, using respectively [1]:

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1

Nî,p(ξ)Mĵ,q(η)wî,ĵ
(2.22)

Rp,q,ri,j,k (ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n

î=1

∑m
ĵ=1

∑l
k̂=1

Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂
(2.23)

This is only a very basic introduction to NURBS and as they are not in the scope of this
thesis more detailed explanation will be omitted. For deeper description see [28].
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Chapter 3

B-splines as basis for analysis

The purpose of this chapter is to present the basic idea of isogeometric analysis (IGA) and
differences and similarities of IGA and FEA. First of all, the general idea of the isogeometric
analysis is presented. Further parts of the chapter are devoted to application of IGA to simple
elliptic model problems, i.e. Poisson’s problem on the unit interval, Poisson’s problem on the
unit square and Poisson’s problem on an arbitrary surface in 2D.

3.1 General idea

The isogeometric analysis is, like FEM, a numerical method for solving partial differential
equations (PDEs). As with the FEM, we develop the variational form of the problem and
seek for the approximate solution of this problem in some finite dimensional function space.
The general idea of the isogeometric analysis is to replace the classical FEM function spaces
(in FEA) by B-spline (or NURBS) spaces [4].

Both in FEA and IGA, the first step is to convert the PDE problem into its weak form, also
called the variational formulation, which is then approximated with use of finite-dimensional
function spaces. The class of methods that deals with this step is often referred to as Galerkin
methods. Among them the standard Galerkin method is the method which is the most widely
used as a basis for IGA as well as for FEA. This approach is firstly presented on an abstract
problem and, in further part of this chapter, on Poisson’s problem. The main idea of this
short abstract description is to give a general overview rather than presenting the formal
derivation.

First of all, the weak formulation of the problem is derived, i.e.:

find u ∈ S such that for all v ∈ V, a(u, v) = f(v). (3.1)

where S is called the trial space and V is called the test space. The weak form is obtained
(for linear problems) by multiplying the original problem by a test function v ∈ V and,
depending on the type of problem, performing integration by parts. It is important to take
care of the boundary conditions at this point. The trial space S and the test space V are the
Hilbert spaces (with some additional restrictions caused by Dirichlet boundary conditions).

The next step is to construct the finite-dimensional approximations of S and V , i.e. Sh ⊂ S
and V h ⊂ V . Additionally, for the standard Galerkin method we assume: Sh = V h. Now, we
can formulate the discrete variational problem:

find uh ∈ V h such that for all vh ∈ V h, a(uh, vh) = f(vh). (3.2)
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Note that the variational forms presented in this chapter are the simplest possible and they do
not involve the terms that occur because of the treatment of boundary conditions. Problem
(3.2) can be rewritten in matrix form and easily solved numerically.

In this place FEA and IGA diverge. For FEA the space spanned by FEM basis functions is
used as V h while for IGA the space spanned by B-spline (NURBS) basis functions is used [2].

The difference between FEA and IGA that is worth mentioning here is the way the domain
is divided into parts. In FEA the physical domain is divided into elements and each element
has its own mapping from the reference element (see Fig. 3.1). It means that the parameter
space is local to each element [1].

Figure 3.1: Mapping in classical FEA. The parameter space is local to elements. Source: [1].

On the other hand, in IGA the domain is divided into patches that are much larger in
size than elements (even the entire domain can be one patch for simple geometries). Mapping
takes the entire patch from parameter space to physical space (see Fig. 3.2). The parameter
space is local to the patch. In IGA we also use sometimes the word elements to name the knot
spans but it can be considered misleading because of this different nature of mapping [1].

Figure 3.2: Mapping in IGA. The parameter space is local to entire patch. Source: [1].
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This different nature of mapping causes the main bottle-neck of the isogeometric analysis.
In FEM it is possible to evaluate integrals of basis functions on the reference element and
map them to appropriate elements. This mapping is a relatively cheap operation. In IGA
one needs to evaluate integrals for all the basis functions numerically. This approach is quite
expensive in terms of computational time.

3.2 Poisson’s problem in one dimension

The first example to which we apply IGA is the Poisson problem on the unit interval:

−d
2u

dx2
= f(x) in Ω = (0, 1),

u(0) = 0 at ΓD = {x = 0},
du

dx
(1) = 0 at ΓN = {x = 1},

(3.3)

with load vector f(x) = 6(x+ 1).
First of all, we need to derive the weak form for this problem. Note that both Dirichlet and

Neumann boundary condition are homogeneous so neither the Dirichlet lift nor the integral
term resulting from the Neumann boundary condition have to be considered. It is easy to see
that the weak form of this problem is:

find u ∈ S such that for all v ∈ V, a(u, v) = f(v). (3.4)

where:

a(u, v) =

∫ 1

0

du

dx

dv

dx
dx (3.5)

f(v) =

∫ 1

0
fv dx. (3.6)

The discrete weak form of this problem, using the same space as trial and test spaces, reads:

find uh ∈ V h such that for all vh ∈ V h, a(uh, vh) = f(vh). (3.7)

where:

a(uh, vh) =

∫ 1

0

duh

dx

dvh

dx
dx (3.8)

f(vh) =

∫ 1

0
fvh dx. (3.9)

Analogously as for standard FEM, knowing that uh =
∑n

i=1 uiϕi (where n is the number of
DOFs and ϕi is the i-th basis function (degree of freedom) of the considered trial/test space)
and that it is enough to only use basis functions of V h as test functions v, the discrete weak
form can be rewritten in form of the linear system:

Au = b (3.10)

where the entries of matrix A are defined as aij = a(ϕi, ϕj), entries of vector b as bi = f(ϕi)
and u is a vector of unknown coefficients ui of solution.
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The matrix (and the RHS) is assembled in this example using the Gaussian quadrature
of 14 points at each knot span (element). From the point of view of computational efficiency
of the implementation, it is of utmost importance to consider in the integration at given knot
span only the basis functions that have support there. For each of the integration points the
basis functions and lower-order basis functions (used to evaluate the derivatives according to
(2.8) are evaluated.

The boundary conditions are imposed explicitly in the code. For the homogeneous Neu-
mann boundary condition no special treatment is necessary. For the Dirichlet boundary
condition it is assured that all basis functions that have support at this boundary have to
have the coefficient equal to 0. Namely, all the entries of matrix A on the rows corresponding
to the degrees of freedom that are non-zero at the boundary were set to 0 except for the
diagonal entry which was set to 1. The corresponding entry in the RHS was set to 0 as well.
Note that in the given 1D problem there is only one basis function that is non-zero on the
Dirichlet boundary.

The used basis functions are the B-spline basis functions for an uniform, open knot vector.
The numerical results were compared with the exact solution:

uex(x) = −x3 − 3x2 + 9x (3.11)

in terms of L2 norm defined as:

‖uex − uh‖2 :=

(∫ 1

0

(
uex(x)− uh(x)

)2
dx

)1/2

(3.12)

The results for variable numbers of degrees of freedom and different orders of basis are shown
in Fig. 3.3. We can see that the higher the order the better the convergence. For p ≥ 3
we achieve solution of the maximal achievable quality (the order of machine representation)
because the exact solution is a polynomial of order 3 so it can be exactly represented with
B-spline basis functions of order 3 and the errors are only caused by finite precision of number
representation.

3.3 Poisson’s problem in two dimensions

In this section we present two examples of application of IGA for 2D problems. The first one
is Poisson’s problem with homogeneous Dirichlet boundary conditions on the unit square and
the second one is the same problem but defined on an arbitrary 2D physical domain.

3.3.1 Poisson’s problem on the unit square

Consider Poisson’s problem on the unit square with homogeneous Dirichlet boundary condi-
tions, i.e.:

−∆u(x) = f(x) in Ω = (0, 1)× (0, 1),

u(x) = 0 on ∂Ω,
(3.13)

with the load vector f(x) = 2π2 sin(πx) sin(πy). The vector of physical dimensions with
entries (x, y) is denoted by x.

The weak form is similar to that of the 1D case, i.e.:

find u ∈ S such that for all v ∈ V, a(u, v) = f(v). (3.14)
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Figure 3.3: Error of numerical solution in L2 norm versus the number of DOFs n, for different
orders p.

where:

a(u, v) =

∫
Ω
∇u · ∇v dx (3.15)

f(v) =

∫
Ω
fv dx. (3.16)

The discrete weak form, using the same discrete space as trial and test spaces, reads:

find uh ∈ V h such that for all vh ∈ V h, a(uh, vh) = f(vh). (3.17)

where:

a(uh, vh) =

∫
Ω
∇uh · ∇vh dx (3.18)

f(vh) =

∫
Ω
fvh dx. (3.19)

It is worth mentioning that now the basis functions (DOFs) are resulting from the tensor
product construction of B-spline basis functions in directions ξ and η. Again, the discrete
weak form can be rewritten in terms of the linear system:

Au = b (3.20)

where the entries of matrix A are defined as aab = a(ϕa, ϕb), entries of vector b as ba = f(ϕa)
and u is a vector of unknown coefficients of solution ua. We need to define appropriate
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indexing to be able to get the understanding what the a-th DOF is. Which basis functions in
directions ξ and η are involved in constructing this basis function? Let us define it as follows:

a = n(j − 1) + i (3.21)

where i is the index of basis function in direction ξ and j in direction η. This corresponds to
line-wise numbering of the DOFs starting with the x-direction [29].

During the matrix and RHS assembly the Gauss quadrature of 14 points in each direction
was used. For all the knot spans in the domain the quadrature points were mapped to the
span. Then all the basis functions and the lower-order basis functions were evaluated in all
the quadrature points in the corresponding direction. From the point of view of efficiency
of the code, it is important that the integrals used for the assembly were computed only
for the tensor product basis functions that have support on the currently considered knot
span. The treatment of the Dirichlet boundary conditions is analogous to the one used in the
one-dimensional case.

The tensor product B-spline basis functions, defined with uniform, open knot vectors in
both directions were used as basis functions. The numerical results were compared with the
exact solution:

uex(x) = sin(πx) sin(πy) (3.22)

in terms of the maximum norm, defined as maximum of absolute values of differences of exact
and numerical solutions.

The numerical results are visualised in Fig. 3.4. The number of basis functions in the
horizontal direction were n = 12, in the vertical direction m = 10, the orders in both directions
p = q = 3, the error in the maximum norm was 7.5681 · 10−5.
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Figure 3.4: Numerical results for the Poisson problem with homogeneous Dirichlet BC, the
load vector f(x) = 2π2 sin(πx) sin(πy), computed with use of open uniform B-spline basis
with n = 12, m = 10 and p = q = 3.

The convergence analysis was not performed due to very long computation time even for
small number of degrees of freedom. At this point it became clear that more efficient assembly
strategies than our naive Matlab implementation are required. Therefore, the G+SMO library
was used for all further experiments of this work.
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3.3.2 Poisson’s problem on an arbitrary geometry in 2D

Consider the Poisson’s problem on an arbitrary 2D domain (that can be directly mapped from
the square parametric domain and therefore does not require representation with multiple
patches) with homogeneous Dirichlet boundary conditions, i.e.:

−∆u(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,
(3.23)

with load vector f(x) = 2π2 sin(πξ(x)) sin(πη(x)) defined for practical reasons on the para-
metric domain, with coordinates ξ = (ξ, η). For consistency reasons in the definition of the
load vector the parametric coordinates ξ and η depend on the physical coordinates x and
y and therefore would have to be computed with the inverse mapping. In practice we will
evaluate them only after transformation to the parametric domain.

The weak form and the discrete weak form are the same as for the unit square case. As
defined in the previous chapter the geometrical mapping in 2D is given by:

S(ξ) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (3.24)

We will denote the parametric domain by Ω0 to distinguish it from the physical domain Ω.
To solve the weak problem numerically it is necessary first to transform the integrals from
the physical domain to the parametric domain via the integration rule [29]:∫

Ω
u(x)dx =

∫
Ω0

u(S(ξ))|detDS(ξ)|dξ (3.25)

Here, DS(ξ) is the Jacobian matrix of the geometrical mapping defined as [29]:

DS(ξ) =

[
∂S1
∂ξ

∂S1
∂η

∂S2
∂ξ

∂S2
∂η

]
(3.26)

where Si is the i-th component of the mapping and the individual entries are [29]:

∂S1

∂ξ
=

n∑
i=1

m∑
j=1

N ′i,p(ξ)Mj,q(η)B1
i,j (3.27)

∂S1

∂η
=

n∑
i=1

m∑
j=1

Ni,p(ξ)M
′
j,q(η)B1

i,j (3.28)

∂S2

∂ξ
=

n∑
i=1

m∑
j=1

N ′i,p(ξ)Mj,q(η)B2
i,j (3.29)

∂S2

∂η
=

n∑
i=1

m∑
j=1

Ni,p(ξ)M
′
j,q(η)B2

i,j (3.30)

with Bk
i,j being the k-th component of the Bi,j vector. We also need the chain rule of differ-

entiation, namely [29]:
∇xu(x) = DS(ξ)−T∇ξu(ξ) (3.31)
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where the subscript x in ∇x denotes that differentiation takes place in x coordinates. With
all that we can rewrite the weak formulation as:

find u ∈ V such that for all v ∈ V, a(u, v) = f(v). (3.32)

where:

a(u, v) =

∫
Ω0

∇u(ξ)T |detDS(ξ)|(DS(ξ)−1DS(ξ)−T )∇v(ξ) dξ (3.33)

=

∫
Ω0

∇u(ξ)TG(ξ)∇v(ξ) dξ (3.34)

f(v) =

∫
Ω0

v(ξ)f(S(ξ))|detDS(ξ)| dξ. (3.35)

with G(ξ) = |detDS(ξ)|(DS(ξ)−1DS(ξ)−T ). We can discretize and rewrite the problem as
the linear system:

Au = b (3.36)

The matrix assembly process is similar to the one on the unit square except for the fact
that the necessary geometry terms, i.e. G(ξ) and |detDS(ξ)| have to be evaluated at the
quadrature points and taken into account during computing the integrals. The treatment of
the Dirichlet boundary condition is analogous to the previous case.

The numerical experiment was performed using the own Matlab code and the G+SMO
library [24, 30, 31] to compare the results. The problem was defined on the blade cross-
section presented in the previous chapter. The used basis functions were tensor product basis
functions defined by the geometry. No refinement was applied. The solution obtained from
the Matlab code is presented in Fig. 3.5 and the solution from the G+SMO package in
Fig. 3.6.

The results are consistent both qualitatively and quantitatively. In case of the Matlab
code the maximum value of the solution is equal to 1.752 while for the G+SMO it is 1.788.
It is a pretty good accuracy taking into account the fact that the mesh was very coarse (4×3
degrees of freedom). Again, the convergence analysis could not be performed due to the
inefficiency of the Matlab code.

The numerical results presented in the following chapters are computed with solvers using
functions of external library G+SMO [24, 30, 31]. Construction of the basis functions, geom-
etry mappings and the assembly of standard matrices and vectors (consistent mass matrices,
discrete transport operators, right hand side vectors) is always done with the help of the
G+SMO package. Although, the package supports the treatment of boundary conditions as
well, in this thesis work their treatment was implemented from scratch to assure that sta-
bilization methods do not influence the consistency of boundary conditions. The resulting
system is solved with use of the EIGEN package [32]. The same package is also providing the
framework for operations on vectors, full and sparse matrices.
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Figure 3.5: Numerical results from the Matlab code for the Poisson’s problem with homoge-
neous Dirichlet BC, the load vector f(x) = 2π2 sin(πξ) sin(πη), defined on the turbine blade
profile. Basis functions defined by geometry, no refinement.

Figure 3.6: Numerical results from the G+SMO package for the Poisson’s problem with
homogeneous Dirichlet BC, the load vector f(x) = 2π2 sin(πξ) sin(πη), defined on the turbine
blade profile. Basis functions defined by geometry, no refinement.
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Chapter 4

Constrained L2 projection

This chapter is devoted to methods for projecting analytical functions to the space of functions
used for solving the problem. In IGA and standard FEM the analytically described initial and
boundary conditions (depending on the problem) have to be projected to the space spanned
by B-splines (NURBS) basis or standard FEM functions. In the standard FEM with nodal
degrees of freedom this task is often done by just assigning the nodal values u0

i = u0(xi). This
approach has significant drawback: it is not conservative and therefore it can be inaccurate
if the mesh is too coarse and the function is not smooth enough [33]. In case of non-nodal
FEM and IGA it is impossible to use this method as (except of p = 1 B-splines) degrees of
freedom are not associated with nodal values of the solution.

Therefore, we will use the L2 projection which is described in the first section of this
chapter together with some numerical results that reveal the drawbacks of this approach.
Further, the cure for those problems - constrained L2 projection is described. The last section
contains a comparison of numerical results obtained using those two types of projection.

