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Abstract
In this paper we develop a new approach to nonlinear stochastic partial differen-
tial equations with Gaussian noise. Our aim is to provide an abstract framework
which is applicable to a large class of SPDEs and includes many important cases
of nonlinear parabolic problems which are of quasi- or semilinear type. This
first part is on local existence and well-posedness. A second part in prepara-
tion is on blow-up criteria and regularization. Our theory is formulated in an
Lp-setting, and because of this we can deal with nonlinearities in a very effi-
cient way. Applications to several concrete problems and their quasilinear vari-
ants are given. This includes Burgers’ equation, the Allen–Cahn equation, the
Cahn–Hilliard equation, reaction–diffusion equations, and the porous media
equation. The interplay of the nonlinearities and the critical spaces of ini-
tial data leads to new results and insights for these SPDEs. The proofs are
based on recent developments in maximal regularity theory for the linearized
problem for deterministic and stochastic evolution equations. In particular, our
theory can be seen as a stochastic version of the theory of critical spaces due
to Prüss–Simonett–Wilke (2018). Sharp weighted time-regularity allow us to
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deal with rough initial values and obtain instantaneous regularization results.
The abstract well-posedness results are obtained by a combination of several
sophisticated splitting and truncation arguments.

Keywords: quasilinear, semilinear, stochastic evolution equations, stochas-
tic maximal regularity, critical spaces, Allen–Cahn equation, Cahn–Hilliard
equation, reaction–diffusion equation, Burgers’ equation

Mathematics Subject Classification numbers: 60H15, 35B65, 35K59, 35K90,
35R60, 42B37, 47D06.
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1. Introduction

In this article we study parabolic quasilinear and semilinear stochastic evolution equations of
the form: {

du + A(u)u dt = F(u)dt + (B(u)u + G(u))dWH , t ∈ (0, T),

u(0) = u0.
(1.1)

Here A is the leading operator and is of quasilinear type which means that for each v in a
suitable interpolation space

u �→ A(v)u,

defines a mapping from X1 into X0 here X1 ↪→ X0 densely. The problem (1.1) includes the
semilinear case where the pair (A(u)u, B(u)u) is replaced by (Ãu, B̃u). Here (Ã, B̃) are operators
not depending on u. The noise term WH is a cylindrical Brownian motion. The nonlinearities
F and G are of semilinear type. Many examples of SPDEs fit in the above framework.

A powerful approach to problems of the form (1.1) is the monotone operator approach
(see [LR15] and references therein), and actually one can even treat some more complicated
nonlinearities than (A, B) for the leading operators. In examples the usual coercivity is formu-
lated for the pair (A, B) and ensures that the problem is of parabolic type. Moreover, without
any difficulty this method allows to treat problems with (t,ω)-dependent operators, which is
important in filtering problems. Here and throughout the paper ω ∈ Ω denotes the stochastic
variable. There are also some limitations and drawbacks to the method. For example it requires
a Hilbert space structure and it does not provide optimal time regularity. Moreover, for many
equations in dimensions d � 3 (e.g. Navier–Stokes, Cahn–Hilliard and Allen–Cahn), Lp or
even Lp(Lq)-theory seems to be necessary. In some cases a Cα-theory could be applied as well.
However a Cα-theory (see e.g. [DL19, WD20] for the linear Cα-theory) requires regularity
assumptions on the noise, the coefficients, and on u0 which can be either too restrictive for
physical applications, or does not fit the scaling property of the SPDE considered. Moreover,
Lp(Lq)-theory provides blow-up criteria that can be combined with energy estimates to prove
global existence. Energy bounds are usually Lp-estimates, and thus, they do not seem to be
exploitable in an Cα-context. Blow-up criteria and their applications to SPDEs will be the
topic of the subsequent parts [AV20a, AV22] where the results proven here will be of basic
importance.

Our aim is to build an Lp(Lq)-theory for (1.1) in which the coercivity condition can be for-
mulated for an abstract pair (A, B) and where we allow (t,ω)-dependence in the operators in
an adapted way. The Lp-theory [Kry99] is an important step in this direction, and recently an
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evolution equation approach has been found in [PV19], which additionally gives the optimal
space–time-regularity. In the case that A is time-independent and B = 0, optimal space-time
regularity was discovered in the influential paper [NVW12b]. Moreover, under a smallness
condition on B, these results can be applied to well-posedness of (1.1). For instance the semi-
linear case was considered in [Brz97, NVW08] and extended to a maximal regularity setting
(see section 1.2) in [NVW12a]. The latter was extended to the quasilinear setting in [Hor18].
In this paper we will completely revise the general theory, and our approach has much more
flexibility. In particular, we allow:

• A quasilinear couple (A, B);
• Measurable dependence in (t,ω);
• (A, B) without smallness conditions on B;
• Weights in the time variable wκ(t) = tκ with κ ∈ [0, p

2 − 1);
• Rough initial data: u0 ∈ (X0, X1)1− 1+κ

p ,p;
• Nonlinearities F and G defined on interpolation spaces [X0, X1]1−ε which are locally

Lipschitz and have polynomial growth;
• Lp(0, T; Lq)-theory and Lp(0, T; Hs,q)-theory for a range of s ∈ R.

In the above (X0, X1)θ,p and [X0, X1]θ denote the real and complex interpolation spaces,
respectively. In applications these can be identified with certain Besov spaces and Bessel
potential spaces.

Using the weights wκ we will introduce a stochastic version of the theory of critical spaces,
which we will briefly discuss in the deterministic setting in the next section of the introduction.

In the papers [AV20a, AV22] we will continue the study of (1.1). More specifically, we
will study blow-up criteria, regularization phenomena and further applications to SPDEs. In
[AV21b], we will show global well-posedness for (1.1) with small initial data for the stochastic
Navier–Stokes equations.

1.1. Criticality

In the literature critical spaces are often introduced as those spaces which satisfy a scaling
invariance similar to the one of the PDE itself, or as those spaces in which the energy bound
and nonlinearity are of the same order. More details on this can be found in [Can04, Kla00,
LR16, Tao06, Tri13], and references therein. For example for the Navier–Stokes equations on

R3 one can obtain solutions in Lp(0, T; Lq) for small initial data in the critical space Ḃ
−1+ 3

q
q,p

provided the criticality condition 2
p +

3
q = 1 holds, and q ∈ (3,∞) (see [LR16, p 182]).

Another way to introduce criticality would be to consider a specific nonlinearity, e.g. F(u) =
|u|r in a given PDE. Typically, some exponent r turns out to be critical in the sense that the
‘usual’ estimates are not powerful enough anymore. Below that value of r the problem is usually
called subcritical and above that value it is called supercritical.

In a recent paper of Prüss–Simonett–Wilke [PSW18] a new viewpoint on critical spaces
has been discovered in the deterministic setting. Special cases have been considered before in
[Prü17, PW17, PW18]. The authors consider abstract evolution equations in spaces of the form
Lp((0, T),wκ; X0), where p ∈ (1,∞), wκ(t) = tκ is a weight function with κ ∈ [0, p− 1), and
typically X0 is a Sobolev or an Lq-space. Assuming maximal regularity (see section 1.2) for
the leading term and several other conditions, the authors establish local well-posedness. The
weight can be chosen in correspondence with the polynomial growth rate of the nonlinearity
to obtain what they call a critical weight. After the weight exponent κ is fixed, the so-called
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trace space of initial values which one can consider becomes (X0, X1)1− 1+κ
p ,p, and this space

they call critical.
A surprising feature is that in many concrete examples the latter trace space coincides with

the critical space from a PDE point of view. In [PSW18] this leads to several new results for
classical PDEs of evolution type such as the Navier–Stokes equation, Cahn–Hilliard equations,
convection–diffusion equations, and many more. A crucial point in their theory is that F does
not have to be defined on the real interpolation spaces (X0, X1)1− 1

p ,p and one can allow it to be

defined on a much smaller space Xθ with θ > 1 − 1
p at the cost of a growth condition on F.

In our work we will develop a stochastic version of the above theory. For this many addi-
tional difficulties have to be overcome. Some of them are connected to Lp(Ω)-integrability
issues for the nonlinearities, and others are connected with the fact that in stochastic maxi-
mal regularity (see next section) one needs to work with vector-valued spaces with fractional
smoothness to obtain the right trace theory. Note that in the stochastic case the condition on
κ becomes more restrictive κ ∈ [0, p

2 − 1) (in the deterministic case this was κ ∈ [0, p− 1)).
Another issue in the examples is that the stochastic version of maximal Lp-regularity theory
is more complicated and less developed than the deterministic case. Fortunately, there is a lot
of current research in this direction and hopefully our paper will give motivation for further
progress.

We will show that our theory can be applied to several classes of parabolic SPDEs. With
a hands on approach for each SPDE separately one can often obtain very detailed properties
of solutions. Our theory can provide more information as one usually obtains new spaces in
which the problem can be analysed, and thus provides different regularity results which where
often not available yet.

Before we continue our discussion on the results of our paper, we will first introduce the
reader to so-called stochastic maximal regularity, which is one of the key tools in our paper.

1.2. Stochastic maximal regularity

Maximal regularity has many forms and has always played a fundamental role in modern
PDE. Below we will try to explain some of the background in a nontechnical way. The precise
definitions can be found in section 3.

Arguably the most common form of maximal regularity for elliptic equations is: the solution
u to λu −Δu = f with f ∈ Lq(Rd) and λ > 0 satisfies

‖u‖W2,q(Rd ) � C‖ f ‖Lq(Rd ),

where q ∈ (1,∞) and C is a constant depending on λ and q. The result fails for the end-
points q ∈ {1,∞}. For q = 2 this result is simple, and for general q one typically uses
Calderón–Zygmund theory (see [Gra08]).

For the heat equation a similar result holds: the solution u to ∂tu −Δu = f , with initial
condition u0 ∈ B2−2/p

q,p (Rd) (Besov space) and f ∈ Lp(0, T; Lq(Rd)) satisfies

‖u‖W1,p(0,T;Lq(Rd)) + ‖u‖Lp(0,T;W2,q(Rd)) � ‖u0‖B
2−2/p
q,p (Rd )

+ ‖ f ‖Lp(0,T;Lq(Rd )),

where p, q ∈ (1,∞). Again the result fails if p or q are in {1,∞}. There are many ways how
to deduce the latter results, and again Calderón–Zygmund theory plays a central role. The fact
that the estimate is two-sided shows that the result is optimal.

An efficient reformulating of the last result is

‖u‖W1,p(0,T;X0) + ‖u‖Lp(R+;X1) � ‖u0‖(X0,X1)
1− 1

p ,p
+ ‖ f ‖Lp(0,T;X0),
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where X0 = Lq(Rd) and X1 = W2,q(Rd). In this form the result can be extended to many other
parabolic problems, and this has been an important field of research for decades:

• For a PDE perspective see [GT83, Kry08, LSUc68];
• For an evolution equation perspective see [DHP03, KW04, PS16].

This topic is still very active in various schools as is evident from the many recent results
(see e.g. [DK13, DG18, DK18, EHDRT19, HL19, PSZ20, RS18, Tol18]). As we explained
before sharp estimates for the linear setting can be used very effectively in the nonlinear case.
In the quasilinear case for deterministic equations the standard reference for this is [CL94],
and the recent monograph [PS16].

In the stochastic situation the above theory is much more recent. If u is a solution to the
stochastic heat equation du +Δu dt = f dt + g dW, then for all p ∈ (2,∞) and q ∈ [2,∞)

‖u‖Lp(Ω;Hθ,p(0,T;H2−2θ,q(Rd ))) � ‖u0‖Lp(Ω;B2−2/p
q,p (Rd))

+ ‖ f ‖Lp(Ω;Lp(0,T;Lq(Rd)))

+ ‖g‖Lp(Ω;Lp(0,T;W1,q(Rd ;
2))),

for any θ ∈ [0, 1/2). Moreover, if q = 2, then p = 2 is also allowed. Here Hθ,p denotes the
Bessel-potential space with smoothness θ. The above result was proved in [NVW12b] by van
Neerven, Weis and the second author. The case θ = 0 and p � q � 2 was obtained before
in [Kry94a, Kry96b, Kry99, Kry00] with a slightly stronger assumption on u0. Recently, a
stochastic version of Calderón–Zygmund theory was developed by Lorist and the second
author. The latter can be used to derive the full range p ∈ (2,∞) and q ∈ (2,∞) from the
case p = q (see [LV20]).

As before the evolution equation reformulation is of the form

‖u‖Lp(Ω;Hθ,p(0,T;X1−θ)) � ‖u0‖Lp(Ω;(X0,X1)1−1/p,p) + ‖ f ‖Lp(Ω;Lp(0,T;X0))

+ ‖g‖Lp(Ω;Lp(0,T;γ(
2,X1/2))),

where X1−θ = [X0, X1]1−θ denotes the complex interpolation spaces and coincides with
D(A1−θ) for A = 1 −Δ on X0. This is the setting in which in [NVW12b] the stochastic maximal
regularity was proved for a large class of SPDEs. An important difference with the determin-
istic case is that the estimate does not hold for the end-point θ = 1/2. However, the half-open
interval θ ∈ [0, 1/2) is good enough for applications.

It is important to note that the natural form of the above problem is actually du +Δu dt
= f dt + (g + Bu)dW, where

Bu dW =
d∑

j=1

∑
n�1

b jn∂ ju dwn,

where (b jn)n�1 ∈ 
2. Under the parabolicity/coercivity assumption

|ξ|2 − 1
2

d∑
i, j=1

∑
n�1

binb jnξiξ j � δ|ξ|2, with δ > 0, (1.2)

the above estimates for the stochastic heat equation still hold. See [PV19, theorem 5.3] and
section 5.1 for a more general formulation.

Although we will only use stochastic maximal regularity in the Lp(Lq) scale, it is important
to note that it can also be considered in different scales such as the Besov scale and Hölder
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scale. For details on this we refer to [Brz95, BH09, DL98, LV20] for the Besov scale and to
[DL19, DLZ20, WD20]. The Hölder case can be seen as a stochastic analogue of Schauder
theory (see [GT83, Kry96a]).

1.3. Illustration

We will illustrate our abstract results theorems 4.5, 4.7 and 4.8 in a simple case in this intro-
duction. We will only do this in the semilinear setting and refer to section 6 for examples in
the quasilinear setting. Consider the following special case of (1.1) on Rd with d � 3⎧⎪⎪⎨⎪⎪⎩

du −Δu dt = u|u|2 dt +
∑
n�1

⎛⎝ d∑
j=1

b jn∂ ju(x) + gnu|u|

⎞⎠dwn
t ,

u(0) = u0,

(1.3)

where (b jn)n�1 and (gn)n�1 ∈ 
2 and the b jn satisfy (1.2). The following is a special case of
theorem 5.10. The definition of maximal local solution will be given in section 4 (see the text
below (5.23) and definition 4.4).

Theorem 1.1. Let d � 3. Assume that q ∈ [2, d) and q > d/2. Let p ∈ (2,∞) be such that
1
p +

d
2q � 1 holds, and let κcrit = p(1 − d

2q ) − 1. Then for each

u0 ∈ L0
F0

(Ω; B
d
q−1
q,p (Rd))

there exists a maximal local solution (u, σ) to (1.3). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(0, σn,wκcrit ; W1,q(Rd)) ∩ C([0, σn]; B
d
q−1
q,p (Rd)) ∩ C((0, σn ] ; B

1− 2
p

q,p (Rd)).

Here Lp(0, T,wκ) denotes the weighted Lp-space with weight wκ(t) = tκ. One can check
that (1.3) is invariant under the scaling (see subsection 5.3.2)

uλ(t, x) :=λ1/2u(λt,λ1/2x), for λ > 0, x ∈ R
d.

Moreover, the space of initial data B
d
q−1
q,p (Rd) (or actually its homogeneous version) is invari-

ant under this scaling as well. Another interesting feature is that we can obtain H1,q-
solutions for any initial data with arbitrary low but positive smoothness. Moreover, the process

u : (0, σ) → B
1− 2

p
q,p (Rd) still has continuous paths, and this shows that there is instantaneous

regularization if κcrit > 0 and the latter holds if the inequality 1
p +

d
2q � 1 is strict.

In the above it is important to note that only part of the structure of the nonlinearities u|u|2
and u|u| plays a role in the formulation of the result. In particular, if the nonlinearities have a
different growth, then the above spaces need to be changed accordingly (see theorem 5.10 for
details).

The noise term can be allowed to be rougher. For this one can just change the spaces accord-
ingly, and as is classical, one uses the regularizing effect of the leading operator Δ. This is for
instance explained for the 1D stochastic Burgers’ equation with white noise in section 5.5 and
with rough noise in section 6.7. Here it is important to note that we can still allow critical
spaces in many situations.
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1.4. Quasilinear SPDEs

There exist several papers on quasilinear SPDEs in the literature. Sometimes authors use
the wording semilinear, quasilinear and fully nonlinear in different ways. Let us explain our
terminology in the example of a stochastic diffusion equation in nondivergence form with
nonlinearities f (u)dt + g(u)dW as before

• Semilinear: the leading operator is u �→ ai j∂
2
i ju with ai j independent of u;

• Quasilinear: the leading operator is u �→ ai j(u,∇u)∂2
i ju;

• Fully nonlinear: the leading operator is u �→ a(u,∇u,∇2u).

Of course some ellipticity is assumed for the coefficients ai j. However, in the quasilinear
setting the ellipticity is often allowed to be degenerate, i.e. its constant depends on u and is
allowed to become zero. In the fully nonlinear case, ellipticity has to be formulated in a more
sophisticated way, but we will not consider fully nonlinear problems in this paper. However,
our theory can be applied to study fully nonlinear problems as was done by the first author in
[Agr18].

In the stochastic setting there exist numerous papers in quasilinear setting and even more
in the semilinear setting. Clearly, we cannot discuss all of them here. However, some papers
which are relevant in the application sections will be mentioned there.

For many concrete equations products of distributions are required and often renormaliza-
tion is needed (see [GIP15] and [Hai14]). We will only treat equations in a more classical
context, where this is not required. However, it would be interesting to see what the maximal
regularity techniques bring to this theory. Probably the right viewpoint is that our theory gives
a very flexible framework in those cases where one does not need renormalization. By using
our theory there will be some cases in which renormalization can be avoided, but of course in
many cases renormalization is known to be necessary.

Overview

• In section 2 preliminaries will be discussed. This includes functional calculus, some
stochastic integration theory and an introduction to the function spaces which will be
needed.

• In section 3 we will introduce stochastic maximal regularity and give sufficient conditions
and examples.

• In section 4 we will state and prove the main local well-posedness results for problems of
the form (1.1).

• Applications to semilinear and quasilinear problems are discussed in sections 5 and 6
respectively. In particular, the Burgers’ equation and porous media equation will be con-
sidered there. Other concrete cases such as Allen–Cahn and Cahn–Hilliard are considered
in section 7.

• In appendix A an appendix on interpolation–extrapolation spaces is included, which will
be used in the application sections.

Notation

• For any T ∈ (0,∞], we set IT = (0, T) and IT denotes the closure of IT.

• We write A �P B (resp. A �P B), whenever there is a constant C only depending on the
parameter P such that A � CB (resp. A � CB). Moreover, we write A �P B if A �P B and
A �P B.
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• If X, Y is an interpolation couple of Banach space, we endow the intersection X ∩ Y with
the norm ‖ · ‖X∩Y := ‖ · ‖X + ‖ · ‖Y.

• For any Banach space Y, x ∈ Y and η > 0, we denote the ball of radius η and centre x ∈ Y
by BY(x, η) := {y ∈ Y : ‖x − y‖Y < η} and BY(η) = BY(0, η).

• B and P denote the Borel and the progressive sigma algebra, respectively. See subsec-
tion 2.3.

• SMR•
p,κ(T) and SMRp,κ(T) (and other variants) denote the set of couple with stochastic

maximal Lp-regularity (see definitions 3.5 and 3.4).

2. Preliminaries

In this section we collect some useful facts and we give references to the literature for
results which are not proven here. As usual, for I ∈ {(a, b), (a, b], [a, b), [a, b]}, where
0 � a < b � ∞, and a Banach space X, we denote by C(I; X) the set of all continuous functions
f : I → X. If b < ∞, then C([a, b]; X) is a Banach space when it is endowed with the norm

‖ f ‖C([a,b];X) := sup
t∈I

‖ f (t)‖X. (2.1)

2.1. Sectorial operators and H∞-calculus

Let A : D(A) ⊆ X → X be a closed operator on a Banach space X. We say that A is sectorial if
the domain and the range of A are dense in X and there exists φ ∈ (0, π) such that σ(A) ⊆ Σφ,
where Σφ := {z ∈ C : | arg z| < φ}, and there exists C > 0 such that

|λ|‖(λ− A)−1‖L (X) � C, ∀ λ ∈ C \ Σφ. (2.2)

Moreover,ω(A) := inf{φ ∈ (0, π): (2.2) holds for some C > 0} is called the angle of sectorial-
ity of A.

Next we define the H∞-calculus for a sectorial operator A. Let φ ∈ (0, π) and let us denote
by H∞

0 (Σφ) the set of all holomorphic function f : Σφ → C such that | f (z)| � min{|z|ε, |z|−ε}
for some ε > 0.

For φ > ω(A) and f ∈ H∞
0 (Σφ), we set

f (A) :=
1

2πi

∫
Γ

f (z)(z − A)−1 dz.

Note that f (A) is well defined and f (A) ∈ L (X). We say that A has a bounded H∞-calculus of
angle φ if there exists C > 0 such that

‖ f (A)‖L (X) � C‖ f ‖H∞(Σφ), ∀ f ∈ H∞
0 (Σφ). (2.3)

Finally, we set ωH∞(A) := inf{φ ∈ (0, π) : (2.3) holds for some C > 0} is the angle of the H∞-
calculus of A.

For the reader’s convenience, we list some operators with a bounded H∞-calculus. However,
this list is far from complete. Moreover, there are still many new developments on H∞-calculus
for differential operators.

Example 2.1.

(a) Positive self-adjoint operators on Hilbert spaces [HNVW17, proposition 10.2.23];
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(b) −A generates an analytic contraction semigroups on a Hilbert space [HNVW17,
theorem 10.2.24 and corollary 10.4.10];

(c) −A generates a positive contraction semigroup on Lq which is analytic and bounded on a
sector.

(d) Second order uniformly elliptic operators with Dirichlet or Neumann boundary condi-
tions on Lq(O), where q ∈ (1,∞) and O ∈ {Rd,Rd−1 × R+} or O is a C2-domain with
compact boundary [DDH+04] or [KKW06];

(e) Second and high-order uniformly elliptic operators with Lopatinskii–Shapiro boundary
conditions (see [PS16, chapter 6]) on Lq(O), where q ∈ (1,∞) and O is a sufficiently
smooth domain with compact boundary [DDH+04];

(f ) The Stokes operator on Lq(O) (i.e. divergence-free vector fields in Lq(O;Rd)), where
q ∈ (1,∞) and O is a bounded C2,α-domain [KKW06, KW13];

(g) The Stokes operator on Lq(O), where | 1
q − 1

2 | �
1

2d and O is a bounded Lipschitz domain
[KW17].

Some more examples can be found in [HNVW17, chapter 10] and in particular the notes
to that chapter. Moreover, by interpolation-extrapolation arguments one obtains similar results
on other spaces (see appendix A).

Finally, we introduce the class of operators with bounded imaginary powers (or briefly BIP).
For details we refer to [Haa06]. Let A be a sectorial operator on X. The operator Ait is defined
through the extended functional calculus [PS16, subsection 3.3.2]. We say that A ∈ BIP(X)
if Ait ∈ L (X) for all t ∈ R. In this case, one can check that t �→ ‖Ait‖L (X) has exponential
growth and we denote by θA the power-angle of A, i.e.

θA := lim sup
t↑∞

1
t

log ‖Ait‖L (X).

For future convenience, let us recall the following properties:

• If A ∈ BIP(X), then [X, D(A)]θ = D(Aθ) for any θ ∈ (0, 1), see e.g. [PS16, theorem 3.3.7];
• If A has a bounded H∞-calculus, then A ∈ BIP(X) and θA � ωH∞(A).

2.2. Fractional Sobolev spaces with power weights

Let X be a Banach space. Here and in the rest of the paper for p ∈ (1,∞) and
κ ∈ (−1, p− 1) we set wκ(t) := |t|κ for t ∈ R. For p,κ as before and for an open interval I
we denote by Lp(I,wκ; X) the Banach space of all strongly measurable functions f : I → X for
which

‖ f ‖p
Lp(I,wκ;X) :=

∫
I
‖ f (t)‖p

Xwκ(t)dt < ∞.

If κ = 0, then wκ = 1 and we write Lp(I; X) instead of Lp(I,w0; X). Moreover, we note that if
0 /∈ I and I is bounded, then Lp(I,wκ; X) = Lp(I; X) isomorphically. Moreover, for I = (a, b)
and p,κ as above, we set Lp(a, b,wκ; X) :=Lp(I,wκ; X). A similar convention will be used for
the spaces introduced below.

To introduce Sobolev spaces we need to introduce the space of X-valued distributions. For
an open subset I ⊆ R, let D(I) :=C∞

0 (I) with the usual topology. Then we define the set of all
X-valued distribution as D′(I; X) :=L (D(I); X). Note that L1

loc(I; X)↪→ D′(I; X) and one can
define the distributional derivative f ( j)∈ D′(I; X) for all j � 1 and f ∈ L1

loc(I; X) in the usual
way.
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For n � 1 and an open interval I ⊆ R, we denote by Wn,p(I,wκ; X) the set of all f ∈
Lp(I,wκ; X) such that f ( j) ∈ Lp(I,wκ; X) for all j ∈ {1, . . . , n}, where f ( j) denotes the jth
distributional derivative of f . We endow Wn,p(I,wκ; X) with the norm

‖ f ‖Wn,p(I,wκ;X) :=
n∑

j=0

‖ f ( j)‖Lp(I,wκ;X).

If κ ∈ (−1, p− 1) and 0 ∈ I, then the trace map f �→ f (0) is a bounded mapping from
W1,p(I,wκ; X) into X (see [LV20, lemma 3.1]).

Define a closed subspace of W1,p(I,wκ; X) as

0W1,p(I,wκ; X) = { f ∈ W1,p(I,wκ; X) : f (0) = 0 if 0 ∈ I}.

In case I = (0, T) for some T ∈ (0,∞), the Poincaré inequality (see [MS12, lemma 2.12]) gives
that

‖ f ‖Lp(0,T,wκ;X) �p,κ T‖ f ′‖Lp(0,T,wκ;X), ∀ f ∈ 0W1,p(I,wκ; X). (2.4)

We introduce fractional Sobolev spaces by complex interpolation as in [MS12] and [PS16,
section 3.4.5].

Definition 2.2. Let −∞ � a < b � ∞, I = (a, b), p ∈ (1,∞), κ ∈ (−1, p− 1) and θ ∈
(0, 1). Let

Hθ,p(I,wκ; X) := [Lp(I,wκ; X), W1,p(I,wκ; X)]θ.

If 0 ∈ I let

0Hθ,p(I,wκ; X) := [Lp(I,wκ; X), 0W1,p(I,wκ; X)]θ.

As before, Hθ,p(I,wκ; X) = Hθ,p(I; X) isomorphically if 0 /∈ I and I is bounded. Furthermore,
by interpolation it is immediate that

0Hθ,p(I,wκ; X) ↪→ Hθ,p(I,wκ; X) contractively. (2.5)

Let us note some further properties of the above spaces.
Proposition 2.3. Let X be a Banach space. Let θ ∈ (0, 1), p ∈ (1,∞), κ ∈ (−1, p− 1),
J ⊆ I ⊆ R intervals, IT = (0, T) with T ∈ (0,∞], ε > 0, and A ∈ {H, 0H}. Then for all f ∈
Aθ,p(IT ,wκ; X),

‖ f ‖Aθ,p(J,wκ;X) � ‖ f ‖Aθ,p(I,wκ;X),

‖ f ‖Hθ,p(ε,T;X) � ε−κ‖ f ‖Aθ,p(IT ,wκ;X), ifκ ∈ [0, p− 1).

Proof. For convenience of the reader we provide the details. The first estimate follows by
interpolating the restriction operator mapping from Ak,p(I,wκ; X) into Ak,p(J,wκ; X) for k ∈
{0, 1}.

To prove the second estimate by (2.5) it suffices to consider the case A = H. Let
r : f �→ f |(ε,T) be the restriction operator on (ε, T). It is immediate to see that

‖r‖L (W j,p(IT ,wκ;X)),W j,p(ε,T;X)) � ε−κ,

for j ∈ {0, 1}. Thus, interpolation gives r : Hθ,p(IT,wκ; X) → Hθ,p(ε, T; X) with norm at most
ε−κ. �
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2.2.1. Extension operators. Here we discuss extension operators for the spaces just intro-
duced. In [MS12], extension operators for the above spaces are already given. However, we
found a different and (to our viewpoint) simpler approach to build extension operators. It
will give some more information, which will be needed in the following. Let us begin with
a definition.

Definition 2.4 (extension operator). Let A ∈ {Hs,p, 0Hs,p} for some s ∈ [0, 1], p ∈
(1,∞) and let κ ∈ (−1, p− 1). Let IT = (0, T) for some T ∈ (0,∞). We say that a bounded
linear operator

ET : A(IT ,wκ; X) →A(R,wκ; X),

is an extension operator on A(IT ,wκ; X) if ET f = f on IT.

Let E be the extension operator which maps,

A(0, 1,wκ; X) →A(R,wκ; X), whereA ∈ {Lp, W1,p} (2.6)

given by the classical reflection argument (see e.g. [AF03, theorems 5.19 and 5.22]), which
can be extended to the weighted setting. By construction it follows that

‖E f ‖Lp(R,wκ ;X) � Cp,κ‖ f ‖Lp(0,1,wκ;X), (2.7)

‖(E f )′‖Lp(R,wκ ;X) � Cp,κ(‖ f ‖Lp(0,1,wκ;X) + ‖ f ′‖Lp(0,1,wκ;X)), (2.8)

where Cp,κ is a constant which depends only on p,κ.

Proposition 2.5. Let s ∈ [0, 1], p ∈ (1,∞), κ ∈ (−1, p− 1) and let T ∈ (0,∞). Let ET :
Lp(0, T,wκ; X) → Lp(R,wκ; X) be the operator given by

ET f (t) :=E( f (T·))
( t

T

)
, t ∈ R,

where E is as above. Then the following assertion holds.

(a) The restriction 0ET of ET to 0Hs,p(IT ,wκ; X) defines a bounded extension operator with
values in 0Hs,p(R,wκ; X) with

‖0ET‖L (0Hs,p(IT ,wκ;X),0Hs,p(R,wκ ;X)) � 0C,

where 0C depends only on p, s,κ.
(b) Let η > 0 and T ∈ (η,∞]. Then ET induces an extension operator on Hs,p(IT,wκ; X),

which will be still denoted by ET . Moreover,

‖ET‖L (Hs,p(IT ,wκ;X),Hs,p(R,wκ ;X)) � C,

where C depends only on p, s,κ, η.

Proof.

(a) By a change of variable and (2.7),

‖0ET f ‖Lp(R,wκ;X) =

∥∥∥∥ t �→ E( f (T·))
( t

T

)∥∥∥∥
Lp(R,wκ;X)

� ‖ f ‖Lp(IT ,wκ;X),
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and

‖(0ET f )′‖Lp(R,wκ;X) = T−1
∥∥∥t �→ (E( f (T·)))′

( t
T

)∥∥∥
Lp(R,wκ ;X)

= T−1+ 1+κ
p ‖(E( f (T·)))′‖Lp(R,wκ;X)

(i)

� T−1+ 1+κ
p
(
‖ f (T·)‖Lp(0,1,wκ;X) + ‖ f ′(T·)T‖Lp(0,1,wκ;X)

)
(ii)

� T
1+κ

p ‖ f ′(T·)‖Lp(0,1,wκ;X) = ‖ f ′‖Lp(IT ,wκ;X)

where in (i) we used (2.8) and in (ii) the weighted Poincaré inequality (2.4). We can
conclude that also ‖0ET‖L (0W1,p(0,T,wκ;X),0W1,p(R,wκ;X)) � C with C independent of T.

Now complex interpolation gives that 0ET is a bounded linear operator from

0Hs,p(IT ,wκ; X) into 0Hs,p(R,wκ; X). Moreover, it has the extension property, i.e.

0ET f = f on IT, which follows from the extension property of E.
(b) This follows in the same way, but since we cannot use Poincaré inequality, we obtain

‖ET‖L (W1,p(0,T,wκ;X),W1,p(R,wκ;X)) � C(1 + T−1). �

2.2.2. Embedding results. In this section we collect some basic embedding results for the
spaces introduced in the previous section. To begin, let us introduce Sobolev embeddings and
interpolation inequalities for Hs,p. Some of the following results might also hold for general
Banach spaces, but since we will use the UMD property many times we prefer the presentation
below. Note that the difficulty in the proofs below is that we want estimates with T-independent
constants as this is required in fixed point arguments below.

The following result on vector-valued Sobolev spaces follows from [LMV18, sections 5
and 6]. The scalar unweighted case is simpler, and in that case the result is a special case of
[See72].

Theorem 2.6. Let X be a UMD space, p ∈ (1,∞), κ ∈ (−1, p− 1), s ∈ (0, 1), and I ∈
{R,R+}. If s �= 1+κ

p , then

0Hs,p(I,wκ; X) =

⎧⎪⎪⎨⎪⎪⎩
{u ∈ Hs,p(I,wκ; X) : u(0) = 0}, if s >

1 + κ

p
,

Hs,p(I,wκ; X), if s <
1 + κ

p
,

isomorphically.

By using the extension operator of proposition 2.5 one can see that theorem 2.6 extends
to I = (0, T) with T ∈ (0,∞). In particular, if s �= 1+κ

p , then 0Hs,p(I,wκ; X) is a closed sub-
space of Hs,p(I,wκ; X). Although this seems very likely, this seems to be highly nontrivial. As
a consequence the estimate ‖u‖

0Hs,p(I,wκ;X) � ‖u‖Hs,p(I,wκ;X) holds, where we need the condition

u(0) = 0 if s > 1+κ
p . The theorem will usually be applied through the latter norm equivalence.

Proposition 2.7 (Sobolev embedding). Let X be a UMD Banach space. Let T ∈ (0,∞]
and set IT = (0, T). Assume that 1 < p0 � p1 < ∞, s0, s1 ∈ (0, 1) and κi ∈ (−1, pi − 1) for i ∈
{0, 1}. Assume κ1

p1
� κ0

p0
and s0 − 1+κ0

p0
� s1 − 1+κ1

p1
. Then there is a constant C independent

of T such that for all f ∈ 0Hs0,p0 (IT ,wκ0 ; X),

‖ f ‖
0Hs1,p1 (IT ,wκ1 ;X) � C‖ f ‖

0Hs0,p0 (IT ,wκ0 ;X).
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The same holds with 0Hsi,pi (IT ,wκi ; X) replaced by Hsi,pi (IT ,wκi ; X) with a constant C which
depends on T.

Proof. First assume s1 �= 1+κ1
p1

. Let 0ET be as in proposition 2.5(a). Then

‖ f ‖
0Hs1,p1 (IT ,wκ1 ;X) � ‖0ET f ‖

0Hs1,p1 (R,wκ1 ;X).

where we used proposition 2.3 for 0ET f . By theorem 2.6 it remains to estimate
‖0ET f ‖Hs1,p1 (R,wκ1 ;X). By [MV15, propositions 3.2 and 3.7], ‖0ET f ‖Hsi,pi (R,wκi ;X) is equivalent to
‖0ET f ‖H si ,pi (R,wκi ;X), where H denotes the Bessel potential space. Therefore, by the weighted
Sobolev embedding result [MV12, corollary 1.4] we obtain

‖0ET f ‖Hs1,p1 (R,wκ1 ;X) � ‖0ET f ‖Hs0,p0 (R,wκ0 ;X).

By (2.5) and proposition 2.5(a) we obtain

‖0ET f ‖Hs0,p0 (R,wκ0 ;X) � ‖0ET f ‖
0Hs0,p0 (R,wκ0 ;X) � ‖ f ‖

0Hs0,p0 (IT ,wκ0 ;X),

and the result follows by combining the estimates.
In the case s1 − 1+κ1

p1
= 0 we use an interpolation argument. Let ε > 0 be so small that

s±j := s j ± ε ∈ (0, 1). Then by the previous considerations

0Hs±0 ,p0 (IT ,wκ0 ; X) ↪→ 0Hs±1 ,p1 (IT ,wκ1 ; X),

where the embedding constants can be taken T-independent. Interpolating both embeddings
gives the desired embedding in the remaining case.

The final assertion can be proved with the same method, but one can avoid theorem
2.6. Moreover, one needs to use the extension operator on Hs,p spaces provided by
proposition 2.5. �

Next we prove a version of the mixed derivative result [LV20, theorem 3.18], but with T-
independent estimates.

Proposition 2.8 (mixed derivative inequality). Let (X0, X1) be an interpolation couple
such that both X0 and X1 are UMD spaces. Let pi ∈ (1,∞), κi ∈ (−1, pi − 1), and si ∈ (0, 1)
for i ∈ {0, 1}. For θ ∈ (0, 1) set

s := s0(1 − θ) + s1θ,
1
p

:=
1 − θ

p0
+

θ

p1
, κ := (1 − θ)

p
p0
κ0 + θ

p
p1
κ1.

Assume T ∈ (0,∞] and s �= 1+κ
p . Then there exists a constant C > 0 independent of T ∈

(0,∞] such that for all f ∈ 0Hs0,p0 (IT ,wκ0 ; X0) ∩ 0Hs1,p1 (IT ,wκ1 ; X1),

‖ f ‖
0Hs,p(IT ,wκ;[X0,X1]θ) � C‖ f ‖1−θ

0Hs0,p0 (IT ,wκ0 ;X0)‖ f ‖θ
0Hs1,p1 (IT ,wκ1 ;X1).

The same holds with 0Hsi,pi (IT ,wκi ; Xi) replaced by Hsi,pi (IT ,wκi ; Xi) with a constant C which
depends on T in which case s = 1+κ

p is also allowed.

Proof. Let 0ET be as in proposition 2.5(a). By construction (see subsection 2.2.1) 0ET does
not depend on pi,κi, si, Xi. Therefore, proposition 2.3 gives

‖ f ‖
0Hs,p(IT ,wκ;[X0,X1]θ) � ‖0ET f ‖

0Hs,p(R,wκ;[X0,X1]θ).
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Since s �= 1+κ
p , by theorem 2.6 it suffices to estimate ‖0ET f ‖Hs,p(R,wκ;[X0,X1]θ). The interpo-

lation result [LV20, theorem 3.18] implies

‖0ET f ‖Hs,p(R,wκ;[X0,X1]θ) � C‖0ET f ‖1−θ
Hs0,p0 (R,wκ0 ;X0)‖0ET f ‖θHs1,p1 (R,wκ1 ;X1).

As in the proof of proposition 2.7 one can check that

‖0ET f ‖Hsi,pi (R,wκi ;Xi) � ‖0ET f ‖
0Hsi ,pi (R,wκi ;Xi) � ‖ f ‖

0Hsi ,pi (IT ,wκi ;Xi),

and we can conclude the required embedding holds.
The final assertion can be proved in a similar way. �

Remark 2.9. It is to be expected that combining the methods of [LMV18] with [LV20,
theorem 3.18], proposition 2.8 can be improved to

[0Hs0,p0 (R+,wκ0 ; X0), 0Hs1,p1 (R+,wκ1 ; X1)]θ = 0Hs,p(R+,wκ; [X0, X1]θ) (2.9)

under the condition s �= 1+κ
p . In the case that s = 1+κ

p , we expect the embedding

0Hs0,p(IT ,wκ; X0) ∩ 0Hs1,p(IT ,wκ; X1) ↪→ 0Hs,p(IT ,wκ; [X0, X1]θ) to be valid with T-
independent constants as well. This could be proved by a reiteration and interpolation
argument using (2.9).

We conclude this section by recalling an optimal trace result for anisotropic spaces. This
result is a special case of the trace embedding of [ALV21]. In the case that X1 = D(A) where A
is an invertible sectorial operator on a UMD Banach space X0, the following is a consequence
of [MV14b, theorem 1.1] and [AV20b, corollary 7.6]. Moreover, the UMD condition can be
avoided. In the following for an interval J ⊆ R+ and a Banach space X, we denote by C0(J; X)
the set of all continuous functions f : J → X vanishing at infinity endowed with the norm given
by the right-hand side of (2.1).

Proposition 2.10. Let (X0, X1) be a couple of Banach space such that X1 ↪→ X0. Set X1−θ =
[X0, X1]1−θ or X1−θ = (X0, X1)1−θ,r with r ∈ [1,∞]. Assume that p ∈ (1,∞), κ ∈ [0, p− 1),
θ ∈ (0, 1) and T ∈ (0,∞]. Then the following holds:

(a) If θ > 1+κ
p , then

Hθ,p(IT ,wκ; X1−θ) ∩ Lp(IT ,wκ; X1) ↪→ C0(IT ; (X0, X1)1− 1+κ
p ,p);

(b) If θ > 1
p, then for any 0 < ε < T and Jε,T = (ε, T)

Hθ,p(IT ,wκ; X1−θ) ∩ Lp(IT ,wκ; X1) ↪→ C0(Jε,T ; (X0, X1)1− 1
p ,p).

Moreover, the constants in (a) and (b) depend only on η if T ∈ (η,∞]. Furthermore, if we
replace Hθ,p by 0Hθ,p in (a) and (b) the constants in the embeddings can be chosen independent
of T > 0.

Here (a) follows from the above mentioned references and proposition 2.5. To prove (b)
one can reduce to (a) with κ = 0 by proposition 2.3 and a translation argument. To prove the
embeddings (a) and (b) for 0Hθ,p by proposition 2.5 it suffices to consider the case T = ∞ in
which case the result follows from (a) for Hθ,p.
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2.3. Stochastic integration in UMD Banach spaces

The theory of stochastic integration in UMD Banach spaces with respect to a cylindrical Brow-
nian motion is developed in [BvNVW08, NVW07], see also [NVW15]. Here we recall the
results which will be needed in the following.

