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Abstract
Composite materials are crucial for advancing sustainable engineering practices as they offer high
strength-to-weight ratios, making them ideal for applications in aerospace, automotive and civil en-
gineering. Meeting global sustainability goals demands a shift towards efficient materials, resulting in
composites becoming increasingly significant. Besides difficulties in producing highly complex compos-
ites there are also challenges in computational methods to accurately predict the behavior of structures
made from composite materials within a reasonable computational time frame.

In most civil engineering practices, the Finite Element Analysis (FEA) is a useful method to derive
stress-strain paths. However, these methods often rely on homogenized material assumptions which
fail to capture complex microstructural stresses in high-performance composites. A more suitable
method to predict the behavior of these materials under complex loading conditions is available us-
ing multi-scale modeling techniques. This approach is essential but computationally expensive, es-
pecially when high accuracy at the microscale is needed. Surrogate models based on a machine
learning framework have been investigated in prior research. These models typically make predictions
on homogenized average stress at macroscale rather than the maximum stress at microscale, which
identifies as the research gap. The maximum microscopic stress has been recently used as a failure
indicator.

The main objective of this research is to design a surrogate model, based on the physically recurrent
neural network (PRNN) designed in previous research, that can accurately predict the local maximum
stress at the microscale in heterogeneous composite materials. Additionally, this research explores
how knowledge from existing models that predict average stresses can be leveraged to enhance new
models that predict local quantities at the microscale through transfer learning and multi-task learning
techniques.

Among the three developed models, two models using an encoder-decoder architecture performed
poorly because the decoder averages the results instead of being able to find the limits. The decoder
was removed in the third model and this yielded promising results. This model maintains high fidelity in
stress predictions with lower computational costs because the number of trainable parameters in this
model is limited. Transfer learning yielded faster convergence but did overall not improve significantly
in terms of error. The decrease in computational time is very limited when transfer learning is applied
over direct training as the models used in this thesis are small and do not need extensive datasets
or epochs to converge. The multi-task approach achieved very promising results as it enables accu-
rate predictions for average and maximum stresses in a single model. Cross validation showed strong
model robustness and flexibility across unseen loading scenarios.

Finally, a triple-task model showed that the PRNN is able to act as a modular framework as also the
minimum microscopic stress can be accurately predicted without increasing the model and or training
set size. The developed surrogate model shows that the architecture of the PRNN developed in previ-
ous research can be effectively modified to make predictions on other tasks. It provides a viable tool
for simulating composite materials behavior at microscale.
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1 | Introduction
This chapter provides an introduction to this research. To start, Section 1.1 describes the background
of this research topic. The main objective is discussed in Section 1.2 and the scope is presented in
Section 1.3. The research questions are formulated in Section 1.4 and finally the structure of this thesis
is elaborated in Section 1.5.

1.1. Context
The demand for composite materials is increasing in engineering applications. One of the reasons is
because the world needs to adapt to using materials more efficiently in order to reach global sustain-
ability goals set in 2050 [1]. Resources on Earth are finite and the extraction of raw materials and the
processing of these rawmaterials is often polluting and an irreversible process. On one hand all current
materials that are deployed in systems and architectures need to be sustained. This is done with the
principle of circularity where the value of a material in objects or systems is maintained throughout its
life cycle [2]. On the other hand newly built objects and systems should be made from efficient materials.

An increasing amount of these materials are composites. A composite is a material that is produced
from two or more different materials. Composites have the feature that it combines properties from
multiple materials in one single material to obtain highly desirable properties. This technique of com-
bining materials is something that was used as early as 3500 BC. By smelting tin and copper a much
stronger and easier to cast material could be forged; bronze [3]. Popular composites of this day and
age is carbon fiber, where carbon filament layers are used in combination with a binding polymer. This
results in a very strong and lightweight material which is used in applications where the strength-to-
weight ratio is an important aspect, like in aerospace engineering [4]. Composites are not often used in
civil engineering due to high cost but this is likely change in the next few decades.

Besides difficulties in producing highly complex composites there are also challenges in computational
methods to accurately predict the behavior of structures made from composite materials within a rea-
sonable computational time frame. For structures that are not considered critical, composite material
properties may be simplified. Analysis can be done with homogeneous material properties generating
results that are sufficiently accurate [5]. However, for high performance structures like the superstructure
of aerospace applications, ships and various applications in the civil engineering domain, higher-fidelity
analyses are necessary. The mesomodel with homogeneous material properties is not able to predict
the structural behavior accurately, as detailed information at microscale is lost. An analysis method
that is used to account for microstructural details is multiscale modeling. This method analysis is done
at multiple scales in time and/or space [6].

A suitable multiscale modeling technique for predicting the constitutive behavior of composite mate-
rials is FE2 [7] [8]. With FE2 a structure at macroscale is discretized and at each integration point a
microscopic model is linked. At both scales a Finite Element (FE) analysis is performed which ex-
plains the name for FE2. As model complexity and structural scale increases, the computational cost
increases such that FE2 becomes intractable in engineering practice. By replacing the FE simulation
at microscale by a surrogate model, computational time can be reduced, making multiscale modeling
feasible for solving complex heterogeneous materials [9].

Finding a balance in computational time, accuracy and the amount of data that is needed to train these
surrogate models, has become an active research field. The options for surrogate models are endless
and often uniquely defined per task. In the field of constitutive modeling, examples of different architec-
tures are the use of Recurrent Neural Networks (RNN) shown by Logarzo et al. [10] and Ghavamian and
Simone [11]. With the use of RNN, path-dependency of heterogeneous materials can be accounted for
by including additional parameters to learn how previous network’s state(s) can be used to make a new

1
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prediction. However, RNNs have the nature to be data-hungry, making it inapplicable in certain sce-
narios. Another class of neural networks is the Physics Informed Neural Network (PINN), which have
been proposed by Raissi et al. [12] to solve partial differential equations. Additional physical relation-
ships, such as initial and boundary conditions, are introduced in the network’s loss function, resulting
in the network converging faster to the target. PINNs are designed to be trained to satisfy both the
given training data and the imposed governing equations. By doing so, a neural network can be guided
without an extensive dataset.

Haghighat et al. [13] presented the application of PINNs to inversion and surrogate modeling in solid
mechanics. In the case of inversion, structural or model parameters are often unknown and so mea-
sured or generated data is used to make predictions on said model parameters. Despite the success
exhibited by the PINN approach, they found that it faces challenges when dealing with discontinuous
solutions. The network architecture is less accurate on problems with localized high gradients as a
result of discontinuities in the material properties or boundary conditions, like in the case of composite
materials.

Another way to introduce physics into NNs has been explored by Maia et al. [14]. The architecture sug-
gested in [14] is a neural network with embedded physics-based material models in a material layer.
This network is trained on small datasets and is able to capture complex path-dependent behaviors
through the history variables automatically handled by the material model, hence the name physically
recurrent NN or PRNN. The approach outperforms state-of-the-art RNNs with significantly less data
and speed-ups of four orders of magnitude in FE2 problems. The surrogate model consists of an en-
coder to convert macroscopic strains at each integration point to fictitious strains. The material layer is
responsible to convert local strains to local stresses using a material model, which takes into account
the previous state of the material point through its own internal variables. The decoder converts the
microscopic stress back to macroscopic stress which concludes a single iteration. To this moment, this
architecture has been investigated only for predicting average stresses. Conceivably the embedded
material models contain additional information on the microscopic state of the material.

1.2. Main research objective
A surrogate model that can accurately predict maximum values can give valuable insight in the be-
haviour of the heterogeneousmaterial at microscale which translates to structural behaviour at macroscale.
Specifically for the PRNN there are reasons to believe this works as this network is already able to accu-
rately predict to complex unseen loading scenarios and captures path-dependency. This gives reasons
for the main objective of this research to create a modified PRNN that is able to accurately predict local
quantities at microscale such as the maximum stress.

A secondary objective is to see if transfer learning can be applied to use parameters from the original
PRNN as input to the new model. This can speed up the learning and possibly lead to better predic-
tions. Haghighat et al. [13] applied transfer learning to use a pre-trained PINN to perform training on
new datasets with different parameters and concluded that training converged much faster with trans-
fer learning. Cheung and Mirkhalaf [15] showed how transfer learning is used to generate a high-fidelity
dataset by using a limited amount of high-fidelity data and a pre-trained RNN trained on low-fidelity data.
In this work, transfer learning strategies will be investigated to leverage the learning from elements of
the current PRNN, such as encoder, decoder and material points, into the new task of predicting max-
imum microscopic stresses.

Finally, a multi-task approach will be considered to see if multiple predictions can be made with a sin-
gle model. Ban et al. [16] applied multi-task neural networks to predict multiple mechanical properties,
like tensile strength and elongation, of steels. Iraki et al. [17] showed a multi-task learning-based opti-
mization approach for finding diverse sets of material microstructures. In the end the proposed model
should suffice with a limited training set, accurately predict unseen loading scenarios and be able to
capture path-dependency.
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1.3. Scope
This research focuses on composite materials consisting of elastic fibers with an elastoplastic ma-
trix. The goal is to modify the PRNN by Maia et al. to predict the maximum hydrostatic stresses at
microscale. Clarijs [18] used hydrostatic stresses as a criterion to predict embrittlement of glassy poly-
mers and Wismans et al. [19] performed a micromechanical analysis of a short-fiber reinforced polymer
of the local stress state. A 3D Representative Volume Elements (RVE) in combination with a consti-
tutive model including hydrostatic stresses as a failure predictor is used that describes the intrinsic
deformation response of the matrix under uniaxial and multiaxial loading conditions. This thesis how-
ever focuses on a single 2D RVE that is used to analyse the material behavior. Three datasets will be
used during this thesis that follow the framework presented by Maia et al..

1.4. Research questions
In order to structure this research the following research question was formulated to address the main
objective:

To what extent is a modified PRNN able to accurately predict local maximum stress values in
heterogeneous microscopic material models?

To answer the main research question, several sub-questions are specified. A short comment is in-
cluded to provide more context with each sub-question:

1. How to efficiently incorporate the maximum stress in the network? The newly generated
data should be used with the current network to assess the accuracy of the current model. Do
any modifications need be made on the current network to correctly process the maximum stress
data? Does the meaning of the current encoder, material layer and decoder change?

2. In what ways can transfer learning be applied to leverage the knowledge of existingmodels
in creating new models?
Various studies [20] [21] [22] have shown that transfer learning can be an efficient technique to use
a trained model to perform other tasks.

3. Can the architecture be leveraged to a multi-task approach?
The main focus of this research is to design a model that predicts maximum stresses. In case
this model performs well, there are now two separate models needed to predict average and
maximum stresses. Can these tasks be combined in a single multi-task model?

1.5. Thesis structure
This thesis is structured as follows:

• The theoretical background is elaborated in Chapter 2.

• Data generation is presented in Chapter 3.

• Designing a model that predicts the local maximum stress is showcased in Chapter 4.

• Chapter 5 presents the transfer learning strategies used to go from one task to another (e.g. from
average stress prediction to maximum microscopic hydrostatic stress).

• Combining tasks in a multi-task approach is investigated in Chapter 6 and Chapter 7.

Following these results, conclusions and recommendations will be presented.



2 | Theoretical framework
The theoretical background that is needed for this thesis is presented in this chapter. The basis forms
the Finite Elements Method and the FE2. Machine learning techniques and methods are presented as
well and these topics are the backbone of this research.