4.1 Standard L2 projection

The L2 projection (we will refer often to it as the standard L2 projection to distinguish it
from the constrained L2 projection discussed in the next section) is a method that is used to
project a function f(x) defined in the function space A to the function space B. Assuming
that B ⊂ A, the ideal projection would be the one that solves the problem (we omit the
dependency of functions on x for clarity of presentation) [34]:

R(Pf) = Pf − f = 0, x ∈ Ω (4.1)

where P denotes the projection operator and R(Pf) is so-called residual of the projection.
It is easy to see that in most cases we are not able to achieve this goal (R(Pf) = 0), for
example projection of x2 from the space of all polynomial function of order 2 to the space of
all polynomial functions of order 1 with R(Pf) = 0 can not be achieved. Therefore, let us
weaken our goal and look for a projection that minimizes the residual R(Pf). We know that
the minimal possible residual is orthogonal to B, namely [34]:

(Pf − f, v) = 0, ∀v ∈ B (4.2)
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where (·, ·) denotes the inner product. In case of L2 spaces, which are of interest for us, the
inner product is defined as (assuming that we operate on real numbers):

(f, g) =

∫
Ω
f(x)g(x)dx (4.3)

As the inner product is a bilinear operator we can reformulate equation (4.2) as [34]:

(Pf, v) = (f, v), ∀v ∈ B (4.4)

In FEM and IGA the L2 projection is widely used to project initial and boundary conditions
to the space spanned by the particular basis functions. In this case A is an infinite function
space denoted now by V and B is the space of FEM basis functions in case of standard FEM
or B-splines (NURBS) in case of IGA, denoted by V h. Then the objective reads:

(uh, vh) = (f, vh), ∀vh ∈ V h (4.5)

where uh is a representation of f in V h space. We can rewrite the problem as:

find uh ∈ V h such that for all vh ∈ V h, (uh, vh) = (f, vh). (4.6)

and knowing that uh is a linear combination of basis functions ϕi of V h, namely uh =
∑n

i=1 uiϕi
we can rewrite the problem in the matrix-vector form:

MCu = b (4.7)

where MC = {mij} is a consistent mass matrix with entries mij =
∫

Ω ϕiϕjdx and b = {bi}
is the right hand side vector with entries defined as: bi =

∫
Ω fϕidx. Vector u denotes the

vector of coefficients ui. Solving the system above gives the optimal, in the sense of L2 norm,
approximation of the analytical function f ∈ V in the discrete function space V h.

Let us now apply this method to two test problems. Firstly, let us analyse a simple
infinitely smooth example. The analytical function is given by:

f(x) = sin(πx1) sin(πx2) (4.8)

The objective is to represent it with a linear combination of B-spline basis functions on the
unit square Ω = [0, 1]× [0, 1]. Fig. 4.1 presents the plot of the function. Fig. 4.2 presents the
discretization errors in the L2 norm, versus the number of basis functions in one direction.
The basis functions used for this problem were B-splines of orders p = 1 to p = 4. For all
orders except p = 2 the orders of convergence were at least equal to p+ 1. Therefore we can
state that the higher the order of the basis the better it can reproduce the function (4.8).
The behaviour of the convergence in case of the basis of order p = 2 is an interesting topic
for further investigation, being however not in the scope of this thesis. The next problem
to be analysed is the projection of a discontinuity to the space of continuous B-spline basis
functions. The test problem is defined as the unit interval Ω = [0, 1] with discontinuity at
x = 0.5, i.e.:

f(x) =

{
0 if x < 0.5

1 if x ≥ 0.5
(4.9)

to be represented with a linear combination of B-spline basis functions. The results are
presented in Fig. 4.3. The left part of the figure demonstrates the behaviour of the projection
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Figure 4.1: Plot of the function (4.8) on the unit square.

with increasing dimension of the basis while the influence of increasing the order of the basis
functions is presented in the right part. The number of DOFs for different orders differs
slightly in Fig. 4.3b because of the nature of the p-refinement but those additional single
DOFs are not affecting the overall conclusions. For all cases considered, under- and over-
shoots occur in the vicinity of the discontinuity. With increasing number of basis functions
they become narrower but their magnitude is not significantly changing. Increasing the order
is not changing significantly the quality of the result of projection neither.

In some classes of problems the existence of under- and over-shoots in the result of projec-
tion (for example the projected initial condition) can not be accepted. For example consider
the following problem: a container with water that is divided into two equal parts by infinitely
thin partition. In one of halves there is salt dissolved in maximum allowed concentration while
the other one is completely free of salt. At some point the partition is removed and the diffu-
sion of salt takes place. The initial condition for the diffusion process could be described with
the problem discussed above but then over- and under-shoots produce non-physical values:
concentration higher than maximal possible or lower than zero. Therefore there is a need for
another projection method that will not produce under- and over-shoots. As it was already
mentioned, L2 projection is an optimal projection in the sense of the L2 norm, so other pro-
jection would be less accurate in this sense but that is the price to be paid for restriction to
only physically meaningful values.

4.2 Constrained L2 projection

The constrained L2 projection that is discussed here and used in further parts of this thesis
is based on the concept of the flux-corrected transport (FCT) and therefore it will be
referred to as FCT-type constrained L2 projection. The application of FCT to the
constrained data projection is described in many publications [33, 35, 36, 37]. A detailed
description of FCT is presented in Section 6.3. Here, only a very brief description of the
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Figure 4.2: The L2 errors of the standard L2 projection applied to the analytical function
(4.8) to the space spanned by B-spline bases of orders p = 1 to p = 4 versus number of DOFs.

general idea is presented as the original FCT algorithm was just an inspiration for creating
the constrained L2 projection.

FCT was designed for solving hyperbolic equations with discontinuities occurring in the
domain (for example the compressible Euler equations with a shock wave). The general idea
is to choose a so-called high-order method which guarantees good quality of the solution
in regions, where the solution profile is smooth but produces non-physical over- and under-
shoots in non-smooth regions. The second ingredient is a low-order method which does
not produce non-physical values in any part of the domain. Then the anti-diffusion, that
applied to the low-order solution would give the high-order solution, has to be calculated.
The next step is to limit the anti-diffusion such that the solution does not have non-physical
values. The final step consist in applying the limited anti-diffusion to the solution obtained
by the low-order method [33].

The standard L2 projection described in the previous section is a good choice for the high-
order method as it preforms very well in smooth regions but produces undesirable under- and
over-shoots in the vicinity of discontinuities. To find the proper low-order method let us look
for the inspiration in the so-called algebraic flux correction (AFC) framework. Again,
the detailed description will follow in Section 6.3.2. Here, let us only state that this is a
framework in which the low-order method is obtained from the high-order one by algebraic
operations on the matrices of the discrete form. The algebraic operations to be performed on
matrices were determined by investigation of the entries that are responsible for the unwanted
behaviour of the solution. In case of the consistent mass matrix M it was shown that those
are the positive off-diagonal entries [33].

Therefore, in the low-order method we replace the consistent mass matrix MC by so-called
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(a) p = 2 and varying number of DOFs (b) varying p and equivalent number of DOFs

Figure 4.3: Results of the standard L2 projection applied to problem (4.9) for different orders
and dimension of the B-spline basis.

row-sum lumped mass matrix ML [33]:

ML = diag{mi}, mi =
∑
j

mij (4.10)

Then the low-order problem reads:
MLu = b (4.11)

The components of the solution uL from the scheme above (low-order method) are denoted
with uLi while the ones of the solution uH from the original scheme (high-order method) are
denoted with uHi . It can be shown that the components of the anti-diffusive contribution
(defined as the difference between high- and low-order schemes) are then given by [33]:

fi(u
H) = (MLuH −MCuH)i (4.12)

The conservative flux decomposition for the discrete diffusion operator (ML−MC) yields (the
conservative flux decomposition (5.40)-(5.41) is described in detail in Section 5.3.2) [33]:

(MLuH −MCuH)i =
∑
j 6=i

mij(u
H
i − uHj ) (4.13)

Therefore, the anti-diffusive contribution can be represented as a sum of raw anti-diffusive
fluxes [33]:

fi =
∑
j 6=i

fij , fij = mij(u
H
i − uHj ) (4.14)

What is left is to apply the flux limiting technique that assures that there are no non-
physical values in the projection and that the result is not overly smeared. For this we use
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Zalesak’s multidimensional FCT algorithm [38] generalized for non-nodal DOFs in the
slightly modified way [33]:

1. Evaluate the sums of positive and negative anti-diffusive fluxes into i-th DOF:

P+
i =

∑
j 6=i

max{0, fij}, P−i =
∑
j 6=i

min{0, fij} (4.15)

2. Compute the distance to a local maximum and minimum at the bounds:

Q+
i = mi(u

max
i − uLi ), Q−i = mi(u

min
i − uLi ) (4.16)

where umax
i and umin

i are, respectively, the maximum and minimum coefficient values of
the DOFs having supports that overlap with the support of i-th DOF.

Note: In the nodal version of this algorithm the limiting values are computed using
the bounds of solution values. This is, however, not the case for non-nodal basis func-
tions. In this case we consider the bounds of the coefficient values that do not directly
correspond to the solution values.

3. Determine the nodal correction factors for the net increment at the i-th DOF:

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
(4.17)

4. Control the sign of the raw anti-diffusive flux:

αij =

{
min{R+

i , R
−
j }, if fij > 0

min{R−i , R
+
j }, if fij < 0

(4.18)

Then the limited fluxes are given by:

f̄ij = αijfij (4.19)

The final result of the constrained L2 projection is obtained after adding the sum of the
limited fluxes to the low-order solution [33]:

ui = uLi +
1

mi

∑
j 6=i

f̄ij (4.20)

4.3 Numerical results

This section presents a comparison of numerical results for the standard L2 projection and
its constrained counterpart applied to several test problems. First of all, let us compare
the results of applying standard L2 projection (high-order problem), lumped mass matrix
approximation (low-order problem) and constrained L2 projection to the discontinuous test
problem (4.9). The result of projecting f(x) to the space spanned by p = 2, n = 34 B-
spline basis are presented in Fig. 4.4. It is easy to see that the standard L2 projection gives
the steepest approximation of the discontinuity which is an important advantage but it also
creates significant under- and over-shoots. The result of the low-order method (lumped mass
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Figure 4.4: Results of the standard L2 projection, low-order method (lumped mass approx-
imation) and constrained L2 projection applied to problem (4.9) on p = 2, n = 34 B-spline
basis.

matrix approximation) is free of non-physical under- and over-shoots but the discontinuity
is significantly smeared. The constrained L2 projection produces a steeper approximation of
the discontinuity than the low-order method and does not produce any non-physical values.

Fig. 4.5 presents the L2 errors of the different approximations obtained by using standard
L2 projection, low-order method (lumped mass approximation) and constrained L2 projection
versus the dimension of the B-spline basis. Fig. 4.5a presents the errors for the p = 1 B-
spline basis while Fig. 4.5b illustrates the behaviour for the p = 4 B-spline basis. Our first
observation is that the orders of convergence are much lower than in the case of the smooth
function (4.8) (see Fig. 4.2 for comparison). This is a severe limitation of the robustness of the
standard L2 projection and constrained L2 projection. Another conclusion is that the orders
of convergence do not improve significantly with increasing the order of the basis. In Fig. 4.5a
the errors for the low-order method and the constrained L2 projection are indistinguishable.
This is caused by the fact that those methods coincide for this problem in the case when
the discontinuity is located at the point that is included in the support of exactly one basis
function (for p = 1 this is a point where exactly one basis function attains the value 1) and
the B-spline basis is of order p = 1 (for higher orders and uniform knot vectors there are no
situations when an interior point is included in the support of exactly one basis function).
Although all methods have orders of convergence limited by 0.5 because of the discontinuity
the standard L2 projection is still giving the best results among them in terms of the L2 norm.
This proves numerically the fact that standard L2 projection is the best possible projection
in the sense of the L2 norm. For p = 4 the constrained L2 projection gives better results than
the low-order method thanks to its ability to diminish the smearing of the discontinuity.

Let us proceed to more complicated 2D test case. The combination of smooth and non-
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(a) p = 1

(b) p = 4

Figure 4.5: L2 errors of approximations obtained by the standard L2 projection, low-order
method (lumped mass approximation) and constrained L2 projection applied to problem (4.9)
on a p = 1 and p = 4 B-spline basis.
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smooth regions in one domain is a very interesting case to study. Consider the initial condition
of Leveque’s solid body rotation benchmark [12] which is frequently used to asses the perfor-
mance of numerical methods for time-dependent convection-diffusion equations. The function
to be projected to the space spanned by B-spline basis functions is defined with the aid of
three separate functions, each of them representing one body. The shapes can be expressed
easily using the normalized distance function:

r(x) =
1

r0

√
(x− x0)2 + (y − y0)2 (4.21)

with (x0, y0) being the centre of the circle of radius r0 = 0.15 in which each body is located.
The first body is a slotted cylinder centred at (x0, y0) = (0.5, 0.75) defined in r(x) < 1
(f1(x) = 0 for r(x) ≥ 1) as:

f1(x) =

{
1 if |x− x0| ≥ 0.025 ∨ y ≥ 0.85

0 otherwise
(4.22)

The second one is a cone centred at (x0, y0) = (0.5, 0.25) defined in r(x) < 1 (f2(x) = 0 for
r(x) ≥ 1) as:

f2(x) = 1− r(x) (4.23)

The last one is a hump centred at (x0, y0) = (0.25, 0.5) defined in r(x) < 1 (f3(x) = 0 for
r(x) ≥ 1) as:

f3(x) = 0.25 [1 + cos(πmin{r(x), 1})] (4.24)

Then the function to be projected is defined as:

f(x) = f1(x) + f2(x) + f3(x) (4.25)

The results of the standard L2 projection and the constrained L2 projection of the function
defined above to the space spanned by p = 2 130× 130 uniform B-spline basis functions are
depicted in Fig. 4.6. As expected, the standard L2 projection produces under- and over-shoots
while the result obtained from the constrained L2 projection is strictly bounded between 0
and 1.

Fig. 4.7 presents the plots of L2 errors versus the number of basis functions. Fig. 4.7a
presents the errors of the standard L2 projection, the low-order method (lumped mass ap-
proximation) and the constrained L2 projection for the p = 2 basis. It can be easily seen
that in this case the orders of convergence are also limited by 0.5 due to the presence of the
discontinuity in the domain. Again, the standard L2 projection performs slightly better than
the constrained L2 projection. The low-order method produces results of the lowest quality.
Fig. 4.7b presents the behaviour of the error for different orders of the basis for the constrained
L2 projection. Although the differences are not significant the general trend is that for this
problem better approximations are obtained with the basis of lower order. This is caused by
the fact that it is harder to represent the discontinuity with higher order functions due to
larger support (size of support of B-spline basis functions is p+ 1 knot spans), and therefore,
more DOFs are influenced by the discontinuity.

The general conclusion from this chapter is that although the standard L2 projection
is provably the best approximation in the sense of minimizing the error in the L2 norm, it
produces under- and over-shoots for functions involving discontinuities. For some classes of
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(a) standard L2 projection (b) constrained L2 projection

Figure 4.6: Results of the standard L2 projection and the constrained L2 projection of function
(4.21) - (4.25) to the space spanned by p = 2 130× 130 uniform B-spline basis functions.

problems those under- and over-shoots are exceeding the possible physical bounds for values
attained in the domain. Therefore, to preserve the physical meaning of the problem we have
to use a projection method that gives worse approximations in the sense of the L2 norm
but does not produce non-physical values such as negative concentrations or concentrations
exceeding 100%. A very good method that fulfils this requirement is the FCT-type constrained
L2 projection [33]. This method will be used in further chapters of this thesis to project the
analytically described boundary conditions and initial values to the space spanned by B-spline
basis functions.
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(a) standard L2 projection, low-order method (lumped mass approximation) and constrained L2 pro-
jection on p = 2 basis

(b) constrained L2 projection on p = 1 to p = 3 basis

Figure 4.7: L2 errors of approximations obtained by the standard L2 projection, low-order
method (lumped mass approximation) and constrained L2 projection applied to problem
function (4.21) - (4.25) on a space spanned by B-spline basis.
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Chapter 5

Stationary convection-diffusion
equation

The natural starting point for the development and analysis of numerical methods for flow
problems is to apply them to the stationary convection-diffusion equation. In this simple
problem one can find a representation of some phenomena and numerical issues that occur
also in more complicated systems of equations that govern compressible fluid flows. There-
fore, we discuss in this chapter the application of isogeometric analysis to the stationary
convection-diffusion equation and postpone the extension to the compressible Euler equa-
tions to Chapter 7.

First of all, the description of the problem and the discretization are presented. The second
section contains numerical results and reveals the expected problems concerning stability for
convection-dominated problems. Further, we give a description of the algebraic flux correction
(AFC) methodology which is used for stabilization. The last part of this chapter is devoted to
the analysis of results obtained by using IGA along with AFC and a comparison with results
from IGA with SUPG stabilization.

