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Abstract: This study evaluates three recursive Bayesian input and state estimation algorithms,
as introduced in the field of Structural Health Monitoring, for estimating modal contributions for
high-tech compliant mechanisms. The aim of estimating modal contributions is the use for active
vibration control. High-tech compliant motion stages allow for different sensor configurations,
making new and interesting performance evaluations of these filters possible. The algorithms
used, namely, the Augmented Kalman Filter (AKF), Dual Kalman Filter (DKF) and Gilijns
de Moor Filter (GDF) are implemented on a compliant motion stage for guidance flexure
deformation estimation. Our results show the GDF performs overall best, with good estimation
performance and real-world tuning capability.
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1. INTRODUCTION

Recent advances towards high-throughput high-precision
manufacturing in the high-tech industry have led to in-
creasing interest in compliant motion systems. When oper-
ating these systems at high accelerations, however, higher
frequency vibrational modes can reduce overall accuracy
and thus throughput. One possible solution for this is to
actively add damping to the system often referred to as
Active Vibration Control (AVC).

Most common methods of AVC require collocated mea-
surements, where a piezo sensor and an actuator are
placed at the same location on the flexible structure.
These sensor-actuator pairs are then connected through a
control algorithm like Positive Position Feedback (PPF) as
sketched in Caughey (1985) to achieve active damping in a
decentralised way. A different, more centralised, approach
is Independent Modal Space Control (IMSC), where every
vibrational mode can be dampened independently as in-
troduced by Meirovitch and Oz (1979) and Balas (1978).
This class of methods allows for the damping of specific
higher order vibrational modes without spending control
effort on modes of less interest by decoupling the MIMO
AVC problem for all modes into a SISO problem for every
controlled mode independently.

IMSC methods generally require information about the
modal contribution of each mode in a compliant system.
This information is traditionally obtained by employing
a modal filter as introduced by Meirovitch and Baruh
(1983, 1985). These static filters, however, do not take
measurement and process noise into account, limiting

performance of the overall AVC system (Meirovitch and
Baruh, 1985).

To obtain an estimate about the modal contribution based
on noisy measurements, recursive Bayesian filters for state
estimation can be implemented instead of static modal
filters. These recursive Bayesian filters assume stochastic
system modelling, and can therefore inherently use a noise-
corrupted system model formulation. A problem with
more traditional recursive Bayesian filters, like the original
linear Kalman Filter (KF), is they require information
about all inputs to the system to make a prediction
about the modal contributions (the system state). For
compliant systems, however, the input is often not known
since it includes not only known control inputs, but also
disturbances. While some disturbances can be measured
or modelled, most can not.

Similar problems can be found in the field of Structural
Health Monitoring (SHM) for civil structures, where state
estimates of structures like bridges and buildings are
required for strain and lifetime analysis. Here, knowledge
about system input is also scarce. As a solution, recursive
Bayesian filters were introduced for simultaneous input
and state estimation.

Among other approaches, the Augmented Kalman Filter
(AKF) introduced into SHM by Lourens et al. (2012b,a),
Dual Kalman Filter (DKF) introduced by Eftekhar Azam,
Saeed et al. (2015) and Gilijns de Moor Filter (GDF)
introduced by Gillijns and De Moor (2007a,b) are often
evaluated in SHM for simultaneous input and state esti-
mation (Moradi et al., 2021). These three methods thus
represent state of the art in civil engineering, and are
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evaluated for use in high-tech compliant mechanisms in
this work.

The implementation of these algorithms into high-tech
compliant mechanisms instead of civil structures presents
a significantly different environment, allowing for inter-
esting new sensor configurations. In civil structures for
instance, strain measurements are hard to obtain, whereas
acceleration measurements are cheap and easy. This un-
availability of strain measurements reduces estimation per-
formance significantly as sketched by Naets et al. (2015);
Eftekhar Azam, Saeed et al. (2015) and Tatsis and Lourens
(2017). For high-tech compliant mechanisms, however,
these strain measurements are much easier to obtain due
to a small system size and highly controlled environment.
In addition to this, high-tech systems often benefit from in-
depth system knowledge allowing for accurate modelling,
which also benefits recursive Bayesian filter implementa-
tion.

