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Abstract
For a family of graphs H, the maximum size of a collection of graphs F for which the symmetric differ-
ence ⊕ of two distinct graphs 𝐺1,𝐺2 has the property 𝐺1 ⊕ 𝐺2 ∉ H (or ∈ H) is denoted by 𝐷H(𝑛) (or
𝑀H(𝑛) respectively). We also denote the independence ratio by 𝑑H(𝑛) = 𝐷H(𝑛)/2(𝑛

2).
This thesis gives a new approach to get an upper bound of 𝑑H(𝑛) where H is the family of graphs

that contain cycles of length 2𝑘, i.e. H = {𝐻 ∶ 𝐶2𝑘 ⊆ 𝐻}. The proof of which is based on a different
proof by Noga Alon concerning the upper bound of 𝑑H(𝑛) where H is the family of graphs that contain
stars with 2𝑘 edges, i.e. H = {𝐻 ∶ 𝐾1,2𝑘 ⊆ 𝐻}. A bound on the number of 𝐶2𝑘-free graphs proven by
Morris and Saxton indirectly already solved this problem, but Alon’s approach could be expanded upon
for different types of graph families for which the upper bound is not yet known. In this thesis we also
perform a spectral analysis of the Cayley graph corresponding to the families H = {𝐻 ∶ 𝐿 ⊆ 𝐻} and
H = {𝐻 ∶ 𝐿 ≅ 𝐻}, in order to give upper bounds on 𝐷H(𝑛). These upper bounds are compared to
known lower bounds.
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1
Introduction

In this thesis, we will be analysing themaximum cardinality which a collection of graphs can be under the
restriction that the symmetric difference of any two graphs within the collection does not contain certain
subgraphs. The symmetric difference ⊕ can be seen as binary addition, or bit-wise XOR addition of
the binary edge representations of the two graphs. In more technical terms, the symmetric difference
of two graphs 𝐺1,𝐺2 on the same 𝑛 labeled vertices, is the graph 𝐺 = 𝐺1 ⊕𝐺2 with

𝑉 (𝐺) = 𝑉 (𝐺1) = 𝑉 (𝐺2), 𝐸(𝐺) = (𝐸(𝐺1)∖𝐸(𝐺2))∪ (𝐸(𝐺2)∖𝐸(𝐺1)) .

That is, the edges of the symmetric difference are precisely the edges which are in exactly one of the
two graphs. Equivalently, the edge set of the symmetric difference 𝐺 = 𝐺1 ⊕ 𝐺2 can also be denoted
by taking the union of both edge sets, and removing the intersection of the edge sets, i.e.

𝐸(𝐺) = (𝐸(𝐺1)∪𝐸(𝐺2))∖ (𝐸(𝐺1)∩𝐸(𝐺2)).

For a visual, we refer to equation (1.1), where the symmetric difference of the 3-cycle 125 and the
4-cycle 2345 gives the 5-cycle 12345.
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Indeed, edges 12 and 15 are only in the first graph, edges 23, 34 and 45 are only in the second graph,
and finally the edge 25 is in both the first and the second graph. All other edges are in none of the two
graphs, hence the symmetric difference is precisely the graph with the edges 12, 23, 34, 45 and 15,
i.e. the 5-cycle 12345.

More specifically for this thesis we are interested in two objects:

Definition 1.1. Let H be a collection of graphs on 𝑛 labeled vertices. We define 𝐷H(𝑛) and 𝑀H(𝑛)
respectively as the maximum cardinality of a collection F of graphs on 𝑛 labeled vertices with the
condition that

• for any two distinct graphs 𝐺1,𝐺2 ∈ F , 𝐺1 ⊕𝐺2 ∉ H, (this is the condition for 𝐷H(𝑛))
• for any two distinct graphs 𝐺1,𝐺2 ∈ F , 𝐺1 ⊕𝐺2 ∈ H. (this is the condition for 𝑀H(𝑛))
As a rule of thumb, you could remember which condition belongs to which function 𝐷H(𝑛) or 𝑀H(𝑛),

by 𝐷 for ‘Do not’ as in ‘∉ H’, and 𝑀 for ‘Must’ as in ‘∈ H’. We note that the two objects 𝐷H(𝑛) and
𝑀H(𝑛) are closely related and they are dependent on each other, which will be shown later in Chapter
3. A collection F which satisfies the conditions for the 𝐷H(𝑛) problem, will be called an H-code, due
to it’s resemblance to a problem within coding theory.

Also note that the conditions for 𝐷H(𝑛) and 𝑀H(𝑛) only apply to distinct graphs, hence the condi-
tions are void and automatically met if there is only one graph in the collection F . Hence 𝐷H(𝑛) ≥ 1

1



2 1. Introduction

and 𝑀H(𝑛) ≥ 1 for any 𝑛. Furthermore, by definition, the objects 𝐷H(𝑛) and 𝑀H(𝑛) cannot exceed
the total number of graphs on 𝑛 vertices regardless of the collection H. That is, 𝐷H(𝑛) ≤ 2(𝑛

2) and
𝑀H(𝑛) ≤ 2(𝑛

2). We give an easy example to get some intuition.