5.1 Discretization of the stationary convection-diffusion equa-
tion

The convection-diffusion equation is a combination of the convection and diffusion equa-
tions. It governs the behaviour of particles, energy or other physical quantity transferred due
to convection and diffusion processes. Convection is a process of macroscopic motion of a
physical quantity regardless of its cause [39], whereas diffusion is a process of movement of
a physical quantity from a region of high value (eg. concentration) to a region of low value.
The most general form of the convection-diffusion equation reads [40]:

−∇ · (D∇u(x)) +∇ · (v(x)u(x)) = R(x) in Ω (5.1)

where u(x) is the variable of interest (concentration of particles, energy, other physical quan-
tity), D is the diffusion tensor (in simpler cases it can be replaced by scalar diffusion coeffi-
cient d), v(x) is an average velocity of quantity (for clarity of presentation the dependency on
x will not be included in the equation in further parts of this chapter) and R(x) is a source
term.
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The problem is completed with properly chosen boundary conditions (to ensure well-
posedness):

u(x) = γ(x) onΓD (5.2)

du

dn
(x) = β(x) onΓN (5.3)

where n is the unit outward normal vector. The weak form of the problem (obtained after
multiplication by a test function, integration over the domain and integration by parts applied
to the diffusive term only) reads:

find u ∈ S such that for all v ∈ V, a(u, v) = f(v). (5.4)

where

a(u, v) =

∫
Ω

((D∇u) · ∇v + (∇ · (vu))v) dx−
∫
Γ
D
du

dn
vds (5.5)

f(v) =

∫
Ω
Rvdx (5.6)

The discretization of the weak form is based on the standard Galerkin method, the discrete
variational formulation reads:

find uh ∈ Sh such that for all vh ∈ V h, a(uh, vh) = f(vh). (5.7)

where

a(uh, vh) =

∫
Ω

((D∇uh) · ∇vh + (∇ · (vu)h)vh)dx (5.8)

f(vh) =

∫
Ω
Rvhdx +

∫
ΓN

Dβvhds (5.9)

Test functions vh (because of assumed restrictions on the test space) vanish on the ΓD and,
therefore, we need to only consider the integration over ΓN instead of the whole Γ [33].
Therefore, we can replace the term du

dn by the prescribed Neumann boundary condition β.
After this operation the term resulting from the treatment of boundary conditions is no
longer depending on uh and therefore belongs now to the linear form f(vh). In the framework
of IGA the considered discrete spaces spanned by B-spline (NURBS) basis. Using Fletcher’s
group formulation [41], the approximate solution uh and the convective flux (vu)h can be
represented in terms of the basis {ϕj(x)} of V h as follows [42]:

uh(x) =
∑
j

ujϕj(x) (5.10)

(vu)h(x) =
∑
j

vjujϕj(x) (5.11)

Then, knowing that it is sufficient to test the variational formulation only with the basis
functions of V h one after the other, the discrete problem can be rewritten in the form:∑

j

(∫
Ω

((D∇ϕj) · ∇ϕi)dx +

∫
Ω

(∇ · (vjϕj))ϕidx
)
uj =

∫
Ω
Rϕidx +

∫
ΓN

Dβϕids (5.12)
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This equation can be rewritten in matrix form (the K operator is multiplied by −1 to preserve
consistency of notation with time-dependent problems presented in the next chapters as well
as with the common notation used in literature):

(S −K)u = r (5.13)

Here, S = {sij} is the discrete diffusion operator with entries:

sij =

∫
Ω

(D∇ϕj · ∇ϕi)dx (5.14)

K = {kij} is the discrete convection operator with entries:

kij = −vj · cij (5.15)

cij =

∫
Ω
∇ϕjϕidx (5.16)

u is a vector of solution coefficients ui and r is a right-hand side vector, resulting from the
source term and treatment of boundary conditions, with entries ri:

ri =

∫
Ω
Rϕidx +

∫
ΓN

Dβϕids (5.17)

The treatment of the mapping from the parametric domain to the physical domain is analo-
gous to the one described in Section 3.3.2.

5.2 Numerical results

The IGA-based solver of convection-diffusion equations was applied to two benchmark prob-
lems. The first problem deals with a polynomial analytic solution, whereas the second one is
characterized by boundary and internal layers. The numerical results are presented below.

5.2.1 Smooth polynomial problem

The first test case to validate the IGA convection-diffusion solver is a smooth polynomial
problem given by:

−∇ · (d∇u(x)) +∇ · (vu(x)) = R(x) in Ω = [0, 1]× [0, 1] (5.18)

u(x) = uex(x) onΓ (5.19)

with:
d = 1 (5.20)

v =
[

1
5

2
5

]T
(5.21)

R(x) = 5x3 − 288

5
x2 − 114

5
x− 26

5
(5.22)
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Figure 5.1: The exact solution of the problem (5.18)-(5.23).

uex(x) = 5x4 + 4x3 + 3x2 + 2x+ y (5.23)

uex(x) is the exact solution to this problem which is also used to prescribe the Dirichlet
boundary conditions. It is depicted in Fig. 5.1. The computations were made on a space
spanned by uniform B-spline basis functions of orders p = 1 to p = 4. Fig. 5.2 presents the
errors in L2 norm (see 3.12) of te obtained numerical solutions versus the number of degrees
of freedom in one direction (the numbers of degrees of freedom in both directions are equal).
It can be easily seen that the p+ 1 order of convergence was obtained for orders up to p = 3.
For p = 4 the maximum possible precision was obtained as the exact solution is a polynomial
of order 4 and it can be exactly represented with the basis functions of order p = 4, so
the convergence was immediate and the error increases with increasing number of degrees of
freedom because of increasing rounding errors. Based on this problem we can conclude that
the method performs well for smooth problems.

5.2.2 Problem with internal and boundary layer

The next problem is a common benchmark for stationary convection-diffusion equations in
2D that can be found for example in [1]. It involves internal (skew to the mesh) and boundary
(right and partially top boundaries of the domain) layers and is very prone to instabilities [1].
The benchmark problem is defined as follows:

−∇ · d∇u(x)) +∇ · (vu(x)) = 0 in Ω = [0, 1]× [0, 1] (5.24)

u(x) = β(x) onΓ (5.25)

with:
v =

[
cos(θ) sin(θ)

]T
, θ = tan−1(2) (5.26)
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Figure 5.2: The L2 errors of numerical solutions obtained with uniform B-spline basis func-
tions of orders p = 1 to p = 4 of the problem (5.18)-(5.23) versus the number of DOFs.

β(x) =

{
1 if y ≤ 1

5 −
1
5x

0 else
(5.27)

The general setting of the problem is depicted in Fig. 5.3. The element Péclet number
Peh is defined as [1]:

Peh =
|v|h
2D

(5.28)

where h denotes the length of knot span. In case of the same number of uniform basis functions
in both directions h = 1

n , with n being the number of basis functions in one direction. The
element Péclet number is a non-dimensional measure for the ratio between convective and
diffusive phenomena on the mesh scale. For Peh > 1 the problem is called convection-
dominated, whereas for Peh < 1 it is called diffusion-dominated [1].

The benchmark problem was solved using the IGA stationary convection-diffusion solver
for d = 0.1, d = 0.01 and d = 0.001 which correspond, respectively, to Peh = 0.56, Peh = 5.56
and Peh = 55.56. The used space was spanned by uniform p = 2 18× 18 B-spline basis. The
Dirichlet boundary values were approximated with constrained L2 projection (see Chapter 4)
to avoid over- and under-shoots in the vicinity of the discontinuity. The results are presented
in Fig. 5.4.

The unstabilized Galerkin method works well for the diffusion-dominated case, as demon-
strated in Fig. 5.4a. After decreasing the diffusion coefficient d by factor 10 the solution
becomes oscillatory, the internal and boundary layer become more steep and they cause os-
cillations that are propagated over the whole domain (see Fig. 5.4b). It is important to
mention that those oscillations are non-physical, i.e. the values of the variable of interest (e.g.
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Figure 5.3: Benchmark (5.24) - (5.27) for stationary convection-diffusion equation. Source:
[1].

concentration) should be bounded between 0 and 1 in the given problem. The result is even
worse if we decrease d by factor of 10 once again, as shown in Fig. 5.4c. We can conclude
that the standard Galerkin method is not suitable for convection-dominated problems that
feature internal and/or boundary layers. Therefore, there is a necessity for applying some
stabilization method.

The most common stabilization method for standard FEM is Streamline Upwind/Petrov-
Galerkin method (SUPG). It was shown in [1] that this stabilization can be used within
the IGA framework. This method has several drawbacks, one of them being that it does
not guarantee the prevention of non-physical under- and over-shoots. Therefore, we adopt
another stabilization method - Algebraic Flux Correction method, which assures that
the solution does not involve non-physical values.

5.3 Algebraic flux correction

For the stationary convection-diffusion problem we will use algebraic flux correction with
TVD-type limiting. It was introduced by D. Kuzmin in [43] and D. Kuzmin, S. Turek
in [11]. The full description of the method can be found in those papers as well as in [14, 44].
This section presents a brief description of the method applied to the stationary convection-
diffusion problem. Although the considered problem is not time-dependent and the stabiliza-
tion method was proved to work for the stationary problems [11], many definitions used to
develop the limiting method have their origin in time-dependent problems. Therefore, the
theory will be presented for time-dependent problems and at some point restricted to the
considered stationary case.
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(a) d = 0.1, Peh = 0.56 (b) d = 0.01, Peh = 5.56

(c) d = 0.001, Peh = 55.56

Figure 5.4: Numerical results for benchmark problem (5.24) - (5.27) for different values of d
solved on p = 2, 18× 18 B-spline basis.

5.3.1 TVD and LED schemes

The detailed description of the total variation diminishing (TVD) methodology can
be found in [45]. To show the general idea let us analyse the scalar conservation law in one
dimension:

∂u

∂t
+
∂f(u)

∂x
= 0 (5.29)

with f being a flux function. Lax in [46] showed that any physically admissible solution to
this problem is characterized by its total variation defined as:

TV (u) =

∞∫
−∞

∣∣∣∣∂u∂x
∣∣∣∣ dx (5.30)

The total variation of the exact solution is always non-increasing [11] therefore it is obvious
that the total variation of the numerical solution should be non-increasing as well, namely:

TV (un+1) ≤ TV (un) (5.31)
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with un denoting the solution at time tn. Semi-discrete difference schemes that fulfil this
requirement are called total variation diminishing (TVD) schemes [11]. Harten proved
in [47] that a conservative semi-discrete difference scheme of the form:

dui
dt

+
fi+1/2 − fi−1/2

∆x
= 0 (5.32)

is TVD if it can be rewritten in the form:

dui
dt

= ci−1/2(ui−1 − ui) + ci+1/2(ui+1 − ui) (5.33)

with (possibly non-linear) non-negative coefficients ci−1/2 and ci+1/2 [11]. Additional restric-
tions are necessary for the time discretization to avoid instabilities but they are out of the
scope of this section. There are several linear methods that satisfy the condition above and
guarantee that no oscillations are created in the solution. Unfortunately, as proved by Go-
dunov [48], linear TVD schemes are at most first-order accurate. To overcome this limitation
the fluxes fi±1/2 have to be calculated in non-linear fashion by combining linear high- and
low-order approximations, i.e. [11]:

fi±1/2 = fLi±1/2 + Φi±1/2(fHi±1/2 − f
L
i±1/2) (5.34)

where Φi±1/2 is so-called adaptive flux limiter designed such that the final fluxes satisfy
Harten’s TVD condition (5.33). There are several methods that are based on this approach
and on different ways to define the limiter. The important limitation is the fact that Harten’s
TVD condition is defined only in one dimension [11]. Therefore we need a generalization of
this criterion.

A viable generalization are local extremum diminishing (LED) which are required to
fulfil the following conditions [11]:

• local maxima are non-increasing: ui is a local maximum ⇒ dui
dt ≤ 0

• local minima are non-decreasing: ui is a local minimum ⇒ dui
dt ≥ 0

In [11], Kuzmin shows that the one-dimensional LED schemes are necessarily TVD. Thus,
LED turns out to be a handy generalization of TVD which is not restricted to one dimension.
It is also important to note here that the Godunov theorem limiting the accuracy of linear
TVD schemes to first-order also holds for the LED schemes. Namely, linear LED schemes are
at most first-order accurate [11, 48].

5.3.2 Algebraic flux correction with TVD-type limiting

The semi-discretized transport equation can be rewritten in the generic form [11]:

dui
dt

=
∑
j

σijuj (5.35)

with σii = −
∑

j 6=i σij . As long as the scheme is chosen such that the row sums of the discrete
operators are zero we can rewrite the equation above in terms of off-diagonal entries [11], i.e.:

dui
dt

=
∑
j 6=i

σij(uj − ui) (5.36)
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Jameson showed in [49] that the negative coefficients σij in the equation above are responsible
for the growth of instabilities. Therefore, the following condition can be stated for the schemes
to be LED [11]:

∀j 6= i, σij ≥ 0 (5.37)

Now, we restrict ourselves to the problem to which we have to apply the stabilization - the
stationary convection-diffusion equation. Although the definitions of LED and TVD schemes
are based on the behaviour of numerical solution in time we can intuitively get the feeling that
if the system is not LED it can give non-physical oscillations even for stationary problem. We
can consider stationary solutions as the stationary limit to the corresponding pseudo-time-
dependent problem. Indeed, all the operations described below are necessary to get a solution
free of non-physical oscillations although they correspond to just assuring the scheme to be
LED. The stationary convection-diffusion equation discretized with the standard Galerkin
method has the following form:

(S −K)u = r (5.38)

This scheme is LED if we assure that condition (5.37) is satisfied for (S − K) operator
multiplied by −I (see (5.36) with dui

dt = 0 for stationary problem). Therefore, we need to
assure that there are no negative off-diagonal entries in the operator (K − S). It was shown
in [42] that the discrete diffusion operator S is not causing problems as all off-diagonal entries
are non-positive unless the mesh or the diffusion tensor are highly anisotropic (we restrict
ourselves in this thesis to isotropic diffusion tensors). To assure no negative off-diagonal
entries in the discrete convective operator K so-called discrete upwinding technique [10]
is applied. The symmetric artificial diffusion operator D = {dij} having zero row and
column sums (to preserve conservativity of the scheme), i.e. [11]:

dij = dji
∑
j

dij =
∑
i

dij = 0 (5.39)

is added to the discrete convection operator K. Square matrices that have all the properties
(5.39) are called discrete diffusion operators [10]. Let us now define the operation of
so-called conservative flux decomposition for an arbitrary discrete diffusion operator
D̃ = {d̃ij} as [11]: (

D̃u
)
i

=
∑
j 6=i

f̃ij (5.40)

where f̃ij are diffusive fluxes defined as:

f̃ij = d̃ij(uj − ui) (5.41)

The correctness of this relation can be proven by:(
D̃u
)
i

=
∑
j

d̃ijuj (5.42)

= d̃iiui +
∑
j 6=i

d̃ijuj (5.43)

(5.39)
= −

∑
j 6=i

d̃ijui +
∑
j 6=i

d̃ijuj (5.44)
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Therefore, all the operators that have the properties of a discrete diffusion operator can be
decomposed in this way.

The optimal entries of the artificial diffusion operator D are given by [11, 10]:

dij = dji = max{0,−kij ,−kji} (5.45)

dii = −
∑
j 6=i

dij (5.46)

Then the modified discrete convection operator L = {lij} is defined as L = K+D. In practice
the artificial diffusion operator D is not constructed but modification of entries of L is done
within an edge-by-edge approach. First of all, the matrix is initialized by: L := K. Then
each pair of its off-diagonal entries lij and lji is analysed. We calculate dij according to (5.45)
and perform modifications of entries in the L matrix as follows [11]:

lii := lii − dij (5.47)

lij := lij + dij (5.48)

lji := lji + dij (5.49)

ljj := ljj − dij (5.50)

After those modifications we obtain the linear scheme:

(S − L)u = r (5.51)

which is LED. Unfortunately, according to Godunov’s theorem [48], this linear scheme is
limited to first-order accuracy. Therefore, we need a workaround for this limitation following
a similar approach as (5.34). We need to construct a non-linear LED scheme by a non-linear
combination of linear high- and low-order schemes. The original standard Galerkin method
(5.38) serves as the linear high-order scheme while the new LED scheme (5.51) obtained from
adding artificial diffusion is the low-order scheme. The non-linear scheme that fulfils our
expectations is [11]:

(S −K∗(u))u = r (5.52)

with:
K∗(u) = L+ F̄ (u) = K +D + F̄ (u) (5.53)

That is, the low-order scheme is augmented by some non-linear anti-diffusion F̄ (u) = {f̄ij(u)}
to avoid the loss of accuracy in smooth regions due to artificial diffusion. The anti-diffusive
operator F̄ (u) has the property of a discrete diffusion operator (more precisely discrete anti-
diffusion operator, as it has opposite sign as D) [11]. Therefore, we can decompose the
anti-diffusion as a sum of anti-diffusive fluxes:

(F̄ (u)u)i =
∑
j 6=i

f̄ij(u) (5.54)
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with:
f̄ij(u) = βij(u)(ui − uj) (5.55)

We need to define the coefficients βij in such a way that the anti-diffusive fluxes are mean-
ingful. It is worthwhile to use the analogy to (5.34) - define the anti-diffusive fluxes as a
limited difference of high- and low-order fluxes. As the difference between the high- and
low-order schemes is the artificial diffusion added, which applied to the solution can be easily
decomposed into fluxes, we can define βij as:

βij(u) = αij(u)dij (5.56)

where αij(u) is an adaptive flux limiter. Clearly, for αij = 1 (no limiting adopted) the
anti-diffusive fluxes will be equal to the difference of high- and low-order fluxes. The limiters
that assure that the final scheme is LED are calculated using the TVD-type limiting algo-
rithm proposed by Kuzmin in [43] generalized to non-nodal DOFs. In the description of the
algorithm the dependency of (u) is omitted to simplify the presentation. Let us define the
raw anti-diffusive fluxes to be limited as [11]:

fij = dij(ui − uj) (5.57)

Then the TVD-type limiting algorithm by Kuzmin [43] generalised for non-nodal DOFs
reads: for each pair of overlapping DOFs i and j such that lji ≥ lij ≥ 0:

1. Evaluate the sums of positive and negative anti-diffusive fluxes into i-th DOF:

P+
i = P+

i + max{0, fij}, P−i = P−i + min{0, fij} (5.58)

2. Compute the upper and lower bounds Q±i to be imposed on the sums P±i :

Q+
i = Q+

i + max{0,−fij} Q+
j = Q+

j + max{0,−fij} (5.59)

Q−i = Q−i + min{0,−fij} Q−j = Q−j + min{0,−fij} (5.60)

3. Determine the nodal correction factors at the upwind DOF i:

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
(5.61)

4. Compute flux limiters:

αij =

{
R+
i , if fij > 0

R−i , otherwise
(5.62)

The resulting scheme:
(S − L)u = r− F̄ (u)u (5.63)

can be rewritten as:
((S − L)u)i = ri + f̄i(u) (5.64)

for i being the number of the considered degree of freedom, with f̄i(u) defined as [43]:

f̄i(u) =
∑
j 6=i

αijfij (5.65)
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We will denote the vector of all f̄i(u) as f̄(u). Then, it is easy to see that:

f̄(u) = F̄ (u)u (5.66)

With the chosen method the explicit construction of the anti-diffusion operator F̄ (u) was
avoided. The final problem to be solved reads:

(S − L)u = r + f̄(u) (5.67)

This is a non-linear algebraic system and therefore we need to employ a suitable method for
solving such problems. In this thesis the defect correction scheme will be used for solving
non-linear algebraic systems.