Throughout the paper (Ω,A,F = (Ft)t�0,P) will denote a filtered probability space. Recall
that a process φ : [0, T] × Ω→ X, where X is a Banach space, is called strongly progressively
measurable if for all t ∈ [0, T], φ|[0,t] is strongly B([0, t]) ⊗ Ft-measurable (here B denotes
the Borel σ-algebra). The σ-algebra generated by the strongly progressively measurable
processes will be denoted by P and is a subset of B([0,∞)) ⊗ F∞.

In the paper we will consider cylindrical Gaussian noise. In the following H is a separable
Hilbert space.

Definition 2.11. A bounded linear operator WH : L2(R+; H) → L2(Ω) is said to be a cylin-
drical Brownian motion in H if the following are satisfied:

• For all f ∈ L2(R+; H) the random variable WH( f ) is centred Gaussian.
• For all t ∈ R+ and f ∈ L2(R+; H) with support in [0, t], WH( f ) is Ft-measurable.
• For all t ∈ R+ and f ∈ L2(R+; H) with support in [t,∞], WH( f ) is independent of Ft.
• For all f 1, f 2 ∈ L2(R+; H) we have E(WH( f 1)WH( f 2)) = ( f 1, f 2)L2(R+;H).

Given a cylindrical Brownian motion in H, the process (WH(t)h)t�0, where

WH(t)h :=WH(1(0,t] ⊗ h), h ∈ H, (2.10)

is a Brownian motion.

Example 2.12. Let (wn)n�1 be independent standard Brownian motions. Then
W
2 ( f ) =

∑
n�1

∫
R+

〈 f , en〉dwn converges in L2(Ω) and defines a cylindrical Brownian

motion in 
2, where en = (δ jn)n�1 and δ jn denotes the Kronecker’s delta.

To introduce stochastic integration in UMD Banach spaces X we first recall the definition
of γ-radonifying operators (see [HNVW17, chapter 9] for details). Let (γ̃ i)i�1 be a sequence
of independent standard normal random variable on a probability space (Ω̃, P̃) and (hi)i�1 an
orthonormal basis for H. We say that a bounded linear operator T : H → X belongs to γ(H, X)
if
∑∞

i=1γ̃iThi converges in L2(Ω; X) and in this case we let

‖T‖2
γ(H,X) := Ẽ

∥∥∥∥ ∞∑
i=1

γ̃ iThi

∥∥∥∥2

X

.

Note that for X = Lp(S) with p ∈ [1,∞), where (S,Σ,μ) is a measure space one has (see
[HNVW17, proposition 9.3.2])

γ(H, X) = Lp(S; H). (2.11)

At this point, we can define the stochastic integral with respect to a cylindrical Brownian
motion in H of the process 1A×(s,t] ⊗ (h ⊗ x):∫ ∞

0
1A×(s,t] ⊗ (h ⊗ x)(s) dWH(s) := 1A ⊗ (WH(t)h − WH(s)h)x, (2.12)

and we extend it to adapted step processes of finite rank by linearity.
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We denote by Lp
P((0, T) × Ω; γ(H, X)) the progressive measurable subspace of Lp((0, T)

× Ω; γ(H, X)). One can show this coincides with the closure of the adapted step processes of
finite rank. The next result is well-known and actually valid for the larger class of martingale
type 2 spaces (see [NVW15, theorem 4.7] and [Ond04]):

Proposition 2.13. Let T > 0, p ∈ (0,∞) and let X be a UMD Banach space with type
2. Then the mapping G �→

∫ T
0 G dWH extends to a bounded linear operator from Lp

P((0, T)
× Ω; γ(H, X)) into Lp(Ω; X). Moreover,

E sup
0�t�T

∥∥∥∥∫ t

0
G(s) dWH(s)

∥∥∥∥p

X

�p,X,TE‖G‖p
L2(0,T;γ(H,X))

.

A sharp two-sided estimate for the stochastic integral was obtained in [NVW07] and
[NVW15, theorem 5.5]. It might seem that in the current paper we only use proposition
2.13, but typically the maximal regularity estimates we use require these sharper estimates.
In particular, this is the case in theorem 3.7 below.

2.4. Stopping times and related concepts

A stopping time τ is a measurable map τ : Ω→ [0, T] such that {τ � t} ∈ Ft for all t ∈ [0, T].
We denote by [[0,σ]] the stochastic interval

[[0, σ]] :={(t,ω) ∈ [0, T] × Ω : 0 � t � σ(ω)}.

Analogously definitions hold for [[0, σ⦈, ⦇0, σ⦈ etc.
In accordance with the previous notation, for A ⊆ Ω and τ , μ two stopping times such that

τ � μ, we set

[0, T] × Ω ⊇ [τ ,μ] × A := {(t,ω) ∈ [0, T] × A : τ (ω) � t � μ(ω)}.

Similar definitions are employed for [τ , μ)× A, (τ , μ)× A ect. In particular, we have [[0, σ ]]
= [0, σ] × Ω.

Let X be a Banach space and let A ∈ A. We say that u : A × [0, μ] → X is strongly
measurable (resp. strongly progressively measurable) if the process

1A×[0,μ]u :=

{
u, on A × [0,μ],

0, otherwise,
(2.13)

is strongly measurable (resp. strongly progressively measurable).
To each stopping time τ we can associate the σ-algebra of the τ -past,

Fτ := {A ∈ A : {τ � t} ∩ A ∈ Ft, ∀ t ∈ [0, T]}.

The following well-known results will be used frequently in the paper without further
mentioning (see [Kal02, lemmas 7.1 and 7.5]).

Proposition 2.14. Let τ be a stopping time. Then Fτ is a σ-algebra and satisfies the
following properties.

• If τ = t a.s. for some t ∈ [0, T], then Fτ = Ft.
• If X : [0, T] × Ω→ X is a strongly progressively measurable process, then the random

variable Xτ (ω) :=X(τ (ω),ω) is strongly Fτ -measurable.
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We continue with another measurability lemma.

Lemma 2.15. Let X be a Banach space. For each t ∈ [0, T], let Yt be a space of functions
f : [0, t] → X. Assume that for each f ∈ YT and each t ∈ [0, T],

• f |[0,t] ∈ Yt;
• t �→ ‖ f |[0,t]‖Yt is increasing;

Let u : Ω→ YT be strongly measurable and τ be a stopping time. Then the map ω �→
‖u(ω)|[0,τ (ω)]‖Yτ (ω) is measurable.

Proof. Since u is strongly measurable, we may assume that YT is separable.
Let Ψ : [0, T] × YT → [0,∞) be given by Ψ(t, f ) = ‖ f |[0,t]‖Yt . Then since for f ∈ YT,

Ψ(·, f ) is increasing, it follows that Ψ(·, f ) is measurable. For t ∈ [0, T] and f , g ∈ YT,

|Ψ(t, f ) −Ψ(t, g)| � ‖( f − g)|[0,t]‖Yt � ‖ f − g‖YT .

Therefore,Ψ(t, ·) is continuous. Since YT is separable this impliesΨ is measurable (see [AB06,
lemma 4.51]).

On the other hand, ζ : Ω→ [0, T] × YT defined by ζ(ω) = (τ (ω), u(ω)) is measurable. Since
‖u(ω)|[0,τ (ω)]‖Yτ (ω) = Ψ(ζ(ω)) = (Ψ ◦ ζ)(ω) the required measurability follows. �

The lemma will be applied to the spaces Yt such as

C([0, t]; X), Lp(0, t,wκ; X), Hθ,p(It,wκ; X), 0Hθ,p(It,wκ; X).

The first two examples are simple because the norm is actually a continuous function of
t ∈ [0, T]. In the cases Hθ,p and 0Hθ,p it is not obvious whether the norms are continuous in
t ∈ [0, T], but fortunately, they are increasing by proposition 2.5.

The above lemma implies that the following versions of stopped spaces with stopped norms
are well-defined.

Definition 2.16. Let X be a Banach space. Let T > 0, p, q ∈ (1,∞), r ∈ {0} ∪ [1,∞) and
θ ∈ [0, 1]. Assume that τ is a stopping time such that τ : Ω→ [0, T]. Let (Yt)t∈[0,T] be as in
lemma 2.15. We say that u ∈ Lr

P(Ω; Yτ ) if there exists a strongly progressively measurable
ũ ∈ Lr(Ω; YT) such that ũ|[[0,τ ]] = u. If in addition r ∈ [1,∞), we set

‖u‖r
Lr(Ω;Yτ ) :=E

(
‖ũ|[0,τ ]‖r

Yτ

)
. (2.14)

Finally, in case Yt = Lp(It,wκ; X), we set Lp
P(Iτ × Ω,wκ; X) := Lp

P(Ω; Yτ ).

Using lemma 2.15 one can check that the expectation in (2.14) is well-defined. Moreover,
one can check that the norm does not depend on the choice of ũ.

3. Stochastic maximal Lp-regularity

The following assumptions will be made throughout sections 3 and 4.

Assumption 3.1. Let X0, X1 be UMD Banach spaces with type 2 and assume X1 ↪→ X0

densely. Assume one of the following two settings is satisfied

• p ∈ (2,∞) and κ ∈ [0, p
2 − 1);

• p = 2, κ = 0 and X0, X1 are Hilbert spaces.
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For θ ∈ (0, 1), and p,κ as above let

Xθ := [X0, X1]θ, XTr
κ,p := (X0, X1)1− 1+κ

p ,p, XTr
p :=XTr

0,p.

The spaces Xθ have UMD and type 2 (see [HNVW16, proposition 4.2.17] and [HNVW17,
proposition 7.1.3]). The same holds for XTr

p but this will not be needed.
Moreover, in the case p = 2 and κ = 0, by [HNVW16, corollary C.4.2] we have

X 1
2
= (X0, X1) 1

2 ,2 = XTr
2 . This is the reason we only consider Hilbert spaces if p = 2 and it

will be used without further mentioning it.

3.1. Stochastic maximal Lp-regularity

In this subsection we collect some basic definitions.
The next assumption is solely for section 3, where the linear theory is treated.

Assumption 3.2. Let T ∈ (0,∞] and set IT := (0, T). The maps A : IT × Ω→ L (X1, X0)
and B : IT × Ω→ L (X1, γ(H, X1/2)) are strongly progressively measurable. Moreover, we
assume there exists CA,B > 0 such that

‖A(t,ω)‖L (X1,X0) + ‖B(t,ω)‖L (X1,γ(H,X1/2)) � CA,B,

for a.a. ω ∈ Ω and all t ∈ IT.

Note that A is a family of unbounded operators on X0 and D(A(t,ω)) = X1, and B is a family
of unbounded operators on X1/2 with domain D(B(t,ω)) = X1. The orders of both terms are
comparable as the A-term is for the deterministic part, and the B-term for the stochastic part.

Stochastic maximal Lp-regularity is concerned with the optimal regularity estimate for the
linear abstract stochastic Cauchy problem:{

du(t) + A(t)u(t)dt = f (t)dt + (B(t)u(t) + g(t))dWH(t), t ∈ [0, T],

u(0) = u0.
(3.1)

Next we give the definition of a strong solution.

Definition 3.3. Let τ be a stopping time which takes values in [0, T]. Let the assumptions
3.1 and 3.2 be satisfied. Assume that

u0 ∈ L0
F0

(Ω; X0), f ∈ L0
P(Ω; L1(Iτ ; X0)), g ∈ L0

P(Ω; L2(Iτ ; γ(H, X0))).

A strongly progressive process u: [[0, τ ]] → X1 is a strong solution to (3.1) on [[0, τ ]] if a.s.
u ∈ L2(Iτ ; X1), and a.s. for all t ∈ Iτ ,

u(t) − u0 +

∫ t

0
A(s)u(s)ds =

∫ t

0
(B(s)u(s) + g(s))dWH(s) +

∫ t

0
f (s)ds. (3.2)

Note that a strong solution automatically satisfies u ∈ L0(Ω; C([0, τ ]; X0)). We are ready to
define weighted stochastic maximal Lp-regularity in a similar way as in [PV19].

Definition 3.4 (stochastic maximal Lp-regularity). Let the assumptions 3.1 and 3.2
be satisfied. We write (A, B) ∈ SMRp,κ(T) if for every f ∈ Lp

P(Ω; Lp(IT ,wκ; X0)) and
g ∈ Lp

P(Ω; Lp(IT ,wκ; γ(H, X1/2))) there exists a strong solution u to (3.1) on [[0, T ]] with
u0 = 0 such that u ∈ Lp(IT × Ω,wκ; X1), and moreover for all stopping times τ : Ω→ [0, T]
and any strong solution u ∈ Lp(Iτ × Ω,wκ; X1), and the following estimate holds

‖u‖Lp(Iτ×Ω,wκ;X1) �C‖ f ‖Lp(Ω;Lp(Iτ ,wκ;X0)) + C‖g‖Lp(Ω;Lp(Iτ ,wκ;γ(H,X1/2))),

4118



Nonlinearity 35 (2022) 4100 A Agresti and M Veraar

where C is independent of f , g and τ .
In the unweighted case we set SMRp(T) :=SMRp,0(T). Furthermore, we write

A ∈ SMRp,κ(T) if (A, 0) ∈ SMRp,κ(T).

As a consequence of the estimate in the above definition, a strong solution u ∈ Lp(Iτ ×
Ω,wκ; X1) on [[0, τ ]] to (3.1) is unique.

Often we will need the following stronger form of stochastic maximal Lp-regularity, where
additional time-regularity is required. For technical reasons the definitions for p > 2 and p = 2
are different.

Definition 3.5. Let the assumptions 3.1 and 3.2 be satisfied.

(a) For p > 2, we write (A, B) ∈ SMR•
p,κ(T) if (A, B) ∈ SMRp,κ(T) and for every f ∈

Lp
P(Ω; Lp(IT ,wκ; X0)) and g ∈ Lp

P(Ω; Lp(IT ,wκ; γ(H, X1/2))) the strong solution u to (3.1)
on [[0, T ]] with u0 = 0 satisfies u ∈ Lp(Ω; Hθ,p(IT,wκ; X1−θ)) for every θ ∈ [0, 1/2), and

‖u‖Lp(Ω;Hθ,p(IT ,wκ;X1−θ)) � C‖ f ‖Lp(Ω;Lp(IT ,wκ;X0)) + C‖g‖Lp(Ω;Lp(IT ,wκ;γ(H,X1/2))),

where C does not depend on f and g.
(b) We write (A, B) ∈ SMR•

2,0(T) if (A, B) ∈ SMR2,0(T) and for every f ∈ L2
P(IT × Ω; X0)

and g ∈ L2
P(IT × Ω; γ(H, X1/2)) the strong solution u to (3.1) with u0 = 0 satisfies u ∈

L2(O; C(IT; X1/2)) and

‖u‖L2(Ω;C(IT ;X1/2)) � C‖ f ‖L2(IT×Ω;X0) + C‖g‖L2(IT×Ω;γ(H,X1/2)),

where C does not depend on f and g.

In the unweighted case we set SMR•
p(T) :=SMR•

p,0(T). Furthermore, we write A ∈
SMR•

p,κ(T) if (A, 0) ∈ SMR•
p,κ(T).

Although we allow θ = 1+κ
p in the above definition, later on we will omit this case since

some technical difficulties arise related to theorem 2.6.
In the next section we give examples of pairs (A, B) which are in SMR•

p,κ(T).

3.2. Operators with stochastic maximal Lp-regularity

There exists an extensive list of examples on stochastic maximal Lp-regularity and in this
section we review a selection. We will only consider maximal Lp-regularity in the Bessel-
potential scale.

The case Hilbert space case for SMRp,κ(T) was first studied by several different methods
for p = 2 and κ = 0. We refer to the following papers for more detailed information.

• [DPZ92, theorem 6.14] the semigroup approach under restrictions on the interpolation
spaces.

• [LR15] the monotone operators approach, where A and B not even need to be linear.
• [Kry94b] Wk,2-theory on domains with weights.

In some cases one can even obtain that the operator is in SMR•
2(T). For instance this holds

if A is the generator of a C0-semigroup on X 1
2

which has a dilation to a C0-group (see [HS01]).

In particular, this holds if the semigroup is quasi-contractive ‖e−tA‖L (X 1
2

) � etω or A has a

bounded H∞-calculus of angle < π/2 on X0 (see [KW04, theorem 11.13]).
In the setting X0 = Hs,p the stochastic maximal regularity of the form SMRp,κ(T) has been

obtained mostly for second order elliptic operators starting in [Kry96b, Kry99, Kry00] in the
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Rd-case in what is usually called Krylov’s Lp-theory for SPDEs. It was afterwards extended to
domains:

Example 3.6.

• [CLKLL18] and [LV20] heat equation on an angular domain with weights;
• [CLKL19] heat equation on polygonal domains with weights;
• [Du20] C2-domains no weights;
• [Kim04a, Kim04b, Kim05] C1-domains with weights;
• [KL99] half space case with weights;

and second order systems:

• [KL13] second order systems with B of special form;
• [MR01] second order systems with B of special form.

The stronger form of stochastic maximal regularity SMR•
p(T) was proved in [NVW12b]

for B = 0 and A independent of (t,ω) using the H∞-calculus. Combined with a perturbation
argument, the case κ ∈ [0, p

2 − 1) was obtained in [AV20b, section 7].

Theorem 3.7. Let assumption 3.1 be satisfied. Let X0 be isomorphic to a closed subspace
of an Lq-space for some q ∈ [2,∞) on a σ-finite measure space. Let A be a closed operator on
X0 such that D(A) = X1. Assume that there exists a λ ∈ R such that λ+ A has a bounded H∞-
calculus of angle < π/2. Then A ∈ SMR•

p,κ(T) for all T < ∞. Furthermore, if A is invertible
and λ = 0, then the result extends to T = ∞.

In particular, this result can be combined with the examples listed in example 2.1.
In [NVW12a] SMR•

p,κ(T) was obtained for regular time dependent A for small B using per-
turbation arguments. By combining ideas from Krylov’s Lp-theory and the semigroup approach
of [NVW12b] this was improved in [PV19] to a large class of abstract operators (A, B) as
in assumption 3.2 and where no time-regularity is assumed. In particular, it applies to sec-
ond order systems with B �= 0, and higher order systems with small B �= 0 and in particular
improves [Kry96b, Kry99, Kry00] and [KL13]. We will come back to those examples in later
sections.

By definition SMR•
p,κ(T) ⊆ SMRp,κ(T). The following somewhat surprising result states

that SMR•
p,κ(T) �= Ø is a necessary and sufficient condition for the reverse inclusion to

hold. Usually the non-emptyness can be checked with theorem 3.7 by showing that there
is some operator Ã on X0 with D(Ã) = X1 and which has a bounded H∞-calculus of angle
< π/2.

Proposition 3.8 (transference of stochastic maximal regularity). Let the assump-
tions 3.1 and 3.2 be satisfied. Let (A, B) ∈ SMRp,κ(T) and assume the existence of a couple
(Ã, B̃) which satisfies assumption 3.2 and belongs to SMR•

p,κ(T). Then (A, B) ∈ SMR•
p,κ(T).

Proof. Let us analyse the case p > 2. The other case follows in the same way. By definition
3.5 we have to prove that for any f ∈ Lp

P(IT × Ω,wκ; X0), g ∈ Lp
P(IT × Ω,wκ; γ(H, X1/2)) and

θ ∈ [0, 1/2) the unique strong solution u ∈ Lp
P(IT × Ω,wκ; X1) to (3.1) on [[0, T ]] with u0 = 0

verifies

u ∈ Lp(Ω; Hθ,p(IT ,wκ; X1−θ)).
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To this end, note that{
du + Ãu dt = B̃u dWH + ((Ã − A)u + f )dt + ((B − B̃)u + g)dWH , t ∈ [0, T],

u(0) = 0.

Fix θ ∈ [0, 1/2). Since u ∈ Lp
P(IT × Ω,wκ; X1) and (Ã, B̃) ∈ SMR•

p,κ(T), one has

‖u‖Lp(Ω;Hθ,p(IT ,wκ;X1−θ))

� ‖(Ã − A)u + f ‖Lp(IT×Ω,wκ;X0) + ‖(B − B̃)u + g‖Lp(IT×Ω,wκ;γ(H,X1/2))

(i)

� ‖u‖Lp(IT×Ω,wκ;X1) + ‖ f ‖Lp(IT×Ω,wκ;X0) + ‖g‖Lp(IT×Ω,wκ;γ(H,X1/2))

(ii)

� ‖ f ‖Lp(IT×Ω,wκ;X0) + ‖g‖Lp(IT×Ω,wκ;γ(H,X1/2)),

where in (i) we used assumption 3.2 and in (ii) we used (A, B) ∈ SMRp,κ(T). �

Remark 3.9.

(a) Proposition 3.8 is actually needed in the proof [PV19, theorem 3.18] and it was over-
looked. The result can be used to deduce the stronger form of stochastic maximal Lp-
regularity SMR•

p,κ(T) also for some cases of the list in example 3.6. In particular, this
will play a role in later sections.

(b) In [PV19, theorem 3.9] there is another transference result which allows to deduce A ∈
SMR•

p,κ(T) from maximal Lp-regularity for the deterministic problem (i.e. g = 0, B = 0)

and Ã ∈ SMRp,κ(T) for some family Ã. Moreover, in special cases it is shown that one
can reduce to B = 0 in [PV19, theorem 3.18].

(c) Theorem 3.7 also holds for operators A : Ω→ L (X1, X0) as long as the estimates for the
H∞-calculus are uniform in Ω.

To finish this subsection we mention that there are also perturbation results for SMR•
p,κ(T)

(see [PV19, theorem 3.15] and [AV20b, theorem 6.1]). Other perturbation results will also be
discussed in [AV21a] and [AV20a].

3.3. Initial values and the solution operator

The aim of this subsection is the study of the linear problem (3.1) with non-trivial initial data
and to introduce some notations.

Proposition 3.10. Suppose assumptions 3.1, and 3.2 hold. Let (A, B) ∈ SMRp,κ(T). Then
for any u0 ∈ Lp

F0
(Ω; XTr

κ,p), f ∈ Lp
P(IT × Ω,wκ; X0) and g ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2)) there
exists a unique strong solution u ∈ Lp(IT × Ω,wκ; X1) to (3.1) on [[0, T ]] and

‖u‖Lp(IT×Ω,wκ;X1) � C‖ f ‖Lp(IT×Ω,wκ;X0) + C‖g‖Lp(IT×Ω,wκ;γ(H,X1/2)) + C‖u0‖Lp(Ω;XTr
κ,p), (3.3)

where C is independent of f , g and u0.
If in addition (A, B) ∈ SMR•

p,κ(T), then for all θ ∈ [0, 1/2) the left-hand side of (3.3)
can be replaced by ‖u‖Lp(Ω;Hθ,p(IT ,wκ;X1−θ)) if p > 2 with C additionally depending on θ, and
replaced by ‖u‖Lp(Ω;C(IT ;X1/2)) if p = 2.

Proof. The proof is similar to [ACFP07, lemma 2.2]. For the reader’s convenience, we
include the details. In steps 1–3, we assume only that (A, B) ∈ SMRp,κ(T).
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Step 1: uniqueness. This follows from (A, B) ∈ SMRp,κ(T) and definition 3.4.
Step 2: u exists and (3.3) holds provided u0 is simple. Recall that (see [BL76, theorem 3.12.2]

or [Tri95, theorem 1.8.2, p 44]) the real interpolation space XTr
κ,p can be characterized as the set

of all x ∈ X0 + X1 such that there exists h ∈ W1,p(R+,wκ; X0) ∩ Lp(R+,wκ; X1) which satisfies
x = h(0). Moreover,

‖x‖XTr
κ,p

� inf{‖h‖W1,p(R+ ,wκ;X0)∩Lp(R+ ,wκ;X1) : h(0) = x}. (3.4)

Let u0 ∈ Lp
F0

(Ω; XTr
κ,p) be simple. By (3.4) applied pointwise w.r.t. ω ∈ Ω, one can check that

there exists a simple map h ∈ Lp
F0

(Ω; W1,p(R+,wκ; X0) ∩ Lp(R+,wκ; X1)) such that

‖h‖Lp(Ω;W1,p(R+ ,wκ;X0)∩Lp(R+ ,wκ;X1)) � ‖u0‖Lp(Ω;XTr
κ,p), (3.5)

where the implicit constant does not depend on u0. Set u := h + v. Then u is a strong solution
to (3.1) on [[0, T ]] if and only if v is a strong solution on [[0, T ]] to{

dv + A(t)v dt = ( f + ḣ − A(t)h)dt + (B(t)v + B(t)h + g)dWH , t ∈ IT ,

v(0) = 0.
(3.6)

By (3.5) and the fact that (A, B) ∈ SMRp,κ(T), (3.3) follows.
Step 3: u exists and (3.3) holds for all u0 ∈ Lp

F0
(Ω; XTr

κ,p). By [HNVW16, lemma 1.2.19],

there exists a uniformly bounded sequence of simple maps (u0,n)n�1 ⊆ Lp
F0

(Ω; XTr
κ,p) such that

u0,n → u0 in Lp
F0

(Ω; XTr
κ,p). Thus, the conclusion follows from step 2 and the completeness of

Lp
P(IT × Ω,wκ; X1).

Step 4: the last claim holds. Similarly to step 3, it is enough to consider u0 simple. Thus,
as in step 2, there exists h ∈ Lp

F0
(Ω; W1,p(R+,wκ; X0) ∩ Lp(R+,wκ; X1)) such that (3.4) holds.

Then by proposition 2.8 and the fact that (A, B) ∈ SMR•
p,κ(T), the claim follows by writing

u = h + v where v solves (3.6). �

Remark 3.11. Under the assumption that X1 = D(Ã), for a sectorial operator Ã on X0 with
angleω(Ã) < π/2, the proof of proposition 3.10 simplifies. See step 0 in [PV19, theorem 3.15].
This type of assumption is satisfied in all the applications which will be presented in
sections 5–7.

Next we will define certain solution operators which will be used in section 4. Suppose
(A, B) ∈ SMR•

p,κ(T) and that assumptions 3.1 and 3.2 hold. Using proposition 3.10 for p > 2
we can define R(A,B)(u0, f , g) = u, where u is the strong solution to (3.1) as a mapping
from

Lp
F0

(Ω; XTr
κ,p) × Lp

P(IT × Ω,wκ; X0) × Lp
P(IT × Ω,wκ; γ(H, X1/2))

into ⋂
θ∈[0,1/2)

Lp(Ω; Hθ,p(IT ,wκ; X1−θ)).

By linearity, we can write

R(A,B)(u0, f , g) = R(A,B)(u0, 0, 0)+R(A,B)(0, f , 0)+R(A,B)(0, 0, g).

Note that R(A,B)(0, ·, ·) actually maps into Lp (Ω; 0Hθ,p(IT ,wκ; X1−θ) for any θ ∈ [0, 1
2 ) \

{ 1+κ
p }. Indeed, this follows from u(0) = 0 in X0, theorem 2.6 and the text below it.
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For later use, in the case p > 2 and θ ∈ [0, 1
2 ) \ { 1+κ

p }, we define

Cdet,θ
(A,B) = ‖R(A,B)(0, ·, 0)‖Lp

P
(IT×Ω,wκ;X0))→Lp

P
(Ω;0Hθ,p(IT ,wκ;X1−θ)),

Csto,θ
(A,B) = ‖R(A,B)(0, 0, ·)‖Lp

P
(IT×Ω,wκ;γ(H,X1/2))→Lp(Ω;0Hθ,p(IT ,wκ;X1−θ)).

(3.7)

In the case p = 2 and θ ∈ (0, 1/2), we replace the range space by Lp(Ω; C(IT ; X1/2)) (which is
constant in θ ∈ (0, 1/2)). Moreover, for θ ∈ [0, 1

2 ) \ { 1+κ
p } we set

Kdet,θ
(A,B) :=Cdet,θ

(A,B) + Cdet,0
(A,B), Ksto,θ

(A,B) :=Csto,θ
(A,B) + Csto,0

(A,B). (3.8)

In the next proposition we collect some simple properties of the solution operator R(A,B).

Proposition 3.12. Suppose assumptions 3.1 and 3.2 hold. Let (A, B) ∈ SMRp,κ(T) and let
R :=R(A,B). Let u0 ∈ Lp

F0
(Ω; XTr

κ,p), f ∈ Lp
P(IT × Ω,wκ; X0), g ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2))
and set u :=R(u0, f , g). Then the following assertions hold

(a) For each F ∈ F0,

1FR(u0, f , g) = R(1Fu0, 1F f , 1Fg) = 1FR(1Fu0, 1F f , 1Fg).

(b) Assume that v ∈ Lp
P([[0, σ ]] ,wκ; X1) is a strong solution to (3.1) on [[0, σ ]], where σ is a

stopping time. Then

v = u|[[0,σ]] = R(u0, 1[[0,σ]] f , 1[[0,σ]]g), on [[0, σ ]] .

(c) For all T1 � T, the following estimates on the maximal regularity constants hold

Kdet,θ
(A|[[0,T1]],B|[[0,T1]])

� Kdet,θ
(A,B) and Ksto,θ

(A|[[0,T1]],B|[[0,T1]])
� Ksto,θ

(A,B).

Proof.

(a) By definition 3.3, u verifies (3.2). It follows that v := 1Fu satisfies

v(t) − 1Fu0 +

∫ t

0
A(s)(1Fu(s))ds =

∫ t

0
(B(s)(v(s)) + 1Fg(s))dWH +

∫ t

0
1F f (s)ds.

By uniqueness we obtain v = R(1Fu0, 1F f , 1Fg). This proves the first identity. The second
identity follows from the first identity and 12

F = 1F.
(b) From definition 3.3 we immediately see that u|[[0,σ]] is a strong solution on [[0, σ ]]. By

uniqueness, this implies v = u|[[0,σ]]. Thus, a.s. for all t ∈ [0, σ],

u(t) − u0 +

∫ t

0
A(s)u(s)ds =

∫ t

0
(B(s)u(s) + g(s))dWH(s) +

∫ t

0
f (s)ds.

On the other hand, ũ :=R(u0, 1[[0,σ]] f , 1[[0,σ]]g) satisfies a.s. for all t ∈ [0, σ],

ũ(t) − u0 +

∫ t

0
A(s)ũ(s)ds =

∫ t

0
(B(s)ũ(s) + 1[[0,σ]]g(s))dWH(s) +

∫ t

0
1[[0,σ]] f (s)ds

=

∫ t

0
B(s)ũ(s)dWH(s) +

∫ t∧σ

0
g(s)dWH(s) +

∫ t∧σ

0
f (s)ds

=

∫ t

0
B(s)ũ(s)dWH(s) +

∫ t

0
g(s)dWH(s) +

∫ t

0
f (s)ds.

Therefore, again by uniqueness ũ = v.
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(c) This is immediate from (b) and proposition 2.3. �
We end this section with a lemma which can be extracted from the proof of [PV19,

theorem 3.15 step 1]. For the reader’s convenience we sketch the proof.

Lemma 3.13. Let assumption 3.1 be satisfied, and suppose that (A, B) satisfies assumption
3.2. Then for each s ∈ IT there exists a constant cs > 0 such that lims↓0 cs = 0 and for
all τ stopping time satisfying 0 � τ � s a.s. and any f ∈ Lp

P(Is × Ω,wκ; X0), g ∈ Lp
P

(Is × Ω,wκ; γ(H, X1/2)) and any strong solution u ∈ Lp
P(Iτ × Ω,wκ; X1) to (3.1) on [[0, τ ]]

with u0 = 0 one has

‖u‖Lp(Iτ×Ω,wκ;X0) � cs‖u‖Lp(Iτ×Ω,wκ;X1) + cs‖ f ‖Lp(Iτ×Ω,wκ;X0) + cs‖g‖Lp(Iτ×Ω,wκ;γ(H,X1/2)).

If additionally (A, B) ∈ SMRp,κ(T), then u= R(A,B)(0, f , g) a.e. on [[0, τ ]] and

‖u‖Lp(Iτ×Ω,wκ;X0) � cs‖ f ‖Lp(Iτ×Ω,wκ;X0) + cs‖g‖Lp(Iτ×Ω,wκ;γ(H,X1/2)).

Proof. Let us begin by proving the first claim. Recall that u(t) =
∫ t

0(−A(r)u(r) + f (r))dr
+
∫ t

0(B(r)u(r) + g(r))dWH(r) a.s. for each t ∈ Iτ . Let us set v(t) :=
∫ t

01[[0,τ ]](−A(r)u(r)
+ f (r))dr +

∫ t
0 1[[0,τ ]](B(r)u(r) + g(r))dWH(r) a.s. for each t ∈ [0, s]. Note that v = u a.e. on

[[0, τ ]]. By proposition 2.13,

‖v‖Lp(Ω;C(Is;X0))

�X,p‖1[[0,τ ]](−Au + f )‖Lp(Ω;L1(Is;X0)) + ‖1[[0,τ ]](Bu + g)‖Lp(Ω;L2(Is;γ(H,X0)))

(i)

� p,κks

[
‖ − Au + f ‖Lp(Iτ×Ω,wκ;X0) + ‖Bu + g‖Lp(Iτ×Ω,wκ;γ(H,X0))

]
(ii)

� A,Bks

[
‖u‖Lp(Iτ×Ω,wκ;X1) + ‖ f ‖Lp(Iτ×Ω,wκ;X0) + ‖g‖Lp(Iτ×Ω,wκ;γ(H,X1/2))

]
,

where in (i) we used Hölder’s inequality and κ ∈ [0, p
2 − 1), in (ii) we used assumptions 3.1

and 3.2. The constant ks satisfies lims↓0 ks =: k ∈ [0,∞). Therefore,

‖v‖Lp(Is×Ω,wκ;X0) � kscs

[
‖u‖Lp(Iτ×Ω,wκ;X1) + ‖ f ‖Lp(Iτ×Ω,wκ;X0) + ‖g‖Lp(Iτ×Ω,wκ;γ(H,X1/2))

]
,

where cs > 0 satisfies lims↓0 cs = 0. Since v = u a.e. on [[0, τ ]] and τ � s a.s., one has
‖u‖Lp(Iτ×Ω,wκ;X0) � ‖v‖Lp(Is×Ω,wκ;X0), and thus the first estimate follows.

If (A, B) ∈ SMRp,κ(T) and u ∈ Lp
P(Iτ × Ω,wκ; X1) is a strong solution to (3.1) on [[0, τ ]],

then by proposition 3.12(b), u= R(A,B)(0, f , g)= R(A,B)(0, 1[[0,τ ]] f , 1[[0,τ ]]g) a.e. on [[0, τ ]]. Thus

‖u‖Lp(Iτ×Ω,wκ;X1) � ‖R(A,B)(0, 1[[0,τ ]] f , 1[[0,τ ]]g)‖Lp(IT×Ω,wκ ,X1)

� ‖ f ‖Lp(Iτ×Ω,wκ;X1) + ‖g‖Lp(Iτ×Ω,wκ;γ(H,X1/2)),
(3.9)

and this implies the second estimate. �

4. Local existence results

In this section we consider the following nonlinear evolution equation{
du + A(·, u)u dt = (F(·, u) + f )dt + (B(·, u)u + G(·, u) + g)dWH ,

u(0) = u0;
(4.1)
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for t ∈ [0, T] on a Banach space X0 where T < ∞. Recall that assumption 3.1 holds throughout
this section.

The equation (4.1) covers both the case of quasilinear and semilinear equations. In the quasi-
linear case the reader should have in mind that for each fixed x ∈ XTr

κ,p, the operators A(t, x) and
B(t, x) satisfy the mapping properties of assumption 3.2. We refer to (HA) below for the pre-
cise definitions. In the semilinear case A(t, x) and B(t, x) do not depend on x and therefore are
precisely as in assumption 3.2.

The structure of the nonlinearities F and G which will be assumed below is very flexible and
extends many known results. Moreover, the structural conditions are satisfied by large classes
of SPDE.

Compared to [Hor17, Hor18, NVW12a] there are several important differences:

• We assume a joint condition on (A, B) and therefore B is not assumed to be small as one
sometimes needs with the semigroup approach to SPDEs (see e.g. [BV12, Fla90]);

• The operators A and B are allowed to be time and Ω-dependent in just a measurable way;
• We allow weights in time, so that our initial values can be very rough;
• We allow critical nonlinearities in the sense of [LPW14, PSW18, PW17].

4.1. Assumptions on the nonlinearities

In this section we discuss the assumptions and the main results regarding (4.1). Moreover, the
definition of a strong solution to (4.1) is given in definitions 4.3 and 4.4 below.

Concerning the random operators A, B, the nonlinearities F, G, and the initial data, we make
the following hypothesis.

Hypothesis (H).

(HA) Assumption 3.1 holds. Let A : [0, T] × Ω× XTr
κ,p → L (X1, X0) and B : [0, T] × Ω

× XTr
κ,p → L (X1, γ(H, X1/2)). Assume that for all x ∈ XTr

κ,p and y ∈ X1, the maps
(t,ω) �→ A(t,ω, x)y and (t,ω) �→ B(t,ω, x)y are strongly progressively measurable.

Moreover, for all n � 1, there exists Cn, Ln ∈ R+ such that for all x, y ∈ XTr
κ,p with

‖x‖XTr
κ,p

, ‖y‖XTr
κ,p

� n, t ∈ [0, T], and a.a. ω ∈ Ω,

‖A(t,ω, x)‖L (X1,X0) � Cn(1 + ‖x‖XTr
κ,p

),

‖B(t,ω, x)‖L (X1,γ(H,X1/2)) � Cn(1 + ‖x‖XTr
κ,p

),

‖A(t,ω, x) − A(t,ω, y)‖L (X1,X0) � Ln‖x − y‖XTr
κ,p

,

‖B(t,ω, x) − B(t,ω, y)‖L (X1,γ(H,X1/2)) � Ln‖x − y‖XTr
κ,p
.

(HF) The map F : [0, T] × Ω× X1 → X0 decomposes as F :=FL + Fc + FTr where for all
x ∈ X1 the map (t, ω) �→ F
(t,ω, x) is strongly progressively measurable for 
 ∈
{L, c, Tr}. Moreover, FL, Fc, FTr satisfy the following estimates.
(a) There exist constants LF, L̃F, CF > 0, such that for all x, y ∈ X1, t ∈ [0, T] and a.a.

ω ∈ Ω,

‖FL(t,ω, x)‖X0 � CF(1 + ‖x‖X1),

‖FL(t,ω, x) − FL(t,ω, y)‖X0 � LF‖x − y‖X1 + L̃F‖x − y‖X0 .

(b) There exist mF � 1,ϕ j ∈ (1 − (1 + κ)/p, 1),β j ∈ (1 − (1 + κ)/p,ϕ j], ρ j � 0 for
j ∈ {1, . . . , mF} such that Fc : [0, T] × Ω× X1 → X0 and for each n � 1 there
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exist Cc,n, Lc,n ∈ R+ for which

‖Fc(t,ω, x)‖X0 � Cc,n

mF∑
j=1

(1 + ‖x‖ρ j
Xϕ j

)‖x‖Xβ j
+ Cc,n,

‖Fc(t,ω, x) − Fc(t,ω, y)‖X0 � Lc,n

mF∑
j=1

(1 + ‖x‖ρ j
Xϕ j

+ ‖y‖ρ j
Xϕ j

)‖x − y‖Xβ j
,

a.s. for all x, y ∈ X1, t ∈ [0, T] such that ‖x‖XTr
κ,p

, ‖y‖XTr
κ,p

� n. Moreover,
ρ j,ϕ j, β j,κ satisfy

ρ j

(
ϕ j − 1 +

1 + κ

p

)
+ β j � 1, j ∈ {1, . . . , mF}. (4.2)

(c) For each n � 1 there exist LTr,n, CTr,n ∈ R+ such that the mapping FTr : [0, T] ×
Ω× XTr

κ,p → X0 satisfies

‖FTr(t,ω, x)‖X0 � CTr,n(1 + ‖x‖XTr
κ,p

),

‖FTr(t,ω, x) − FTr(t,ω, y)‖X0 � LTr,n‖x − y‖XTr
κ,p

,

for a.a. ω ∈ Ω, for all t ∈ [0, T] and ‖x‖XTr
κ,p

, ‖y‖XTr
κ,p

� n.

(HG) The map G : [0, T] × Ω× X1 → γ(H, X1/2) decomposes as G :=GL + Gc

+ GTr where for all x ∈ X1 the map (t,ω) �→ G
(t,ω, x) is strongly progressively
measurable for 
 ∈ {L, c, Tr}. Moreover, GL, Gc, GTr satisfy the following estimates.

(a) There exist constants LG, L̃G, CG, such that for all x, y ∈ X1, t ∈ [0, T] and a.a.
ω ∈ Ω,

‖GL(t,ω, x)‖γ(H,X1/2) � CG(1 + ‖x‖X1),

‖GL(t,ω, x) − GL(t,ω, y)‖γ(H,X1/2) � LG‖x − y‖X1 + L̃G‖x − y‖X0 .

(b) There exist mG � 1, ϕ j ∈ (1 − (1 + κ)/p, 1), β j ∈ (1 − (1 + κ)/p,ϕ j], ρ j � 0
for j ∈ {mF + 1, . . . , mF + mG} such that Gc : [0, T] × Ω× X1 → X0 and for each
n � 1 there exist Cc,n, LLc,n ∈ R+ for which

‖Gc(t,ω, x)‖γ(H,X1/2) � Cc,n

mF+mG∑
j=mF+1

(1 + ‖x‖ρ j
Xϕ j

)‖x‖Xβ j
+ Cc,n,

‖Gc(t,ω, x) − Gc(t,ω, y)‖γ(H,X1/2) � Lc,n

mF+mG∑
j=mF+1

(1 + ‖x‖ρ j
Xϕ j

+ ‖y‖ρ j
Xϕ j

)‖x − y‖Xβ j
,

a.s. for all x, y ∈ X1, t ∈ [0, T] such that ‖x‖XTr
κ,p

, ‖y‖XTr
κ,p

� n. Moreover, ϕ j, β j,κ
satisfy

ρ j

(
ϕ j − 1 +

1 + κ

p

)
+ β j � 1, j ∈ {mF + 1, . . . , mF + mG}. (4.3)
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(c) For each n � 1 there exist constants LTr,n, CTr ,n such that mapping GTr : [0, T]
× Ω× XTr

κ,p → X0 satisfies
‖GTr(t,ω, x)‖γ(H,X1/2) � CTr,n(1 + ‖x‖XTr

κ,p
),

‖GTr(t,ω, x) − GTr(t,ω, y)‖γ(H,X1/2) � LTr,n‖x − y‖XTr
κ,p

,

for a.a. ω ∈ Ω, for all t ∈ [0, T] and ‖x‖XTr
κ,p

, ‖y‖XTr
κ,p

� n.