Example 1.2. Let H = {𝐻 ∶ 𝐾2 ⊆ 𝐻} and consider the problem of finding 𝐷H(𝑛). That is we are trying
to find a maximum cardinality collection F of graphs on 𝑛 vertices, such that for any two distinct graphs
in F , their symmetric difference does not contain an edge. Note that any two distinct graphs 𝐺1 and 𝐺2
must differ in some edge, otherwise they would be the same graph. Therefore, the symmetric difference
of two distinct graphs will always contain an edge. Hence 𝐷H(𝑛) ≤ 1, and since 𝐷H′(𝑛) ≥ 1 for any H′

we have equality: 𝐷H(𝑛) = 1.
Similarly, by the exact same argument, the collection of all graphs on 𝑛 vertices is a valid collection

for the problem of 𝑀H(𝑛). Therefore 𝑀H(𝑛) ≥ 2(𝑛
2), and since 𝑀H′(𝑛) ≤ 2(𝑛

2) for any H′, we have
equality: 𝑀H(𝑛) = 2(𝑛

2).
This problem is a variation on a well known problem within the field of coding theory. We will

give a few definitions first, which can be found in an algebra book on the topic, for instance in [17].
A code 𝐶 is a collection of codewords {𝑐𝑖}𝑖. Codewords are typically binary strings, and usually the
codewords in a code are of the same length, say 𝑛. TheHamming distance 𝑑𝐻 between two codewords
𝑐1, 𝑐2 is a metric and is defined as the number of positions where the codewords do not match, i.e.
𝑑𝐻(𝑐1, 𝑐2) = |{𝑖 ∈ [𝑛] ∶ (𝑐1)𝑖 ≠ (𝑐2)𝑖}|. We note that, by definition, the Hamming distance between two
binary strings 𝑐1, 𝑐2 is equal to the number of 1’s in the bit-wise XOR of the two strings.

A code 𝐶 is 𝑒-error detecting if the Hamming distance between any two codewords in 𝐶 is greater
than 𝑒, and so if the distance between a fixed codeword 𝑐′ and any arbitrary codeword 𝑐 is less or equal
to 𝑒, 𝑐′ is not a codeword, and must have an error. Lastly, a code 𝐶 is 𝑒-error correcting if for any binary
string 𝑤 of length 𝑛, there exists at least one codeword 𝑐 ∈ 𝐶 such that 𝑑𝐻(𝑤,𝑐) ≤ 𝑒. That is, we can
cover the space of binary strings of length 𝑛 with Hamming spheres of radius 𝑒 around each codeword
𝑐. This also implies that a code is 𝑒-error correcting if the minimum Hamming distance of tha

The well known problem in coding theory, which was referred to earlier, is the following: for a con-
stant 𝑑 and fixed codeword length 𝑛, what is the largest cardinality of a code 𝐶 such that the Hamming
distance between any two codewords of 𝐶 is at least 𝑑. In terms of error correction, a code with mini-
mal Hamming distance 𝑑 is (𝑑 − 1)-error detecting and ⌊(𝑑 − 1)/2⌋-error correcting, which is optimal in
efficiency.

A variation of this problem is, instead of restricting the codewords by minimum distance, restricting
the codewords by avoiding certain substructures in the difference between codewords within the code.
These substructures are more easily explainable in a graph theoretic sense. Noting that a graph on 𝑛
vertices has (𝑛

2) possible edges, if we have a codeword of length (𝑛
2) for some positive integer 𝑛, we

can associate that codeword with a graph on 𝑛 vertices, by mapping each bit in the codeword to an
edge in the graph. That is, codewords of length (𝑛

2) are characteristic vectors of edge-sets of graphs on
𝑛, and we can map them bijectively. Furthermore, as we have defined it this way, the difference of two
codewords of length (𝑛

2) is the same as the symmetric difference of the graphs on 𝑛 vertices belong to
the two codewords by viewing the codewords as characteristic vectors of edge-sets.

The collection H for the problem of finding 𝐷H(𝑛) and 𝑀H(𝑛) can be chosen arbitrarily. However,
this paper will mainly be focused on a few specific local graph classes, as defined in Noga Alon’s
paper ”Structured Codes on Graphs” [2]. The main class H we are interested in, is the class of graphs
which contain a certain graph 𝐿 as a subgraph, i.e. H = {𝐻 ∶ 𝐿 ⊆ 𝐻}. Another graph class which
is considered, while not local, is the class of graphs which are isomorphic to a certain graph 𝐿, i.e.
H = {𝐻 ∶ 𝐿 ≅ 𝐻}.