5.3.3 Defect correction scheme

The defect correction scheme is an iterative method for solving non-linear algebraic systems.
The general idea is to start with the initial guess and then with each iteration evaluate the
non-linear terms using the solution from the previous iteration. The iteration stops once a
prescribed tolerance or the limit for the number of iterations is achieved. For the scheme
(5.67) the algorithm reads:

1. Select the initial guess u(0), for example:

u(0) = 0 or the solution of the low-order problem: (S − L)u(0) = r (5.68)

2. Solve the linear system:

(S − L)u(m) = r + f̄(u(m−1)) (5.69)

3. Go to the 2. step unless the following condition is fulfilled:

||(S − L)u(m) − r− f̄(u(m)|| < tol or m = mmax (5.70)

where tol is a prescribed tolerance, mmax is a prescribed maximal number of iterations
and || · || is a norm of interest.

Although the presented algorithm clearly illustrates the idea behind the defect correction
approach, in practice an equivalent algorithm [11] is used more often:

1. Select the initial guess u(0), for example:

u(0) = 0 or the solution of the low-order problem: (S − L)u(0) = r (5.71)

2. Solve the linear system for the correction:

(S − L)∆u(m) = r + f̄(u(m−1))− (S − L)u(m−1) (5.72)

where the right hand side is a residual of the previous approximation.

3. Apply the correction to the solution:

u(m) = u(m−1) + ∆u(m) (5.73)
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4. Go to the 2. step unless the following condition is fulfilled:

||∆u(m)||
||u(m)||

< tol or m = mmax (5.74)

Now, we have all necessary ingredients to implement the TVD-type flux limiting approach and
apply it to the convection-diffusion equation. The numerical results obtained with this stabi-
lization method are compared with results obtained with commonly used SUPG stabilization
in the next section.

5.4 Numerical results - problem with internal and boundary
layer

In this section we will discuss the results obtained with the Algebraic Flux Correction method
used together with IGA for the benchmark problem (5.24) - (5.27). First of all, let us present
the high- and low-order solutions of the benchmark problem with d = 0.001 (Peh = 55.56)
to visualize their nature. Again, we use the space spanned by p = 2, 18 × 18 B-spline basis.
The results are presented in Fig. 5.5.

(a) Low-order solution (b) High-order solution

Figure 5.5: Numerical results for high- and low-order problems for benchmark (5.24) - (5.27)
for d = 0.001 solved on p = 2, 18× 18 B-spline basis

It is easy to see that the low-order solution is free of oscillations which are present in the
high-order solution. The price to be paid is a very diffusive nature of solution. There was
artificial diffusion added and the result, although not oscillatory, is not accurate due to the
smearing of the internal layer. AFC combines both methods to obtain a non-oscillatory and
not too diffusive solution. The result of AFC stabilization is shown in Fig. 5.6a. Fig. 5.6b
presents the section of the solution with use of AFC and the low-order solution (high-order
solution was omitted because of high magnitudes of oscillations that would make the plot
less clear) along the cut-line at y = 0.5. It is easy to see that the internal layer is much
less smeared in case of AFC than in case of the low-order solution. Therefore, we can state
that the quality of representation of the internal layer is much better in case of the solution
obtained using AFC. The boundary layer is represented by both methods in the same way. It
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(a) Result obtained with use of AFC (b) Solution along cut-line at y = 0.5.

Figure 5.6: Numerical result obtained with use of AFC for benchmark problem (5.24) - (5.27)
for d = 0.001 solved on p = 2, 18× 18 B-spline basis.

is caused by the fact that this layer is very thin, much thinner than the single knot span of the
basis. The expected layer size was estimated based on results presented in literature [1, 50].

The next step is to validate the stabilization method by comparing the results obtained
with AFC for the benchmark problem (5.24) - (5.27) with the results obtained with SUPG.
The SUPG stabilization method for the convection-diffusion equation was implemented as
part of the G+SMO library [30, 51]. As the unstabilized results are of a very poor quality
we will not use them in this discussion. Fig. 5.7 presents the numerical results obtained with
IGA stabilized by AFC and SUPG on the space spanned by p = 2 130×130 B-spline basis for
d = 0.001 and d = 0.0001. For the first problem with d = 0.001 both stabilization methods
give very similar result except the fact that the result from SUPG has broader boundary layer.
For d = 0.0001, the result from SUPG has non-physical over- and under-shoots. They appear
for highly convection-dominated problems when the internal layers are becoming very steep.
This is a significant drawback of the SUPG stabilization. On the other hand the internal
layer is slightly smeared in case of AFC which is the price to be paid for having no under- and
over-shoots. It is important to note that for the SUPG case the L2 projection was used for
calculation of boundary values (due to software limitations) instead of constrained L2 used
in the AFC case. This explains the under- and over-shoots appearing near the discontinuity
on the west boundary.

Let us now have a closer look of how the numerical solution is changing with h- and p-
refinements. Only the case for d = 0.0001 will be discussed as strongly convection-dominated
problems are in general more sensitive to drawbacks of the numerical methods.

Firstly, let us analyse how the solution is changing for increasing number of degrees of
freedom. The computations were made on a space spanned by p = 2 uniform B-spline basis
with the same number of DOFs in both directions, the results along the cut-line at y = 0.5
are shown in Fig. 5.8. It is easy to see that both in case of AFC and SUPG the internal
and the boundary layers are getting steeper with increasing number of degrees of freedom.
This is caused by the fact that as the layers are very steep for strongly convection-dominated
problems they require a fine mesh to be captured correctly. It can be also observed that
the finer the mesh the smaller in magnitude are the oscillations in the solution produced by
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(a) AFC for d = 0.001 (b) AFC for d = 0.0001

(c) SUPG for d = 0.001 (d) SUPG for d = 0.0001

(e) Solution along cut-line at y = 0.5 for d = 0.001 (f) Solution along cut-line at y = 0.5 for d = 0.0001

Figure 5.7: Numerical result obtained with IGA with AFC and SUPG stabilizations for
benchmark problem (5.24) - (5.27) with d = 0.001 and d = 0.0001 solved on p = 2, 130× 130
B-spline basis.

53



(a) Result obtained with use of AFC (b) Result obtained with use of SUPG

Figure 5.8: Numerical result obtained with IGA with AFC and SUPG stabilizations for
benchmark (5.24) - (5.27) for d = 0.0001 solved with p = 2 B-spline basis and different
numbers of degrees of freedom (the numbers presented in the figure are numbers of DOFs in
one direction). Solution along cut-line at y = 0.5.

SUPG. In case of the solution from AFC the finer the mesh the less smeared is the internal
layer.

Secondly, let us analyse how the solution is changing for increasing the order p of the basis.
The computations were made with the use of the same number of DOFs in both directions
and with uniform basis. The number of DOFs for different orders differs slightly because of
the nature of the p-refinement but those additional single DOFs for each p-refinement are not
affecting our conclusions. The results along the cut-line at y = 0.5 are shown in Fig. 5.9. It
is easy to see that for this problem p-refinement does not change the quality of the solution
as much as h-refinement. In case of AFC one should notice that the higher the order of the
basis the more smeared is the internal layer. This unwanted behaviour is a consequence of
increasing continuity - it is harder to represent the discontinuity (or very steep internal layer)
without over- and under-shoots with high-order basis and therefore more artificial diffusion
is necessary to avoid them. In case of SUPG the layer gets slightly steeper with increasing
order and the oscillations at its ends have similar magnitude for different orders. Therefore,
the SUPG is performing slightly better for higher orders (in contrast to AFC).

The last step of our comparison between SUPG and AFC is related to convergence analysis.
Unfortunately, there is no exact solution known for benchmark (5.24) - (5.27). Therefore, the
order of convergence will be estimated based on three consecutive numerical results u4h, u2h

and uh. The estimation is done using the formula [52]:

q =
log
(
‖u2h−u4h‖2
‖uh−u2h‖2

)
log(2)

(5.75)
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(a) Result obtained with use of AFC (b) Result obtained with use of SUPG

Figure 5.9: Numerical result obtained with IGA with AFC and SUPG stabilizations for
benchmark (5.24) - (5.27) for d = 0.0001 solved with different orders of B-spline basis and
equivalent number of DOFs (the numbers presented in the figure are numbers of DOFs in one
direction). Solution along cut-line at y = 0.5.

where h denotes the grid spacing (width of knot span) in one direction. It is assumed that
with each refinement step we half h. Therefore u4h is the coarsest grid, u2h is the middle
and uh is the finest one. The formula gives a good estimation only if all of the analysed
mesh sizes are fine enough [52]. It is important to mention that the global h-refinement of
a uniform basis is not exactly doubling the number of DOFs but resulting in 2n − p DOFs,
with n being a number of DOFs and p the order of basis. Therefore, the formula gives a good
approximation only for fine enough grids when p

n is sufficiently small.
The orders of convergence calculated with the use of the above formula are presented in

the table below. The calculations were done with uniform basis of orders p = 1 to p = 4 for
the finest grid of 129 DOFs in one direction (for p = 1, for each p-refinement one additional
DOF was added) for the benchmark problem (5.24) - (5.27).

p AFC SUPG

1 1.71 0.69

2 1.03 0.40

3 0.71 0.47

4 0.48 0.50

The highest orders of convergence were obtained for p = 1 basis due to the presence of very
steep internal layer which is easier to be represented with low-order functions. For AFC the
orders of convergence are significantly decreasing with increasing order of basis functions due
to smearing of the internal layer to avoid oscillations. In contrast, the SUPG stabilization
performs similarly for different orders of the basis as the magnitudes of under- and over-shoots
do not change significantly. It is important to note that this is only an estimation of the orders
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of convergence. Nevertheless, the obtained orders of convergence confirm quantitatively the
conclusions derived from previous qualitative results.

It was shown that isogeometric analysis is a suitable tool to solve the stationary convection-
diffusion equation. As in the case of the standard FEM the method performs well for very
smooth and diffusion-dominated problems but applying it to convection-dominated problems
requires application of some stabilization method. The method of choice in this thesis is
algebraic flux correction with a limiter of TVD-type. The comparison of results obtained
with AFC with the results from SUPG stabilization method show that AFC produces results
free of non-physical over- and under-shoots that occur in case of SUPG. It was also shown
that IGA with AFC is getting less robust with increasing orders of the basis for problems
with internal layers. Let us now proceed to more complex problem: the time-dependent
convection-diffusion equation.
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Chapter 6

Time-dependent
convection-diffusion equation

As shown in the previous chapter IGA with AFC stabilization is capable of solving stationary
convection-diffusion equations. The next step to be taken is to consider time-dependent
problems in which additional attention has to be paid to choosing suitable time discretization
methods. Therefore, we discuss in this chapter the application of isogeometric analysis to the
time-dependent convection-diffusion equation.

First of all, the description of the problem and the discretization is presented. The second
section contains numerical results and reveals the expected stability problems for convection-
dominated (in the limit - purely convective) problems. Further, we give a description of
algebraic flux correction methods for time-dependent problems, which are used for stabiliza-
tion. The last part of the chapter is devoted to numerical results.

6.1 Discretization of the time-dependent convection-diffusion
equation

The time-dependent convection-diffusion equation describes the time-dependent be-
haviour of the fluid flow due to convective and diffusive phenomena. It is sometimes referred
to as scalar transport equation. The time-dependent convection-diffusion equation is
defined as [42]:

∂u(x, t)

∂t
−∇ · (D∇u(x, t)) +∇ · (v(x, t)u(x, t)) = R(x, t) in Ω (6.1)

where u(x, t) is the variable of interest (concentration of particles, energy, other physical
quantity), D is the diffusion tensor (in simpler cases it can be replaced by scalar diffusion
coefficient d), v(x, t) is an average velocity field (for the clarity of presentation the dependency
on x will be not included in the equation in further parts of this chapter) and R(x, t) is a
source term.

The problem has to be completed with properly chosen boundary conditions (to assure
well-posedness):

u(x, t) = γ(x, t) onΓD (6.2)

∂u

∂n
(x, t) = β(x, t) onΓN (6.3)
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where n is the unit outward normal vector, and with the initial condition:

u(x, 0) = u0(x), ∀x ∈ Ω (6.4)

The weak form of the problem (obtained after multiplication by a test function and integration
by parts applied to the diffusive term only) reads:

find u ∈ S such that for all v ∈ V,∫
Ω

∂u

∂t
vdx = −

∫
Ω

((∇ · (vu))v + (D∇u) · ∇v)dx +

∫
Ω
Rvdx +

∫
Γ
D
du

dn
vds (6.5)

6.1.1 Spatial discretization

The spatial discretization of the weak form is performed using the standard Galerkin method.
Then, the semi-discretized variational formulation reads:

find uh ∈ Sh such that for all vh ∈ V h,

∫
Ω

∂uh

∂t
vhdx = −

∫
Ω

((∇ · (vu)h)vh + (D∇uh) · ∇vh)dx +

∫
Ω
Rvhdx +

∫
ΓN

Dβvhds (6.6)

Test functions vh (because of assumed restrictions on the test space) vanish on the Dirichlet
part of the boundary ΓD and, therefore, we only need to consider the integration over ΓN
instead of the whole Γ [42]. In the framework of IGA the considered discrete spaces are
spanned by B-spline (NURBS) basis functions. Using the Fletcher’s group formulation [41],
as in the previous chapter, the approximate solution uh and the convective flux (vu)h can be
represented in terms of the basis {ϕj(x)} of V h as follows [42]:

uh(x, t) =
∑
j

uj(t)ϕj(x) (6.7)

(vu)h(x, t) =
∑
j

vj(t)uj(t)ϕj(x) (6.8)

Then, knowing that it is sufficient to test the variational formulation only with the basis
functions of V h, the semi-discrete problem can be rewritten in the form:∑

j

(∫
Ω

(ϕjϕidx

)
duj
dt

=

∑
j

(
−
∫

Ω
((D∇ϕj) · ∇ϕi)dx−

∫
Ω

(∇ · (vjϕj))ϕidx
)
uj +

∫
Ω
Rϕidx +

∫
ΓN

Dβϕids (6.9)

This equation can be rewritten in matrix form:

MC
du

dt
= (K − S)u + r (6.10)

Where MC = {mij} is the consistent mass matrix with entries:

mij =

∫
Ω
ϕjϕidx (6.11)
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S = {sij} is the discrete diffusion operator with entries:

sij =

∫
Ω

(D∇ϕj · ∇ϕi)dx (6.12)

K = {kij} is the discrete diffusion operator with entries:

kij = −vj · cij (6.13)

cij =

∫
Ω
∇ϕjϕidx (6.14)

u is the vector of solution coefficients ui and r is a right-hand side vector, resulting from the
source term and treatment of boundary conditions, with entries ri::

ri =

∫
Ω
Rϕidx+

∫
ΓN

Dβϕids (6.15)

The treatment of the mapping from the parametric domain to the physical domain in the
assembly of matrices is analogous to the one used in the previous chapters.

6.1.2 Temporal discretization

The next step is to discretize the semi-discrete problem (6.10) in time. There is a large variety
of time-discretization schemes. For this thesis work, three schemes were chosen: first-order
forward Euler method and optimal strong stability-preserving (SSP) explicit Runge-Kutta
(RK) methods of orders 2 and 3. We briefly introduce them below. Let the semi-discrete
problem (6.10) be expressed in the more general form:

du

dt
= F (u) (6.16)

That is, we formally define:

F (u) = M−1
C [(K − S)u + r] (6.17)

We denote the time discretization step by ∆t.

First-order Forward Euler method

The first-order forward Euler is the simplest time-discretization method. It is an explicit
method of the form [53]:

un+1 = un + ∆tF (un) (6.18)

Second-order Strong Stability-Preserving explicit Runge-Kutta method

The SSP-eRK-2 method is a time discretization method of the form [54]:

u(1) = un + ∆tF (un) (6.19)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tF (u(1)) (6.20)
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Third-order Strong Stability-Preserving explicit Runge-Kutta method

The SSP-eRK-3 method is a time discretization method of the form [54, 55]:

u(1) = un + ∆tF (un) (6.21)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tF (u(1)) (6.22)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tF (u(2)) (6.23)

The Courant-Friedrichs-Levy (CFL) condition is a necessary condition for the con-
vergence of any explicit numerical scheme applied to partial differential equation. In the 2D
case, which is considered in the thesis, the condition reads [56]:

|v1|∆t
h1

+
|v2|∆t
h2

≤ Cmax (6.24)

where h1 and h2 are grid sizes and v1 and v2 are the velocity components in x and y directions,
respectively. The limit value Cmax depends on the adopted method. For explicit methods (all
the methods considered in the thesis are explicit) Cmax = 1. It is important to note that it is
not a sufficient condition [54].

The choice of those three methods is not random. Let us assume that a spatial discretiza-
tion scheme is combined with the forward Euler temporal discretization with sufficiently small
time step size to satisfy the CFL condition has the TVD property (see section 5.3.1). The
higher-order SSP-eRK methods are designed in such a way that they achieve higher order of
convergence in time than the forward Euler method and do not loose the TVD property if
applied together with the same spatial discretization scheme [54].