To the best of the authors’ knowledge, the possibilities of
implementing recursive Bayesian filtering solutions from
SHM into compliant mechanisms have not been previously
studied. This forms a research gap which we attempt to ad-
dress in this work. For the first time, the recursive Bayesian
filters for modal contribution estimation are implemented
on a compliant motion stage. The estimation performance
of filters is studied for both external stage disturbances
and closed loop position control. Since closed loop position
control introduces high accelerations into the system, the
dependence of the recursive Bayesian filter’s performance
on the magnitude of system acceleration is evaluated, in
addition to their overall estimation performance.

The remainder of the paper is organized as follows. To pro-
vide a system model, introduce notation and the desired
modal contribution states, section 2.1 first introduces the
necessary Finite-Element modelling approach. Section 2.2
elaborates further on the three recursive Bayesian filters to
be evaluated. The implementation on an actual compliant
motion stage guidance flexure is presented in section 3
whereafter the design of experiments is presented in sec-
tion 4 followed by the results, discussion and conclusions.

2. BACKGROUND

2.1 Finite Element modelling

The dynamics of a compliant flexure discretised by 1D
Euler-Bernoulli beam elements is described by

M ¨̄x+ C ′ ˙̄x+Kx̄ = B′f̄ , (1)

where the matrices M , C ′ and K ∈ R2n×2n denote the
mass, damping and stiffness matrices of the system, with
n representing the number of nodes used for the finite el-
ement approximation. The system state x̄ ∈ R2n×1 repre-
sents a collection of the nodal degrees-of-freedom (DOFs).
For the Euler-Bernoulli finite element assumption, each
node is attributed a lateral (horizontal) displacement,
and rotational DOF. The location of the external input
forces f̄ ∈ Rnu×1 is determined by the selection matrix
B′ ∈ R2n×nu with nu the amount of external input forces
acting on the system.

For displacement measurements, the interpolation matrix
Sd ∈ Rnd×2n is introduced as ȳd = Sdx̄, where Sd merely

interpolates the nodal DOFs through a third order shape
function N(y) as presented in Cook et al. (2001). The
number of displacement measurements is denoted by nd.

For acceleration measurements, (1) is used to obtain an
expression for the state acceleration ¨̄x, and is again pre-
multiplied by an interpolation matrix Sa ∈ Rna×2n as:

ȳa = SaM
−1B′f̄ − SaM

−1C ′ ˙̄x− SaM
−1Kx̄. (2)

The strain measurement is obtained using a similar ap-
proach as mentioned by Preumont (2012) and Aktas and
Esen (2020). The strain ϵi over element i is defined by

ϵi = h

 L

0

d2

dy2
N(y)dy

  
Ss,i

x̄i, (3)

where h denotes the distance away from the centre line of
the flexure and L is the length of the element. The system
matrix Ss ∈ Rns×2n is then constructed by applying this
elemental selection matrix Ss,i for every element the strain
is measured over, such that ȳs = Ssx̄. To reduce system or-
der, and introduce the desired modal contribution η in the
state vector, the system is modally decomposed by solving
the un-damped eigenvalue problem (K − ω2M)v̄ = 0,
hereby obtaining the eigenvector matrix Φ ∈ R2n×N with
N the amount of modelled eigenmodes v̄. The correspond-
ing system eigenfrequencies are captured in the matrix
Ω = diag [ω1 . . . ωN ]. Assuming the system is spanned
by its eigenvectors, the new state is defined as x̄ = Φz̄,

with z̄ = [η1 . . . ηN ]
T
. Applying this state transforma-

tion and mass normalising Φ such that ΦTMΦ = I and
ΦTKΦ = Ω2, the full state space system can be formulated

in modal space with q̄ =

z̄, ˙̄z

T
as

˙̄q =


0 I

−Ω2 −ΦTC ′Φ


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0
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  
Dc,n

f̄ . (5)