Chapter 2 goes into the known results regarding our main problem, some variations of the main
problem, and other results regarding graph codes. Chapter 3 starts with central theorems also de-
scribed in “Structured Codes on Graphs” [2] regarding the objects 𝐷H(𝑛) and 𝑀H(𝑛) in Section 3.1.
Afterwards, we study the so called independence ratio and give a new result for the independence
ratio for cycles of even length in Section 3.2. Chapter 4 considers the eigenvalues of the Cayley graph
corresponding with the familyH, in order to bound 𝐷H(𝑛), starting with giving the upper bounds we will
use in Section 4.1. Afterwards we give the theory on how to use character sums to find the spectrum of
the Cayley graph in Section 4.2. Finally we compare the upper bounds of 𝐷H(𝑛) against known lower
bounds for a plethora of families H in Section 4.3. Lastly, Chapter 5 will give topics of further research.



2
Known results from the literature

This chapter will go into some results pertaining the main problem of finding the values 𝐷H(𝑛) and
𝑀H(𝑛) as defined in the introduction. Some of the results will be further explored in Chapter 3, with
most attention going to the independence ratio. Other results regarding variations of this main problem
are also be discussed here.

2.1. Results on the main problem
Most work on the specific problem of H-codes so far has been done by Noga Alon, and his work is
cited heavily in this paper. In “Structured Codes on Graphs” (2022) [2], Alon et al. proved exact values
of 𝐷H(𝑛) and 𝑀H(𝑛) for several different families H.

The list of families for which exact values were proven include the family of connected graphs and
the family of 2-connected graphs - but exact values were only proven for an even number of vertices
𝑛. Also included are the family of graphs containing a spanning star, the family of graphs containing a
Hamiltonian path, and the family of graphs containing a Hamiltonian cycle - for which the values were
only proven for even values of 𝑛 for which the perfect-1-factorization conjecture, which was conjectured
by Kotzig [13], holds.

Some other results concern the values of exact values of 𝐷H(𝑛) and 𝑀H(𝑛) for the family of graphs
H which contain a triangle 𝐾3 - but only for the values 𝑛 = 3,4,5,6, and the family of graph which contain
an odd cycle - but only for the values 𝑛 = 3,4,5,6,7. The case of the family containing a triangle will
also be briefly mentioned at the end of Section 3.1.

In a followup paper, Alon [1] considered the so called independence ratio, for which the definition is
given here.
Definition 2.1 (Independence ratio). For a given family of graphs on 𝑛 vertices H, we define the inde-
pendence ratio as

𝑑H(𝑛) ∶= 𝐷H(𝑛)
2(𝑛

2) .

For this paper, Alon considered the families closed under isomorphism, such as the familyH = {𝐻 ∶
𝐿 ≅ 𝐻} where 𝐿 is some graph on 𝑛 vertices. One can quickly prove for this family H that if 𝐿 is a
graph with an odd number of edges, then 𝐷H(𝑛) would be exactly 2(𝑛

2)−1, and therefore 𝑑H(𝑛) = 1
2 ,

see Example 3.6 for a proof. This gives rise to the main question Alon [1] poses in his paper:

“If H is a family closed under isomorphism, and there is a graph 𝐻 ∈ H with an even number of edges,
is it true that then 𝑑H(𝑛) → 0 as 𝑛 → ∞?”.

In that same paper, Alon proved the following noteworthy results which answer the question posed for
a selection of graphs with an even number of edges. We use the following notations: 𝐾1,𝑝 as a star
with 𝑝 edges, 𝑀𝑞 as a matching of 𝑞 edges, i.e. a graph with 𝑞 edges where no two edges share an
endpoint. We denote K(𝑟) as the family of all cliques on at most 𝑟 vertices, and K as the family of all
cliques. Alon also uses the shorthand writing of 𝑑𝐿(𝑛) instead of 𝑑H(𝑛) when H = {𝐻 ∶ 𝐿 ≅ 𝐻}.

3



4 2. Known results from the literature

Theorem ([1]). For all 𝑘 ∈ Z≥1

𝑑𝐾1,2𝑘
(𝑛) = Θ𝑘 ( 1

𝑛𝑘 ), 𝑑𝑀2𝑘
(𝑛) = Θ𝑘 ( 1

𝑛𝑘 ), 𝑑K(4𝑘+3)(𝑛) = Ω𝑘 ( 1
𝑛𝑘 ),

and also

𝑑K(𝑛) ≥ 1
2⌊𝑛/2⌋ .

There is another result concerning the family H of graphs which are isomorphic to a graph which
is made from two copies of 𝐻′ on an independent set 𝐼 , see Definition 3.12, and the result is proven
again in this thesis in Lemma 3.13. In particular, the bounds of 𝑑𝐾1,2𝑘

(𝑛) and its proofs will also be
further explored in Chapter 3.