(Hf) f ∈ Lp
P(IT × Ω,wκ; X0) and g ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2)).

The relations (4.2)–(4.3) will play an important role in the analysis of (4.1). As announed
in subsection 1.1, following [PSW18], we may give an abstract definition of critical space for
(4.1).

The space XTr
κ,p will be called a critical space for (4.1) if for some j ∈ {1, . . . , mF + mG}

equality in (4.2) or (4.3) holds. Moreover, the value of κ for which equality in (4.2) or (4.3)
holds, will be called the critical weight and it will be denoted by κcrit. Some remarks may be
in order.

Remark 4.1. Let us note that in theorem 4.5 and 4.7 below, only the constants LF, LG are
assumed to be small. The other constants are arbitrary. At first sight the splitting of the non-
linearities F and G in several parts seems quite complicated. Let us emphasise that the most
important part is Fc and Gc as these will usually determine critical spaces as defined above.
The flexibility in the form we choose the nonlinearities is quite important in application to
SPDEs. It will allow us in many cases to find a broad class of initial value spaces for which the
SPDE can be solved. Let us note that usually it is enough to take mF = mG = 1.

Remark 4.2. Below we collect some observations which will be used later on to check (HF)
or (HG). We discuss this only for F since the same arguments apply to G.

(a) If F : IT × Ω× Xθ → X0, for some θ < 1 − (1 + κ)/p, is locally Lipschitz uniformly on
Xθ uniformly w.r.t. (t,ω) ∈ IT × Ω, then F verifies (HF). Indeed, it is enough to recall that

Xθ ←↩ (X0, X1)θ,∞ ←↩ (X0, X1)1− 1+κ
p ,p = XTr

κ,p,

where in the first inclusion we used [BL76, theorem 3.9.1] and in the last inclusion
[BL76, theorem 3.4.1] since X1 ↪→ X0. Then the conclusion follows by setting FTr :=F,
Fc = FL = 0. As soon as θ is larger, then we need a nonzero Fc as the situation is more
sophisticated.

(b) We can additionally allow the case β j = ϕ j = 1 − (1 + κ)/p for all j ∈ {1, . . . , mF} in
(HF). Indeed, ρ j(ϕ j + ε− 1 + 1+κ

p ) + β j = ρ jε+ β j. Thus, there exists ε > 0 such that
ρ jε+ β j < 1 for all j ∈ {1, . . . , mF + mG}. Since X1−(1+κ)/p+ε ↪→ X1−(1+κ)/p, we may
replace ϕ j = β j by 1 − (1 + κ)/p+ ε obtaining that Fc satisfies (HF) and (4.2) holds
with strict inequality.

(c) Assume that β j = ϕ j < 1 for some j ∈ {1, . . . , mF} and that equality in (4.2) holds. Then
ρ j > 0 and thus ϕ j > 1 − (1 + κ)/p holds since ϕ j − 1 + (1 + κ)/p = (1 − β j)/ρ j > 0.
Therefore, in applications we do not need to check β j > 1 − (1 + κ)/p if equality in (4.2)
holds (e.g. in the critical case).

Next we define Lp
κ-strong solutions to (4.1). Here we add the prefix Lp

κ since the definition
depends on (p,κ).

Definition 4.3 (Lp
κ-strong solutions). Let the hypothesis (H) be satisfied and let σ be

a stopping time with 0 � σ � T. A strongly progressively measurable process u on [[0, σ ]]
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satisfying

u ∈ Lp(Iσ ,wκ; X1) ∩ C(Iσ; XTr
κ,p) a.s.

is called an Lp
κ-strong solution to (4.1) on [[0, σ ]] if F(·, u) ∈ Lp(Iσ,wκ; X0), G(·, u) ∈

Lp(Iσ ,wκ; γ(H, X1/2)) a.s., and the following identity holds a.s. and for all t ∈ [0, σ],

u(t) − u0 +

∫ t

0
A(s, u(s))u(s)ds =

∫ t

0
F(s, u(s)) + f (s)ds

+

∫ t

0
1[[0,σ]](B(s, u(s))u(s)+ G(s, u(s)) + g(s)) dWH(s).

(4.4)

Note that if u is an Lp
κ- strong solution, then the integrals appearing in (4.4) are well-defined.

To see this, note that s �→ A(s, u(s))u(s) and s �→ B(s, u(s))u(s) are strongly progressively mea-
surable by the conditions on u and (HA) (see [AB06, lemma 4.51]). Moreover, pointwise in Ω
we can take N � n � ‖u‖C(Iσ ;XTr

κ,p) and write

‖A(s, u(s))u(s)‖X0 � Cn(1 + ‖u(s)‖XTr
κ,p

)‖u(s)‖X1 � Cn(1 + n)‖u(s)‖X1.

Integrating over s ∈ [0, σ] we obtain

‖s �→ A(s, u(s))u(s)‖L1(0,σ;X0) � Cn(1 + n)‖u‖L1(0,σ;X1),

and the latter is finite since u ∈ Lp(Iσ ,wκ; X1) a.s. Thus, the integral on the left-hand side of
(4.4) is well-defined. In the same way one can check that s �→ B(s, u(s))u(s) is in L2(0, σ; X1/2)
and the first stochastic integral on the right-hand side of (4.4) is well-defined by proposition
2.13. Using the above argument and that f , F(·, u) ∈ Lp(Iσ ,wκ; X0) a.s. and g, G(·, u) ∈
Lp(Iσ ,wκ; γ(H, X1/2)) a.s., one can check that the remaining integrals are well-defined.

Next we define Lp
κ-local and Lp

κ-maximal local solutions to (4.1).

Definition 4.4 (Lp
κ-local and Lp

κ-maximal solution). Let σ be a stopping time with
0 � σ � T. Let u : [[0, σ⦈→ X1 be strongly progressively measurable.

• (u, σ) is called an Lp
κ-local solution to (4.1) on [0, T], if there exists an increasing sequence

(σn)n�1 of stopping times such that limn↑∞ σn = σ a.s. and u|[[0,σn]] is an Lp
κ-strong solution

to (4.1) on [[0, σn ]]. In this case, (σn)n�1 is called a localizing sequence for the local solution
(u, σ).

• An Lp
κ-local solution (u, σ) to (4.1) on [0, T] is called unique, if for every Lp

κ-local solu-
tion (v, ν) to (4.1) on [0, T] for a.a. ω ∈ Ω and for all t ∈ [0, ν(ω) ∧ σ(ω)) one has
v(t,ω) = u(t,ω).

• A unique Lp
κ-local solution (u, σ) to (4.1) on [0, T] is called an Lp

κ-maximal local solution,
if for any other unique Lp

κ-local solution (v, �) to (4.1) on [0, T], we have a.s. � � σ and
for a.a. ω ∈ Ω and all t ∈ [0, �(ω)), u(t,ω) = v(t,ω).

Note that Lp
κ-maximal local solutions are unique by definition. In addition, an (unique) Lp

κ-
strong solution u on [[0, σ ]] gives an (unique) Lp

κ-local solution (u, σ) to (4.1). In the following,
we omit the prefix Lp

κ and the ‘on [0, T]’ if no confusion seems likely.
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4.2. Statement of the main results

Our first result on (4.1) reads as follows.

Theorem 4.5 (quasilinear I). Let hypothesis (H) be satisfied. Let u0 ∈ L∞
F0

(Ω; XTr
κ,p) and

assume that (A(·, u0), B(·, u0)) ∈ SMR•
p,κ(T). Then there exists an ε > 0 such that if

max{LF, LG} < ε, (4.5)

then the following assertions hold:

(a) (Existence and uniqueness) there exists an Lp
κ-maximal local solution (u, σ) to (4.1) such

that σ > 0 a.s.
(b) (Regularity) there exists a localizing sequence (σn)n�1 for (u, σ) such that σn > 0 a.s. and

• If p > 2 and κ ∈ [0, p
2 − 1), then for all n � 1, θ ∈ [0, 1

2 ),

u ∈ Lp(Ω; Hθ,p(Iσn ,wκ; X1−θ)) ∩ Lp(Ω; C(Iσn ; XTr
κ,p)).

Moreover, (u, σ) instantaneously regularizes to u ∈ C((0, σ); XTr
p ) a.s.

• If p = 2 and κ = 0, then for all n � 1,

u ∈ L2(Ω; L2(Iσn ; X1)) ∩ L2(Ω; C(Iσn ; X1/2)).

(c) (Continuous dependence on the initial data) there exist η, C > 0 depending on u0 such that
if v0 ∈ BL∞

F0
(Ω;XTr

κ,p)(u0, η), then the following hold:

• There exists an Lp
κ-maximal local solution (v, τ ) to (4.1) with τ > 0 a.s. and initial

data v0;
• For each stopping time ν with ν ∈ (0, τ ∧ σ] a.s. one has

‖u − v‖Lp(Ω;E) � C‖u0 − v0‖Lp(Ω;XTr
κ,p),

where either E ∈ {Hθ,p(Iν ,wκ; X1−θ), C(Iν ; XTr
κ,p)} with p > 2, κ ∈ [0, p

2 − 1), θ ∈
[0, 1

2 ) or E ∈ {L2(Iν; X1), C(Iν ; X1/2)} and p = 2 and κ = 0.

(d) (Localization) if (v, τ ) is an Lp
κ-maximal local solution to (4.1) with initial data v0 ∈

L∞
F0

(Ω; XTr
κ,p), then setting Γ := {v0 = u0} one has

τ |Γ = σ|Γ, v|Γ×[0,τ ) = u|Γ×[0,σ).

A more explicit bound for the number ε in (4.5) will be provided in remark 4.17.
In (b) we see that the paths of the solution are in C([0, σ); XTr

κ,p). However, if κ > 0, after
t = 0 the regularity immediately improves to C((0, σ); XTr

p ), where we recall XTr
κ,p =

(X0, X1)1− 1+κ
p ,p and XTr

p = (X0, X1)1− 1
p ,p. This phenomena will play a crucial role in [AV20a].

Note that the Lp(Ω)-norms in (c) are well-defined due to lemma 2.15 and the text below it.
Furthermore, in step 4 in the proof of theorem 4.5 we show that the estimates in (c) also hold
for the choice E = X(ν) where the space X is defined in (4.14) below.

Remark 4.6. In applications to SPDEs, one does not always have u0 ∈ L∞
F0

(Ω; XTr
κ,p). To

weaken this condition we make a further extension of theorem 4.5 at the expense of a stronger
hypothesis on FL, GL, see theorem 4.7 below.
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On the other hand, if the filtration F = (Ft)t�0 is generated by the cylindrical Brownian
motion WH, then L0

F0
(Ω; XTr

κ,p) = XTr
κ,p. Thus, theorem 4.5 can be applied without any restriction.

We would like to present an additional result on the quasilinear case, where we weaken the
integrability hypothesis on the initial data, at the cost of more restrictions on the nonlinearities
FL, GL. More specifically, we need a local version of the assumptions (HF)–(HG) and (Hf).

(HF′) The map F : [0, T] × Ω× X1 → X0 has the same measurability properties in (HF) and
it can be decomposed as F :=FL + Fc + FTr, where Fc, FTr are as in (HF). Assume that
for each n � 1 there exist constants LF,n, L̃F,n, CF,n, such that for all x, y ∈ X1, t ∈ [0, T]
and a.a. ω ∈ Ω, and ‖x‖XTr

κ,p
, ‖y‖XTr

κ,p
� n one has

‖FL(t,ω, x)‖X0 � CF,n(1 + ‖x‖X1),

‖FL(t,ω, x) − FL(t,ω, y)‖X0 � LF,n‖x − y‖X1 + L̃F,n‖x − y‖X0 .

(HG′) The map G : [0, T] × Ω× X1 → X0 has the same measurability properties in (HF) and
it can be decomposed as G :=GL + Gc + GTr where Gc, GTr are as in (HG). Assume
that for each n � 1 there exist constants LG,n, L̃G,n, CG,n, such that for all x, y ∈ X1,
t ∈ [0, T] and a.a. ω ∈ Ω, and ‖x‖XTr

κ,p
, ‖y‖XTr

κ,p
� n one has

‖GL(t,ω, x)‖γ(H,X1/2) � CG,n(1 + ‖x‖X1),

‖GL(t,ω, x) − GL(t,ω, y)‖γ(H,X1/2) � LG,n‖x − y‖X1 + L̃G,n‖x − y‖X0 .

(Hf′) f ∈ L0
P(Ω; Lp(IT ,wκ; X0)) and g ∈ L0

P(Ω; Lp(IT ,wκ; γ(H, X1/2))).

We say that the hypothesis (H′) holds if (HA), (HF′), (HG′), and (Hf′) are satisfied.
Definitions 4.3 and 4.4 clearly extend to the setting of hypothesis (H′).

To extend theorem 4.5 in case of L0-data we employ a cut-off argument. To this end, given
u0 ∈ L0

F0
(Ω; XTr

κ,p) we denote by (u0,n)n�1 a sequence such that

u0,n ∈ L∞
F0

(Ω; XTr
κ,p), and u0,n = u0 on {‖u0‖XTr

κ,p
� n}. (4.6)

For possible choices of (u0,n)n�1 see (4.9) and the text below it.

Theorem 4.7 (quasilinear II). Let hypothesis (H′) be satisfied. Let u0 ∈ L0
F0

(Ω; XTr
κ,p).

Assume that there exists (u0,n)n�1 satisfying (4.6) and for all n � 1

(A(·, u0,n), B(·, u0,n)) ∈ SMR•
p,κ(T). (4.7)

There exists a decreasing sequence (εn)n�1 in (0,∞) such that if

max{LF,n, LG,n} < εn, for all n � 1, (4.8)

then the following assertions hold:
(a) (Existence and uniqueness) there exists an Lp

κ-maximal local solution (u, σ) to (4.1) such
that σ > 0 a.s.

(b) (Regularity) for each localizing sequence (σn)n�1 for (u, σ), one has

• If p > 2 and κ ∈ [0, p
2 − 1), then for all n � 1, θ ∈ [0, 1

2 ),

u ∈ Hθ,p(Iσn ,wκ; X1−θ) ∩ C(Iσn ; XTr
κ,p) a.s.
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Moreover, (u, σ) instantaneously regularizes to u ∈ C((0, σ); XTr
p ) a.s.

• If p = 2 and κ = 0, then for all n � 1,

u ∈ L2(Iσn ; X1) ∩ C(Iσn ; X1/2) a.s.

(c) (Local existence and continuous dependence on the initial data) let n � 1 and
Γn := {‖u0‖XTr

κ,p
� n}. Then theorem 4.5(c) holds with u0, v0 and Ω replaced by

1Γnu0, 1Γnv0 and Γn, respectively.
(d) (Localization) theorem 4.5(d) holds, where the assumptions on u0, v0 are replaced by

u0, v0 ∈ L0
F0

(Ω; XTr
κ,p).

For the more precise estimates on the sequence (εn)n�1 we refer to remark 4.19.
Let u0 ∈ L0

F0
(Ω; XTr

κ,p) and set Γn := {‖u0‖XTr
κ,p

� n} ∈ F0. A typical choice of the sequence
(u0,n)n�1 in theorem 4.7 is given by

u0,n := 1Γnu0 + 1Ω\Γn

nu0

‖u0‖XTr
κ,p

. (4.9)

However, the condition (4.6) allows us to choose u0,n|Ω\Γn differently, and we will exploit this
fact in applications. More precisely, instead of (4.9) one can use u0,n = 1Γnu0 + 1Ω\Γn x where
x ∈ XTr

κ,p can be chosen such that (4.7) holds. Throughout sections 5–7 we will use the choice
(4.9), but in subsection 6.6 we need a different choice (see (6.24)).

If (4.1) is of semilinear type, (see assumption 3.2), the condition u0 ∈ L∞
F0

(Ω; XTr
κ,p) can be

weakened and we still get Lp-integrability with respect to ω ∈ Ω. More precisely, we have the
following.

Theorem 4.8 (semilinear). Let the hypothesis (H) be satisfied, where A and B are of
semilinear type as in assumption 3.2 and satisfy (A, B) ∈ SMR•

p,κ(T). Then there exists an
ε > 0 such that if

max{LG, LF} < ε, (4.10)

then the following assertions hold:

(a) If u0 ∈ L∞
F0

(Ω; XTr
κ,p), then the statements in theorem 4.5(a)–(d) hold.

(b) If u0 ∈ Lp
F0

(Ω; XTr
κ,p) and the constants Cc,n, Lc,n, CTr,n, LTr ,n in (HF)–(HG) do not depend

on n � 1, then the statements in theorem 4.5(a)–(d) hold.
(c) If u0 ∈ L0

F0
(Ω; XTr

κ,p), then the statements in theorem 4.7(a)–(d) hold.

Assertion (a) is immediate from theorem 4.5. Under additional growth conditions one can
often derive Lp-estimates as well. Assertion (b) shows that in the semilinear case the condition
u0 ∈ L∞

F0
(Ω; XTr

κ,p) in theorem 4.5 can be weakened. Assertion (c) will be immediate from the
proof of theorem 4.7.

4.3. The role of the space X(T)

In the proofs of the results stated in subsection 4.2 in the case p > 2 we need a family of func-
tion spaces (X(t))t∈[0,T] having the following three properties: the nonlinearities Fc(·, u), Gc(·, u)
can be controlled by ‖u‖X(t), the map [0, T] � t �→ ‖ f |(0,t)‖X(t) is continuous for all f ∈ X(T),
and

Hδ,p(IT ,wκ; X1−δ) ∩ Lp(IT ,wκ; X1) ↪→ X(T) (4.11)
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for some δ ∈ ( 1+κ
p , 1

2 ). Note that the left-hand side in (4.11) is part of our usual maximal regu-
larity space (see definition 3.5). As mentioned below lemma 2.15, it is not obvious whether the
Hδ,p(It,wκ; X1−δ)-norm is continuous in t and therefore we do not define X(T) as the left-hand
side of (4.11).

Recall that the numbers (ρ j)
mF+mG
j=1 , (β j)

mF+mG
j=1 and (ϕ j)

mF+mG
j=1 are defined in (HF) and (HG).

In the case that for some j ∈ {1, . . . , mF + mG}, (4.2) or (4.3) holds with strict inequality, we
may increase ρ j in order to obtain equality. More precisely, we set

ρ�j :=
1 − β j

ϕ j − 1 + (1 + κ)/p
, j ∈ {1, . . . , mF + mG}. (4.12)

Since β j < 1 and ϕ j > 1 − (1 + κ)/p, one has ρ�j > 0 for all j ∈ {1, . . . , mF + mG}.
To define a space X(T) which satisfies the previous requirements, suppose (HF)–(HG) are

satisfied and let ρ�j be as in (4.12). For j ∈ {1, . . . , mF + mG} we let

1
r′j

:=
ρ�j(ϕ j − 1 + (1 + κ)/p)

(1 + κ)/p
< 1,

1
r j

:=
β j − 1 + (1 + κ)/p

(1 + κ)/p
< 1 (4.13)

and, for T > 0,

X(T) :=

⎛⎝mF+mG⋂
j=1

Lpr j(IT ,wκ; Xβ j)

⎞⎠ ∩

⎛⎝mF+mG⋂
j=1

Lρ�j pr′j(IT ,wκ; Xϕ j)

⎞⎠ . (4.14)

We will see that X(T) is the natural space to control the nonlinearities Fc, Gc; see lemmas
4.11 and 4.13 below. Moreover, if (4.11) holds, then the solution paths will automatically be
in (4.14) as soon as we have maximal regularity. Finally, we note that the continuity of the
X-norm in t ∈ [0, T] follows from the Lebesgue dominated convergence theorem.

Next we prove (4.11) with the above defined X under a trace condition. The general case is
discussed in remark 4.10. Here we follow [PW17, section 2].

Lemma 4.9. Let (HF)–(HG) be satisfied. Let T ∈ (0,∞] and let r j, r′j and X(T) be as in
(4.13) and (4.14) respectively. If p > 2 and κ ∈ [0, p

2 − 1), then for any δ ∈ ( 1+κ
p , 1

2 )

0Hδ,p(0, T,wκ; X1−δ) ∩ Lp(0, T,wκ; X1) ↪→ X(T),

where the embedding constant can be chosen to be independent of T.
Furthermore, if p = 2 and κ = 0, the same holds with 0Hδ,p(0, T,wκ; X1−δ) replaced by

C([0, T]; X1/2).

Proof. Recall that in (4.12) we have defined ρ�j such that (4.2)–(4.3) hold with equality for
each j ∈ {1, . . . , mF + mG}. Due to (4.13), this implies that

1
r j

+
1
r′j

= 1, for all j ∈ {1, . . . , mF + mG}.

Step 1: case p = 2, κ = 0. Let ϑ ∈ (0, 1) be arbitrary. By interpolation one has

‖x‖X 1
2 +

ϑ
2

� ‖x‖1−ϑ
X 1

2

‖x‖ϑX1
,

for x ∈ X1. Thus, by Young’s inequality
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‖u‖
L

2
ϑ (0,T;X1/2+ϑ/2)

� ‖u‖1−ϑ
C([0,T];X1/2)‖u‖ϑL2(IT ;X1)

� (1 − ϑ)‖u‖C([0,T];X1/2) + ϑ‖u‖L2(IT ;X1).

Therefore, we have the following contractive embedding

C([0, T]; X1/2) ∩ L2(0, T; X1) ↪→ L
2
ϑ (0, T; X1/2+ϑ/2). (4.15)

By (4.15) with ϑ = 1/r j = 2(β j − 1/2) and ϑ = 1/(ρ�jr
′
j) = 2(ϕ j − 1/2) one obtains

C([0, T]; X1/2) ∩ L2(0, T; X1) ↪→ L2r j(0, T; Xβ j) ∩ L2ρ�j r
′
j(0, T; Xϕ j).

Step 2: case p > 2 and κ ∈ [0, p
2 − 1). By proposition 2.7 for each j ∈ {1, . . . , mF + mG}

0H1−β j,p(0, T,wκ; Xλ) ↪→ Lpr j(0, T,wκ; Xλ), (4.16)

0H1−ϕ j,p(0, T,wκ; Xλ) ↪→ Lρ�j pr′j(0, T,wκ; Xλ), (4.17)

for each λ ∈ [0, 1] and where the embedding constants do not depend on T.
Let 0 < η < ζ < 1 and assume η �= (1 + κ)/p. Using proposition 2.8 with θ := ζ−η

ζ
∈

(0, 1), one obtains

0Hζ,p(0, T;wκ; X1−ζ) ∩ Lp(0, T,wκ; X1) ↪→ 0Hη,p(0, T,wκ; X1−η), (4.18)

where we used that [X1−ζ , X1]θ = Xη, which follows immediately from the reiteration theorem
for complex interpolation and assumption 3.1.

Let δ ∈ ( 1+κ
p , 1

2 ) be arbitrary. Since β j ∈ (1 − 1+κ
p , 1) one has δ > 1 − β j ∈ (0, 1+κ

p ) for
each j ∈ {1, . . . , mF + mG}, and hence it follows that

0Hδ,p(0, T,wκ; X1−δ) ∩ Lp(0, T,wκ; X1) ↪→ 0H1−β j,p(0, T,wκ; Xβ j)

↪→ Lpr j(0, T,wκ; Xβ j),

where in the first embedding we used δ > 1 − (1 + κ)/p > 1 − β j and (4.18), and the second
one follows from (4.16). Analogously, for j ∈ {1, . . . , mF + mG}, using δ > 1+κ

p > 1 − ϕ j,
(4.17), and (4.18), one obtains

0Hδ,p(0, T;wκ; X1−δ) ∩ Lp(0, T,wκ; X1) ↪→ 0H1−ϕ j,p(0, T,wκ; Xϕ j)

↪→ Lρ�j pr′j(0, T,wκ; Xϕ j).

Putting together the above inclusions the result follows. �

Remark 4.10. Let p > 2. The embedding in lemma 4.9 also holds in the case where 0Hδ,p

is replaced by Hδ,p, but with an embedding constant which depends on T > 0.

Let us show that the space X(T) defined in (4.14) is well suited to bound the nonlinearities
Fc, Gc. Actually, we prove a more refined result since this will be needed in our paper [AV20a]
on blow-up criteria and regularization.

Lemma 4.11. Let the hypothesis (HF)–(HG) be satisfied. Let 0 < T < ∞ and N � 1 be
fixed. Then there exists CT > 0 and ζ > 1 such that for all u ∈ C(IT ; XTr

κ,p) ∩X(T) which
verifies ‖u‖C(IT ;XTr

κ,p) � N, one has a.s.
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‖Fc(·, u) − Fc(·, 0)‖Lp(IT ,wκ;X0) + ‖Gc(·, u) − Gc(·, 0)‖Lp(IT ,wκ;γ(H,X1/2))

� CT (‖u‖X(T) + ‖u‖ζ
X(T)).

Moreover, if XTr
κ,p is not critical for (4.1), then limT↓0 CT = 0.

Proof. For notational simplicity we only consider the case mF = 1. Thus, we set ρ� := ρ�1,
ρ := ρ1, ϕ :=ϕ1 and β :=β1. In this case,

X(T) = Lpr(IT ,wκ; Xβ) ∩ Lρpr′ (IT ,wκ; Xϕ), (4.19)

where r := r1 and r′ := r′1 are defined in (4.13). Thus, by (HF), for x ∈ Xϕ,

‖Fc(t, x) − Fc(t, 0)‖X0 � Lc,N (1 + ‖x‖ρXϕ
)‖x‖Xβ

.

This implies

‖Fc(·, u) − Fc(·, 0)‖Lp(0,T,wκ;X0)

� Lc,N‖u‖Lp(0,T,wκ;Xβ ) + ‖‖u‖ρXϕ
‖u‖Xβ

‖Lp(0,T,wκ)

� Lc,N (CT‖u‖Lpr(0,T,wκ;Xβ ) + ‖u‖ρ
Lρpr′ (0,T,wκ;Xϕ)

‖u‖Lpr(0,T,wκ;Xβ )); (4.20)

where limT↓0 CT = 0. For simplicity, let us distinguish two cases:
Case ρ� = ρ := ρ1. In other words XTr

κ,p is critical for (4.1). The claimed inequality follows
from (4.19)–(4.20) by setting ζ = 1 + ρ.

Case ρ� > ρ := ρ1. By the Hölder inequality, one has

‖u‖ρ
Lρpr′ (0,T,wκ)

� CT‖u‖ρ
Lρ�pr′ (0,T,wκ ;Xϕ)

� CT‖u‖ρ
X(T),

where limT↓0 CT = 0.
The assertion for Gc is proved in the same way. �

Remark 4.12. If the constants Lc,n in (HF)(b) and (HG)(b) do not depend on n � 1, then the
constant CT can be chosen independent of N and the above proof extends to any u ∈ X(T).

4.4. Truncation lemmas

In this subsection we collect several truncation lemmas which are needed in the proofs of
theorems 4.5, 4.7 and 4.8.

First we define suitable truncations of Fc, Gc. To this end let ξ ∈ W1,∞([0,∞)) be such that
ξ = 1 on [0, 1] and ξ = 0 on [2,∞) and ξ is linear on [1, 2]. For eachλ > 0, set ξλ(x) := ξ(x/λ)
for x ∈ R+. Then supp ξλ ⊆ [0, 2λ], ξλ|(0,λ) = 1 and ‖ξ′λ‖L∞(R+) � 1/λ. For t ∈ [0, T], x ∈
XTr
κ,p, and u ∈ X(T) ∩ C(IT ; XTr

κ,p) we set

Θλ(t, x, u) := ξλ

(
‖u‖X(t) + sup

s∈[0,t]
‖u(s) − x‖XTr

κ,p

)
. (4.21)

In the next lemma we fix ω ∈ Ω, but omit it from our notation.

Lemma 4.13. Let (HF)–(HG) be satisfied. Let T > 0 and let σ ∈ [0, T]. Let Θλ be defined
in (4.21). For any λ ∈ (0, 1), let the maps
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Fc,λ : XTr
κ,p × X(σ) ∩ C(Iσ; XTr

κ,p) → Lp(Iσ,wκ; X0) ) ,

Gc,λ : XTr
κ,p × X(σ) ∩ C(Iσ; XTr

κ,p) → Lp(Iσ,wκ; γ(H, X1/2)),

be given by

Fc,λ(x, u) :=Θλ(·, x, u)(Fc(·, u) − Fc(·, 0)),

Gc,λ(x, u) :=Θc,λ(·, x, u)(Gc(·, u) − Gc(·, 0)).

Then for any N � 1 there exist constants Cλ, LT,λ such that if ‖x‖XTr
κ,p

� N,

‖Fc,λ(x, u)‖Lp(Iσ ,wκ;X0) � Cλ

‖Gc,λ(x, u)‖Lp(Iσ ,wκ;γ(H,X1/2)) � Cλ

‖Fc,λ(x, u) − Fc,λ(·, x, v)‖Lp(Iσ ,wκ;X0) � Lλ,T (‖u − v‖X(σ) + ‖u − v‖C(Iσ ;XTr
κ,p)),

‖Gc,λ(·, x, u) − Gc,λ(·, x, v)‖Lp(Iσ ,wκ;γ(H,X1/2)) � Lλ,T (‖u − v‖X(σ) + ‖u − v‖C(Iσ ;XTr
κ,p));

a.s. Moreover, for each ε > 0 there exist T̄ = T̄(ε) > 0 and λ̄ = λ̄(ε) > 0 such that for all
T ∈ (0, T̄), λ ∈ (0, λ̄) one has Lλ,T < ε.

Proof. We only consider the estimates for Fc,λ since the other case is similar. Recall that in
(4.12) we have defined ρ�j such that (4.2)–(4.3) hold with equality for each j ∈ {1, . . . , mF +
mG}. For notational convenience, we assume that mF = 1 and we set ρ := ρ�1, ϕ :=ϕ1, β :=β1

and r := r1, r′ := r′1 (see (4.13)). The general case can be proven with the same considerations.
Moreover, it is enough to consider the case σ = T. In the proof CT denotes a suitable constant,
which can be different from line to line, and verifies limT↓0 CT = 0.

Set F̃c(t, u) :=Fc(t, u) − Fc(t, 0). Thus, F̃c(t, 0) = 0, and by (HF) it follows that for
u, v ∈ Xϕ,

‖F̃c(t, u) − F̃c(t, v)‖X0 � Lc,N+2(1 + ‖u‖ρXϕ
+ ‖v‖ρXϕ

)‖u − v‖Xβ
, (4.22)

provided ‖u‖XTr
κ,p

, ‖v‖XTr
κ,p

� N + 2. For convenience we set Lc,N+2 =: CF.
Let us set

τu := inf

{
t ∈ [0, T] : ‖u‖X(t) + sup

s∈[0,t]
‖u(s) − x‖XTr

κ,p
� 2λ

}
∧ T. (4.23)

Then since Θλ(t, x, u) = 0 if t � τ u we can write

‖Fc,λ(x, u)‖Lp(IT ,wκ;X0) = ‖Fc,λ(x, u)‖Lp(0,τu,wκ;X0)

(i)
� CF

(∫ τu

0
(1 + ‖u‖ρXϕ

)p‖u‖p
Xβ

tκdt

)1/p

(ii)
� CF(‖u‖Lp(Iτu ,wκ;Xβ ) + ‖u‖ρ

Lρpr′ (Iτu ,wκ;Xϕ)
‖u‖Lpr(Iτu ,wκ;Xβ ))

(iii)
� CF(CT‖u‖Lpr(Iτu ,wκ;Xβ ) + ‖u‖ρ

Lρpr′ (Iτu ,wκ;Xϕ)
‖u‖Lpr(Iτu ,wκ;Xβ ))

(iv)
� CF(2CTλ+ (2λ)ρ2λ)=: Cλ.
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In (i) we used (4.22) and the fact that ‖u‖C(Iτu ;XTr
κ,p) � N + 2, ‖x‖L∞(Ω;XTr

κ,p) � N, and λ ∈ (0, 1).

In (ii) and (iii) we used Hölder’s inequality with exponent r, r′ defined in (4.13). In (iv) we
used (4.23).

Next we estimate ΔF :=Fc,λ(x, u) − Fc,λ(x, v). Without loss of generality, we may assume
that τ u � τ v . Clearly, we can estimate

‖ΔF‖Lp(IT ,wκ;X0) � ‖Θλ(·, x, u)(F̃c(·, u) − F̃c(·, v))‖Lp(IT ,wκ;X0)

+ ‖(Θλ(·, x, u) −Θλ(·, x, v))F̃c(·, v)‖Lp(IT ,wκ;X0)

=: R1 + R2.

Since Θλ(t, x, u) = 0 if t � τ u, the term R1 can be estimated as

R1 = ‖Θλ(·, x, u)(F̃c(u) − F̃c(v))‖Lp(0,τu,wκ;X0)

(i)
� CF

(∫ τu

0
(1 + ‖u(t)‖ρXϕ

+ ‖v(t)‖ρXϕ
)p‖u(t) − v(t)‖p

Xβ
tκ dt

) 1
p

(ii)
� CF

(
CT + ‖u‖ρ

Lρpr′ (0,τu,wκ;Xϕ)
+ ‖v‖ρ

Lρpr′ (0,τu,wκ;Xϕ)

)
‖u − v‖Lpr(IT ,wκ;Xβ )

(iii)
� CF

(
CT + 21+ρλρ

)
‖u − v‖X(T).

In (i) we used (4.22), in (ii) we used Hölder’s inequality with exponent r, r′, and (iii) follows
from τ u � τ v . For R2 note that since ‖ξ′λ‖L∞(R+) � 1/λ, for all t ∈ [0, T], one has

|Θλ(t, x, u) −Θλ(t, x, v)|

� 1
λ

∣∣∣∣‖u‖X(t) − ‖v‖X(t) + ‖u − x‖C(It ;XTr
κ,p) − ‖v − x‖C(It;XTr

κ,p)

∣∣∣∣
� 1

λ

[
‖u − v‖X(T) + ‖u − v‖C(IT ;XTr

κ,p)

]
.

Therefore, using that Θλ(t, x, u) = Θλ(t, x, v) = 0 if t � τ v , we obtain

R2 = ‖(Θλ(·, x, u) −Θλ(·, x, v))F̃c(·, v)‖Lp(Iτv ,wκ;X0)

� 1
λ

[
‖u − v‖X(T) + ‖u − v‖C(IT ;XTr

κ,p)

]
‖F̃c(·, v)‖Lp(0,τv ,wκ;X0).

By Hölder’s inequality, and ‖v‖X(τv) � 2λ (see (4.23)), we obtain

‖F̃c(·, v)‖Lp(0,τv ,wκ;X0) � CF

(∫ τv

0
(1 + ‖v‖ρXϕ

)p‖v‖p
Xβ

tκ dt

) 1
p

� CF[CT + ‖v‖ρ
Lpρr′ (0,τv ,wκ;Xϕ)

]‖v‖Lpr(0,τv ,wκ;Xβ )

� 2CF(CT + (2λ)ρ)λ

It follows that

R2 � 2CF(CT + (2λ)ρ)(‖u − v‖X(T) + ‖u − v‖C(IT ;XTr
κ,p)).

�
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Remark 4.14. In the setting of lemma 4.13, if the constants Ln,c, Cn,c in (HF)(b)–(HG)(b)
do not depend on n � 1, then lemma 4.13 also holds with Θλ(t, u, x) replaced by
Θ̃λ(t, x, u) := ξλ

(
‖u‖X(t)

)
.

The last ingredient we need for the proof of theorem 4.5 is a suitable truncation of the
remaining nonlinearities A, B, FTr, GTr. Here the proof in [Hor18, lemma 4.4] extends to our
setting. Let ξλ be the truncation defined before lemma 4.13. For t ∈ [0, T], x ∈ XTr

κ,p, and u ∈
C(IT ; XTr

κ,p) ∩ Lp(IT ,wκ; X1) we set

Ψλ(t, x, u) := ξλ

(
sup

s∈[0,t]
‖u(s) − x‖XTr

κ,p
+ ‖u‖Lp(It ,wκ;X1)

)
. (4.24)

Similar to lemma 4.13, we have the following.

Lemma 4.15. Let (HA), (HF)–(HG) be satisfied. Let T > 0, λ ∈ (0, 1), and let σ be a
stopping time with values in [0, T]. Moreover, let the maps

FA,λ(x, ·) : XTr
κ,p × Lp(Iσ,wκ; X1) ∩ C(Iσ; XTr

κ,p) → Lp(Iσ,wκ; X0),

GB,λ(x, ·) : XTr
κ,p × Lp(Iσ,wκ; X1) ∩ C(Iσ; XTr

κ,p) → Lp(Iσ,wκ; γ(H, X1/2)),

be given by

FA,λ(x, u) :=Ψλ(·, x, u)[(A(·, x)− A(·, u))u + FTr(·, u) − FTr(·, x)],

GB,λ(x, u) :=Ψλ(·, x, u)[−(B(·, x)− B(·, u))u+ GTr(·, u) − GTr(·, x)].

Then for any N � 1 there exist constants C̃λ, LT,λ such that for all ‖x‖XTr
κ,p

< N,

‖FA,λ(x, u)‖Lp(Iσ ,wκ;X0) � C̃λ,

‖GB,λ(x, u)‖Lp(Iσ ,wκ;γ(H,X1/2)) � C̃λ,

‖FA,λ(x, u) − FA,λ(x, v)‖Lp(Iσ ,wκ;X0) � L̃λ,T (‖u − v‖Lp(Iσ ,wκ;X1) + ‖u − v‖C(Iσ ;XTr
κ,p)),

‖GB,λ(x, u) − GB,λ(x, v)‖Lp(Iσ ,wκ;γ(H,X1/2)) � L̃λ,T (‖u − v‖Lp(Iσ ,wκ;X1) + ‖u − v‖C(Iσ ;XTr
κ,p)),

a.s. Moreover, for each ε > 0 there exist T̄ = T̄(ε) > 0 and λ̄ = λ̄(ε) > 0 such that

L̃λ,T < ε,

for any T < T̄ , λ < λ̄.

Proof. Recall that LTr,n, LA,n, LF, L̃F are the constants defined in (HA), (HF)–(HG). For sim-
plicity we set L := LN+2 := max{LTr,N+2, LA,N+2, L̃F}, where N is as in the statement. More-
over, as before CT > 0 denotes a constant which may change from line to line and satisfies
limT↓0 CT = 0. We proof only the estimates for FA,λ, since the other follows similarly. Again,
as in lemma 4.13, the above claimed estimates are pointwise with respect to ω ∈ Ω. Thus, it is
enough to consider the case σ = T.

To begin, we set

ζu := inf{t ∈ [0, T] : ‖u‖Lp(It ,wκ;X1) + sup
s∈[0,t]

‖u(s) − x‖XTr
κ,p

> 2λ} ∧ T. (4.25)
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Without loss of generality we can assume ζu � ζv . Firstly,

‖FA,λ(x, u)‖Lp(IT ,wκ;X0)

(i)
� ‖A(·, x)u − A(·, u)u‖Lp(Iζu ,wκ;X0) + ‖FTr(·, u) − FTr(·, x)‖Lp(Iζu ,wκ;X0)

(ii)
� (N + 2)L‖u‖Lp(Iζu ,wκ;X1) + L‖u − x‖Lp(Iζu ,wκ;XTr

κ,p)

(iii)
� 2Lλ(N + 2 + CT )=: Cλ,T ,

where in (i) we used (4.25) and Ψλ(t, x, u) = 0 if t � ζu. In (ii) we used the assumption (HA),
(HF) and supt∈[0,ζu]‖u(t) − x‖XTr

κ,p
� N + 2 by (4.25). In (iii) we used that ‖u‖Lp(Iζu ,wκ;X1) +

sups∈[0,ζu]‖u(s) − x‖XTr
κ,p

� 2λ.
To prove the Lipschitz estimate we split the proof into two steps.
Step 1: Lipschitz estimate for t �→ Ψ(t, x, u)(FTr(t, u) − FTr(t, 0)). For simplicity, let us set

F̃Tr(u) :=FTr(·, u) − FTr(·, 0). As in the proof of lemma 4.13, one has

‖Ψ(·, x, u)F̃Tr(u) −Ψ(·, x, v)F̃Tr(v)‖Lp(IT ,wκ;X0)

� ‖(Ψ(·, x, u) −Ψ(·, x, v))F̃Tr(u)‖Lp(IT ,wκ;X0) + ‖Ψ(·, x, v)(F̃Tr(u) − F̃Tr(v))‖Lp(IT ,wκ;X0)

� ‖(Ψ(·, x, u) −Ψ(·, x, v))F̃Tr(u)‖Lp(Iζu ,wκ;X0) + ‖F̃Tr(u) − F̃Tr(v)‖Lp(Iζv ,wκ;X0).

Note that

‖F̃Tr(u) − F̃Tr(v)‖Lp(Iζv ,wκ;X0) � L‖u − v‖Lp(Iζv ,wκ;XTr
κ,p)

� LCT‖u − v‖C(IT ;XTr
κ,p),

and

‖(Ψ(·, x, u) −Ψ(·, x, v))F̃Tr(u)‖Lp(Iζu ,wκ;X0)

� sup
t∈[0,ζu]

|Ψ(t, x, u) −Ψ(t, x, v)|‖F̃Tr(u)‖Lp(Iζu ,wκ;X0)

� L
1
λ

(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(Iζu ,wκ;X1))‖u − x‖Lp(Iζu ,wκ;XTr

κ,p)

� 2CTL(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(Iζu ,wκ;X1));

where in the last inequality we used that ‖u − x‖Lp(Iζu ,wκ;XTr
κ,p) � 2CTλ by (4.25).