2.1. FEM
The Finite Element Method (FEM) is a popular method to perform structural analysis. The displacement
and it’s derivatives are the unknowns. First, the structure is discretized in space to create a mesh, which
is the numerical domain for the solution. The mesh consists of elements and nodes. Each element in
themesh represents a small finite part of the structure and gives rise to additional equations. Integration
points are defined that live within the elements. Stresses are calculated at the integration points and
extrapolated to the nodes. The stiffness and other properties related to the material are obtained from
the definition of the constitutive model, which relates strains to stresses. These properties must be
known a priori to be able to solve the governing equation:

Ku = f (2.1)
Here K represents the global stiffness matrix, u is the unknown nodal displacement vector and f is the
load vector. When this system of equations is solved, all displacements at the nodes are known and
the displacement and stresses at any other point of the structure can be found by interpolation between
nodes. By combining the equations of all elements with Dirichlet and Neumann boundary conditions, a
system of differential equation arises. Dirichlet boundary conditions specify the solution along a bound-
ary of the domain whereas Neumann boundary conditions specify the derivative of the solution. The
solution at each integration point is approximated by solving the system of equations numerically. This
method works well for homogeneous materials as a single constitutive model is typically assigned to
the entire domain. Composite materials however do not have this characteristic of equal material prop-
erties over its domain. Discontinuities can exist at the microscopic fiber-matrix interface and both the
distribution and direction of fibers vary over the domain. FEM can still be used to analyse the general
structural behavior, but a more complex model is needed to capture more intricate material behavior
that is otherwise lost when homogenizing material properties.

2.2. FE2
Section 2.1 concluded that FEM is a suitable method to analyse materials but the problem with com-
posites is the separation of scales in which the length scale of the microstructure is too small to model
entirely. The multiscale finite element analysis (FE2) method is a popular method to model composites.
The name suggests that the analysis is done at multiple scales: at structural macroscale (Ω) and at
microscale (𝜔) where fiber-matrix structures are modeled. The microscale models are implemented
at each integration point of the grid at macroscale as this is where the solution is approximated. The
macroscopic strains 𝜀Ω act as boundary conditions for each microscale model. The FE analysis at
microscale outputs a field of microscopic strains 𝜀𝜔 and microscopic stresses 𝜎𝜔. After homogenizing
the microscopic stresses, a single stress value is sent back to the macroscale model and the global
stresses 𝜎Ω are computed. Finally, global equilibrium can be solved. The comparison of FEM and FE2
is shown in the schematic overview in Figure 2.1.

For each iteration of the FE analysis at macroscale, a finite number of calculations need to be made for
each model at microscale, one at each integration point. This nested number of calculations causes
the computational time to be amplified greatly, often leading to prohibitive computational costs.

4
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Figure 2.1: FEM, FE2 and surrogate models at different scales

2.3. Machine Learning
One way to improve FE2 is by substituting the computationally expensive microscale models with a
mathematical model that is trained through machine learning, indicated by the green block in Figure
2.1. Machine learning is a subset of Artificial Intelligence (AI) that uses statistical learning algorithms
to recognise patterns in data. A human being is often able to see patterns in 2D or 3D, but once the
data is highly dimensional, this becomes very challenging. As a computer processes data completely
differently than a human does, it is able to learn patterns in higher dimensions. As promising as this
sounds, there are drawbacks like the curse of dimensionality. This refers to difficulties like the exponen-
tial increase in computational time, data sparsity and model overfitting that arise when data becomes
highly dimensional. Data sparsity is when the data points are widely distributed in a high-dimensional
space, making patterns harder to observe. Regularization techniques help to prevent overfitting and
enforce sparsity in the model parameters. The availability of enough useful and diverse data is often a
challenge. The goal of this research is mostly to reduce computational time and thus to limit the amount
of data needed.

This section presents Neural Networks, a popular machine learning technique that will be applied in
this research. First, a basic network is presented and then more complex variations will be investigated.

Figure 2.2: A visual representation of a Neural Network
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Neural Networks
As the name suggests, a Neural Network (NN) is a network created by connecting layers of neurons.
Conceptually, there are similarities to the brain as information is transferred through interconnected
neurons. Figure 2.2 shows a visual representation of a Neural Network with an input layer (3 neurons:
𝑥1, 𝑥2, 𝑥3), 2 hidden layers (5 neurons each) and an output layer (3 neurons: �̂�1, �̂�2, �̂�3). The neurons
of each layer are connected with all neurons of the next layer, indicated by the grey dashed lines. Data
flows from the input layers, through the hidden layers to the output layer and at mathematical opera-
tions are done at each layer. With respect to this thesis, the macroscopic strains functions as input
data and 𝑥1, 𝑥2, 𝑥3 can be rewritten as 𝜀Ωxx, 𝜀Ωyy, 𝜀Ωxy.

The hidden layers are responsible to learn intricate patterns in data which is the core strength of this
network. Two operations are applied at the neurons in the hidden layers, as indicated in Figure 2.2.
First, Σ represents the input which is a linear combination of all neurons in the previous layer (al−1),
multiplied by a weight (Wl) and an added bias term (bl).

vl =Wlal−1 + bl (2.2)

The weights are scalars that indicate the importance of a certain neuron in the previous layer. The bias
term is added to be able to shift the function vl to be able to better fit the data. The effect of the weights
and bias is shown in Figure 2.3.

Figure 2.3: Weight 𝑤𝑙 and bias 𝑏𝑙 in a Neural Networks hidden layer

The second operation is to apply an activation function 𝑓 over vl that was obtained in equation 2.2 at
each neuron. An example of an activation function is the ReLU activation function, which only outputs
positive numbers. ReLU outputs 0 in case vl ≤ 0 and it gives the value of vl in case vl > 0. The
activation function is a way to introduce non-linearity to the system. The output of the neuron is al and
is given by:

al = 𝑓(vl) (2.3)

The final layer, in Figure 2.2 indicated by �̂�1, �̂�2 and �̂�3, is the output layer. For this thesis, the task of
the network is to predict the maximum microscopic stresses and so the final layer can be modeled by
3 neurons: 𝜎Ωxx, 𝜎Ωyy, 𝜎Ωxy.

Besides parameters like the number of hidden layers and the amount of neurons in each layer, the
predictions of the strains by the network is dependent on the weights (Wl) and biases (bl). These
parameters are assigned a random value before the network is trained. The training of the network
happens when data is seen by the network and the predictions are compared to the known true value,



2.3. Machine Learning 7

also known as the target y𝑖. A popular loss function is the mean squared error (MSE) which is in-
troduced in equation 2.4. The MSE measures the error by assessing the average squared difference
between the target value y𝑖 and the model prediction ŷ(x𝑖) over 𝑁 samples. In case there is no error,
the MSE equals zero. This suggests that the value of the MSE, or any other loss function, should be
minimized in order to obtain a model with high accuracy.

MSE = 1
𝑁

𝑁

∑
𝑖
(y𝑖 − ŷ(x𝑖))2 (2.4)

A risk that has to be taken into account when optimizing the model parameters is overfitting. Overfitting
occurs when the network is trying to fit the data, or noise in data, too well and is unable to generalize
to new or unseen data. Techniques exist to prevent from overfitting. Often, the dataset is split up in a
training set and a validation set. The model parameters are trained with the training dataset and then
the best model is validated by an unseen validation set. The validation loss is the error between the
predicted output of the model and the target value on the validation dataset which is unseen during
training. The model that has the lowest validation loss, also generalization loss, is often considered
optimal, as the chance of under- or overfitting are lowest while remaining accurate in its predictions.
This balance can be seen in Figure 2.4.

Figure 2.4: Training loss and validation loss

The process described above is feeding data through a network and so the name feed-forward Neu-
ral Network was formed. Until now, the process of updating the weights has not been touched yet.
This process causes the actual output to be closer to the target and is often done by an optimization
algorithm called Stochastic Gradient Descent (SGD). In short, the algorithm uses gradient of the loss
function to then update the weights in the direction that causes the function to minimize. A popular
method to derive the gradient with respect to variables is through backpropagation. The change in
weights, among other variables, is controlled by a parameter called the learning rate. This variable de-
cides the amplitude of the change in weights. A large value of learning rate can decrease the amount
of training that is needed, but if the value is too high, the network might not converge to the global
minimum of the loss function. On the other hand, a small value of learning rate will cause training to
cost a lot computational wise, which is not desirable.

A feed-forward Neural Network is the basis of more complex NNs. For a lot of tasks this network
suffices, but when the complexity of the data increases, this network often needs too much data or
does not converge to the target. For the task in this thesis, the complexity lies in the non-linear load
path, path-dependency and the non-homogeneous material model. This path-dependent behaviour is
an important aspect that can be captured with Recurrent Neural Networks.
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of Neural Network to process sequential data such as a
time series. The structural response due to a non-linear load is an example of time series. RNNs have
the ability to store past information in order to make predictions about future data points. The storage
of historic data is captured in a hidden state which acts as a memory. This memory is indicated with
a black box in the left visual representation of a RNN in Figure 2.5. The representation on the right in
Figure 2.5 shows the expanded version which showcases the dependency on the previous state more
clearly. This hidden state allows the network to capture temporal dependencies which are relevant in
this thesis. The equations have a similar setup as equations 2.2 and 2.3 in feed-forward NNs, but the
terms related to the hidden state are added as can be seen in equations 2.5 and 2.6.

h𝑡 = 𝜙(W1x𝑡 +W𝑠h𝑡−1 + b𝑠) (2.5)
ŷ𝑡 = 𝜙(W2h𝑡 + b2) (2.6)

Another feature of RNNs is that the weights between different time steps are shared. This greatly
reduces the amount of parameters the network needs to learn which is advantageous. Another advan-
tage is that RNNs can process time series of any length. This is helpful as the length of a time series
may vary, or is simply unknown a priori.

Figure 2.5: Recurrent Neural Network - two schematic representations

Besides the potential of RNNs, there are things to be wary of. As with feed-forward NNs, a RNN uses
an algorithm, like backpropagation, to find the gradients with respect to the target function in order to
update its weights. As the RNN uses all previous timesteps through the hidden state, the contributions
of each time step to the gradient is multiplied through the chain rule. This causes the gradient to either
shrink to zero (vanishing gradient), or explode to infinity (exploding gradient).

A solution to this problem is to control the memory by the introduction of special cells. These cells
consist of gates that can either pass or forget information. This selective retention and omission of
data is crucial in maintaining relevant information, especially over long sequences. Gated Recurrent
Unit (GRU) and the Long-Short Term Memory (LSTM) are two popular methods that apply these cells.
The gates have trainable parameters that need to be optimized, just like the weights for the NN itself.

The amount of historic data the cells needs to let through is dependent on the complexity of the data.
Often the amount of variables associated with the data is highly dimensional and the effect of any vari-
able can be dependent on many things like amplitude and frequency. An example is when one wants to
predict the air temperature. Frequency dependent variations like day and night and summer and winter
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can be thought of, but there are much more complex natural phenomena that effect the air temperature
like ocean currents and the amount of greenhouse gases in the atmosphere.

Due to the complexity of the data in this thesis and the architecture of RNNs being prone to overfitting,
there are better architectures to be considered. A Physically Recurrent Neural Network can lead to
promising results with less needed data which is discussed in section 2.3.

Physically Recurrent Neural Network
In this section, the hybrid architecture proposed in Maia et al. is briefly summarized. The main com-
ponents of PRNNs includes a data-driven encoder, a material layer with embedded physics-based
material models and a decoder.

Encoder
The input for this architecture consists of the macroscopic strains #»𝜀 Ω at the integration points of the
macrostructure. The input is sent through an encoder, which consists of an arbitrary number of (dense)
layers of neurons with conventional activation functions. The encoder outputs data that live in latent
space, which is an abstract higher-dimensional representation of several microscopic integration points
each, with dimension 3 (for 2D problems). This way, the output of the encoder can be interpreted as
the strains of fictitious material points. In this work, the encoder consists of a single dense layer.

Material layer
The material layer is the main identity of this architecture. The output of the encoder is forwarded to
the material layer, in which the material models are introduced. A material model is a set ofm neurons,
where m equals the input size. In case of 2D modelling, this results in three stress components and
so the material models are a group of 3 neurons, which represent the three stresses. Each of these
groups represents a fictitious integration point in which a constitutive model 𝒟𝜔 is nested that convert
the fictitious strains (𝜀) to stresses (𝜎). The implementation of the material layer is based on the idea
that the output of the encoder is an actual representation of strains, instead of some unknown variable
in latent space. This (partly) resolves the idea of the network as being a black-box.