Following up Alon’s paper regarding the independence ratio, Versteegen [20] considered the problem
of finding 𝐷H(𝑛) where the solution has to be a linear H-code, i.e. a solution to 𝐷H(𝑛) which is closed
under taking the symmetric difference. This solution is denoted by 𝐷lin

H(𝑛) and the corresponding inde-
pendence ratio is denoted by 𝑑lin

H(𝑛).
Versteegen proved the following result:

Theorem ([20]). There exists a constant 𝑐 > 0 such that ifH is a family of graphs closed under isomor-
phism and there is an 𝐻 ∈ H with an even number of edges, then 𝑑lin

H(𝑛) ≤ (𝑐 ⋅ log𝑛)−1.

This answers the question posed by Noga Alon for the specific H that have linear H-codes. Since
the problem 𝐷lin

H(𝑛) is more restricted than the nonlinear counterpart, we have 𝐷lin
H(𝑛) ≤ 𝐷H(𝑛), and

therefore 𝑑lin
H(𝑛) ≤ 𝑑H(𝑛). Therefore the previous theorem’s upper bound for 𝑑lin

H(𝑛) cannot be applied
for 𝑑H(𝑛). These linearH-codes will not be considered for this thesis, but are noteworthy nonetheless.

2.2. Variations of the main problem
Other variations of the H-code problem have been studied as well. As an example, in their 2010
paper, Ellis, Friedgut and Filmus [6] considered so called triangle-intersecting families F ; a family of
graphs F on 𝑛 vertices is triangle-intersecting if for any two graphs 𝐺1,𝐺2 ∈ F we have that 𝐺1 ∩ 𝐺2,
where 𝐸(𝐺1 ∩ 𝐺2) = 𝐸(𝐺1) ∩ 𝐸(𝐺2), contains a triangle. This problem stemmed from earlier work on
intersecting families. Some of the work done is e.g. the results from Erdös, Ko and Rado [7] on the
maximum size of 𝑘-uniform families where any two sets in the family share at least one element, and
Katona’s contribution [11] to determine the maximum size of families F where any two members of F
have an intersection of size at least 𝑗 for any 𝑗.

Ellis, Friedgut and Filmus [6] were able to prove a conjecture posed by Simonovits and Sós made
in 1976, which can be found in [4], regarding the maximum possible size of such a triangle-intersecting
family F on 𝑛 vertices.

What was already known is that for any 𝑛 ≥ 3 we have |F | ≥ 2(𝑛
2)−3, and Simonovits and Sós

conjectured that this was tight. The lower bound follows from the following proof:
Pick three vertices, 1,2 and 3 for example, and consider the family F of all graphs containing the

triangle 123. It is clear from the definition that two graphs within F intersect at least in the triangle 123,
and thus F is triangle-intersecting. The cardinality of F is the number of graphs which contain the
edges 12, 13 and 23. One can count every graph by coin-flipping for each edge, which is not 12,13 or
23, whether to put it in the graph or not. Therefore we get |F | ≥ 2(𝑛

2)−3. Ellis, Friedgut and Filmus [6]
were able to ascertain the upper bound |F | ≤ 2(𝑛

2)−3, using Fourier analytic methods. The upper bound
was also proven to be tight if and only if the graphs in F contained a fixed triangle.

This paper sparked a conjecture that their results could be applied to cross-intersecting families and
𝐾𝑡-intersecting families. Berger and Zhao [3] proved this conjecture for 𝐾4-intersecting families. That
is, they proved that if F1 and F2 are families of graphs on 𝑛 vertices and for any 𝐺1 ∈ F1 and any
𝐺2 ∈ F2 we have that 𝐺1 ∩𝐺2 has 𝐾4 as a subgraph, then |F1||F2| ≤ 4(𝑛

2)−6, with equality if and only if
F1 = F2 are the family of graphs on 𝑛 vertices containing a fixed 𝐾4.
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2.3. Other results
Some noteworthy examples of the concept of constructing codes from graphs can be found in e.g.
Tonchev’s 2002 paper [18]. Denoting𝐴 as the adjacencymatrix of some graph𝐻 on 𝑛 vertices, Tonchev
considered two generator matrices, (a) 𝐺 = [𝐼𝑛,𝐴] and (b) 𝐺 = 𝐴. In both cases (a) and (b), one can
define a linear code by taking the row space of the generator matrix. The linear code for type (a) has
codewords of length 2𝑛, dimension 𝑛 and a minimum hamming distance 𝑑 ≤ 𝛿(𝐻) + 1 where 𝛿(𝐻) is
the minimum degree of 𝐻. The linear code for type (b) has codewords of length 𝑛, dimension equal to
rank(𝐴) over the F2, and minimum Hamming distance 𝑑 ≤ 𝛿(𝐻).