Step 2: Lipschitz estimate for t �→ Ψλ(t, x, u)(A(t, x)u − A(t, u)u). Writing

‖Ψλ(·, x, u)(A(·, x)u− A(·, u)u) −Ψ(·, x, v)(A(·, x)v− A(·, v)v)‖Lp(IT ,wκ;X0)

� ‖(Ψλ(·, x, u) −Ψλ(·, x, v))((A(·, x)− A(·, u))u)‖Lp(IT ,wκ;X0)

+ ‖Ψλ(·, x, v)((A(·, v) − A(·, x))(u− v))‖Lp(IT ,wκ;X0)

+ ‖Ψ(·, x, v)((A(·, v)− A(·, u))u)‖Lp(IT ,wκ;X0) =: R1 + R2 + R3.

For R1 note that
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R1 = ‖(Ψλ(·, x, u) −Ψλ(·, x, v))((A(·, x)− A(·, u))u)‖Lp(Iζu ,wκ;X0)

� sup
t∈[0,ζu]

|Ψλ(t, x, u) −Ψλ(t, x, v)|‖(A(·, x)− A(·, u))u‖Lp(Iζu ,wκ;X0)

As before, for all t ∈ [0, ζu],

|Ψλ(t, x, u) −Ψλ(t, x, v)| � 1
λ

(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(IT ,wκ;X1)).

Moreover,

‖(A(·, x) − A(·, u))u‖Lp(Iζu ,wκ;X0) � L

(∫ ζu

0
‖u(t) − x‖p

XTr
κ,p
‖u(t)‖p

X1
tκdt

) 1
p

� 4λ2L.

Therefore,

R1 � 4CLλ(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(IT ,wκ;X1)).

Similarly, one gets

R2 + R3 � Lλ‖u − v‖Lp(IT ,wκ;X1) + Lλ‖u − v‖C(IT ;XTr
κ,p).

Putting together the estimates in step 1–2 the conclusion follows. �
In the proof of theorem 4.7 we need a further truncation. To this end, let ξλ be as above.

Then for u ∈ C(IT ; XTr
κ,p) ∩ Lp(IT ,wκ; X1), n � 1 and t ∈ IT we set

Φn(t, u) := ξn

(
‖u‖Lp(It ,wκ;X1) + sup

s∈[0,t]
‖u(s)‖XTr

κ,p

)
. (4.26)

As before, we fix ω ∈ Ω, but we omit it from the notation.

Lemma 4.16. Let (HF′)–(HG′) be satisfied. Let T > 0 and let σ be a stopping time with
value in [0, T]. Let Φn be as in (4.26). For any n � 1, let the maps

FL,n : Lp(Iσ ,wκ; X1) ∩ C(Iσ; XTr
κ,p) → Lp(Iσ,wκ; X0),

GL,n : Lp(Iσ ,wκ; X1) ∩ C(Iσ; XTr
κ,p) → Lp(Iσ,wκ; γ(H, X1/2)),

be given by

FL,n(u) :=Φn(·, u)(FL(·, u) − FL(·, 0)),

GL,n(u) :=Φn(·, u)(GL(·, u) − GL(·, 0)).

Then there exist constants Cn, CT > 0 such that a.s.

‖FL,n(·, u)‖Lp(Iσ ,wκ;X0) � Cn

‖GL,n(·, u)‖Lp(Iσ ,wκ;γ(H,X1/2)) � Cn

‖FL,n(·, u) − FF,n(·, v)‖Lp(Iσ ,wκ;X0) � L′
F,n(‖u − v‖Lp(Iσ ,wκ;X1) + ‖u − v‖C(Iσ ;XTr

κ,p)),

‖GL,n(·, u) − GF,n(·, v)‖Lp(Iσ ,wκ;γ(H,X1/2)) � L′
G,n(‖u − v‖Lp(Iσ ,wκ;X1) + ‖u − v‖C(Iσ ;XTr

κ,p));
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where L′
F,n := 3LF,2n + CT L̃F,2n, L′

G,n := 3LG,2n + CTL̃F,2n and limT↓0 CT = 0.

Proof. The proof is similar to the one given in lemmas 4.13 and 4.15. For the sake of
completeness we sketch the proof of the Lipschitz continuity of FL,n. Since the estimates are
pointwise with respect toω ∈ Ω, we may assumeσ = T. Let u, v ∈ C(IT ; XTr

κ,p) ∩ Lp(IT ,wκ; X1)
and set

λu := inf

{
t ∈ [0, T] : ‖u‖Lp(It ,wκ;X1) + sup

s∈[0,t]
‖u(s)‖XTr

κ,p
� 2n

}
∧ T. (4.27)

A similar definition holds for λv . As usual, we assume λu � λv . Therefore

‖FL,n(·, u) − FL,n(·, v)‖Lp(IT ,wκ;X0)

= ‖FL,n(·, u) − FL,n(·, v)‖Lp(Iλu ,wκ;X0)

� ‖(Φn(·, u) − Φn(·, v))F̃L(·, u)‖Lp(Iλu ,wκ;X0) + ‖Φn(·, v)(FL(·, u) − FL(·, v))‖Lp(Iλv ,wκ;X0);

where we have set F̃L(·, u) :=FL(·, u) − FL(·, 0). Since ‖ξ′‖L∞(R+) � 1, one has

‖(Φn(·, u) − Φn(·, v))F̃L(·, u)‖Lp(Iλu ,wκ;X0)

� 1
n

(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(IT ,wκ;X1))‖LF,2n‖u‖X1 + L̃F,2n‖u‖X0‖Lp(Iλu ,wκ)

� 2(‖u − v‖C(IT ;XTr
κ,p) + ‖u − v‖Lp(IT ,wκ;X1))(LF,2n + CT L̃F,2n);

where in the last inequality we used (4.27). Finally, since λv � λu,

‖Φn(·, v)(FL(·, u) − FL(·, v))‖Lp(Iλv ,wκ;X0)

� ‖FL(·, u) − FL(·, v)‖Lp(Iλv ,wκ;X0)

� LF,2n‖u − v‖Lp(Iλv ,wκ;X0) + CTL̃F,2n‖u − v‖C(Iλv ;XTr
κ,p).

The above estimates readily imply the claim. �

4.5. Proofs of theorems 4.5, 4.7 and 4.8

With this preparation, we are ready to prove our first result concerning (4.1).

Proof of theorem 4.5. To begin, we look to a suitable modification of (4.1). More
specifically, fix w0 ∈ Lp

F0
(Ω; XTr

κ,p) and let us consider the following semilinear equation:{
du + A(·, u0)u dt = (F̃λ(u) + f̃ )dt + (B(·, u0)u + G̃λ(u) + g̃)dWH ,

u(0) = w0;
(4.28)

on [0, T], where

F̃λ(u) :=Fc,λ(u0, u) + FA,λ(u0, u) + FL(·, u),

G̃λ(u) :=Gc,λ(u0, u) + GA,λ(u0, u) + GL(·, u),

f̃ := f + Fc(·, 0) + FTr(·, u0),

g̃ := g + Gc(·, 0) + GTr(·, u0),

(4.29)
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where Fc,λ, Gc,λ, FA,λ and GA,λ are defined in lemmas 4.13 and 4.15. By (HF)–(HG) and the
fact that T < ∞, it follows that f̃ ∈ Lp

P(IT × Ω,wκ; X0) and g̃ ∈ Lp
P(IT × Ω,wκ; γ(H, X1/2)).

Let R :=R(A(·,u0),B(·,u0)) be the solution operator associated to the couple (A(·, u0), B(·, u0)) ∈
SMR•

p,κ(T).
To study existence of strong solutions to (4.28) let σ be a stopping time with values in [0, T]

and consider

Zσ :=Lp
P(Ω;X(σ)) ∩ Lp

P(Iσ × Ω,wκ; X1) ∩ Lp
P(Ω; C(Iσ; XTr

κ,p)), (4.30)

equipped with the sum of the three norms. Note that the stopped space and norm were defined
in definition 2.16. Recall that X(σ) was defined in (4.14). On Zσ we define an equivalent norm
by

||| · |||Zσ = ‖ · ‖Zσ + M‖ · ‖Lp(Ω;Lp(Iσ ,wκ;X0)),

here M � 0 will be specified below. We shall study the map Πw0 defined on Zσ by

Πw0 (v) :=R(w0, F̃λ(v) + f̃ , G̃λ(v) + g̃). (4.31)

For the sake of clarity, we divide the proof into several steps.
Step 1: There exist M > 0, λ∗ > 0, T∗ ∈ (0, T], ε > 0 and α < 1 such that if max

{LF, LG} � ε, then for any stopping time σ : Ω→ [0, T∗] and any w0 ∈ Lp
F0

(Ω; XTr
κ,p) one has

Πw0 : Zσ →Zσ and for all v,w ∈ Zσ ,

|||Πw0 (v) −Πw0 (w)|||Zσ � α|||u − w|||Zσ . (4.32)

In the following, we consider the case p > 2, the case p = 2 follows by replacing

0Hδ,p(Iσ ,wκ; X1−δ) by C(Iσ , X1/2) below.
Let p > 2, and fix a stopping time σ with values in [0, T]. Fix δ ∈ ((1 + κ)/p, 1/2). Note

that for z ∈ Lp
P(IT × Ω,wκ; X1) ∩ Lp

P(Ω; Hδ,p(IT ,wκ; X1−δ))

‖z‖ZT � kT(‖z‖Lp(IT×Ω,wκ;X1) + ‖z‖Lp(Ω;Hδ,p(IT ,wκ;X1−δ ))), (4.33)

where kT is a constant which depends on T. Moreover, if z ∈ Lp
P(Iσ × Ω,wκ; X1) ∩

Lp
P(Ω; 0Hδ,p(Iσ ,wκ; X1−δ)), then

‖z‖Zσ � C1(‖z‖Lp(Iσ×Ω,wκ;X1) + ‖z‖Lp(Ω;0Hδ,p(Iσ ,wκ;X1−δ ))), (4.34)

where the constant C1 is independent of T. Both estimates (4.33) and (4.34) follow from
proposition 2.10, lemma 4.9 and remark 4.10.

By proposition 3.10 and (4.33) one has

‖R(w0, 0, 0)‖ZT � kT‖w0‖Lp(Ω;XTr
κ,p). (4.35)

Since (A(·, u0), B(·, u0)) ∈ SMR•
p,κ(T), definition 3.5, (3.8), proposition 3.12 and (4.34)

give that for all φ ∈ Lp
P(IT × Ω,wκ; X0) and ψ ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2)),

‖R(0,φ,ψ)‖Zσ � ‖R(0, 1[[0,σ]]φ, 1[[0,σ]]ψ)‖ZT

� C1Kdet,δ‖φ‖Lp(Ω;Lp(Iσ ,wκ;X0)) + C1Ksto,δ‖ψ‖Lp(Ω;Lp(Ω;Iσ ,wκ;γ(H,X1/2))),

(4.36)
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where Kdet,δ :=Kdet,δ
(A(·,u0),B(·,u0)), Kdet,δ :=Ksto,δ

(A(·,u0),B(·,u0)) and C1 is as in (4.34).
Next we show that Πw0 maps Zσ into itself. Let v ∈ Zσ . By (4.35) and (4.36) we can write

‖Πw0 (v)‖Zσ � ‖R(w0, 0, 0)‖ZT + ‖R
(

0, F̃λ(v) + f̃ , G̃λ(v) + g̃
)
‖Zσ

� kT‖w0‖Lp(Ω;XTr
κ,p) + C1Kdet,δ‖F̃λ(v) + f̃‖Lp(Ω;Lp(Iσ ,wκ;X0))

+ C1Ksto,δ‖G̃λ(v) + g̃‖Lp(Ω;Lp(Iσ ,wκ;γ(H,X1/2)))

and the latter is finite by lemmas 4.13 and 4.15.
Moreover, for v,w ∈ Zσ by proposition 3.12 we can write

Πw0 (v) −Πw0 (w) = R(0, 1[[0,σ]](F̃λ(v) − F̃λ(w)), 1[[0,σ]](G̃λ(v) − G̃λ(w))) (4.37)

on [[0, σ ]]. The previous identity and (4.36) gives

‖Πw0 (v) −Πw0 (w)‖Zσ

= ‖R(0, 1[[0,σ]](F̃λ(v) − F̃λ(w)), 1[[0,σ]](G̃λ(v) − G̃λ(w)))‖Zσ

� C1Kdet,δ‖F̃λ(v) − F̃λ(w)‖Lp(Ω;Lp(Iσ ,wκ;X0))

+ C1Ksto,δ‖G̃λ(v) − G̃λ(w)‖Lp(Ω;Lp(Iσ ,wκ;γ(H,X1/2)))

� C1[Kdet,δ(L′
λ,T + LF) + Ksto(L′

λ,T + LG)]‖v − w‖Zσ

+ C1(Kdet,δL̃F + Ksto,δ L̃G)‖v − w‖Lp(Ω;Lp(Iσ ,wκ;X0)), (4.38)

where the last estimate follows from lemmas 4.13 and 4.15 and where we have set
L′
λ,T = Lλ,T + L̃λ,T .

Let ε > 0 be such that if (4.5) holds, then

C1[Kdet,δLF + Ksto,δLG] < 1. (4.39)

By lemmas 4.13 and 4.15 one can find T̃ and λ̃ such that

C1[Kdet,δ(LF + L′
λ,T ) + Ksto,δ(LG + L′

λ,T )] :=α′ < 1; (4.40)

for all T � T̃ and λ � λ̃. To complete the proof we extend the argument in [NVW12a,
theorem 4.5] to our setting. Set

M :=
Kdet,δL̃F + Ksto,δL̃G

Kdet,δLF + Ksto,δLG
.

With such a choice the inequality (4.38) implies that

‖Πw0 (v) −Πw0 (w)‖Zσ � α′|||v − w|||Zσ .

Applying lemma 3.13 with u given by (4.37) we find

‖Πw0 (v) −Πw0 (w)‖Lp(Ω;Lp(Iσ ,wκ;X0))

� cT

[
‖F̃λ(v) − F̃λ(w)‖Lp(Iσ×Ω,wκ;X0) + ‖G̃λ(v) − G̃λ(w)‖Lp(Iσ×Ω,wκ;X0)

]
� c̃T |||v − w|||Zσ ;

(4.41)
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where the last step follows from lemmas 4.13 and 4.15, and where cT , c̃T > 0 and both tend
to zero as T ↓ 0. The claim follows from (4.38) and (4.41) by choosing T∗ > 0 such that
Mc̃T∗ < 1 − α′, λ∗ = λ̃ and α :=α′ + McT∗ < 1.

Step 2: let λ∗, T∗ be as in step 1. Then for each w0 ∈ Lp
F0

(Ω; XTr
κ,p) the problem (4.28)

has a unique strong solution uw0 ∈ ZT∗ on [[0, T∗]]. Moreover, there exists a constant
C = C(T∗,λ∗) > 0 such that for all w0,w1 ∈ Lp

F0
(Ω; XTr

κ,p), one has

‖uw0 − uw1‖ZT∗ � C‖w0 − w1‖Lp
F0

(Ω;XTr
κ,p). (4.42)

Applying step 1 to σ ≡ T∗, we obtain that Πw0 : ZT∗ → ZT∗ is a contraction. Therefore, by the
Banach fixed point theorem there exists a unique uw0 ∈ ZT∗ such that Πw0 (uw0) = uw0 . From
this we can conclude that uw0 is a strong solution to (4.28) on [[0, T∗]] (see definition 4.3 and
(4.31)).

It remains to prove (4.42). The linearity of R shows that

uw0 − uw1 = Πw0 (uw0 ) −Πw1 (uw1 ) = R(w0 − w1, 0, 0) +Π0(uw0) −Π0(uw1 ).

Therefore, by (4.35) and (4.32),

|||uw0 − uw1 |||ZT∗ � |||R(w0 − w1, 0, 0)|||ZT∗ + |||Π0(uw0 ) −Π0(uw1)|||ZT∗

� k̃T∗‖w0 − w1‖Lp
F0

(Ω;XTr
κ,p) + α|||uw0 − uw1 |||ZT∗ .

Since α < 1, the latter implies (4.42).
Step 3: let (v, τ ) be a local solution to (4.28) with initial data w0 ∈ Lp

F0
(Ω; XTr

κ,p). Then
v = uw0 on [[0, τ ∧ T∗⦈. Without loss of generality, we can assume that τ < T∗. For n � 1 let

τn := inf{t ∈ [0, τ ) : ‖v‖X(t) + ‖v − w0‖C(It;XTr
κ,p) + ‖v‖Lp(It ,wκ;X1) � n}

and τ n := τ if the set is empty. Then (τn)n�1 is a localizing sequence for (v, τ ).
Fix n � 1. Lemmas 4.13 and 4.15 ensure that 1[[0,τn]](F̃λ(v) + f̃ ) ∈ Lp

P(IT × Ω,wκ; X0) and
1[[0,τn]](G̃λ(v) + f̃ ) ∈ Lp

P(IT × Ω,wκ; g(H, X1/2)). Moreover, by proposition 3.12 one obtains

v = R(w0, 1[[0,τn]]( f̃ + F̃λ(v)), 1[[0,τn]](G̃λ(v) + g̃)),

uw0 = R(w0, 1[[0,τn]]( f̃ + F̃λ(uw0)), 1[[0,τn]](G̃λ(uw0) + g̃));

on [[0, τn ]]. Using (4.37) this implies that

|||uw0 − v|||Zτn
= |||R(0, 1[[0,τn]](F̃λ(v) − F̃λ(uw0)), 1[[0,τn]](G̃λ(v) − G̃λ(uw0)))|||Zτn

= |||Π0(uw0) −Π0(v)|||Zτn
� α|||uw0 − v|||Zτn

;

where in the last step we used (4.32). Since α < 1, we obtain that uw0 = v on [[0, τn ∧ T∗]].
Since n � 1 was arbitrary, it follows that uw0 = v on [[0, τ ∧ T⦈.

Steps 1–3 complete our treatment of (4.28). Below we apply these results to study (4.1).
Step 4: let η :=λ∗/2. Then (4.1) has a strong solution (v, τ ) with initial data v0 ∈

L∞(Ω; XTr
κ,p) and τ > 0 a.s. provided v0 ∈ BL∞

F0
(Ω;XTr

κ,p)(u0, η). In particular, this gives a strong

solution (u, σ) to (4.1) with σ > 0 a.s.
Step 1 ensures that (4.28) with initial data v0 has a unique strongly progressively measurable

solution uv0 if λ = λ∗ and T = T∗. Set

τ := inf
{

t ∈ [0, T] : ‖uv0‖X(t) + ‖uv0 − u0‖C(It;XTr
κ,p) + ‖uv0‖Lp(It ,wκ;X1) > λ∗/2

}
.
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Since the maps t �→ ‖uu0‖X(t), t �→ sups∈[0,t]‖uu0(s) − v0‖XTr
κ,p

are continuous and adapted, τ is
a stopping time. Note that if v0 ∈ BL∞

F0
(Ω;XTr

κ,p)(u0, η), then 0 < τ a.s.

Setting v := uv0 |[[0,τ ]], then a.s. for t ∈ [0, τ], one has

Θλ∗(t, u0, v) = 1, Ψλ∗ (t, u0, v) = 1.

Using the latter, by (4.29) a.s. on [[0, τ ]]

F̃λ∗ (v) = A(·, u0)v − A(·, v)v + Fc(·, v) − Fc(·, 0) + FTr(·, v) − FTr(·, u0) + FL(·, v),

G̃λ∗ (v) = B(·, u0)v − B(·, v)v + Gc(·, v) − Gc(·, 0) + GTr(·, v) − GTr(·, u0) + GL(·, v).

Using this and (4.28), it follows that v is a strong solution to (4.1) on [[0, τ ]] with initial data
v0.

Next, we prove the continuity estimate claimed in (c) for the solutions just constructed.
Let (u, σ), (v, τ ) be solutions of (4.1) constructed above with initial value u0, v0 respectively.
Therefore, u = uu0 |[[0,σ]] and v = uv0 |[[0,τ ]].

Let ν := σ ∧ τ , this implies that u = uu0 |[[0,ν]], v = uv0 |[[0,ν]] and

‖u − v‖Zν � ‖uu0 − uv0‖ZT∗ � C‖u0 − v0‖Lp
F0

(Ω;XTr
κ,p); (4.43)

where in the last step we used (4.42).
Step 5: (a) and the first part of (c) hold. For the sake of clarity, we divide the proof of this

step into two parts.
Step 5a: uniqueness of the strong solution (v, τ ) constructed in step 4. Recall that (v, τ ) is

a strong solution to (4.1) with initial data v0 and satisfies v = uv0 on [[0, τ ]]. Let (w, μ) be a
local solution to (4.1) with initial data v0. By definition 4.4, it is enough to prove that v = w
on [[0, τ ∧ μ⦈. We claim that

w ∈ X(t) a.s. for all t ∈ [0,μ). (4.44)

Let us first show that (4.44) implies the claim of step 5a. Thus, suppose that (4.44) holds. Let
(μn)n�1 be a localizing sequence for (w, μ), and define the following stopping times

μ∗
n := inf

{
t ∈ [0,μn) : ‖w‖X(t) + ‖w − u0‖C(It;XTr

κ,p) + ‖w‖Lp(It ,wκ;X1) > λ∗/2
}

,

μ∗ := inf
{

t ∈ [0,μ) : ‖w‖X(t) + ‖w − u0‖C(It;XTr
κ,p) + ‖w‖Lp(It ,wκ;X1) > λ∗/2

}
,

where λ∗ > 0 is as in step 1 and where we set μ∗
n = μn and μ∗ = μ if the set is empty. Let

n � 1 be fixed. The argument used in step 4 shows that (w,μ∗
n) is a local solution to (4.28) with

initial data v0 ∈ L∞
F0

(Ω; XTr
κ,p). Therefore, by step 3 w = uv0 on [[0,μ∗

n ∧ τ ]]. Letting n ↑ ∞ we
find v = w on [[0,μ∗ ∧ τ⦈. From the latter equality, it follows that μ ∧ τ = μ∗ ∧ τ a.s. This
proves the uniqueness of (v, τ ).

Now we turn to the proof of (4.44). To this end we set, for a.a. (ω, t) ∈ [0, μ) × Ω,

Nw(t,ω) := ‖F(·,ω,w(·,ω))‖Lp(0,t,wκ;X0) + ‖G(·,ω,w(·,ω))‖Lp(0,t,wκ;γ(H,X1/2)).

By definitions 4.3 and 4.4 we have Nw(t) < ∞ a.s. for all t ∈ [0, μ). Define a sequence of
stopping times by

νn := inf
{

t ∈ [0,μ) : Nw(t) + ‖w − u0‖C(It ;XTr
κ,p) + ‖w‖Lp(It ,wκ;X1) > n

}
,
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where inf Ø := μ. Then limn↑∞ νn = μ a.s., and therefore to prove (4.44) it is enough to show
w ∈ X(νn) a.s. for all n � 1. Note that for any n � 1,

w|[[0,νn]] ∈ L∞(Ω; C(Iνn ; XTr
κ,p) ∩ Lp(Iνn × Ω,wκ; X1)), (4.45)

where we used that u0 ∈ L∞(Ω; XTr
κ,p) by assumption, and

1[[0,νn]]F(·,w) ∈ Lp(IT × Ω,wκ; X0),

1[[0,νn]]G(·,w) ∈ Lp(IT × Ω,wκ; γ(H, X1/2)).
(4.46)

Since (w, μ) is a local solution to (4.1) and νn � μ a.s. we have thatw|[[0,νn⦈ is a strong solution
to (4.1) on [[0, νn ]]. Writing A(·,w) = A(·, u0) + (A(·,w) − A(·, u0)) and B(·,w) = B(·, u0) +
(B(·,w) − B(·, u0)), one sees that (w, νn) is a strong solution to (3.1) on [[0, νn ]] with (A, B) and
( f , g) replaced by (A(·, u0), B(·, u0)) and ( f wn , gw

n ), where

f wn := 1[[0,νn]][(A(·, u0) − A(·,w)) + F(·,w) + f ],

gw
n := 1[[0,νn]][(B(·,w) − B(·, u0)) + G(·,w) + g],

respectively. By (4.45)–(4.46) and (HA), f wn ∈ Lp
P(IT × Ω,wκ; X0) and gw

n ∈ Lp
P(IT ×

Ω,wκ; γ(H, X1/2)). Since (A, B) ∈ SMR•
p,κ(T), w= R(A(·,u0),B(·,u0))(u0, f wn , gw

n ) on [[0, νn ]] by
proposition 3.12(b). Therefore, the last statement in proposition 3.10 ensures that for all
δ ∈ ( 1+κ

p , 1
2 ) and n � 1,

w|[[0,νn]] ∈ Hδ,p(Iνn ,wκ; X1−δ) ∩ Lp(Iνn ,wκ; X1) ↪→ X(νn) a.s.,

where we used lemma 4.9 for the embedding (see remark 4.10).
Step 5b: proof of the claim in step 5. It remains to prove the existence of a maximal solution

(v, τ ) of (4.1) with initial data v0 as in (c). Let Ξ be the set of all stopping time τ such that
(4.1) admits a unique local solution on [0, τ ) in the sense of definitions 4.3 and 4.4 with initial
value v0. Then the above ensures that Ξ is not empty. We claim that Ξ is closed under pair-
wise maximization, i.e. if τ 0, τ 1 ∈ Ξ, then τ 0 ∨ τ 1 ∈ Ξ. A similar argument appears in [Hor18,
lemma 4.6], but our setting is different. Let (vi, τ i) be the unique local solution to (4.1) with
the same initial data and localizing sequences (τ n

i )n�1 for i = 0, 1. The uniqueness ensures that
v0 = v1 on [[0, τ0 ∧ τ1⦈. Define the process un : [[0, τ n

0 ∨ τ n
1 ]] → X0 given by

un(t) = v0(t ∧ τ n
0 ) + v1(t ∧ τ n

1 ) − v0(t ∧ τ n
0 ∧ τ n

1 ).

Note that un(t) = v1(t) on {τ n
0 � t � τ n

1 } and un(t) = v0(t) + v1(τ n
1 ) − v0(τ n

1 ) = v0(t) on
{τ n

1 � t � τ n
0 }. By definition un is strongly progressively measurable and has the same regu-

larity properties of v0 and v1 on [[0, τ n
0 ∨ τ n

1 ]]. Letting n ↑ ∞ we obtain a unique local solution
(v, τ 0 ∨ τ 1) and thus τ 0 ∨ τ 1 ∈ Ξ.

By [KS98, theorem A.3], σ := ess supΞ exists, and there exists a sequence of stopping times
(τn)n�1 ⊆ Ξ such that τ n � σ, limn↑∞ τ n = σ a.s. and by the above uniqueness there exists a
process v : [0, τ] × Ω→ X0 such that u is a local solution to (4.1) on [[0, τn⦈. In addition, τ > 0
a.s. by step 4. This implies, the existence of a maximal local solution (v, τ ) to (4.1) with initial
value v0 and localizing sequence (τn)n�1. This finishes the proof of the first part of (c) and in
particular (a).

Step 6: (b). Let (v, τv) be the maximal solution to (4.1) with initial value v0, where v0 is as
in (c). Let (τvn )n�1 be a localizing sequence for (v, τv) with τvn > 0 a.s. For each n � 1, set

τ̃ vn := inf{t ∈ [0, τvn ) : ‖v‖X(t) + ‖v − v0‖C(It;XTr
κ,p) + ‖v‖Lp(It ,wκ;X1) � n}, (4.47)
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where we set τ̃ vn = τvn if the set is empty. Thus, each τ̃ vn is a stopping time and limn↑∞ τ̃ vn = τv .
Moreover, τvn > 0 a.s. Let νn = min{τ̃ u

n, τ̃ vn}.
Hypothesis (HA) and (HF)–(Hf) and lemma 4.11 show that

f vn := 1[[0,νn]][(A(·, u0) − A(·, v))v + F(·, v) + f ] ∈ Lp
P(IT × Ω,wκ; X0),

gv
n := 1[[0,νn]][(B(·, v) − B(·, v0))u + G(·, v) + g] ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2)),

for all n � 1. As in step 5a, since u and v are strong solution to (4.1), by proposition 3.12(b)
we have

v = R(v0, f vn, gv
n), on [[0, νn ]] ,

where R :=R(A(·,u0),B(·,u0)). Since (A(·, u0), B(·, u0)) ∈ SMR•
p,κ(T), it follows from proposition

3.10 that

v ∈
⋂

θ∈[0,1/2)

Lp
P(Ω; Hθ,p(Iνn ,wκ; X1−θ)), ∀ n � 1. (4.48)

In particular, by proposition 2.10(a)

v ∈ Lp(Ω; C(Iνn ; XTr
κ,p)).

It remains to prove the instantaneously regularization effect. Let κ > 0, by (4.48) and definition
2.16, for each n � 1 there exists ṽn ∈ Lp

P(Ω; Hδ,p(IT∗ ,wκ; X1−δ) ∩ Lp(IT∗ ,wκ; X1)) such that
v|[[0,σ̃n]] = ṽn|[[0,νn]] and for any ε > 0,

ṽn ∈ Lp
P(Ω; Hδ,p(IT∗ ,wκ; X1−δ) ∩ Lp(IT∗ ,wκ; X1)) ↪→ Lp

P(Ω; C([ε, T∗]; XTr
p )),

where in the last inclusion we used proposition 2.10(b) and the fact that δ > 1+κ
p � 1

p since
κ � 0. The claim follows from the arbitrariness of n � 1 and ε > 0. By taking v = u this
completes the proof of (b)

Step 7: the second part of (c). The cases E ∈ {Lp(Iν ,wκ; X1), C(Iν ; XTr
κ,p),X(ν)}have already

been considered in (4.43). It remains to consider E = Hθ,p(Iν ,wκ; X1−θ). Carefully checking the
proofs of (4.32) and (4.35) one also obtains the latter case.

Step 8: (d) holds. Let (u, σ) and (v, τ ) be as in the statement. Recall that Γ := {u0 = v0}.
Without loss of generality we assume P(Γ) > 0.

Set σ̃ := 1Γσ + 1Ω\Γτ and ũ := 1Γ×[0,τ )v + 1(Ω\Γ)×[0,σ)u. Then with the same argument used
in the proof of proposition 3.12, one can check that (ũ, σ̃) is a unique local solution to (4.1)
since u0 = v0 on Γ.

The maximality of (u, σ) implies τ � σ on Γ and

u = ũ = v, Γ× [0, τ ).

Exchanging the role of (u, σ) and (v, τ ), one obtains also σ � τ on Γ and u = v on Γ× [0, σ).
This implies the claim. �

Some remark may be in order.

Remark 4.17. Due to (4.39), the argument used in step 1 in the proof of theorem 4.5 ensures
that instead of (4.5) we can assume

C1(LFKdet,δ
(A(·,u0),B(·,u0)) + LBKsto,δ

(A(·,u0),B(·,u0))) < 1.
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Here C1 is the constant in (4.34) and δ ∈ ((1 + κ)/p, 1/2). Typically the above constants are
difficult to compute. See [NVW12a, section 5] for examples in which explicit computations
can be worked out.

Remark 4.18. By analysing the argument in the above proof one can readily check that
theorem 4.5 holds in case that the assumptions (HF)(a) and (HG)(a) are replaced by:

(a) For any stopping time μ : Ω→ [0, T], one has

FL : L0
P(Ω; Lp(Iμ,wκ; X1) ∩ C(Iμ; XTr

κ,p)) → L0
P(Ω; Lp(Iμ,wκ; X0)),

GL : L0
P(Ω; Lp(Iμ,wκ; X1) ∩ C(Iμ; XTr

κ,p)) → L0
P(Ω; Lp(Iμ,wκ; γ(H, X1/2))).

Moreover, there exist C̃, LF, LG, L̃F, L̃G > 0 such that for a.a. ω ∈ Ω and for all u, v ∈
Lp(Iμ,wκ; X1) ∩ C(Iμ; XTr

κ,p)

‖FL(·,ω, u)‖Lp(Iμ,wκ ,X0) � C̃(1 + ‖u‖Lp(Iμ,wκ;X1) + ‖u‖C(Iμ;XTr
κ,p)),

‖GL(·,ω, u)‖Lp(Iμ,wκ ,γ(H,X1/2)) � C̃(1 + ‖u‖Lp(Iμ,wκ;X1) + ‖u‖C(Iμ;XTr
κ,p)),

‖FL(·,ω, u) − FL(·,ω, v)‖Lp(Iμ,wκ ,X0) � LF(‖u − v‖Lp(Iμ,wκ;X1) + ‖u − v‖C(Iμ;XTr
κ,p))

+ L̃F‖u − v‖Lp(Iμ,wκ;X0),

‖GL(·,ω, u) − GL(·,ω, v)‖Lp(Iμ,wκ ,γ(H,X1/2)) � LG(‖u − v‖Lp(Iμ,wκ;X1) + ‖u − v‖C(Iμ;XTr
κ,p))

+ L̃G‖u − v‖Lp(Iμ,wκ;X0).

(b) For Γ ∈ {FL, GL} and all stopping times ν ∈ [0, μ] a.s., 1[0,ν]Γ(·, u) = 1[0,ν]Γ(·, v) pro-
vided 1[0,ν]u = 1[0,ν]v and u, v ∈ L0

P(Ω; Lp(Iμ,wκ; X1) ∩ C(Iμ; XTr
κ,p)).

To see that (a)–(b) are sufficient to prove theorem 4.5 it is enough to note that only (a) and
(b) are needed in step 1 (resp. 5) to prove existence (resp. uniqueness). The other steps hold
without any changes.

Next, we prove theorem 4.7.

Proof of theorem 4.7. We start by collecting some useful facts. To begin, let

ξ := inf{t ∈ [0, T] : ‖ f ‖Lp(It ,wκ;X0) + ‖g‖Lp(It ,wκ;γ(H,X1/2)) � 1}.

By (Hf′), ξ is an stopping time, ξ > 0 a.s. and

1[[0,ξ]] f ∈ Lp
P(IT × Ω,wκ; X0), 1[[0,ξ]]g ∈ Lp

P(IT × Ω,wκ; γ(H, X1/2)).

Moreover, let n � 1 be fixed and define Γn := {‖u0‖XTr
κ,p

� n} ∈ F0. Recall that (u0,n)n�1 sat-
isfies (4.6). Finally, let FL,n, GL,n be as in lemma 4.16. The same lemma implies that FL,n and
GL,n verify the condition in remark 4.18 for

LF = 3LF,2n + CT L̃F,2n, L̃F = 0, LG = 3LG,2n + CTL̃G,2n, L̃G = 0,

where limT↓0 CT = 0. For n � 1, set Fn = FL,n + Fc + FTr, Gn = GL,n + Gc + GTr. By (4.6),
supΩ‖u0,n‖XTr

κ,p
< ∞. Let Rn � 1 be the smallest integer satisfying

Rn � sup
Ω
‖u0,n‖XTr

κ,p
. (4.49)
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theorem 4.5 and remarks 4.17–4.18 ensure the existence of a maximal local solution (un, σn)
to (4.1) with (u0, f , g, F, G) replaced by

(u0,n, 1[[0,ξ]] f + FL(t, 0), 1[[0,ξ]]g + FL(t, 0), FRn , GRn)

provided

3C1(LF,2RnKdet,δ
(A(·,u0,n),B(·,u0,n)) + LB,2RnKsto,δ

(A(·,u0,n),B(·,u0,n))) < 1, ∀ n � 1, (4.50)

where C1 > 0 is the constant in the embedding of lemma 4.9 and does not depend on
T > 0. Note that choosing εn > 0 suitably we obtain (4.50). Recall that the constants
Kdet,δ

(A(·,u0,n),B(·,u0,n)), Ksto,δ
(A(·,u0,n),B(·,u0,n)) are defined in (3.8) and δ ∈ ((1 + κ)/p, 1/2) is arbitrary.

For the sake of clarity, we split the proof into several steps.
Step 1: existence of a local solution to (4.1) if u0 ∈ L0

F0
(Ω; XTr

κ,p). Let (un, σn) as above.
Then let us define the following stopping time

τn := inf

{
t ∈ [0, σn) : ‖un‖Lp(It ,wκ;X1) + sup

s∈[0,t]
‖un‖XTr

κ,p
� 2Rn

}

and τ n := σn if the set is empty. Then reasoning as in step 4 in the proof of theorem 4.5 one
immediately sees that (un, σn ∧ τ n) verifies (4.1) with initial data u0,n. Note that u0,n has norm
less than Rn (see (4.49)), and therefore τ n > 0 a.s. Thus, σn ∧ τ n > 0 a.s.

Set σ′
n := σn ∧ τ n. Let (Λn)n�1 ⊆ F0 be defined as Λ1 :=Γ1 and Λn :=Γn+1\Γn for each

n > 1. Define (u, σ) as σ :=σ′
n on Λn, and u = un on Λn × [0, σ′

n). Since (un, σ′
n) is a local

solution to (4.1) with initial data u0,n, one can check that (u, σ) is a local solution to (4.1).
Step 2: uniqueness of (u, σ). Let (v, μ) be another local solution to (4.1). Set

μn := inf

{
t ∈ [0,μ) : ‖v‖Lp(It ,wκ;X1) + sup

s∈[0,t]
‖v‖XTr

κ,p
� 2Rn

}
,

and τ n = μ if the set is empty. Then (1Λnv, 1Λnμn) is a local solution to (4.1) with data
(1Λnu0,n, 1Λn (1[[0,ξ]] f + FL(t, 0)), 1Λn(1[[0,ξ]]g + GL(t, 0))) and F = FRn , G = GRn . At this stage,
the conclusion follows as in step 5 in the proof of theorem 4.5.

Step 2: existence of a maximal local solution. Similarly as in step 6 in the proof of theorem
4.5, consider the set Ξ of all stopping time τ such that (4.1) admits a unique local solution.
Steps 1–2 ensure that Ξ is not empty, and that there exists τ ∈ Ξ such that τ > 0 a.s. The rest
of the proof follows as step 5 in the proof of theorem 4.5.

Step 3: regularity. The claimed regularity follows as in step 6 in the proof of theorem 4.5
by replacing τ̃ vn in (4.47) by 1Γn τ̃

v
n. �

Remark 4.19. As in remark 4.17 the proof of theorem 4.7 shows that the condition (4.8)
can be replaced by (4.50).

Proof of theorem 4.8.

(a) Follows by theorem 4.5.
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(b) The proof is similar to the one proposed for theorem 4.5. Indeed, we may replace the
truncations in step 1 by

F̃λ(u) :=Fc,λ(u0, u) + FL(·, u) + FTr(·, u),

G̃λ(u) :=Gc,λ(u0, u) + GL(·, u) + GTr(·, u),

f̃ := f + Fc(·, 0) + FTr(·, u0),

g̃ := g + Gc(·, 0) + GTr(·, u0).

Due to remark 4.14 and the assumptions, the assertion of lemma 4.13 still holds. Now one
can repeat the proof of theorem 4.5 literally.

(c) This follows from theorem 4.5 and the fact that the constants εn do not depend on n � 1
(see remark 4.19). �

5. Applications to semilinear SPDEs with gradient noise

In this section we will consider semilinear SPDEs on X0 = Hs,q which can be written in the
form

{
du + A(·)u dt = F(·, u)dt + (G(·, u) + B(·)u)dWH , t ∈ IT ,

u(0) = u0,
(5.1)

which is a special case of the setting considered in theorem 4.8. In subsections 5.2–5.4 we take
H = 
2 and in subsection 5.5 H = L2(T).

In the next section we motivate this setting and explain which class of operator pairs (A, B)
we will be considering.

5.1. Introduction and motivations

In this section we study a large class of nonlinear second order equations with gradient
noise. Such equations are commonly known as stochastic-reaction diffusion equations, but
they also include the filtering equation see [Kry99, section 8] and Allen–Cahn equations
[BBP17a, BBP17b, FY19, RW13]. Allen–Cahn equations will be further investigated in
subsection 7.1.

Stochastic reaction–diffusion equations have been extensively studied in the last decades.
Nonlinear reaction–diffusion models arise in many scientific areas such as chemical reac-
tions, pattern-formation, population dynamics. Stochastic perturbations of such models can
model thermal fluctuations, uncertain determinations of the parameters and non-predictable
forces acting on the system. For the sake of completeness let us mention some works on the
deterministic case [CDW09, Fuj66, QS19, Wei86] and for the stochastic case one may consult
[CCLR07, Cer03, CR05, DHI13, EKHL18, FC13, Fla91, Gao19, HJT18, Wan19, WX18] and
the references therein.

To the best of our knowledge, the results presented below are new. The reader can compare
our results with the results in [PSW18, section 3] in the deterministic framework.
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In this section we analyse second order stochastic PDEs in non-divergence form with
gradient noise:⎧⎨⎩du +Au dt = f (u,∇u)dt +

∑
n�1

(Bnu + gn(u)) dwn
t , on O,

u(0) = u0, on O.
(5.2)

here (wn
t : t � 0)n�1 denotes a sequence of independent standard Brownian motions and u :

IT × Ω× O →R is the unknown process. Moreover, the differential operators A,Bn for each
x ∈ O, ω ∈ Ω, t ∈ (0, T) are given by

(A(t,ω)u)(t,ω, x) := −
d∑

i, j=1

ai j(t,ω)∂2
i ju(x),

(Bn(t,ω)u)(t,ω, x) :=
d∑

j=1

b jn(t,ω)∂ ju(x).

(5.3)

Lower order terms in the previous differential operators can be added (see subsection 5.6.2).
The assumptions on f , gn will be specified below.

In the applications of theorem 4.8, the following splitting arises naturally:

• O = Rd or O = Td;
• O is a smooth domain in R

d.

We will only consider Rd in detail since Td can be treated by the same arguments. This
will be done in sections 5.2–5.4 using the maximal regularity result of lemma 5.2 below. In
section 5.6.4 we will comment on domains and boundary conditions of Dirichlet and Neumann
type. However, these results will only be formulated under suboptimal smallness assumptions
on the bjn.