Figure 2.6: PRNN material model
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Besides converting strains to stresses, the material model also stores its current state in an internal
variable #»𝛼 𝑡 at timestep 𝑡, as can be seen in Figure 2.6. These variables are then used as input, along
with the fictitious strain, in the following time step, allowing path-dependency to arise naturally. This
operation is shown in equation 2.7.

#»𝜎 , #»𝛼 𝑡 = 𝒟𝜔( #»𝜀 , #»𝛼 𝑡−1) (2.7)

Decoder
The material layer then forwards the data to the decoder. The decoder does the opposite of the en-
coder as it converts data from latent space back to its original dimensionality and complexity. In this
case the decoder converts the stresses at the fictitious material points to the predicted stresses at the
integration points of the macrostructure #»�̂�Ω. This process is an analogy to the homogenization operator
that transforms the microscale stresses to macroscale stresses. The decoder in [14] consists of a dense
layer with a SoftPlus activation function applied on the weights. This is done to represent the homoge-
nization process through numerical integration in which weights are strictly positive. The output of the
decoder is then used as output of the network.

2.4. Transfer Learning
In the previous section a couple of different machine learning architectures have been shown. It is
mentioned that these models often need huge training datasets, hindering their training procedure. It is
a tedious task to create new model from scratch when already existing and proven models have near
similar tasks. Transfer learning is a method where an existing model is used as input for a new model
or a new task. This can drastically improve training a model for new tasks, especially when the previ-
ous model was trained on an extensive dataset. The training of the new dataset is likely to start with
a better accuracy, converges quicker and might be able to reach a higher performance than training
without transfer learning.



3 | Data
In the domain of Computer Science, the phrase “garbage in, garbage out” is used to describe the
importance of having high-quality, relevant and plentiful data. Data is the input to machine learning
models and so flawed, biased or poor quality data will result in poor models. Data enables the learning
process of a model, allowing models to identify patterns, make predictions and to improve over time.
For any model to generalize well and to perform robustly, the quantity and diversity of training data is
to be considered. This chapter describes the process of the data generation and what type of data is
generated.

3.1. Micromodel
The complexity of a composite material at macroscale can be captured at microscale by a Representa-
tive Volume Element (RVE). A RVE is defined as the minimum volume of a sample required from which
the material properties are independent of the size of the sample [23]. This suggests that the behavior
of the RVE is to be the same as a macroscale model with equal initial and boundary conditions. This
is very useful as a single micromodel suffices to generate all randomized stress-strain paths.

Figure 3.1: 2D Representative Volume Element adopted in this work

The RVE in question is shown in Figure 3.1. This micromodel contains 36 fibers (shown in orange) that
are encapsulated in a matrix (shown in blue). The fibers have the following elastic material properties:
E = 74000 MPa and 𝜈 = 0.2. Elasticity in material science is the ability of a deformed material under
loading to revert to its initial state once loading is removed. The matrix is modeled with elastoplastic
properties with isotropic hardening. Elastoplasticity refers to materials that, dependently on the magni-
tude of the loading, have both elastic as plastic deformation. Plasticity is when a material under loading
does not deform to its initial state when loading is removed. The yield point is the critical stress value
at which a material transitions from elastic to plastic behavior. Isotropic hardening refers to the uniform
expansion (in all directions) of the yield surface as the material undergoes additional plastic strain.

The elastoplastic matrix is modeled with the von Mises yield criterion, which states that plastic yielding

11
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begins when the 𝐽2 stress deviator invariant reaches a critical value [24]. In other words, this criterion is
able to describe the yielding even during complex loading situations where a combination of compres-
sion, tension and shear are applied. The material properties are E = 3130 MPa, 𝜈 = 0.3 and the yield
stress function is given by: 𝜎𝑦 = 64.8 − 33.6𝑒𝑥𝑝−𝜖

𝑝
𝑒𝑞/0.0003407, where 𝜖𝑝𝑒𝑞 is the equivalent plastic strain

which is a scalar quantity that represents the accumulated irreversible plastic deformation [24], with 𝜖𝑝𝑒𝑞
given by:

𝜖𝑝𝑒𝑞 = √
2
3𝜖

𝑝
𝑖𝑗𝜖

𝑝
𝑖𝑗 (3.1)

Furthermore, plane stress is assumed for both the fibers and the matrix as out of plane stresses are
assumed to be negligible.

The micromodel is discretized in space by applying a mesh. The choice of triangular elements is ev-
ident for most 2D cases. A triangular shape is versatile and can represent complex curved shapes,
which is relevant for the circular fiber components. The model consists of 3638 nodes and 7088 ele-
ments, which is split up in 3745 matrix elements and 3343 fiber elements.

Finally, boundary and initial conditions (BC, IC) are applied. The ICs are such that the structure is at
rest initially. Dirichlet BCs in this model are applied at node 0 and 1. Displacements in both 𝑥- and
𝑦 directions are limited at node 0. Node 2 has a limitation of displacements in 𝑥-direction. Neumann
BCs are applied at node 1 and node 2. Node 1 can be displaced in both 𝑥- and 𝑦 direction. A displace-
ment in 𝑦-direction causes shear and a displacement in 𝑥-direction causes, dependently of direction,
compression or tension. The BC at Node 2 is in 𝑦-direction and gives either compression or tension as
well. The BCs are indicated in Figure 3.1.

3.2. Loading
The magnitude and direction of the loading over time are defined in this section and are presented
by the variables 𝜀Ω𝑥𝑥, 𝜀Ω𝑦𝑦, 𝜀Ω𝑥𝑦. The articles that have lead up to this research started with a canonical
dataset [25] or Type I loading [14] of 18 proportional loading directions. These include directions with
uniaxial strains, pure shear, biaxial cases and biaxial with shear cases. Proportional suggests that a
constant strain value (Δs = 1.667𝑥10−3) is applied after each timestep. In both works, 60 timesteps
were used for each loading path. This dataset was a good starting point as the stress-strain results are
known for canonical problems.

Complex composite structures often experiences complex loading scenarios. The canonical and Type
I dataset is not diverse enough to be able to capture said complex loading scenarios. A load can be
applied from any direction so a dataset with strain paths with proportional random directions is to be
created. This is also referred to as Type II loading by Maia et al. [14]. In this work, 1000 samples are
generated with proportional random directions. Both Type I and Type II are referred to as monotonic
loading. The loading function is displayed in the first plot of Figure 3.2.

The second dataset that is used in this work is for non-monotonic loading paths which consists of a
linear piecewise function. The strain paths in this dataset have a fixed moment in time (at timestep 𝑡 =
40 [-]) when unloading takes place. At 𝑡 = 50 [-], the loading direction is reversed again. This dataset is
predominantly used as a validation set, so only 500 stress-strain paths were created. The stepsize and
the number of timesteps is the same as for the monotonic datasets. The loading function is displayed
in the second plot of Figure 3.2.

Finally, a more general approach was taken to create more diverse non-proportional loading paths.
This approach, also known as random walks, samples random strain increments with random loading
direction for each timestep. Each strain component is sampled from Gaussian Processes with 𝑋 ∼
𝒩(𝜇, 𝜎2) and a covariance function given by:

𝑘(𝑥𝑝, 𝑥𝑞) = 𝜎2𝑓 𝑒𝑥𝑝(−
1
2𝑙2 ‖𝑥𝑝 − 𝑥𝑞‖

2) (3.2)
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where 𝑥𝑝 and 𝑥𝑞 are the time step indices of the sequence of loading function values, the variance
𝜎2𝑓 determines the range of the step size and the smoothness of the strainpath is described by the
lengthscale 𝑙. The work of Maia et al. showcases the full algorithm that was used to generate random
loading paths with GPs. Over 2500 strain-strain paths of this type were generated in this work. The
loading function is displayed in the final plot of Figure 3.2.

Figure 3.2: Proportional and non-proportional loading functions considered to generate the datasets

3.3. Generating data
The full-field stresses can now be generated by using FEM with the RVE and a sampled strain path
as input. This research focuses on the stresses in the matrix, resulting in 3745 stress values at each
timestep. As the maximum stress is a single quantity, the stress components (𝜎𝜔𝑥𝑥, 𝜎𝜔𝑦𝑦, 𝜎𝜔𝑥𝑦) are used
to compute the hydrostatic stress:

𝜎𝜔hydro =
𝜎𝜔𝑥𝑥 + 𝜎𝜔𝑦𝑦

2 (3.3)

This represents the isotropic part of the stress tensor, associated with compression (or tension) without
distortion. Initially the von Mises stresses were computed, but this resulted in a dataset that lacked in
diversity as the data was purely positive and the maximum stress over time was mostly constant. The
hydrostatic stress data is more diverse, which is beneficial for machine learning operations.

For each path, the maximum stress at each timestep is found by looping through time and applying a
function on the data to filter the maximum value. Figure 3.3 shows a selection of 500 samples of each
dataset, from which 5 samples are colored to showcase their unique features more clearly.

Figure 3.3: Maximum stresses 𝜎𝜔hydro for different datasets of 500 samples

The full-field stress evolution of a random GP sample is shown in Figure 3.4. A snapshot at 8 different
timesteps show how the stresses develop over time. The colorbar indicates the tensile and compres-
sive stresses that occur in the sample. Figure 3.5 indicates the range of stresses that occur at each
timestep more clearly with the same color gradient for the fiber and the matrix that was used in Figure
3.4. The timesteps selected in Figure 3.4 match the positions of the vertical lines in Figures 3.5a and
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3.5b to be able to compare the stress ranges. On top of the vertical dashed lines, the stress distribution
is plotted. This distribution indicates the probability density of a specific stress value at a timestep. The
maximum stress in the matrix is the main topic of research and so the upper curve in Figure 3.5b will
be used as input to the machine learning model that are discussed in later chapters.

(a) 𝑡 = 1 (b) 𝑡 = 3 (c) 𝑡 = 15 (d) 𝑡 = 19

(e) 𝑡 = 23 (f) 𝑡 = 29 (g) 𝑡 = 44 (h) 𝑡 = 56

Figure 3.4: The full-field hydrostatic stress 𝜎𝜔hydro evolution of a random GP sample

(a) Range of fiber stresses at each timestep (b) Range of matrix stresses at each timestep

Figure 3.5: The hydrostatic stress 𝜎𝜔hydro ranges of a random GP sample over time including the range of stresses at each
snapshot of Figure 3.4 indicated by the vertical dashed lines

One observation that can be made on the datasets is that the concentration of hydrostatic stress 𝜎𝜔hydro
in the matrix is around 65MPa for all datasets. The difference in material properties between the matrix
and the fibers causes the stress in the matrix to reach its capacity while the fibers can still take up more
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load. This observation is made visual by Figure 3.6, where a random sample from the monotonic
dataset was taken. The blue and red lines refer to the stresses in the matrix and fibers respectively.
The continuous blue line stagnates around timestep t = 10 [-] while the red line is still increasing. This
can also be seen in Figure 3.5, where the range of full-field matrix stresses show a clear limit.

Figure 3.6: The difference in maximum hydrostatic stress 𝜎𝜔hydro in the fibers and matrix

Furthermore, all datasets show a smooth curve. Both monotonic and non-monotonic datasets show a
smooth curve as a constant strain increment is applied at each timestep. The GP dataset is created
with lengthscale parameter 𝑙 as an input, which is the parameter influencing the smoothness of the
curve. Smooth curves often benefit training of machine learning models because the stress evolution
is more predictable. However, the network should also be able to make accurate predictions in case
the strain increments drastically. A prime example of a sudden change is an impulse, but this is not
investigated in this research.