Tonchev then proves the following results:

Theorem ([18]). The class A of binary linear codes of length 2𝑛 and dimension 𝑛 defined by generator
matrices of the form [𝐼𝑛,𝐴] where 𝐴 is a symmetric matrix, contains codes with minimum Hamming
distance 𝑑 ≥ 0.22𝑛.

A strongly regular graph with parameters (𝑛,𝑘,𝑎,𝑐) is a graph on 𝑛 vertices which is 𝑘-regular,
each pair of adjacent vertices has 𝑎 common neighbors, and each pair of non-adjacent vertices has 𝑐
common neighbors. For this class of graphs, Tonchev gives the following result:

Theorem ([18]). The dual code of a code of types (a) or (b) defined by a strongly regular graph with
parameters (𝑛,𝑘,𝑎,𝑐) can correct up to

𝑘 +max(𝑎,𝑐)−1
2max(𝑎,𝑐)

errors.

Kopparty et al. [12] defined graph codes using a slightly different distancemetric. Here𝐺[𝑆] denotes
the induced subgraph of 𝐺 on the vertices of 𝑆 ⊆ 𝑉 (𝐺).
Definition 2.2. Given two graphs 𝐺 and 𝐻 on the vertex set [𝑛], the graph distance 𝑑graph(𝐺,𝐻) is the
size of the smallest set 𝑆 ⊆ [𝑛] such that 𝐺[[𝑛]∖𝑆] = 𝐻[[𝑛]∖𝑆].

They then define the rate and distance for a graph code 𝐶 with 𝑛 vertices where each edge 𝑥𝑦 is
given a number 𝛼 ∈ F𝑞, corresponding the number of ‘edge types’ there are on 𝑥𝑦. If 𝑞 = 2, every edge
is given either a 0 or a 1. This corresponds to a simple graph, with an edge getting 0 meaning it is not
in the graph, and an edge getting 1 meaning it is in the graph. We continue with 𝑞 = 2 since this thesis
pertains only simple graphs. The rate and distance are defined as follows:

• Rate: 𝑅 = log2(|𝐶|)/(𝑛
2)

• Distance: The distance of a code is the largest 𝑑 such that 𝑑graph(𝐺,𝐻) for all distinct 𝐺,𝐻 ∈ 𝐶.
The relative distance 𝛿 is 𝑑/𝑛.

Kopparty et al.[12] then show, among other results, that there exist binary graph codes achieving
a rate of 𝑅 = (1 − 𝛿)2 − 𝑜(1) for any constant 𝛿 ∈ (0,1). We wont go further into the details and other
results, and one should check out the rest of the results of this paper for themselves.





3
Central theorems, and new results on

H-codes
For this thesis, we are investigating, for a collection of graphs H, the largest family of graphs F on 𝑛
vertices such that the symmetric difference of two graphs 𝐺1,𝐺2 withinF share, or do not share, certain
subgraphs 𝐻 ∈ H. We give the definition for the main objects which was given in the introduction again
here for convenience.

Definition 3.1. Let H be a collection of graphs on 𝑛 labeled vertices. We define 𝐷H(𝑛) and 𝑀H(𝑛)
respectively as the maximum cardinality of a collection F of graphs on 𝑛 labeled vertices with the
condition that

• for any two distinct graphs 𝐺1,𝐺2 ∈ F , 𝐺1 ⊕𝐺2 ∉ H, (this is the condition for 𝐷H(𝑛))
• for any two distinct graphs 𝐺1,𝐺2 ∈ F , 𝐺1 ⊕𝐺2 ∈ H. (this is the condition for 𝑀H(𝑛))
We start off in Section 3.1 with a few general results for the quantities 𝐷H(𝑛) and 𝑀H(𝑛) for any

collection H. In section 3.2 we further investigate the quantity 𝐷H(𝑛) and the independence ratio. In
this section we will also prove a new result regarding the independence ratio when H is the collection
of graphs containing cycles of length 2𝑘, for a fixed 𝑘.

3.1. Main theorems
Before we start with giving results regarding the objects 𝐷H(𝑛) and 𝑀H(𝑛), we first give a result on
vertex-transitive graphs. A graph 𝐺 is vertex-transitive if for any two distinct vertices 𝑣1,𝑣2 ∈ 𝑉 (𝐺) we
can find a graph automorphism 𝜑 ∶ 𝑉 (𝐺) → 𝑉 (𝐺) such that 𝜑(𝑣1) = 𝑣2. That is, in a vertex-transitive
graph, we can always swap the labels of any two vertices, and relabel other vertices accordingly to
preserve edge-relations, and end up with the same graph. Therefore, in a vertex-transitive graph,
every vertex has the same properties as any other vertex in the graph, e.g. every vertex has the same
degree, belongs to the same number of maximum cliques or number of maximum independent sets
etc.

We first give a result on vertex-transitive graphs regarding its independence number and its clique
number, which will be useful in the future. This result is folklore and can be found in a book on the
topic, for instance in [10], but we prove it here as well.