To avoid the need for too many subcases, we will only consider d � 2. However, under
suitable conditions on the parameters the case d = 1 could also be included in most examples.

Next we introduce the function spaces which will be needed below. As usual, for q ∈
(1,∞) and k � 1, we denote by Wk,q(Rd) the set of all f ∈ Lq(Rd) such that ∂α f ∈ Lq(Rd)
for any α ∈ Nd

0 such that |α| � k endowed with the natural norm. Let F be the Fourier
transform on Rd. Then for any s ∈ R and q ∈ (1,∞) we set Hs,q(Rd) = { f ∈ S ′(Rd) :
F−1((1 + | · |2)s/2F ( f )) ∈ Lq(Rd)} with its natural norm. For s ∈ R, q ∈ (1,∞) and p ∈
[1,∞], we define Besov spaces through real interpolation:

Bs
q,p(Rd) = (Hs0,q(Rd), Hs1,q(Rd))θ,p,

where s0 < s < s1 and θ ∈ (0, 1) are chosen in such a way that s = s0(1 − θ) + s1θ. We refer
to [BL76, chapter 6] for alternative descriptions of the Besov spaces Bs

q,p(Rd). For s ∈ R and
q ∈ (1,∞), we denote the Sobolev–Slobodeckij spaces by Ws,q(Rd) :=Bs

q,q(Rd).
Recall from [BL76, theorem 6.4.5] that

[Hs0,q(Rd), Hs1,q(Rd)]θ = Hs,q(Rd), s := (1 − θ)s0 + θs1. (5.4)

For the sake of simplicity, sometimes, we write Hs,q instead of Hs,q(Rd) (and analogously for
other spaces) if no confusion seems possible.

The following will be a standing assumption in this section:

Assumption 5.1. Suppose that one of the two conditions hold:
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• q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p
2 − 1);

• q = p = 2 and κ = 0.

Assume the following two conditions on ai j and bin:

(a) The functions ai j : (0, T) × Ω→ R and b jn : (0, T) × Ω→ R are progressively measur-
able. Moreover, there exists K > 0 such that

|ai j(t,ω)|+ ‖(b jn(t,ω))n�1‖
2 � K, a.a.ω ∈ Ω, for all t ∈ IT .

(b) There exists ε > 0 such that a.s. for all ξ ∈ Rd, t ∈ IT,

d∑
i, j=1

(
ai j(t) −

1
2

∑
n�1

bin(t)b jn(t)

)
ξiξ j � ε|ξ|2.

The following result will be employed several times.

Lemma 5.2. Let the assumption 5.1 be satisfied. Let X0 = Hs,q(Rd) and X1 = Hs+2,q(Rd)
with s ∈ R. Let A : IT × Ω→ L (X1; X0) and B : IT × Ω→ L (X1, γ(
2, X 1

2
)) be given by

A(t)u :=A(t)u, (B(t)u)n :=Bn(t)u, n � 1,

where A,Bn are as in (5.3). Then (A, B) ∈ SMR•
p,κ(T) (see definition 3.5).

Proof. Since the coefficients ai j, bjn are x-independent by applying (1 −Δ)s/2 to the
equation, one can reduce to the case s = 0. Now the result follows from [PV19,
theorem 5.3]. �

5.2. Conservative stochastic reaction diffusion equations

In this subsection we study the following differential problem for the unknown process u :
[0, T] × Ω× Rd → R,⎧⎨⎩du −Au dt = div( f (·, u))dt +

∑
n�1

(Bnu + gn(·, u))dwn
t , on R

d,

u(0) = u0, on R
d;

(5.5)

for t ∈ IT. Here A,Bn are as in (5.3).
A formal integration of (5.5) shows that the system preserves mass under the flow, i.e.

E
∫
Rd u(x, t)dx = E

∫
Rd u0(x)dx. This feature is very important from a modelling point of

view, since u (typically) represents the mass of chemical reactants. This motivates the name
‘conservative reaction–diffusion equations’.

We study (5.5) under the following assumption:

Assumption 5.3. The maps f : IT × Ω× Rd × R→ Rd, g := (gn)n�1 : IT × Ω× Rd

× R→ 
2 are P ⊗ B(Rd) ⊗ B(R)-measurable with f (·, 0) = 0 and g(·, 0) = 0. Moreover,
there exist h > 1 and C > 0 such that a.s. for all t ∈ IT, z, z′ ∈ R and x ∈ Rd ,

| f (t, x, z) − f (t, x, z′)|+ ‖g(t, x, z) − g(t, x, z′)‖
2 � C(|z|h−1 + |z′|h−1)|z − z′|.
Typical examples of f and g which satisfies assumption 5.3 are:

f (x, u) = f̃ (x)|u|h−1u, g(x, u) = g̃(x)|u|h−1u, h ∈ (1,∞), (5.6)
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where f̃ ∈ L∞
P((0, T) × Ω× R

d;Rd) and g̃ ∈ L∞
P((0, T) × Ω× R

d; 
2). The condition
f (·, 0) = 0 and g(·, 0) = 0 can be weakened to a decay condition in the x-variable.

We study (5.5) directly in ‘the almost very weak setting’, i.e. in X0 :=H−1−s,q with s ∈ [0, 1)
(cf [PSW18, subsection 4.5]). This will give us additional flexibility in the treatment of (5.5).
The weak setting can be derived by setting s = 0.

5.2.1. Almost very weak setting. Let s ∈ [0, 1) and let q ∈ [2,∞). The differential problem
(5.5) can be rephrased as a stochastic evolution equation of the form (5.1) with X0 :=H−1−s,q

and X1 :=H1−s,q. Here

A(t)u = A(t)u, B(t)u = (Bn(t)u)n�1,

F(t, u) = div( f (t, ·, u)), G(t, u) = (gn(t, ·, u))n�1

for u ∈ H1−s,q. We say that (u, σ) is a maximal local solution to (5.5) if (u, σ) is a maximal local
solution to (5.1) in the sense of definition 4.4.

To show local existence for (5.5) we employ theorem 4.8. By lemma 5.2 it is enough to
look at suitable bounds for the nonlinearities F, G. To this end, let us start by looking at F. By
assumption 5.3, it follows that

‖F(·, u) − F(·, v)‖H−1−s,q

(i)

� ‖F(·, u) − F(·, v)‖H−1,r

� ‖ f (·, u) − f (·, v)‖Lr

� ‖ (|u|h−1 + |v|h−1)|u − v| ‖Lr

(ii)

� (‖u‖h−1
Lh r + ‖v‖h−1

Lh r )‖u − v‖Lhr

(iii)

� (‖u‖h−1
Hθ,q + ‖v‖h−1

Hθ,q)‖u − v‖Hθ,q ;

(5.7)

where in (i) we used the Sobolev embedding with r defined by −1 − d
r = −1 − s − d

q , in (ii)

the Hölder inequality with exponent h, h
h−1 and in (iii) the Sobolev embedding (A.11) and

θ − d
q = − d

hr . Note that r ∈ (1,∞) since q � 2, d � 2 and s ∈ [0, 1) by assumption. Note that
θ has to satisfy θ ∈ (0, 1 − s) in order to obtain a space in between X0 and X1. Combining the
identities we obtain

d
q
− θ =

d
hr

=
1
h

(
d
q
+ s

)
⇒ θ =

d
q

(
1 − 1

h

)
− s

h
.

Therefore, to ensure that θ ∈ (0, 1 − s) we assume3

d(h − 1)
h − s(h − 1)

< q <
d(h − 1)

s
. (5.8)

Since s �= 1 and h > 1 the set of q which satisfies (5.8) is not-empty. If (5.8) holds, due to (5.4)
one has Hθ,q = [H−1−s,q, H1−s,q]β1 where

β1 =
1 + θ + s

2
=

1
2

[(
d
q
+ s

)(
1 − 1

h

)
+ 1

]
∈ (0, 1). (5.9)

3 Here we have set 1/0:= ∞.
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To check the condition (HF) we may split the discussion into three cases:

(a) If 1 − 1+κ
p > β1, by remark 4.2(a), (HF) follows by setting FTr(t, u) := div( f (t, ·, u)) and

FL ≡ Fc ≡ 0.
(b) If 1 − 1+κ

p = β1, by (5.7) and remark 4.2(b), (HF) follows by setting FL ≡ FTr ≡ 0,
Fc(t, u) := div( f (t, ·, u)), mF = 1, ρ1 = h − 1 and ϕ1 = β1.

(c) If 1 − 1+κ
p < β1 we set Fc(t, u) := div( f (t, ·, u)) and FL ≡ FTr ≡ 0. As in the previous item

we set mF = 1, ρ1 = h − 1 and ϕ1 = β1. By (5.7) it remains to check the condition (4.2).
In this situation, (4.2) becomes,

1 + κ

p
� ρ1 + 1

ρ1
(1 − β1) =

1
2

h
h − 1

− 1
2

(
d
q
+ s

)
. (5.10)

Note that the assumption κ � 0 implies

1
p
+

d
2q

+
s
2
� h

2(h − 1)
. (5.11)

Since d/2q + s/2 < h/[2(h − 1)] (thanks to the lower bound in (5.8)) the above inequality
is always verified for p sufficiently large.

It remains to estimate G. To this end we can reasoning as in (5.7). First, note that
X1/2 = H−s,q (see (5.4)) and let r, θ be as in (5.7). By assumption 5.3 one has

‖G(·, u) − G(·, v)‖γ(
2;H−s,q) � ‖G(·, u) − G(·, v)‖γ(
2;Lr)

(i)
� ‖G(·, u) − G(·, v)‖Lr(
2)

� ‖(|u|h−1 + |v|h−1)|u − v|‖Lr

� (‖u‖h−1
Hθ,q + ‖v‖h−1

Hθ,q)‖u − v‖Hθ,q ;

(5.12)

where in (i) we used the identification γ(
2, Lr) = Lr(
2) :=Lr(Rd; 
2) (see (2.11)). The
previous considerations show that G verifies (HG) under the same assumptions on F.

Therefore, theorem 4.8 gives the following result.

Theorem 5.4. Let assumptions 5.1 and 5.3 be satisfied and d � 2. Let s ∈ [0, 1). Assume
(5.8). Let β1 be as in (5.9). Assume that one of the following conditions is satisfied

• 1 − (1 + κ)/p � β1;
• 1 − (1 + κ)/p < β1 and (5.10) holds.

Then for each u0 ∈ L0
F0

(Ω; B1−s−2(1+κ)/p
q,p (Rd)) there exists a maximal local solution (u, σ)

to (5.5). Moreover, there exists a localizing sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκ; H1−s,q) ∩ C(Iσn ; B1−s−2(1+κ)/p
q,p ) ∩ C((0, σn]; B1−s−2/p

q,p ).

5.2.2. Critical spaces for (5.5). In this subsection we study the existence of critical spaces for
(5.5).

To motivate the setting let f , gn be as in (5.6) with f̃ , g̃ ∈ 
2 constant w.r.t. It will turn out
that our abstract notion of critical spaces as introduced in remark 4.2(c) is consistent with the
natural scaling of (5.5)–(5.6). First consider the deterministic setting, i.e. b jn ≡ g̃n ≡ 0. If u is
a (local smooth) solution to (5.5)–(5.6) on (0, T) × Rd, then uλ(x, t) :=λ1/[2(h−1)]u(λt,λ1/2x) is
a (local smooth) solution to (5.5) on (0, T/λ) × R

d for each λ > 0. Note that the map u �→ uλ
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induces a mapping on the initial data u0 given by u0 �→ u0,λ where u0,λ(x) :=λ1/[2(h−1)]u0(λ1/2x)
for x ∈ Rd.

In the theory of PDEs a function space is called critical for (5.5)–(5.6) (in absence of noise)
if it is invariant under the above mapping u0 �→ u0,λ. An example of a Besov spaces which is
(locally) invariant under this scaling is Bd/q−1/(h−1)

q,p for q, p ∈ (1,∞). This can be made precise
by looking at the so-called homogeneous version of such spaces. Indeed, one has

‖u0,λ‖Ḃ
d/q−1/(h−1)
q,p

� λ1/[2(h−1)](λ1/2)d/q−1/(h−1)−d/q‖u0‖Ḃ
d/q−1/(h−1)
q,p

= ‖u0‖Ḃ
d/q−1/(h−1)
q,p

;
(5.13)

where the implicit constants do not depend onλ > 0. It will turn out that this space appears nat-
urally when equality in (5.10) is reached. This observation was made in [PSW18, sections 2.3
and 3–6] for many PDEs.

Next consider the stochastic problem. At least formally, we can show that if u
is a (local smooth) solution to (5.5), then uλ is a (local smooth) solution to (5.5)
where the (wn

t : t � 0)n�1 is replaced by the sequence of independent Brownian motions
(bn

t,λ : t � 0)n�1 := (λ−1/2wn
λt : t � 0)n�1. To see this, let t ∈ (0, T) and let us look at the strong

formulation of (5.5) as in definition 4.3. As we have seen before, under the map u �→ uλ all the
deterministic integrals have all the same scaling, therefore it is enough to study one of them.
For instance, ∫ t/λ

0
Δuλ(s, x)ds = λ

1
2(h−1)

∫ t

0
Δu(s′,λ1/2x)ds′.

Such scaling agrees with the scaling of the stochastic integrals,∫ t/λ

0
|uλ(s, x)|h−1uλ(s, x)dbn

s,λ

=

∫ t/λ

0
λ

1
2(h−1) |u(λs,λ1/2x)|h−1u(λs,λ1/2x)dwn

λs

= λ
1

2(h−1)

∫ t

0
|u(s,λ1/2x)|h−1u(s,λ1/2x)dwn

s , (5.14)

where n � 1 is fixed. The same holds for the stochastic integral for the b-term. Therefore, uλ

is a solution to (5.5) with a scaled noise.
After these formal calculations, let us turn to our setting. We will analyse when equality in

(5.10) can be allowed. We begin by looking at the case p ∈ (2,∞). Note that κ ∈ [0, p
2 − 1) if

and only if 1+κ
p ∈ [ 1

p , 1
2 ) and due to (5.11) to ensure the existence of a weight κ which realizes

equality in (5.10) we have to assume

1
2

h
h − 1

− 1
2

(
d
q
+ s

)
<

1
2
. (5.15)

Simple computations show that the previous is verified if and only if

h � 1 + s
s

or

[
h <

1 + s
s

and q <
d(h − 1)

1 − s(h − 1)

]
. (5.16)
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If (5.11) and (5.16) hold, then we set

κcrit =
p
2

(
h

h − 1
− d

q
− s

)
− 1. (5.17)

Then κcrit ∈ [0, p
2 − 1) and the corresponding critical space is

XTr
κcrit ,p

= B
1−s−2

1+κcrit
p

q,p (Rd) = B
d
q−

1
h−1

q,p (Rd). (5.18)

Note that the above space coincides with the one appearing in the above discussion. Moreover,
the space does not depend on the parameter s > 0, and depends on p only through the micro-
scopic parameter. The independence on s > 0 is in accordance with the independence of the
scale founded in the deterministic case for (4.1) without noise and bilinear nonlinearities, see
[PSW18, section 2.4].

It remains to consider the case p = q = 2 and κ = 0. We expect that a similar space appears
also in this case. Indeed, the condition (5.10) implies the identity

h =
2 + d + 2s

d + 2s
> 1. (5.19)

Note that the lower bound in (5.8) is automatically verified and the upper bound in (5.8) is
equivalent to d > 2s2/(1 − s). Therefore, in the case p = q = 2, κ = 0 and h as in (5.19), the
trace space for (5.5) becomes

XTr
κ,p = B−s

2,2(Rd) = B
d
2−

1
h−1

2,2 (Rd) = H
d
2−

1
h−1 (Rd).

In the case s = 0 one has h = (2 + d)/d = 2/d + 1 and condition (5.8) is satisfied.
Let us summarize what we have proved in the following:

Theorem 5.5. Let assumptions 5.1 and 5.3 be satisfied and d � 2. Let s ∈ [0, 1) and let
one of the following conditions be satisfied:

• p, q ∈ (2,∞), (5.8), (5.11) and (5.16) hold;
• p = q = 2, d > 2s2/(1 − s), and h is as in (5.19).

Let κcrit be as in (5.17). Then for each

u0 ∈ L0
F0

(Ω; B
d
q−

1
h−1

q,p (Rd))

there exists a maximal local solution (u, σ) to (5.5). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκcrit ; H1−s,q(Rd)) ∩ C(Iσn ; B
d
q −

1
h−1

q,p (Rd)) ∩ C((0, σn]; B
1−s− 2

p
q,p (Rd)).

Note that the space B
d
q−

1
h−1

q,p (Rd) becomes larger as p tends to ∞. Therefore, for u0 as
above and any δ < 1 − s, there exists a maximal local solution (u, σ) to (5.5) such that
u ∈ C((0, σn]; Bδ

q,∞(Rd)) a.s. In particular, if s = 0, then for all δ < 1 we find a maximal local
solution to (5.5) such that u ∈ C((0, σn]; Bδ

q,∞(Rd)) a.s. Bootstrapping arguments related to
such regularization phenomena will be investigated in the papers [AV20a, AV22].
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Let us conclude this section by giving an example which illustrates the usefulness of s ∈
(0, 1).

Example 5.6. Let d = 3 and h = 2. The restriction on q � 2 becomes

3
2 − s

< q < min

{
3
s

,
3

1 − s

}
, s ∈ [0, 1). (5.20)

Therefore, in the weak setting s = 0 one needs q ∈ [2, 3), and the critical space B
3
q−1
q,p (Rd) has

strictly positive smoothness. To admit critical spaces with negative smoothness, we need s > 0.
Indeed, note that the choice s = 1/2 optimizes the right hand-side of (5.20). Therefore, with
s = 1/2 we can allow q ∈ [2, 6) and thus we have a larger class of critical spaces which goes
down to smoothness − 1

2 .

Also the space Ld(h−1)(Rd) is invariant under the scaling u0 �→ u0,λ. From the previous result
we obtain the following corollary.

Corollary 5.7. Let assumptions 5.1 and 5.3 be satisfied and d � 2. Let h > 1 + 2
d ,

q := d(h − 1) and p ∈ (q,∞). Then there exists s̄ > 0 such that for all s ∈ (0, s̄) and

u0 ∈ L0
F0

(Ω; Ld(h−1)(Rd))

there exists a maximal local solution to (5.58), and there exists a localizing sequence (σn)n�1

such that for any n � 1 and a.s.

u ∈ Lp(Iσn ,wκcrit ; H1−s,q(Rd)) ∩ C(Iσn ; B0
q,p(R

d)) ∩ C((0, σn]; B
1−s− 2

p
q,p (Rd)),

where κcrit is given by (5.17).

Recall that p in theorem 5.5 can be chosen as large as one wants.

Proof. Since h � 1 + 2
d , q � 2. One can check that there exists s1 > 0 such that (5.8)

and (5.16) hold for q = d(h − 1) and s ∈ (0, s1). Moreover, for q = d(h − 1), there exists
s2 > 0, such that (5.11) holds for all p ∈ (2,∞) and s ∈ (0, s2). Set s := min{s1, s2}. Thus,
theorem 5.5 ensures the existence of a maximal local solution to (5.5) for any s ∈ (0, s̄)
and u0 ∈ L0

F0
(Ω; B0

q,p(R
d)) with the required regularity. To conclude, it remains to recall that

Lq(Rd) ↪→ B0
q,p(Rd), since p � q. �

By choosing s small enough such that 1 − s − 2/p > 0, the solution u to (5.5) pro-

vided by corollary 5.7, instantaneously regularizes in space, i.e. u ∈ C(Iσn ; B
1−s− 2

p
q,p (Rd)) ↪→

C(Iσn ; Lq(Rd)) a.s. for all n � 1.

5.3. Stochastic reaction diffusion equations

In this subsection we study local existence for the following non-conservative reac-
tion–diffusion equation for the unknown u : [0, T] × Ω× Rd → R,⎧⎨⎩du +Au dt = f (·, u)dt +

∑
n�1

(Bnu + gn(·, u))dwn
t , on R

d,

u(0) = u0, on R
d,

(5.21)
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where A,Bn are as in (5.3). In this subsection we assume that

Assumption 5.8. The maps f : IT × Ω× Rd × R→ R, g := (gn)n�1 : IT × Ω× Rd × R→

2 are P ⊗ B(Rd) ⊗ B(R)-measurable with f (·, 0) = 0 and g(·, 0) = 0. Moreover, there exist
m, h > 1 and C > 0 such that a.s. for all t ∈ IT, x ∈ Rd and z, z′ ∈ R

| f (t, x, z) − f (t, x, z′)| � C(|z|m−1 + |z′|m−1)|z − z′|,

‖g(t, x, z) − g(t, x, z′)‖
2 � C(|z|h−1 + |z′|h−1)|z − z′|.

Typical choices for such nonlinearities are:

f (u) = |u|m−1u, gn(·, u) = g̃n|u|h−1u, n � 1, (5.22)

for some g̃ = (g̃n)n�1 ∈ L∞
P(IT × Ω× Rd; 
2).

To make the results more readable we choose to analyse (5.21) only in the weak setting.
The interested reader can adapt the argument below and the one given in subsection 5.2.1, to
study (5.21) in the almost weak setting. As we have seen before, the latter choice gives local
existence in a wider set of critical spaces. This will be presented in section 7.1 for the stochastic
Allen–Cahn equation.

Again we will focus on the setting of critical spaces. Some noncritical cases could be
included by simpler methods. Part of this is covered in the quasilinear setting in subsection 6.5.

5.3.1. Weak setting. As in subsection 5.2.1 we rewrite (5.5) in the form (5.1) by setting
X0 :=H−1,q(Rd), X1 :=W1,q(Rd) = H1,q(Rd) and, for u ∈ X1,

A(t)u = A(t)u, B(t)u = (Bn(t)u)n�1,

F(t, u) = f (t, u), G(t, u) = (gn(t, u))n�1.
(5.23)

As before (u, σ) is a maximal local solution to (5.21) if (u, σ) is a maximal local solution to
(5.1) in the sense of definition 4.4.

To prove local existence we apply theorem 4.8. By lemma 5.2, it is enough to estimate the
nonlinearities F, G. We start by estimating F:

‖F(·, u) − F(·, v)‖H−1,q

(i)

� ‖F(·, u) − F(·, v)‖Lt

� ‖(|u|m−1 + |v|m−1)|u − v|‖Lt

(ii)

� (‖u‖m−1
Lmt + ‖v‖m−1

Lmt )‖u − v‖Lmt

(iii)

� (‖u‖m−1
Hθ,q + ‖v‖m−1

Hθ,q )‖u − v‖Hθ,q .

(5.24)

where in (i) we used the Sobolev embedding with d
t := 1 + d

q , in (ii) we applied the Hölder

inequality, and in (iii) we used Sobolev embedding with θ − d
q = − d

mt . Note that to ensure that
t ∈ (1,∞), it is enough to assume q �= 2 if d = 2. Further, we need θ ∈ (0, 1) in order to obtain
a space between X0 and X1. Combining the identities we obtain

1
q
− θ

d
=

1
mt

=
1
m

(
1
q
+

1
d

)
⇒ θ =

d
q

(
1 − 1

m

)
− 1

m
.
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Therefore, θ ∈ (0, 1) is equivalent to

d

(
m − 1
m + 1

)
< q < d(m − 1). (5.25)

Since q � 2, we also need m > 1 + 2
d . Setting β1 = ϕ1 = 1+θ

2 < 1 we obtain Hθ,q =
[H−1,q, H1,q]β1 by (5.4). More explicitly

β1 =
θ + 1

2
=

1
2

(
d
q
+ 1

)(
1 − 1

m

)
.

As in subsection 5.2.1 to check (HF) we split into three subcases:

(a) If 1 − (1 + κ)/p > β1, then by remark 4.2(a) and (b), (HF) holds.
(b) If 1 − (1 + κ)/p = β1, then by remark 4.2(b), (HF) holds.
(c) If 1 − (1 + κ)/p < β1, then (HF) holds with mF = 1, β1 = ϕ1, ρ1 = m − 1 if the condi-

tion (4.2) holds:

1 + κ

p
� ρ1 + 1

ρ1
(1 − β1) =

m
m − 1

− 1
2

(
d
q
+ 1

)
. (5.26)

To ensure that κ � 0 we have to assume that

1
p
+

d
2q

� m
m − 1

− 1
2
=

m + 1
2(m − 1)

. (5.27)

From (5.25) one can check that (5.27) is solvable for p sufficiently large.

Next, we estimate G using the same strategy of (5.12). Indeed, since X1/2 = Lq(Rd) and
γ(
2, Lq) = Lq(Rd; 
2)=: Lq(
2) (see (2.11)) one has

‖G(·, u) − G(·, v)‖Lq(
2) � ‖(|u|h−1 + |v|h−1)|u − v|‖Lq

(i)

� (‖u‖h−1
Lhq + ‖v‖h−1

Lhq )‖u − v‖Lhq

(ii)

� (‖u‖h−1
Hφ,q + ‖v‖h−1

Hφ,q)‖u − v‖Hφ,q .

(5.28)

where in (i) we applied the Hölder inequality and in (ii) we used Sobolev embedding with
φ− d

q = − d
hq . Therefore, φ = d

q
h−1

h . Note that φ > 0 and to ensure that φ < 1 we have to
assume

q >
d(h − 1)

h
. (5.29)

In addition, let us set

β2 =
φ+ 1

2
=

1
2
+

d
2q

(
1 − 1

h

)
, ϕ2 = β2.

As in the previous cases, the discussion splits in two cases:

(a) If 1 − (1 + κ)/p > β2, then (HG) holds by remark 4.2(a).
(b) If 1 − (1 + κ)/p = β2, then (HG) holds by remark 4.2(b).
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(c) If 1 − (1 + κ)/p < β2, then (HG) holds with mG = 1, ρ2 = h − 1, β2 = ϕ2 if the condi-
tion (4.3) holds:

1 + κ

p
� h

h − 1
(1 − β2) =

h
2(h − 1)

− d
2q

. (5.30)

To ensure that κ � 0 we have to assume that

1
p
+

d
2q

� h
2(h − 1)

. (5.31)

These preparation give the following theorem.

Theorem 5.9. Let assumptions 5.1 and 5.8 be satisfied and d � 2. Let m > 1 + 2
d and

h > 1. Moreover, assume that (5.25) and (5.29) hold. Assume one of the following conditions
is satisfied

• 1 − (1 + κ)/p � β1 and 1 − (1 + κ)/p � β2;
• 1 − (1 + κ)/p < β1, 1 − (1 + κ)/p � β2 and (5.26) holds;
• 1 − (1 + κ)/p � β1, 1 − (1 + κ)/p < β2 and (5.30) holds;
• 1 − (1 + κ)/p < β1 and 1 − (1 + κ)/p < β2 and (5.26), (5.30) hold.

If d = 2 we further assume further that q �= 2. Then for each

u0 ∈ L0
F0

(Ω; B
1−2 1+κ

p
q,p (Rd)),

the problem (5.21) has a maximal local solution (u, σ). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκ; W1,q(Rd)) ∩ C(Iσn ; B
1−2 1+κ

p
q,p (Rd)) ∩ C((0, σn]; B

1− 2
p

q,p (Rd)).

5.3.2. Critical spaces for (5.21). As in subsection 5.2.2 we study critical spaces for (5.21).
Therefore, we need to study when equality in (5.26) and (5.30) can be reached.

As in subsection 5.2.2, before embarking in this discussion let us analyse the scaling
properties of the equation (5.21) in the case that (5.22) holds.

In the deterministic case, i.e. b jn ≡ g̃n ≡ 0, the map u �→ uλ where uλ(x, t) :=
λ1/(m−1)u(λt,λ1/2x) for λ > 0 preserves the set of (smooth local) solutions to (5.21). More
precisely, if u is a (smooth local) solution to (5.21) on (0, T) × Rd then uλ is a (smooth local)
solution to (5.21) on (0, T/λ) × Rd. Reasoning as (5.13), one discovers that Bd/q−2/(m−1)

q,p (Rd)
is ‘locally’ invariant under the induced map u0 �→ u0,λ :=λ1/(m−1)u0(λ1/2·).

Since (5.21)–(5.22) presents two nonlinearities, it is not immediate to see whether there is
scaling-invariance as in subsection 5.2.2. To check this, we mimic the scaling argument per-
formed in subsection 5.2.2 to discover a relation between h and m. Indeed, using the strong for-
mulation of solutions given in definition 4.3, substituting s′ = λs for the deterministic integral
one obtains
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∫ t/λ

0
|uλ|m−1uλ ds =

∫ t

0
λ1+ 1

m−1 |u(s′,λx)|m−1u(s′,λx)
ds′

λ

= λ
1

m−1

∫ t

0
|u(s′,λx)|m−1u(s′,λx)ds′.

where, uλ is as above. For the stochastic term the same calculation as in (5.14) gives that the
scalings coincide if h

m−1 − 1
2 = 1

m−1 , or in other words h−1
m−1 = 1

2 , thus h = (m + 1)/2. This
relation holds if and only if the right hand-sides of the inequalities (5.26) and (5.30) coincide.
Moreover, if h = (m + 1)/2 the lower bound in (5.25) coincides with (5.29).

For the sake of simplicity, let us continue the discussion on critical spaces for (5.21) under
the assumption h = (m + 1)/2. In this case, (5.26) and (5.30) coincide, and in order to have
equality in the latter two we need to assume

m
m − 1

− 1
2

(
d
q
+ 1

)
<

1
2
⇔ q <

d(m − 1)
2

.

Since q > 2, to avoid trivial situations we assume m > 1 + 4
d . Under the above assumption we

can set

κcrit :=
pm

m − 1
− p

2

(
d
q
+ 1

)
− 1 (5.32)

and the trace space for the solution to (5.21)–(5.22) becomes

XTr
κ,p = B

1− 2(1+κcrit)
p

q,p (Rd) = B
1−2 m

m−1+
d
q+1

q,p (Rd) = B
d
q−

2
m−1

q,p (Rd).

Note that the above space depends on p only through the microscopic parameter and it presents
the same scaling as in the deterministic case, due to the choice h = (m + 1)/2. Moreover,
one can check that in the case p = q = 2 and κ = 0, no other critical space arises. Therefore,
theorem 5.9 implies the following result.

Theorem 5.10. Let assumptions 5.1 and 5.8 be satisfied and d � 2. Let m > 1 + 4
d and

h = m+1
2 . Assume that q ∈ ( d(m−1)

m+1 , d(m−1)
2 ), and if d = 2 we assume q �= 2. Assume 1

p +
d
2q �

m+1
2(m−1) , and let κcrit be given by (5.32). Then for each

u0 ∈ L0
F0

(Ω; B
d
q−

2
m−1

q,p (Rd))

there exists a maximal local solution (u, σ) to (5.21). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(0, σn,wκcrit ; W1,q(Rd)) ∩ C(Iσn ; B
d
q−

2
m−1

q,p (Rd)) ∩ C((0, σn]; B
1− 2

p
q,p (Rd)).

5.4. Stochastic reaction–diffusion with gradient nonlinearities

In this section we study reaction–diffusion equations with gradient nonlinearities:⎧⎨⎩du +Au dt = f (·, u,∇u)dt +
∑
n�1

(Bnu + gn(·, u))dwn
t , on R

d,

u(0) = u0, on R
d;

(5.33)
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where A,Bn are as in (5.3). We study (5.33) under the following assumption:

Assumption 5.11. The maps f : IT × Ω× R
d × R× R

d → R, g := (gn)n�1 : IT ×
Ω× Rd × R→ 
2 are P ⊗ B(Rd) ⊗ B(R)-measurable with f (·, 0, 0) = 0 and
g(·, 0) = ∇yg(·, 0) = 0. In addition there exist m > 2 and η ∈ (0, 1) such that for each
R > 0 there exists CR > 0 for which one has

| f (t, x, y, z) − f (t, x, y′, z′)| � CR(1 + |z|m−1 + |z′|m−1)|z − z′|
+ CR(1 + |z|m−η + |z′|m−η)|y − y′|,

‖g(t, x, y) − g(t, x, y′)‖
2 + ‖∇yg(t, x, y) −∇yg(t, x, y′)‖
2 � CR|y − y′|,

a.s. for all t ∈ IT, x ∈ Rd, y, y′ ∈ BR(R) and z, z′ ∈ Rd.

Typical choices for f are

f (u,∇u) = uc|∇u|r, or f (u,∇u) = |∇u|r; where c ∈ [1,∞), r > 1; (5.34)

see the monograph [QS19, chapter 5, section 34] for related problems and motivations.
For the first example it is straightforward to check that the assumption on f holds for any
m > max{r, 2}. For c = 1 and r = 2 we obtain a nonlinearity similar to the one appearing
in the study of harmonic maps into the sphere, see e.g. [Tay11, p 225]. The second example
in (5.34) satisfies the assumption for m = r if r > 2 or for any m > 2 if r ∈ (1, 2]. The lat-
ter example covers the stochastic version of [QS19, equation (34.5), p 406] and it appears in
stochastic control theory see e.g. [BDL04, PZ12] with Bn = 0 and gn = 0. A further moti-
vation for (5.33) comes from the analysis of high-order regularity of quasilinear equations in
divergence form with gradient type nonlinearities (see e.g. [PSW18, section 3, example 2]). In
such a case, one may take

f (u,∇u) = a(u)|∇u|2 + |∇u|r,

where r > 1 and a : R→ R is locally Lipschitz. As above, assumption 5.11 holds for m = r if
r > 2 or for any m > 2 if r ∈ (1, 2].

As usual we consider (5.33) as (5.1) with X0 :=Lq(Rd), X1 :=W2,q(Rd) and

A(t)u = A(t)u, B(t)u = (Bn(t)u)n�1,

F(t, u) = f (t, u,∇u), G(t, u) = (gn(t, u))n�1,

for u ∈ W2,q(Rd). As before (u, σ) is a maximal local solution to (5.33) if (u, σ) is a maximal
local solution to (5.1) in the sense of definition 4.4.

The main result of this section reads as follows.

Theorem 5.12. Let assumptions 5.1 and 5.11 be satisfied, d � 1 and q > d(m−1)
m . Let β =

1
2 + d

2q
m−1

m . Assume that one of the following holds:

(a) 1 − 1+κ
p � β;

(b) 1 − 1+κ
p < β and 1+κ

p � m
2(m−1) −

d
2q .

Then for each

u0 ∈ L0
F0

(Ω; B
2−2 1+κ

p
q,p )

4161



Nonlinearity 35 (2022) 4100 A Agresti and M Veraar

there exists a maximal local solution (u, σ) to (5.33). Moreover, there exists a localizing
sequence (σn)n�1 such that and a.s. for all n � 1

u ∈ Lp(Iσn ,wκ; W2,q) ∩ C(Iσn ; B
2−2 1+κ

p
q,p ) ∩ C((0, σn ] ; B

2− 2
p

q,p ).

Proof. By theorem 4.8 and lemma 5.2, it remains to check that the nonlinearities satisfies
the conditions (HF)–(HG).

First observe that 2 − 2 (1+κ)
p > d

q in each case. Indeed, if (a) holds then the latter fol-

lows from q > d(m−1)
m > d

m . If (b) holds, then 2 − 2 1+κ
p � 2 − m

m−1 + d
q > d

q where in the last
inequality we used that m > 2. The previous observation combined with Sobolev embedding
gives that

XTr
κ,p = B

2− 2(1+κ)
p

q,p ↪→ Cε, for some ε > 0. (5.35)

Let n � 1 and let u, v ∈ X1 be such that u, v ∈ BXTr
κ,p

(n). By the previous embedding

‖u‖L∞(Rd ) � C‖u‖XTr
κ,p

� Cn and the same for v. Let φ ∈ (2 − 2 1+κ
p , 2) be arbitrary. Setting

R = Cn, then by assumption 5.11,

‖F(·, u)−F(·, v)‖Lq

� CR‖(1 + |∇u|m−1 + |∇v|m−1)|∇u −∇v|‖Lq

+ CR‖(1 + |∇u|m−η + |∇v|m−η)|u − v|‖Lq

�R ‖∇u −∇v‖Lq + (‖∇u‖m−1
Lqm + ‖∇v‖m−1

Lqm )‖∇u −∇v‖Lqm

+ ‖u − v‖XTr
κ,p

+ (‖∇u‖(m−η)
Lq(m−η) + ‖∇u‖(m−η)

Lq(m−η))‖u − v‖Cε

� (1 + ‖u‖m−1
Hθ,q + ‖v‖m−1

Hθ,q )‖u − v‖Hθ,q

+ (1 + ‖u‖m−η

Hθ,q + ‖v‖m−η

Hθ,q )‖u − v‖Hφ,q ;

(5.36)

where in the last line we used the Sobolev embedding with θ − d
q = 1 − d

qm and the fact

that Hφ,q ↪→ B
2−2 1+κ

p
q,p . Note that θ < 2 since q > d(m−1)

m and β = θ/2. Moreover, by (5.4),
Hθ,q = [Lq, W2,q]β and Hφ,q = [Lq, W2,q] φ

2
. To check (HF) we split the argument in two cases:

(a) If 1 − (1 + κ)/p � β, then φ > 2(1 − 1+κ
p ) � θ. Since η < 1, (5.36) implies

‖F(·, u) − F(·, v)‖Lq � (1 + ‖u‖m−η

Hφ,q + ‖v‖m−η

Hφ,q )‖u − v‖Hφ,q .

Set mF = 1, ρ1 = m − η and ϕ1 = β1 = φ/2. Choosing φ = 2(1 − 1+κ
p ) + ε, for some ε

small, (4.2) is equivalent to

(m − η)

(
ϕ1 − 1 +

1 + κ

p

)
+ β1 = (m − η + 1)

ε

2
+ 1 − 1 + κ

p
� 1.

The latter inequality is satisfied if ε > 0 is sufficiently small. In turn, (HF) is satisfied by
setting Fc = F, FTr = FL = 0.

(b) If 1 − (1 + κ)/p < β, then by (5.36), we may set mF = 2, ρ1 = m − 1, ρ2 = m − η,
ϕ1 = ϕ2 = θ/2, β1 = ϕ1 and β2 = φ/2. It remains to verify (4.2), which is equivalent
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to the following

(m − 1)

(
ϕ1 − 1 +

1 + κ

p

)
+ ϕ1 � 1, (5.37)

(m − η)

(
ϕ1 − 1 +

1 + κ

p

)
+ β2 � 1. (5.38)

Note that (5.37) implies (5.38). To see this, set φ = 2 − 2 1+κ
p + ε for ε > 0 small. Then

(5.38) holds provided mϕ1 − (m − 1)(1 − 1+κ
p ) � 1 + η′ where η′ > 0. Now, standard

considerations show that (5.37) implies the latter. Thus, (HF) is satisfied by setting Fc = F,
FTr = FL = 0.

Finally, we note that (5.37) is equivalent to

1 + κ

p
� ρ+ 1

ρ

(
1
2
− d

2q
m − 1

m

)
=

m
2(m − 1)

− d
2q

. (5.39)

A more simple argument applies to g. Indeed,

‖G(·, u) − G(·, v)‖W1,q(
2) � ‖(gn(·, u) − gn(·, v))n�1‖Lq(
2)

+ ‖(∇gn(·, u)(∇u −∇v))n�1‖Lq(
2)

+ ‖(∇gn(·, u) −∇gn(·, v))∇v)n�1‖Lq(
2)

� CR‖u − v‖W1,q � CR‖u − v‖XTr
κ,p

;

(5.40)

where we used that XTr
κ,p ↪→ L∞ ∩ W1,q by (5.35) and 2 − 2(1 + κ)/p > 1. Therefore, G

satisfies (HG) with Gc = GL = 0. �

5.4.1. Critical spaces for (5.33). Analogously to subsections 5.2.2, 5.3.2 let us first analyse
the scaling property of the equation (5.33) under the assumption

f (u,∇u) = |∇u|m, m > 2, (5.41)

cf (5.34). In the deterministic case, i.e. b jn ≡ gn ≡ 0, the equations (5.33) with (5.41) is ‘locally
invariant’ under the transformation u �→ uλ where

uλ(t, x) :=λ−α/2u(λt,λ1/2x), for λ > 0, x ∈ R
d,

and where we have set α := m−2
m−1 . As in [PSW18, example 3, section 3] one can see that the

Besov space Bd/q+(m−2)/(m−1)
q,p has the right ‘local’ scaling for the problem (5.33) with f as in

(5.41), i.e. the homogeneous version of this space is invariant under the induced map u0 �→
u0,λ :=λ−αu0(λ1/2·). More precisely, one has

‖u0,λ‖
Ḃ

d
q +α
q,p

� λ−α/2(λ1/2)
d
q+α− d

q ‖u0‖
Ḃ

d
q +α
q,p

= ‖u0‖
Ḃ

d
q +α
q,p

;

here Ḃ
d/q+(m−2)/(m−1)
q,p denotes the homogeneous Besov space and the implicit constant does not

depend on λ > 0.
It turns out that the above spaces arise naturally as critical spaces for (5.33) in our abstract

framework. Moreover, using our abstract theory we do not assume that f has the form in
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(5.41) but assumption 5.11 is enough. To this end, as in subsections 5.2.2, 5.3.2 we study
when equality holds in (5.39) for some κ := κcrit.

Let us begin by analysing the case p ∈ (2,∞) and κ ∈ [0, p/2 − 1). In this case, to ensure
κ � 0, by (5.39) we need

1
p
+

d
2q

� m
2(m − 1)

. (5.42)

To ensure κ < p
2 − 1 we assume

m
2(m − 1)

− d
2q

<
1
2
⇔ q < d(m − 1).

Since q � 2, we assume m > 1 + 2
d . Since m > 2 by assumption 5.11, the latter is automati-

cally satisfied in the case d > 1. Under the previous conditions, we set

κcrit =
pm

2(m − 1)
− pd

2q
− 1. (5.43)

Then the trace space becomes

XTr
κcrit ,p

= B
2− 2(1+κcrit)

p
q,p (Rd) = B

d
q+

m−2
m−1

q,p (Rd).

