
Delft Center for Systems and Control

Teleoperation Support System
Robust to Uncertainties in
Haptic Guidance

Nicky Mol

M
a
s
t
e
r

o
f

S
c
i
e
n
c
e

T
h
e
s
i
s





Teleoperation Support System Robust
to Uncertainties in Haptic Guidance

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft

University of Technology

Nicky Mol

February 15, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was conducted on behalf of, and carried out in cooperation with ESA
ESTEC Telerobotics & Haptics Laboratory.

Copyright c• Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of

Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled

Teleoperation Support System Robust to Uncertainties in Haptic
Guidance

by

Nicky Mol
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: February 15, 2016

Supervisor(s):

prof.dr.ir. R. Babuöka

Dr.Ing. A. Schiele

Ing. J. Smíöek

Reader(s):

Dr.Ing. J. Kober





Abstract

When tasks need to be performed in remote, potentially inaccessible and/or hostile environ-
ments for humans, it is often more convenient to send a robot. Such environments are often
only partially known, and therefore not suitable for fully autonomous robots to operate in. In
these situations teleoperation can be used, which combines the problem solving capabilities
of the human with the precision and durability of the robot. Robots are extremely good at
performing accurate precision motions, whilst humans are best at making complex planning
and decisions.

Having even partial knowledge of the environment allows the provision of guidance to the
operator via haptic forces. For example, this haptic guidance can assist an operator with ac-
curate alignment of a connector for a complex connection mating task. It has been shown that
haptic guidance, which is based on models of the environment, can improve task performance.
However, the majority of these studies have been conducted assuming that the intended goal
of the operator is known to the support system a priori and that the environment is perfectly
known. In the context of space robotics, there are often multiple tasks available in the envi-
ronment and the task the operator intends to execute is not known a priori. Without a goal,
the support system is not able to provide the operator with haptic guidance. Moreover, due
to the unstructured nature of the environment, uncertainties can result in a mismatch of the
models with respect to the environment. This results in an error in the haptic guidance that
is provided to the operator. The goal of this thesis is twofold:

Firstly, when multiple possible goals are accessible in the environment, assistance can only
be provided when the intended goal of the operator is known to the support system. Since
the intention of the operator is not a physical signal that can be interpreted by the support
system, it can not be communicated with the support system without performing additional
actions. The operator is for example able to specify the intended goal to the support system
by using a GUI or through speech. However, by utilising the control inputs of the operator
to predict the intended goal, these additional actions can be skipped, which results in a more
natural, seamless and faster teleoperation system. In this thesis, several prediction methods
are validated and compared in simulation and by using real teleoperation data.

Secondly, depending on the magnitude of uncertainty the task performance can be reduced.
In order to robustify the task performance of precise manipulation tasks in the presence of
uncertainty, an outer admittance loop has been implemented on an impedance controlled
KUKA robot. The outer admittance control loop changes the set point of the impedance
controller based on contact forces and torques. This method is implemented and validated
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on an experimental setup by doing peg-in-hole insertion experiments. Moreover, from this
method information about the environment can be extracted in order to update the models
that are used by the support system online, resulting in improved haptic guidance provided
to the operator.

It has been concluded that memory-based prediction methods pose as a feasible method
to predict the intentions of the operator in a teleoperated reaching task. Moreover, ro-
bustness to uncertainty is not increased by making the slave more compliant. However,
pseudo-admittance control poses as a feasible method to robustify task performance against
uncertainty of the peg-in-hole task and can be used to reduce uncertainty by using estimated
information of the environment.

For future research, both methods should be validated in a human-in-the-loop study, on a
teleoperation system where the operator is provided with haptic guidance, so the e�ects on
the prediction method and of the force feedback can be studied.

Nicky Mol Master of Science Thesis



iii

In theory, theory and practice are the same. In practice,
they are not.

– Albert Einstein
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Chapter 1

Introduction

1-1 Motivation

There are many situations where it is more convenient to send a robot instead of a human to
perform a manipulation task. Examples are situations where such tasks need to be performed
in remote, potentially inaccessible and/or hostile environments for humans. Environments
like this are often only partially known and unstructured, and therefore not suitable for fully
autonomous robots to operate in. In these situations teleoperation can be used, which allows
combining the skill sets of the robot and human that is operating it. In this way the planning
and decision capabilities of the human operator can be exploited by the remotely located
robot, while the human remains located in a safe, accessible environment.

Figure 1-1: The Interact Centaur robot [1]. Left: mock-up. Right: real rover.

To explore the limits of state-of-the-art teleoperation systems, in September 2015 the European
Space Agency (ESA) performed a new space technology demonstration experiment, called IN-
TERACT [1]. This experiment has been performed from on-board the International Space
Station (ISS), involving the Interact Centaur robot, which can be seen in Figure 1-1. From
the ISS Danish astronaut Andreas Mogensen remote-controlled the Interact Centaur robot,
which was located on Earth, by means of teleoperation. The Interact robot consists of an
AMBOT mobile platform, two 7-DOF KUKA lightweight robotic arms [8] with Robotiq par-
allel grippers and a stereo camera mounted on a SCHUNK light weight robotic arm. The
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2 Introduction

manipulators are equipped with force-torque sensors on each joint and additional ones on
their wrists. The operator, on board the ISS, used a force reflective haptic master device
and a tablet computer in order to carry out the control tasks. The control tasks involve:
moving the platform on rough outdoor terrain from an initial position to a location where
a task-board is situated, alignment of the platform with the task-board and performing a
predefined constrained peg-in-hole insertion task which can be found on the task-board, as
illustrated in Figures 1-2 and 1-3. During the experiment the alignment of the peg with the
predefined hole was done with help of a motion capture system. Due to uncertainties, small
misalignments caused the peg to get jammed in the hole.
This Master’s thesis will focus on two parts. The first part will be on estimation of the intended
task in an environment where multiple tasks are accessible, so the operator can be assisted
with guidance towards that task. The second part will be on robustifying the performance of
the peg-in-hole insertion task in the presence of uncertainty and on reducing the uncertainty.
The motion control and alignment of the platform are not part of this Master’s thesis.

Figure 1-2: Task-board containing a
variety of tasks and a 7-DOF KUKA
lightweight robotic manipulator.

Figure 1-3: Frontal view of task-
board containing a variety of tasks.

Possible application beyond INTERACT: Robotic Refuelling Mission (RRM)

In order to illustrate where the contribution of this Master’s thesis could possibly be applied
apart from INTERACT, a high level example from the space domain is given.
In Figure 1-4 a still image of the video stream from the remotely operated Special Purpose
Dexterous Manipulator (SPDM) [2] can be seen, which is mounted on the ISS. This robot
is able to perform a range of servicing tasks on the RRM module [9], which is mounted
to an external platform on the ISS. The tasks that can be performed are: cutting and
manipulation of wires, unscrewing caps, opening and closing valves, transferring fluid and
providing inspection capabilities. The goal of this experiment is to eventually repair and
refuel satellites in space, specifically satellites that are not designed to be serviced, without
the need for an astronaut to do a space-walk. Environments like this are often only partially
known and unstructured, and therefore not suitable for fully autonomous robots to operate
in.
Teleoperation has been developed for these kind of situations, where an operator remotely
operates a robot. The SPDM is remotely controlled by mission operators at NASA’s Johnson

Nicky Mol Master of Science Thesis



1-2 Background 3

Figure 1-4: Still image from a video stream taken of the remotely operated Special Purpose
Dextrous Manipulator (SPDM) [2], which is able to perform a range of servicing tasks on the
RRM module mounted on the ISS (courtesy of National Aeronautics and Space Administration
(NASA) and the Canadian Space Agency (CSA)).

Space Center, which is located in Houston. The operator is able to see what he is doing
through the video stream, but the vision is often of poor quality and part might even be
blocked by the manipulator or other objects. The visual feedback is complemented with force
feedback, so the operator can haptically ‘feel’ what he is doing in the remote environment.
By keeping the human-in-the-loop, skills like decision making and adaptability can be utilised
in order to execute precise manipulation tasks.

By providing the operator with haptic guidance, that aid him in completing his task, the task
performance can be increased. A support system provides haptic guidance by using models of
the task and environment. However, in real space scenarios like in this example, the operator
has multiple tasks he can choose to execute, so the support system does not know which task
the operator is intending to execute a priori. Moreover, due to the unstructured nature of
the environment uncertainties can result in a mismatch of the models with respect to the
environment. This results in an error in the haptic guidance that is provided to the operator,
which can degrade task performance [10].

1-2 Background

In this section, a short background will be provided to the reader on the subjects of robot
interaction control (Section 1-2-1), bilateral teleoperation (Section 1-2-2) and shared control
(Section 1-2-3).
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1-2-1 Robot interaction control

In order to perform remote robotic manipulation tasks that involve physical contact with
the environment, pure motion control is not suitable. Especially in contact with rigid en-
vironments, an error in position can cause unbounded contact forces and instability. When
in contact with such environment, the interaction forces must be accommodated for, so the
manipulator is able to comply with the environmental constraints. Over the last decades the
importance of compliance has been widely recognized, which resulted in two main approaches
for achieving compliant motion. Hybrid force/motion control [11] decomposes the space the
end-e�ector operates in, into a subspace where the end-e�ector is not able to move in due to
environmental constraints and a subspace in which the end-e�ector is free to move in. The
end-e�ector is position controlled in the unconstrained subspace and force controlled in the
constrained subspace resulting in compliant behaviour. Hybrid force/motion control ignores
the dynamic relation between the environment and the manipulator resulting in inaccurate
control of force and position and robustness problems.
To overcome this problem, impedance control was proposed [12], which maintains a desired
dynamic relation between the position of the end-e�ector and the contact force by regulating
the mechanical impedance of the manipulator. Since the magnitude of contact force depends
on the reference motion, a poor choice of the reference motion can still result in undesirable
excessive contact forces. The inability to track a contact force reference is a disadvantage of
impedance control over hybrid position/force control.
Two control methods can be distinguished, which di�er in their input and how they react
to that. Admittance can be thought of as the mobility of a physical object when it is being
pushed while impedance can be thought of as the resistance a physical object gives against
motion [13]. Admittance is the causal dual of impedance, Y (s)=Z(s)≠1. These principles are
illustrated in Figures 1-5 and 1-6. Here F (s) represents the forces and X(s) represents the
motions. Where not deemed necessary and in figures, the Laplace s was left out for clarity.

Figure 1-5: Admittance relates a
force input to a motion output. It can
be thought of as the mobility when be-
ing pushed.

Figure 1-6: Impedance relates a mo-
tion input to a force output. It can
be thought of as the resistance against
motion.

In general, admittance control provides good accuracy in soft environments or free space since
deformations of the environment are large and interaction forces are small. In sti� environ-
ments admittance control can result in instability. On the other hand, impedance control
provides good performance in sti� environments because deformations of the environment
are small and the interaction forces are large.
However, because of friction in the joints and other unmodelled dynamics, impedance control
has poor accuracy when in soft environments or free space [14]. By using an inner torque
control loop, the friction can be compensated for and better performance can be achieved in
free space [8]. Because of these characteristics, an impedance controlled robot manipulator will
be considered in this Master’s thesis for which the high level control diagram is illustrated in
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Figure 1-7. Here Xr(s) is the reference motion, Xs(s), the output of the slave robot and Fe(s)
are the forces and torques that are inflicted upon interaction with the environment Ze(s), that
can be described as an impedance. Fc(s) represents the outcome of the impedance controller.

Figure 1-7: High level impedance control architecture.

1-2-2 Bilateral teleoperation

Like illustrated in the example (Section 1-1), robots are well suited to substitute humans in
performing tasks in environments that are inaccessible or too dangerous for humans to operate
in. Often these environments are only partially known and unstructured and thus robots can
in general not be fully automated. In order to perform complex tasks in these environments,
human input is still required. This can be achieved by having the operator controlling a
remotely located slave robot by interacting with a master device which is directly accessible
by the operator. These systems are called teleoperated systems. Teleoperation extends the
human capability to perform complex tasks in a remote environment by providing the operator
with conditions that are similar to the ones in the remote environment. For this purpose, not
only visual but also haptic feedback, in which reaction forces from the remote environment
are transmitted through the master device to the operator, is needed. This is achieved by
transmitting force, position and velocity data bilaterally, both from the master to the slave
and from the slave back to the master. When a teleoperation system provides haptic feedback
to the operator it is called a bilateral teleoperation system. As illustrated in Figure 1-8, such
a system can be divided into five subsystems, the human operator, the master device, the
communication channel, the slave device and the environment [15]. Here the velocity flows
through the ports and the force is measured across the ports.