Theorem 3.2 (Clique-Coclique Bound [10]). For a vertex-transitive graph 𝐺, we have

𝛼(𝐺)𝜔(𝐺) ≤ |𝑉 (𝐺)|.

Proof. Since 𝐺 is vertex-transitive, every vertex is contained in at least one and the same number
of maximum cliques. Let C be the set of all maximum size cliques in 𝐺, and let 𝑘 be the number of
maximum size cliques which contain a fixed vertex from 𝐺. Since 𝐺 is vertex-transitive, this number 𝑘
is the same ragrdless of fixed vertex.

7
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Now let 𝐼 be an independent set of arbitrary size. Then 𝐼 intersects every maximum clique in C
at most one vertex, any more and two independent vertices from 𝐼 would belong to the same clique,
which is contradictory. Therefore, since every vertex in 𝐺 is in exactly 𝑘 cliques from C, |C| is at least

|C| ≥ ∑
𝑣∈𝐼

#{max. size clique containing 𝑣} = 𝑘|𝐼|. (3.1)

Also, since every vertex in 𝐺 belongs to exactly 𝑘 cliques from C, the sum of the number of vertices
on a clique of C over all cliques of C is precisely 𝑘 times the number of vertices, i.e.

|C|𝜔(𝐺) = 𝑘|𝑉 (𝐺)|. (3.2)

Therefore, combining Equations (3.1) and (3.2), we get

𝑘|𝑉 (𝐺)|
𝜔(𝐺) ≥ 𝑘|𝐼| ⟹ |𝑉 (𝐺)| ≥ |𝐼|𝜔(𝐺).

Since this is true for any independent set 𝐼 , it also holds for an indepedent set of maximum size, and
therefore 𝛼(𝐺)𝜔(𝐺) ≤ |𝑉 (𝐺)|, showing Theorem 3.2.

The following lemma was shown by Alon et al., 2022 [2], but will be proven here again with a more
extended formulation.

Lemma 3.3 ([2]). For any collection of graphs H we have

𝑀H(𝑛) ⋅𝐷H(𝑛) ≤ 2(𝑛
2).

Proof. Let 𝐺H be the graph whose vertices are all graphs on 𝑛 vertices, and two graphs 𝐺1,𝐺2 on 𝑛
vertices are joined by an edge if and only if 𝐺1 ⊕ 𝐺2 ∈ H. We will show that the graph 𝐺H is vertex
transitive.

We denote the set of all graphs on 𝑛 vertices by 𝐺[𝑛]. Now in 𝐺H we can map any vertex 𝐺1 to
another vertex 𝐺2 via the function 𝜑 ∶ 𝐺[𝑛] → 𝐺[𝑛] defined by 𝜑(𝐺) = 𝐺⊕(𝐺1 ⊕𝐺2). Now we have

𝜑(𝐺1) = 𝐺1 ⊕(𝐺1 ⊕𝐺2) = (𝐺1 ⊕𝐺1)⊕𝐺2 = 𝐾𝑛 ⊕𝐺2 = 𝐺2,

and we have

𝐺𝑖𝐺𝑗 ∈ 𝐸(𝐺H) ⟺ H ∋ 𝐺𝑖 ⊕𝐺𝑗
⟺ H ∋ (𝐺𝑖 ⊕𝐺𝑗)⊕((𝐺1 ⊕𝐺2)⊕(𝐺1 ⊕𝐺2))
⟺ H ∋ (𝐺𝑖 ⊕(𝐺1 ⊕𝐺2))⊕(𝐺𝑗 ⊕(𝐺1 ⊕𝐺2))
⟺ H ∋ 𝜑(𝐺𝑖)⊕𝜑(𝐺𝑗)
⟺ 𝜑(𝐺𝑖)𝜑(𝐺𝑗) ∈ 𝐸(𝐺H).

Thus 𝜑 is an automorphism of 𝐺H mapping 𝐺1 to 𝐺2, and hence 𝐺H is vertex transitive.
Since 𝐺H is vertex transitive, we can apply Theorem 3.2, the Clique-Coclique Bound, and find

𝛼(𝐺H) ⋅𝜔(𝐺H) ≤ |𝑉 (𝐺H)|. By definition we now have 𝛼(𝐺H) = 𝐷H(𝑛) and 𝜔(𝐺H) = 𝑀H(𝑛), and finally
there are 2(𝑛

2) graphs on 𝑛 vertices, so 𝐺H consists of 2(𝑛
2) vertices. The theorem immediately follows

from substituting in these values in the inequality.

Remark 3.4. As noted in the proof of Lemma 3.3, we showed that 𝐷H(𝑛) is the independence number
of the graph 𝐺H and 𝑀H(𝑛) is the clique number of 𝐺H. For this reason, we can refer to 𝐷H(𝑛) as the
independence problem, and 𝑀H(𝑛) as the clique problem.