In the case q = p = 2 and κ = 0, if equality in (5.39) holds, then m = 1 + 2/d, and therefore
d = 1 since m > 2. Thus, we can also allow d = 1, m = 3, p = q = 2, and κ = 0, and the
corresponding critical space becomes XTr

κ,p = B1
2,2(R) = H1(R). Now theorem 5.12 implies the

following result.

Theorem 5.13. Let assumptions 5.1 and 5.11 be satisfied. Let either d � 2, or d = 1 and
m > 3. Assume that d(m−1)

m < q < d(m − 1) and that p ∈ (2,∞) verifies (5.42). Let κcrit be
given by (5.43). Then for each

u0 ∈ L0
F0

(Ω; B
d
q+

m−2
m−1

q,p (Rd)),

there exists a maximal local solution to (5.33). Moreover, there exists a localizing sequence
(σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκcrit ; W2,q(Rd))

∩ C(Iσn ; B
d
q+

m−2
m−1

q,p (Rd)) ∩ C((0, σn]; B
2− 2

p
q,p (Rd)).

Furthermore, the same is true if d = 1, m = 3, p = q = 2 and κcrit = 0.

5.5. Stochastic Burgers’ equation with white noise

In this section we consider a stochastic Burgers’ equation with space-time white noise on T.
The space-time white noise will be denoted by wt. More precisely, we analyse the following
problem for the unknown process u : IT × Ω× T→ R{

du +Au dt = ∂x( f (·, u))dt + g(·, u)dwt, on T,

u(0) = u0 on T.
(5.44)
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Here A is as in (5.3) and for simplicity we took B = 0. For results with Dirichlet boundary
conditions see theorem 5.21(a).

Compared with the previous sections, due to the space-time white noise we restrict ourselves
to the one-dimensional torus, and require a suitable interpretation of the g-term. Indeed, the
term g(·, u)dwt in (5.44) will be interpreted as Mg(·,u)WL2(T) where Mg(·,u) denotes multiplication
by g(·, u), and WL2(T) is an L2(T)-cylindrical Brownian motion induced by the space-time white
noise wt.

Assumption 5.14.

(a) Assumption 5.1 is satisfied.
(b) The maps f : IT × Ω× T× R→ R, g : IT × Ω× T× R→ R are P ⊗ B(T) ⊗ B(R)-

measurable with f (·, 0) = g(·, 0) ∈ L∞(IT × Ω× T). Moreover, there exist h, m > 1 and
C > 0 such that such that for all z, z′ ∈ R

| f (·, z) − f (·, z′)| � C(1 + |z|h−1 + |z′|h−1)|z − z′|,

|g(·, z) − g(·, z′)| � C(1 + |z|m−1 + |z′|m−1)|z − z′|.

The Burgers’ nonlinearity f (u) = −u2 satisfies the above condition for any h � 2.
As above, to prove local existence for (5.44) we employ theorem 4.8. Recall that the

space–time white noise can be model as an L2(T)-cylindrical Brownian motion. Therefore,
we set H = L2(T). Fix s ∈ (0, 1) and q ∈ [2,∞). We rewrite (5.44) in the form (5.1) by setting
X0 :=H−1−s,q(T), X1 = H1−s,q(T). Note that by (5.4),

X 1
2
= H−s,q(T) and XTr

κ,p = B
1−s−2 (1+κ)

p
q,p (T).

For u ∈ X1 and t ∈ IT we set

A(t)u = A(t)u, B(t)u = 0,

F(t, u) = ∂x( f (t, u)), G(t, u) = iMg(t,u).

Here A(t) is as (5.3) and for fixed u ∈ Lm
(T) measurable, Mg(t,u) : L2(T) → Lr(T) is the
multiplication operator

(Mg(t,u)h)(x) = g(t, u(x))h(x),

for r ∈ (1, 2) and 
 ∈ (2,∞) which satisfy 1
r = 1

2 + 1

 and we will need s − 1

r > 0 later for
the G term. Moreover, i : Lr(T) → H−s,q(T) = X 1

2
denotes the embedding which holds since

−s − 1
q � − 1

r . Since s > 1
r > 1

2 we only will consider s ∈ ( 1
2 , 1) below.

As usual, we say that (u, σ) is a maximal local solution to (5.44) if (u, σ) is a maximal local
solution to (5.1) in the sense of definition 4.4 with the above choice of A, B, F, G, H. To estimate
the nonlinearity we start by looking at F. As in (5.7), by assumption 5.14(b) we get

‖F(·, u) − F(·, v)‖H−1−s,q

(i)

� ‖F(·, u) − F(·, v)‖H−1,ξ

� (1 + ‖u‖h−1
Lhξ + ‖v‖h−1

Lhξ )‖u − v‖Lhξ

(ii)

� (1 + ‖u‖h−1
Hθ,q + ‖v‖h−1

Hθ,q)‖u − v‖Hθ,q ;

(5.45)
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where in (i) we used the Sobolev embedding with ξ defined by −1 − 1
ξ = −1 − s − 1

q and in

(ii) the Sobolev embedding with θ − 1
q = − 1

hξ . To ensure that ξ ∈ (1,∞) we have to assume

q > 1
1−s . Moreover,

1
q
− θ =

1
hξ

=
1
h

(
1
q
+ s

)
⇒ θ =

1
q

(
1 − 1

h

)
− s

h
.

Since θ has to satisfy θ ∈ (0, 1 − s), we require h−1
h−s(h−1) < q < h−1

s . Since h−1
h−s(h−1) <

1
1−s for

all h � 1 and s ∈ (0, 1), it is enough to assume

1
1 − s

< q <
h − 1

s
. (5.46)

Note that since s ∈ ( 1
2 , 1) then 1

1−s > 2. Thus, if q verifies (5.46), then q > 2. Moreover, the
condition (5.46) is not empty provided

h >
1

1 − s
. (5.47)

Since s > 1
2 , the previous implies h > 2. If (5.46) holds, then Hθ,q = [H−1−s,q, H1−s,q]β1 where

β1 =
1 + θ + s

2
=

1
2

[(
1
q
+ s

)(
1 − 1

h

)
+ 1

]
∈ (0, 1). (5.48)

To check the condition (HF) we may split the discussion into three cases:

(a) If 1 − 1+κ
p > β1, by remark 4.2(a), (HF) follows by setting FTr(t, u) = ∂x( f (t, ·, u)) and

FL ≡ Fc ≡ 0.
(b) If 1 − 1+κ

p = β1, by (5.45) and remark 4.2(b), (HF) follows by setting FL ≡ FTr ≡ 0,
Fc(t, u) = ∂x( f (t, ·, u)), mF = 1, ρ1 = h − 1 and ϕ1 = β1.

(c) If 1 − 1+κ
p < β1 we set Fc(t, u) = ∂x( f (t, ·, u)) and FL ≡ FTr ≡ 0. As in the previous item

we set mF = 1, ρ1 = h − 1 andϕ1 = β1. By (5.45) it remains to check the condition (4.2).
In this situation, (4.2) becomes

1 + κ

p
� ρ1 + 1

ρ1
(1 − β1) =

1
2

h
h − 1

− 1
2

(
1
q
+ s

)
. (5.49)

Next we estimate G. By assumption 5.14(b) it follows that

‖G(·, u) − G(·, v)‖γ(L2;H−s,q) � ‖(I − ∂2
x )−

s
2 (Mg(·,u) − Mg(·,v))‖γ(L2;Lq)

(i)

� ‖(I − ∂2
x )−

s
2 (Mg(·,u) − Mg(·,v))‖L (L2;L∞)

(ii)

� ‖Mg(·,u) − Mg(·,v)‖L (L2;Lr)

(iii)
� ‖g(·, u) − g(·, v)‖L


� (1 + ‖u‖m−1
Lm
 + ‖v‖m−1

Lm
 )‖u − v‖Lm


(iv)

� (1 + ‖u‖m−1
Hφ,q + ‖v‖m−1

Hφ,q )‖u − v‖Hφ,q ;

(5.50)
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where in (i) we used [NVW08, lemma 2.1], in (ii) we used Sobolev embedding with
s − 1

r > 0. In (iii) we used Hölder’s inequality with 1


= 1

r −
1
2 , and in (iv) Sobolev embedding

with φ− 1
q = − 1


m = 1
m ( 1

2 − 1
r ). Thus, to ensure that φ ∈ (0, 1 − s) we require

m

m(1 − s) + 1
r −

1
2

< q <
m

1
r −

1
2

. (5.51)

The lower estimate in (5.51) is immediate from q > 1/(1 − s). The upper estimate gives a
restriction, but we will take r ∈ (1, 2) large enough to avoid any additional restrictions coming
from (5.51).

Due to (5.4) one has Hφ,q = [H−1−s,q, H1−s,q]β2 where

β2 =
1 + s + φ

2
=

1 + s
2

+
1

2q
− 1

2m

(
1
r
− 1

2

)
∈ (0, 1). (5.52)

As usual, to check assumption (HG) we split the discussion in several cases. Since r ∈ (1, 2)
will be chosen large, we will set

β̃2 =
1 + s

2
+

1
2q

∈ (0, 1). (5.53)

Then β̃2 > β2.

(a) If 1 − 1+κ
p � β̃2, then since β̃2 > β2, by remark 4.2(a), (HG) follows by setting

GTr(t, u) := g(·, u) and GL ≡ Gc ≡ 0.
(b) If 1 − 1+κ

p < β̃2, we can choose r ∈ (1, 2) so large that the same holds with β2 instead

of β̃2, and we set Gc(t, u) := g(·, u) and GL ≡ GTr ≡ 0. As in the previous item we set
mG = 1, ρ2 = m − 1 and ϕ2 = β2. By (5.50) it remains to check the condition (4.3). Now
(4.3) becomes

1 + κ

p
� ρ2 + 1

ρ2
(1 − β2) =

m
m − 1

(1 − β2)

Choosing r ∈ (1, 2) large enough the latter holds if

1 + κ

p
<

m
(m − 1)

(1 − β̃2) =
m

2(m − 1)

(
1 − s − 1

q

)
. (5.54)

Since κ ∈ [0, p
2 − 1) and β̃2 < 1, then the above inequality is always verified for p

sufficiently large and κ small.

Combining the above considerations with theorem 4.8 and lemma 5.2, we obtain the
following:

Theorem 5.15. Let s ∈ ( 1
2 , 1) and h > 1/(1 − s). Assume that assumption 5.14 holds. Let

(5.46) be satisfied. Let β1 be as in (5.48) and β̃2 as in (5.53). Assume that one of the following
conditions is satisfied:

• 1 − (1 + κ)/p � β1 and 1 − (1 + κ)/p � β̃2;
• 1 − (1 + κ)/p < β1, 1 − (1 + κ)/p � β̃2 and (5.49) holds;
• 1 − (1 + κ)/p � β1, 1 − (1 + κ)/p < β̃2 and (5.54) holds;
• 1 − (1 + κ)/p < β1 and 1 − (1 + κ)/p < β̃2 and (5.49), (5.54) hold.
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Then for each

u0 ∈ L0
F0

(Ω; B
1−s−2 1+κ

p
q,p (T)),

the problem (5.44) has a maximal local solution (u, σ). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκ; H1−s,q(T)) ∩ C(Iσn ; B
1−s−2 1+κ

p
q,p (T)) ∩ C((0, σn]; B

1−s− 2
p

q,p (T)).

Example 5.16. In the case of Burgers’ equation, i.e. f (u) = −u2 and h = 2, theorem 5.15
gives a sub-optimal result. To see this recall that f (u) = −u2 verifies assumption 5.14 for all
h � 2. Fix ε > 0 and write h = 2 + ε. Then (5.47) implies s ∈ ( 1

2 , 1+ε
2+ε

). Since s ∈ ( 1
2 , 1+ε

2+ε
)

is arbitrary, choosing s > 1
2 small enough, the limitation (5.46) gives 2 < q < 2(1 + ε). Since

β1, β̃2 < 1, by choosing p large enough, theorem 5.15 gives the existence of a maximal solution
to (5.44) with f (u) = −u2.

5.5.1. Critical spaces for (5.44). Here we analyse the existence of critical spaces for (5.44).
By definition, it means that (5.49) or (5.54) has to be satisfied with equality. Since in (5.54)
equality is not allowed, we have to require that the right-hand side of (5.49) is smaller than the
one in (5.54). A straightforward computation shows that this holds if and only if

m < h + (1 − h)

(
s +

1
q

)
. (5.55)

In particular, the latter implies m < h. Note that (5.55) is not empty since h + (1 − h)
(s + 1

q ) > 1, by (5.46). If (5.55) holds, then the critical spaces arise when equality in (5.49)
is reached. Reasoning as in subsection 5.2.2, for p ∈ (2,∞) equality in (5.49) holds for some
κ ∈ [0, p

2 − 1) if the following are satisfied

1
p
+

1
2

(
1
q
+ s

)
� 1

2
h

h − 1
, (5.56)

h � 1 + s
s

or

[
h <

1 + s
s

and q <
h − 1

1 − s(h − 1)

]
. (5.57)

Note that if h < 1+s
s one always has h−1

1−s(h−1) >
h−1

s as follows from s > 1
2 . Therefore, by (5.46),

condition (5.57) is always verified. Defining κcrit as in (5.17), one obtains XTr
κcrit,p

= B
1
q−

1
h−1

q,p (T).
These considerations and theorem 5.15 give the following.

Theorem 5.17. Let s ∈ ( 1
2 , 1) and h > 1/(1 − s). Assume that assumption 5.14 holds.

Assume that (5.46), (5.55) and (5.56) hold. Let κcrit := p
2 ( h

h−1 − 1
q − s) − 1. Then for each

u0 ∈ L0
F0

(Ω; B
1
q−

1
h−1

q,p (T))

there exists a maximal local solution (u, σ) to (5.5). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκcrit ; H1−s,q(T)) ∩ C(Iσn ; B
1
q−

1
h−1

q,p (T)) ∩ C((0, σn]; B
1−s− 2

p
q,p (T)).
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Example 5.18. Here we continue the study of (5.44) in the case of Burgers’ equation, i.e.
(5.44) with f (u) = −u2. As in example 5.16, let ε > 0 and h = 2 + ε. Thus, (5.47) and (5.46)
gives s ∈ ( 1

2 , 1+ε
2+ε ) and q ∈ ( 1

1−s , 1+ε
s ). In addition, (5.55) is equivalent to m ∈ (1, 2 + ε− (1

+ ε)(s + 1
q )). Therefore, if p ∈ (2,∞) verifies (5.56) and q, s, m, h are as above, then theorem

5.17 ensure the existence of a maximal local solution to (5.44) for u0 ∈ L0
F0

(Ω; B
1
q−

1
1+ε

q,p (T)).

5.6. Discussion and further extensions

5.6.1. x-dependent coefficients. In the results of sections 5.2–5.5 we only used the assertion
(A, B) ∈ SMR•

p,κ(T) of lemma 5.2. If (A, B) in assumption 5.1 have x-dependent coefficients
but still satisfies (A, B) ∈ SMR•

p,κ(T), then all local existence and regularity results extend
to this setting. In the time-independent case (or time-continuous case) many of such results
are available as follows from theorem 3.7 (and [NVW12a, section 5]). However, only under a
smallness condition on bjn.

In the case p = q much more is known on (A, B) ∈ SMR•
p,κ(T) with x-dependent coef-

ficients. In particular, from [Kry99] and the discussion in section 3.2 we see that stochastic
maximal Lp-regularity holds in the case the coefficients ai j and bjn are smooth in space. More-
over, some results can be extended to systems as in [PV19, section 5]. In our opinion the
restriction p = q seem quite unnatural for the x-dependent variant of the SPDEs considered
in the previous sections. This motivates to extend the theory to p �= q as well. At the moment
this seems out of reach if the coefficients ai j and bjn only have measurable dependence in
(t,ω) ∈ [0, T] × Ω or if the bjn are not small.

As an illustrations let us mention that for s = 0 and p = q, the conditions of theorem 5.5
become

d(h − 1)
h

< p < d(h − 1) and p � d + 2
h − 1

.

One can check that this will create cases in which not all h > 1 can be treated. For instance
for d = 2, h ∈ (1, 2] has to be excluded. Similar restrictions occur in theorems 5.10 and 5.13.
On the other hand, as explained before we can allow x-dependent coefficients ai j and b jn using
the pointwise extension of assumption 5.1 to the x-dependent setting under some smoothness
conditions in x.

5.6.2. Lower order terms. The results of the previous subsections hold if we add lower order
terms in the differential operators (5.3). For instance, one may substitute A by A+A
 where
A
(t)u :=

∑d
j=1a j(t, ·)∂ ju + a0(t, ·)u. To see this, one can take FL(t, u) :=A
(t)u and, under

suitable assumptions on a0, . . . , ad, the assumption (HF′) is satisfied. Another possibility, to
allow lower order terms in (5.3) is to use a perturbation theorem to check stochastic maximal
Lp-regularity. Yet another possibility is to include the lower order terms in the nonlinearity f .
It depends on each specific case what is the best solution.

5.6.3. Results on Td. The results of subsections 5.2–5.4 hold if Rd is replaced by the torus
Td . Moreover, in this case, the assumptions on the nonlinearities can be slightly weakened.
Indeed, for instance in section 5.2 the Lipschitz condition can be replaced by the following:
there exist h > 1 and C > 0 such that a.s. for all t ∈ IT, z, z′ ∈ R and x ∈ Rd ,

| f (t, x, z) − f (t, x, z′)|+ ‖g(t, x, z) − g(t, x, z′)‖
2 � C(1 + |z|h−1 + |z′|h−1)|z − z′|.
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The only difference is that an additional constant C is added on the right-hand side. Since Td

has finite volume this does not lead to any problems. The same applies to sections 5.3 and 5.4.
Moreover, the conditions on f and g in section 5.5 can be weakened in the same way.

5.6.4. Results on domains with Dirichlet boundary conditions. In the subsection we assume
that O is a C2-boundary with compact boundary. Here, we study (5.2) on O with homogeneous
Dirichlet boundary condition, i.e.

u = 0 on ∂O. (5.58)

We show that the results in subsections 5.2–5.5 still hold in this case with the same nonlinear-
ities, A = Δ and bjn sufficiently small in a suitable norm. In this case, the scales DHs,q(O) and

DBs,q(O) introduced in example A.4 play the role of Hs,q(Rd) and Bs,q(Rd). Note that

DH2,q(O) = W2,q(O) ∩ W1,q
0 (O), DH1,q(O) = W1,q

0 (O) and DH0,q(O) = Lq(O).

We refer to example A.4 for more details and other properties.
Under the previous assumptions, in each case considered in subsections 5.2–5.4 we may

rewrite (5.2) with A = Δ and boundary value (5.58), as a stochastic evolution equation on
X0 := DH−1−s,q(O), X1 := DH1−s,q(O) for some s ∈ [−1, 1], q ∈ [2,∞) and

A(t)u = DΔ−1−s,qu, B(t)u = 0,

F(t, u) = f (t, u,∇u), G(t, u) = GL(t, u) + G̃(t, u),

GL(t, u) = (Bn(t)u)n�1, G̃(t, u) = (gn(·, u))n�1;

where DΔ−1−s,q is defined in (A.7). To extend the results we let s ∈ [0, 1] in subsections 5.2–5.3
and s = −1 in subsection 5.4.

Let us note that the estimates for F, G̃, performed in subsections 5.2–5.4, are obtained by
factorization through an Lr-space, for some r ∈ (1,∞). Therefore, by (A.11) and the identity

DH0,r(O) = Lr(O), the same estimates hold for F, G̃ provided Hs,q is replaced by DHs,q. The
only new feature is the presence of a non-trivial GL which takes care of the b jn-term. The next
result shows that GL verifies (HG)(a).

Lemma 5.19. Let q ∈ (1,∞) and T > 0. Let GL : IT × Ω× DH1,q(O) → γ(
2; Lq(O)) be
given by GL(t, u) := (

∑d
j=1b jn(t)∂ ju)n�1. Then a.s. for all t ∈ IT,

‖GL(t, u)‖γ(
2;DH−s,q(O)) �
(

sup
j
‖(b jn)n�1‖L∞(IT×Ω;Y)

)
‖u‖

DH1−s,q(O), (5.59)

in each of the following cases:

(a) s = 0 and Y = L∞(O; 
2);
(b) s = −1, Y = W1,∞(O; 
2) and b jn = 0 on ∂O for all j, n;
(c) s ∈ [0, 1] and Y = W1,∞(O; 
2).

Proof. Since the estimate are pointwise with respect to (t,ω), we fix (t,ω) but we omit it
from our notation.

(a) In this case, (5.59) follows immediately from DH1,q(O) = W1,q
0 (O) (see (A.8)) and (2.11).

(b) Note that (A.8) and (2.11) implies

γ(
2, DH1,q(O)) = W1,q
0 (O; 
2). (5.60)
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Therefore, the chain rule yields GL : DH2,q(O) → W1,q(O; 
2). Since b jn = 0 on ∂O, it
follows that GL(u) takes values in γ(
2, DH1,q(O)) by (5.60).

The prove of (5.59) in the case (c) is more involved. Let us note that since the map u �→ GL(u)
is linear and DH1,q(O) ↪→ Lq(O) is dense, the extension of GL is solely determined by GL on

DH1,q(O). We prove (5.59) by complex interpolation. For this we use (A.5) and [HNVW17,
theorem 9.1.25]. Therefore, it is enough to prove (5.59) in the cases s ∈ {0, 1}. Since s = 0
was already considered, it remains to consider s = 1. By (A.6) and (A.8) we have DH−1,q(O) =

(DH1,q′(O))∗ = (W1,q′
0 (O))∗. By trace duality, i.e. [HNVW17, theorem 9.4.1], it follows that

γ(
2, DH−1,q(O)) = (γ(
2, DH1,q′(O)))∗. Moreover, γ(
2, DH1,q′(O)) = W1,q′
0 (O; 
2) by (5.60).

Thus, we define GL : Lq(O) → (γ(
2, DH1,q(O)))∗ by setting

〈v, GL(u)〉 := −
∑
n�1

d∑
j=1

∫
O

u∂ j(b jnvn)dx, ∀ v ∈ W1,q′
0 (O; 
2). (5.61)

Using integration by parts argument one sees that this coincide with GL in the lemma for u ∈
W1,q

0 (O). By (5.61) and Hölder’s inequality

〈v, GL(t, u)〉 � ‖u‖Lq(O)

∑
n�1

d∑
j=1

‖∂ j(b jn(t)vn)‖Lq′ (O)

� ‖u‖Lq(O)

(
sup

j
‖b jn(t)‖W1,∞(O;
2)

)
‖v‖

W1,q′
0 (O;
2)

.

Taking the supremum over all ‖v‖
W1,q′

0 (O;
2)
� 1, (5.59) one obtains for s = 1. �

Remark 5.20.

• The argument given in the proof of lemma 5.19 can be refined using bilinear interpolation
(see e.g. [BL76, section 4.4]) and in the case lemma 5.19(c) we may choose Y = Cα(O; 
2)
for some α > |s|.

• The proof of (5.59), in the case (b) lemma 5.19(c), shows that b jn|∂O = 0 can be replaced
by an ‘orthogonality condition’ on ∂O, see assumption 6.7 below. Indeed, since (5.58)
holds, ∇u is parallel to the exterior normal field ν. Thus, if (b jn) j∈{1,...,d} is orthogonal to

ν, then
∑d

j=1b jn∂ ju = 0 on ∂O.

The considerations at the beginning of this subsection, lemma 5.19 and the smallness
condition (4.10) in theorem 4.8 show the following.

Theorem 5.21. Let ε > 0. Assume that A = Δ and b jn ∈ L∞
P(IT × Ω; Y) be such that

sup j∈{1,...,d}‖(bn j)n�1‖L∞(IT×Ω;Y) � ε. Then in each of the following cases there exists ε̄ > 0
such that the statement holds for all ε � ε̄:

(a) If Y = W1,∞(O; 
2) and assumption 5.3 holds, then the results in subsections 5.2, 5.5 hold
for (5.5) on O with the boundary condition (5.58).

(b) If Y = L∞(O; 
2) and assumption 5.8 holds, then the results in subsection 5.3 hold for
(5.21) on O with the boundary condition (5.58).

(c) If Y = W1,∞(O; 
2), b jn|∂O = 0 and assumption 5.11 holds, then the results in subsec-
tion 5.4 holds for (5.33) on O with boundary condition (5.58).

Proof. By the previous discussion it remains to prove that DΔ2α,q ∈ SMR•
p,κ(T) for all q ∈

(1,∞) and α � −1. By example A.4, DΔ2α,q has a bounded H∞-calculus with angle < π/2.
Therefore, the claim follows from theorem 3.7. �
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Remark 5.22. By employing the NH-scale constructed in example A.5 for the Neumann
Laplacian, one can extend theorem 5.21 to homogeneous Neumann boundary conditions∂νu =
0 on ∂O, see subsection 7.2 below.

6. Applications to quasilinear SPDEs with gradient noise

In this section we study quasilinear SPDEs which can be rewritten in the form (4.1) with H = 
2

(subsection 6.2–6.6) or H = Hδ,2 (subsection 6.7). In the next subsection we motivate and
explain the class of equations which will be considered.

6.1. Introduction and motivations

Quasilinear parabolic SPDEs have been intensively studied in literature. In the deterministic
case the monograph [LU68] contains the classical theory. Quasilinear SPDEs arise in many
areas of applied science since they model reaction–diffusion equations in which the diffusiv-
ity depends strongly on the property itself. For this and more physical motivations we refer
to [Dea96, DV12, DFE14, Kaw98, MT99]. For a mathematical perspective one may consult
[DMH15, HZ17, KK18, KN20]. To the best of our knowledge, except for the paper [FG19],
there is no other treatment in the literature for quasilinear stochastic PDEs where the coeffi-
cients b jnk appearing in the gradient noise term (see (6.2) below) may depend on u. However,
our approach and setting is quite different from the one used in [FG19] due to a different choice
of the leading operators (in [FG19] they may be degenerate) and a different choice of the noise.

In this section we analyse quasilinear systems of second order stochastic PDEs in non-
divergence form with nonlinear gradient noise on a domain O ⊆ Rd:⎧⎨⎩du +A(·, u,∇u)u dt = f (·, u,∇u)dt +

∑
n�1

(Bn(·, u) · ∇u + gn(·, u))dwn
t ,

u(0) = u0.
(6.1)

Here (wn
t : t � 0)n�1 denotes a sequence of independent Brownian motions and u : [0, T]

× Ω× O → RN is the unknown process where N � 1. The differential operators A,Bn for
each x ∈ O, ω ∈ Ω, t ∈ (0, T), are given by

(A(t,ω, v,∇v)u)(t,ω, x) := −
d∑

i, j=1

ai j(t,ω, x, v(x),∇v(x))∂2
i ju(x),

(Bn(t,ω, v)u)(t,ω, x) := (
d∑

j=1

b jkn(t,ω, x, v(x))∂ juk(x))N
k=1.

(6.2)

Note that A,Bn generalize the differential operators in (5.3) studied in section 5. As we saw
in subsection 5.6.2, lower order terms in (6.2) can be allowed here as well. Furthermore, as in
subsection 5.1, the following splitting arises naturally:

• O = Rd or O = Td;
• O is a sufficiently smooth domain in Rd .

In subsection 6.2 we will only consider Rd in detail since the case Td is similar. Under
additional assumptions, in subsection 6.3 we study (6.1) with Dirichlet boundary condition.
Subsection 6.5 is devoted to equations in divergence form. We remark that in the latter section,
we can deal only with a small gradient noise term.
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The following assumption will be in force in subsections 6.2–6.3:

Assumption 6.1. Suppose that one of the following two conditions hold:

• p ∈ (2,∞) and κ ∈ [0, p
2 − 1).

• p = 2 and κ = 0.

Assume the following conditions on ai j, bjkn:

(a) For each i, j ∈ {1, . . . , d} and n � 1, the maps ai j : (0, T) × Ω× O × RN × RN×d →
RN×N and b jkn : (0, T) × Ω× O × RN → R are P ⊗ B(O) ⊗ B(RN) ⊗ B(RN×d) and
P ⊗ B(O) ⊗ B(RN)-measurable, respectively.

Moreover, for every r > 0 there exist constants Lr, Mr > 0 and an increasing continuous
function Kr : R+ → R+ such that Kr(0) = 0 and for a.a. ω ∈ Ω for all t ∈ [0, T], i, j ∈
{1, . . . , d}, x, x′ ∈ O, y ∈ BRN (r), z ∈ B

RN×d (r),

|ai j(t,ω, x, y, z)|+ ‖(b jkn(t,ω, ·, y))n�1‖W1,∞(O;
2) � Mr,

|ai j(t,ω, x, y, z) − ai j(t,ω, x′, y, z)| � Kr(|x − x′|).

(b) For each r > 0 there exists Cr > 0 such that for all i, j ∈ {1, . . . , d}, x ∈ O, y, y′ ∈ BRN (r),
z, z′ ∈ B

RN×d (r), t ∈ [0, T], k ∈ {1, . . . , N} and a.a. ω ∈ Ω,

|ai j(t,ω, x, y, z) − ai j(t,ω, x, y′, z′)|+ ‖(b jkn(t,ω, x, y) − b jkn(t,ω, x′, y′))n�1‖
2

‖(∇yb jkn(t,ω, x, y) −∇yb jkn(t,ω, x′, y′))n�1‖
2×RN � Cr(|y − y′|+ |z − z′|).

(c) For each r > 0 there exists εr > 0 such that a.s. for all ξ ∈ Rd, θ ∈ RN , t ∈ [0, T], x ∈ O,
y ∈ BRN (r) and z ∈ B

RN×d (r) one has

d∑
i, j=1

ξiξ j((ai j(t,ω, x, y, z) − Σi j(t,ω, x, y))θ, θ)RN � εr|ξ|2|θ|2.

Here for each fixed i, j ∈ {1, . . . , d}, Σi j(t,ω, x, y) is the N × N matrix with the diagonal
elements ⎛⎝1

2

∑
n�1

bikn(t,ω, x, y)b jkn(t,ω, x, y)

⎞⎠N

k=1

.

In subsection 6.2 we study (6.1) under the following assumption.

Assumption 6.2. The maps f : IT × Ω× O × RN × RN×d → RN , g := (gn)n�1 : IT ×
Ω× O × RN × RN×d → 
2 × RN are P ⊗ B(O) ⊗ B(RN) ⊗ B(RN×d) and P ⊗ B(O) ⊗
B(RN)-measurable respectively. Assume f (·, 0) = 0 and g(·, 0) = ∇yg(·, 0) = 0. Moreover,
for each r > 0 there exists Cr > 0 such that a.a. ω ∈ Ω, for all t ∈ [0, T], x ∈ O, y, y′ ∈ BRN (r)
and z, z′ ∈ B

RN×d (r),

| f (t, x, y, z) − f (t, x, y′, z′)| � Cr(|y − y′|+ |z − z′|),

‖g(t, x, y) − g(t, x, y′)‖
2 + ‖∇yg(t, x, y) −∇yg(t, x, y′)‖
2 � Cr|y − y′|.
In the next subsection, under additional assumption on f , g, we extend the results in

subsection 5.4 to suitable quasilinear equations; see theorems 6.5–6.6 there.

Remark 6.3. The parabolicity condition in assumption 6.1(c) extends the one we have seen
in assumption 5.1(b) to the case of x-dependent coefficients and systems. It was considered
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in the above form in [PV19], where complex matrix-valued ai j were allowed as well. Some
diagonal condition is assumed for the b-term, because otherwise the result does not hold in
general (see [BV12, DLZ20, KL13] for further discussion on this topic).

Unlike in sections 5.2–5.4 we will be assuming p = q in many of the results below. This
is mainly because the quasilinear structure of the equation will imply that our operators will
have coefficients depending on (t,ω, x). Unfortunately, no Lp(Lq)-theory is available for p �= q
if only measurability in time is assumed. Of course in the case the coefficients are (ω, x)-
dependent, there is a theory with p �= q as follows from theorem 3.7. However, at the same
time we would like the b-term to satisfy the right parabolicity condition, and almost no general
Lp(Lq)-theory with p �= q is available in this case.

6.2. Quasilinear SPDEs in non-divergence form on Rd

In this section we study (6.1) on Rd . For the function spaces needed below, we employ the
notation introduced in subsection 5.1.

To begin, we recast (6.1) as a quasilinear evolution equations in the form (4.1) on
X0 := Lp(Rd;RN) and X1 :=W2,p(Rd;RN) by setting, for u ∈ C1(Rd;RN) and v ∈ W2,p(Rd;RN)

A(t, u)v = A(t, u,∇u)v, B(t, u)v = (Bn(t, u)v)n�1,

F(t, u) = f (t, u,∇u), G(t, u) = (gn(t, ·, u))n�1.

By (6.2) and u ∈ C1(Rd;RN) all the above maps are well-defined. As usual, we say that (u, σ)
is a maximal local solution to (6.1) on Rd if (u, σ) is a maximal local solution to (4.1) in the
sense of definition 4.4.

The first result of this section is as follows:

Theorem 6.4. Let the assumptions 6.1 and 6.2 be satisfied for O = Rd. Assume that
p > 2(1 + κ) + d. Then for any

u0 ∈ L0
F0

(Ω; W2− 2(1+κ)
p ,p)

there exists a maximal local solution (u, σ) to (6.1). Moreover, there exists a localizing
sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; W2,p) ∩ C(Iσn ; W2−2 1+κ
p ,p) ∩ C((0, σn ] ; W2− 2

p ,p).

Proof. We apply theorem 4.7 with FL ≡ Fc ≡ GL ≡ Gc ≡ 0, FTr := f and GTr := (gn)n�1.
For this it remains to check (HA), (HF′), (HG′) and (4.7). For the sake of clarity we split the
proof into several steps.

Step 1: (HA) holds. Since p > 2(1 + κ) + d, by Sobolev embedding one has

XTr
κ,p = W2− 2(1+κ)

p ,p ↪→ C1+ε, for some ε > 0. (6.3)

Fix r > 0, and let u1, u2 ∈ BXTr
κ,p

(r). By (6.3) it follows that ‖u1‖W1,∞ , ‖u2‖W1,∞ � Cr =: R where
C depends only on p, d. Thus,

‖A(t, u1)v − A(t, u2)v‖Lq � CR‖u1 − u2‖W1,∞‖v‖W2,q � CR‖u1 − u2‖XTr
κ,p
‖v‖W2,q ,

where CR is as in assumption 6.1(b). The same argument holds for B.
Step 2: (4.7) holds. It is enough to prove that (A(·,w0), B(·,w0)) ∈ SMR•

p,κ(T) for all w0 ∈
L∞

F0
(Ω; XTr

κ,p). By (6.3), it follows that w0 ∈ L∞
F0

(Ω; C1+ε). Now the claim follows from [PV19,
theorem 5.4] and assumption 6.1.
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Step 3: (HF′) and (HG′) holds. By (6.3) and the assumption on f , gn it follows easily that
for any n � 1 and any u, v ∈ BXTr

κ,p
(n) one has

‖ f (·, u,∇u) − f (·, v,∇v)‖Lp + ‖g(·, u) − g(·, v)‖W1,p(
2) � Cn‖u − v‖XTr
κ,p

;

where Cn > 0 may depends on n � 1. �
Theorem 6.4 gives local existence for (6.1) under quite general assumptions on f , gn. The

drawback in applying theorem 6.4 is that the trace space in (6.3) is very regular and there-
fore the initial values have to be rather smooth. Under additional assumptions on ai j, bjnk we
can admit rougher trace spaces XTr

κ,p for (6.1). To do so we will partially extend the results in
subsection 5.4. In particular, the following extends theorem 5.12 in the case q = p.

Theorem 6.5. Suppose that assumptions 5.11 and 6.1 hold. Assume d � 1. Assume that
ai j(t,ω, x, y, z) does not depend on the z-variable and bjkn(t,ω, x, y) does not depend on the y
variable. Moreover, suppose that

p � m − 1
m

(2(1 + κ) + d). (6.4)

Then for each

u0 ∈ L0
F0

(Ω; W2− 2(1+κ)
p ,p)

there exists a maximal local solution (u, σ) to (6.1). Moreover, there exists a localizing
sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; W2,p) ∩ C(Iσn ; W2− 2(1+κ)
p ,p) ∩ C((0, σn ] ; W2− 2

p ,p).

Recall that typical examples of nonlinearities which satisfies assumptions 5.11 are
f (u,∇u) = |u|c|∇u|r with c, r > 1 and f (∇u) = |∇u|r with r > 2.

Proof. The proof is similar to the one proposed in theorem 5.12 with q = p. Note that if
q = p, the restrictions in theorem 5.13 reduce to (6.4).

Additionally, we need to check that for w0 ∈ L∞
F0

(Ω; XTr
κ,p) and q = p, one has

(A(w0), B(w0)) ∈ SMR•
p,κ(T). Since these operators have x-dependent coefficients, lemma

5.2 is not applicable. By (6.4) it follows that 2 − 2(1 + κ)/p > d/p. Therefore, by Sobolev
embedding

XTr
κ,p = W2−2 1+κ

p ,p ↪→ Cη , for some η > 0. (6.5)

Thus, (A(w0), B(w0)) ∈ SMR•
p,κ(T) follows from (6.5), assumption 6.1 and [PV19,

theorem 5.4]. �
As a consequence we obtain the following result in the critical case in the same way as in

the proof of theorem 5.13. However, since we need p = q, we need further restrictions on q. To
avoid this, one needs further results on stochastic maximal Lp(Lq)-regularity with x-dependent
coefficients.

Theorem 6.6. Suppose that assumptions 5.11 and 6.1 hold. Assume d � 1 and m > 1 +
2
d . Assume that ai j(t,ω, x, y, z) does not depend on the z-variable and b jkn(t,ω, x, y) does not
depend on the y variable. Suppose that

(m − 1)
m

(2 + d) < p < d(m − 1). (6.6)
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Then for any

u0 ∈ L0
F0

(Ω; W
d
p+

m−2
m−1 ,p)

there exists a maximal local solution (u, σ) to (6.1). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκcrit ; W2,p) ∩ C(Iσn ; W
d
p+

m−2
m−1 ,p) ∩ C((0, σn ] ; W2− 2

p ,p),

where κcrit := pm
2(m−1) −

d
2 − 1.

Note that since m > 1 + 2
d , one has d(m − 1) > 2. Therefore, the set of p which satisfies

(6.6) is not empty.

6.3. Quasilinear SPDEs in non-divergence form on domains

In this subsection we investigate the quasilinear problem (6.1) with Dirichlet boundary
conditions

u = 0 on ∂O. (6.7)

Here we assume O is a bounded domain with C2-boundary. Moreover, we let N = 1 and write
bjn := b j1n.

As usual, we recast (6.1) in the form (4.1). To this end, for p ∈ (1,∞) and s ∈ (0, 1) we set

W1,p
0 (O) = {u ∈ W1,p(O) : u|O = 0},

DH2,p(O) = W2,p(O) ∩ W1,p
0 (O),

DW2s,p(O) = (Lp(O), DH2,p(O))s,p,

(see (A.12) and (A.13)). For more on spaces with Dirichlet type boundary conditions see
example A.4. For the reader’s convenience, we recall that (see (A.8))

[Lq(O), DH2,p(O)]1/2 = W1,p
0 (O) for all p ∈ (1,∞).

To proceed further, let X0 = Lp(O), X1 = DH2,q(O) and for u ∈ XTr
κ,p = DB

1−2 1+κ
p

q,p (O) (see
(A.12)), v ∈ X1 we set

A(t, u)v = A(t, u,∇u)v, B(t, u)v = (Bn(t, u)v)n�1,

F(t, u) = f (t, u,∇u), G(t, u) = (gn(t, ·, u))n�1.
(6.8)

whereA,Bn are as in (6.2). We say that (u, σ) is a maximal local solution to (6.1) with boundary
condition (6.7) if (u, σ) is a maximal local solution to (4.1) with A, B, F, G in (6.8).

Below we will show that for p > d + 2

B(·, u)v ∈ γ(
2, W1,p
0 (O)), a.e. on IT × Ω for all u ∈ XTr

κ,p, v ∈ X1. (6.9)

As remarked in [Du20] (see the text below assumption 1.4), to check (6.9) it is sufficient to
require an ‘orthogonality condition’ for b at the boundary of O. In the quasilinear setting, this
condition reads as follows

d∑
j=1

b jn(t,ω, x, 0)ν j(x) = 0, for a.a. (t,ω, x) ∈ IT × Ω× ∂O and all n � 1, (6.10)
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where ν = (ν j)d
j=1 is the exterior normal field on ∂O. To see that (6.10) implies (6.9), we argue

as follows. Since p > d + 2, one has

XTr
κ,p = DW2− 2

p ,p(O) =
{

u ∈ W2− 2
p ,p(O) : u = 0 a.e. on ∂O

}
↪→

{
u ∈ C1+ε(O) : u = 0 a.e. on ∂O

}
,

(6.11)

for some ε > 0. Note that γ(
2, W1,p
0 (O)) = W1,p

0 (O; 
2) by (2.11). Thus, (6.9) holds thanks
to u = v = 0 a.e. on ∂O (thus ∇v is parallel to ν). Assumption (6.10) was first introduced in
[Du20] (for κ = 0) where the author showed that under suitable conditions on the coefficients,
(6.10) yields stochastic maximal Lp-regularity estimates for the linear case of (6.1) on domains.
Ellipticity and smoothness of the coefficients alone are not enough to show maximal regularity
estimates for parabolic SPDEs on domains with the choice X0 = Lq(O) and X1 = DH2,q(O),
see [Kry03, theorem 5.3]. To reduce the conditions on the b-term one needs to use suitable
weighted Sobolev spaces (see subsection 6.4 below).

A similar argument shows that item (b) in the following assumption is sufficient to obtain
(6.9) with B(·, u)v replaced by G(·, v) where G is as in (6.8).

Assumption 6.7. Let assumption 6.1 be satisfied. Assume that N = 1. Suppose that (6.10)
holds and that the following are satisfied.

(a) O is a bounded C2-domain in Rd;
(b) gn(t,ω, 0) = 0 for a.a. ω ∈ Ω and for all x ∈ ∂O.