Table 3.1: Representation of how the data is structured

𝜀Ω𝑥𝑥 𝜀Ω𝑦𝑦 𝜀Ω𝑥𝑦 𝜎Ω𝑥𝑥 𝜎Ω𝑦𝑦 𝜎Ω𝑥𝑦 𝜎𝜔,max
𝑥𝑥 𝜎𝜔,max

𝑦𝑦 𝜎𝜔,max
𝑥𝑦 𝜎𝜔,max

hydro

Sample 1
Timestep 1

...
Timestep 60

Sample N
Timestep 1

...
Timestep 60

Table 3.1 shows the template in which the data is structured. The first 3 columns of the data show
the input of the model which is the strain values (𝜀Ω𝑥𝑥, 𝜀Ω𝑦𝑦 and 𝜀Ω𝑥𝑦). The work of Maia et al. is based
on averaged stresses (𝜎Ω𝑥𝑥, 𝜎Ω𝑦𝑦, 𝜎Ω𝑥𝑦) and as transfer learning is one aspect of this work, the average
stresses are needed. The averaged stresses are appended in columns 4-6. The maximum hydrostatic
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stress (𝜎𝜔,max
hydro ) is based on the full-field stresses components at each level. The maximum hydrostatic

stress and its components (𝜎𝜔,max
𝑥𝑥 , 𝜎𝜔,max

𝑦𝑦 , 𝜎𝜔,max
𝑥𝑦 ) are appended to the matrix in columns 7-10. All

stress values are in MPa and the strain values are unitless. The column and row headers are indicative,
as only the values are used to form an array with floats.



4 | Designing the PRNN
In this chapter, 3 variants of the original PRNN are investigated for predicting the maximum hydrostatic
microscopic stress. Further chapters will then be built on top of the best performing architecture that is
found in this chapter.

4.1. Model A: Computing hydrostatic stresses after decoding
The prediction of the original PRNN is a [3x1] tensor that consists of the predicted average stresses
[�̂�Ω𝑥𝑥, �̂�Ω𝑦𝑦, �̂�Ω𝑥𝑦]. As the maximum hydrostatic stress is a tensor with size [1x1], the output of the PRNN
has to be modified. This first variant will compute the hydrostatic stress �̂�𝜔,max

hydro before the loss function
is computed. The target of the loss function is the 𝜎𝜔,max

hydro that is presented in the final column of Table
3.1. Figure 4.1 shows the architecture of this proposed network. The green nodes are the three macro
strain components that are the input. The material layer embeds the 𝐽2 material models that are shown
in the blue nodes. These are the same as the original PRNN. The layer with the orange nodes is
the output of the network, which in the original model consisted of macroscopic stresses, while here
it consists of the microscopic stresses that lead to the maximum hydrostatic stress. All dashed lines
indicate the connection between nodes where a weight and activation function is applied, while the
solid lines connecting the predicted stresses with the final node means that equation 3.3 is applied
directly.

Figure 4.1: A new proposed architecture where the hydrostatic stress is computed after the original PRNN.

As the output and the target are different than in prior work, the optimal material layer size is also sub-
ject to change. A model selection procedure is done, where the material layer size and training size
are variables. For this model selection, the material layer size range is 1−5 and the amount of training
curves used are selected from the numbers 𝑛 = 6, 9, 18, 36, 72. The curves used during training are
randomly sampled from the whole dataset. As the performance of the network is reliant on the sampled
training curves and weight initialization, 10 networks will be trained for each combination of material
layer size and training curve size. This is especially important for the combinations where the number
of training curves is limited (e.g. 𝑛 = 6, 9). The goal of the model selection is to find the most optimal
number of material points for this network.

17
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The batch size is set to 9 and the maximum number of epochs is set to 2500. The parameter to stop
the training early is set to 500 epochs. This means that the training will stop if the validation loss has
not improved for 500 epochs. This speeds up the computation time in case the training stagnates. The
proposed network is trained on both the monotonic and the GP dataset. Figure 4.2a shows the vali-
dation loss of the model trained on monotonic data (ℳ𝐴

𝑀𝑜𝑛𝑜) over the monotonic validation set 𝜈𝑀𝑜𝑛𝑜.
Figure 4.2b shows the validation loss of the model trained on GP data (ℳ𝐴

𝐺𝑃) over the GP validation
set 𝜈𝐺𝑃. The horizontal axis indicates the material layer size and the colors refer to the number of
training curves used. The colored dots illustrates the mean of the validation loss of the 10 networks per
combination. The colored hatch show the range between the minimum and maximum validation error
of each combination.

(a) Model selection on monotonic dataset (b) Model selection on GP dataset

Figure 4.2: The result of the model selection for the monotonic dataset and GP dataset for model A

The results of the model selection in Figure 4.2 show that the performance of both networks did not
yield the expected results. Usually the validation error decreases as the number of training curves is
higher. For all material layer sizes this is not the case as the validation error is stuck at ∼ 50 MPa. The
range of the stresses in the matrix over all timesteps is between −65 and 65 MPa.

For the network with material layer size 3 and 18 training curves, the training and validation curves are
shown (Figure 4.3) for both the GP and the monotonic dataset. Some comments on these plots are
the following:

• The training of both networks was concluded after only a few epochs due to the early stopping
mechanism. The green line indicates the moment that the validation error did not improve for 500
epochs.

• The validation curve of the monotonic dataset increases sharply after 100 epochs which indicates
severe overfitting. This means the model learns the training data too well at the cost of its ability
to generalize to unseen data.

• The validation curve of the GP dataset stabilizes after a few epochs, suggesting that the model
has reached its best performance early on and does not improve afterwards.

• The training curves of both datasets show that the model is improving over the number of epochs,
suggesting that the model learns from the data. The curve of the first plot shows additional
learning over all epochs while the second curve stagnates after 200 epochs.

• The high validation error and signs of overfitting indicate that either the data is too complex, or
the proposed architecture is not well suited for this task.
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Figure 4.3: Validation and training curves of networks trained on GP and monotonic data for model A

So far, the training of the network and the resulting errors are underwhelming. Predictions made by
the network are now analysed to see why this is the case. Figure 4.4 shows the results of one network
trained on GP data that consists of 5 material points and was trained with 36 training curves. The first
5 figures plot 3 different curves. The dashed blue line is the computed hydrostatic stress from the 3
stress components in the material point to see what happens in the material point. The solid blue line
indicates the decoded stress from an individual material point, or in other words the contribution of each
material point to the final prediction. The prediction of the full network is shown in gray in each plot.
The last subplot shows the prediction of the full network versus the target.

Figure 4.4: Results of the material points, the decoder and the total architecture for model A
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As this network is overfitting on the training data and the validation loss is very high, drawing conclu-
sions here is challenging. However, as the final prediction of the model is by the decoder that scales
and adds up all contributions, this averages out the stresses with fixed contributions among the fictitious
material points. This makes it very hard for this network to make accurate predictions to the maximum
stress. Having the decoder made sense for predicting the average stresses, but clearly for this task it
does not perform well.

4.2. Model B: Computing hydrostatic stresses before decoding
The first variant did not yield the expected results and so changes are made for the second variant.
Even though it is suspected that the decoder does not favor this task, it is tried once more. Now, the
hydrostatic stresses are computed inside the material layer. The reasoning is that this greatly reduces
the number of trainable weights in the decoder. Model A has 9 ⋅ 𝑚 number of weights in the decoder
while this model only has 𝑚 number of weights in the decoder, with 𝑚 being the number of material
points in the layer. This simplifies the model and a smaller, simpler network is often easier to train and
may converge faster and more reliably. Computing the hydrostatic stress is done after the 𝐽2 material
model generates the fictitious stresses and this is annotated with 𝜎𝐽2ℎ𝑦𝑑𝑟𝑜 in Figure 4.5. All other inputs
are identical as model A in Section 4.1.

Figure 4.5: Results of the material points, the decoder and the total architecture for model B

Figure 4.6a shows the validation loss of the model trained on monotonic data (ℳ𝐵
𝑀𝑜𝑛𝑜) over the mono-

tonic validation set 𝜈𝑀𝑜𝑛𝑜. Figure 4.6b shows the validation loss of the model trained on GP data (ℳ𝐵
𝐺𝑃)

over the GP validation set 𝜈𝐺𝑃. The results are in line with the results from the first variant in Section
4.1 and thus no additional comments are made here.

The training and validation curves of two random samples are shown in Figure 4.7 for both the mono-
tonic as the GP dataset. The results of these plots are in line with the results shown in Figure 4.3 of
the previous variant. The final analysis for this model is to show predictions made by the network. So
far, the results have been the same as model A which also has a decoder. No improvements have
been made by changing the network by computing the hydrostatic stress in the material layer before
decoding. Figure 4.8 shows the prediction of a network with 5 material points, trained on 36 training
curves. The same conclusion can be drawn here. The decoder seems to average the stresses from
the material points and thus the network is not able to predict maximum stresses. This gives reasons
for the next model to have no decoder.
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(a) Model selection on monotonic dataset (b) Model selection on GP dataset

Figure 4.6: The result of the model selection for the monotonic dataset and GP dataset for model B

Figure 4.7: Validation and training curves of networks trained on GP and monotonic data for model B.

Figure 4.8: Results of the material points, the decoder and the total architecture for model B
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4.3. Model C: Selecting the maximum stress without decoding
The first two variants in Section 4.1 and 4.2 did not yield the expected results. The decoder seems to
average the stresses, which is not desired for finding the maximum. An architecture without a decoder
is now considered. By removing the decoder, the learnable parameters in the network are reduced
by half, which is beneficial during training as this takes less computational power. The network is less
complex and is shown in Figure 4.9. The dashed lines are associated with weights and are trainable
parameters, while the solid lines relate to functions like the computation of the hydrostatic stress from
its components inside the material layer and selecting the maximum stress to compute the maximum
hydrostatic stress.

Figure 4.9: Proposed architecture with selecting the maximum stress after the material layer

The same settings are used from previous architectures like the number of epochs and number of
training curves. Two changes are made. The first is the addition of a function that finds the maximum
stress from all hydrostatic stresses that are computed inside the material layer. The second change is
the increase in number of fictitious material points used in the material layer. The idea behind this is that
there are more stress values computed by the material layer, increasing the chance that the maximum
value is close to the target. The material layer size still uses 1 − 5, with an addition of 7, 9, 11, 13, 15.

Figure 4.10: The result of the model selection for the monotonic dataset and GP dataset for model C

The results of the model selection are presented in Figure 4.10. Note the vertical axes are plotted
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in log-scale to highlight the differences in the lower stress ranges more clearly. In comparison to the
results of the previous architectures, these results are more in line with the expectation. The larger the
number of training curves, the lower the validation error. The validation error also decreases when the
material layer size increases, up to a moment when there are enough points. As this exact moment is
impossible to predict, the model selection shows its worth as the plots presented clearly indicate the
performance of the networks with varying parameters. The lowest absolute error over the validation
set for this architecture is around 2MPa, in line with the results achieved by the networks of Maia et al..

The training and validation curves are plotted for a random monotonic and GP sample respectively in
Figure 4.11. The sample from both datasets is from a network with 5 fictitious material points and 36
training curves were used. The result on these curves also indicate a much better performance over
the previous architectures. Some comments on these plots are the following:

• Both models show a consistent decreasing training error, with the model improving its perfor-
mance on the training data. The training error of the monotonic dataset is a factor 2 lower than
the GP dataset. This is because the variation in data in the monotonic dataset is much more
limited than the GP dataset. The validation error for the monotonic dataset however is larger as
some large outliers in the validation dataset influence the error.

• The validation error of the monotonic model decreases over the epochs as well, but the curve
shows sharp fluctuations throughout the epochs. The sharp spikes, or noise, are due to mini-
batches as the gradients for each weight update iteration will not be calculated on all available
training data, but only a limited subset (batch). It seems unwanted but some noise is actually
desirable as it may help the optimizer get away from local minima.