Figure 1-8: High level bilateral teleoperation interconnection of one-port and two-port network
system representation.

The system equations are conventionally expressed in terms of velocities [6] but from this
point on positions are used instead to facilitate the notion of position based goals. The
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6 Introduction

human operator commands the master device with a motion Xm(s). The motion that the
operator inflicts on the master device is transferred to the communication channel. From the
communication channel a set-point for the slave motion Xsd(s), is transferred to the slave
device and from there the actual slave motion Xs(s), is transferred to the environment. The
force that the operator inflicts on the master device is given by Fh(s). The reflected force
from the slave robot to the master device is given by F

fb

(s). The controlled motor force
provided to the slave robot is given by Fs(s) and the force resulting from contact with the
environment is given by Fe(s). In addition to the network system representation, a high level
system diagram of bilateral teleoperation can be seen in Figure 1-9.

Figure 1-9: High level bilateral teleoperation control scheme. The operator acts upon the
knowledge of some goal that is to be achieved and audio/visual information, by exerting forces
on the master device Fh(s). These forces inflict a motion of the master device Xm(s), and this
motion is transferred through the communication channel to the slave robot. The forces upon
contact with the environment Fe(s), are transferred through the communication channel to the
master device, where the operator is able to feel the feedback force.

The overall dynamics of the teleoperation system are given by the general hybrid matrix
formulation [16], with H(s) the hybrid matrix:

C
Fh(s)
Ẋm(s)

D

=
C
H

11

(s) H
12

(s)
H

21

(s) H
22

(s)

D

¸ ˚˙ ˝
H(s)

C
Ẋs(s)

≠Fe(s)

D

(1-1)

The transmitted impedance to the operator, Zt(s) can be found by rewriting the general
hybrid matrix formulation and finding the relation between Fh(s) and Ẋm(s):

Zt(s) = Fh(s)
Ẋm(s)

= (H
11

(s) ≠ H
12

(s)Ze(s))(H
21

(s) ≠ H
22

(s)Ze(s))≠1 (1-2)

Ideally the operator is not able to distinguish between the feeling of the remote environment
and the real world. For the operator to experience interaction with the remote environment
as if he is physically present, the impedance rendered to the operator by the master device,
Zt(s), has to be the same as the impedance of the remote environment, Ze(s). The system is
then called transparent and transparency is used as measure of the performance. The notion
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of transparency was defined by Lawrence [6] in the early 1990’s. Lawrence realized that in
order to achieve a transparent system, the motions and forces both at the master and slave
side must be equal over all frequencies:

Ẋm(s) = Ẋs(s)
Fh(s) = Fe(s)

J

for all s (1-3)

This can be achieved for:

H(s) =
C
0 1
1 0

D

(1-4)

Lawrence [6] as well as Yokokohji and Yoshikawa [17] have shown that for theoretical ideal
transparency, a general four-channel architecture is required. The four-channel architecture
can be seen in Figure 1-10. The hybrid matrix follows from the four-channel architecture:

H
11

(s) = (Zm + Cm) (C
1

+ C
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3
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21
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3
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)
H

22

(s) = ≠ (C
1

+ C
3

(Zm + Cm))≠1 (I ≠ C
3

C
2

) (1-5)

Figure 1-10: General four-channel architecture.

Here, Zm(s) and Zs(s) represent the dynamics of the master device and the slave robot
respectively and Fm(s) represents the combined force acting on the master device. The local
controller on the master side is given by Cm(s) and on the slave side by Cs(s). Furthermore
there are four communication channels (C

1

(s), C
2

(s), C
3

(s) and C
4

(s)) that couple control
for respectively motion forward, force backward, force forward and motion backward. The
generality of this notation lies in the fact that this structure can also be used for two-channel
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8 Introduction

architectures. Details on the position-position and the position-force architecture can be
found in Appendix A.

Although haptic feedback from this physical interaction with the environment has been shown
to improve the task performance [18], it poses limitations on stability of the closed-loop sys-
tem. Often a trade o� has to be made in terms of system performance and task performance.
However, another promising approach for improving task performance in teleoperation is
discussed in Section 1-2-3.

1-2-3 Shared control

Sheridan was among the first to discuss what role computers would be playing in teleoperation
[19, 20, 18]. Based on his work, control architectures are often categorised by the style
and coupling between the operator and the slave robot. In bilateral teleoperation, which is
discussed in Section 1-2-2, the operator is strongly coupled with the slave robot. This side
of the spectrum is called direct control and the coupling is realized by the exchange of force
and motion signals between the master device and the slave robot. Direct control requires
no level of autonomy so the motion of the slave robot is directly controlled by the operator
using the master device. The lack of autonomy and the inadequacies of the system can often
make it tedious to perform complex tasks.

On the other side of the spectrum the coupling between the operator and the slave robot
is realized by high-level directives that the operator provides to a computer which closes
an autonomous control loop through actuators and sensors on the slave side. This is called
supervisory control [19]. Environments that are partially known and unstructured are not
suited for robots with a high level of autonomy to operate in since autonomous systems are
incapable of dealing with large uncertainties [21].

In between these two extremes lies shared control. The idea of shared control is that the
operator is kept in the direct loop, but a support system continually shares control over
the system to be controlled, with the operator. The support system acts as an intelligent
autonomous system and based on models from the task and the environment it is able to
derive what the optimal input to the system to be controlled should be.

Shared control architectures

Abbink and Mulder [22] have pointed out a trend in existing shared control literature and
defined two main approaches:

1. Input-mixing shared control (Illustrated in Figure 1-11)

2. Haptic shared control (Illustrated in Figure 1-12)

In input-mixing shared control, as illustrated in Figure 1-11, the input to the system that is
to be controlled, X

input

(s), is a mix of both the desired input of the operator and the optimal
input which is calculated by the support system. It must be noted that optimal input in this
sense means the optimal input to the best knowledge of the support system, meaning that
due to uncertainty it might not be the actual optimal input. In this architecture, the operator
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Figure 1-11: A schematic representation of a input-mixing shared control scheme. The motion
from the master device Xm(s), that is inflicted by the operator now enters the support system.
The support system uses models of the task and the environment to determine an optimal input.
The optimal input will then be ‘mixed’ with the operator inflicted input, which will determine the
input X

input

(s), that is transferred through the communication channel to the slave robot.

has no influence over the actual input to the system that is to be controlled, and might not
even be aware of what the support system is trying to achieve.

In haptic shared control, as illustrated in Figure 1-12, the optimal output of the support
system is converted into guidance forces Fg(s). These guidance forces act as an additional
physical input on the master device and cause the system to perform the optimal output of
the support system [23]. In this way the operator is aware of what the support system is
trying to achieve and is able to choose whether to comply with these intentions (by becoming
more compliant) or to stay in control and overrule the actions of the support system (by
sti�ening up), since the output of the master device still is the only input to the controlled
system.

When designing a haptic shared controller, at least the following things should be considered:

1. The conversion of sensor information from the remote environment and slave robot
states into an optimal control input.

2. The conversion of these optimal control inputs into guidance forces that act on the
master device.

3. Matching the intentions of the support system with the intentions of the operator.

In order to be able to provide appropriate assistance, the intended goal of the operator and
the goal that the support system uses, should be the same. If this is not the case, the
haptic guidance provided by support system will only hinder the operator when executing
the desired task. Furthermore, when the models that the support system uses represent the
environment and task perfectly, there is no need for a human-in-the-loop and tasks can be
performed autonomously. In practical applications however, this is often not the case. Due
to the unstructured nature of the environment, uncertainties can result in a mismatch of the
models with respect to the environment. This results in an error in reference of the haptic
guidance that is provided to the operator.
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10 Introduction

Figure 1-12: A schematic representation of a haptic shared control scheme. The support system
uses models of the task and the environment to determine an optimal input. The optimal input
is converted into a guiding force Fg(s), that acts as a physical input on the master device and
thus can be felt by the operator.

1-3 Problem description

Previous studies have shown that haptic guidance improves task performance in various ap-
plications, like tele-surgery [24, 25, 26, 13, 27, 28], remote assembly [29, 30, 31, 32, 7] and
vehicle steering [33, 34]. However, the majority of these studies have been conducted under
two assumptions. The first assumption being that there is only one task to be executed and
this task has been communicated in advance to the support system, so the goals of the opera-
tor and support system are identical. In realistic scenario’s, there are often multiple possible
tasks present in the environment and the intentions of the operator are not known to the
support system a priori.

Second, it is assumed that the models that are used by the support system are perfect rep-
resentations of the environment, which therefore results in accurate haptic guidance. In
practical applications, the environments are often partially known and unstructured resulting
in a mismatch of the models with respect to the environment. This means that the support
system determines an ‘optimal’ reference which is o�set from the real goal in the environ-
ment. The guidance that is provided will therefore be inaccurate. Recent experimental work
done by van Oosterhout et al. [10] found that depending on the magnitude and direction,
uncertainty in haptic shared control can degrade task performance. However, no methods to
robustify task performance against uncertainty are presented. The problem of this thesis can
be formulated as:

Main problem:
Uncertainties can degrade the performance of haptic guidance systems

From the main problem, two categories can be distilled that both contribute to the total
uncertainty, but have di�erent sources. The uncertainty in goal reference which is considered
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1-3 Problem description 11

in the first category, contributes to the total uncertainty in the haptic guidance on a large
scale and will therefore be referred to as macroscale uncertainty. The uncertainty in
goal reference that is considered in the second category, contributes to the total uncertainty
in the haptic guidance on a smaller scale and will therefore be referred to as microscale
uncertainty.

Macroscale uncertainty

A key challenge in shared control is that the support system often does not know which task
the operator intends to achieve a priori. Since the true intention of the operator is not a
physical signal that can be interpreted by the support system, it can not be communicated
to the support system without performing some additional actions. The operator is for
example able to specify the intended task to the support system using a GUI or through
voice commands.
In the case where the goal location of the support system is not the same as the location
of intended goal, an error arises resulting in inaccurate guidance that is provided to the
operator. This relatively large uncertainty in the haptic guidance, that can be in the order of
magnitude of centimeters depending on the predicted goal location, will hinder the operator
when reaching for the intended goal location. This sub-problem can be therefore be defined
as follows:

Sub-problem 1:
Macroscale uncertainty represents a possible mismatch between the intended goal
of the operator and the predicted goal of the support system, which results in a
large error in the reference trajectory on which the haptic guidance is based.

This sub-problem is illustrated in Figure 1-13 in blue.

Microscale uncertainty

In practical teleoperation scenarios the support system does not always have perfect knowledge
of the environment. Therefore, there will always be some uncertainty present in the models of
the task and environment. These uncertainties can originate for example from elastic and/or
plastic structural deformations or errors in sensor readings or control. The uncertainties give
rise to errors in the models which result in a mismatch between the models and the real world.
Since the support system uses these models to determine the reference trajectory on which
the haptic guidance is based, the operator will be guided towards an inaccurate location in
the real world. The study conducted by van Oosterhout et al. [10] found that the e�ects on
overall task performance of a peg-in-hole assembly task, is dominated by the moment the peg
is inserted due to its potential for jamming. Especially rotational o�sets can cause the peg
to jam in the hole. This sub-problem can be therefore be defined as follows:

Sub-problem 2
Microscale uncertainty represents a possible mismatch between the models that
the support system uses and the real environment, which results in a small error
in the reference trajectory that can degrade task performance.
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Figure 1-13: Schematic two dimensional representation of a peg-in-hole task where XG1 is the
intended goal. Macroscale uncertainty due to a mismatch in intentions between the operator
and support system is depicted in blue. Microscale uncertainty due to a mismatch of the real
environment and the models the support systems uses is depicted in orange.