Using Lemma 3.3, we can determine the values of 𝐷H(𝑛) and 𝑀H(𝑛) for some families H.

Example 3.5. Consider for 𝑛 vertices, the problem of finding 𝐷H(𝑛) and 𝑀H(𝑛) where H = {𝐻 ∶ 𝐾𝑛 ⊆
𝐻} = {𝐻 ∶ 𝐾𝑛 ≅ 𝐻}. Note that by definition of the symmetric difference, we have that two graphs
𝐺1,𝐺2 on 𝑛 vertices have the property that 𝐺1 ⊕𝐺2 = 𝐾𝑛 if and only if 𝐺2 is the complement of 𝐺1, i.e.
𝐺2 = 𝐺1.
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Therefore the collection F = {𝐾𝑛,𝐾𝑛} is obviously valid for the clique problem 𝑀H(𝑛), and hence
𝑀H(𝑛) ≥ 2. We now use Lemma 3.3 and find that

2(𝑛
2) ≥ 𝑀H(𝑛)𝐷H(𝑛) ≥ 2𝐷H(𝑛) ⟹ 𝐷H(𝑛) ≤ 2(𝑛

2)−1.

Next, if we let G be the maximum cardinality collection of graphs on 𝑛 vertices such that for any graph
𝐺 ∈ G, 𝐺 ∉ G, then G is a valid collection for the independence problem 𝐷H(𝑛). The cardinality of G is
precisely half the total number of graphs, hence

𝐷H(𝑛) ≥ 2(𝑛
2)

2 = 2(𝑛
2)−1.

This proves equality for the independence problem: 𝐷H(𝑛) = 2(𝑛
2)−1, and using Lemma 3.3 again, also

proves equality for the clique problem: 𝑀H(𝑛) = 2.

Example 3.6. Consider for 𝑛 vertices, the family H = {𝐻 ∶ 𝐹 ≅ 𝐻} where 𝐹 is a graph with an odd
number of edges. The collection F = {𝐾𝑛,𝐹} is again clearly valid for the clique problem, giving
𝑀H(𝑛) ≥ 2, which gives 𝐷H(𝑛) ≤ 2(𝑛

2)−1 as in Example 3.5.
Next, consider the collection G of all graphs with an even number of edges. By definition of the sym-

metric difference, for two graphs 𝐺1,𝐺2 on 𝑛 vertices, the number of edges of the symmetric difference
𝐺 = 𝐺1 ⊕𝐺2 is equal to

|𝐸(𝐺1)∪𝐸(𝐺2)|− |𝐸(𝐺1)∩𝐸(𝐺2)| = (|𝐸(𝐺1)|+ |𝐸(𝐺2)|− |𝐸(𝐺1)∩𝐸(𝐺2)|)− |𝐸(𝐺1)∩𝐸(𝐺2)|
= |𝐸(𝐺1)|+ |𝐸(𝐺2)|−2|𝐸(𝐺1)∩𝐸(𝐺2)|.

(3.3)

Hence, for any two graphs 𝐻1,𝐻2 in G, we have that |𝐸(𝐻1)| and |𝐸(𝐻2)| are both even, and by
equation (3.3), 𝐻1 ⊕ 𝐻2 has an even number of edges. Therefore, for all graphs 𝐻1,𝐻2 in G we have
that 𝐻1 ⊕𝐻2 ≇ 𝐹, and G is a valid collection for the independence problem.

Now we determine the size of G to give a lower bound for 𝐷H(𝑛). Note that the total number of
graphs with 2𝑘 edges for some 0 ≤ 𝑘 ≤ ⌊𝑛/2⌋ is equal to the number of combinations of 2𝑘 edges from
(𝑛

2) edges, i.e. (𝑚
2𝑘) where 𝑚 = (𝑛

2). Then we simply have by the binomial formula:

𝐷H(𝑛) ≥ |G| =
⌊𝑚/2⌋
∑
𝑘=0

(𝑚
2𝑘) = 1

2 (
𝑚

∑
𝑘=0

(𝑚
𝑘 )+

𝑚
∑
𝑘=0

(𝑚
𝑘 )(−1)𝑘)

= 1
2 (

𝑚
∑
𝑘=0

(𝑚
𝑘 )1𝑘1𝑚−𝑘 +

𝑚
∑
𝑘=0

(𝑚
𝑘 )(−1)𝑘1𝑚−𝑘)

= 1
2((1+1)𝑚 +(1+(−1))𝑚) = 1

2 (2𝑚) = 2𝑚−1 = 2(𝑛
2)−1.

This shows equality for the independence problem: 𝐷H(𝑛) = 2(𝑛
2)−1, and using Lemma 3.3 we also get

equality for the clique problem: 𝑀H(𝑛).

Along with Remark 3.4, we give another definition that pertains to the graph 𝐺H from the proof of
Lemma 3.3, and which will become useful in the future.