The objective of the recursive Bayesian filters considered
in this work is to obtain an estimate of these modal
contributions η. For this, the LTI state space model
introduced in (4) and (5) is discretised by making a Zero-
Order-Hold (ZOH) assumption resulting in a discrete-time
linear state space system. To represent model uncertainty
and process disturbances, process noise w̄ is assumed in
addition to measurement noise v̄, to model measurement
uncertainty. The full discrete-time system model can thus
be summarised as

q̄k+1 = Aq̄k +Bf̄k + w̄k, (6)

ȳk = Cq̄k +Df̄k + v̄k. (7)

The process and measurement noise terms w̄ and v̄ are
assumed independent and identically distributed (IID)
with a Gaussian distribution, zero mean and covariance
matrices Q and R respectively.

It is noted that both the input force f̄ and state q̄ are
assumed unknown in this work, and need to be estimated.
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evaluated for use in high-tech compliant mechanisms in
this work.

The implementation of these algorithms into high-tech
compliant mechanisms instead of civil structures presents
a significantly different environment, allowing for inter-
esting new sensor configurations. In civil structures for
instance, strain measurements are hard to obtain, whereas
acceleration measurements are cheap and easy. This un-
availability of strain measurements reduces estimation per-
formance significantly as sketched by Naets et al. (2015);
Eftekhar Azam, Saeed et al. (2015) and Tatsis and Lourens
(2017). For high-tech compliant mechanisms, however,
these strain measurements are much easier to obtain due
to a small system size and highly controlled environment.
In addition to this, high-tech systems often benefit from in-
depth system knowledge allowing for accurate modelling,
which also benefits recursive Bayesian filter implementa-
tion.

To the best of the authors’ knowledge, the possibilities of
implementing recursive Bayesian filtering solutions from
SHM into compliant mechanisms have not been previously
studied. This forms a research gap which we attempt to ad-
dress in this work. For the first time, the recursive Bayesian
filters for modal contribution estimation are implemented
on a compliant motion stage. The estimation performance
of filters is studied for both external stage disturbances
and closed loop position control. Since closed loop position
control introduces high accelerations into the system, the
dependence of the recursive Bayesian filter’s performance
on the magnitude of system acceleration is evaluated, in
addition to their overall estimation performance.

The remainder of the paper is organized as follows. To pro-
vide a system model, introduce notation and the desired
modal contribution states, section 2.1 first introduces the
necessary Finite-Element modelling approach. Section 2.2
elaborates further on the three recursive Bayesian filters to
be evaluated. The implementation on an actual compliant
motion stage guidance flexure is presented in section 3
whereafter the design of experiments is presented in sec-
tion 4 followed by the results, discussion and conclusions.

2. BACKGROUND

2.1 Finite Element modelling

The dynamics of a compliant flexure discretised by 1D
Euler-Bernoulli beam elements is described by

M ¨̄x+ C ′ ˙̄x+Kx̄ = B′f̄ , (1)

where the matrices M , C ′ and K ∈ R2n×2n denote the
mass, damping and stiffness matrices of the system, with
n representing the number of nodes used for the finite el-
ement approximation. The system state x̄ ∈ R2n×1 repre-
sents a collection of the nodal degrees-of-freedom (DOFs).
For the Euler-Bernoulli finite element assumption, each
node is attributed a lateral (horizontal) displacement,
and rotational DOF. The location of the external input
forces f̄ ∈ Rnu×1 is determined by the selection matrix
B′ ∈ R2n×nu with nu the amount of external input forces
acting on the system.

For displacement measurements, the interpolation matrix
Sd ∈ Rnd×2n is introduced as ȳd = Sdx̄, where Sd merely

interpolates the nodal DOFs through a third order shape
function N(y) as presented in Cook et al. (2001). The
number of displacement measurements is denoted by nd.