This sub-problem is illustrated in Figure 1-13 in orange.
While the study conducted by van Oosterhout et al. [10] has shown that task performance is
relatively robust against small uncertainty in haptic guidance, Smisek et al. [3] have identified
another sub-problem that arises in the case of inaccurate haptic guidance. This problem is
best visualised using a haptically guided peg-in-hole insertion example. Despite the inaccurate
haptic guidance, the operator is able to overrule the forces and still complete the insertion,
especially when there is a chamfer around the hole, as illustrated in Figure 1-14. The blue
line represents the real center-line of the hole X

hole

, and the red center-line represents the
reference position a�ected by translational geometric modelling errors Xg(s), that the support
system uses in order to provide haptic guidance. The green line Xs(s), represents the current
position of slave robot and the orange line Xm, represents the input from the master device.
1) Since the reference position has not yet been met, the support system provides the master
device with guidance forces: Fg(s) = Cg(s)Eg(s) with Eg(s)= Xg(s) ≠ Xs(s) being the error
between the inaccurate reference position and the current slave robot position and Cg(s)
the shared control gain. 2) The slave robot will move according to the input on the master
device until it makes contact with the environment. 3) Since the inaccurate reference Xg(s)
is not met, the master device will continue pushing the operator which shifts Xm(s) into the
environment. This will result in a force acting on the environment, which is also reflected to
the operator as F

fb

(s). 4) The increasing force feedback will reduce the e�ect of the force
from the haptic guidance on the master device until the forces are in equilibrium, since they
counteract each other. In steady state, the resulting force on the master device is zero. The
uncertainty in the guidance is masked from the operator, while at the slave side the robot
can still exert significant force Fe on the environment. This sub-problem is defined as:

Sub-problem 3:
Microscale uncertainty represents a possible mismatch between the models that
the support system uses and the real environment, which results in a small error
in the reference trajectory that masks undesired forces acting on the environment
from the operator.
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Figure 1-14: 1) Since the reference position has not yet been met, the support system provides
the master device with guidance forces Fg(s). 2) The slave robot will move according to the
input on the master device until it makes contact with the environment. 3) Since the inaccurate
reference Xg(s) is not met, the master device will continue pushing the operator which shifts
Xm(s) into the environment. This will result in a force acting on the environment, which is also
reflected to the operator as F
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(s). 4) The increasing force feedback will reduce the e�ect of the
force from the haptic guidance on the master device until the forces are in equilibrium. In steady
state, the resulting force on the master device is zero. The uncertainty in the guidance is masked
from the operator, while at the slave side the robot can still exert significant forces Fe(s) on the
environment (adapted from [3]).

1-4 Goals

There are three goals in this thesis, that aim to solve the three sub-problems that have been
defined in Section 1-3. The first goal is related to the first sub-problem:

Goal 1:
Conceive a method that reduces the macroscale uncertainty.

The goal of this method is to reduce the macroscale uncertainty until it is eliminated entirely.
The elimination of the uncertainty would mean that macroscale error in the haptic guidance,
which can be in the order of magnitude of centimeters, is also eliminated. The operator
will be guided towards the goal location with only the small microscale uncertainty in haptic
guidance present.
The second goal is related to the second sub-problem:
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Goal 2:
Conceive a control method that robustifies task performance in the presence of
microscale uncertainty.

The goal of this method is to robustify task performance by conceiving a control method that
can cope with microscale uncertainty.

The third goal is related to the third sub-problem:

Goal 3:
Conceive an online method, that is able to update the model of the environment
that the support system uses and reduces the microscale uncertainty.

The goal of this method is to reduce the microscale uncertainty more than the uncertainty that
typically arises when using a commercial video motion capture system (Vicon [35]), which
is in the order of magnitude of millimeters. By elimination of the macroscale uncertainty
and reduction of the microscale uncertainty, the models can be updated online so that the
magnitude of the incorrect guidance will be reduced and assembly tasks becomes less tedious
for the operator to execute.

By achieving these goals, the operator will receive assistance while executing a task in a
multi-task environment without having to manually communicate his intentions to the sup-
port system. Moreover, the performance of the peg-in-hole task in presence of microscale
uncertainty will be improved and any forces acting on the environment will no longer be
masked from the operator.

1-5 Approach

In order to accomplish these goals, di�erent approaches are followed which are defined in this
section.

Approach for goal 1:
In order to eliminate the macroscale uncertainty and provide the operator with
haptic guidance towards the intended goal, the support system needs to be aware
of the intended goal. Since the intention of the operator is not a physical signal
that can be interpreted by the support system, it can not be communicated with
the support system without performing some additional actions. The operator is
for example able to specify the intended goal to the support system using a GUI
or through speech. However, by utilising the control inputs of the operator to
predict the intended goal, these additional actions can be skipped, which results
in a more natural, seamless and faster teleoperation system. In this thesis, several
prediction methods are validated and compared in simulation and by using real
teleoperation data.

Approach for goal 2:
For an impedance controlled robot to still be able to insert the peg in presence
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of microscale uncertainty, it is desired to have a low desired sti�ness so the robot
complies with the environment. However, a low sti�ness results in poor position
tracking in free air. A high sti�ness results in better position tracking in free
air. However, in contact with the environment, high sti�ness results in high forces
and therefore poor compliance. In this thesis, the impedance controlled robot
is complemented with an outer admittance control loop. The outer admittance
control loop changes the set point of the impedance controller based on the contact
forces. This method is implemented and validated on an experimental setup by
doing peg-in-hole insertion experiments.

Approach for goal 3:
In order to reduce the microscale uncertainty, the models that are used by the
support system have to be updated online with new information from the envi-
ronment. The admittance control loop changes the set point of the impedance
controller by a correction term. This correction term can be extracted and used
to update the models that are used by the support system online.
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Chapter 2

Macroscale uncertainty reduction by
intention prediction

This chapter gives an overview and a performance comparison of intention prediction methods
that were identified in the literature study [36]. First, Section 2-1 provides the theoretical
background of the prediction methods. Section 2-2-1 covers the modelling and simulation
of the operator and the implementation of the intention prediction methods. In Section 2-
2-2, the experimental setup is described, on which data for the validation of the prediction
methods is obtained. The results of the simulation and observational studies are presented in
Section 2-3. Finally, the results are discussed in Section 2-4.

2-1 Approach: Intention prediction methods

In a realistic scenario, like the INTERACT task-board example that is presented in Section 1-
1, there are often multiple tasks that the operator is able to execute. It is assumed that the
model contains several tasks, expressed in Cartesian coordinates, which will be referred to as
possible goals. These goals are contained in the set of accessible goals: G œ {XG

1

, XG
2

, . . . ,
XG

i

}, with i the number of goals. One of these goals is the intended goal, XG
intended

. By
looking at current and/or past configurations of the slave robot, the probability of the operator
reaching for each of these goals can be calculated. The goal with the highest probability is
most likely the goal that the operator is reaching for. Three methods to predict the intended
goal of the operator will be treated in the following sections.

2-1-1 Amnesic intention prediction

In amnesic prediction [4], the probability that the operator is reaching for a goals is calcu-
lated for all possible goals. The probabilities are determined by only looking at the current
configuration of the slave robot, resulting in the predicted goal Xú

G(t):
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18 Macroscale uncertainty reduction by intention prediction

XGú(t) = arg max
X

G

i

œG
P (XG

i

| Xs(t)) (2-1)

P (XG
i

| Xs(t)) can be estimated by granting the highest probability to the goal location that
has the smallest distance from the current slave robot configuration Xs(t):

XGú(t) = arg min
X

G

i

œG
||Xs(t) ≠ XG

i

|| (2-2)

The goal that is closest to the slave robot is determined to be the intended goal, as illustrated
in Figure 2-1. XG

1

and XG
2

are two goal locations and Xs(t) is the current slave robot
configuration. Based on the amnesic prediction, XG

1

is the goal with the highest probability
to be the intended goal since d

1

< d
2

.

Figure 2-1: Schematic two dimensional example of amnesic prediction. Based solely on the
current slave robot configuration, it can be concluded that the distance between XG1 and the
current slave robot configuration, d1, is smaller compared to the distance between XG2 and the
current slave robot configuration, d2, and thus XG1 has the highest probability to be the intended
goal (adapted from [4]).

2-1-2 Memory-based intention prediction

While amnesic prediction has the advantage of being straightforward to implement, it lacks
the ability to predict the correct intentions of the operator in some cases. In the case that
the operator intends to go to XG

2

but has to travel past XG
1

, as illustrated in Figure 2-2,
amnesic prediction will predict the XG

1

to be the intended goal for the largest part of the
trajectory. Only from point Xp and further, amnesic prediction is able to predict the correct
goal.

In order to be able to predict the correct intentions in an earlier stage of the motion, amnesic
prediction does not su�ce. In memory-based prediction [4], besides using the current slave
robot configuration also the set of past slave robot configurations (›X

init

æX
s

(t)) is taken into
account:
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2-1 Approach: Intention prediction methods 19

Figure 2-2: When the operator intends to go to XG2 but has to travel past XG1 , amnesic
prediction will predict the XG1 to be the intended goal for the largest part of the trajectory. From
point Xp and further, amnesic prediction is able to predict the correct goal.

XGú(t) = arg max
X

G

i

œG
P (XG

i

| ›X
init

æX
s

(t)) (2-3)

In Appendix B, a derivation of memory-based prediction is presented. This derivation involves
Bayes’ theorem and Laplace’s methods in order to approximate integrals. This derivation
simplifies to the memory-based prediction method:

XGú(t) = arg max
X

G

i

œG
e≠J

X

G

i

(›
X

init

æX

s

(t)

)

e
≠J

X

G

i

(›ú
X

s

(t)æX

G

i

)

e
≠J

X

G

i

(›ú
X

init

æX

G

i

)

P (XG
i

) (2-4)

Equation (2-4) evaluates the e�ciency when the operator is going towards a goal, through the
travelled trajectory ›X

init

æX
s

and the optimal trajectory that is to be travelled ›ú
X

s

(t)æX
G

i

,
relative to the optimal trajectory towards that goal, ›ú

X
init

æX
G

i

. When the cost of the travelled
trajectory ›X

init

æX
s

(t) and the optimal trajectory that is to be travelled ›ú
X

s

(t)æX
G

i

, is much
higher compared to the cost of the optimal trajectory towards a certain goal ›ú

X
init

æX
G

i

,
the goal is most likely not the intended goal of the operator. The assumption has been
made that the slave robot configurations optimize a goal dependent cost function JX

G

i

. This
is illustrated in Figure 2-3, where ›ú

X
init

æX
G

1

(orange) and ›ú
X

init

æX
G

2

(blue) represent the
optimal trajectories from the initial position to respectively XG

1

and XG
2

and ›X
init

æX
s

(t)

represents the trajectory that the operator has already travelled. Although XG
1

is closer to
the current slave robot configuration, the travelled trajectory has been less costly towards
XG

2

, which is the predicted goal.

2-1-3 Inferred intention prediction

The usage of a cost function can be advantageous, since they can be trained on the typical
motion patterns of individual operators. However, the training of a cost function is time
consuming and therefore not always desired. Inferred intention prediction [5] is a prediction
method that eliminates the need for a cost function by looking at the accumulated piecewise
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20 Macroscale uncertainty reduction by intention prediction

Figure 2-3: Schematic two dimensional example of memory-based prediction. ›ú
X

init

æXG1
(or-

ange) and ›ú
X

init

æXG2
(blue) represent the optimal trajectories from the initial position to re-

spectively XG1 and XG2 and ›X
init

æXs(t) represents the trajectory that the operator has already
travelled. Although XG1 is closer to the current slave robot configuration, the travelled trajectory
has been less costly towards XG2 , which is the predicted goal (adapted from [4]).

orthogonal point-to-line distance between the current operator input Xs(t) and the optimal
line from the starting input of the operator to each of the goals ›ú

X
init

æX
G

i

:

XGú(t) = arg min
X

G

i

œG

Tÿ

t=0

||(Xs(t) ≠ X
init

) ◊ (Xs(t) ≠ XG
i

)||
||X

init

≠ XG
i

|| (2-5)

Equation (2-5) infers that the intended goal is chosen by looking at the deviation of the
travelled trajectory from the optimal goal trajectories. The further the deviation for a given
goal, the less likely that goal is the intended goal, as illustrated in Figure 2-4.

Figure 2-4: Schematic two dimensional example of inferred intention prediction. Although the
XG1 is closer to the current slave robot configuration, XG2 is predicted to be intended by the
operator. This is based on the deviation of the optimal trajectory for each goal and the sequence
of past slave robot configurations. The light blue area denotes the accumulated deviation of the
optimal trajectory of XG1 from the sequence of past slave robot configurations, while the light
orange area denotes the accumulated deviation of the optimal trajectory of XG2 from the sequence
of past slave robot configurations. The grey area denotes the shared accumulated deviation of the
optimal trajectories of both XG1 and XG2 from the sequence of past slave robot configurations.
The light blue covers a greater area then the light orange and is therefore less likely to be the
intended goal of the operator (adapted from [5]).
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2-2 Validation methods 21

2-2 Validation methods

In this section, two methods will be used to validate the prediction methods that were ex-
plained in the previous section. First, a simulation study is done. Second, the methods are
validated o�-line on data from a previous human-in-the-loop teleoperation study.

2-2-1 Simulation study

A simulation study was conducted as a first step in validating the intention prediction meth-
ods. The teleoperation system and the human that operates the teleoperation system are
modelled and used in simulated reaching tasks in order to get first insights.