6.2 Numerical Results

The IGA-based solver for time-dependent convection-diffusion equations was applied to two
convection-dominated problems: convection of a smooth hump and convection of a rectangular
wave. The numerical results are presented below.

6.2.1 Convection of a smooth hump

The first problem analysed deals with the convection of a smooth hump:

∂u(x, t)

∂t
+∇ · (vu(x, t)) = 0 in [0, 1]× [0, 2] (6.25)

v = [10, 0]T (6.26)

with homogeneous Dirichlet boundary condition at the Western boundary ΓW and homoge-
neous Neumann boundary condition at Northern and Southern boundaries ΓN ∪ ΓS (for the
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hyperbolic problem no boundary condition is prescribed at the outflow boundary, in this case
the Eastern boundary ΓE), i.e.:

u(x, t) = 0 onΓW (6.27)

∂u

∂n
(x, t) = 0 onΓN ∪ ΓS (6.28)

The initial condition is a hump centred at (x0, y0) = (0.5, 0.5) defined as:

u(x, 0) = 0.25 [1 + cos(πmin{r(x), 1})] (6.29)

with:

r(x) =
1

r0

√
(x− x0)2 + (y − y0)2 (6.30)

and r0 = 0.5. It is easy to notice that the exact solution to this problem is a hump centred
at (xt, yt) = (0.5 + 10t, 0.5). In this section we are interested in the numerical solution to the
problem at t = 0.1. At this time the exact solution is just the translation the initial condition
by ∆x = 1 in x direction.

Fig. 6.1 presents the numerical solutions to the problem defined above using the Forward
Euler, SSP-eRK-2 and SSP-eRK-3 methods. The computations were done on the space
spanned by uniform p = 2, 66×66 B-spline basis. The used time step was of size ∆t = 0.0001.
All results in general represent the exact solution correctly. However, in the solution obtained
with the Forward Euler method there are some oscillations visible. The more clear comparison
of results obtained with those three methods is presented in Fig. 6.2 by plotting the solution
along the x direction at y = 0.5. It is important to note that the exact solution presented in
the figures is an optimal, with respect to L2 norm, representation of the analytical solution
on the considered B-spline space, and therefore, the best solution achievable on a given mesh.
The results from SSP-eRK methods of orders 2 and 3 coincide almost perfectly with the exact
solution. The result from the Forward Euler method is of significantly worse quality. The
conclusion is that the chosen time step is sufficiently small in case of SSP-eRK methods of
orders 2 and 3 (assuming that our goal is a visual agreement of exact and numerical solutions)
while for the Forward Euler method smaller time step sizes are necessary.

To understand the behaviour of the Forward Euler method and the SSP-eRK methods
with varying time step sizes consider Fig. 6.3. For each of the three methods, the curve
has a similar structure. Firstly, the error is increasing when the time step is decreased. This
happens for a very coarse time discretization, which does not fulfil the stability condition (CFL
condition). Theoretically, the value of the largest time step that fulfils the CFL condition is
approximately ∆tmax ≈ 0.003. It can be easily seen that all three methods start to converge
once the value of ∆t is smaller than that limiting value. The SSP-eRK methods start to
converge even for larger values of ∆t. In the second part of the curve the methods give
better results when the time step is decreased. As expected the steepest slope in this region
is recorded for the third-order SSP-eRK method. The slowest convergence takes place for
the Forward Euler method, which is a first-order method. As expected we can deduct that
the higher the order of the method the steeper is the slope of the curve in this region. The
third region of the curve is a plateau below the steep part. In this region the methods are not
converging any further. Decreasing the time step after achieving this plateau is not improving
the result any more. This is caused by the fact that the spatial error starts to dominate and
further decreasing the time step does not decrease the overall error. All the considered time
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(a) Forward Euler method

(b) SSP-eRK-2 method

(c) SSP-eRK-3 method

Figure 6.1: Numerical results for the problem of convection of a smooth hump solved on
uniform p = 2, 66 × 66 B-spline basis with different time discretization schemes, with time
step ∆t = 0.0001.

62



Figure 6.2: Numerical results at t = 0.1 for the problem of convection of a smooth hump
solved on uniform p = 2, 66 × 66 B-spline basis with different time discretization schemes,
with time step ∆t = 0.0001. Section along x direction at y = 0.5.

discretization methods have the plateau at the same L2 error. The only difference is how
small the time steep needs to be to get there.

The results from Fig. 6.1 and 6.2 were obtained with ∆t = 0.0001. We can see from
Fig. 6.3 that for this time step size the SSP-eRK-2 and SSP-eRK-3 methods already achieved
that maximum quality of solution possible with the given spatial discretization while the
Forward Euler method is still converging towards it. That explains the overlap of solutions
from SSP-eRK methods with the exact solution and oscillations that occur in the solution
from the Forward Euler method. Obviously, the optimal value of ∆t for a given method and
a given spatial discretization is the one at which the plateau starts. The SSP-eRK-3 method
has the significant advantage that the convergence is very quick. Unfortunately, the price to
be paid is that it requires more computations per time step than SSP-eRK-2 method and
the Forward Euler method. The SSP-eRK-2 method converges slower but the computational
costs per iteration are lower as well. The Forward Euler method converges very slowly which
disqualifies it from most of the practical applications but the simplicity of the idea behind it,
ease of implementation and small computational effort per iteration make it a perfect choice
for the first method to be implemented for test purposes.

We can conclude the results obtained from this test problem that the IGA approach works
fine for simple smooth time-dependent problems. It is however very important to carefully
choose the time step size to avoid instabilities or excessive computational effort spent on time
steps that do not improve the quality of the solution.

6.2.2 Convection of a rectangular wave

The second problem deals with the convection of a rectangular wave (it is a 1D problem pro-
longed artificially in the second dimension to be consistent with other test problems presented
in this chapter). A similar problem was used by Kuzmin in [44]. The problem is defined ex-
actly as the previous one (6.25)-(6.28), the only difference is the initial condition defined now
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Figure 6.3: L2 errors of numerical solutions at t = 0.1 of the problem of convection of a smooth
hump solved on uniform p = 2, 66×66 B-spline basis with different time discretization schemes
versus the time step size.

by:

u(x, 0) =

{
1 if x ∈ (0.25, 0.75)

0 otherwise
(6.31)

Obviously, the exact solution of this problem is given by:

u(x, t) =

{
1 if x ∈ (0.25 + 10t, 0.75 + 10t)

0 otherwise
(6.32)

In this section we are interested in the numerical solution of the problem at t = 0.1. Again,
at this time the exact solution is just the translation of the initial condition with by ∆x = 1
in x direction.

Fig. 6.4 presents the exact solution and the numerical solution computed by SSP-eRK-3
to the problem defined above in form of the section along the x direction at y = 0.5. We
restrict ourself to this method as it (as shown above) yields the fastest convergence. The
computations were performed on the space spanned by uniform p = 2, 66 × 66 B-spline
basis. The time step was of size ∆t = 0.0001. The initial condition was projected to the
considered B-spline space using the constrained L2 projection to avoid non-physical under-
and over-shoots. The ”exact solution” is here a result of constrained L2 projection of the
analytical solution to the considered space. The obtained result is very oscillatory although
for the previous problem the SSP-eRK methods with the same time step and spatial grid sizes
produced results of very good quality. The discontinuities in the problem caused the method
to fail.
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Figure 6.4: Exact and numerical solution at t = 0.1 to the problem of convection of a
rectangular wave solved on uniform p = 2, 66 × 66 B-spline basis with SSP-eRK-3 time
discretization method, with time step ∆t = 0.0001. Section along x direction at y = 0.5.

One might think that the oscillations would disappear or decrease for small enough time
step. Fig. 6.5 shows clearly that this is not the case. The region in which the method is
quickly converging has not moved significantly. The time step ∆t = 0.0001 used above is
already at the plateau so further refinement of the time step size is pointless.

From the example above one can easily conclude that in order to be able to solve the
time-dependent convection-diffusion equations with discontinuities or very steep gradients
(that can not be represented by the mesh), there is a need to find a suitable stabilization
method. As in the stationary case we use the stabilization technique from the family of AFC
algorithms.

6.3 Algebraic flux correction

For the time-dependent convection-diffusion equation we will use algebraic flux correction
with flux limiting of FCT-type (in contrast to limiting of TVD-type used for stationary
problems in Chapter 5). It was described by D. Kuzmin in [12] as well as in [42]. This section
presents a brief description of the method applied to the time-dependent convection-diffusion
problem.

6.3.1 The family of FCT algorithms

Flux-corrected transport (FCT) algorithms were introduced by Boris and Book in
[57, 58]. They are non-linear high-resolution schemes that assure the monotonicity (and
therefore prevent the generation of non-physical oscillations) even for pure convection prob-
lems involving discontinuities. They belong to the class of so-called diffusion-anti-diffusion
(DAD) methods. The main idea of the algorithm can be described as predictor-corrector
method consisting of the following steps [12, 42]:

1. Advance the solution in time with the use of a low-order method.
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Figure 6.5: L2 errors of the numerical solution at time t = 0.1 to the problem of convection
of a rectangular wave solved on uniform p = 2, 66× 66 B-spline basis with SSP-eRK-3 time
discretization method versus time step.

2. Correct the solution by applying limited anti-diffusion.

The low-order method must be designed to assure that no non-physical under- and over-
shoots are generated by incorporating enough numerical diffusion [12]. Raw anti-diffusion
is defined such that applied to the low-order scheme it should restore the original high-order
scheme [42]. The anti-diffusion has to be limited in such a way that, after applying it to the
solution computed by the low-order method, no new extrema are created and the existing
ones do not grow in magnitude (i.e. to preserve the LED property defined in Section 5.3.1)
[12, 42].

6.3.2 Algebraic flux correction with limiter of FCT-type

Zalesak’s fully multidimensional FCT algorithm [38] forms the basis for most AFC
schemes based on the idea of FCT. The general idea is to use the scheme resulting from
the Galerkin FEM (IGA) discretization as the high-order method. The low-order method is
then obtained from the high-order method by performing purely algebraic operations on the
discrete operators. Kuzmin in [42] states that the non-physical oscillations are caused by:

• positive off-diagonal entries in the consistent mass matrix MC

• negative off-diagonal entries in the discrete convection operator K

• positive off-diagonal entries in the discrete diffusion operator S

As in the previous chapter, the discrete diffusion operator S is not causing problems as
all off-diagonal entries are non-positive unless the mesh or the diffusion tensor are highly
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anisotropic [42] (in our case D is a scalar coefficient so the diffusion tensor is diagonal and
therefore isotropic by definition). To avoid positive off-diagonal entries in the mass matrix we
perform row-sum mass lumping according to (4.10). To avoid negative off-diagonal entries in
the discrete convection operator K we add to it the artificial diffusion operator D to obtain
L according to the procedure (5.45)-(5.50). After those operations have been performed we
obtain the low-order scheme as [42]:

ML
du

dt
= (L− S)u (6.33)

The solution to this low-order problem will be denoted by uL with entries uLi .
The anti-diffusion defined as the difference between the low-order method (6.33) and

the high-order method (6.10) is given by:

f(u) = (ML −MC)
du

dt
+ (K − L)u = (ML −MC)

du

dt
−Du (6.34)

By construction, the operators (ML−MC) and D are discrete diffusion operators (see (5.39))
and can therefore be decomposed according to (5.40)-(5.41). That is [42]:

(MLu−MCu)i =
∑
j 6=i

mij(ui − uj) (6.35)

−(Du)i =
∑
j 6=i

dij(ui − uj) (6.36)

We can now represent the anti-diffusive term f(u) = {fi(u)} as the net sum of fluxes between
DOFs [42]:

fi(u) =
∑
j 6=i

fij(u) (6.37)

with raw anti-diffusive fluxes:

fij(u) =

(
mij

d

dt
+ dij

)
(ui − uj) (6.38)

Obviously, the scheme:

ML
du

dt
= (L− S)u + f(u) (6.39)

is equivalent to the high-order scheme (6.10). According to the framework of FCT we add
only a limited portion of the anti-diffusion [33]:

ML
du

dt
= (L− S)u + f̄(u) (6.40)

where the entries f̄i(u) of f̄(u) are given by sums of constrained anti-diffusive fluxes:

f̄i(u) =
∑
j 6=i

αij(u)fij(u) (6.41)

The limiting coefficients αij(u) are calculated by Zalesak’s multidimensional FCT limiter
[38, 12, 42] generalized for non-nodal DOFs. The notation of dependency on the solution (u)
is dropped in the following description of the algorithm for clarity of presentation. Zalesak’s
limiting algorithm generalised for non-nodal DOFs consist of the following steps:
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1. Evaluate the sums of positive and negative anti-diffusive fluxes into i-th DOF:

P+
i =

∑
j 6=i

max{0, fij}, P−i =
∑
j 6=i

min{0, fij} (6.42)

2. Compute the distance to a local maximum and minimum at the bounds:

Q+
i =

mi

∆t
(umax
i − uLi ), Q−i =

mi

∆t
(umin
i − uLi ) (6.43)

3. Determine the nodal correction factors for the net increment at i-th DOF:

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
(6.44)

4. Control the sign of the raw anti-diffusive flux:

αij =

{
min{R+

i , R
−
j }, if fij > 0

min{R−i , R
+
j }, if fij < 0

(6.45)

6.3.3 Linearisation of anti-diffusive fluxes

After applying a suitable time discretization the resulting scheme is non-linear. It is possible
to use the defect-correction scheme to solve this system, however, as stated by Kuzmin in
[12] this approach is not efficient due to high computational cost. Therefore, a suitable
linearisation would significantly increase efficiency of the method for the price of slightly less
accurate solutions. Although linearisation about the low- or high-order solutions seems the
most natural approach, it was shown by Kuzmin in [12] that both of those approaches are
inefficient. Therefore, another linearisation approach was proposed in the same paper: to
compute the low-order end-of-step solution uL and correct it explicitly (similar to the case of
classical DAD methods), namely [12]:

MLun+1 = MLuL + ∆t̄f(uL,un) (6.46)

where un is a numerical solution at time step n and uL is the end-of-step low-order solution. It
can be calculated with any time discretization method (eg. Forward Euler method, SSP-eRK
methods). The net sums of raw anti-diffusive fluxes after linearisation are defined as [12]:

fi(u
L,un) =

∑
j 6=i

fij(u
L,un) (6.47)

with
fij(u

L,un) = mij(u̇
L
i − u̇Lj ) + dn+1

ij (uLi − uLj ) (6.48)

Here u̇Li denotes i-th entry of the finite difference approximation of the time derivative u̇L

and dn+1
ij denotes the values of dij computed for operator K evaluated at time n+ 1. In the

constant-coefficient, time-dependent convection-diffusion equations, considered in this thesis,
the operator K is constant in time and therefore dij does not have to be recomputed for every
time step. This, however, is not the case for the compressible Euler equations considered in
the further part of this thesis. There are several methods to compute this value. In this thesis
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we simply solve the low-order problem which amounts to scaling the RHS by the inverse of
diagonal values of the lumped mass matrix, namely [12]:

MLu̇L = (L− S)uL (6.49)

Note that because of this approximation adding the raw anti-diffusive fluxes to the low-order
solution will no longer restore the original high-order solution [42]. This approximation guar-
antees that the corrected end-of-step solution is free of oscillations. However, in some cases
more accurate and still not oscillatory results can be obtained using other approximations as
proposed by Kuzmin in [12]:

MLu̇L = (K − S)uL (6.50)

or the original high-order solution which is unfortunately prone to oscillations:

MC u̇L = (K − S)uL (6.51)

Now, we have all necessary ingredients at hand to implement the AFC method with
FCT-type flux limiter and apply it to the time-dependent convection-diffusion equation. The
analysis of the numerical results obtained with IGA combined with this stabilization method
are presented in the next section.

6.4 Numerical results

In this section we will discuss the results obtained from using the Algebraic Flux Correc-
tion stabilization method in the IGA framework applied to two benchmark problems. The
first problem describes the convection of a rectangular wave, which was already analysed in
this chapter without application of the stabilization method. The second one is a common
benchmark for time-dependent convection-diffusion equations - the rotation of three solid
bodies.

6.4.1 Convection of rectangular wave

As it was shown in Fig. 6.4, IGA without stabilization is not able to solve the problem of
convection of a rectangular wave without generating spurious oscillations. Therefore, the AFC
stabilization technique was applied to stabilize the IGA approach for this problem. Fig. 6.6
presents the exact and numerical solutions to this problem. The numerical results were
obtained with use of the unstabilized IGA Galerkin method, the low-order scheme and the
AFC-stabilized scheme. All computations were done on the space spanned by uniform p = 2,
66 × 66 B-spline basis. Time discretization was done with SSP-eRK-3 time discretization
method and with the time step of size ∆t = 0.0001. As it was already mentioned the result
from the high-order method is not acceptable due to oscillations. The low-order scheme
obtained after mass lumping and adding the artificial diffusion gives overly diffusive and
therefore very inaccurate results. The solution obtained with AFC is much less diffusive than
the one obtained from the low-order scheme and still free of non-physical oscillations but the
price for that is a lower accuracy in representation of discontinuities which are smeared. Use
of AFC with FCT-type limiter allows us reach our goal (the same as in case of constrained
L2 projection and stationary convection-diffusion equation) - to produce solutions, which are
free of non-physical oscillations and still accurate.
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Figure 6.6: Exact and numerical solutions at time t = 0.1 to the problem of convection of a
rectangular wave solved on a uniform p = 2, 66 × 66 B-spline basis with SSP-eRK-3 time-
discretization, with time step ∆t = 0.0001, with use of high-order method (no stabilization),
low-order method and AFC stabilization. Section along x direction at y = 0.5.