Figure 4.11: Validation and training curves of networks trained on GP and monotonic data for model C

Finally, a network with 7 material points is selected that was trained on the GP dataset with 36 training
curves (Figure 4.12). Because this network has no decoder, there are only 2 curves in each plot. The
blue dashed line indicate the hydrostatic stress in each material point. The gray line is the final predic-
tion of the network. In the last plot, the target is shown in a black dashed line. The colors in this plot
equal the colors in the other plots to see which material point is responsible for the prediction. What is
interesting here, is that some points in this sample follow the maximum stress quite closely (material
points 1, 3 and 7). Other points do not contribute to the final prediction at all. This does not mean that
this architecture would perform better if only 5 material points were used though. Most samples that
were investigated had some points not contributing to the overall prediction of the model. The error of
this sample is only 3.72 MPa which is very impressive for a model with such a low amount of trainable
parameters. This model has 7 material points (each consisting of 3 nodes) that are fully connected to
the 3 input nodes. This results in 63 trainable weights. In the final plot of Figure 4.12 there are gaps
between the predictions from different material points. This is because the solid colored lines connects
consecutive predictions from a single material point between some timesteps. The gap indicates the
next prediction is from a different material point.
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Figure 4.12: Results of the material points and the total architecture for model C with 7 material points

Figure 4.13 shows the predictions of a network with only 5material points and trained on 6 curves. The
error of this sample is just 4.13 MPa, showing the network is capable of using very little training data
without the need for a lot of material points.

Figure 4.13: Results of the material points and the total architecture for model C with 5 material points

The idea behind this network follows the principle of finding the maximum stress in the RVE, by simply
selecting themaximum occurring stress. When evaluating the stresses in the RVE, themaximum stress
was often found in a different point. Having the freedom of changing points in this network works very
well rather than using a decoder and have a stress contribution from each material point. The results
of model C are excellent. This model has a very small number of trainable parameters (9 ⋅ 𝑚 with 𝑚
equals the number of material points), trains and converges very fast (< 2000 epochs) and shows to
perform well on a few training curves. Therefore, from this point, only this network is considered. The



4.4. Cross validation 25

next sections in this chapter will show how robust this network is and the following chapters will show
if this network can be leveraged to reach a higher potential in a multi-task approach.

4.4. Cross validation
Overfitting is one of the main concerns in machine learning. Cross validation provides a robust mech-
anism to detect overfitting. The architecture proposed in Section 4.3 showed promising results for the
models that were validated with the same type of data. The model trained on monotonic data was vali-
dated with a monotonic validation set and the same holds true for the GP data. Additional analyses are
done on this model to understand the performance in more detail. As each dataset may have unique
properties, the cross validation helps to reveal how well the model adapts to these properties, while
still generalizing well. In case a model trained and validated on the same data performs much worse
when tested on another dataset, this means that the model does not generalize well to other datasets
which may have different characteristics. In general, a model is more robust when it performs well on
different datasets.

Figure 4.14: Cross validation between three test datasets for different training sets sizes and types considering model C
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There are 3 different datasets in this work, which results in 9 analyses to complete the cross validation.
Figure 4.14 shows the grid of plots. On the main diagonal, the same data is used for training and
testing (e.g. ℳ𝐶

𝐺𝑃(𝒯𝐺𝑃)). The plots on the off-diagonal indicate the cross validation. The scale and
the axes are the same for all plots. To check the robustness of a model, the columns of the grid show
the different test sets of the same model. If one is interested in seeing which model to select when
knowing the datatype a-priori, the rows should be scanned to see which model performs best. In the
general case, however, we deem the GP-based curves as more general and better for model selection
for applications where data-type is not know a priori. The following comments are made based on the
cross validation:

• The first row shows the 3 models tested with a GP testset 𝒯𝐺𝑃. When comparing the three plots,
one observation is that themodelℳ𝐶

𝐺𝑃 performs better than the other two as the error is about 50%
smaller than the others. The complexity of the GP dataset is harder to capture by the monotonic
and unloading model (ℳ𝐶

𝑀𝑜𝑛𝑜 andℳ𝐶
𝑈𝑛𝑙).

• The second row consists of the 3 models that used the monotonic dataset as a testset. When
comparing ℳ𝐶

𝐺𝑃 and ℳ𝐶
𝑀𝑜𝑛𝑜, the range of errors appears to be more narrow. The range of for

instance the material layer size 5 forℳ𝐶
𝐺𝑃 is between 2.5 − 8, while the error fromℳ𝐶

𝑀𝑜𝑛𝑜 ranges
from 1.6 − 18. The models with a low number of training curves (indicated in orange and blue)
also perform better withℳ𝐶

𝐺𝑃 than forℳ𝐶
𝑀𝑜𝑛𝑜. Overall it is surprising thatℳ𝐶

𝐺𝑃 performs so well
compared to ℳ𝐶

𝑀𝑜𝑛𝑜, on which the dataset was originally trained on. When comparing ℳ𝐶
𝑀𝑜𝑛𝑜

withℳ𝐶
𝑈𝑛𝑙 there are less obvious differences as the errors look very similar. The errors from both

theℳ𝐶
𝐺𝑃 andℳ𝐶

𝑈𝑛𝑙 with respect toℳ𝐶
𝑀𝑜𝑛𝑜 are interesting as they show a very good response to

unseen loading, which shows flexibility in the model.

• The last row of the grid shows the performance of each model when tested on the unloading test
set 𝒯𝑈𝑛𝑙. It appearsℳ𝐶

𝐺𝑃 again shows a very narrow range of errors. The models trained on a
smaller dataset perform better thanℳ𝐶

𝑈𝑛𝑙, while the models trained on a larger dataset perform
worse. The same holds true for ℳ𝐶

𝑀𝑜𝑛𝑜, which is surprising as this model is not trained on a
dataset with unloading.

• In general, the models on the main diagonal perform better than the models tested with another
dataset. This suggests that the model adapted to specific characteristics of a dataset to a certain
extent, which is expected. However, there are still plentiful of situations where the models on the
off-diagonal perform better or similar than its equivalent on the main diagonal.

• The models can be ranked in the order ℳ𝐶
𝐺𝑃 > ℳ𝐶

𝑈𝑛𝑙 > ℳ𝐶
𝑀𝑜𝑛𝑜 when regarding their ability to

generalize to unseen data types. This was expected as this is the same order of data complexity,
however, this analyses was still proven very useful.

4.5. Stress-strain curves
Out of the three different architectures in Section 4.1, 4.2 and 4.3, the final architecture from Section 4.3
has proven to train fast and generalize well to unseen datasets. Furthermore, the absolute error is very
impressive, even for models with a limited number of training curves. The model selection presented
in Figure 4.10 is used to select the optimal material layer size. A suitable size is when the absolute
error has reached its limit and does not decrease substantially when adding more material points. This
is the case around size 11. To find out which amount of training data suffices, a fixed size test set 𝒯(⋅)
of 100 samples is now used to plot the learning curves. This is done for all 3 datasets and the results
are shown in Figure 4.15.

The 𝑥-axis indicates the number of training curves that were used during training and the 𝑦-axis shows
the absolute error over the test set. When selecting the most applicable model from the training curves,
one can again look at when the error has reached its limit. In this case, the models trained on GP or
monotonic data show convergence when using 36 curves. The error of the model trained on the un-
loading dataset improves until 72 training curves were used.
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Figure 4.15: Learning curve for the best models with 11 material points and different training loading types

A few samples of each dataset are now ran through all 3models to make predictions. Figure 4.16 shows
the predictions made by all 3 models on a monotonic sample (Figure 4.16a), a sample with unloading
(Figure 4.16b) and on a GP sample (Figure 4.16c). It was hard to find a sample that is representative
for all 3models at the same time. Overall, all models make very accurate predictions on the monotonic
samples except for some very large outliers. The model trained on GP and unloading data performed
well on the unloading sample while the model trained on monotonic data struggled. The GP sample
was in most cases accurately predicted by the model trained on GP data while the other 2 models
struggled.

(a) Monotonic sample (b) Unloading sample

(c) GP sample

Figure 4.16: Stress-strain curves for a representative sample from a test set 𝒯(⋅), predicted by a modelℳ(⋅)



5 | Transfer Learning
Three different architectures were tested in Chapter 4 and the architecture without a decoder (Section
4.3) showed to perform best. Here, transfer learning to leverage knowledge from the original PRNN
task which predicts macroscopic stress to the new PRNN design which predicts maximum microscopic
hydrostatic stress will be tested considering only that architecture. The possibilities to apply transfer
learning is limited because the material layer does not have trainable weights and so only the encoder
can be used.

In both this work and the previous works, the model selection procedure has been applied numerous
times, as it gives a detailed overview of the performance of a model with respect to training size and
the number of fictitious material points that are used. The model selection by Maia et al. showed good
performance for a model with 2material points while the results in Section 4.3 show that more material
points (11) are needed to predict the maximum hydrostatic stress accurately. The number of trainable
weights in the encoder is dependent on the number of material points in the material layer. The input
layer has a fixed size (3) and the material layer has 3x𝑁 nodes, where 𝑁 is the number of fictitious
material points. The encoder is fully connected, which implies that each node of the input layer will
connect to each node of the material layer: 3x(3x𝑁) = 9x𝑁.

This results in a shortcoming because the encoder of the average stress model has 9x2=18 weights,
while the encoder of the maximum hydrostatic stress model has 9x11=99 weights. This discrepancy
makes it challenging to apply transfer learning. It is possible to pass 18 weights from the former net-
work but the remaining 81 weights that will be randomly initiated will still need training. For the first part
of this chapter, transfer learning will be applied on models that have the same size. This means that
the encoder of task 1 with 𝑁 material points will be transferred to the model for task 2 that also has 𝑁
material points. Section 5.4 explores a strategy where the number of material points is not the same
for the 2 models.

After the weights from the former model are initiated in the second model there are two options. The
weights can either be frozen during training or they are allowed to be optimized. Freezing weights can
be beneficial to speed up the training process of the new model. In case the weights are frozen, there
are less trainable parameters. Secondly, freezing a layer enforces the layer to perform the same task
as it was trained on before. In this specific case, the first model has “learned” to transform fictitious
strains to fictitious stresses. As this part of the computation will be the same for both models, freezing
can be effective. Freezing the encoder will however lead to 0 trainable parameters when applied to the
model without a decoder.

The second option is when the transferred weights are not frozen and can be optimized during training.
This is referred to as a warm-start. Warm-starting is commonly used in machine learning. In case the
training of a model has stopped, warm-starting is used to continue training. Another case is when new
or higher quality data becomes available and the optimized weights of the prior model are often a good
starting point. Warm-start can lead to faster convergence which reduces training cost. In this work,
both warm-start and freezing the encoder will be tested.

For completeness of this analysis, the order of the tasks will also be taken into account when trans-
ferring the weights from an optimized model to another. The first analysis of Section 5.1 will show
transfer learning from average stresses to maximum hydrostatic stresses and the second analysis is
in reversed order: maximum hydrostatic stresses to average stresses.

28
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5.1. Results direct training versus transfer learning
This section will first present the results for transfer learning from a task predicting the average macro-
scopic stress to a second model predicting maximum hydrostatic microscopic stresses. The second
section will show the results for the order of the tasks switched.

Transfer learning: average to maximum stresses
In this part the results are presented for the models that predict the maximum hydrostatic microscopic
stresses. Figure 5.1 shows the average results over 10 different models for each combination of ma-
terial layer size and training set size. Each color, representing a training set size, is presented three
times. The solid line with a circular marker shows a model directly training for maximum hydrostatic
microscopic stresses and there is no transfer learning applied here. The dashed lines with a triangular
marker shows the results of transfer learning with warm-start and the solid lines with a square marker
indicate transfer learning with a frozen encoder.

In the case of transfer learning, first a model was trained predicting the average macroscopic stresses.
Then, the encoder is copied and the second model is initialized that inherits the encoder. Finally, the
training is then started with either a frozen encoder or with warm-start. The same training set is used
in the case of transfer learning for model 1 and model 2.