Assumptions

The models are subject to following assumptions that have been made in order to simplify
them for implementation.

1. All controllers and teleoperator components are modelled as linear time-invariant sys-
tems.

2. The model of the environment is known beforehand. The model contains the locations
of multiple tasks that can be executed by the operator. The operator is reaching for one
out of four possible goal locations that are located on the task-board. The environment
is free of obstacles, so the slave robot can move freely without chance of any collision.

3. The initial position of the trajectory is randomly chosen in a certain vicinity above the
task-board. The operator begins operating the master device at t = 0, so the initial
velocity and acceleration are assumed to be zero. The final position is randomly chosen
from a discrete set containing these four goal locations. Since only a reaching motion
is considered here, the final velocity and acceleration of the operator are zero.

4. The operator moves between the initial and final positions in a ‘natural manner’, or
employs a minimum jerk motion strategy where the velocity profile of the motion is
bell-shaped.

Teleoperation model

The teleoperation architecture is modelled as the four channel architecture as in [6]. Since no
contact is considered is this simulation, the environment has been left out, resulting in the
architecture that is illustrated in Figure 2-5. All signals and dynamical systems are given in
Laplace domain. Where not deemed necessary and in figures, the Laplace s was left out for
clarity.

The commanded position and force gains are set to C
1

= Cs = 1000 N/m and C
3

= 1. The
position feedback gains are set to C

4

= ≠Cm = 500 N/m. The operator model (Zh(s)) is
discussed in the next section.
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22 Macroscale uncertainty reduction by intention prediction

Figure 2-5: Architecture of the modelled teleoperation system, which is based on the four channel
teleoperation architecture [6]. The environment is not considered here.

Operator model

The operator is not a part of the teleoperation system, however when the operator supplies
input to the master device it mechanically coupled with the teleoperation system and a�ects
the dynamics of the entire system. The inputs of the operator determine the configuration
of the slave robot, which is used as input for the di�erent prediction methods. For this
model it is assumed that the operator provides human-like motions as input, that employ
the minimum jerk strategy [37, 38]. The planning of a reference trajectory takes place in
the brains of the operator. The reference trajectory represents a natural motion from initial
position (x

0

, y
0

, z
0

) to end position (xf , yf , zf ) that starts at time t= 0 and end at time t =T ,
optimizes the following cost function:

C(t) = 1
2

⁄ T

0

A

(d3x(t)
dt3

)2 + (d3y(t)
dt3

)2 + (d3z(t)
dt3

)2

B

dt (2-6)

The trajectory minimizes the integral of the square of jerk magnitude. The initial position is
randomly chosen inside an area above the task-board. The end position is randomly chosen to
be one out of four possible goals, that are situated on the task-board, as illustrated in Figure 2-
9. Furthermore, it is assumed that the initial velocity and acceleration are zero, since this is
the starting point of the motion. The final velocity and acceleration are also assumed to be
zero. An exemplary minimum jerk motion is illustrated in Figure 2-6, where (a) depicts the
position trajectory, (b) the velocity trajectory and (c) the acceleration trajectory.
The minimum jerk motion results in a straight trajectory from the initial position to the final
position, however in real teleoperation tasks, it is hard for the operator to perform straight
line motion. Therefore a tremor is modelled by adding Zero Mean White Noise (ZMWN) that
gradually increases is amplitude with increasing velocity to the reference motion. The noise
is filtered to get rid of the high frequent behaviour, this results in a trajectory as illustrated
in Figure 2-7. The operator is modelled as a sti�ness Kh. The more the operator contracts
its muscles, the sti�er he becomes and the better the tracking of the reference trajectory. The
block diagram of the model of the operator is illustrated in Figure 2-8.
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Figure 2-6: Minimum jerk motion, where (a) depicts the position trajectory, (b) the velocity
trajectory and (c) the acceleration trajectory.

The resulting trajectory represents a trajectory coming from the operator, an exemplary
trajectory is illustrated in Figure 2-9. The trajectory is used as input for the master device.

Task

In simulation, the operator is tasked to perform a reaching motion from a randomly selected
starting position to one out of four possible goals. The motion is modelled as a minimum jerk
motion with ZMWN added in order to simulate human tremor on the trajectory, as presented
above. The simulation stops after the end time of the reference trajectory, T , is reached. A
total of 1000 reference trajectories have been simulated.

2-2-2 Experimental study

An experimental study was conducted as a second step in validating the intention prediction
algorithms, using data from a previous human-in-the-loop teleoperation study by Kimmer et
al. [7]. In the following sections the experimental setup that has been used will be explained
and the task of the operator will be explained.

Experimental setup

The experimental setup consists of a haptic master device, a slave robot holding a peg and
the task-board which contains the goal locations. The slave robot that is used is the KUKA
LWR 4+ robot [8], mounted with a 6-DOF ATI force/torque sensor and a Robotiq parallel
gripper. The gripper is holding a 155 mm long peg with a diameter of 14.0 mm. The slave
robot is operated in impedance mode with a programmed Cartesian sti�ness of Ks= 500
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Figure 2-7: Minimum jerk motion position trajectories, where (a) depicts the reference trajectory,
(b) the reference trajectory with added ZMWN and (c) the filtered reference trajectory that acts
as an input on the master device.

Figure 2-8: The minimum jerk reference trajectory is complemented with ZMWN. The master
device filters the high frequent behaviour before it is transmitted to the slave robot. The feedback
loop makes sure that the reference trajectory Xr(t) is followed.

N/m for translations and Ks = 20 Nm/rad for rotations. The slave robot is controlled with a
Force Dimension Sigma.7 master device. The task-board contains four holes for the peg to be
inserted in, they correspond to the goal locations. The hole axes are parallel and separated
from each other with a distance of 80 mm in both x and y directions. The operator is not
able to see what he is doing directly, but visual feedback is provided with a LG liquid-crystal
display which has a diameter of 42 inches and has fullHD resolution. The centreline of the
camera image is equal to the centre of the four holes, ensuring that the amount of visibility
in both x and y directions is equal. The setup can be seen in Figure 2-10.

Task

Eight di�erent operators are tasked with the following instruction: Using the robot manip-
ulator, insert the peg in the highlighted hole while exerting as little force as possible on the
task-board. One insertion must be done within 45 seconds. The operator controls the master
device with his right hand. Before each trial, the operator is instructed to move 20 cm away
from the task-board. Once the distance has been reached, a randomly selected hole is selected
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Figure 2-9: Example of a three dimensional minimum jerk trajectory with simulated tremor.

and communicated with the operator and the trial begins. The position furthest away from
the task board is chosen to be the initial position of that trial. The time limit is used so
the operator uses similar execution strategies throughout the experiment. The trial is ended
when the operator makes contact with the task-board, or when the slave reaches a position
threshold in z direction of ≠1 mm.

Independent variables

The independent variables are the di�erent prediction methods described in Section 2-1.
For memory based prediction, two di�erent cost functions have been used. The first one is
based on the distance between the optimal trajectory from the current slave position to the
goals and the optimal trajectory from the starting position to the goals. The use of this cost
function will be referred to as: Memory - distance.

JX
G

i

(›X
init

æX
s

(t)) =
⁄ T

0

|Ẋs(t)|dt (2-7)
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(›ú
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) = |XG
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(›ú
X

init

æX
G

i

) = |XG
i

≠ Xs(0)|

The second cost function is based on the direction and velocity of the slave with respect to
the goals. The use of this cost function will be referred to as: Memory - velocity.
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26 Macroscale uncertainty reduction by intention prediction

Figure 2-10: Experimental setup, where the operator interacts with the master device to operate
the slave robot which can be seen in the display (from [7]).

Dependent variable

The performance of the prediction is measured by the dependent variable. The dependent
variable is evaluated by looking at what percentage of the total trajectory, the correct goal
has been identified, as illustrated in Figure 2-13 in time domain. This is referred to as the
‘correctness measure’. This metric is calculated as follows:

Correctness = 100
›X

init

æX
s

(T )

⁄ T

0

„(Xú
G, XG

intended

)dt (2-9)

where:

„(Xú
G, XG

intended

) =
I

Xs(t) , if Xú
G = XG

intended

0 , if Xú
G ”= XG

intended

2-3 Results

The presented results show the percentage of the total trajectory the correct goal has been
identified for simulated reaching trajectories in Figure 2-11 and for real teleoperated trajec-
tories in Figure 2-12, in the form of box plots. The box plots show the median, which are
connect to each other using a line and the 25th and 75th percentiles, respectively q

25

and q75.
The whiskers extends up to the most extreme data point that is not an outlier. A data point
is considered an outlier if x > q

75

+ w(q
75

≠ q
25

) or if x < q
25

≠ w(q
75

≠ q
25

), where w = 1.5.
Outliers are depicted in the boxplots as circles. Additionally, triangles are plotted where the
range between the centers show the 95% confidence interval. Figure 2-13 illustrates the goal
prediction in time domain for di�erent methods.
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It can be observed when using real data, the performance of amnesic prediction increases,
while memory based methods show a slight decrease and inferred prediction shows a large
decrease in performance. Moreover, the performance of real data is more spread compared
to simulated data. For both simulated data, memory based prediction methods show best
performance and between them there is no significant di�erence. For real data, the memory
based prediction methods and the amnesic prediction show no significant di�erence. Fur-
thermore it can be noted that for all prediction methods using real data, the whiskers of the
boxplot reach up to 0%, except for amnesic prediction.
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Figure 2-11: Percentage of the entire tra-
jectory that the goal is correctly predicted
on simulated data.
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Figure 2-12: Percentage of the entire tra-
jectory that the goal is correctly predicted
on real teleoperation data.

2-4 Discussion

Memory based prediction methods show better performance compared to other methods

While amnesic prediction in most cases only predicted the intended goal at the very end,
memory based prediction methods were able to predict the intended goal in an earlier stage
of the motion. This is however not always the case, when for example the operator first goes
for the wrong goal, the cost function is gaining value for that particular goal. If the operator
at the last moment decides to go for another goal, the amnesic prediction is able to predict
this goal sooner compared to other methods.

Prediction on real teleoperation data shows di�erent performance compared to simulated
data

This is the result of assumptions that were made in the modelling phase, that turn out to
be di�erent in a real scenario. The motion of the operator does not follow the minimal jerk
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Figure 2-13: Exemplary trajectories from real data to show the goal prediction for di�erent
methods in time domain. Left in each figure: 3D plot of the trajectory, including the positions
and velocities in x, y and z directions. Right in each figure: The predicted goal for di�erent
methods over time for the trajectory that is depicted on the left. The striped line denotes the
intended goal.

reaching trajectory as suspected and illustrated in Figure 2-13. Moreover, the trajectory of
a real operator does not describe the modelled straight line with added ZMWN trajectory.
Another assumption that does not hold is that the operator does not always reaches a goal
location, but often ‘misses’ the goal at first after which a motion away from the task-board
is made in order to retry reaching the goal.

The larger spread in real data prediction can also be explained by the fact that some of the
assumptions that were made don’t hold in real teleoperation scenarios.

Less space between goals would result in worse prediction

For both real as simulated data prediction performance decreases if the space between goals
decreases. For amnesic methods this would mean that a smaller change in distance is needed
to predict the wrong goal and for memory-based and inferred methods, the costs for the
di�erent goals would show less di�erence between them so a smaller deviation is needed for
the cost of the wrong goal to take over.

Prediction on pre-generated data

In a real scenario the support system would start providing haptic guidance based on the
outcome of the prediction. The guidance, for both correct as incorrect predicted goals, should
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influence the trajectory of the slave robot. This directly influences the prediction. Depending
on how the haptic guidance is provided this could mean that if the intended goal is incorrectly
predicted, the guidance pushes the user towards this goal, fortifying the predicted intended
goal.
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Chapter 3

Robustifying task performance in
presence of microscale uncertainty

In this chapter, two of the sub-problems related to microscale uncertainty, will be addressed.
First, the problem will be explained in more detail, in Section 3-1. Secondly, outer loop
admittance control is proposed as an approach for this problem in Section 3-2. In Section 3-
2-1, the closed-loop system will be analysed by looking at theoretical stability bounds and
steady-state behaviour. This is followed by a simulation study in Section 3-2-2, where the
performance of the closed-loop system is evaluated. The method is validated by experiments,
which are treated in Section 3-3-1 followed by the results in Section 3-3-3. Finally, the results
are discussed in Section 3-4. Also for this chapter the Laplace s was left out for clarity, if not
deemed necessary and in figures.