For acceleration measurements, (1) is used to obtain an
expression for the state acceleration ¨̄x, and is again pre-
multiplied by an interpolation matrix Sa ∈ Rna×2n as:

ȳa = SaM
−1B′f̄ − SaM

−1C ′ ˙̄x− SaM
−1Kx̄. (2)

The strain measurement is obtained using a similar ap-
proach as mentioned by Preumont (2012) and Aktas and
Esen (2020). The strain ϵi over element i is defined by

ϵi = h

 L

0

d2

dy2
N(y)dy

  
Ss,i

x̄i, (3)

where h denotes the distance away from the centre line of
the flexure and L is the length of the element. The system
matrix Ss ∈ Rns×2n is then constructed by applying this
elemental selection matrix Ss,i for every element the strain
is measured over, such that ȳs = Ssx̄. To reduce system or-
der, and introduce the desired modal contribution η in the
state vector, the system is modally decomposed by solving
the un-damped eigenvalue problem (K − ω2M)v̄ = 0,
hereby obtaining the eigenvector matrix Φ ∈ R2n×N with
N the amount of modelled eigenmodes v̄. The correspond-
ing system eigenfrequencies are captured in the matrix
Ω = diag [ω1 . . . ωN ]. Assuming the system is spanned
by its eigenvectors, the new state is defined as x̄ = Φz̄,

with z̄ = [η1 . . . ηN ]
T
. Applying this state transforma-

tion and mass normalising Φ such that ΦTMΦ = I and
ΦTKΦ = Ω2, the full state space system can be formulated
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
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The objective of the recursive Bayesian filters considered
in this work is to obtain an estimate of these modal
contributions η. For this, the LTI state space model
introduced in (4) and (5) is discretised by making a Zero-
Order-Hold (ZOH) assumption resulting in a discrete-time
linear state space system. To represent model uncertainty
and process disturbances, process noise w̄ is assumed in
addition to measurement noise v̄, to model measurement
uncertainty. The full discrete-time system model can thus
be summarised as

q̄k+1 = Aq̄k +Bf̄k + w̄k, (6)

ȳk = Cq̄k +Df̄k + v̄k. (7)

The process and measurement noise terms w̄ and v̄ are
assumed independent and identically distributed (IID)
with a Gaussian distribution, zero mean and covariance
matrices Q and R respectively.

It is noted that both the input force f̄ and state q̄ are
assumed unknown in this work, and need to be estimated.

2.2 Recursive Bayesian simultaneous input and state
estimation

As mentioned in section 1, three recursive Bayesian filter-
ing approaches for simultaneous input and state estimation
are evaluated in this work, namely the Augmented Kalman
Filter (AKF), the Dual Kalman Filter (DKF) and the
Gilijns de Moor Filter (GDF).

The first approach is the AKF as introduced into struc-
tural mechanics by Lourens et al. (2012b). Its formulation
only requires an augmented system model, whereafter the
regular linear Kalman filtering framework as introduced
in Kalman (1960) can be used. For an augmented system
model, the input is modelled as a random walk process.
This however requires the additional tuning of the input
variation covariance (hereafter referred to asQf ). Since lit-
tle information about the variation of the input is known,
this can limit real-world application significantly (Lourens
et al. (2012b)).

The second approach, the DKF, as presented by Eftekhar
Azam, Saeed et al. (2015) has been introduced as a
remedy to instability of the AKF for acceleration-only
measurements. Here, an additional Kalman filtering stage
is introduced to obtain an estimate of the input before the
second Kalman filtering stage estimates the state. This
approach, however, still assumes a similar random walk
process for the input as the AKF. Thus also limiting real-
world tuning capability (Tatsis and Lourens, 2017).