The main result of this subsection is an extension of theorem 6.4 to domains in case
κ = 0. Using the results of example A.4, the reader can check that also theorem 6.5 (resp.
theorem 6.6) extends to the problem (6.1) with boundary condition (6.7) provided κ = 0 (resp.
p = m−1

m (d + 2) i.e. κcrit = 0). For the sake of brevity, we do not include any statement here.

Theorem 6.8. Suppose assumptions 6.2 and 6.7 hold. Let p ∈ (d + 2,∞). Then for each

u0 ∈ L0
F0

(Ω; DW2− 2
p ,p(O)) there exists a maximal local solution to (6.1) with boundary

condition (6.7), and a localizing sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ; W2,p(O) ∩ W1,p
0 (O)) ∩ C(Iσn ; DW2− 2

p ,p(O)).

Proof. Similar to the proof of theorem 6.4, we set FL ≡ Fc ≡ GL ≡ Gc ≡ 0,
FTr(t, u) :=F(t, u) and GTr(u) :=G(t, u). Here F, G are as in (6.8). As before one sees
that (HF′) and (HA) hold. To check (HG′) recall that γ(
2, W1,p

0 (O)) = W1,p
0 (O; 
2). By

assumption 6.7(b) one has gn(·, u) = gn(·, v) = 0 a.e. on IT × Ω× ∂O for all u, v ∈ BXTr
κ,p

(n).
The latter considerations imply, for all u, v ∈ BXTr

κ,p
(n),

‖(gn(·, u) − gn(·, v))n�1‖γ(
2,W1,p
0 (O))

� ‖(gn(·, u) − gn(·, v))n�1‖W1,p(O;
2),

where the implicit constants are independent of u, v. By (6.11) and the former one can show
that (HG′) holds.

To apply theorem 4.7 it remains to check that the stochastic maximal Lp-regularity
assumption. Fix w0 ∈ L∞

F0
(Ω; XTr

κ,p). By (6.11), w0 = 0 a.e. on Ω× ∂O. The latter and (6.10)

yield
∑d

j=1b jn(·,w0)ν j = 0 a.e. on IT × Ω× ∂O. Therefore, by [Du20, theorem 2.5] one has
(A(·,w0), B(·,w0)) ∈ SMRp(T). Moreover, by example A.4 and assumption 6.7(a), the oper-
ator −DΔp (see (A.4)) has a bounded H∞-calculus of angle < π/2. Thus, by theorem 3.7 and
the transference result proposition 3.8 we also obtain (A(·,w0), B(·,w0)) ∈ SMR•

p(T). �
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Remark 6.9. We believe that theorem 6.8 can be extended to an Lp − Lq and weighted in
time setting. We plan to address this issue in a forthcoming paper.

6.4. Quasilinear SPDEs in non-divergence form on domains with weights

In a series of papers by Krylov and his collaborators stochastic maximal Lp-regularity is derived
on weighted Lp spaces on bounded domains. For special choices of the weight no additional
conditions on b and g arise. We consider exactly the same problem as in section 6.3, but this
time with weighted function spaces which are more complicated. For function spaces on Rd

with weights we refer to [MV12, MV14a] and the references therein. In particular, to define
Besov spaces on Rd with weights we employ the definition 3.2 in [MV12].

Let vα : Rd → (0,∞) be given by vα(x) = dist(x, ∂O)α where α ∈ R. For an integer n � 1,
let Wn,p(O, vα) be the space of all u ∈ Lp(O, vα) for which ∂βu ∈ Lp(O, vα) for all |β| � n
endowed with its natural norm. Let

DWn,p(O, vα) = {u ∈ Wn,p(O, vα) : tr∂Ou = 0 if n > (1 + α)/p}.

The trace operator is a bounded operator into Lp(∂O) (see [LV20, section 3.2]). We will only
use the above space for n ∈ {1, 2} below. For s ∈ (0, 1) let

V2s,p(O, vα) := (Lp(O, vα),V2,p(O, vα))s,p, V ∈ {DW , W}. (6.12)

The latter definition requires some care. In the case α ∈ (−1, p− 1) the space W2s.p(O, vα)
is equivalent to the Besov space B2s

p,p(O, vα). Here B2s
p,p(O, vα) is the restricted space to O of

B2s
p,p(Rd, vα), see e.g. [LMV18, definition 5.2]. This follows by combining [Chu92] and [MV12,

proposition 6.1]. To see this, it is enough to note that by [Chu92, theorem 1.1] and (6.12),
for each s ∈ (0, 1), p ∈ (1,∞) and α ∈ (−1, p− 1) there exists an extension operator E (cf
definition 2.4), i.e. a bounded linear operator

E : W2s,p(O, vα) → W2s,p(Rd, vα), such that E f |O = f , (6.13)

where W2s,p(Rd, vα) = B2s
p,p(R

d, vα). In the case α � p− 1, the space W2s,p(O, vα) does
not coincide with a weighted Besov space. However, it densely contains the Besov space
B2s

p,p(O, vα) (see [LV20, remark 7.14]).
The following is the main assumption of this subsection.

Assumption 6.10. Suppose that assumption 6.1 holds with N = 1, κ = 0 and write
bjn = bj1n. Suppose that ai j(t,ω, x, y, z) does not depend on the z-variable and bjn(t,ω, x, y)
does not depend on the y variable. Let O be a bounded C2-domain. Moreover, let δ ∈ (0, 1] and
suppose that for each r > 0 there exists εr > 0 such that a.s. for all ξ ∈ Rd , θ ∈ RN , t ∈ [0, T],
x ∈ O, y ∈ BRN (r) one has

d∑
i, j=1

ξiξ j

(
ai j(t,ω, x, y) − Σi j(t,ω, x)

)
� δ

d∑
i, j=1

ξiξ jai j(t,ω, x, y) � εr|ξ|2.

Here for each fixed i, j ∈ {1, . . . , d},

Σi j(t,ω, x) =
1
2

∑
n�1

bin(t,ω, x)b jn(t,ω, x).
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Finally, suppose that p ∈ (d + 2,∞) and δ satisfy

2p− 1 − p
p(1 − δ) + δ

< α < 2p− d − 2.

The above assumptions imply that α > p− 1. In the special case that b jn ≡ 0, we can take
δ = 1, and thus p− 1 < α < 2p− d − 2. The above parabolicity condition is introduced in
[KL99] and also considered in [Kim04b].

In this subsection we let

X0 := Lp(O, vα), X1 := DW2,p(O, vα), XTr
p = DW2−2/p,p(O, vα),

(6.14)

where the last equality follows from (6.12). Moreover, we define A, B, F, G be as in (6.8). Let
us first analyse the linear problem.

Lemma 6.11. Suppose that assumption 6.10 holds. Then the following hold:

(a) There exists η > 0 such that DW2−2/p,p(O, vα) ↪→ Cη(O);
(b) For every

w0 ∈ L∞
F0

(Ω; DW2−2/p,p(O, vα))

one has (A(·,w0), B(·,w0)) ∈ SMR•
p(T).

Proof.

(a) By (6.12) and [BL76, theorem 4.7.2],

DW2− 2
p ,p(O, vα) = XTr

p = (X0, X1)1− 1
p ,p = (X1/2, X1)1− 2

p ,p.

By [LV20, proposition 3.16] one has

X 1
2
= W1,p(O, vα). (6.15)

Therefore, by Hardy’s inequality (see [LV20, corollary 3.4]),

XTr
p = (X 1

2
, X1)1− 2

p
↪→ (Lp(O, vα−p), W1,p(O, vα−p))1− 2

p ,p = W1− 2
p ,p(O, vα−p),

where the last equality follows from (6.13). By assumption 6.10 one has α− p ∈
(−1, p− 1), therefore the considerations at the beginning of this section imply that

W1− 2
p ,p(O, vα−p) = B

1− 2
p

p,p (O, vα−p). To complete the proof of (a) it is enough to show that

B
1− 2

p
p,p (O, vα−p) ↪→ Cη(O) for some η > 0. Since O is bounded, using a standard local-

ization argument (see e.g. [LV20, section 2.2] and the references therein) it is enough to
prove

B
1− 2

p
p,p (Rd, gα−p) ↪→ Bη

∞,∞(Rd); (6.16)

where, for x = (x1, x2, . . . , xd), gβ(x) := xβ1 on |x| � 1 and gβ(x) := 1 otherwise.
The embedding in (6.16) follows from [MV14a, proposition 4.2] and the fact that

1 − 2
p −

α−p+d
p > 0 and 1 − 2+d

p > 0. The latter are equivalent to α < 2p− d − 2 and
p > d + 2, respectively, which hold by assumption 6.10.
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(b) Combining (a), assumption 6.10 and [Kim04b, theorem 2.9] it follows that
(A(·,w0), B(·,w0)) ∈ SMRp(T). To see the latter note that by Hardy’s inequality
(see [LV20, corollary 3.4]), and [Lot00, proposition 2.2] (also see [KK04, remark 2.9])
the spaces in [Kim04b] coincide with the ones considered here.

Since by [LV20, theorem 1.1],−DΔp has a bounded H∞-calculus of angle zero on Lp(O, vα)
(with domain DW2,p(O, vα)), by theorem 3.7 and the transference result proposition 3.8 we also
obtain that (A(·,w0), B(·,w0)) ∈ SMR•

p(T). �
In the next result, we say that (u, σ) is maximal local solution to (6.1) if (u, σ) is a maximal

local solution to (4.1) with A, B, F, G and X0, X1 are as in (6.8) and (6.14) respectively.

Theorem 6.12. Suppose assumptions 6.2 and 6.10 hold, and that f does not dependent on
the z-variable. Then for each

u0 ∈ L0
F0

(Ω; DW2− 2
p ,p(O, vα)),

there exists a maximal local solution (u, σ) to (6.1). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ; DW2,p(O, vα)) ∩ C(Iσn ; DW2− 2
p ,p(O, vα)).

Recall that the space DW
2− 2

p ,p
(O, vα) is defined as in (6.12) and does not coincide with a

weighted Besov space if α � p− 1.

Proof. By lemma 6.11 and the fact that O is bounded, one can argue in the same way as in
theorem 6.8. We remark that (HG′) is satisfied by setting Gc = GL = 0 and GTr = G. To see
this one can argue as in (5.40) since XTr

κ,p ↪→ W1,p(O, vα) ∩ Cη(O) for some η > 0. The latter
embedding follows from lemma 6.11(a), (6.15) and XTr

κ,p ↪→ X1/2 due to 1 − 2 1+κ
p > 1

2 . �

Remark 6.13.

(a) It would be interesting to extend the above to κ �= 0 and p �= q. However, at the moment
almost no weighted theory is available in the case ai j depend on (t,ω). Except in the case
A = −Δ, one has a bounded H∞-calculus on Lq(O, vα) by [LV20], and thus theorem
3.7 implies stochastic maximal Lp-regularity in the full range. The latter can very likely
be extended to elliptic second order operators in non-divergence form with smooth x-
dependent coefficients by standard arguments. This would make it possible to do a variant
of theorem 6.12 with general (p, q,κ) as long as the coefficients ai j are independent of
time.

(b) In [KK18] a quasilinear SPDE is considered in weighted spaces as well. However, the
results seem not comparable. For instance, they consider operators in divergence form
and they do not allow a gradient type noise term.

6.5. Quasilinear SPDEs in divergence form on domains

Unlike in the previous sections we will consider an example where there is no time-dependence
in the operator A and B = 0. In this way we can obtain a full Lp(Lq)-theory. We study the
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following differential problem for the unknown u : IT × Ω× O → R:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du − div(a(u)∇u)dt = (div( f 1(·, u,∇u))+ f 2(·, u,∇u))dt

+
∑
n�1

gn(·, u,∇u)dwn
t , on O,

u = 0, on ∂O;

u(0) = u0, on O.

(6.17)

The problem (6.17) was already considered in [Hor18, secion 5.5]. The aim of this section
is to partially extend [Hor18, theorem 5.6] and at the same time correct it (see the discus-
sion in [Hor17, p 66] on this matter). Note that in [Hor18, section 5.5] equations in divergence
form have been considered with Neumann and/or mixed type boundary conditions. Our frame-
work also allows this setting, but we will only consider Dirichlet conditions here. The inter-
ested reader can adapt the proofs below with the functional analytic set-up proposed [Hor18,
section 5.5] to correct [Hor18, theorem 4.11] with different boundary conditions.

We study (6.17) under the following assumption.

Assumption 6.14.

(a) Let q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p
2 − 1) be such that 1 − 2(1+κ)

p > d
q .

(b) O ⊆ Rd is a bounded C1-domain.
(c) The map a : Ω× O × R→ Rd×d is F0 ⊗ B(O) ⊗ B(R)-measurable. Assume that

a(·, 0) ∈ L∞(Ω× O) and for each r > 0 there exists an increasing continuous func-
tion Kr : R+ → R+ such that Kr(0) = 0 and for each i, j ∈ {1, . . . , d}, x, x′ ∈ O and
y ∈ BR(r),

|a(x, y) − a(x′, y)| � Kr(|x − x′|).

Moreover, a is locally Lipschitz w.r.t. y ∈ R uniformly in (ω, x), i.e. for each r > 0 there
exists Cr > 0 such that a.s. for all x ∈ O and y, y′ ∈ BR(r) one has

|a(x, y) − a(x, y′)|
Rd×d � Cr|y − y′|.

Furthermore, a is locally uniformly ellipticity, i.e. for each r > 0 there exists εr > 0 such
that a.s. for all x ∈ O and y ∈ BR(r) one has

d∑
i, j=1

ξiξ jai j(x, y) � εr|ξ|2.

(d) Let ε � 0. The mappings f 1 : IT × Ω× O × R× Rd → Rd , f 2 : IT × Ω× O × R×
Rd → R and g := (gn)n�1 : IT × Ω× O × R× Rd → 
2 are P ⊗ B(O) ⊗ B(Rd) ⊗
B(R)-measurable. Assume that f 1(·, 0, 0) = 0, f 2(·, 0) = gn(·, 0) = 0 for all n � 1.
Finally, we assume that for each r > 0 there exists Cr > 0 such that a.s. for all x ∈ O,
y, y′ ∈ B(r) and z, z′ ∈ R

2∑
i=1

| f i(t, x, y, z) − f i(t, x, y′, z′)|+ ‖g(t, x, y, z)− g(t, x, y′, z′)‖
2 � Cr,ε|y − y′|+ ε|z − z′|.

Typical examples of f 1, f 2, g are
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f 1(x, u,∇u) = ε∇u, f 1(x, u) = ( f̃ i(x)|u|h−1u)d
i=1,

f 2(t, u) = |u|m−1u, (gn(x, u))n�1 = (g̃n(x)|u|r−1u)n�1.

where h, m, r > 1, ε > 0, ( f̃ i)d
i=1 ∈ L∞(Ω× O;Rd) and (g̃n)n�1 ∈ L∞(Ω× O; 
2).

Let us briefly recall the function spaces which will be needed below. Let s ∈ (−1, 1) and
q, p ∈ (1,∞), we set

W1,q
0 (O) = {u ∈ W1,q(O) : u|∂O = 0},

W−1,q(O) = (W1,q′
0 (O))∗

DBs
q,p(O) = (W−1,q(O), W1,q

0 (O)) s+1
2 ,p.

(6.18)

For further properties we refer to example A.4 and the references therein.
To recast the problem (6.17) in the form (4.1) let us set X0 :=W−1,q(O), X1 :=W1,q

0 (O), and
for u ∈ C(O) and v ∈ X1

A(t, u)v = − div(a(u)∇v), B(t, u)v = 0,

F(t, u) = div( f 1(t, u,∇u)) + f 2(t, u,∇u), G(t, u) = (gn(t, u,∇u))n�1.

Here the divergence operator is defined as in (A.10), i.e. for u ∈ C(O) and v ∈ X1,

〈φ, A(u)v〉 =
∫

O

(a(u) · ∇v) · ∇φ dx, φ ∈ W1,q′(O). (6.19)

The same applies to F(t, u). As usual we say that (u, σ) is a maximal local solution of (6.17) if
(u, σ) is a maximal local solution of (4.1) with the above choice of A, B, F, G and H = 
2.

Before stating the main result of this subsection, let us note that a maximal local solution to
(6.17) verifies the natural weak formulation of (6.17): a.s. for all t ∈ [0, σ) and all φ ∈ C1

c (O),∫
O

(u(t) − u0)φ dx +

∫ t

0

∫
O

(a(u) · ∇u) · ∇φ dx ds = −
∫ t

0

∫
O

f 1(u,∇u) · ∇φ dx ds

+

∫ t

0

∫
O

f 2(u,∇u)φdx ds +
∑
n�1

∫ t

0

∫
O

gn(u,∇u)φdx dwn
s .

To see this, use (4.4) and note that φ ∈ C1
c (O) ⊆ (W−1,q(O))∗ = W1,q′

0 (O).

Theorem 6.15. Suppose assumption 6.14 holds. Then for each N � 1 there exists ε̄N > 0
such that if ε ∈ (0, ε̄N) and

u0 ∈ L∞
F0

(Ω; DB
1− 2(1+κ)

p
q,p (O))

has norm � N, then there exists a maximal local solution (u, σ) to (6.17). Moreover, there
exists a localizing sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; W1,q
0 (O)) ∩ C(Iσn ; DB

1− 2(1+κ)
p

q,p (O)) ∩ C((0, σn ] ; DB
1− 2

p
q,p (O)).

Proof. By assumption 6.14(a), (6.18), and Sobolev embeddings one has

XTr
κ,p = DB

1− 2(1+κ)
p

q,p (O) ↪→ B
1− 2(1+κ)

p
q,p (O) ↪→ Cη(O) ↪→ L∞(O); (6.20)
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for some η > 0. Therefore, A(u)v := − div(a(u) · ∇v) for u ∈ XTr
κ,p and v ∈ X1 is well-defined.

By [ABHDR15, remark 4.3(ii) and theorem 11.5], [EHDT14, remark 2.4(3)] and assumption
6.14 A(u0) has a bounded H∞-calculus of angle < π/2. Therefore, by theorem 3.7 (see also
remark 3.9(c)) we find that A(u0) ∈ SMR•

p,κ(T) and for each θ ∈ [0, 1/2)

max
{

Kdet,θ
A(u0), Ksto,θ

A(u0)

}
� CN , (6.21)

where CN depends only on N > 0. To check (HA) let us fix n � 1 and u1, u2 ∈ XTr
κ,p of norm

� n. Then by (6.20) it follows that ‖u1‖L∞(O), ‖u2‖L∞(O) � Cn =: R, and for each v ∈ X1

‖ div(a(u1) · ∇v) − div(a(u2) · ∇v)‖W−1,q(O)

� ‖(a(u1) − a(u2))∇v‖Lq(O)

� CR‖u1 − u2‖L∞(O)‖v‖W1,q(O)

�R ‖u1 − u2‖XTr
κ,p
‖v‖X1 ;

where we used (A.10) and assumption 6.14(c).
Since X1/2 = Lq(O) by (A.5), using the same argument as above combined with assumption

6.14(d) one obtains

‖F(·, u) − F(·, v)‖X0 + ‖G(·, u) − G(·, v)‖γ(
2,X1/2) � CR‖u − v‖XTr
κ,p

+ Cε‖u − v‖X1 ;

(6.22)

where C > 0 does not depend on n � 1. By setting FL = F and GL = G the assumptions
(HF′)–(HG′) are verified. Moreover, the inequalities (6.21), (6.22) and remark 4.19 show that
the condition (4.8) holds. The result now follows from theorem 4.7. �

Remark 6.16.

(a) The assumption u0 ∈ L∞
F0

(Ω; XTr
κ,p) is automatically satisfied if F is generated by W
2 (see

remark 4.6).
(b) In the companion paper [AV20a] we will see that the instantaneous regularization effect

in theorem 6.15 can be bootstrapped to prove further regularization of solutions to (6.17).
In such situation weights in time play a basic role.

In the case u0 /∈ L∞
F0

(Ω; XTr
κ,p), we do not have any control on the constants of maximal

regularity of A(u0,n) as n grows see [Hor17, p 66] (here (u0,n)n�1 is as in (4.9)). However, by
choosing εn ↓ 0 appropriately, the arguments used in the proof of theorem 6.15 still lead to the
following.

Theorem 6.17. Let the assumption 6.14 be satisfied for any ε > 0. Then for each

u0 ∈ L0
F0

(Ω; DB
1− 2(1+κ)

p
q,p (O))

there exists a maximal local solution (u, σ) to (6.17). Moreover, there exists a localizing
sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; W1,q
0 (O)) ∩ C(Iσn ; DB

1− 2(1+κ)
p

q,p (O)) ∩ C((0, σn]; DB
1− 2

p
q,p (O)).
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6.6. Stochastic porous media equations with positive initial data

In this subsection we investigate porous media type equations on the d-dimensional torus Td

with uniformly positive initial data. More precisely, we investigate the following problem for
the unknown u : IT × Ω× T

d → R⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du −
(
Δ(|u|r−1u) −

d∑
i, j=1

Ξi j(·, u)∂2
i ju
)

dt = f (u,∇u)dt

+
∑
n�1

( d∑
j=1

bn j(·, u)∂ ju + gn(u)

)
dwn

t , on T
d,

u(0) = u0, on T
d;

(6.23)

where r ∈ [1,∞), u0 � c > 0 a.e. on Td and Ξi, j(·, u) = 1
2

∑
n�1b jn(·, u)b jn(·, u). The problem

(6.23) in the case r = 1 fits in the framework of section 5, in such a case the condition u0 � c
can be avoided. We will only consider the range r � 3 for technical reasons. The range r ∈
(1, 3) is more sophisticated and requires other solution concepts than to the one below. For
physical motivations we refer to [BDPR16], [FG19, subsection 1.1] and the references therein.
To see the link with the works [DG20, FG19], let us note that at least formally (see [DG20,
remark 2.1])

∑
n�1

d∑
j=1

bn j∂ ju ◦ dwn
t =

∑
n�1

d∑
j=1

bn j∂ ju dwn
t +

d∑
i, j=1

(
Ξi j(·, u)∂2

i ju + lower order terms
)

dt,

where ◦ denotes the Stratonovich integration. We refer to subsection 6.6.1 for a comparison to
the literature.

To study (6.23), we exploit the fact that in theorem 4.7, stochastic maximal Lp-regularity
is required on (A(u0,n), B(u0,n)) for appropriate A and B (see (4.7)). We mainly deal with the
strong setting and we refer to remark 6.20 for the weak one. To begin, let us note that at least
formally,

Δ(|u|r−1u) = r|u|r−1Δu + r(r − 1)u|u|r−3|∇u|2.

Therefore, in the case u � c > 0, the porous media operators acts like Δ plus a
lower order term. For notational convenience, we set Ar(t, u)v := − r|u|r−1Δv and
f r(u,∇v) := − r(r − 1)u|u|r−3|∇v|2. To recast (6.23) in the form (4.1), we set X0 = Lq(Td),
X1 = W2,q(Td) and for v ∈ X1, u ∈ C(Td) ∩ W1,q(Td)

A(t, u)v = Ar(t, u)v +
d∑

i, j=1

Ξi j(t, u)∂2
i jv, B(t, u)v =

( d∑
j=1

b jn(t, u)∂ jv

)
n�1

,

F(t, v) = f (t, v,∇v) − f r(v,∇v), G(t, v) = (gn(t, v))n�1.

Here f and gn are as in assumption 6.2. The following is the main result of this subsection.

Theorem 6.18. Let r � 3. Let p ∈ (2,∞) and κ ∈ [0, p
2 − 1) be such that p > 2(1 + κ) + d.

Assume that b jn and f , g verifies assumptions 6.1(a) and (b) and 6.2, respectively. Then for
each

u0 ∈ L0
F0

(Ω; W2−2 1+κ
p ,p(Td)), u0 � c > 0 a.e. onTd × Ω,
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there exists a maximal local solution (u, σ) to (6.23). Moreover, there exists a localizing
sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; W2,q(Td)) ∩ C(Iσn ; W2−2 1+κ
p ,p(Td)) ∩ C((0, σn]; W2− 2

p ,p(Td)).

Proof. The proof is similar to the one given for theorem 6.4. As in the proof of the latter

theorem, by Sobolev embedding XTr
κ,p = W2−2 1+κ

p ,p(Td) ↪→ C1+η(Td) for some η > 0. Thus,
using r � 3 the estimates on the nonlinearities can be performed as in theorem 6.4. The fact
that (HA) holds follows from standard computations.

To check the stochastic maximal regularity condition (4.7), for all n � 1 we set

u0,n := 1Γnu0 + 1Ω\Γn(c1
Td ), whereΓn := {‖u0‖XTr

κ,p
� n}. (6.24)

Thus, u0,n ∈ L∞(Ω; C1,η(Td)) verifies u0,n � c. Reasoning as in the proof of theorem 6.4,
(A(·, u0,n), B(·, u0,n)) ∈ SMR•

p,κ(T) by [PV19, theorem 5.4] and u0,n � c1. We remark that the
ellipticity condition in [PV19, assumption 5.2(2)] is satisfied since |u0,n|r−1 � cr−1 > 0 a.s.
and a.e. on Td . �

In the above proof we used the choice (6.24) instead of (4.9). Indeed, if u0,n is as in (4.9),
then u0,n are not uniformly bounded from below in general.

The proof of theorem 6.18 shows that theorems 6.5–6.6 extends to (6.23). To avoid
repetitions, we only state the extension of theorem 6.6 to (6.23).

Theorem 6.19. Let r � 3. Assume that b jn and f , g verifies assumptions 6.1(a) and (b) and
5.11, respectively. Moreover, assume that m > 1 + 2

d and b jn(t,ω, x, y) does not depend on the
y variable. Suppose that p ∈ (2,∞) verifies (6.6). Then for any

u0 ∈ L0
F0

(Ω; W
d
p+

m−2
m−1 ,p(Td)), with u0 � c > 0 a.e. onTd × Ω,

there exists a maximal local solution (u, σ) to (6.1). Moreover, there exists a localizing
sequence (σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκcrit ; W2,p(Td)) ∩ C(Iσn ; W
d
p+

m−2
m−1 ,p(Td)) ∩ C((0, σn]; W2− 2

p ,p(Td)),

where κcrit := pm
2(m−1) −

d
2 − 1.

Proof. Comparing the proof of theorem 6.18 and theorem 6.6, it remains to estimate f r. To
this end let us note that for each R > 0, y, y′ ∈ BR(R) and z, z′ ∈ Rd ,

| f r(y, z) − f r(y
′, z′)| � CR

[
(1 + |z|2 + |z′|2)|y − y′|+ (1 + |z|+ |z′|)|z − z′|

]
, (6.25)

for some CR > 0 independent of y, y′, z, z′. Therefore, due to (6.25), if f verifies assumption
5.11 for m > 2, then f − f r verifies assumption 5.11 with the same m. Thus, reasoning as in
the proof of theorem 6.6, the conclusion follows. �

Remark 6.20. Equation (6.23) has a natural weak formulation. One can check that the argu-
ments used in theorems 6.18 and 6.19 can be adapted to prove local existence in the weak
setting (see subsection 6.5). In such a case, r ∈ (2, 3) is also allowed.
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6.6.1. Discussions. Under some structural assumptions on the nonlinearities bjn, f , g, (6.23)
(and its generalizations) has been extensively studied (see for instance [DG20, FG19, GS17,
GH18, DGG19] and the references therein). One of the first paper on the topic is [GS17] where
only x-independent bn j are considered. In the x-dependent case the situation is more compli-
cated and one often needs the assumption m � 2, see [GH18, FG19]. In [DG20, DGG19], the
authors allow the more complicated range r ∈ (1, 2) as well, in some cases they need to work
with other type of solutions such as kinetic or entropy solutions. Our results appear weaker
than the ones in [DG20]. For instance, the assumption u0 � c is unnatural. However, this case
was also considered in the deterministic setting, see e.g. [RS18]. Moreover, our setting differs
from the one in [DG20], and the main differences are:

• The functions spaces considered for the initial data are different;
• The nonlinearity f can be of arbitrary polynomial growth in u and |∇u|;
• Less regularity is required for bjn.

It seems to us that the theory developed here can be used to study (6.23) with general
u0, employing a standard approximation argument (see e.g. [FG19, equation (3.2)]). Firstly,
one replaces Δ(|u|r−1u) by Δ(ε+ |u|r−1u) in (6.23). With such modification, we can apply
theorem 4.7 to (6.23), obtaining a family of maximal local solutions (uε, σε)ε>0 to the modified
equations. Secondly, one provides a priori bound (uniform in ε > 0) in Cα-norm for (uε)ε>0

for some uniform α > 0. Thus, by the blow-up criteria in [AV20a], σε = T and one can study
the behaviour of uε as ε ↓ 0. We remark that a-priori estimates for the Cα-norm for the deter-
ministic version of (6.23) are known, see the discussion in [DiB93, pp vii–viii]. However, we
are not aware of any contribution on this topic for (6.23). Note that the arguments used for
(6.23) seem to be applicable to other degenerate parabolic equations.

6.7. Stochastic Burgers’ equation with coloured noise

Here, we consider a quasilinear version of the stochastic Burgers’ equation on T with space-
time coloured noise, which can be seen as the quasilinear analogue of (5.44). However, for
technical reasons, we cannot deal with white noise as in subsection 5.5.

More precisely, we consider the following problem for u : IT × Ω× T→ R,{
du − ∂x(a(·, u)∂xu)dt = (∂x( f 1(·, u)) + f 2(·, u)) dt + g(·, u)dwc

t , on T,

u(0) = u0, on T;
(6.26)

herewc
t denotes a coloured space–time noise on T. More precisely, for some δ > 0, we assume

that wc
t induces an Hδ,2(T)-cylindrical Brownian motion in the sense of definition 2.11.

The noise in (6.26) is different than in subsections 6.2–6.6. The setting in (6.26) is as in
subsection 5.5, but with a coloured noise.

Assumption 6.21.

(a) q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p
2 − 1) verifies 2δ − 2 1+κ

p > 1
q .

(b) The map a : Ω× T× R→ R is F0 ⊗ B(T) ⊗ B(R)-measurable and it verifies the
assumption 6.14(c) with d = 1 and O replaced by T.

(c) The maps f 1, f 2, g : IT × Ω× T× R→ R are P ⊗ B(T) ⊗ B(R)-measurable. Assume
that f 1(·, 0), f 2(·, 0) ∈ L∞(IT × Ω; Lq(T)) and g(·, 0) ∈ L∞(IT × Ω× T). Moreover, for
each r > 0 there exists Cr > 0 such that for all t ∈ IT, x ∈ T and y, y′ ∈ BR(r),∑

i∈{1,2}
| f i(t, x, y) − f i(t, x, y′)|+ |g(t, x, y) − g(t, x, y′)| � Cr|y − y′|.
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Remark 6.22.

• For any δ > 0, assumption 6.21(a) is satisfied for p, q large and κ small.
• Assumption 6.21(c) includes the Burgers’ type nonlinearity f (u) = −u2.

In what follows, we only consider the case δ ∈ (0, 1
2 ), the other cases being simpler. To

begin, note that by assumption 6.21(a), there exists s > 1
2 such that 1 − 2s + 2δ − 2 (1+κ)

p >
1
q . With such a choice, we rewrite (6.26) in the form (4.1). To this end, set H = H2δ,2(T),

X0 :=H−1−s+δ,q(T) and X1 = H1−s+δ,q(T). Then by (5.4),

X 1
2
= H−s+δ,q(T) and XTr

κ,p = B
1−s+δ− 2(1+κ)

p
q,p (T). (6.27)

As in subsection 6.3, by Sobolev embedding and assumption 6.21(a), one has

B
1−s+δ− 2(1+κ)

p
q,p (T) ↪→ Cη(T), η := 1 − s + δ − 2

1 + κ

p
− 1

q
> s − δ. (6.28)

For v ∈ XTr
κ,p, u ∈ X1 let

A(v)u = −∂x(a(v)∂xu), B(t)u = 0,

F(t, u) = ∂x( f (t, u)), G(t, u) = iMg(t,u).

Similar to subsection 5.5, for fixed u ∈ C(T), Mg(t,u) : Lξ(T) → Lξ(T) is the multiplication
operator (Mg(t,u)h)(x) = g(t, u(x))h(x) where ξ ∈ (2,∞) verifies δ − 1

2 = − 1
ξ
, which is needed

below for the Sobolev embedding Hδ,2 ↪→ Lξ (and here we need δ ∈ (0, 1
2 )). Moreover, i :

Lξ(T) → X 1
2

denotes the embedding. As usual, we say that (u, σ) is a maximal local solution to
(6.26) if (u, σ) is a maximal local solution to (5.1) in the sense of definition 4.4 with the above
choice of A, B, F, G, H.

To estimate F, similar to (6.22), one has

‖F(·, u) − F(·, v)‖H−s,q �
∑

i∈{1,2}
‖ f i(·, u) − f i(·, v)‖Lq �r ‖u − v‖XTr

κ,p
,

where in the last inequality we used assumption 6.21(c) and (6.28). Therefore, F verifies (HF′)
by setting FTr = F, FL = Fc = 0. To estimate G, we argue as in (5.50), (6.22). Then for u, v ∈
XTr
κ,p such that ‖u‖XTr

κ,p
, ‖v‖XTr

κ,p
� r, one has

‖G(·, u) − G(·, v)‖γ(Hδ,2;H−s+δ,q)

� ‖(I − ∂2
x )−

s
2+

δ
2 (Mg(·,u) − Mg(·,v))(1 − ∂2

x )−
δ
2 ‖γ(L2,Lq)

(i)

� ‖(I − ∂2
x )−

s
2+

δ
2 (Mg(·,u) − Mg(·,v))(1 − ∂2

x )−
δ
2 ‖L (L2,L∞)

(ii)

� ‖(I − ∂2
x )−

s
2+

δ
2 (Mg(·,u) − Mg(·,v))‖L (Lξ ,L∞)

(iii)

� ‖Mg(·,u) − Mg(·,v)‖L (Lξ ,Lξ )

� ‖g(·, u) − g(·, v)‖L∞
(iv)

�r ‖u − v‖XTr
κ,p

;
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where in (i) we used [HNVW17, corollary 9.3.3], in (ii) we used that (1 − ∂2
x )−

δ
2 : L2(T) →

Hδ,2(T) ↪→ Lξ(T) as mentioned before. In (iii) we used (1 − ∂2
x )−

s
2+

δ
2 : Lξ(T) → Hs−δ,ξ(T) ↪→

L∞(T) and Sobolev embedding with s − δ − 1
ξ
= s − 1

2 > 0. Finally, (iv) follows from
assumption 6.21(c) and (6.28). Thus, (HG′) is verified by setting GTr = G, GL = Gc = 0.

The following is the main result of this subsection.

Theorem 6.23. Assume that the assumption 6.21 holds. Let s > 1
2 be such that 1 − 2s +

2δ − 2 (1+κ)
p > 1

q . Set sδ := 1 − s + δ. Then for each

u0 ∈ L0
F0

(Ω; B
sδ−2 1+κ

p
q,p (T)),

there exists a maximal local solution to (6.26). Moreover, there exists a localizing sequence
(σn)n�1 such that a.s. for all n � 1

u ∈ Lp(Iσn ,wκ; Hsδ ,q(T)) ∩ C(Iσn ; B
sδ−2 1+κ

p
q,p (T)) ∩ C((0, σn]; B

sδ− 2
p

q,p (T)).

Proof. To apply theorem 4.7 it remains to check the condition (HA) and (4.7).
To prove that A verify (HA), it is enough to note that for any u ∈ X1, r > 0 and v1, v2 ∈ XTr

κ,p
such that ‖v1‖XTr

κ,p
, ‖v2‖XTr

κ,p
< r,

‖A(v1)u − A(v2)u‖H−1−s+δ,q(T) � ‖(a(v1) − a(v2))∂xu‖H−s+δ,q(T)

(i)

� ‖a(v1) − a(v2)‖Cη(T)‖∂xu‖H−s+δ,q(T)

(ii)

�r ‖v1 − v2‖XTr
κ,p
‖u‖H1+s−δ,q(T),

where in (i) follows by combining η > s − δ, by (6.28), and [Tay11, chapter 14, equation
(4.14)] (or [MV15, proposition 3.8]) and (ii) by assumption 6.21(b), (6.27) and (6.28).

It remains to check the stochastic maximal regularity assumption (4.7), where in this case
B = 0. By theorem 3.7 and remark 3.9(c), it is enough to show that for any N � 1 there
exists λN > 0 such that for any w0 ∈ L∞

F0
(Ω; XTr

κ,p) the operator λN + A(w0) has a bounded
H∞-calculus on H−1−ε,q(T) with angle < π/2 and the estimates of the H∞-calculus are uni-
form in ω ∈ Ω. To see this, recall that by (6.28), w0 ∈ L∞(Ω; Cη(T)). Let s′ > s such that
1 − 2s′ + 2δ − 2 1+κ

p > 1
q and η > s′ − δ. Combining the proof of [PS16, theorem 6.4.3] and

the multiplication property in [Tay11, chapter 14, equation (4.14)] one can check that there
exists λN > 0 such that λN + A(w0) is R-sectorial on H−1−ρ+δ,q(T) with ρ ∈ {0, s′} (see e.g.
[PS16, definition 4.4.1] or [HNVW17, definition 10.3.1]) with angle < π/2. As we have
seen in the proof of theorem 6.15, up to enlarging λN > 0, λN + A(w0) has a bounded H∞-
calculus on H−1,q(T). The claim follows by using the argument in [KW17, theorem 5],
choosing A = λN + A(w0), B = 1 − ∂2

x and replacing L2, Lp0 by H−1,q(T), H−1−s′+δ,q(T)
respectively. �

7. Further applications: Allen–Cahn and Cahn–Hilliard equations

In this section we present additionally applications of theorem 4.8. More precisely, in sub-
sections 7.1–7.2 we investigate the Allen–Cahn type equations and in subsection 7.3 the
Cahn–Hilliard equations. In both sections we study the equations on domains since boundary
conditions are important from a modelling perspective. However, the case O = Rd or O = Td

can be analysed with the same technique.
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7.1. Stochastic Allen–Cahn equations

Allen-Cahn type equations have been extensively studied in literature. From a physical point
of view, Allen–Cahn equation is a prototype for phase separation processes in melts or alloys
that is of fundamental interest for both theory and applications. For additional motivations
and further results one may consult [ABBK16, BBP17a, BBP17b, Fun16, FY19, RW13]
and the references therein. To the best of our knowledge no results in an Lq-setting are
available.

Here, we study the following stochastic perturbation of Allen–Cahn equation for the
unknown process u : IT × Ω× O → R⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du −Δu dt = V(·, u)dt +
∑
n�1

( d∑
j=1

bn j(·)∂ ju + gn(·, u)
)

dwn
t , in O,

u = 0, in ∂O,

u(0) = u0, in O.

(7.1)

We study (7.1) under the following assumption.

Assumption 7.1. Let d � 2.

(a) Suppose one of the following conditions holds:

• q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p/2 − 1);
• p = q = 2 and κ = 0.

(b) O ⊆ Rd is a bounded C2-domain.
(c) The mappings V : IT × Ω× O × R→ R, g := (gn)n�1 : IT × Ω× O × R→ 
2

are P ⊗ B(O) ⊗ B(R)-measurable, V(·, 0) ∈ L∞(IT × Ω; Lq(O)) and g(·, 0) ∈
L∞(IT × Ω; Lq(O; 
2)). Moreover, there exists C > 0 such that a.s. for all t ∈ IT, x ∈ O
and y, y′ ∈ R

|V(t, x, y) − V(t, x, y′)| � C(1 + |y|2 + |y′|2)|y − y′|,

‖g(t, x, y) − g(t, x, y′)‖
2 � C(1 + |y|+ |y′|)|y − y′|.

(d) Let ε � 0. For each j ∈ {1, . . . , d}, the maps (bn j)n�1 : IT × Ω× O → 
2 are P ⊗
B(O)-measurable and

‖(bn j(t))n�1‖W1,∞(Rd ;
2) � ε, ∀ t ∈ IT and a.s.

Note that the usual potential V(t, u) = u(1 − u2) verifies assumption 7.1(c).

Remark 7.2. Some remarks may be in order.

(a) The problem (7.1) under the assumption 7.1 is similar to (5.21) with m = 3 and
h = 2. However, we will study (7.1) in the almost very weak setting instead of the weak
one. Moreover, we consider the problem on a bounded domain with Dirichlet boundary
conditions.

(b) The growth of (gn)n�1 is chosen in such a way that the all the nonlinearities in (7.1) have
the same scaling. Indeed, V and (gn)n�1 verify assumption 5.8 with h = 2 and m = 3.
As we have seen in subsection 5.3.2, the nonlinearities in (5.21) have the same scaling if
h = (1 + m)/2.
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(c) As in section 5 due to lemma 5.2, if O = Rd or O = Td, then the smallness assumption on
the gradient noise term can be sometimes be dropped. However, in the case of x-dependent
coefficients, one needs to take p = q as explained in section 5.6.

(d) In the weak setting, i.e. s = 0, the regularity condition in assumption 7.1(d) can be
weakened (see lemma 5.19 and theorem 5.21(b)).

By assumption 7.1 we can study (7.1) in the scale (DHs,q(O))s�−2 of the Dirichlet Lapla-
cian. This scale of Banach spaces fits the boundary condition appearing in (7.1). Indeed,

DH2,q(O) = W2,q(O) ∩ W1,q
0 (O), DH1,q(O) = W1,q

0 (O) and DH0,q(O) = Lq(O). We refer to
example A.4 for additional properties of these spaces.

7.1.1. Almost very weak setting. Let s ∈ [0, 1) and q ∈ [2,∞). We rewrite (7.1) in the form
(5.1) by setting X0 := DH−1−s,q(O), X1 = DH1−s,q(O) and for u ∈ X1

A(t)u = −DΔ−1−s,qu, B(t)u = 0,

F(t, u) = V(t, u), G(t, u) = G1(t, u) + G2(t, u),

G1(t, u) = (gn(t, u))n�1, G2(t, u) =
( d∑

j=1

bn j(t)∂ ju
)

n�1
.