3-1 Problem

In general, assembly tasks require the robot to be in contact with the environment. Impedance
control aims at controlling the interaction between the robot and the environment by control-
ling a desired dynamic relation between them, as highlighted in Section 1-2-1. The impedance
controlled KUKA LWR 4+ robot is illustrated in Figure 3-1.

For simplicity the interaction that the operator has with the master device is not considered
here and the position of the master device, Xm(s), is considered to be the reference trajectory.
The desired dynamic relation between the robot and the environment is often chosen to be a
linear second order system, because of the well known behaviour of such a system. This can
be represented as follows:

Cs(s) (Xm(s) ≠ Xs(s)) = Fe(s) (3-1)
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32 Robustifying task performance in presence of microscale uncertainty

Figure 3-1: High level impedance control architecture.

With Cs(s) the desired impedance:

Cs(s) = Mss2 + Bss + Ks (3-2)

Here Ms represents the desired mass, Bs the desired damping and Ks the desired sti�ness
of the robot. The forces are obtained by using a force-torque sensor, which is normally
attached to the wrist of the robot. When performing a peg-in-hole task, uncertainties can
cause a mismatch between the model of the environment and the real environment, together
with friction and other unmodelled behaviour of the manipulator, these uncertainties result
into errors in the reference that can be divided into translational and rotational o�sets, as
illustrated in Figure 3-2

Figure 3-2: Left: Example of a translational o�set in ≠x direction. Right: Example of a
rotational o�set around the y axis.

In previous research [39] mating of rigid parts has been described and successful insertion of
depends greatly on the forces and moments applied to the peg. Jamming of the peg occurs
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if the forces and moments that are being applied to the peg are not in the right proportion
resulting in the peg being stuck in the hole. If wedging occurs, the peg also appears to be
stuck in the hole. However, wedging has a geometrical cause where the friction between the
parts plays an important role.
For the robot to still be able to insert the peg in presence of uncertainty, it is desired to
have a low sti�ness of the robot so it complies with the environment to prevent jamming.
However, a low sti�ness results in poor position tracking in free air. A high sti�ness results in
better position tracking in free air. However, in contact with the environment, high sti�ness
results in high forces and therefore poor compliance which result in jamming of the part. So
in practical applications, like assembly tasks, impedance control has limited performance.

3-2 Approach: Pseudo-admittance control

If Equation (3-1) and Equation (3-2) are combined, the target impedance formula is revealed:

Ms

1
Ẍm(t) ≠ Ẍs(t)

2
+ Bs

1
Ẋm(t) ≠ Ẋs(t)

2
+ Ks (Xm(t) ≠ Xs(t)) = Fc(t) (3-3)

This shows the dynamic behaviour between the force and the target impedance. In steady
state, the output of the impedance controller, Fc(t) is given by:

lim
tæŒ

Fc(t) = Ks (Xm(t) ≠ Xs(t)) (3-4)

The environment, in contact with the manipulator, can be modelled by a linear spring-damper
model [40]:

Fe(t) = BeẊs(t) + Ke(Xs(t) ≠ Xe) (3-5)

Here Be represents the damping of the environments, Ke the sti�ness of the environment and
Xe the position of the environment which in steady state results in:

lim
tæŒ

Fe(t) = Ke(Xs(t) ≠ Xe) (3-6)

Since in steady-state limtæŒ Fc(t) = limtæŒ Fe(t), Equations (3-5) and (3-6) can be com-
bined, resulting in:

limtæŒFe(t) = KsKe

Ks + Ke
(Xm(t) ≠ Xe) (3-7)

Here K
s

K
e

K
s

+K
e

is equivalent to two springs, with di�erent sti�ness, connected in series.
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Jamming can be prevented by minimizing the force upon contact. From Equation (3-7) it
can be seen that contact forces can be influenced by either changing the target sti�ness, Ks,
or the reference trajectory, Xm(t).

In literature, two main approaches to achieve good position tracking in free air, as well as
compliant behaviour in sti� contact, can be identified:

1. Adaptive impedance control. Methods that change the impedance parameters, Ks

and Bs, based on the contact forces.

2. Force tracking impedance control. Methods that change the set-point, Xm(t), of
the impedance controller based on contact forces.

Adaptive impedance control

Adaptive impedance control is able to achieve these two conflicting objectives by changing
the impedance parameters on-line, resulting in desired dynamical behaviour for di�erent sit-
uations. Lee and Buss [41] proposed a method that follows human-like approach, where
the impedance parameters are adapted according to force tracking errors as is illustrated in
Figure 3-3. Here Fd(s) represents the desire force to be tracked.

Figure 3-3: High level adaptive impedance control architecture.

Force tracking control

In [42, 43, 44] force tracking is achieved with an impedance controlled manipulator by gener-
ating a reference motion that is based on contact forces and torques. In [45, 46] a industrial
position controlled manipulator is equipped with a six DOF controlled impedance device
that modifies the desired position trajectory to achieve force tracking. Moreover, peg-in-hole
assembly tasks have been successfully executed.
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Pseudo-admittance control

In this thesis, in addition to the impedance controller, an outer admittance control loop will
be used to change the set-point of the impedance controller. This method will be utilized in
order to minimize and correct for the microscale uncertainty and robustify the performance
of the peg-in-hole assembly task. The high level control scheme can be seen in Figure 3-4.

Figure 3-4: High level pseudo-impedance control architecture the admittance controller in the
outer loop.

Here the admittance in the outer loop is given by a first order system:

Y (s) = 1
Bys + Ky

(3-8)

Here By represents the damping coe�cient, Ky the spring constant and Fd(s) the desired
force to be tracked. The admittance takes the force error Ef (s) as input and provides a
correction term Xc(s). To prevent jamming of the peg in the hole, forces need to be minimized.
Therefore, the desired force Fd(s) is put to zero. This also implies that when the manipulator
is not in contact with the environment, the impedance controller ensures that the desired
set-point, Xm(s) is met. The spring behaviour of the admittance Ky, results in a virtual
spring that is attached to the reference trajectory Xm. If specified, it would always try to
drive back the manipulator to the reference, Xm. This behaviour is not desired and therefore
Ky is not considered. Y (s) = 1

B
y

s integrates the force error Ef (s) and modifies the reference
trajectory, by Xc(s), to the boundary of the environment so no forces are exerted on the
environment. this results in a change of the reference trajectory:

X̂e(s) = Xm(s) ≠ Xc(s) (3-9)

Here X̂e(s) is the estimated location of the environment. The change of the reference tra-
jectory is illustrated in Equation (3-5), where a peg with a translational o�set in x direction
of 6 mm, Xm = [6, 0, 0, 0, 0, 0], is commanded to go in z direction, which is parallel to the
direction of the centerline of the hole.
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An example of the transient of X̂e(s) can be seen in Figure 3-18 in the results section. X̂e(s)
can be used to update the model that is used by the haptic shared controller online in order
to improve haptic guidance that is provided to the operator.

3-2-1 Theoretical analysis

In this section, the closed loop stability bounds, as illustrated in Figure 3-4, are assessed using
the Routh-Hurwitz stability criterion [47]. Moreover, the steady state-error is evaluated to
gain insight in the closed-loop system performance.

Xc = Y Fe (3-10)
Fe = ZeXs (3-11)
Xs = Z≠1

s Fs (3-12)
Fs = CsXm ≠ CsXs ≠ CsXc ≠ Fe (3-13)

Xs = Cs

Zs + Cs
Xm ≠ Cs

Zs + Cs
Xc ≠ 1

Zs + Cs
Fe (3-14)

Fe = ZeCs

Zs + Cs + Ze
Xm ≠ ZeCs

Zs + Cs + Ze
Xc (3-15)

Xc = Y ZeCs

Zs + Cs + Ze + Y ZeCs
Xm (3-16)

For the position steady state error, the transfer function E
x

(s)

X
m

(s)

, with Ex(s)= Xm(s) ≠ Xs(s)
is evaluated with the final value theorem [48] for a unit step.

Ex(s) = 1
Zs(s) + Cs(s) + Ze(s) + Y (s)Ze(s)Cs(s)Xm(s) (3-17)

e
ss,x

= lim
sæ0

{sEx(s)} = lim
sæ0

s
1

Zs(s) + Cs(s) + Ze(s) + Y (s)Ze(s)Cs(s)
1
s

= 0

The force steady state error can be found with the same approach, but now by looking at the
transfer function E

f

(s)

X
m

(s)

.

Ef (s) = Cs(s)Ze(s)
Zs(s) + Cs(s) + Ze(s) + Y (s)Ze(s)Cs(s)Xm(s) (3-18)

e
ss,f

= lim
sæ0

{sEf (s)} = lim
sæ0

s
Cs(s)Ze(s)

Zs(s) + Cs(s) + Ze(s) + Y (s)Ze(s)Cs(s)
1
s

= 0

For the stability analysis, the closed loop transfer function X
s

(s)

X
m

(s)

is evaluated.

Xs(s)
Xm(s) = Cs(s)

Zs(s) + Cs(s) + Ze(s) + Y (s)Ze(s)Cs(s) (3-19)
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Table 3-1: Routh-Hurwitz array of Xs(s)
Xm(s) .

s3 M
slave

By (Ks + Ke)By + BsKe + BeKs

s2 (Bs + Be + B
slave

)By + BsBe KsKe

s1 R 0
s0 KsKe 0

By filling in for Cs(s) = Bss + Ks, Zs(s) = M
slave

s2 + B
slave

s, Ze(s) = Bes + Ke and
Y (s) = 1

B
y

s , the Routh-Hurwitz array is constructed as can be seen in Table 3-1. The slave
robot is modelled as a mass damper system with M

slave

the mass and B
slave

the damping.

For stability, the necessary and su�cient condition is that all of the coe�cients in the first
column must be positive in order for all poles to be in the left-half plane. From this analysis,
two bounds on the admittance control gain By, can be extracted by looking at the first
columns of s3 and s2. It is assumed that Bs, Ks, Be, Ke, M

slave

, B
slave

> 0.

s3 : By > 0 (3-20)

s2 : By > ≠ BsBe

Bs + Be + B
slave

(3-21)

The first bound found on By is a tighter bound compared to the second, so the second bound
can be discarded. For more bounds, R in the first column of s1 needs to be investigated. R
is given by:

(Ks + Ke)
¸ ˚˙ ˝

a

By ≠

b˙ ˝¸ ˚
M

slave

KsKe By

(Bs + Be + B
slave

)
¸ ˚˙ ˝

c

By + BsBe¸ ˚˙ ˝
d

+ BsKe + BeKs¸ ˚˙ ˝
e

> 0 (3-22)

From Equation (3-22), bounds on By can be derived under certain conditions of the other
parameters of the system.

In the case that: Ks + Ke Ø M
slave

KsKe

BsBe
(3-23)

By > 0

In the case that: 0 < Ks + Ke <
M

slave

KsKe

BsBe
and e >

≠2c
Ò

abd
c2

+ ad + b

c
(3-24)

By > 0
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In the case that: 0 < Ks + Ke <
M

slave

KsKe

BsBe
and e =

≠2c
Ò

abd
c2

+ ad + b

c
(3-25)

0 < By <
c
Ò

abd
c2

≠ ad

ac

In the case that: 0 < Ks + Ke <
M

slave

KsKe

BsBe
and 0 < e <

≠2c
Ò

abd
c2

+ ad + b

c
(3-26)

ac
Ò

a2d2≠2abd≠2acde+b2≠2bce+c2e2

a2c2

≠ ad + b ≠ ce

2ac
< By <

≠ac
Ò

a2d2≠2abd≠2acde+b2≠2bce+c2e2

a2c2

≠ ad + b ≠ ce

2ac

3-2-2 Simulated performance evaluation

The bounds on the outer admittance loop gains give some insight of theoretical stability,
but the analysis focuses only on continuous-time systems. The robot control architecture,
namely the discrete-time processing and internal delays, also poses limitations on stability
and performance.

System architecture

The KUKA LWR 4+ robot is controlled using the ‘Robot Sensor Interface (RSI)’ that is
programmed in Cartesian impedance control mode at a frequency of 1 kHz. Torque control
on joint level is running at a frequency of 5 kHz. The Robot and the force-torque sensor
communicate to the local control computer through a proxy at a frequency of 500 Hz. The
inputs can be provided to the proxy using a human machine interface. Due to the limitations
of the RSI, the communication between the proxy is limited to a frequency of 100 Hz. The
system architecture can be seen in Figure 3-5.