The third approach is the GDF (Gillijns and De Moor,
2007a,b). It is first introduced into structural mechanics by
Lourens et al. (2012a). For the original filter formulation
as proposed in Gillijns and De Moor (2007b), a similar
two-stage estimation structure is set up as in the DKF.
Instead of a Kalman filter estimate for the input however,
a recursive Weighted Least-Squares estimation is used.
For this, no random walk model is assumed for the input
dynamics, thus eliminating the need for the additional
tuning of an input covariance matrix.

3. METHOD

3.1 Experimental setup

The system used for filter evaluation is a compliant motion
stage flexure. The setup is presented in Figure 1, where in
addition, the measurement and sensing equipment is also
introduced.

For reference, general mechanical properties of the stage
flexures are presented in Table 1.

Table 1. Mechanical properties of compliant
flexure.

Material AISI 1095 Spring Steel
Length 100 mm
Width 12.7 mm
Height 0.4 mm

On this setup, a strain measurement at the base of
the flexure, an acceleration measurement and a position
measurement of the stage are implemented. It is assumed
that the stage is rigidly connected to the flexure tip,

Fig. 1. Compliant motion stage setup with a race coil
actuator and acceleration, strain and position sensors.

and dynamics of the stage itself are neglected. The stage
is actuated by a current controlled race-coil actuator,
providing closed loop position control using the position
measurement.

The strain measurements are implemented in full Wheat-
stone bridge configuration. The two actual measurement
strain gauges are placed at the second mode strain maxi-
mum at the base of the flexure in order to increase observ-
ability of this mode.

Data is collected by a TI f28379d Launchpad, also imple-
menting closed-loop position control of the motion stage.
This board allows for a sampling frequency of 10kHz.

3.2 System modelling

To obtain an actual model of the system, the finite element
modelling approach introduced in section 2.1 is used. It is
assumed that the tip of the flexure is fixed in rotation, and
only one interaction force f exists in the lateral direction
on this tip, containing all interaction between the stage
and the flexure. This also allows for the application of the
methods in this work to become invariant to stage loading,
or unknown disturbances on the stage itself since this is
all captured in this interaction force, which is estimated.
The stage is also assumed fully symmetrical, allowing for
the modelling of only one flexure at a time.

The full system model is truncated to the first two modes
using the modal decomposition as introduced in section
2.1, since higher modes can not be measured. This thus
results in the state vector q̄ ∈ R4×1 containing the modal
contributions η and modal velocities η̇.

As model validation, the measured frequency response
from the racetrack coil input force to the measured posi-
tion output is presented in Figure 2. A mass representing
roughly 1/4 of the stage body mass is added to the tip of
the modelled flexure, for validation. In addition, the modal
damping of the model is tuned to match the measured
system, since this is not directly obtained from material
properties. As can be seen, the location and amplitude
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of the first modelled mode coincides relatively well with
identified dynamics. The two independent identification
sequences for the second mode show some additional dy-
namics compared to the modelled response. It is assumed
this is due to additional remnant modes occurring from
flexure interaction, since the true system does not consist
of merely 1 flexure (as assumed in modelling), but 4.

Fig. 2. Modelled (red) and identified (blue, yellow and
orange) plant dynamics. Bode plot from input force
to flexure tip position.

For the recursive Bayesian filter implementation, it is
important to note that only the strain and acceleration
measurements are used for estimation. The position mea-
surement is only used for validation of the model and
evaluation of estimation performance.

3.3 Filter Implementation

For the recursive Bayesian filter implementation, all states
and covariance matrices require initialisation as well as
parameter tuning.

For this initialisation, the filter states q̄0 for all three
filters are initialised at 0. No information is available about
the variance of this estimate, which is assumed large,
by initialising all three state covariance matrices P0 at
103 Inq×nq with nq the amount of states.

For filter tuning, the AKF and DKF require the tuning of
the process noise, measurement noise and input covariance
matrices Q, R and Qf respectively. The GDF only requires
tuning of the Q and R matrices. To simplify this tuning
process, and to reduce tuning parameter space dimension,
the Q and R matrices are assumed diagonal as Q =
σ2
qInq×nq

and R = σ2
rR0 with scalar tuning parameters

σq and σr similar to Petersen et al. (2019). Since only one
input force is assumed, Qf a scalar. The tuning parameter
space is therefore R3.