Fig. 6.7 presents the L2 errors of the numerical solutions obtained using IGA with AFC
stabilization with use of different time discretization methods versus the time step size. It
can be easily seen that all the methods converge much faster than the unstabilized IGA
scheme applied to the smooth problem (see for comparison Fig. 6.3). The most significant
improvement takes place for the Forward Euler method. It now performs as good as the
higher-order SSP-eRK methods. This happens because the AFC stabilization damps the
oscillations which are created by the Forward Euler method for large time steps (oscillations
are visible in Fig. 6.1a) and, therefore, improves the overall quality of results produced by
the method. This gives a very interesting conclusion - there is no significant gain in using
higher-order time-discretization schemes together with AFC for this problem. This allows
us to use lower-order methods (like the forward Euler method) to save some computational
effort on time discretization without loosing the accuracy of the solution.

This is not the only surprising behaviour illustrated in this figure. In some interval of
time steps the forward Euler method produces lower error values than SSP-eRK methods and
also smaller errors than the optimal value that we expect (value of the plateau). A possible
explanation is as follows. Fig. 6.8 presents the numerical solutions obtained with the low-
order method of the considered problem. It was solved with the Forward Euler method and
SSP-eRK-3 method with two time step sizes ∆t = 0.0001 and ∆t = 0.0029. For ∆t = 0.0001
solutions from both methods almost overlap but for the much larger time step ∆t = 0.0029
the one from the Forward Euler method is much less diffusive. It is due to the fact that the
forward Euler method is not accurate for such a large time step. Surprisingly this behaviour,
though unwanted in most cases, even improves the quality of the final solution obtained
after adding the limited fluxes. This is due to the fact that in general we are interested in
having as few artificial diffusion as possible in the low-order solution (but it has to be non-
oscillatory still). Numerical anti-diffusion resulting from inaccuracy of the Forward Euler
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Figure 6.7: L2 errors of numerical solutions at t = 0.1 to the problem of convection of
a rectangular wave solved on uniform p = 2, 66 × 66 B-spline basis with different time
discretization methods versus the time step size.

method removes some of the artificial diffusion added but fortunately the scheme remains
still non-oscillatory. One could argue that the anti-diffusion that is accepted by the limiter
should improve both low-order solutions (less and more diffusive) to the same final solution.
That could be the case if we used the exact values of anti-diffusive fluxes. Here, however, we
use the approximation of the time derivative u̇L in the computation of fluxes (see (6.49)) and
therefore the ability to reconstruct the high-order solution is limited. We will analyse this
behaviour in more detailed manner later in this chapter. It is important to note that this
behaviour is not a general characteristic but just a special case appearing for this particular
problem at hand.

6.4.2 Rotation of three solid bodies

The next problem to is a common benchmark for pure convection problems, the so-called
solid body rotation benchmark described for example in [12, 42]. This benchmark problem is
defined as:

∂u(x, t)

∂t
+∇ · (v(x)u(x, t)) = 0 in [0, 1]× [0, 1] (6.52)

v(x) = [0.5− y, x− 0.5]T (6.53)

with homogeneous Dirichlet boundary condition at all inflow boundaries and no boundary
condition at all outflow boundaries (to assure well-posedness of the hyperbolic problem), i.e.:

u(x, t) = 0 onΓin (6.54)

71



Figure 6.8: Numerical solutions at t = 0.1 of the problem of convection of a rectangular wave
solved with the low-order scheme (discrete upwinding) on uniform p = 2, 66 × 66 B-spline
basis with Forward Euler and SSP-eRK-3 time discretization schemes, with time step sizes
∆t = 0.0001 and ∆t = 0.0029. Section along x direction at y = 0.5.

The inflow boundaries are defined as those for which the velocity vector v(x) at the boundary
is directed inward the domain while outflow boundaries are those for which it is directed
outward. In the considered case, the inflow boundaries are: lower half of west boundary,
upper half of east boundary, right half of south boundary and left half of north boundary.
The rest of boundary is considered the outflow boundary.

The initial condition is the function which was already investigated in Section 4.3 as part
of the analysis of the constrained L2 projection. It is defined by formulas (4.21)-(4.25). The
numerical representation of the initial condition is obtained using the constrained L2 projec-
tion to avoid non-physical under- and over-shoots. The initial condition is a compositions of
three functions, each describing one shape. Each of them has a significantly different nature
and, therefore, the benchmark investigates the behaviour of the applied numerical scheme to
problems of different character.

We are interested in the solution of this problem at time t = 2π which corresponds to one
complete revolution of the initial profile. Thus, the exact solution at this time coincides with
the initial condition.

Fig. 6.9a presents the exact solution of the benchmark problem described above. The non-
stabilized (high-order) numerical solution to this problem is presented in Fig. 6.9b. Although
the shapes are represented correctly, there are oscillations caused by the discontinuity and
propagated over the domain. Fig. 6.9c presents the low-order solution to the problem which,
as expected, is very diffusive. Finally, Fig. 6.9d illustrates the result obtained with AFC
stabilization. It can be easily seen that the solution, as expected, is free of non-physical
oscillations. Unfortunately, it is very diffusive as well. All numerical computations were
performed on the space spanned by uniform p = 2, 130 × 130 B-spline basis. The temporal
discretization was done with SSP-eRK-3 time discretization method, with time step size
∆t = 0.006.
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(a) Exact solution (b) High-order solution (no stabilization)

(c) Low-order solution (discrete upwinding) (d) AFC stabilization

Figure 6.9: Exact and numerical solutions at t = 2π to the solid body rotation benchmark
solved on uniform p = 2, 130×130 B-spline basis with SSP-eRK-3 time discretization method,
with time step ∆t = 0.006, with use of high-order method (no stabilization), low-order method
and AFC stabilization.

Fig. 6.10 contains sections through each of the shapes involved in the benchmark prob-
lem. The computations were performed in the same configuration of spatial and temporal
discretizations as in previously discussed figure. The low- and high-order methods as it was
visible in the previous figure have respectively diffusive and oscillatory natures. For the
slotted cylinder shown in Fig. 6.10a, the solution with AFC stabilization is representing the
discontinuities in slightly smeared manner to avoid oscillations. Unfortunately, for the smooth
profiles, the hump and cone presented in Fig. 6.10b and Fig. 6.10c, respectively, the solution
looses the precision of representation in the area near the extremum. This behaviour is a well
known drawback of FCT-type limiters and referred to as peak-clipping phenomenon in the
literature [42].

This unwanted overly diffusive behaviour of the scheme stabilized with AFC can be par-
tially explained by analysis of the approximation made during evaluation of the anti-diffusive
fluxes. As mentioned before, ideally, the raw anti-diffusive fluxes added to the low-order solu-
tion should restore the solution given by the original scheme (high-order solution). In practice
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(a) Section along x direction at y = 0.75 (b) Section along x direction at y = 0.5

(c) Section along x direction at y = 0.25

Figure 6.10: Exact and numerical solutions at t = 2π to the the solid body rotation benchmark
problem solved on uniform p = 2, 130×130 B-spline basis with SSP-eRK-3 time discretization
method, with time step ∆t = 0.006, with use of high-order method (no stabilization), low-
order method and AFC stabilization. Sections along x direction at y = 0.75, y = 0.5 and
y = 0.25.
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this is not the case due to the error made during the approximation of the time derivative u̇L.
Let us now analyse how large this error is. Fig. 6.11 presents the same three cross-sections
as Fig. 6.10. Here, we compare the original high-order solution with the high-order solu-
tion restored from the low-order one by adding unlimited anti-diffusive fluxes. The low-order
approximation of the time derivative u̇L used in the latter case is not very accurate so that
both high-order approximations do not coincide. It does not represent the oscillations and
discontinuities in a sharp way. Even worse is the fact that the original values of the extrema
of the hump and cone are lost.

The easiest way to avoid this and significantly improve the quality of the profile is to use
another, more accurate approximation for the time derivative u̇L. Unfortunately, for this test
problem none of the other approximations proposed in Section 6.3.3 gave satisfactory results.
Another way to improve the quality of the results is to use either the non-linear AFC scheme
instead of the linearised one or to develop better linearisation techniques which, however, goes
beyond the scope of this thesis work.

It was shown in this chapter that isogeometric analysis is a suitable tool to solve the
time-dependent convection-diffusion equation. Similarly to the standard FEM the method
performs well for very smooth problems. However, purely convective problems with shapes
involving discontinuities require some sort of stabilization. The method of choice in the thesis
is Algebraic Flux Correction. For the time-dependent problems it was used with FCT-type
limiting. The stabilization gives results free of non-physical oscillations but overly diffusive.
Further developments can be made to improve the quality of the numerical solutions: use
of non-linear FCT, other linearisation techniques or different approximations for the time
derivative for the evaluation of anti-diffusive fluxes. Those improvements are beyond the
scope of this thesis.
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(a) Section along x direction at y = 0.75 (b) Section along x direction at y = 0.5

(c) Section along x direction at y = 0.25

Figure 6.11: Numerical solutions at t = 2π to the the solid body rotation benchmark problem
solved on uniform p = 2, 130×130 B-spline basis with SSP-eRK-3 time discretization method,
with time step ∆t = 0.006, with use of high-order method (no stabilization) and high-order
method restored from low-order method. Sections along x direction at y = 0.75, y = 0.5 and
y = 0.25.
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Chapter 7

Compressible Euler equations

This chapter is devoted to the application of isogeometric analysis to the compressible Euler
equations. Firstly, the compressible Euler equations are defined and a short description of
their properties is provided. The second section is devoted to the discretization of the Euler
equations using the standard Galerkin/IGA methodology. In the third part of this chapter
the boundary conditions for the Euler equations are described together with details of how
to implement them. The fourth section presents numerical results for selected benchmark
computations. Some of the presented results reveal the existence of instabilities and, therefore,
a stabilization of AFC-type to the systems of equations is discussed afterwards. The last part
of the chapter presents numerical results obtained using the stabilized scheme.

7.1 Compressible Euler equations

The compressible Euler equations describe the behaviour of an ideal inviscid compressible
fluid. This class of flows consist of gas flows in regimes in which neglecting the viscosity
still assures acceptable quality of results. The compressible Euler equations are a system of
conservation laws for the mass, momentum and energy [45]:

∂ρ

∂t
+∇ · (ρv) = 0 (7.1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI ) = 0 (7.2)

∂(ρE)

∂t
+∇ · (ρEv + pv) = 0 (7.3)

with ρ denoting the density, t the time, v the velocity vector, E the total energy, I the
identity tensor and p the pressure given by the equation of state (for ideal polytropic
gas) [33]:

p = (γ − 1)

(
ρE − ρ|v|2

2

)
(7.4)

Here, γ denotes the heat capacity ratio (for air γ = 1.4). The system of equations (7.1)-
(7.3) can be rewritten in divergence form [33]:

∂U

∂t
+∇ · F = 0 (7.5)
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with the vector of conservative variables U and the vector of inviscid fluxes F defined
as:

U =

 ρ
ρv
ρE

 (7.6)

F =

 ρv
ρv ⊗ v + pI
ρEv + pv

 (7.7)

The Euler equations are completed with initial conditions (given distribution of U(x, t) in the
bounded domain Ω at time t = 0) [33]:

U(x, 0) = U0(x) in Ω (7.8)

and consistent boundary conditions. The boundary conditions for the Euler equation are
usually imposed as solution of a Riemann problem for the interior state U and the exterior
state U∞ [33]. A more detailed description of the theory of boundary conditions for the Euler
equations and their implementation is provided in section 7.3. In this thesis we consider BCs
of the following type: Dirichlet boundary condition on the boundary ΓD [33]:

U = G(U,U∞) on ΓD (7.9)

and Neumann boundary condition on the boundary ΓN :

n · F = Fn(U,U∞) on ΓN (7.10)

where n is the outward unit normal vector.

7.2 Discretization of the Euler equations

This section describes the discretization of the Euler equations. The spatial discretization is
done using the group FEM approach in the framework of IGA. The weak formulation of the
system (7.5) reads [33]:

find U ∈ S such that for all v ∈ V,∫
Ω

(
v
∂U

∂t
−∇v · F

)
dx +

∫
Γ
vFnds =0 (7.11)

Test functions v (because of restrictions on the test space) vanish on the Dirichlet boundary
ΓD and, therefore, we only need to consider the integration over ΓN instead of the whole
boundary Γ [33].

Fletcher’s group formulation approximates the solution U by Uh and the vector of
inviscid fluxes F by Fh using the same function space [41]. For IGA it is a space spanned by
B-spline (NURBS) basis functions, i.e. [33]:

Uh(x, t) =
∑
j

Uj(t)ϕj(x) (7.12)

Fh(x, t) =
∑
j

Fj(t)ϕj(x) (7.13)
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Inserting the above expansion into the variational form (7.11) yields the system of semi-
discretized equations for the time-dependent unknowns Uj [33]:

∑
j

(∫
Ω
ϕiϕjdx

)
dUj
dt

=
∑
j

(∫
Ω
∇ϕiϕjdx

)
· Fj −

∫
ΓN

ϕiFnds (7.14)

According to [59] the Euler fluxes evince the homogeneity property:

F = AU (7.15)

where A = ∂F
∂U is the Jacobian tensor associated with the quasi linear form of (7.5), i.e. [33]:

∂U

∂t
+ A · ∇U = 0 (7.16)

Due to this amenable property we obtain:

Fj = AjUj (7.17)

Thus, we can write the semi-discrete problem (7.14) in matrix form [33]:

MC
dU

dt
= KU + S(U) (7.18)

with MC being the block consistent mass matrix, K the discrete Jacobian operator
and S the boundary load vector. All those operators are defined below. For systems the
ordering of unknowns is very important. The approach used in this thesis is to order them in
the following way:

U =
[
ρ1 (ρv)1 (ρE)1 · · · ρN (ρv)N (ρE)N

]T
(7.19)

For such an ordering, the consistent mass matrix MC is a block matrix consisting of blocks
Mij of size (n+ 2)× (n+ 2) (for problem defined in Rn), where Mij = mijI with I being the
identity matrix and [33]:

mij =

∫
Ω
ϕiϕjdx (7.20)

The discrete Jacobian operator K is defined as a block matrix consisting of blocks Kij of size
(n+ 2)× (n+ 2) given by [33]:

Kij = cji ·Aj (7.21)

with:

cij =

∫
Ω
ϕi∇ϕjdx (7.22)

The Jacobian matrix for the 2D case is given by A = (A1, A2), where [60, 61]:

A1 =


0 1 0 0

γ2v
2
1 + γ1v

2
2 (3− γ)v1 (1− γ)v2 γ − 1

v1v2 v2 v1 0
γ1(v3

1 + v2
2v1)−Hv1 H − (γ − 1)v2

1 (1− γ)v1v2 γv1

 (7.23)
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A2 =


0 0 1 0

v1v2 v2 v1 0
γ2v

2
2 + γ1v

2
1 (1− γ)v1 (3− γ)v2 γ − 1

γ1(v3
2 + v2

1v2)−Hv2 (1− γ)v1v2 H − (γ − 1)v2
2 γv2

 (7.24)

where γ1 and γ2 are the auxiliary quantities given by:

γ1 =
γ − 1

2
, γ2 =

γ − 3

2
(7.25)

and H is the total enthalpy defined as:

H = E +
p

ρ
(7.26)

The entries of the boundary load vector S are defined as [33]:

Si = −
∫
ΓN

ϕiFnds (7.27)

Temporal discretization of the semi-discrete problem (7.18) can be performed for example
using the Forward Euler method or Strong Stability Preserving Runge-Kutta methods of
orders 2 and 3, respectively. Those methods were introduced and described in Section 6.1.2.

7.3 Boundary conditions

The Euler equations form a hyperbolic system. Solutions to such a system are superpositions
of several waves travelling in certain directions with certain speeds. A consistent choice of
boundary conditions depends on the way the waves propagate in the considered region [33].
This section presents briefly the underlying theory and the practical implementation of the
boundary conditions for the Euler equations.

7.3.1 Physical boundary conditions

The number of physical boundary conditions (PBC) that have to be prescribed is ob-
tained using a transformation to the local characteristic variables along the unit outward
normal vector n. The description of the transformation can be found in [45]. The final result
is a set of n+ 2 decoupled equations [33]:

∂wk
∂t

+ λk
∂wk
∂n

= 0 for k = 1, ..., n+ 2 (7.28)

where wk are the Riemann invariants and λk are the eigenvalues of the directional Jacobian
n·A. With Λ = diag{λ1, ..., λn+2} and W = [w1, ..., wn+2]T we can write the system in matrix
form [33]:

∂W

∂t
+ Λ

∂W

∂n
= 0 (7.29)

For the 2D case W and Λ are given by [33, 61]:

W =
[
vn − 2c

γ−1 ,
p
ργ , vξ, vn + 2c

γ−1

]T
(7.30)
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Λ = diag{vn − c, vn, vn, vn + c} (7.31)

where vn is the normal component of the velocity, vξ the tangential component of the velocity
and c is the speed of sound given by [61]:

c =

√
γp

ρ
(7.32)

It is easy to see from the system (7.28) that the characteristic variable wk remains constant
along the characteristic defined by [45]:

λk =
dn

dt
(7.33)

The evolution of Riemann invariants has purely convective behaviour, therefore a boundary
condition is required for each incoming wave - a Riemann variable for which the characteristic
has negative slope. In other words, the number of PBC to be imposed is equal to the number
of negative eigenvalues Nλ [33].

It is worthwhile to define here the local Mach number [33]:

M =
|vn|
c

(7.34)

The number of the negative eigenvalues Nλ depend on the sign of vn and the magnitude of M .
Five most common types of boundaries with the corresponding values of vn and M and the
required number of PBC in 2D are presented in the table below [33].