Figure 3-5: The system architecture overview.
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The control inputs to the Cartesian impedance controller are a�ected by a time-delay, Td.
This imposes limitations on the performance and stability of the system. In order to in-
vestigate these limitations, the impedance controlled robot is identified using the nonlinear
least squares method. Input/output data from a series of step responses, using di�erent
impedance parameters, is used for estimating a second order system. All fits are evaluated by
how well the response of the model fits the estimation data, expressed as a percentage using
the Normalized Root Mean Squared Error (NRMSE). All estimated models fit the estimation
data with a NRMSE > 90%. The time-delay has identified to be Td = 0.09 s and is incor-
porated in the simulated control architecture, as illustrated in Figure 3-6. Here ·d represents
the desired torque and ·s the measured torque in the inner torque control loop of the slave
robot. The step responses in free air for di�erent slave sti�ness, can be seen in Figure 3-7.

Figure 3-6: Impedance control architecture with outer admittance control loop with delay.
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Figure 3-7: Step responses of the impedance controlled robot with di�erent impedance param-
eters, with the responses of the estimated models for a step of 5 mm at t = 0.

In contact with di�erent environments the step response of the impedance controlled slave
behaves like illustrated in Figure 3-8. With increasing sti�ness of the environment, the slave
manipulator’s motion is restricted sooner, resulting in less penetration and higher contact
forces.
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Figure 3-8: Step responses of the
impedance controlled robot in contact with
di�erent environments.
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Figure 3-9: Step responses of the pseudo-
admittance controlled robot in contact
with di�erent environments.

By closing the outer admittance loop, as illustrated Figure 3-6, the step response in contact
with di�erent environments is illustrated in Figure 3-9. It can be concluded that for the
pseudo-admittance controlled robot, sti�er environments initially lead to higher contact forces.
However, the higher contact forces result in a faster response of the correction term Xc,
resulting in a faster decrease of contact forces.

The e�ects on the response of the pseudo-admittance controlled robot with di�erent impedance
parameters, are illustrated in Figure 3-12. It can be seen that the e�ects of a sti�er robot
are the same as the e�ects that have been observed when increasing the sti�ness of the
environment.

The e�ects on the response of the pseudo-admittance controlled robot with di�erent admit-
tance control parameters, By, are illustrated in Figure 3-10. By decreasing the value of By,
the actual gain on the force error Ef (s), is increased. Smaller values for By result in a faster
convergence of Xc(s). Although, too small values for By render the system unstable.

For completeness, the response for di�erent values of admittance control parameter Ky is
illustrated in Figure 3-11. By increasing the values of Ky, the response shows faster conver-
gence. However, increasing Ky leads to steady state error in both force as position, which are
both non desired for smooth insertion. Moreover, the steady-state value of Xc(s) does not
show the real position of the environment Xe, and will result in a incorrect value of X̂e(s)
which updates the model that is used in the haptic shared controller.
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Figure 3-10: Step responses of the
pseudo-admittance controlled robot in con-
tact with di�erent admittance control pa-
rameters, By.
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Figure 3-11: Step responses of the sim-
ulated pseudo-admittance controlled robot
in contact with di�erent admittance con-
trol parameters, Ky.

3-3 Experimental validation

For the experimental validation of the pseudo-admittance controlled robot, the system archi-
tecture that is described in Section 3-3-1 is used.

3-3-1 Experimental setup

The experimental setup that is used for validation consists of the 7-DOF KUKA light weight
robot 4+ [8], with an ATI Gamma 6-DOF force-torque sensor attached to the wrist, as
illustrated in Figure 3-13. The force-torque sensor measures the actual contact forces and
torques with a resolution of 0.01 N and 0.0005 Nm at a frequency of 500 Hz. It is measuring 3
forces and 3 torques, Fe = [Fe

x

, Fe
y

, Fe
z

, ·e
x

, ·e
y

, ·e
z

], in the reference frame �
f/t

, as illustrated
in Figure 3-14. Furthermore it is important to note that the robot is equipped with a peg
that is attached to the force-torque sensor. The peg has a length of 155 mm and a diameter
of 14.0 mm and the tip of the peg is rounded. The hole has a diameter of 14.85 mm and the
entrance of the hole is also rounded. Due to the tight tolerance, jamming can easily occur
after an insertion depth of 10.0 mm if the peg is not well aligned with the hole.

The robot is commanded in the tool frame �
tool

, which is positioned at the end of the peg.
The force-torque sensor measures forces and torques in the f/t frame �

f/t

, which is positioned
at the edge of the sensor as illustrated in Figure 3-14. The measured forces and torques are
transformed to act in the tool frame. Moreover, when the robot is initialised the forces and
torques are set to 0 and they are compensated for forces that occur when not in contact due
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Figure 3-12: Step responses of the simulated pseudo-admittance controlled robot with di�erent
impedance parameters.

to the change of center of mass of the tool with respect to the gravitational vector, when
rotating the tool.

3-3-2 Task and metrics

In the presented experimental scenario, the peg is commanded to go in z direction with a
constant velocity of 8.0 mm/s until it reaches a depth of 80 mm. The entire insertion has a
duration of 10 seconds, after which the peg in retracted with the same speed.

Independent variables

The independent variables can be divided in two groups:

• The control parameters. The tuning of the control parameters involves changing the
impedance parameters of the robot and changing the admittance parameters of the
outer admittance loop.

• The o�sets. The o�sets simulate the e�ects of the uncertainty. These o�sets are divided
in translational and rotational o�sets.

The experiments that are performed are summarized in Table 3-2 and Table 3-3, respectively
the rotational o�sets versus di�erent control parameters and the translational o�sets versus
di�erent control parameters. Examples of rotational and translational o�sets can be seen in
respectively Figure 3-15 and Figure 3-16. The sets of control parameters are chosen after
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Figure 3-13: Experimental setup with
KUKA LWR 4+ as slave robot, ATI
Gamma force-torque sensor with attached
peg and the task-board.

Figure 3-14: Tool frame �
tool

and f/t
frame �

f/t

on the robot peg and force-
torque sensor.

preliminary experiments. The programmed Cartesian sti�ness parameters of the impedance
controller are specified in N/m for translations and Nm/rad for rotations in all directions.
The Cartesian damping parameters follow from the damping ratio ’ and are given in Ns/m for
translations and Nms/rad for rotations. The values for the Cartesian damping parameters for
the impedance controller are left out in figures and tables for clarity. For these experiments
a damping ratio of ’ = 0.7 is used to calculate the damping coe�cient:

Bs = 2’


Ks (3-27)

The parameters of the admittance controller are specified in the same units. However, for
the experiment the admittance control is only active in the x and y directions, since the z is
direction of insertion which is assumed to not be constrained.
For every o�set/control parameter pair, 10 repetitions are performed in order to get su�cient
data.

Dependent variables

The performance of the insertion is evaluated by the dependent variables. The dependent
variables are the maximum reached depth, maximum exerted force, maximum exerted torque
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Figure 3-15: Example of a rotational
o�set illustrated on the INTERACT task-
board.

Figure 3-16: Example of a translational
o�set illustrated on the INTERACT task-
board.

Table 3-2: Experiments performed for di�erent control parameters and rotational o�sets.

Robot sti�ness (Ks)
500 N/m

50 Nm/rad
1000 N/m

100 Nm/rad
2000 N/m

200 Nm/rad
Impedance

control
0 N/m; 0 Nm/rad

0.15 Ns/m; 0.075 Nms/rad
0 N/m; 0 Nm/rad

0.10 Ns/m; 0.050 Nms/rad
0 N/m; 0 Nm/rad

0.067 Ns/m; 0.033 Nms/rad

Pseudo-
admittance
controller

gains
(Ky, By) 0.10 N/m; 0.050 Nm/rad

0.10 Ns/m; 0.050 Nms/rad

and average exerted weighted forces and torques. An insertion is considered to be successful
if the maximum reached depth Ø 60 mm and if the weighted sum of forces and torques < 40.
The maximum reached depth of Ø 60 mm is depicted in the figures with a horizontal line.
The weighted sum of forces and torques at each time step n, is calculated as follows:

F
score

(n) =
Ú

Fe
x

(n)2 + Fe
y

(n)2 + Fe
z

(n)2 + 1
0.10·e

x

(n)2 + 1
0.10·e

y

(n)2 + 1
0.10·e

z

(n)2

(3-28)

Here 0.10 m represents the approximate distance between the force-torque sensor and the
contact point of the peg in an inserted state.

• The maximum reached depth is calculated by taking the maximum value of the slave
position in z direction, Xs

z

.

X
depth

(n) = max
n

Xs
z

(n) (3-29)
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Table 3-3: Experiments performed for di�erent control parameters and translational o�sets.

Robot sti�ness (Ks)
500 N/m

50 Nm/rad
1000 N/m

100 Nm/rad
2000 N/m

200 Nm/rad
Impedance

control
0 N/m; 0 Nm/rad

0.15 Ns/m; 0.075 Nms/rad
0 N/m; 0 Nm/rad

0.10 Ns/m; 0.050 Nms/rad
0 N/m; 0 Nm/rad

0.067 Ns/m; 0.033 Nms/rad

Pseudo-
admittance
controller

gains
(Ky, By) 0.10 N/m; 0.050 Nm/rad

0.10 Ns/m; 0.050 Nms/rad

• The average exerted weighted forces and torques are calculated by summing the weighted
sum of forces and torques at each sample and the result is divided over the total number
of samples recorded during an insertion, N .

F
average

= 1
N

Nÿ

n=1

Ú
Fe

x

(n)2 + Fe
y

(n)2 + Fe
z

(n)2 + 1
0.10·e

x

(n)2 + 1
0.10·e

y

(n)2 + 1
0.10·e

z

(n)2

(3-30)

• The maximum exerted force is calculated by taking the maximum value of the absolute
force exerted on the environment. In time domain this is illustrated by Figure 3-17.

F
max

= max
n

|Fe(n)| (3-31)
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Figure 3-17: The absolute force exerted on the environment and the maximum value of the
absolute force.

• A similar strategy is used to calculate the maximum torque exerted on the environment.

·
max

(n) = max
n

|·e(n)| (3-32)
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3-3-3 Results

In this section, the results of the experimental validation are presented in the form of box plots.
The box plots show the median, which are connect to each other using a line and the 25th and
75th percentiles, respectively q

25

and q75. The whiskers extends up to the most extreme data
point that is not an outlier. A data point is considered an outlier if x > q

75

+ w(q
75

≠ q
25

)
or if x < q

25

≠ w(q
75

≠ q
25

), where w = 1.5. Outliers are depicted in the boxplots as small
dots. Experiments have been performed up to 20¶ rotational o�set, and 6 mm translational
o�set with variable intervals. If no bars are present in the next interval, the combination
of independent variables failed due to instability, excessive forces and/or not reaching the
proper depth. In pseudo-admittance control a configured impedance of Ks = 500 N/m is not
considered, since after each trial reset the jump in set-point due to resetting the integrator of
the admittance control loop, caused the robot shut down for safety reasons. Moreover, in the
results on impedance control, Ks = 500 N/m shows undesired free air position tracking. The
results of the maximum torque dependent variable has been left out of this report, since they
are similar to the maximum force dependent variable results and they are used to prove the
same point of excessive forces and torques being exerted on the environment. The torques
are still considered in the average force exerted on the environment dependent variable.
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Figure 3-18: Change of X̂e(s) and Xc(s) when performing a peg-in-hole insertion with a trans-
lational o�set of 6 mm. Note that X̂e(s) ”= 0 because it represents the estimated value of the
position of the wall of the hole, not the centerline.

O�sets versus di�erent impedance control parameters

The presented results show the e�ects of changing the impedance control parameters for both
the impedance controlled as the pseudo-admittance controlled task. The experiments that are
considered are summarized in Table 3-4. The results with rotational o�sets are illustrated in
Figure 3-19, Figure 3-21 and Figure 3-23. The results with translational o�sets are illustrated
in Figure 3-20, Figure 3-22 and Figure 3-24.
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For both rotational and translational o�sets it can be observed that a more compliant slave
robot decreases the maximum reached depth. For rotational o�sets, the average forces and
maximum forces exerted on the environment decrease as well. For translational o�sets, deviant
behaviour can be observed. The maximum reached depth is similar as at the rotational o�sets,
however, the average exerted force of IMP05 turns out the be higher and shows more spread
with increasing translational o�set. Moreover, the maximum exerted forces show the same
behaviour for both IMP05 and IMP10.

Table 3-4: Experiments used to show the e�ects of rotational and translational o�sets versus
impedance control parameters.