Figure 5.1: Transfer learning (Avg to max) versus direct learning for maximum stresses, results are the average results over 10
networks for each combination for GP data

The results shown in Figure 5.1 are the average results over 10 networks and indicate no clear differ-
ence between direct training versus transfer learning with warm-start. In case the encoder is frozen, no
training is done and the results show that the predictions for the second task are not accurate. Figure
5.2 shows the best model for each combination and the same conclusions can be drawn here. Fur-
thermore, the results remain unchanged regarding the fact that models with more points and or more
training curves perform better.
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Figure 5.2: Transfer learning (Avg to max) versus direct learning for maximum stresses, results show the minimum error over
10 networks for each combination for GP data

Transfer learning: maximum to average stresses
This section will present the results on transfer learning versus direct training in case the tasks are
swapped. First, a model is training to predict the maximum hydrostatic microscopic stress. Then, a
new model is initialized which inherits the encoder. In this case however, the new model has a train-
able decoder. Warm-start and freezing the encoder are then used to train the model and the results are
presented here. The same training set is used in the case of transfer learning for model 1 and model
2.

Figure 5.3 shows the average of 10 networks for the direct training versus transfer learning. First of
all, the general trend is that for each unique number of training curves, there seems to be a specific
number of material points from which increasing this number is no longer beneficial. The blue and yel-
low curves indicate that only 2 points are needed, while models with more material points need more
training curves to learn the higher number of parameters. This behavior is the same for direct training
and transfer learning.

Figure 5.3: Transfer learning (Max to Avg) versus direct learning for average stresses, results are the average results over 10
networks for each combination for GP data
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When one compares the direct training versus transfer learning, it seems that the models that applies
transfer learning with a frozen encoder perform slightly better than the other 2, as the dashed line is
below the 2 solid lines for most instances. However, differences are small and no clear winner can be
stated. The same results can be drawn when analyzing the best models which are presented in Figure
5.4.

Figure 5.4: Transfer learning (Max to Avg) versus direct learning for average stresses, results show the best model over 10
networks for each combination for GP data

The results of these 2 subsections indicate no clear winner when comparing direct training versus trans-
fer learning. For some cases, the model that applies transfer learning with a frozen encoder seems to
perform slightly better. This may have to do with the fact that there is less trainable parameters and
the model can only focus on tuning the decoder. Prior to this analysis, the idea was that the frozen
encoder would possibly lead to a model that was too rigid, but this is not the case.

5.2. Training performance
The results from Section 5.1 showed that transfer learning performs equal or worse regarding absolute
error compared to models that are trained with a random initialization of weights. In this section the
training performance is investigated by plotting the validation curves. The introduction of this chapter
explained that training can be faster for transfer learning and this can only be seen by plotting the vali-
dation curves.

The results in the previous section showed that most models were still improving the validation loss.
For this reason the number of epochs is increased to 5000. For this analysis the transfer learning is
only shown for average to maximum stresses. The early stopping feature was set to 500 to stop in case
the decrease in validation loss stopped. The circular markers indicate when the training of a model is
concluded. Figure 5.5 shows the validation curves of the 2 different models. The red curves and box
plots indicate the direct training of the maximum hydrostatic stress without transfer learning. The blue
curves are the models where transfer learning is applied. Warm-start is applied to ensure training the
encoder. Both the GP and monotonic dataset are used. The same sampled datasets were used for
the model with and without transfer learning in order to be able to compare the models.



5.2. Training performance 32

Figure 5.5: Comparing regular training with transfer learning for GP and monotonic data

The following observations are made:

• The models with transfer learning in the first plot (ℳ𝐺𝑃) are converging faster. The secondary
figure inside the first plot shows the area between 0-750 epochs more clearly. This shows a
better performance for themodels where transfer learning was applied. Most of the blue validation
curves have a lower error than the red curves.

• For this computation, 50% of the models with transfer learning had converged to a minimum
before 2000 epochs. This was the case for only 25% of the models without transfer learning.
This can be seen by the red and blue circular markers that indicate when training was concluded.

• When looking at the first set of boxplots in Figure 5.5 for ℳ𝐺𝑃, it appears that the models with
transfer learning perform slightly better than the models without transfer learning. The median of
the 20models is a fraction lower and the interquartile range (IQR) is more narrow than the model
trained from scratch.

• The training curves from the models trained on monotonic dataℳ𝑀𝑜𝑛𝑜 do not show a consistent
better performance for transfer learning. The same instability is visible in these validation curves
as during the model selection of this architecture in Section 4.3.

• The box plot for the monotonic dataset show quite similar performance between the networks.
The IQR of the networks without transfer learning is more narrow while the best model with trans-
fer learning have a slightly lower validation error.
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5.3. Selecting the encoder
The final analysis that is done in this chapter is to see if the best performing encoder from task 1 will
result in the best performing encoder for task 2. So far 20 networks were initiated to directly train for
average stressesℳ(𝜎𝐴𝑣𝑔). This resulted in 20 different sets of encoder weights. These 20 sets were
then initialized to warm-start the training for the second task: predicting maximum hydrostatic stresses
ℳ(𝜎𝑀𝑎𝑥). In Figure 5.6 the comparison is made visible by linking the 20models. Each line indicates the
set of weights that is transferred with transfer learning. Two lines are highlighted. The red line indicates
the best performing model predicting average stressesℳ(𝜎𝐴𝑣𝑔), linked to the resulting model predict-
ing maximum stresses using the weights of the first model. The blue line shows the best performing
model with transfer learningℳ𝑇𝐿(𝜎𝑀𝑎𝑥). The analysis is done both for theGP as themonotonic dataset.

Figure 5.6: Result of the analysis if the lowest error model of task 1 results in the lowest error for task 2

The results show that the best performing model from task 1 does not guarantee the best results for
task 2. This would be the case if the red line would connect the two lowest markers. This result is a
setback because ultimately the goal is to have a model with the lowest error possible. Most connecting
lines do appear to run parallel to each other suggesting that the models are often ranked in the same
order but this is not a given for all.

5.4. Different architecture sizes
As briefly mentioned in the methodology, one challenge is when the architecture size is different be-
tween 2 models. When training a model predicting average stresses, only 2 or 3 material points are
needed to have a well performing model. In the case of a model predicting the maximum stress, more
points are needed. In this section, the encoder of a model predicting average stresses is taken. This
model has 2 material points and a weight matrix of size [6, 3]. Then, transfer learning will be applied to
train a model predicting maximum stresses. The material points for this second model is the same as
used so far (1 − 5, 7, 9, 11, 13, 15).

To deal with the change in weight matrix size, the weight matrix of model 1 is first copied to the second
weight matrix. Then, additional weights of model 1 are sampled to the second weight matrix. Sampling
is done per column. This is done to keep the weights in the same position regarding its axis (a weight
that was used in 𝑥-axis will stay in the 𝑥-axis). An example of this process is shown in Figure 5.7. The
first part shows an example weight matrix of task 1. In this case model 2 has 6 material points which
results in the weight matrix of the encoder to be of size [18, 3]. In the second window an array filled
with zeros is initialized and the weights of model 1 are copied in the first slots. Then the remaining rows
are sampled from the original model. The numbers used here are arbitrary.
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Figure 5.7: Dealing with different layer sizes by copying and sampling the original matrix

This analysis is only done for transfer learning from the average to the maximum stress. This is be-
cause the network predicting average stresses needs less points than the network predicting maximum
stresses. The results are shown in Figure 5.8 and indicate the best model of 10 networks for each com-
bination. The circular markers with the labels ’Matching Task 1’ indicate that the weights are sampled
from a smaller encoder. The triangular markers with the labels ’Fixed Task 1’ indicate that the material
layer size is fixed in both networks. The results are comparable to the network where the layer size of
the model of task 1 is the same as task 2.

Figure 5.8: Comparing transfer learning models with equal and unequal material layer size for GP data

Finally, the validation curves of the models with a different inherited encoder are checked. The results
are shown in Figure 5.9. For this analysis, 7 material points and 18 training curves were used and this
is compared to the validation curves of a model with 2 material points and 18 training curves as well.
The first part of the figure indicates the validation curves for the model predicting the average task.
The blue curves are from the model with only 2 points and it is already known that this model performs
better than the model with 7 points when predicting the average stress. Each model is initialized 10
times and trained with a different sampled dataset.
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Then the weights of the encoder are used to train the second model. The encoder from the model with
7 points are used to initialize the second model without modifying the encoder. The encoder for the
model with only 2 points are now modified by the sampling procedure. There is no clear evidence that
the model with a modified encoder performs different than a model that inherits weights that are not
optimized for task 1. Note that the validation curves in Figure 5.9 are smoothened as the noise made
the curves hard to identify.

Figure 5.9: Comparing validation curves for models with equal and unequal material layer size

The main takeaway from this final section is that at least for these two tasks it does not matter if the
encoder that is inherited by task 2 is not optimal for task 1. The validation curves show no faster learning
or better convergence than with optimized weights from model 1.



6 | A multi-tasks approach
The previous chapter has shown that the encoder with the material layer of the original PRNN also
works well for predicting the maximum hydrostatic stresses. Because the architecture in predicting the
maximum did not result in more trainable parameters, the idea of combining two tasks in a single model
arose. This multi-task approach is discussed in this chapter.

6.1. Combining tasks
As briefly mentioned in the introduction of this chapter, there are no additional trainable parameters
when combining the two tasks in one model. Both models use the same fully connected encoder
with linear activation functions and a material layer. The output layer of the average stresses includes
a fully connected decoder which has trainable parameters, while the output layer of the maximum
stresses only picks the maximum value from the material models. Figure 6.1 shows how the stresses
in the material layer are passed to both output layers. The loss function now has to account for both
quantities. The starting point to combine the losses is simply to add both losses in the loss function.

Figure 6.1: The architecture of the combined model, computing both average and maximum stresses

The model selection procedure is done for this network as well and the results are shown in Figure 6.2.
The same parameters are used as the previous model selection. The magnitude of the absolute error
on the validation error cannot be compared to the errors found in previous chapters as it now consists
of 2 losses. The following comments are made on the results:

• The first model in Figure 6.2a show that the models improve as the material layer sizes are
increased from 1−5. From that layer size, the validation error does not improve, or gets worse for
the models with a limited number of training samples (6, 9 and 18). For the models with training
size 18 the validation error does not improve after the material size is increased to 7 before
stabilizing. The models with a larger training set still show notable improvements as training size
and material layer size increase.
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• As each combination of training size andmaterial layer size is trained on 10 different networks with
a different training set, the validation errors have different outcomes and this is indicated by the
colored range in the plots. There is a noticeable increase in validation error range for the models
with a small training set as opposed to the models with a larger training set. It is advantageous
that the models with a large training set have a much more narrow range of validation error.

• The range of validation error is much higher for ℳ𝑀𝑜𝑛𝑜, also for larger training set sizes and
material layer sizes. This is mostly due to outliers that negatively influence the results.

(a) Model selection with GP data (b) Model selection with monotonic data

Figure 6.2: Model selection with combined model that computes both average and maximum stresses

6.2. Comparing single and multi-task models
In this section the results of the multi-task model ℳ𝐺𝑃(𝜎𝑀𝑎𝑥 , 𝜎𝐴𝑣𝑔) of section 6.1 is compared to the
results of the single-task modelsℳ𝐺𝑃(𝜎𝐴𝑣𝑔) andℳ𝐺𝑃(𝜎𝑀𝑎𝑥). The loss function of the multi-task model
is the addition of the two losses and so the validation losses of the single-task models are summed as
well. This summation is done on both the average and the best of the validation error of 10 models per
combination of material layer size and training set size.

Figure 6.3 shows the results for different number of material points, training set sizes and types. Only
the average validation error is shown in Figure 6.3 and not the full range of errors. This is done to be
able to compare the results more easily as the colored hatches would overlap. The triangular markers
indicate the multi-task model and the circular markers represent the validation error for the combined
single-task models.

When one compares the single- and multi-task models it becomes evident that on average the multi-
task models perform better for nearly all combinations of material layer size and training size. The early
expectations were that if one is to model both average stresses and maximum microscopic stresses,
it would be best to have 2 models trained for 2 tasks. The performance of the multi-task model is re-
markable as it performs better than the combined loss of 2 single-task models and thus exceeding the
expectations.