The initial measurement covariance matrix R0 is con-
structed using measured noise covariance values as R0 =
diag [cov(ya) cov(ys)] , with cov(ya) = 0.0587m2/s2 and
cov(ys) = 1.095 · 10−16m2/m2. This ensures relative co-
variance between the sensors is maintained when only
tuning σr.

The first two parameters, σq and σr, are tuned using a
non-linear Nelder-Mead simplex algorithm for all three
filters following initial empirical tuning and a parameter
space grid search. Here, the cost function is set up as
a minimisation of the Normalised Root-Mean-Squared
Error (NRMSE) of the estimated tip position versus the
measured tip position for an independent training data set
of 20s. It is important to note that no global optimality
is guaranteed, as this tuning process is sensitive to local
minima.

After convergence of this tuning, the AKF and DKF
still require tuning for Qf , which is done using an L-
curve regularisation similar to Tatsis and Lourens (2017).
Since this L-curve depends on the values chosen for σq

and σr, the process of optimisation followed by L-curve
regularisation is iterated until parameters converge. These
final filter parameters are presented in Table 2.

Table 2. Tuned filter parameters.

AKF DKF GDF

qtune 1.86·10−9 3.03·10−13 2.24·10−5

rtune 2.26·104 1.11·104 2.29·1014
Qf 1·1010 1 · 101 -

4. DESIGN OF EXPERIMENTS

To be able to draw relevant conclusions about the evalua-
tion of these filters on high-tech compliant motion stages,
their performance is evaluated on two performance met-
rics: system acceleration dependency and overall estima-
tion performance.

Since high-tech compliant mechanisms experience high
accelerations and velocities, the filters’ acceleration de-
pendency is an important performance metric for this
specific application. Overall NRMSE fit score between the
estimated and measured stage position provides a metric
to evaluate and compare the filters’ overall performance.

Four independent data sets are gathered to evaluate the
two performance metrics mentioned above.

The first two data sets aim at evaluating filter acceleration
dependency by introducing different acceleration regimes.
This is done by initialising in open loop (first regime)
whereafter a reference position is tracked using closed
loop PID control (second regime). The system is allowed
to dampen out after closed loop control is turned off
(third regime), resulting in 3 distinct acceleration regions
(initialisation, closed loop control and residual vibrations)
per data set. For these in total 6 regions, the mean absolute
acceleration of the stage is computed per region. The first
data set employs a square wave as reference alternating
between±2·10−4 mwith a period of 2 seconds, whereas the
second data set requires the tracking of a 10Hz sinusoidal
reference of the same amplitude.

To evaluate overall estimation performance, two additional
data sets are used. Here, an impulse force is provided,
whereafter the stage is allowed to dampen out. These data
sets are used in addition to the first two to evaluate the
filters on both control and disturbance inputs.

The performance of the filters for these metrics is deter-
mined using the tip location estimate, where the estimated
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of the first modelled mode coincides relatively well with
identified dynamics. The two independent identification
sequences for the second mode show some additional dy-
namics compared to the modelled response. It is assumed
this is due to additional remnant modes occurring from
flexure interaction, since the true system does not consist
of merely 1 flexure (as assumed in modelling), but 4.

Fig. 2. Modelled (red) and identified (blue, yellow and
orange) plant dynamics. Bode plot from input force
to flexure tip position.

For the recursive Bayesian filter implementation, it is
important to note that only the strain and acceleration
measurements are used for estimation. The position mea-
surement is only used for validation of the model and
evaluation of estimation performance.

3.3 Filter Implementation

For the recursive Bayesian filter implementation, all states
and covariance matrices require initialisation as well as
parameter tuning.