Robot sti�ness (Ks)
500 N/m

50 Nm/rad
1000 N/m

100 Nm/rad
2000 N/m

200 Nm/rad
Impedance

control IMP05 IMP10 IMP20

0 N/m; 0 Nm/rad
0.15 Ns/m; 0.075 Nms/rad

0 N/m; 0 Nm/rad
0.10 Ns/m; 0.050 Nms/rad ADM10_10 ADM20_10

0 N/m; 0 Nm/rad
0.067 Ns/m; 0.033 Nms/rad

Pseudo-
admittance
controller

gains
(Ky, By) 0.10 N/m; 0.050 Nm/rad

0.10 Ns/m; 0.050 Nms/rad
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Figure 3-19: Boxplot of the maximum in-
sertion depth for rotational o�sets versus
di�erent impedance control parameters.
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Figure 3-20: Boxplot of the maximum in-
sertion depth for translational o�sets ver-
sus di�erent impedance control parame-
ters.

O�sets versus di�erent admittance control parameters

The presented results show the e�ects of changing the admittance control parameters for the
pseudo-admittance controlled task compared to the impedance controlled task. The experi-
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Figure 3-21: Boxplot of the average
weighted forces and torques exerted on
the environment for rotational and trans-
lational o�sets versus di�erent impedance
control parameters.
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Figure 3-22: Boxplot of the average
weighted forces and torques exerted on the
environment for translational o�sets versus
di�erent impedance control parameters.

ments that are considered are summarized in Table 3-5. The results with rotational o�sets
are illustrated in Figure 3-25, Figure 3-27 and Figure 3-29. The results with translational
o�sets are illustrated in Figure 3-26, Figure 3-28 and Figure 3-30.

It can be observed that for all tested admittance parameters By, the maximum reached depth
increases. Moreover, a decrease in maximum force is expected for a small value of By, however
it can be observed that the maximum force exerted is higher compared to a large value of
By for rotational o�sets, with an exception of ADM_10_07. For translational o�sets this is
the other way around, as expected. An increase in average exerted force can be observed for
rotational o�sets, while for translational o�sets the average exerted force is very similar for
each o�set.

Table 3-5: Experiments used to show the e�ects of rotational and translational o�sets versus
di�erent admittance control parameters.

Slave sti�ness (Ks)
500 N/m

50 Nm/rad
1000 N/m

100 Nm/rad
2000 N/m

200 Nm/rad
Impedance

control IMP10

0 N/m; 0 Nm/rad
0.15 Ns/m; 0.075 Nms/rad ADM10_15

0 N/m; 0 Nm/rad
0.10 Ns/m; 0.050 Nms/rad ADM10_10

0 N/m; 0 Nm/rad
0.067 Ns/m; 0.033 Nms/rad ADM10_07

Pseudo-
admittance
controller

gains
(Ky, By) 0.10 N/m; 0.050 Nm/rad

0.10 Ns/m; 0.050 Nms/rad
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Figure 3-23: Boxplot of the maximum
forces exerted on the taskboard for rota-
tional o�sets versus di�erent impedance
control parameters.
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Figure 3-24: Boxplot of the maximum
forces exerted on the taskboard for trans-
lational o�sets versus di�erent impedance
control parameters.

Rotational o�sets versus added position dependency in the admittance control loop

The presented results show the e�ects of added position dependency in the admittance control
loop for the pseudo-admittance controlled task compared to no position dependency and
the impedance controlled task. The experiments that are considered are summarized in
Table 3-6. The results with rotational o�sets only include the average force exerted on the
environment, as illustrated in Figure 3-31. A time-domain plot of an insertion with added
position dependency can be seen in Figure 3-33.

It can be observed that the average weighted forces and torques that are exerted on the
environment becomes larger when Ky is introduced, compared to the admittance control
without Ky. Furthermore, by adding Ky there is only a slight increase of 2.5¶ rotational
o�set, while the pseudo-admittance controller without Ky shows a much larger increase up
to 20¶ of rotational o�sets that can be successfully inserted.
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Figure 3-25: Boxplot of the maximum in-
sertion depth for rotational o�sets versus
di�erent admittance control parameters.
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Figure 3-26: Boxplot of the maximum in-
sertion depth for translational o�sets ver-
sus di�erent admittance control parame-
ters.
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Figure 3-27: Boxplot of the average
weighted forces and torques exerted on the
environment for rotational o�sets versus
di�erent admittance control parameters.
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Figure 3-28: Boxplot of the average
weighted forces and torques exerted on the
environment for translational o�sets versus
di�erent admittance control parameters.

Nicky Mol Master of Science Thesis



3-3 Experimental validation 51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
o
rc

e
[N

]

0

5

10

15

20

25

30

35

40

Max force

IMP10
ADM10 15
ADM10 10
ADM10 07

Rotational o,set [deg]

Figure 3-29: Boxplot of the maximum
forces exerted on the taskboard for rota-
tional o�sets versus di�erent admittance
control parameters.
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Figure 3-30: Boxplot of the maximum
forces exerted on the taskboard for trans-
lational o�sets versus di�erent admittance
control parameters.

Table 3-6: Experiments used to show the e�ects of rotational o�sets versus adding position
dependency (Ky) in the admittance control loop.

Slave sti�ness (Ks)
500 N/m

50 Nm/rad
1000 N/m

100 Nm/rad
2000 N/m

200 Nm/rad
Impedance

control IMP10

0 N/m; 0 Nm/rad
0.15 Ns/m; 0.075 Nms/rad

0 N/m; 0 Nm/rad
0.10 Ns/m; 0.050 Nms/rad ADM10_10

0 N/m; 0 Nm/rad
0.067 Ns/m; 0.033 Nms/rad

Pseudo-
admittance
controller

gains
(Ky, By) 0.10 N/m; 0.050 Nm/rad

0.10 Ns/m; 0.050 Nms/rad ADM10_10_10
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Figure 3-31: Boxplot of the average
weighted forces and torques exerted on the
environment for rotational o�sets for meth-
ods with and without position dependency.
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Figure 3-32: Boxplot of the maximum
force exerted on the environment for rota-
tional o�sets for methods with and without
position dependency.
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3-4 Discussion

Increasing the compliance of the impedance controlled robot does not increase the max-
imal admissible rotational error

In the result section, it can be observed that the maximum reached depth decreases when the
robot becomes more compliant. Moreover, a decrease in forces exerted on the environment
has been observed when the robot becomes more compliant. The decrease in forces is however
not su�cient to increase the maximal admissible rotational error, since for the three di�erent
impedance parameters tested, no increase in successfully inserted rotational o�set has been
observed. This results shows that no robustification of task performance in presence of mi-
croscale uncertainty using solely adaptive impedance controllers is achieved, as described in
Section 3-2.

Behaviour deviance of compliant impedance controlled slave explained

The behaviour that is observed when changing the compliance of the impedance controlled
slave in translational o�sets, can be explained by the decrease in position tracking. Especially
for the case where Ks = 500 N/m, the peg makes contact with the chamfer upon insertion,
resulting in an increase of contact forces. The same goes for Ks = 1000 N/m, however a
larger o�set is needed to make contact with the chamfer upon insertion. For the largest
translational o�set, 6 mm, both Ks = 500 N/m and Ks = 1000 N/m in some cases make
contact on the edge of the chamfer and the task-board. This initially prevented insertion, but
the commanded position Xm(s) in z direction increased and so did the forces in that direction
until they were large enough to still force the peg in the hole and reach the desired depth.

This behaviour can be considered undesired, because of the increase in the maximum force
exerted on the environment, however they meet the bounds that were set on the maximum
force and the reached depth. This behaviour illustrates the bound on the translational o�sets,
when the peg reaches the horizontal surface of the task-board no insertion is possible by only
commanding the slave robot in z direction.

System sensitivity to By

A small value for By results in a high gain on the force-torque errors, this results in overshoots
in the correction term Xc(s). The overshoot in Xc(s) results in high forces/torques, which
cause the slave to hit the other side of the hole and the same e�ect occurs, resulting in a
higher maximum force. For both rotational and translational o�sets that are too large, the
overshoots in Xc(s) cause the system to become unstable.

On the other hand, a large value for By results in a low gain on the force-torque errors and
a slower response of the correction term Xc(s). Since the commanded position keeps moving
in z direction, this leads to higher forces being exerted on the environment, explaining the
behaviour of ADM10_15. For large rotational o�sets, it takes the correction term too long
to correct the misalignment enough for the insertion to continue. By the time the peg is well
enough aligned, the forces exerted on the environment have already reached the safety-limit
and the insertion is considered unsuccessful. The reason why this behaviour is not seen for
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54 Robustifying task performance in presence of microscale uncertainty

translational o�sets is because the peg does not get stuck at the chamfer but keeps moving
in z direction preventing a build-up of forces.

System sensitivity to Ky

By adding a position dependency in the admittance loop, the slave constantly tries to undo
the e�ects of the correction Xc(s). Even when inserted, the position dependency continuously
pulls the slave to the commanded position Xm(s) until it is being pushed back to the boundary
of the hole due to the forces that are exerted, explaining the increase of average exerted force
on the environment.

For larger errors this behaviour results in unstable behaviour in the constraint environment
of the hole, as illustrated in Figure 3-33. The peg ‘bounces’ of the walls of the hole with
increasing velocity, resulting in higher contact forces until the response blows up. In this
scenario, a position dependency is undesired.

However, adding a position dependency could be advantageous in situations where the oper-
ator is commanding the slave robot with use of a master device that has a limited workspace
and is not able to recalibrate its position by use of a ‘clutch’. An example of a master device
would be an exoskeleton without the ability to clutch and recalibrate its position. When the
operator would perform a peg in hole insertion with a large rotational o�set and by only
commanding the exoskeleton to go in the direction of insertion, the By would correct for the
o�set and make insertion successful. When the operator now retracts from the hole in the
same direction as he inserted it, the orientation of the slave will be corrected by the degree
of the rotational o�set which could eventually result in the operator being at the limits of
his workspace and not being able to command the slave robot any longer to perform a task.
By adding a position dependency, the slave would restore itself to the orientation of the slave
device before insertion.

On the bounds of the rotational error

For translational errors a bound has been found that can be physically explained. Such a
bound also exists for rotational errors and depend on the geometry of the peg and the hole,
since the admittance controller needs torques in order to correct for the rotational o�set.
The bound that has been found of 20¶ o�set could be exceeded by tuning the admittance
parameters, but more importantly by imposing some admittance on the z direction. When
the value of By is high, it takes the correction term too long to have the peg aligned with
the hole, resulting in a high forces as described above. By limiting the commanded value
in z direction, the forces can stay within the safety-bounds. In order to ensure insertion, a
position dependency in z direction could be added.

Using the information on the error

The estimated location of the environment,X̂e(s), can be extracted online and used to update
the model that is used by the haptic shared controller. By doing this, the guidance will
immediately be corrected and the operator will be guided to the real centerline of the hole.
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Moreover, after the peg has been inserted there will be no forces acting on the environment
that are masked form the operator, as was pointed out by [3].

In bilateral teleoperation, this approach would limit the e�ects of force feedback, since the
admittance controller dissolves all forces. The operator would only be able to feel it when
contact is made, but is no longer able to exert a certain amount of force for a certain period
of time.

Master of Science Thesis Nicky Mol



56 Robustifying task performance in presence of microscale uncertainty

Nicky Mol Master of Science Thesis



Chapter 4

Conclusions

In this thesis, the performance of intention prediction methods is evaluated and compared
in order to eliminate the macroscale error. Moreover, a pseudo-admittance controller is used
to improve task performance in the presence of microscale uncertainty. The same method is
used to reduce the microscale uncertainty. The main conclusions of this research are:

• Memory-based prediction is a feasible method to eliminate macroscale uncertainty, i.e.,
predict the intended goal of the operator, in a teleoperated reaching task. On pre-
recorded teleoperation data, for 84%(±8% CI

95

) of the total trajectory, the predictor
correctly identified the intended goal.

• For the tested peg-in-hole insertion task, robustness to microscale uncertainty is not
increased by making the slave more compliant. Maximal acceptable rotational and
translational errors were, for all tested impedance parameters, 1.5¶ and 6 mm, respec-
tively. Moreover, the performance of position tracking is decreased by doing so, which
makes peg-in-hole insertion an even more tedious task to perform.

• Pseudo-admittance control is a feasible method to robustify task performance against
microscale uncertainty of the peg-in-hole insertion task. For rotational errors the maxi-
mal acceptable error is found to be 20¶, which is 13 times better compared to impedance
control. The average weighted forces and torques exerted on the environment is reduced
with a factor of 5 compared to the best impedance controlled case with the maximal
o�set of 1.5¶. For translational errors the maximal acceptable error is found to be 6
mm, which is the same compared to impedance control. The average weighted forces
and torques exerted on the environment is reduced with a factor of 6 compared to the
best impedance controlled case with the maximal o�set of 6 mm.