For completeness, the minimum validation errors of the single-task models are also combined. These
are compared to the best performing multi-task models. The results are shown in Figure 6.4. The re-
sults for the GP dataset are in line with the average validation error: the multi-task model show a better
performance for most combinations of material layer size and training set size. The best performing
single-task models trained on the monotonic dataset do perform better than the multi-task model for a
low number of material points. This is because the models trained on the monotonic dataset in gen-
eral have low errors, but very large outliers. These outliers are filtered and so the result favors the 2
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single-task models for a low number of material points.

Figure 6.3: The comparison between the combined single-task and multi-task average validation error

Figure 6.4: The comparison between the combined single-task and multi-task minimum validation error

In the 2 figures above only the total error is shown for the 2 single and the multi-task approach. All
individual loss components are known and can be plotted as well. This gives more insight in the per-
formance of the models. This is done in Figure 6.5 for the average error over 10 networks for each
combination for the GP dataset and the minimum error for models trained on the monotonic dataset
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is shown in Figure 6.6. The blue solid lines with the circular markers indicate the total loss of the 2
individual models. This total loss consists of the average macroscopic loss, shown in a solid blue line
and the maximum hydroscopic stress shown in the blue dashed line. The results for the multi-task is
shown in the same layout but in red.

Figure 6.5: Comparison of the single- and multitask losses for GP data: average error over 10 networks

Figure 6.6: Comparison of the single- and multitask losses for GP data: minimum error over 10 networks

The overall conclusion that can be drawn is that the multi-task model performs better then the 2 single-
task models as it finds a better balance between the losses for the average and the maximum stress.
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This feature is most notable for the models with a low number of material points: the two red lines
(losses from the multi-task model) are between the blue lines (losses from the single task models).
The single-task model predicting average stresses performs very well for the case with only 2 material
points. The single-task model predicting the maximum stress needs a couple more points to start pre-
dicting well. As soon as the number of material points is increased the models start to converge. The
average error of the single-task and multi-task converge quite well, while the error for the maximum
stress remains predicted better by the multi-task model.

The multi-task model predicts the maximum stresses better than the single-task model predicting the
maximum stresses, which is most evident for the smaller networks. One reason is because the multi-
task network also has to make predictions on the average stress. It is very likely that stresses predicted
by one (or more) material point(s) is larger than the average stress and therefore the error for maxi-
mum stresses is somewhat limited. This statement becomes more clear in the next section, where the
distribution of stresses in the material layer is investigated.

As it seems like the multi-task model finds a balance between the maximum and the average stress,
the distribution of the stresses predicted by the multi-task model is the next point of interest. The next
section will look into the distribution of stresses in the material layer and see how the material layer is
able to accurately predict both stress quantities.

6.3. Distribution of stresses
The full-field microscopic stresses are computed for each sample for 60 timesteps. The distribution of
the microscopic stresses at any timestep can be displayed by creating a histogram and deriving the
probability density function (PDF). First, all occurring stresses are collected in bins with a certain bin
range. The larger the number of bins, the more precise the distribution. The number of bins is set to
25, which in most cases result in a bin width ranging from 1-3 MPa. The bins are shown in blue in
Figure 6.7. The height of the bin represents how often the stress of the given stress range occurs.
Histograms give a rough sense of the density of the underlying distribution of the data. This distribution
is plotted as a blue continuous line. The minimum and maximum of the full-field stresses are found
(min(𝒟), max(𝒟)) and are shown in green. These lines indicate the limits of the data for each timestep.

The stress distribution is then to be compared to the predicted hydrostatic stresses from the PRNN pre-
sented in Section 6.1. To do so, the hydrostatic stresses of all fictitious material points are calculated.
The data used in Figure 6.7 is from a model with 11 material points. For each timestep the material
layer computes 33 stress components which result in 11 hydrostatic stresses. These predictions are
presented in Figure 6.7 as a histogram with 11 red bars.

Figure 6.7 shows the full-field stresses and the hydrostatic stresses that are computed from the ficti-
tious stresses in the material layer for 4 randomly selected timesteps. The first plot is after the first
strain increment at t = 1. The properties of the model have the assumption that the material is at rest
and there are no residual stresses. The histogram of plot 1 shows this assumption is satisfied as the
stresses are centered around 0 MPa. A few timesteps later, the stress in the material is gradually
building up before the stresses turn mostly negative in the final plots.
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Figure 6.7: The full-field microscopic hydrostatic stresses versus the predicted stresses from the multi-task model

It is hard to make statistically sound statements about the distribution of the predicted stresses as
there are only 11 datapoints per timestep. However, when analysing the 4 plots, it seems the bulk of
the predicted stresses match the stress values where there is a larger probability density for the full-
field stresses. Furthermore, it is remarkable how the limits of the predictions of the hydrostatic stresses
follow the limits of the full-field stresses. Based on the results in Section 6.1 it already became clear that
the maximum hydrostatic stresses can be predicted accurately. The visual representation of the stress
distribution versus the predictions gives additional insights: the hydrostatic stress minimum matches
the minimum of the occurring full-field stress. This suggests that predicting the minimum stress can be
an additional quantity that the current network is able to predict. A proof of concept of this multi-task
model predicting the average stresses and both limits of the hydrostatic stresses is shown in Chapter 7.
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6.4. Cross validation
The advantages of performing a cross validation are discussed in Section 4.4. In general, the same
conclusions can be drawn from the cross validation of the multi-task approach:

Figure 6.8: Cross validation for the multi-task models

• The models trained on monotonic and unloading data show a worse performance on the test set
with GP data as these models fail to generalize to characteristics of the GP dataset. The errors for
models with equal training size and material layer size are about double of monotonic/unloading
compared to a models trained on GP data.

• When looking at row 2 and 3, the performance of all three models look quite comparable. In most
cases the model trained on GP data shows a more narrow range of errors per combination. This
suggests a better training stability and model robustness.

• In comparison to the cross validation of Section 4.4 the absolute error over the validation dataset
increases when adding more fictitious material points. In the previous comparison the error only
showed a stagnating error. This characteristic comes from the addition of the average loss to the
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loss function. The PRNN by Maia et al. and the PRNN with cohesive material points by Kovács
showed that any additional material points above a certain number made the network more prone
to overfitting. This characteristic is more evident for the models with a limited amount of training
curves. In case more training curves are added, the training data is more diverse and the model
shows a better response. In case the number of material points is increased, the expectation is
that the models with a high amount of training data will over fit as well.

• Overall, the multi-task model shows to perform very well. For some cases, the loss is less than 2
MPa. This is the loss of the average and the maximum stress combined.

• There was no noticeable difference in computational time of the multi-task approach compared
to single task models.

6.5. Stress-strain curves
The previous sections showed that the multi-task approach showed good performance and has the
potential to include more quantities like the minimum stress. In this section one model will be selected
to plot stress-strain curves and see what predictions the network is able to make.

Just as in Section 4.5, 11 fictitious material points perform well for both the GP dataset and the mono-
tonic dataset. The learning curves for this number of fictitious material points is shown in Figure 6.9.
This analysis will give more insight in howmany training curves are needed to converge. For this analy-
sis, 72 training curves seems appropriate. For both the GP and unloading dataset this number is plenty
to reach convergence. The model trained on monotonic data does still improve with more curves, but
72 curves is a good balance in computational time and performance.

Figure 6.9: Learning curve for the best multi-task models with 11 material points and different training loading types

The selected model has 11 fictitious material points and used 72 training curves. A test set of 100 sam-
ples is then used to make predictions. The cross validation from Section 6.4 showed that the model
trained with GP performs equally or better when predicting the stress of a monotonic and unloading
sample than the models that are trained on monotonic and unloading data. This is the reason the model
trained on GP data is used to predict samples from GP, monotonic and unloading samples. From 100
samples of each dataset a representative stress strain curve is selected. A representative sample is
one that lies within the IQR of the error distribution and preferably close to the median. The distribution
of predicted stresses for each sample is shown in Figure 6.10 and the sample that is selected is marked
with a star. The stress strain curves are shown in Figure 6.11 for the 3 different samples of each dataset.
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Figure 6.10: Distribution of errors over test set with 100 loading curves of different types evaluated by multi-task PRNN with 11
material points and trained on 72 training curves

The black data points in Figure 6.11 indicate the target of the model and the red data points show the
predictions made by the model. The first 3 plots are the stress strain curves in 𝑥, 𝑦 and 𝑥𝑦-direction.
Together these form the average stress quantity. The last plot shows the prediction made on the hy-
drostatic stress over the macro hydrostatic strain.

The first set of plots is the prediction of a GP sample, the second set of plots shows the monotonic
sample and the last set of plots is the prediction of the unloading sample. Overall, the predictions fol-
low the shape of the stress strain paths, with a couple of notes on the plots:

• It is hard to explain the results of the GP dataset because the magnitude and step size is random
for each time step. The stress strain paths show random directions and each sample is different.
The predictions follow the target closely and the results are very promising. The overall loss
of this sample is the combined loss of the average stress and the maximum hydrostatic stress,
which is only 3.61 MPa for this sample. Reminding this sample is a representative sample and
the predictions can get even closer to the target.

• The predictions of the monotonic sample shows interesting behavior. The monotonic dataset for
all samples show an increasing (or purely decreasing) stress value until it reaches a limit. This
characteristic can be seen when looking at the target (the black data points). The predictions
of the GP model do not reflect this characteristic as the stress shows a clear maximum before
decreasing, visible in the plots in 𝑥 and 𝑥𝑦-direction. This is also visible in the final set of plots,
where the GP model made predictions on a random unloading sample.
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Figure 6.11: Stress strain paths for a representative GP, monotonic and random unloading sample



7 | Triple-task model
The multi-task approach showed that the network can compute two quantities in parallel and compute
a combined loss. There are no additional trainable parameters, so the increase in computational time
to train models is limited. Section 6.3 showed that the limits of the predictions of the multi-task model
matched the limits of the full-field stresses well. This resulted in the idea that the minimum hydrostatic
stress can be added to the model in the same way the maximum stress was added. The results are
presented in this chapter.

7.1. Architecture
The proposed architecture is shown in Figure 7.1. It includes the same encoder and material layer as
seen in earlier chapters and the decoder from the PRNN in [14] to predict the first set of quantities in the
loss function. The hydrostatic stress is computed in the material layer and the maximum and minimum
values are found. These values are added to the loss function. The loss function is now an addition of
3 individual losses and no scaling is applied as the individual losses have the same order of magnitude.
In future work more complex loss functions can be researched. The solid lines in Figure 7.1 indicate
there is no training done, whereas the dashed lines indicate there are weights attached between the
nodes.

Figure 7.1: The architecture for the multi-task model predicting 3 the average stress and the hydrostatic limits

It is a deliberate choice to compute both the minimum and the maximum hydrostatic stress. One could
argue to take the absolute value of all stresses and compute the maximum because this will reduce the
computational time and complexity of the loss function. However, by taking the absolute value a lot of
information of the stress state is lost. Most material properties have different characteristics when in
tension or compression, so having the additional information if the material is in compression or tension
is useful.

The datasets used so far lack the governing hydrostatic minimum stresses. The GP dataset is the most
general dataset that is used in this work and the networks trained so far showed the best results when
trained on the GP dataset. For this final analysis, the GP dataset is extended with a column presenting
the minimum hydrostatic stress for all timesteps and samples.
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7.2. Results
The result of the model selection procedure is shown in Figure 7.2. The reasoning for the number of
fictitious material points and the number of training curves is explained thoroughly in Section 4.1 and
the same values are used here. Other model parameters like the numbers of epochs and the batch
size remain unchanged.

The results show differences compared to the other results on GP data for the 2-task model. This time
the range of errors are larger and overlap other results. This makes it harder to identify how this new
architecture performs. When looking at the average of each combination of training size and material
layer size, most of data is found ranging from 10 - 30 MPa. It also appears that the error does not drop
as quickly when increasing the number of training curves in comparison to previous models. Further-
more, the range of errors seems higher.