Type of boundary vn M Nλ

Supersonic inlet < 0 > 1 4

Supersonic outlet > 0 > 1 0

Subsonic inlet < 0 < 1 3

Subsonic outlet > 0 < 1 1

Solid wall 0 0 1

7.3.2 Implementation of boundary conditions

Whenever 0 < Nλ < 4 the physical boundary conditions are not providing enough information
to directly impose the boundary conditions (Dirichlet boundary values or Neumann fluxes). In
such a case there is a need for numerical boundary conditions (NBC). The missing information
is obtained by the procedure presented below. The Dirichlet boundary value G(U,U∞) as
well as the Neumann normal fluxes Fn(U,U∞) are defined as the solution to the boundary
Riemann problem associated with the internal state U and the external state U∞. The
internal state U is defined as the numerical solution to the Euler equations while the external
state U∞ has to be computed based on the internal state and the physical boundary condition
prescribed on this boundary. It can be obtained using the following procedure [33, 59, 62]:

1. Compute the Riemann invariants W corresponding to the numerical solution U

2. Overwrite the incoming Riemann invariants in W by prescribed PBC values to obtain
W∞
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3. Convert the modified Riemann invariants W∞ back to conservative variables to obtain
the external state U∞

In this thesis we only consider Neumann boundary conditions. Although there exists an
exact Riemann solver proposed by Toro [60], we use the approximate solver by Roe [63]
(to avoid excessive computational costs) to solve the Riemann problem for the Neumann
normal fluxes Fn(U,U∞). The idea behind Roe’s approximate Riemann solver is to find a
Roe matrix A(U1, U2) constant between the states U1 and U2 and approximate with it the
Jacobian matrix A(U) depending on the intermediate states. The Roe matrix A(U1, U2) has
to fulfil the following conditions [60]:

1. F(U1)− F(U2) = A(U1, U2)(U1 − U2)

2. A(U1, U2)→ A(U) as U1 → U and U2 → U

3. A(U1, U2) has only real eigenvalues and a complete system of eigenvectors

Using this approximation we can solve a fully linear problem instead of the quasi-linear one.
In this thesis we will compute the Roe matrix by evaluation of the Jacobian matrix A(U) for
the density averaged Roe mean values defined later in this section. For the problem at hand
Roe’s approximate Riemann solver yields [33]:

Fn(U,U∞) = n · F(U) + F(U∞)

2
− 1

2
|n ·A(U,U∞)|(U∞ − U) (7.35)

with A(U,U∞) being the Roe matrix. According to [61] the following factorization is possible:

|n ·A(U,U∞)| = ‖n‖Rn|Λn|Ln (7.36)

where the columns of matrix Rn are given by the set of right eigenvectors [61]:

Rn =


1 1 1 0

v1 − cn1 v1 v1 + cn1 n2

v2 − cn2 v2 v2 + cn2 −n1

H − cvn q H + cvn v1n2 − v2n1

 =
[
r1 r2 r3 r4

]
(7.37)

q =
|v|
2

(7.38)

and Ln is the matrix of left eigenvectors [61]:

Ln =


1
2(b1 + vn

c ) 1
2(−b2v1 − n1

c ) 1
2(−b2v2 − n2

c ) 1
2b2

1− b1 b2v1 b2v2 −b2
1
2(b1 − vn

c ) 1
2(−b2v1 + n1

c ) 1
2(−b2v2 + n2

c ) 1
2b2

v2−vnn2
n1

n2
n2
2−1
n1

0

 =


l1
l2
l3
l4

 (7.39)

b1 = b2q, b2 =
γ − 1

c2
(7.40)

Λn is the diagonal matrix of eigenvalues [61]:

Λn = diag{vn − c, vn, vn + c, vn} (7.41)
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All three matrices are evaluated for the density averaged Roe mean values [61]:

ρ̃ij =
√
ρiρj (7.42)

ṽij =

√
ρivi +

√
ρjvj

√
ρi +

√
ρj

(7.43)

H̃ij =

√
ρiHi +

√
ρjHj

√
ρi +

√
ρj

(7.44)

c̃ij =

√√√√(γ − 1)

(
H̃ij −

|ṽ2
ij |
2

)
(7.45)

Here, index i corresponds to the value of the internal state and j to the value of the external
state. Let us have a closer look on how to obtain a suitable external state U∞ for a given
PBC. The conversion from conservative variables to Riemann invariants is done according to
definition (7.30). The inverse operation can be done using the formulas below [33, 61, 59]:

ρ =

(
c2

γw2

) 1
γ−1

(7.46)

ρv = ρ(vnn + vξτξ) (7.47)

ρE =
p

γ − 1
+
ρ

2
(v2
n + v2

ξ ) (7.48)

where τξ is the vector tangential to the boundary, and:

vn =
w4 + w1

2
, vξ = w3 (7.49)

c =
γ − 1

4
(w4 − w1), p =

ρc2

γ
(7.50)

The physical boundary conditions are usually prescribed in terms of primitive or conservative
variables (sometimes also other quantities) rather than Riemann invariants [33]. Below we
will present a practical way to implement the most common types of boundary conditions.

Supersonic inlet boundary condition

At the supersonic inlet four PBCs have to be imposed. Then obviously, all the entries of U∞
have to be prescribed. Therefore, there is no need for conversion to Riemann invariants [61].

Supersonic outlet boundary condition

At the supersonic outlet no PBCs are imposed. Therefore, the external state U∞ is equal to
the internal state U and the Roe flux reduces to [33]:

Fn(U,U∞) = n · F(U) (7.51)
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Subsonic inlet boundary condition

At the subsonic inlet three PBCs have to be imposed. It is common practice to prescribe the
density ρ∞, the pressure p∞ and the tangential velocity vξ,∞. Based on these quantities we
need to compute the Riemann invariants except for w4, which is calculated from the internal
state. The three incoming Riemann variables are calculated according to [33, 61]:

w1 = w4 −
4

γ − 1

√
γp∞
ρ∞

(7.52)

w2 =
p∞
ργ∞

(7.53)

w3 = vξ,∞ (7.54)

Subsonic outlet boundary condition

At the subsonic outlet one PBC has to be imposed. It is common practice to prescribe the
exit pressure p∞. All Riemann invariants except w1 are calculated from the internal state.
The first Riemann invariant w1 is computed according to [33, 64]:

w1 = w4 −
4

γ − 1

√
γp∞
ρ∞

(7.55)

where the external density ρ∞ is not prescribed but calculated according to the formula:

ρ∞ = ρ

(
p∞
p

) 1
γ

(7.56)

Wall boundary condition

At walls one PBC has to be imposed. Naturally, that is the no-penetration or free-slip
condition [61]:

v · n = 0 (7.57)

In this case the external state variables U∞ can be obtained without transformation to Rie-
mann invariants. The density, the tangential velocity and the total energy remain unchanged
while the normal velocity is calculated using the mirror condition [33]:

n · (v∞ + v) = 0 (7.58)

Thus the external state U∞ is given by [33]:

U∞ =

 ρ
ρv∞
ρE

 , v∞ = v − 2n(n · v) (7.59)

There exists also an alternative way to impose this boundary condition, where Neumann
fluxes are defined directly as [33]:

Fn =

 0
np
0

 (7.60)
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The advantage of this method is that there is no need to solve the Riemann problem. On the
other hand, using the Roe fluxes constitutes a more physical BCs. It is important to note
that both methods, due to weak imposition of the wall BC, do not guarantee a zero normal
velocity on the wall [33]. This issue can be solved by adding a penalty term as proposed
in [65].

The boundary integrals can be calculated using for example Gauss quadrature (in this
thesis we use 14 point Gauss quadrature for each knot span). The procedure described above
must be performed for each quadrature point.

7.4 Numerical results

In this section we analyse three standard benchmark problems for the Euler equations to
validate the IGA-based solver. The first test case is a stationary vortex problem, which is
later on placed in a convective stream. The last problem is Sod’s shock tube.

7.4.1 Stationary isentropic vortex

The first problem to be analysed is the stationary isentropic vortex problem described in [66,
67, 68]. It is defined on the infinite 2D domain with uniform state {ρ, v1, v2, p} = {1, 0, 0, 1}
to which the isentropic vortex centred at (x0, y0) = (0, 0) is added. The vortex is defined
with the use of perturbations of v1, v2 and temperature T = p

ρ while the entropy S = p
ργ is

preserved. The perturbations are given by the following formulas [68]:

δv1 = − β

2π
e(1−R2)/2(y − y0) (7.61)

δv2 =
β

2π
e(1−R2)/2(x− x0) (7.62)

δT =
(γ − 1)β2

8γπ2
e1−R2

(7.63)

with:
R =

√
(x− x0)2 + (y − y0)2 (7.64)

Here, β is the vortex strength, in this thesis β = 5. Note that the initial condition must be
converted from the primitive variables described above to the conservative variables before
solving the problem.

The problem was solved on the square computational domain [−5, 5]× [−5, 5]. The solid
wall boundary condition was imposed on all boundaries. Although most of the literature
presents this benchmark solved on larger computational domains with periodic boundary
condition it was decided to use the setting described above. It was significantly cheaper in
terms of computational cost and therefore it was possible to perform the simulation for longer
time. Such a setting is obviously more demanding in terms of stability and accuracy than
the one with larger computational domain as all oscillations will reflect from the boundaries,
overlap and easier spoil the equilibrium of the vortex.

The exact solution to this problem is presented in Fig. 7.1. For the stationary isentropic
vortex problem the exact solution is not time dependent. The presented exact solution is a
result of a standard L2 projection of the analytical exact solution to the space spanned by
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(a) Density ρ (b) Pressure p

(c) Horizontal component of velocity v1 (d) Vertical component of velocity v2

Figure 7.1: Exact solution for the stationary isentropic vortex benchmark problem.

p = 2, 66×66 B-spline basis and therefore it is the best possible solution that can be obtained
on this space in the sense of the L2 norm. In this thesis we consider solutions converted from
conservative variables to primitive variables. The motivation behind it is that in engineering
applications the primitive variables are of interest rather than conservative ones, as pressure,
density and velocity have explicit physical meaning.

The main objective of this benchmark is to investigate how well the vortex is preserved
after long simulation times. Castonguay et al. in [68] do similar tests for t = 358. In this thesis
we are limited by the efficiency of the code and available computational power. Therefore,
we preform the test for t = 30.

Fig. 7.2 presents the comparison of the exact solution and the numerical solution at t = 30.
The numerical solution was computed on the space spanned by p = 2, 66× 66 B-spline basis
functions. The time discretization was done with the SSP-eRK-3 scheme with time step
∆t = 0.01. The conclusion from this figure is that the vortex is perfectly preserved over time.
The IGA-based solver for the compressible Euler equations passed the first test flawlessly.
Let us now proceed to more complex modification of this benchmark - the convection of an
isentropic vortex.
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(a) Density ρ along the cut-line y = 0.5 (b) Pressure p along the cut-line y = 0.5

(c) Horizontal component of velocity v1 along the
cut-line x = 0.5

(d) Vertical component of velocity v2 along the cut-
line y = 0.5

Figure 7.2: Exact and numerical solutions to the stationary isentropic vortex benchmark
problem at t = 30. Numerical solution obtained on p = 2, 66 × 66 B-spline basis with
SSP-eRK-3 time discretization with time step ∆t = 0.01.
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7.4.2 Convection of an isentropic vortex

The second problem is a convection of an isentropic vortex. A similar benchmark problem
was presented in [66, 67, 68]. The isentropic vortex is defined as in the previous section by
(7.61) - (7.64). Now, the vortex is placed in the uniform flow {ρ, v1, v2, p} = {1, 5, 0, 1}.
We expect the horizontal convection of the preserved vortex in the infinite domain. The
computational domain is again a [−5, 5] × [−5, 5] box. The solid wall boundary condition
is prescribed on the north boundary ΓN and the south boundary ΓS , while on the west
boundary ΓW and the east boundary ΓE periodic boundary conditions are imposed.

Periodic boundary conditions were not discussed in Section 7.3.2 devoted to the implemen-
tation of boundary conditions for the Euler equations. The implementation of this boundary
condition for this problem was done by imposing the supersonic outlet (the flow is supersonic
even at the part of the vortex with the backward flow) at the east boundary ΓE . On the west
boundary ΓW the supersonic inlet boundary condition was imposed with the external state
being equal to the corresponding (the same value of y coordinate) internal state at ΓE .

At t = 4 the vortex is back at the starting position after two cycles of convection along the
whole domain. Therefore, the exact solution to this problem at t = 4 is similar to the one of
the static case presented in Fig. 7.1. The only difference is that the values of the horizontal
velocity field are now increased uniformly by 5.0 due to the fact that the vortex is now in the
convective stream.

The comparison of the exact and numerical solutions at t = 4 looks exactly as the one for
the stationary isentropic vortex presented in Fig. 7.2 and therefore was not presented here
separately. The numerical solution was computed on the space spanned by p = 2, 66 × 66
B-spline basis functions. The time discretization was done with SSP-eRK-3 scheme with time
step ∆t = 0.005. The conclusion from this problem is that the vortex was perfectly preserved
during the convective movement.

Fig. 7.3 presents the L2 errors of numerical solution for density ρ at t = 4 to the convection
of isentropic vortex benchmark problem solved on the space spanned uniform p = 1, 2, 3 B-
spline basis versus the number of DOFs in one direction. The time discretization was done
with SSP-eRK of order 3 and the time step ∆t = 0.005. Although a general practice is
to keep the ratio h/∆t constant rather than to perform the whole convergence analysis for
the same time step size, in this case it was performed for the constant value of ∆t which
was chosen to lie on the plateau of the convergence curve of the time discretization method
even for the finest spatial grid. Therefore, it was assured that any further refinement of the
temporal discretization would not influence the result significantly. For all the orders the same
order of convergence of 2 was achieved. This surprising, unwanted behaviour needs further
investigation to reveal the cause of this limitation. There are several clues what could be the
reason. First of them is that the convergence is limited by the implementation of the periodic
boundary conditions (with the standard approach the continuity is decreased to C0 at the
boundary). This trace was rejected by analysis of different configurations of the domain, not
involving periodicity of BCs and shorter simulation. This change did not improve the results.
Other traces which were not investigated in the scope of this thesis are that the limitation
can be caused by Fletcher’s group formulation, the way of computing the Neumann fluxes,
the weak imposition of Neumann boundary conditions or the time discretization procedure.
Finding a cure for the limitation of orders of convergence for higher order basis functions is
an important step on the way to an effective IGA solver for compressible flow problems.
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Figure 7.3: L2 errors of the numerical solution for density ρ at t = 4 to the convection of
isentropic vortex benchmark problem solved on uniform p = 1, 2, 3 B-spline basis with SSP-
eRK-3 time discretization method with time step ∆t = 0.005 versus the number of DOFs in
one direction.

7.4.3 Sod’s Shock tube

The third problem analysed is Sod’s shock tube problem introduced in [69]. Although in this
position it is considered as 1D problem, we will solve its 2D version. The considered domain
Ω = [0, 1]× [0, 1] consists of two parts on which separate initial conditions are prescribed [33]:

{ρL, v1,L, v2,L, pL} = {1, 0, 0, 1} on ΩL = [0, 0.5]× [0, 1] (7.65)

{ρR, v1,R, v2,R, pR} = {0.125, 0, 0, 0.1} on ΩR = [0.5, 1]× [0, 1] (7.66)

Solid wall boundary conditions are prescribed at all boundaries of the domain.
This benchmark problem has a concrete physical meaning. The domain is a container

with gas at rest, divided into two parts by a thin membrane. When the membrane is in-
stantaneously removed at t = 0 the gas starts to flow from the high-pressure left part of the
container to the low-pressure right part of the container. The resulting flow is represented
by three waves travelling at different speeds [33]. The shock discontinuity, at which all
primitive variables are discontinuous is travelling to the right into the region of unperturbed
low-pressure gas. The contact discontinuity, at which only the density is discontinuous
and velocity and pressure are constant, is following the shock discontinuity. The rarefaction
wave is travelling to the left into the region of unperturbed high-pressure gas. At rarefaction
wave, the transition of all primitive variables is smooth [33]. The initial condition was pro-
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jected to the considered B-spline space using the constrained L2 projection to avoid under-
and over-shoots in the vicinity of the discontinuity.

Fig. 7.4 presents the exact and the numerical solutions to this problem at t = 0.231.
The exact solution was obtained on a grid of 130 points with the exact Riemann solver
E1RPEX from the package NUMERICA [70]. The numerical solution was calculated on the
space spanned by p = 1 129× 129 B-spline basis. The time discretization was done with the
SSP-eRK-3 scheme with time step ∆t = 0.0005. Although the used basis is of a very low
order and both spatial and temporal discretizations are very fine, the solution is unacceptably
oscillatory. Although the largest oscillations are caused by the shock discontinuity, there are
also smaller oscillations following the contact discontinuity. In most of the examples in this
thesis we use a basis of order p = 2 to distinguish IGA from the standard FEM and prove the
correctness of approximations obtained with higher order basis functions. However, for this
problem in case of higher order basis functions the oscillations were growing in magnitude so
rapidly that the results were out of range of machine representation after a few time steps.
This happened due to the rule of thumb that the lower the order of the basis the easier it is
to represent the discontinuities without creating large over- and under-shoots.

From this benchmark problem we can draw the conclusion that there is a necessity of
applying stabilization methods to extend the range of problems that can be solved with the
IGA-based Euler solver. As in the case of the time-dependent convection-diffusion equation
we use the AFC stabilization with FCT-type limiter. The next section is devoted to the
generalisation of this method towards systems of conservation laws.