For this initialisation, the filter states q̄0 for all three
filters are initialised at 0. No information is available about
the variance of this estimate, which is assumed large,
by initialising all three state covariance matrices P0 at
103 Inq×nq with nq the amount of states.

For filter tuning, the AKF and DKF require the tuning of
the process noise, measurement noise and input covariance
matrices Q, R and Qf respectively. The GDF only requires
tuning of the Q and R matrices. To simplify this tuning
process, and to reduce tuning parameter space dimension,
the Q and R matrices are assumed diagonal as Q =
σ2
qInq×nq

and R = σ2
rR0 with scalar tuning parameters

σq and σr similar to Petersen et al. (2019). Since only one
input force is assumed, Qf a scalar. The tuning parameter
space is therefore R3.

The initial measurement covariance matrix R0 is con-
structed using measured noise covariance values as R0 =
diag [cov(ya) cov(ys)] , with cov(ya) = 0.0587m2/s2 and
cov(ys) = 1.095 · 10−16m2/m2. This ensures relative co-
variance between the sensors is maintained when only
tuning σr.

The first two parameters, σq and σr, are tuned using a
non-linear Nelder-Mead simplex algorithm for all three
filters following initial empirical tuning and a parameter
space grid search. Here, the cost function is set up as
a minimisation of the Normalised Root-Mean-Squared
Error (NRMSE) of the estimated tip position versus the
measured tip position for an independent training data set
of 20s. It is important to note that no global optimality
is guaranteed, as this tuning process is sensitive to local
minima.

After convergence of this tuning, the AKF and DKF
still require tuning for Qf , which is done using an L-
curve regularisation similar to Tatsis and Lourens (2017).
Since this L-curve depends on the values chosen for σq

and σr, the process of optimisation followed by L-curve
regularisation is iterated until parameters converge. These
final filter parameters are presented in Table 2.

Table 2. Tuned filter parameters.

AKF DKF GDF

qtune 1.86·10−9 3.03·10−13 2.24·10−5

rtune 2.26·104 1.11·104 2.29·1014
Qf 1·1010 1 · 101 -

4. DESIGN OF EXPERIMENTS

To be able to draw relevant conclusions about the evalua-
tion of these filters on high-tech compliant motion stages,
their performance is evaluated on two performance met-
rics: system acceleration dependency and overall estima-
tion performance.

Since high-tech compliant mechanisms experience high
accelerations and velocities, the filters’ acceleration de-
pendency is an important performance metric for this
specific application. Overall NRMSE fit score between the
estimated and measured stage position provides a metric
to evaluate and compare the filters’ overall performance.

Four independent data sets are gathered to evaluate the
two performance metrics mentioned above.

The first two data sets aim at evaluating filter acceleration
dependency by introducing different acceleration regimes.
This is done by initialising in open loop (first regime)
whereafter a reference position is tracked using closed
loop PID control (second regime). The system is allowed
to dampen out after closed loop control is turned off
(third regime), resulting in 3 distinct acceleration regions
(initialisation, closed loop control and residual vibrations)
per data set. For these in total 6 regions, the mean absolute
acceleration of the stage is computed per region. The first
data set employs a square wave as reference alternating
between±2·10−4 mwith a period of 2 seconds, whereas the
second data set requires the tracking of a 10Hz sinusoidal
reference of the same amplitude.

To evaluate overall estimation performance, two additional
data sets are used. Here, an impulse force is provided,
whereafter the stage is allowed to dampen out. These data
sets are used in addition to the first two to evaluate the
filters on both control and disturbance inputs.

The performance of the filters for these metrics is deter-
mined using the tip location estimate, where the estimated

displacement of the tip is compared to the stage measure-
ment. In this work, it is assumed this tip displacement
is proportional to the filter’s modal amplitude estimation
performance since no reference signal for this modal am-
plitude is available.

5. RESULTS

The results for the filter implementation on the experi-
mental setup are sub-divided into system acceleration and
overall estimation performance evaluation.