Here DΔ−1−s,q is the extrapolated Dirichlet Laplacian (see (A.7)). As usual, we say that (u, σ)
is a maximal local solution to (7.1) if (u, σ) is a maximal local solution to (5.1) in the sense of
definition 4.4 with the above choice of A, B, F, G and H = 
2.

To apply theorem 4.8, we estimate the nonlinearities. As usual we begin by estimating F.
By assumption 7.1(c) one has

‖F(·, u) − F(·, v)‖
DH−1−s,q(O)

(i)

� ‖V(·, u) − V(·, v)‖Lm(O)

� ‖(1 + |u|2 + |v|2)|u − v|‖Lm(O),

� (1 + ‖v‖2
L3m(O) + ‖v‖2

L3m(O))‖u − v‖L3m(O)

(ii)

� (1 + ‖u‖2

DHφ,q(O) + ‖v‖2

DHφ,q(O))‖u − v‖
DHφ,q(O).

(7.2)

where in (i) and (ii) we used Sobolev embedding with − d
m = −1 − s − d

q and φ− d
q = − d

3m

where φ ∈ (0, 1 − s) (see (A.11)). To ensure m ∈ (1,∞) we have to assume q > d
d−1−s (recall

that d � 2). Note that φ is given by

φ =
d
q
− d

3m
=

2d
3q

− 1 + s
3

.

To ensure φ ∈ (0, 1 − s) we assume d
2−s < q < 2d

1+s . Combining the previous requirements
gives

max

{
d

d − 1 − s
,

d
2 − s

}
< q <

2d
1 + s

. (7.3)
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Set

β1 :=
1 + s + φ

2
=

d
3q

+
1 + s

3
. (7.4)

By (A.5) one has DHφ,q(O) = [DH−1−s,q(O), DH1−s,q(O)]β1 and, under the previous assump-
tions, (7.2) shows that F : Xβ1 → X0 is locally Lipschitz. As in subsection 5.2, the argument
splits in three cases:

(a) If 1 − (1 + κ)/p > β1, (HF) follows from remark 4.2(a), by setting FTr = F and
FL ≡ Fc ≡ 0.

(b) If 1 − (1 + κ)/p = β1, (HF) follows from (7.2) and remark 4.2(a), by setting FL ≡ FTr

≡ 0, Fc = F, mF = 1, ρ1 = 2 and ϕ1 = β1.
(c) If 1 − (1 + κ)/p < β1 (HF) holds with Fc = V and FL ≡ FTr ≡ 0, under the condition that

(4.2) holds with mF = 1, ρ1 = 2, ϕ1 = β1. The latter condition becomes

1 + κ

p
� 3

2
(1 − β1) = 1 − d

2q
− s

2
. (7.5)

Next we estimate G :=G1 + G2. By assumption 7.1(d), lemma 5.19 holds, therefore G2 sat-
isfies (5.59). It remains to estimate G1. By (A.5), we have X1/2 = DH−s,q(O). Therefore, by
assumption 7.1(c)

‖G1(·, u) − G1(·, v)‖γ(
2;DH−s,q(O))

(i)

� ‖G1(·, u) − G1(·, v)‖γ(
2;Lr(O))

(ii)
� ‖G1(·, u) − G1(·, v)‖Lr(O;
2)

� (1 + ‖u‖L2r(O) + ‖v‖L2r(O))‖u − v‖L2r(O)

(iii)

� (1 + ‖u‖
DHρ,q(O) + ‖v‖

DHρ,q(O))‖u − v‖
DHρ,q(O);

(7.6)

where in (i) and (iii) we used Sobolev embedding with −s − d
q = − d

r and ρ− d
q = − d

2r (see

(A.11)). In (ii) we used (2.11). It follows that ρ = d
2q − s

2 . Moreover, (7.3) gives that r ∈ (1,∞)
and 0 < ρ < 1 − s. Setting

β2 =
1 + s + ρ

2
=

1
4

(
d
q
+ s

)
+

1
2
∈ (0, 1) (7.7)

it follows that DHρ,q(O) = [DH−1−s,q(O), DH1−s,q(O)]β2 by (A.5).
By (7.6) it follows that G1(t,ω, ·) : Xβ2 → X0 is locally Lipschitz for a.a. (t,ω) ∈ IT × Ω, and

as before:

(a) If 1 − (1 + κ)/p > β2, (HG) holds with GTr = G1, Gc ≡ 0 and GL = G2.
(b) If 1 − (1 + κ)/p = β2, (HG) holds with GTr ≡ 0, Gc :=G1, GL :=G2, mG = 1, ρ2 = 1 and

ϕ2 = β2.
(c) If 1 − (1 + κ)/p < β2, (HG) holds with GTr ≡ 0, Gc :=G1, GL :=G2 under the condition

(4.2) with mG = 1, ρ2 = 1 and ϕ2 = β2. In this situation. The latter condition becomes

1 + κ

p
� 2(1 − β2) = 1 − d

2q
− s

2
, (7.8)
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which coincides with (7.5). This is in accordance with remark 7.2(b).

Let us summarize what we have proven so far in the following result.

Theorem 7.3. Suppose assumption 7.1 holds. Let s ∈ [0, 1) and let q ∈ [2,∞) be such that
(7.3) holds. Let β2 be as in (7.7). Assume one of the following conditions is satisfied:

• 1 − (1 + κ)/p � β2.
• 1 − (1 + κ)/p < β2 and (7.5) holds.

Then there exists an ε̄ > 0 such that for any ε ∈ (0, ε̄), and any

u0 ∈ L0
F0

(Ω; DB
1−s−2 (1+κ)

p
q,p (O))

there exists a maximal local solution (u, σ) to (7.1). Moreover, there exists a localizing
sequence (σn)n�1 such that for any n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; DH1−s,q(O)) ∩ C(Iσn ; DB
1−s−2 (1+κ)

p
q,p (O)) ∩ C(Iσn ; DB

1−s− 2
p

q,p (O)).

Proof. To conclude it remains to check the conditions of theorem 4.8. Firstly, recall
that −DΔ−1−s,q has a bounded H∞-calculus (see example A.4). Therefore, by theorem 3.7
−DΔ−1−s,q ∈ SMR•

p,κ(T).
Moreover, let β1, β2 be as in (7.4), (7.7) respectively. Since q > d/(2 − s) by assumption

(see (7.3)) it follows that β2 > β1.
By assumption 7.1(d), the estimate (5.59) holds. Therefore, (4.10) is satisfied if ε is

sufficiently small. �

7.1.2. Critical spaces for. (7.1) To find critical spaces for (7.1) we look for some κ = κcrit such
that (7.5) becomes an equality. We first analyse the case p ∈ (2,∞) and κ ∈ [0, p/2 − 1). By
(7.8) to ensure κ � 0 one has to impose

1
p
+

d
2q

+
s
2
� 1. (7.9)

Since q > d/(2 − s) the above restriction is verified if p is sufficiently large. The condition
κ < p/2 − 1 becomes

1 − d
2q

− s
2
<

1
2
⇔ q <

d
1 − s

. (7.10)

Since q > d/(d − 1 − s), by (7.3), we also need d > 2. If (7.9)–(7.10) hold, then we set

κcrit := p

(
1 − d

2q
− s

2

)
− 1. (7.11)

Therefore,

XTr
κcrit ,p

= DB
1−s− 2(1+κcrit)

p
q,p (O) = DB

d
q−1
q,p (O); (7.12)

where as above we used (7.11) and (A.12). Note that the above space does not depend on s and
depends on p only through the microscopic parameter.

In the case q = p = 2 and κ = 0, the condition (7.5) gives 1 = d/2 + s � d/2. The latter
forces s = 0 and d = 2. However, s = 0 implies q > 2, thus this case has to be avoided here.
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The following is the main result of this subsection.

Theorem 7.4. Let the assumption 7.1 be satisfied. Let d > 2, s ∈ [0, 1/3] and q ∈ (2,∞)
be such that

d
2 − s

< q <
d

1 − s
.

Let p ∈ (2,∞) be such (7.9) holds. Then there exists ε̄ > 0 such that if ε ∈ (0, ε̄), then the
following hold: for any

u0 ∈ L0
F0

(Ω; DB
d
q −1
q,p (O))

there exists a maximal local solution (u, σ) to (7.1). Moreover, there exists a localizing
sequence (σn)n�1 such that for any n � 1 and a.s.

u ∈ Lp(Iσn ,wκcrit ; DH1−s,q(O)) ∩ C(Iσn ; DB
d
q−1
q,p (O)) ∩ C(Iσn ; DB

1−s− 2
p

q,p (O));

where κcrit is given in (7.11).

Proof. By (7.3) and (7.10), the restriction on q is equivalent to

max

{
d

d − 1 − s
,

d
2 − s

}
< q < min

{
2d

1 + s
,

d
1 − s

}
.

Since d > 2, one has d
d−1−s �

d
2−s . Optimizing the right-hand side of the upper bound on q we

see that s ∈ [0, 1/3] leads to the least restrictions on q, because in that case d
1−s �

2d
1+s . Now

the result follows from theorem 7.3. �

Remark 7.5. For s = 1/3 we obtain the restriction q < 3d
2 . Thus, theorem 7.4 ensures local

existence for initial data which takes values in DB
d
q −1
q,p (O) with smoothness d

q − 1 > − 1
3 . The

optimality of this threshold is not known.

Let us conclude this section by deriving local existence in the space Ld(O). Note that the
latter space has the same ‘local scaling’ of DB0

d,p(O), which is a critical space for (7.1) by
theorem 7.4. Recall that ε > 0 is as in assumption 7.1(d).

Corollary 7.6. Let the assumption 7.1 be satisfied. Let d > 2 and p ∈ [d,∞). Then there
exist s̄, ε̄ > 0 such that if ε ∈ (0, ε̄), s ∈ (0, s̄) the following holds: for all

u0 ∈ L0
F0

(Ω; Ld(O)) (7.13)

there exists a maximal local solution (u, σ) to (7.1) and there exists a localizing sequence
(σn)n�1 such that for any n � 1 and a.s.

u ∈ Lp(Iσn ,wκcrit ; DH1−s,d(O)) ∩ C(Iσn ; DB0
d,p(O)) ∩ C(Iσn ; DB

1−s− 2
p

d,p (O)),

where κcrit := p(1−s)
2 − 1.

Proof. The proof is analogous to corollary 5.7. The argument used in corollary 5.7 shows
that there exists s̄ > 0 such that d

2−s < d < d
1−s and (7.9) hold for any s ∈ (0, s̄) and p ∈ [d,∞).

Fix s ∈ (0, s̄). Theorem 7.4, applied with s ∈ (0, s̄), q = d and p ∈ [d,∞), gives the existence
of ε̄ > 0 such that if ε ∈ (0, ε̄), then there exists a maximal local solution to (7.1) with initial

4193



Nonlinearity 35 (2022) 4100 A Agresti and M Veraar

data u0 ∈ L0
F0

(Ω; DB0
d,p(O)) with the required regularity. To conclude it is enough to recall that

Ld(O) ↪→ DB0
d,p(O) since p � d and (A.13) holds. �

As in the previous sections, in theorem 7.4 and corollary 7.6, the solution instantaneously
regularizes in space.

7.2. Mass conservative stochastic Allen–Cahn equations

In this subsection we study local existence for the following mass conservative Allen–Cahn
equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du −Δudt =

(
V(·, u) − ⨍O

V(·, u)dx

)
dt +

(∑
n≥1

d∑
j=1

bn j∂ ju + gn(·, u)
)

dwn
t , on O,

∂νu = 0, on ∂O,

u(0) = u0, on O.

(7.14)

Here O, V , gn, bn j verify assumption 7.1, −
∫

O · dx := 1/|O|
∫

O · dx denotes the mean, ν is the
exterior normal field on ∂O.

In literature (cf [ABBK16, FY19]) the problem (7.14) is usually called mass-conservative
since, at least formally, the ‘mass’ E

∫
Ou(t, x)dx is preserved under the flow, i.e. E

∫
Ou(t, x)dx

= E
∫

Ou0(x)dx.
To study (7.14), we employ the extrapolation–interpolation scale (NHs,q(O))s∈[−2,∞) of the

Neumann Laplacian NΔq. Such scale of Banach spaces fits the boundary condition appearing
in (7.1). Indeed NH2,q(O) = {u ∈ W2,q(O) : ∂νu = 0}, NH1,q(O) = W1,q(O) and NH0,q(O)
= Lq(O). We refer to example A.5 for additional properties of such spaces.

Let s ∈ [0, 1) and q ∈ [2,∞). We rewrite (7.14) in the form (5.1) by setting
X0 := NH−1−s,q(O), X1 := NH1−s,q(O) and for u ∈ X1

A(t)u = − NΔ−1−s,qu, B(t)u = 0,

F(t, u) = V(t, u) − ⨍O
V(t, u)dx, G(t, u) = G1(t, u) + G2(t, u),

G1(t, u) = (gn(t, u))n≥1 G2(t, u) =
( d∑

j = 1

bn j(t)∂ ju
)

n≥1
.

As above, we say that (u, σ) is a maximal local solution to (7.14) if (u, σ) is a maximal local
solution to (5.1) for the above choice of A, B, F, G.

Our main results concerning (7.14), reads as follows.

Theorem 7.7. Let the assumption 7.1 be satisfied. Then theorems 7.3, 7.4 and corollary 7.6
hold for (7.14) if the spaces DH and DB are replaced by NH and NB, respectively.

Proof. Due to the results presented in example A.5 on the Neumann Laplacian and the NH-
scale, one can repeat the proof of the stated results literally. �
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7.3. Stochastic Cahn–Hilliard equations

The Cahn–Hilliard equation has been derived as a phenomenological model for phase separa-
tion of binary alloys. Stochastic versions of the Cahn–Hilliard equation have been proposed
in the physics to model external fields, impurities in the alloy, or may describe thermal fluctu-
ations or external mass supply see [Coo70, HH77, Lan71]. For a mathematical perspective we
refer to [ABNP19, CW02, CW01, DPD96, EM91, Sca18] and the references therein. To the
best of our knowledge the results presented below are new.

In this section we study the following stochastic Cahn–Hilliard equation for the unknown
process u : IT × Ω× O → R:⎧⎪⎪⎪⎨⎪⎪⎪⎩

du +Δ2u dt = Δ(φ(·, u))dt +
∑
n�1

Φn(·, u)dwn
t , on O,

∂νu = ∂νΔu = 0, on ∂O,

u(0) = u0, on O.

(7.15)

Here ν denotes the exterior normal field on ∂O. Reasoning as in subsection 5.6.4, one could
allow an additional multiplicative noise term

(
bin∂iu + bi jn∂i∂ ju

)
dwn

t as long as ‖(bi jn)n�1‖
2

is small. Note that since the operator is of fourth order, we do not need a smallness condition
on the first order part (bin)n�1.

We study (7.15) under the following assumption.

Assumption 7.8. Let d � 2.

(a) Assume that one of the following conditions holds:

• q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p/2 − 1);
• q = p = 2 and κ = 0.

(b) O ⊆ Rd is a bounded domain with C4-boundary.
(c) The maps φ : IT × Ω× O × R→ R and Φ := (Φn)n�1 : IT × Ω× O × R→ 
2 are

P ⊗ B(O) ⊗ B(R)-measurable, φ(·, 0) ∈ L∞(IT × Ω; Lq(O)) and Φ(·, 0) ∈ L∞(IT ×
Ω; Lq(O; 
2)). Moreover, we assume that there exist h > 1 and a constant C > 0 such that
for all y, y′ ∈ R,

|φ(·, y) − φ(·, y′)|+ ‖(Φn(·, y) − Φn(·, y′))n�1‖
2 � C(1 + |y|h−1 + |y′|h−1)|y − y′|.
Note that the above condition for h = 3 covers the case

φ(u) = Ψ′(u) = u3 − u, where Ψ(s) =
1
4

(s2 − 1)2. (7.16)

In the physical literatureΨ is called the double well-potential. In example 7.11, this case will be
investigated in detail. By assumption 7.8(b), we can study (7.15) in the scale (νHs,q(O))s�−4

introduced in example A.6. Such scale fits the boundary conditions required in (7.15). For
instance,

νH4,q(O) = {u ∈ W4,q(O) : ∂νu|∂O = ∂νΔu|∂O = 0},

νH2,q(O) = {u ∈ W2,q(O) : ∂νu|∂O = 0},

and νH0(O) = Lq(O). We refer to example A.6 for further properties.

7.3.1. Almost very weak setting. Let s ∈ [0, 2) and q ∈ [2,∞). We rewrite (7.15) in the form
(5.1) by setting X0 := νH−2−s,q(O), X1 = νH2−s,q(O) and for u ∈ X1
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A(t)u = νΔ
2
−2−s,qu, B(t)u = 0,

F(t, u) = Δ−2−s,q(φ(t, u)), G(t, u) = (Φn(t, u))n�1.

Here νΔ
2
η,q is the extrapolated bi-Laplace operator (A.15) and νΔβ,q is as in (A.21).

As usual, we say that (u, σ) is a maximal local solution to (7.15) if (u, σ) is a maximal local
solution to (5.1) in the sense of definition 4.4 with the above choice of A, B, F, G and H = 
2.

To show local existence for (7.15) we employ theorem 4.8. By example A.6 it follows
that νΔ

−1−s,q
2 has a bounded H∞-calculus on νH−s,q(O) of angle less than π/2. By theorem

3.7, it follows that νΔ
−1−s,q
2 ∈ SMR•

p,κ(T). It remains to look at suitable bounds for the
nonlinearities F, G. Let us begin by looking at F:

‖F(·, u) − F(·, v)‖
νH−2−s,q(O)

(i)

� ‖φ(·, u) − φ(·, v)‖
νH−s,q(O)

(ii)

� ‖φ(·, u) − φ(·, v)‖Lr(O)

(iii)

� (1 + ‖u‖h−1
Lhr(O)

+ ‖v‖h−1
Lhr(O)

)‖u − v‖Lhr(O)

(iv)

� (1 + ‖u‖h−1

νHθ,q(O)
+ ‖v‖h−1

νHθ,q(O)
)‖u − v‖

νHθ,q(O).

(7.17)

where in (i) we used that νΔ
−2−s,q : νH−s,q(O) → νH−2−s,q(O) boundedly (see (A.21)), in

(ii) Sobolev embedding with −s − d/q = −d/r (see (A.20)). In (iii) we applied Hölder’s
inequality and assumption 7.8(c), and in (iv) we used Sobolev embeddings with

θ − d
q
= − d

hr
⇒ θ =

d
q
− 1

h

(
s +

d
q

)
.

Note that r ∈ (1,∞) since we assume q > d/(d − s). To ensure θ ∈ (0, 2 − s) we require

d(h − 1)
2h − s(h − 1)

< q <
d(h − 1)

s
.

Setting

β1 :=
θ + s + 2

4
=

1
4

(
d
q
+ s

)(
1 − 1

h

)
+

1
2

(7.18)

we obtain νHθ,q(O) = [νH−2−s,q(O), νH2−s,q(O)]β1 by (A.16). Obviously, θ < 2 − s implies
that β1 < 1. Summarizing, we have proved that F : Xβ1 → X0 is locally Lipschitz. As usual,
we split into three cases (see remark 4.2(a) and (b)):

(a) If 1 − (1 + κ)/p > β1, (HF) holds with FTr = F, Fc ≡ FL ≡ 0.
(b) If 1 − (1 + κ)/p = β1, (HF) holds with FTr ≡ 0, Fc :=F, FL ≡ 0, mF = 1, ρ1 = h − 1 and

ϕ1 = β1.
(c) If 1 − (1 + κ)/p < β1, (HF) holds with FTr ≡ 0, Fc :=F, FL ≡ 0, mF = 1, ρ1 = h − 1 and

ϕ1 = β1 under the condition (4.2). The latter becomes

1 + κ

p
� ρ1 + 1

ρ1
(1 − β1) =

h
2(h − 1)

− 1
4

(
s +

d
q

)
. (7.19)
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Next we estimate G. Reasoning as in (7.17), using that X1/2 = νH−s,q(O) by (A.16) and
assumption 7.8(c), one has

‖G(·, u) − G(·, v)‖γ(
2;νH−s,q(O))

� ‖(Φn(·, u) − Φn(·, v))n�1‖γ(
2;Lr(O))

(i)
� ‖(Φn(·, u) − Φn(·, v))n�1‖Lr(O;
2)

� (1 + ‖u‖h−1
Lhr(O)

+ ‖v‖h−1
Lhr(O)

)‖u − v‖Lhr(O)

� (1 + ‖u‖h−1

νHθ,q(O)
+ ‖v‖h−1

νHθ,q(O)
)‖u − v‖

νHθ,q(O).

where r, θ are as in (7.17) and in (i) we used (2.11). Thus, under the above assumptions, the
same argument used for F implies that G verifies (HG).

Finally, by (A.18), the trace space is given by

XTr
κ,p = (X0, X1)1− 1+κ

p ,p = νB
2−s− 4(1+κ)

p
q,p (O).

See (A.19) for more on νB-spaces. Thus, theorem 4.8 gives the following result.

Theorem 7.9. Suppose that assumption 7.8 holds. Let s ∈ [0, 2) and assume that

max

{
d(h − 1)

2h − s(h − 1)
,

d
d − s

}
< q <

d(h − 1)
s

(7.20)

holds4. Let β1 be as in (7.18). Assume that one of the following conditions holds:

• 1 − (1 + κ)/p � β1.
• 1 − (1 + κ)/p < β1 and (7.19) holds.

Then for any

u0 ∈ L0
F0

(Ω; νB
2−s− 4(1+κ)

p
q,p (O))

the problem (7.15) has a maximal local solution (u, σ). Moreover, there exists a localizing
sequence (σn)n�1 such that for each n � 1 and a.s.

u ∈ Lp(Iσn ,wκ; νH2−s,q(O)) ∩ C(Iσn ; νB
2−s− 4(1+κ)

p
q,p (O)) ∩ C(Iσn ; νB

2−s− 4
p

q,p (O)).

7.3.2. Critical spaces for (7.15). As usual, we check when (7.19) becomes an equality. We first
look at the case p ∈ (2,∞). Since κ � 0 we have to assume

1
p
� h

2(h − 1)
− 1

4

(
s +

d
q

)
. (7.21)

Since κ < p/2 − 1 if and only if (1 + κ)/p < 1/2, we require

h
2(h − 1)

− 1
4

(
s +

d
q

)
<

1
2
⇔ q <

d(h − 1)
2 − s(h − 1)

.

4 Here we used the convention 1/0:= ∞.
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Simple computations show that the previous is verified if and only if

h � 2 + s
s

, or

[
h <

2 + s
s

and q <
d(h − 1)

2 − s(h − 1)

]
. (7.22)

If (7.22) holds, then

κcrit := p

(
h

2(h − 1)
− 1

4

(
s +

d
q

))
− 1 ∈

[
0,

p
2
− 1

)
. (7.23)

By (A.18), the corresponding critical space is

XTr
κcrit,p

= νB
2−s− 4(1+κcrit)

p
q,p (O)

= νB
2−s+ 2h

h−1+
d
q+s

q,p (O) = νB
d
q−

2
h−1

q,p (O).

(7.24)

Note that the trace space does not depend on the parameter s ∈ [0, 2) and depends on p only
through the microscopic parameter. In addition, it coincides with the critical space for (7.15)
in the deterministic setting (see [PSW18, example 3]).

In the case p = q = 2 and κ = 0, equality in (7.19) holds if and only if

1
2
=

h
2(h − 1)

− 1
4

(
s +

d
2

)
⇔ h = 1 +

4
2s + d

. (7.25)

Thus, in this case the trace space becomes

νB−s
2,2(O) = νB

d
2−

2
h−1

2,2 (O),

where we used (7.25). The latter space is consistent with (7.24) in the case q ∈ (2,∞). The
previous considerations and theorem 7.9 give the following result.

Theorem 7.10. Let the assumption 7.8 be satisfied and let s ∈ [0, 2). Assume that one of the
following conditions hold:

(a) q = p = 2, h = 1 + 4
d+2s , d > max{2s, 2s2/(2 − s)} and κcrit = 0.

(b) q ∈ [2,∞), p ∈ (2,∞), (7.20), (7.21), (7.22) hold and κcrit is given by (7.23).

Then for each

u0 ∈ L0
F0

(Ω; νB
d
q−

2
h−1

q,p (O)),

there exists a maximal local solution (u, σ) to (7.15). Moreover, there exists a localizing
sequence (σn)n�1 such that for all n � 1 and a.s.

u ∈ Lp(Iσn ,wκcrit ; νH2−s,q) ∩ C(Iσn ; νB
d
q−

2
h−1

q,p ) ∩ C((0, σn ] ; νB
2−s− 4

p
q,p ).

Proof. It remains to check the condition of theorem 7.9 for q = p = 2 and κ = 0. To see
this, note that if q = p = 2 and h = 1 + 4

2s+d , then the condition (7.20) is equivalent to

max

{
d

d − s
,

2d
d + 4

}
< 2 <

4d
s(d + 2s)

.

Since 2d
d+4 < 2 is always true, the remaining conditions imply d > max{(2s), 2s2

2−s}. �
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Let us give a concrete example to see what this condition becomes in an important special
case.

Example 7.11. Let h = 3 and d = 3. By (7.20)–(7.22), the limitations on q ∈ (2,∞) in
theorem 7.10 are equivalent to[

s < 1, and
3

3 − s
< q < min

{
6
s

,
3

1 − s

}]
,

or [
s � 1, and

3
3 − s

< q <
6
s

]
.

Let us consider the first cases, i.e. s < 1. Optimizing the upper bound on q we obtain 2 <

q < 9 for s = 2
3 . Thus, if 1

p � 3
4 − 1

4

(
s + 3

q

)
holds, then theorem 7.10 ensures existence for

initial values u0 ∈ νB
3
q−1
q,p (O) a.s. with smoothness 3

q − 1 > − 2
3 . In the case s � 1, q < 6

s and

therefore 3
q − 1 > s

2 − 1 � − 1
2 . A similar situation arises for the Allen–Cahn equations, see

remark 7.5. As in the case of Allen–Cahn equations, the optimality of the threshold − 2
3 is not

know.

Due to theorem 7.9 the same strategy used in corollary 7.6 leads to the following result.

Corollary 7.12. Let the assumption 7.8 be satisfied. Let h > 1 + 4/d and q := d(h − 1)/2.
Assume that p ∈ [q,∞) and p > 2(h − 1). The there exists s̄ > 0 such that for any s ∈ (0, s)
and any

u0 ∈ L0
F0

(Ω; Lq(O))

there exists a maximal local solution (u, σ) to (7.1), and there exists a localizing sequence
(σn)n�1 such that for any n � 1 and a.s.

u ∈ Lp(Iσn ,wκcrit ; νH2−s,q(O)) ∩ C(Iσn ; νB0
q,p(O)) ∩ C(Iσn ; νB

2−s− 4
p

q,p (O)),

where κcrit = p( 1
2 − s

4 ) − 1.

We remark that the restriction p > 2(h − 1) is due to (7.21). Finally, as in corollary 7.6, one
sees that the solution immediately regularizes.
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Appendix A. Interpolation–extrapolation scales

In this appendix we present results on interpolation–extrapolation scales for sectorial operators
which we need in the paper. For a more detailed presentation we refer to [Ama95, chapter 5]
and [Haa06, section 5.3].
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Definitions related to sectorial operators have been given in subsection 2.1 and will be used
below. Let A be a sectorial operator on a Banach space X such that 0 ∈ ρ(A ). The latter
implies that (X, ‖A−1 · ‖X) is a normed space. We define the extrapolated space X−1,A as the
completion of (X, ‖A−1 · ‖X), i.e.

X−1,A := (X, ‖A−1 · ‖X)∼; (A.1)

where∼ denotes the completion of the space. For notational convenience we set ‖ · ‖−1,A := ‖ ·
‖X−1,A . It is evident that X ↪→ X−1,A and if x ∈ X

‖x‖−1,A = ‖A−1x‖X � ‖A−1‖L (X)‖x‖X.

Since D(A ) = X, equality in the previous formula shows that D(A ) � x �→ A x ∈ X extends
to a linear isometric isomorphism between X and X−1,A . The extension of this map will be
denoted by T−1,A or simply T−1 if no confusion seems likely.

To proceed further, let us note that A induces a closed linear operator A−1 on X−1 given
by

A−1 :=T−1A T−1
−1 . (A.2)

One can check that A−1|X = A . By (A.2), A is similar to A−1. These simple observations
lead to the following.

Proposition A.1. Let A be a sectorial operator on X such that and 0 ∈ ρ(A ). Then A−1

is the closure of A in X−1 with D(A−1) = X.
Moreover, the following hold true:

(a) A−1 is a sectorial operator on X−1,A and ω(A−1) = ω(A );
(b) If A ∈ BIP(X), then A−1 ∈ BIP(X−1,A );
(c) If A has a bounded H∞-calculus on X, so does A−1 and ωH∞(A−1) = ωH∞(A ).

The previous proposition shows that if A−1 is sectorial, then the fractional power (A−1)α

for α > 0 are well defined closed linear operators on X−1,A . Let us denote by X1−α,A the
domain of (A−1)α,

X−1+α,A :=
(
D((A−1)α), ‖(A−1)α · ‖X

)
, α � 0. (A.3)

By proposition A.1 one has D(A−1) = X and thus X0,A = X.
Let α � −1 and let A α be the realization of A−1 on Xα,A , i.e.

D(A α) := {x ∈ Xα,A : A−1x ∈ Xα,A },

A αx :=A−1x, if x ∈ D(A α), x ∈ D(A α).

Note that A 0 = A and A α = A−1 if α = −1. Under suitable assumptions, (Xα,A )α�−1

becomes an interpolation scale with respect to complex interpolation (see [Haa06,
theorem 6.6.9]):

Proposition A.2. Let A ∈ BIP(X) be such that 0 ∈ ρ(A ). Let (Xα,A )α�−1 be as above.
Then

Xα(1−θ)+βθ,A = [Xα,A , Xβ,A ]θ, α, β � −1, θ ∈ (0, 1).

isomorphically.
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If the assumption of the previous proposition holds, then we say that (Xα,A , A α)α�−1 is the
interpolated-extrapolated scale of A .

In applications it will be useful to have the description of the spaces X−α,A for α ∈ (0, 1)
given in [Ama95, chapter 5, theorem 1.4.9]. Here A ∗ denotes the adjoint operator of A .

Theorem A.3. Let A a sectorial operator on a reflexive Banach space X such that
0 ∈ ρ(A ). Then for each ϑ ∈ [0, 1], X−ϑ,A is isomorphic to the dual of the space Xϑ,A ∗ =
(D((A ∗)ϑ), ‖(A ∗)ϑ · ‖X). More concisely,

X−ϑ,A = (Xϑ,A ∗)∗.

Due to proposition A.1, the construction can be iterated again and one can construct a family
of super-spaces (X−n,A )n�1 and operators (A−n)n�1 with analogous properties. Since it will
be not used in the paper we refer to [Ama95] and [Haa06] for the complete construction.

In the following examples we look at operators which will be used later.

Example A.4 (Dirichlet Laplacian). In this example we specialize the above construc-
tion to the strong Dirichlet Laplacian DΔq where q ∈ (1,∞). In this example we assume that O
is a C2-domain in Rd with compact boundary. Note that exterior domains are allowed. To begin,
let us set W1,q

0 (O) := {u ∈ W1,q(O) : u|∂O = 0}. The strong Dirichlet Laplacian is defined as

DΔq : W2,q(O) ∩ W1,q
0 (O) ⊆ Lq(O) → Lq(O), DΔq f :=Δ f . (A.4)

By [DDH+04], there exists c > 0 such that Aq := cI − DΔq has a bounded H∞-calculus on
Lq(O) with angle ωH∞(Aq) < π/2. If O is bounded, then we may set c = 0.

Thus, Aq generates an extrapolated–interpolated scale, which will be denoted by(
DH2α,q(O), A2α,q

)
α∈[−1,∞).

Therefore, DH2,q(O) = W2,q(O) ∩ W1,q
0 (O) and DH0,q(O) = Lq(O). By proposition A.2, for

all −2 � s1 < s2 < ∞ one has

DHs,q(O) = [DHs1,q(O), DHs2,q(O)]θ, ϑ ∈ (0, 1), s := (1 − θ)s1 + θs2.

(A.5)

Moreover, by theorem A.3,

DH−s,q(O) = (DHs2,q(O))∗, s ∈ (0, 2). (A.6)

We define the extrapolated Dirichlet Laplacian as:

DΔs,q := − As,q + cI, s � −2. (A.7)

Note that DΔ0,q = DΔq. By [See72] and (A.5) one has the following identification:

DHs,q(O) =

{
Hs,q(O) if s ∈ (0, 1/q),

{Hs,q(O) : u|∂O = 0} if s ∈ (1/q, 2).
(A.8)

Here Hs,q(O) denotes the Bessel potential spaces on domains (see [Tri95, section 4.3.1]). Note
that we avoided the s = 1/q as in this case the description is more complicated. The latter
identity implies DH1,q(O) = W1,q

0 (O), and by (A.6) one has

DH−1,q(O) = (W1,q′
0 (O))∗=: W−1,q(O).
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The above identities and an integration by parts argument show that DΔ−1,q is the ‘weak

Dirichlet Laplacian’, i.e. DΔ−1,q : W1,q
0 (O) ⊆ W−1,q(O) → W−1,q(O) and

−〈g, DΔ−1,q f 〉 =
∫

O
∇g · ∇ f dx, f ∈ W1,q

0 (O), g ∈ W1,q′
0 (O); (A.9)

see [PSW18, example 3] for details. The same integration by parts argument, allows us to con-
sider the divergence operator div :=

∑d
j=1∂ j as a map div : Lq(O;Rd) → DH−1,q(O) defined

by

−〈g, div F〉 :=
∫

O
F · ∇g dx, ∀F ∈ Lq(O;Rd), g ∈ W1,q′

0 (O). (A.10)

For later use, we discuss Sobolev type embedding results for DH-spaces. For s0, s1 � −1,
and 1 < q0 < q1 < ∞ such that s0 − d/q0 � s1 − d/q1, one has

DHs0,q0 (O) ↪→ DHs1,q1 (O). (A.11)

Indeed, this follows from the steps below.

(a) If s0, s1 � 0, then (A.11) follows from (A.8) and the embedding for H-spaces (see [Tri95,
theorem 4.6.1]).

(b) If s0, s1 � 0, then (A.11) follows from (A.8) and the duality (A.6).
(c) If s1 < 0 < s0 are arbitrary, then let p ∈ (q,∞) be such that s0 − d/q0 = −d/p. Then

(A.11) follows from

DHs0,q0 (O) ↪→ DH0,p(O) ↪→ DHs1,q1 (O).

We conclude this example by looking at real interpolation spaces. For any θ ∈ (0, 1) and
q, p ∈ (1,∞) we define

DB−2+4θ
d,p (O) := (DH−2,q(O), DH2,q(O))θ,p.

By [BL76, theorem 4.7.2] and (A.5) for −2 � s0 < s1 and θ ∈ (0, 1) one has

DBs
q,p(O) = (DHs0,q(O), DHs1,q(O))θ,p, where s := (1 − θ)s0 + θs1. (A.12)

The notation DB is motivated by the following identification (see [Gri69]):

DBs
q,p(O) =

{
Bs

q,p(O), s ∈ (0, 1/q),

{u ∈ Bs
q,p(O) : u|∂O = 0}, s ∈ (1/q, 2).

(A.13)

Here Bs
q,p(O) denotes the usual Besov spaces on domains (see [Tri95, section 4.3.1]).

The same reasoning can be applied to other boundary conditions.

Example A.5 (Neumann Laplacian). In this example we look at the Neumann Laplacian

NΔq. Here we assume that O ⊆ Rd is a bounded C2-domain. As usual, ν denotes the exterior
normal field on ∂O. Let q ∈ (1,∞) and D(NΔq) := {u ∈ W2,q(O) : ∂νu = 0}, the Neumann
Laplacian is given by

NΔq : D(NΔq) ⊆ Lq(O) → Lq(O), NΔ f :=Δ f , for f ∈ D(NΔq).
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By [DDH+04], there exists c > 0 such that AN
q := c − NΔq has a bounded H∞-

calculus with angle < π/2. Therefore, AN
q generates an interpolated–extrapolated scale

(NH2α,q(O), AN
2α,q)α∈[−1,∞). The extrapolation Neumann Laplacian is given by:

NΔ2α,q :=AN
2α,q − cI, ∀ α � −1.

Below we list the main properties and further definition related to the NH-scale. Their proofs
are similar to the one in example A.4.

• NH0,q(O) = Lq(O) and NH2,q(O) = D(NΔq).
• Complex interpolation property: for all −2 � s1 < s2 < ∞ and θ ∈ (0, 1),

NHs,q(O) = [NHs1,q(O), NHs2,q(O)]θ, s = (1 − θ)s1 + θs2.

• Duality: by theorem A.3,

NH−s,q(O) = (NHs,q′(O))∗, s ∈ (0, 2).

• Identification of NHs,q(O):

NHs,q(O) =

{
Hs,q(O) if s ∈ (0, 1 + 1/q),

{Hs,q(O) : ∂νu|∂O = 0} if s ∈ (1 + 1/q, 2).

• Real interpolation: for p ∈ (1,∞), θ ∈ (0, 1) and

NB−2+4θ
q,p (O) := (NH−2,q(O), NH2,q(O))θ,p

= (NH−2,q(O), NH2,q(O))φ,p,

provided −2 � s0 < s1, φ ∈ (0, 1) and −2 + 4θ = (1 − φ)s0 + φs1.
• Identification of NBs,q(O): for any q, p ∈ (1,∞)

NBs
q,p(O) =

{
Bs

q,p(O), s ∈ (−2, 1 + 1/q),

{u ∈ Bs
q,p(O) : ∂νu|∂O = 0}, s ∈ (1 + 1/q, 2).

• Sobolev embeddings: for any s0, s1 � −1, 1 < q0 < q1 < ∞ such that s0 − d/q0 � s1

− d/q1 one has

NHs0,q0 (O) ↪→ NHs1,q1 (O). (A.14)

In the following example we look at powers of the Neumann Laplace operator.

Example A.6 (bi-Laplacian). In this example we look at bi-Laplace operators with
Neumann-type boundary conditions. Here, O ⊆ Rd is a bounded C4-domain and ν denotes the
exterior normal derivative on ∂O. Let q ∈ (1,∞) and set D(νΔ

2
q) := {u ∈ H4,q(O) : ∂νu|∂O

= ∂νΔu|∂O = 0}. The bi-Laplacian with Neumann type boundary conditions is given by

νΔ
2
q : D(νΔ

2
q) ⊆ Lq(O) → Lq(O), νΔ

2
q f :=Δ2 f .

By [DDH+04], it follows that there exists c > 0 such that Aν
q := cI + νΔ

2
q has a bounded H∞-

calculus with angle ωH∞(Aν
q) < π/2. In particular, Aν

q generates an extrapolated-interpolated
scale

(νH4α,q(O), Aν
4α,q)α∈[−1,∞).
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Let us denote by Δ2
s,q the extrapolated bi-Laplacian

νΔ
2
s,q :=Aν

s,q − cI, s ∈ (−4, 0), q ∈ (1,∞). (A.15)

Let us list some properties which will be needed in subsection 7.3. The proofs are similar to
the one given in example A.4.

• νH0,q(O) = Lq(O) and νH2,q(O) = D(νΔ
2
q).

• Complex interpolation property: for all −4 � s1 < s2 < ∞ and θ ∈ (0, 1),

νHs,q(O) = [νHs1,q(O), νHs2,q(O)]θ, s = (1 − θ)s1 + θs2. (A.16)

• Duality: by theorem A.3,

νH−s,q(O) = (νHs,q′(O))∗, s ∈ (0, 4).

• Identification of νHs,q(O):

νHs,q(O) =

⎧⎪⎪⎨⎪⎪⎩
Hs,q(O) if s ∈ (0, 1 + 1/q),

{Hs,q(O) : ∂νu|∂O = 0} if s ∈ (1 + 1/q, 3 + 1/q),

{Hs,q(O) : ∂νu|∂O = 0, ∂νΔu|∂O = 0} if s ∈ (3 + 1/q, 4).

(A.17)

• Real interpolation: for p ∈ (1,∞), θ ∈ (0, 1) and

νB−4+8θ
q,p (O) := (νH−4,q(O), νH4,q(O))θ,p = (νH−4,q(O), νH4,q(O))φ,p; (A.18)

provided −4 � s0 < s1, φ ∈ (0, 1) and −4 + 8θ = (1 − φ)s0 + φs1.
• Identification of νBs,q(O): for any q, p ∈ (1,∞)

νBs
q,p(O) =

⎧⎪⎪⎨⎪⎪⎩
Bs

q,p(O), if s ∈ (−2, 1 + 1/q),

{u ∈ Bs
q,p(O) : u|∂O = 0}, if s ∈ (1 + 1/q, 3 + 1/q),

{u ∈ Bs
q,p(O) : u|∂O = 0, ∂νΔu|∂O = 0}, if s ∈ (3 + 1/q, 4).

(A.19)

• Sobolev embeddings: for any s0, s1 � −1, 1 < q0 < q1 < ∞ such that s0 − d/q0 � s1

− d/q1 one has

νHs0,q0 (O) ↪→ νHs1,q1 (O). (A.20)

We conclude this example by looking at the Laplace operators on νH−s,q-spaces. To this end,
let us note that we can define Δ−4,q : νH−2,q(O) → νH−4,q(O) as

〈ψ,Δ−4,qφ〉 := 〈Δψ,φ〉, ψ ∈ νH4,q′(O),φ ∈ νH−2,q(O);

where we used that νH−4,q(O) = (νH4,q′(O))∗ and the fact that Δψ ∈ νH2,q′(O) by (A.17).
One can readily check that the above definition is consistent with the usual Laplacian provided
φ ∈ νH2,q(O).
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Since Δ0,q : νH2,q(O) → Lq(O) = νH0,q(O), by (A.16) and interpolation, one gets

Δ−2−s,q : νH−s,q(O) → νH−2−s,q(O), boundedly for s ∈ [−2, 2]. (A.21)
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