Figure 7.2: The validation error of the triple-task model trained on GP data

Reminding that the error that is showed is the combined error over 3 individual losses, some models
show a loss of just 7 MPa which is very low. Figure 7.3 and Figure 7.4 show the exact same data as
in Figure 7.2 but here the losses are split up in 3 parts. The first figure shows the effect of the material
layer size on the major 𝑥-axis. Every gridline indicates an increase of material layer size. Each bar
consists of 3 colors that indicate the average error, the maximum hydrostatic error and the minimum
hydrostatic error. All the bars between the vertical gridlines (the minor 𝑥-axis) show the increase in
training size. Figure 7.4 shows the same data but with the major and minor 𝑥-axes reversed. These
plots help to visualize the data more effectively as the model selection results overlapped in Figure 7.2.

The results show the average errors over 10 initiations of the same network, trained on a different train-
ing set. In general the conclusion can be drawn that the larger the layer size and or training set size,
the lower the error. However, the loss on the average stress is substantially lower than the other two
errors. The error of the maximum and minimum hydrostatic stress does improve when the layer size
and or training set size is larger but the losses do stagnate.



7.2. Results 48

Figure 7.3: Model selection of the triple-task model: material layer size versus training set size

Figure 7.4: Model selection of the triple-task model: training set size versus material layer size
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The following figures show the comparison between the individual losses of the triple-task model ver-
sus the losses of the 3 single-task models. Figure 7.5 shows the average over 10 initiations of each
combination of layer size and training set size and Figure 7.6 shows the best performing models (the
models with the lowest error). When looking at the first figure, it becomes clear that the triple-task model
outperforms the 3 individual models because the single-task predicting the minimum hydrostatic stress
performs quite poorly. The multi-task model is much better able to predict the minimum hydrostatic
stress as it seems to find a good balance in predicting the three stresses. Section 6.3 discussed the
distribution of the prediction versus the distribution of the full field stresses. Here it became evident that
by combining the 2 tasks in a single model, the limits of the full field stresses matched with the limits
of the predictions. This causes the triple-task model to predict the minimum hydrostatic stress much
better than the single task model does.

The single task models predicting the average and maximum stress perform slightly better than the
triple-task model for a lower number of material points. For a larger number of points, the results con-
verge and there is no difference in the single task as the triple-task approach.

Figure 7.5: Comparison of individual losses for triple-task and single-task models: the average error over 10 networks

Figure 7.6 shows the best performing models instead of the average over 10 models. When looking at
the results for the minimum hydrostatic stress, there is no clear trend visible for the single task model
(the blue dash-dotted line). This model seems to show better performance when the number of train-
ing curves used increase, but this behavior is not visible for a larger amount of material points in the
network. The triple-task model shows a more clear trend in predicting the minimum stress, which is in
line with the other predictions.
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Figure 7.6: Comparison of individual losses for triple-task and single-task models: the minimum error over 10 networks

When looking at the results of the single-task model predicting the minimum hydrostatic stress, it shows
that the model struggles to converge to a low error, even when more points or training curves are
added. The full model selection is therefore shown in Figure 7.7 to see how the architecture performs.
Unfortunately, this model does not predict as well as the other single-task models. The error is stuck in
the range between 10-15 MPa. Predicting the minimum hydrostatic microscopic stresses is not in the
scope of this thesis and therefore no further optimization is done on this network. However, it remains
impressive that the multi-task model is able to predict the minimum stresses accurately as it finds a
good balance in predicting the three individual stress quantities.

Figure 7.7: Model selection of the single-task model predicting the minimum hydrostatic stress
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Based on the results from Figure 7.3 and 7.4 a model is selected with 9 material points and 36 curves
used during training. 100GP strain paths are sampled and form a test set. This test set is used to make
predictions. Figure 7.8 shows the distribution of the error and a representative sample is selected that
is near the median. All stress-strain curves are plotted for this representative sample. The first 3 plots
are the curves in 𝑥, 𝑦 and 𝑥𝑦-direction. The bottom 2 plots show the predictions versus the target for
the maximum and minimum hydrostatic stress.

Figure 7.8: Distribution of stresses of 100 GP test samples

The stress-strain curves are shown in Figure 7.9. The presented sample has a total error of 8.46 MPa
which consists of 2.45, 3.33 and 2.67 MPa for the average, maximum and minimum error respectively.
In this case the individual errors are comparable. In other samples in this test set the distribution is less
evenly spread. The loss function values the individual losses evenly but a weighted loss function can
be applied to emphasize for example the maximum loss.

Figure 7.9: The prediction of a GP sample with a combined loss of 8.61 MPa

This marks the end of this chapter. Once again the model has proven to perform well with a limited
amount of material points, training curves and epochs. The analysis done in this chapter was only
performed on the GP dataset and there was no cross-validation done here as the dataset was not
extended with the minimal error for the monotonic and unloading dataset. It is expected that these
show the same results as for earlier models.



8 | Conclusion and recommendations
The main objective of this research is to design a surrogate model that can accurately predict the local
maximum stress of a composite material at microscale and to leverage the knowledge of existing mod-
els into new models. The final chapter of this research provides an answer to all the research questions
and formulate the findings on the main research question. Recommendations for future research are
provided in the last section.

8.1. Conclusion
In order to conclude this research, the main research question “To what extent is a modified PRNN able
to accurately predict local maximum stress values in heterogeneous microscopic material models?” is
to be answered. The sub questions are answered first which will lead to the final conclusion.

How to efficiently incorporate the maximum stress in the network?
In total three different architectures have been designed in Chapter 4 to include predictions on the
maximum hydrostatic stress. The first two architectures contain a decoder, but it became evident that
having a decoder in the network averages the stresses from all material points. When selecting the
maximum stress from the RVE, just one point is responsible for the maximum stress. Therefore the third
architecture presented in this thesis replaces the decoder from the previous architectures by a function
(without trainable parameters) that simply selects the maximum stress from the material points, which
is an analogy to finding the maximum stress in the RVE. The amount of trainable parameters in this
model is very low. The 3 input nodes are full connected to 3 nodes in𝑚 number of material points. The
model selection shows that just 5 points are needed in case of training with a low amount of curves,
resulting in only 45 trainable parameters. When more training curves are used during training, the
model selection shows that 7 − 9 points are optimal and the error is reduced by roughly 30%. The
cross-validation shows this network can accurately predict on unseen loading scenarios which results
in this model being robust.

In what ways can transfer learning be applied to leverage the knowledge of existing models in
creating new models?
Chapter 5 shows how transfer learning is applied to leverage knowledge from a model trained on task
1 to task 2. This process is reversed as well. The results for both directions are quite similar in terms of
error for direct training versus transfer learning. In the case of transfer learning from a model trained on
prediction maximum stresses to the average stress, transfer learning with freezing the encoder delivers
surprising results. The hypothesis was that this model is too rigid to perform well for the second task
with a frozen encoder, but results show that this model performs at mostly equal or better than warm-
starting or directly training as can be seen in Figure 5.3. The encoder works very well for both tasks
and freezing the encoder leads to only training the decoder. This results in the model fine tuning the
decoder in such way that the model is able to perform better. However, results between direct training
and transfer learning are close and no clear favorite approach can be pointed out regarding the final
error.

Transfer learning does however speed up training as convergence is reached faster. As both direct
training and transfer learning are fairly small networks, training is quick for either framework resulting
in a limited computational benefit when applying transfer learning.

One identified challenge was that the optimal number of material points for task 1 differs from the ideal
number of material points for task 2. The analysis in Section 5.4 shows that this is solved by sam-
pling new weights from the encoder of model 1 to create an encoder with appropriate size for model
2. The results indicate that this sampled encoder performs equal or slightly better in comparison to a
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sub-optimal material layer size for task 1.

A shortcoming from transfer learning is identified in Section 5.3 where a model is trained on a different
sampled training set, resulting in 10 different encoders. When these encoders are transferred from
model 1 to model 2, the result is that the best performing encoder in model 1 does not guarantee the
best result for model 2. Selecting the right encoder for model 2 is therefore tricky to execute.

Can the current architecture be leveraged to a multi-task approach?
Chapters 4 and 5 show that the original PRNN and the network in Section 4.3 use the same encoder
and material layer. Chapter 6 explores a framework with a multi-task approach to combine the tasks in
a single model. The model selection shows excellent results: the multi-task model outperforms the 2
individual models in most cases. This is because the model finds a good balance in predicting average
and maximum stresses together. The single-task model predicting the average stress performs better
for a layer size smaller than 7, but the results for average stresses converge for larger material layers.
Reminding that the number of trainable parameters for the multi-task approach is just two thirds of the
number of trainable weights for the 2 single-task models combined, this result is even more impressive.

Another interesting finding is in the distribution of the stresses in the material models plotted versus the
full field stress distribution in Section 6.3. The limits of the predictions match the limits of the full-field
microscopic stresses closely. This finding lead to the idea on adding a third task to the model: predict-
ing the minimum local stress as well. The results are presented in Chapter 7 and show the same trend
as for the multi-task approach. The triple-task model outperforms the 3 single-task models as it is able
to find a better balance in predicting the 3 stress quantities. It seems that by combining the tasks, the
model is able to accurately finds a balance between all stress quantities which results in a lower error.
Especially the single-task model predicting minimum stresses seems to be less robust as the error does
not converge as smoothly as the other 2 models. The model selection of this single-task architecture,
presented in Figure 7.7, shows that the predicted stress is actually stuck in the range of 10-15 MPa. In
case this single-task model is optimized, the three single-task models and the triple-task model should
converge. In the end, the triple-task model has only half the amount of trainable parameters as the
original PRNN and even less than the three single-task models combined, which is impressive.

This leads to the conclusion of the main research question. The PRNN that selects the maximum stress
from the material layer without decoder (Section 4.3) shows an outstanding performance. Apart from
the complex physical relations in the material layer, the architecture is very basic with a very limited
amount of trainable parameters. This results in low computational power and fast training. Further-
more, the model selection shows that the model performs well with a limited amount of training curves.
Finally, the cross validation shows that the model is both robust and flexible to adapt to unseen loading
scenarios.

8.2. Recommendations
In this research, it has been shown that the model predicting average macro stresses can be leveraged
to also extract the maximum and minimum hydrostatic stresses at microscale. The model currently only
states the maximum or minimum stresses. One recommendation is to further implement the local stress
limits to compute material failure. This can be done by adding more physical laws in the model, just as
is done in the material layer.

A second recommendation is to explore if this architecture can be expanded to 3D models. The RVE
needs to be expanded to 3D and additional boundary conditions have to be formulated. The network
needs expansion as well: 6 inputs must be defined because there are 6 strain directions in 3D. Each
material point must also be expanded to output 6 stress outputs.

The multi-task approach in this thesis showed that the PRNN can be used as a modular network in
which more material properties can be assigned and learned. Future research can explore if other
quantities from the full microscopic field can be learned as more data about the stress distribution in
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the material layer (e.g. average plastic strain deformation) is fed into the network.

The single-task model predicting the minimum hydrostatic microscopic stresses did not converge as
well as the single-taskmodel predicting themaximum hydrostatic stresses. Future research can investi-
gate why this model does not perform as well and possibly optimize this model further. The comparison
between the triple-task model and this optimized single-task model will be a better comparison than
done in this thesis.

Another topic of research is to investigate if the distribution of the fictitious stresses can match the
stresses of the RVE. Section 6.3 shows that the limits of the fictitious stresses follow the stresses of
the RVE quite well but there are too little material points to create a distribution.

Finally, this research did not manage to use the gained knowledge of the new models on a civil engi-
neering use case. An active field of research in the civil engineering domain is using surrogate models
for real-time monitoring and predictive maintenance. Future research could focus on expanding the
models developed in this research that are robust enough for continuous, real-time data input, en-
abling them to predict stress and failure points under live loading conditions and facilitate preventive
maintenance of composite structures. Hopefully more practical examples can be used to inspire other
students, engineers and researchers to explore the options of using machine learning in the civil engi-
neering domain even more!
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