For the acceleration performance evaluation, the mean
absolute error between the estimated and measured tip
location is computed for every section of the first two
data sets (6 sections in total). These values are plotted
in Figure 3 on the left y-axis. The second y-axis presents
the mean absolute acceleration measurement per section.

Fig. 3. Mean absolute filter tip position estimation error
for all 6 data set sections. A second y-axis presents
the mean absolute acceleration measured.

As can be seen, the three filters perform significantly
different with lower measured acceleration in the system
compared to higher acceleration. To show a possible cor-
relation, the mean absolute filter error for all 6 data set
sections is plotted against the mean absolute measured ac-
celeration in Figure 4. The Pearson correlation coefficient
is computed as well as a linear least squares fit to show
the possible difference in correlation.

Fig. 4. Mean absolute filter error versus mean absolute
acceleration for all 6 data set sections. The AKF and
GDF closely overlap.

As can be seen, a relatively large correlation coefficient
for the DKF in conjunction with the steep gradient of
the least squares fit suggests the DKF performs poorly
on high acceleration signals. The AKF and GDF perform
very comparably.

For overall estimation performance, the NRMSE between
the estimated and measured tip position for all four data
sets is presented in Figure 5. Here, it can again be seen the
AKF and GDF perform similarly, where the DKF builds
up considerably more error. The GDF outperforms the
AKF slightly overall.

Fig. 5. Overall NRMSE fit performance between the esti-
mated and measured tip position. The dashed line
represents the mean filter performance on all data
sets.

6. DISCUSSION

The results presented in the previous section sketch an
early view on the recursive Bayesian filters performance
on high-tech compliant motion stages. There are, however,
significant remarks to be made about the implementation
and validation process used.

The first is filter tuning. This process severely impacts the
performance of these algorithms, and can therefore influ-
ence their relative comparison. In this work, an attempt is
made to remedy this by tuning all filters using the same
optimisation algorithm and training data set. Dependence
on tuning parameters varies, however, thus resulting in
significantly different final values.

The second remark is the validation process used for these
filters. As they are all validated based on the flexure tip
position, no hard conclusions can be drawn about the
modal amplitude estimation performance as the true value
for these signals is not known. The assumption that the tip
location estimate performance is proportional to the modal
contribution estimation performance might only hold for
the first eigenmode. This thus limits possible conclusions
about estimation performance for higher frequency vibra-
tional modes.

The third and final remark is the limited amount of data
used to study the filter acceleration dependence. This
limitation is somewhat mitigated by choosing a variety
of scenarios representing realistic working conditions of
a compliant motion system. More operating points could
however strengthen this analysis.

7. CONCLUSIONS & RECOMMENDATIONS

This work evaluates recursive Bayesian Filtering solutions,
initially introduced for applications in SHM in civil engi-
neering, for estimating modal contribution states of high-
tech compliant mechanisms. Specifically, three filters are
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evaluated on acceleration dependence and overall estima-
tion performance. All considered filters are able to recon-
struct modal contributions. Their performance, however,
varies.

From the results on acceleration dependence, it can be
carefully concluded that the DKF performs poorly on this
experimental setup for higher accelerations, whereas the
AKF and GDF both perform relatively well.

On overall estimation performance, a similar trend is
observed, with the DKF performing relatively poorly. The
AKF and GDF perform very comparably when looking at
NRMSE estimation performance.

It is recalled that the GDF does not assume any dynamics
for the input, which relieves the need for L-curve tuning
of the input covariance matrix. This significantly increases
real world applicability since L-curve tuning is only pos-
sible when a validation signal is available. This is in line
with results obtained by Tatsis and Lourens (2017).

Based on the acceleration dependence, overall estimation
performance and applicability, it can thus be concluded
that the GDF shows the most promising results for imple-
mentation on high-tech compliant mechanisms.

An interesting direction for future work is the use of the
obtained estimated modal contributions in a full AVC
scheme to dampen higher order modes for high-tech com-
pliant systems, and evaluate the performance over more
conventional AVC methods.
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