7.5 Algebraic Flux Correction for the systems of conservation
laws

For the Euler equations we use the Algebraic Flux Correction stabilization method with FCT-
type limiter. This method was described Section 6.3. Here, we present its generalization
towards systems of equations. The full, detailed description of this method is presented
in [33].

7.5.1 Derivation of the low-order method

The general idea behind the derivation of the low-order method is similar to the scalar case:
perform algebraic operations on discrete operators to avoid entries that are causing the growth
of instabilities (see Section 6.3.2). Similarly, as in the scalar case we perform row-sum mass
lumping which is now defined as [33]:

ML = diag{miI}, mi =
∑
j

mij (7.67)

where I denotes the identity matrix of dimension of MC . We also add the artificial diffusion
to the discrete Jacobian operator K = {Kij}. In the case of systems of conservation laws
each entry Kij is a block of size (n+ 2)× (n+ 2). Therefore the artificial diffusion operator
D = {Dij} consists of blocks of the same size. The operator L = {Lij} = K + D can be
obtained, similarly as in scalar case by edge-by-edge operations [33]:

Lii = Kii −Dij (7.68)
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(a) Density ρ along the cut-line y = 0.5 (b) Velocity v1 along the cut-line y = 0.5

(c) Pressure p along the cut-line y = 0.5

Figure 7.4: Exact and numerical solutions to Sod’s shock tube benchmark problem at t =
0.231. Numerical solution obtained on p = 1, 129× 129 B-spline basis with SSP-eRK-3 time
discretization with time step ∆t = 0.0005.
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Lij = Kij +Dij (7.69)

Lji = Kji +Dij (7.70)

Ljj = Kjj −Dij (7.71)

Apparently, according to [33, 13] it is not necessary for assuring the LED property generalised
for systems of conservation laws (LED with respect to local characteristic variables) that all
off-diagonal entries of L are non-negative (like in the scalar case). It is enough that the off-
diagonal blocks are positive semi-definite. There are several ways to compute the Dij , they
are presented and derived in [33]. In this thesis we use scalar dissipation proportional to the
largest eigenvalue which is defined as [33, 71]:

Dij = dijI, dij = |eij |max
i
|λi| (7.72)

where the spectral radius of the Roe matrix can be calculated from the formula [33]:

max
i
|λi| = |eij |(|ṽij |+ c̃ij) (7.73)

Here, eij is a virtual edge connecting the DOFs i and j defined as [33]:

eij =
cji − cij

2
(7.74)

ṽij is a component along the edge eij of the Roe density averaged velocity ṽij computed
according to (7.43) and [33]:

ṽij =
eij · ṽij
|eij |

(7.75)

and c̃ij is a Roe density averaged speed of sound computed according to (7.45).
Application of these operations on the discrete operators yields the low-order approxima-

tion to the problem (7.18) as [33]:

ML
dU

dt
= LU + S(U) (7.76)

7.5.2 FCT-type limiter for systems of conservation laws

By the definition of the low-order and high-order semi-discrete schemes and from the definition
of ML and L, the raw anti-diffusive fluxes are given by [33]:

Fi =
∑
j 6=i

Fij , Fij = mijI(
dUi
dt
− dUj

dt
) +Dij(Ui − Uj) (7.77)

Similarly to the scalar case, we look for the appropriate limiting coefficients αij to constrain
the fluxes Fij , namely [33]:

F̄i =
∑
j 6=i

F̄ij , F̄ij = αijFij (7.78)
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The limiting coefficients must be chosen in the way that preserves the generalised LED prop-
erty in the final scheme [33]:

ML
dU

dt
= LU + S(U) + F̄ (U) (7.79)

with F̄ (U) being a vector of non-linear anti-diffusive corrections with entries F̄i. In this
thesis we use AFC with linearised FCT as shown in Section 6.3.3. Therefore, the final scheme
reads [12]:

MLU
n+1 = MLU

L + ∆tF̄ (UL, Un) (7.80)

where Un denotes the solution at time tn and UL is the end-of-step low-order solution obtained
with any time discretization scheme (eg. Forward Euler, SSP-eRK methods described in
Section 6.1.2). The linearised raw anti-diffusive fluxes to be limited are computed according
to the formula [33, 12]:

Fi =
∑
j 6=i

Fij , Fij = mijI(U̇Li − U̇Lj ) +Dn+1
ij (ULi − ULj ) (7.81)

In the case of the time-dependent convection-diffusion equation we assumed that the matrix
K and therefore entries dij are constant in time. In the case of the Euler equations the Dn+1

ij

is time dependent and therefore we have to look for some explicit approximation to this term
if we want to avoid implicitness and therefore non-linearity of the scheme. A worthwhile
approximation is to compute the discrete Jacobian operator Kn+1 and the artificial diffusion
operator Dn+1 using the low-order solution UL. We restrict ourselves to this approach.
However, investigation of another approximation for this term is an interesting open research
topic. The approximation of the time derivative dUL

dt follows schemes (6.49)-(6.51). The
method of choice is again (6.49).

There are several limiting techniques for systems of conservation laws proposed by Kuzmin
et al. in [33]. In this thesis limiting in terms of primitive variables was used. It
has the significant advantage that the primitive variables have an explicit physical meaning.
Another advantage is that we separately compute the limiting coefficients for all scalar fluxes
corresponding to primitive variables chosen for limiting and then combine them into the final
limiting coefficient instead of considering the entire system at once. As the computation of
limiting coefficients is done on the decoupled scalar level we are able to adopt Zalesak’s fully
multidimensional FCT algorithm introduced in the previous chapter. The scalar fluxes for the
conservative variables fρij , f

ρv1
ij , fρv2ij and fρEij are computed according to the formula (6.48)

using respective entries of matrices.
In this thesis we restrict ourselves to limiting in terms of density ρ and pressure p as in

most cases such an approach guarantees non-oscillatory solutions. As ρ is both a primitive
and conservative variable the calculation of the corresponding flux fρij is straightforward. For
the pressure we use the following formulas [33]:

pi = (γ − 1)

[
(ρE)i −

|(ρv)i|2

2ρi

]
(7.82)

fpij = (γ − 1)

[
fρEij +

|vi|2

2
fρij − vi · fρvij

]
(7.83)
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It is important to note that the flux fpij is not symmetric, i.e. fpij 6= fpji. Therefore we need to
slightly modify the limiting technique proposed in Section 6.3.2. Limiters based on each of
the primitive variables chosen for limiting are calculated separately. Let us denote with uLi a
low-order solution to one of the chosen primitive variables ρ or p and with fuij the raw anti-
diffusive fluxes corresponding to this variable. Then the limiting coefficients αuij are calculated
with the algorithm presented in [33, 72] generalized for non-nodal DOFs:

1. Evaluate the sums of positive and negative anti-diffusive fluxes into i-th DOF:

P+
i =

∑
j 6=i

max{0, fuij}, P−i =
∑
j 6=i

min{0, fuij} (7.84)

2. Compute the distance to a local maximum and minimum at the bounds:

Q+
i =

mi

∆t
(umax
i − uLi ), Q−i =

mi

∆t
(umin
i − uLi ) (7.85)

3. Determine the nodal correction factors for the net increment at i-th DOF:

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
(7.86)

4. Control the sign of the raw anti-diffusive flux:

αuij = min{Rij , Rji}, Rij =

{
R+
i , if fuij ≥ 0

R−i , if fuij < 0
(7.87)

The final coefficient αij can be calculated by one of the strategies presented in [33, 73]. The
method used in this thesis is to choose the minimum value of coefficients computed for the
chosen primitive variables, i.e. [33]:

αij = min{αρij , α
p
ij} (7.88)

Now, we have all necessary ingredients to implement AFC with FCT-type flux limiter for
systems of conservation laws and apply it to the Euler equations. The analysis of numerical
results obtained with IGA with this stabilization method are presented in the next section.

7.6 Numerical results - Sod’s shock tube

Fig. 7.5 presents the exact solution and numerical solution, obtained with IGA along with
AFC stabilization, to Sod’s shock tube problem (also at t = 0.231). The numerical solution
was calculated on the space spanned by p = 2, 66×66 B-spline basis. The time discretization
was done with the SSP-eRK scheme of order 3 with time step ∆t = 0.001. One can notice
that although coarser time and spatial discretizations were used, the result is of much better
quality. It is free of oscillations but unfortunately the discontinuities are smeared. Especially
large smearing occurs for the contact discontinuity. As in the case of the time-dependent
convection-diffusion equation the result could be significantly improved by using a better
approximation for the time derivative used for evaluation of anti-diffusive fluxes or by using
non-linear FCT instead of linearised one.
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(a) Density ρ along the cut-line y = 0.5 (b) Velocity v1 along the cut-line y = 0.5

(c) Pressure p along the cut-line y = 0.5

Figure 7.5: Exact and numerical solutions to the Sod’s shock tube benchmark problem at
t = 0.231. Numerical solution obtained on p = 2, 66×66 B-spline basis with SSP-eRK-3 time
discretization with time step ∆t = 0.001.
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Figure 7.6: L2 errors of the numerical solution for density ρ at t = 0.231 to the Sod’s shock
tube benchmark problem solved on uniform p = 1, 2, 3 B-spline basis with SSP-eRK-3 time
discretization scheme with time step ∆t = 0.001 versus the number of DOFs in one direction.

Fig. 7.6 presents the L2 errors of numerical solution for the density ρ at t = 0.231 to
Sod’s shock tube problem solved on the space spanned uniform p = 1, 2, 3 B-spline basis
versus the number of DOFs in one direction. The temporal discretization was done with the
SSP-eRK-3 time discretization scheme and the time step size ∆t = 0.001. As in the case
of the convergence analysis of the problem of convection of an isentropic vortex, the time
step was not refined during the analysis but it was chosen such as to assure that any further
refinement of the temporal discretization would not influence the result significantly. The
orders of convergence for all orders of basis functions are limited by 0.5. This was caused by
the discontinuity in the domain. One can notice from the Chapter 4 that the projection of an
analytical initial condition to the considered B-spline space limits the orders of convergence
and therefore the scheme can not achieve higher orders of convergence than those achieved
by projecting the initial data. Therefore, we can conclude that there is a need for a method
that will workaround this limitation. There are several ideas how that could be achieved.
Local refinement would significantly improve the robustness of the method for the problems
including the discontinuities. Another promising approach is to modify the multiplicities of
knot values to achieve locally adjusted continuity properties which are required in the given
region. Further investigation and development of those ideas is an interesting open research
topic being beyond the scope of this thesis.

It was shown in this chapter that isogeometric analysis is a suitable tool for solving the
compressible Euler equations. Similarly to the standard FEM the method performs well
for problems not involving discontinuities and shock waves but problems that contain them
require some type of stabilization. The method of choice in the thesis is Algebraic Flux
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Correction. IGA applied together with AFC with FCT-type limiting generalised for systems
of conservation laws gave results free of non-physical oscillations but overly diffusive. This
issue could, however, be fixed by additional developments proposed in the previous chapters.
The orders of convergence of the method are significantly limited by the discontinuity in the
domain. Elaborating the way to avoid this limitation is of utmost importance. Another
important research question that needs to be answered is the surprising limitation of the
orders of convergence of the IGA-based solver applied to smooth problems to p+ 1.
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Chapter 8

Conclusions

Isogeometric analysis is a very powerful tool for the analysis of PDE problems. It is a very
promising approach for optimization processes in the turbomachinery design. It has two
important advantages over classical FEA. Firstly, it gives the possibility to exactly represent
the geometry. This is very important for gas turbines as most of the flow problems require an
accurate resolution of flow phenomena close to the walls. Secondly, it creates a bidirectional
link between CAD and analysis. There is no need for computationally expensive re-meshing
in each optimization cycle since geometry modifications can be realised by shifting the control
points and modifying the geometrical mapping.

The first part of the project work, carried out during the literature study period, included
writing Matlab codes for building and evaluation of B-spline basis functions as well as solving
the Poisson problem on arbitrary 2D geometries. This Matlab code, written for the needs
of the literature study, turned out to be not efficient enough for more complex applications.
Thus, it was decided to use the C++ library G+SMO.

Before solving more complex problems we had to consider the projection of the analytical
data to the space spanned by B-splines. This could not be achieved by nodal assignment of
function values due to the fact that degrees of freedom in IGA are not nodal. Therefore, we
considered the L2 projection. It was very efficient for smooth functions but discontinuities
were causing non-physical under- and over-shoots. The constrained L2 projection was a
perfect cure for this issue. Unfortunately, the price to be paid was a less accurate, in sense of
L2 norm, approximation compared to standard L2 projection.

The next step was to implement a solver for the stationary convection-diffusion equation.
This solver was working perfectly for diffusion-dominated problems achieving p + 1 order of
convergence. However, convection-dominated problems could not be solved by pure IGA and
required proper stabilization. The idea of using AFC stabilization with TVD-type limiting
instead of SUPG turned out to be very good. AFC achieved higher orders of convergence
than SUPG and produced solutions that were free of non-physical values in the domain.

A generalization to time-dependent problems required the selection of a suitable time
discretization scheme. We considered the forward Euler method and explicit strong stability
preserving Runge-Kutta methods of orders 2 and 3, respectively. For smooth initial condi-
tions the solver was capable of achieving non-oscillatory solutions even in the limit of purely
convective problems. A convergence analysis of the different time discretization schemes was
performed. As expected, the higher the order of the time discretization method the faster
the reduction of the L2 error. For non-smooth initial conditions the unstabilized Galerkin
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method was not able to produce non-oscillatory solution even for very fine spatial and tempo-
ral discretizations. Therefore, the AFC approach with linearised FCT-type limiter was used
for stabilization. The results obtained with this approach were free of non-physical oscilla-
tions but overly diffusive. This unwanted feature was caused by the approximation of the
time derivative during the computation of anti-diffusive fluxes in the linearised FCT scheme.
Therefore, there is a need for better approximations of the time derivative or implementing
the more accurate non-linear FCT-type limiters. It was also shown that all considered time
discretization schemes converge at the same speed when the AFC stabilization is enabled,
and therefore, there is no gain in using time-stepping schemes of higher order for the types of
problems considered in this thesis. This surprising observation is very promising as decreas-
ing the computational costs of the time discretization would be a good balance for the higher
costs of the IGA/AFC approach (comparing to standard finite volumes).

As the final step, the IGA solver for the compressible Euler equations was successfully
implemented and validated for the isentropic vortex benchmark problem. Unfortunately, the
order of convergence was limited to 2 for all orders of basis functions. This surprising and
unwanted behaviour requires further investigation. Another conclusion from this problem is
that the solver is not optimized enough to handle more complex test cases. AFC stabilization
with linearised FCT-type limiting generalized for systems of conservation laws allowed to solve
problems involving shock waves. Sod’s shock tube benchmark problem was successfully solved
using this stabilization method. As in the case of the time-dependent convection-diffusion
equation the results can be significantly improved by using better approximations of the time
derivative in the evaluation of anti-diffusive fluxes or by using non-linear FCT-type limiting
instead of the linearised one.

This thesis project resulted in an interesting side conclusion. It is possible to extend
the algebraic flux correction methodology to higher order basis functions. Similar work was
already done before by Kuzmin in [16] where quadratic Lagrange FEM basis functions were
used. The paper concluded with the statement: ”the involved programming effort and the
overhead cost are quite significant, whereas the improvements are often marginal, if any”.
From the point of view of application along with AFC, IGA is superior to quadratic FEM as
the method works perfectly for higher order basis functions without any additional implemen-
tation effort due to the positivity of the basis functions over their entire support. Therefore,
we can conclude that B-splines (and possibly NURBS) are a viable tool for extending the
AFC framework to higher order functions.

We can draw the final conclusion that the goals of the thesis were successfully achieved
but more research required to apply IGA for real industrial aerodynamic flow problems. The
compressible Euler equations provide a good approximation of flow phenomena of viscous
fluids only inside the domain, at a distance from the walls. In turbines, with their very
narrow channels, viscosity plays a crucial role. Therefore, the full Navier-Stokes equations
need to be solved to obtain solutions of good quality. The next section contains a summary
of further developments that are required to apply IGA to real, industrial turbomachinery
problems as well as side research questions that raised up during this project work and are
worth further investigation.
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8.1 Future developments

The final result of this thesis is a functional IGA solver for the compressible Euler equations.
The main development necessary for industrial application is its generalization to the full
Navier-Stokes equations. Another significant limitation of the current code is efficiency. To
be able to consider more complex test cases it has to be optimized significantly. Further-
more, a generalization of the solver to multi-patch problems is required since most industrial
applications require complicated domains that can not be directly mapped from the square
domain. Considering the geometry of the domain, the solver must also be generalised to three
dimensional problems. The IGA approach to compressible flow problems presented in this
thesis should be generalized from B-splines to NURBS to be capable of, for example, solving
problems defined on circular domains.

The AFC stabilization method needs to be improved by implementing alternative approx-
imations of the time derivative in the computation of anti-diffusive fluxes since the current
one result in overly diffusive solution profiles. Implementation of non-linear FCT is also worth
considering. Application of different time-discretization schemes together with AFC should
be investigated in more detail to assure fast convergence and to prevent excessive computa-
tions. Finally, investigation of the source of limitations of orders of convergence for the IGA
Euler solver in case of the isentropic vortex benchmark is of utmost importance.

To conclude, this thesis set the base for further research in field of isogeometric methods
for compressible flow problems and raised several interesting research questions.
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[14] D. Kuzmin and M. Möller. Flux-Corrected Transport, chapter Algebraic flux correction
I. Scalar conservation laws. Springer, 2005.
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