• The proposed system provides improved knowledge of the environment Xe (by reducing
the microscale uncertainty), and as such can provide an updated environment model
X̂e, for the support system.
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4-1 Future work

Although promising results have been found towards making a teleoperation support system
robust to uncertainties in haptic guidance, this does not complete or exhaust this topic. There
are many more developments that can be explored in future studies. The following topics
pose as candidates for future research:

• The prediction methods have now been validated using pre-generated teleoperation data.
In order to show the performance of the prediction methods it would be valuable to
implement these methods on a setup where haptic guidance is provided to the operator,
based on the predicted intended goal. In such a research other interesting topics reveal
themselves, like how do di�erent methods or intensities of haptic guidance influence the
prediction. When to provide haptic guidance and how to arbitrate between no guidance
and guidance.

• The pseudo-admittance controller has been validated when only considering the slave
side of the teleoperation system. In order to gain more insight in the performance and
stability, the pseudo-admittance controller should be validated on the entire teloperation
system, so by taking into account the human, master device and communication channel.
This can be extended by looking at time-delays in the communication channel from
master to slave. Moreover, as already has been discussed this method poses limitations
on the force feedback that is provided to the operator. The e�ects of this could also be
a topic for future research.

• One of the limitations of the pseudo-admittance method is the error in slave and master
position (Xs ≠ Xm) due to the time it takes to correct for misalignments. This error
results in high contact forces and if aligned, a large jump in position. A future research
direction would be to investigate whether admittance control in the unconstrained di-
rection robustifies task performance even more. It should also be considered to add
position dependency in this direction, so the insertion will still reach the desired depth.
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Appendix A

Other bilateral teleoperation
architectures

In this appendix the position-position and the position-force bilateral teleoperation architec-
tures will be treated [49, 50].

A-1 Position-position

The most basic bilateral controller is being used since the beginning of the nuclear industry.
It makes use of a position-position scheme where only the positions of the master device
and slave robot are needed, so no force sensors are required. The master position is passed
to the position controller on the slave side and the slave robot’s position is returned to the
master device. The block diagram of this scheme can be seen in Figure A-1. Zm(s) and Zs(s)
represent the dynamics of the master device and the slave robot respectively. The controllers
are denoted by Cm(s) and Cs(s) and can be in the form of a gain or a PD controller. The
impedance of the environment is denoted by Ze(s). The system equations are conventionally
expressed in terms of velocities [6] but here positions are used instead.

The input force, Fh(s), represents the force that the operator applies to the master device.
The force that is acting on the master device, Fm(s), is proportional to the di�erence in
the slave robot’s position Xs(s), and the position of the master device Xm(s), with respect
to the master control gain Cm(s), with representing the slave robot’s position. In the same
way the force exerted by the slave robot, Fs(s), is also proportional to the di�erence in the
slave robot’s and the master device’s position, with respect to the slave control gain Cs(s).
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Figure A-1: Two-channel position-position architecture.

Mathematically the position-position bilateral scheme can be described as:

Fm(s) = Cm(s)(Xm(s) ≠ Xs(s))
Fs(s) = Cs(s)(Xm(s) ≠ Xs(s))

Xm(s) = Z≠1

m (s) (Fh(s) ≠ Fm(s))
Xs(s) = Z≠1

s (s) (Fs(s) ≠ Fe(s))
Fe(s) = Ze(s)Xs(s) (A-1)

Where Fe(s) represents the force applied by the environment on the slave robot. By looking
at the transfer function from Fm(s) to Xm(s), insights can be gained on how the forces from
the remote environment are reflected on the master device. This relation is given by:

H(s) = Fm(s)
Xm(s) = Cm(s) 1 + Ze(s)Z≠1

s (s)
1 + (Ze(s) + Cs(s))Z≠1

s (s)
(A-2)

When looking at the case where the slave robot is not in contact with the environment
(Ze(s) = 0), H(s) is given by C

m

(s)

1+Z≠1

s

(s)C
s

(s)

. Meaning that in free motion the operator feels
the friction and inertial forces associated with the slave robot, although no external forces
are acting on the slave robot. When looking at the opposite case, where the slave robot is
contact with a rigid object (Ze(s) æ Œ), H(s) is given by Cm(s). Meaning that the contact
with a rigid contact is perceived as an elastic contact with an impedance of Cm(s), so the
operator is able to move the master device in this case. Furthermore, if the slave robot is not
back-drivable then the environmental forces acting on the slave robot do not cause a position
error and are thus not experienced by the operator. From above mentioned insight it can be
concluded that this position-position control scheme, although straightforward to implement,
o�ers the operator poor perception of the remote environment.

A-2 Position-force

An improvement on the position-position scheme, can be seen in Figure A-2. This scheme is
known as the position-force scheme.
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Figure A-2: Two-channel position-force architecture.

By placing a force-torque sensor between the slave robot and the environment, the contact
force between the slave robot and the environment can be measured. By providing the master
device with a force Fm(s), which is proportional to this contact force Fe(s), the operator has
a much more clear sense of the environment. Here Cf (s) denotes the control gain in the force
channel. Mathematically the position-force bilateral scheme can be described as:

Fm(s) = Cf (s)Fe(s)
Fs(s) = Cs(s)(Xm(s) ≠ Xs(s))

Xm(s) = Z≠1

m (s) (Fh(s) ≠ Fm(s))
Xs(s) = Z≠1

s (s) (Fs(s) ≠ Fe(s))
Fe(s) = Ze(s)Xs(s) (A-3)

By looking again at the transfer function from Fm(s) to Xm(s), new insights can be gained on
how the forces from the remote environment are reflected on the master device. This relation
is given by:

H(s) = Fm(s)
Xm(s) = Cf (s) Ze(s)Z≠1

s (s)Cs(s)
1 + (Ze(s) + Cs(s))Z≠1

s (s)
(A-4)

When looking again at the case where the slave robot is not in contact with the environment
(Ze(s) = 0), H(s) is now given by 0. This means that the undesired controller forces that
were present in the position-position control scheme, are no longer present in the position-
force scheme, which is an improvement over the position-position scheme. When looking
at the opposite case, where the slave robot is contact with a sti� object (Ze(s) æ Œ), the
maximum value for H(s) is equal to Cf (s)Cs(s) which means that H(s) is still limited and
the operator can still move the master device in this case. However, the position-force control
scheme has better performance than position-position due to lack of the slave robot controller
forces perceived by the operator.
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Appendix B

Memory-based prediction derivation

In this appendix the derivation of memory-based prediction is presented from [51]. In memory-
based prediction, besides using the current slave robot configuration also the set of past slave
robot configurations (›X

init

æX
s

(t)) is taken into account:

XGú(t) = arg max
X

G

i

œG
P (XG

i

| ›X
init

æX
s

(t)) (B-1)

By applying Bayes’ theorem this results in:

XGú(t) = arg max
X

G

i

œG

P (›X
init

æX
s

(t) | XG
i

)P (XG
i

)
P (›X

init

æX
s

(T =t))
(B-2)

And since P (›X
init

æX
s

(t)) = 1, since this denotes the already travelled trajectory, Equation (B-
2) results in:

XGú(t) = arg max
X

G

i

œG
P (›X

init

æX
s

(t) | XG
i

)P (XG
i

) (B-3)

Here, P (XG
i

) is the probability on the goals that is set beforehand. When there is no prior
knowledge, the probability can be uniform over all goals. P (›X

init

æX
s

| XG
i

) is the probability
that the slave robot will actually follow ›X

init

æX
s

(t) when it is going for goal XG
i

. This is
computed as the ratio of all trajectories from X

init

to XG
i

, that went through ›X
init

æX
s

(t), to
all trajectories from X

init

to XG
i

:

P (›X
init

æX
s

(t) | XG
i

) =

s
›

X

s

(t)æX

G

i

P (›X
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æX
s

(t)æX
G

i

)
s

›
X

init

æX

G

i

P (›X
init

æX
G

i

) (B-4)
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By assuming that the trajectories are separable, Equation (B-4) results in:

P (›X
init

æX
s

(t) | XG
i

) = P (›X
init

æX
s

(t))

s
›

X

s

(t)æX

G

i

P (›X
s

(t)æX
G

i

)
s

›
X

init

æX

G

i

P (›X
init

æX
G

i

) (B-5)

To calculate these probabilities, a model is needed of how operators move the slave robot
to reach a certain goal. The assumption has been made that the slave robot configurations
optimize a goal dependent cost function JX

G

i

. By using the principle of maximum entropy
[52], a model can be made that makes increasing cost still possible, but exponentially less
probable:

P (› | XG
i

) Ã e≠J
X

G

i

(›) (B-6)

This results in:
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(B-7)

In high-dimensional spaces like in three dimensional manipulation, evaluating the integrals
is too computationally expensive. The integrals can be approximated by using Laplace’s
method, starting by approximating JX

G

i

(›X
from

æX
to

) around ›ú
X

from

æX
to

by its second order
Taylor series expansion:

JX
G

i

(›X
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Where ˆJ
ˆ›ú

X

from

æX

to

is the gradient, which will be denoted as Ò. ˆ2J
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to

is the Hessian,
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The latter integral can be assumed to be a Gaussian integral, because the exponential decays
very fast away from ›ú

X
init

æX
s

(t), and can be calculated:
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By filling this into Equation (B-12), this results into:
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This can be used to approximate Equation (B-7):
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For the cost function JX
G

i

, trajectory length has been chosen, which penalizes long trajectories
when there is a shorter available. By choosing the cost function to be quadratic, the Hessian
is constant resulting in:
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With as cost function:

JX
G

i
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i
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The resulting prediction problem follows by filling Equation (B-16) into Equation (B-3):
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List of Acronyms

ESA European Space Agency

NASA National Aeronautics and Space Administration

CSA Canadian Space Agency

ISS International Space Station

RRM Robotic Refuelling Mission

SPDM Special Purpose Dexterous Manipulator

DOF Degree of Freedom

GUI Graphical User Interface

AMBOT American Robot Company

RSI Robot Sensor Interface

ZMWN Zero Mean White Noise

NRMSE Normalized Root Mean Squared Error

List of Symbols

G Set of accessible goals
�

f/t

F/t frame
�

tool

Tool frame
›ú

X
init

æX
G

i

Optimal trajectory from X
init

towards goal XG
i

›ú
X

s

(t)æX
G

i

Optimal trajectory to be travelled from Xs(t) towards goal XG
i
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›X
init

æX
s

(t) Set of past slave robot configurations

X̂e(s) Estimated location of the environment
·d Desired torque in inner torque control loop
·s The measured torque of the slave robot
’ Damping ratio
Be The damping of the environment
Bs The desired damping of the slave robot
By Damping of the admittance controller
B

slave

The damping of the slave robot
C

1

(s) Forward velocity channel controller
C

2

(s) Backward force channel controller
C

3

(s) Forward force channel controller
C

4

(s) Backward velocity channel controller
Cf (s) Force channel controller
Cg(s) Shared control gain
Cm(s) Local master controller
Cs(s) Local slave controller
Ef (s) Force error
Eg(s) Error between the inaccurate reference position and the current slave robot

position
Ex(s) Position error
F (s) General representation of forces
Fc(s) Output force of the impedance controller
Fd(s) Desired force
Fe(s) Force and torques exerted on the environment
Fg(s) Guidance forces that are provided by the support system
Fh(s) Input force from human operator
Fm(s) Force acting on master device
Fs(s) Controlled motor force on the slave robot
F

fb

(s) Reflected force from the slave robot to the master device
H(s) The hybrid matrix
JX

G

i

Cost function where trajectories are evaluated in
Ke The sti�ness of the environment
Kh Sti�ness of the operator
Ks The desired sti�ness of the slave robot
Ky Sti�ness of the admittance controller
Ms The desired mass of the slave robot
M

slave

The mass of the slave robot
T End time
t Current time
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Td Time delay
X(s) General representation of motions
Xc(s) Correction term of the admittance controller
Xe The position of the environment
Xg(s) Position of the centerline determined by the support system
Xm(s) Configuration of the master device
Xr(s) Reference motion
Xs(s) Configuration of slave robot
X

hole

Real centerline position of the hole (Peg-in-hole task)
X

input

(s) Control input to the system that is to be controlled in an input-mixing archi-
tecture

XG
intended

Intended goal by the operator
XG

i

Goal location
Xsd(s) Set-point configuration for the slave robot
Y (s) Admittance
Z(s) Impedance
Zm(s) Dynamics of master device
Zs(s) Dynamics of the slave robot
Zt(s) Transmitted impedance to the operator
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