Definition 3.7 (Cayley digraph and Cayley graph). For a group Γ and a set 𝑆 ⊆ Γ, the Cayley digraph
𝐺 = Cay(Γ,𝑆) is the directed graph whose vertices are the group elements, i.e. 𝑉 (𝐺) = Γ, and for the
edges: 𝐸(𝐺) = {(𝑎,𝑏) ∶ 𝑏𝑎−1 ∈ 𝑆}. If 𝑆 does not contain the group identity of Γ and 𝑆 is closed under
taking inverses, then 𝐺 contains no loops and only has undirected edges, and is said to be a Cayley
graph.

Remark 3.8. As noted in the introduction, by representing graphs by their characteristic edge vector,
we have a bijective mapping between graphs on 𝑛 vertices and binary strings of length 𝑚 = (𝑛

2). To this
effect, let Γ = Z𝑚

2 , and let 𝑆 ⊂ Γ be the set of binary strings representations of the graphs 𝐻 ∈ H.
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We find that the graph 𝐺H in the proof of Lemma 3.3 is precisely the Cayley graph Cay(Γ,𝑆). This
is evident from the following equivalence: Any two vertices (graphs) 𝐺1,𝐺2 from the graph 𝐺H have
an edge iff 𝐺1 ⊕𝐺2 ∈ H, if and only if the binary edge representations of the two graphs 𝑏𝐺1

, 𝑏𝐺2
∈ Z𝑚

2
have the property that

𝑏𝐺1

XOR⊕ 𝑏−1
𝐺2

= 𝑏𝐺1

XOR⊕ 𝑏𝐺2
∈ 𝑆.

Note that this is a Cayley graph and not a digraph, as the operation of bitwise XOR is commutative,
and the empty graph on 𝑛 vertices, which is the graph corresponding to the edge vector 0, is never in
H.

In extremal graph theory, for a collection of graphs G, the extremal number ex(𝑛,G) denotes the
maximum amount of edges a graph on 𝑛 vertices can have without having a subgraph isomorphic to a
𝐺 in G. The following lemma gives some insight in the possible values both 𝐷H(𝑛) and 𝑀H(𝑛) could
obtain for local graph classes, as defined in [2].

Lemma 3.9 ([2]). For any local graph class H we have

𝐷H(𝑛) ≥ 2ex(𝑛,H), (3.4)

and therefore
𝑀H(𝑛) ≤ 2(𝑛

2)−ex(𝑛,H). (3.5)

Proof. We only have to show 𝐷H(𝑛) ≥ 2ex(𝑛,H) as the second inequality then follows from Lemma 3.3.
To prove the first inequality we give a construction.

Specifically, let 𝐺 be an 𝑛-vertex extremal graph forH, i.e. |𝐸(𝐺)| = ex(𝑛,H) and no subgraph of 𝐺
is isomorphic to any 𝐻 inH. Let G be the collection of all subgraphs of 𝐺. Then the symmetric difference
of any two graphs in G is itself a subgraph of 𝐺, and therefore cannot have a subgraph isomorphic to any
𝐻 inH. Therefore G satisfies the requirements for 𝐷H(𝑛) and we obtain that 𝐷H(𝑛) ≥ |G| = 2ex(𝑛,H).

Lemma 3.9 is useful for giving lower bounds, such as in Example 3.10.

Example 3.10. ConsiderH = {𝐻 ∶ 𝑃3 ⊆ 𝐻}; 𝑃3 is the path graph on 3 vertices. By Lemma 3.9 we know
𝐷H(𝑛) ≥ 2ex(𝑛,H). Note that ex(𝑛,H) is the maximum number of edges that a graph 𝐺 on 𝑛 vertices
can have such that 𝐺 does not contain a 𝑃3 as a subgraph. Since 𝑃3 is the same as two edges linked
by a single endpoint, ex(𝑛,H) is the maximum number of edges that a graph 𝐺 on 𝑛 vertices can have
such that no two edges of 𝐺 share an endpoint. This is precisely the definition of a matching, hence
ex(𝑛,H) = 𝜇(𝐾𝑛) = ⌊𝑛/2⌋. This gives 𝐷H(𝑛) ≥ 2⌊𝑛/2⌋.

We note that the problem of finding 𝐷H(𝑛) and 𝑀H(𝑛) is an open problem for many families H,
even families that are relatively simple. For instance, for H = {𝐻 ∶ 𝐾3 ⊆ 𝐻}, 𝐷H(𝑛) and 𝑀H(𝑛) are
open for 𝑛 ≥ 7. In this case, we know that ex(𝑛,{𝐾3}) = ⌊𝑛2/4⌋, which gives a lower bound on 𝐷H(𝑛)
of 2⌊𝑛2/4⌋ via Lemma 3.9. To prove the lower bound is tight for any 𝑛, we have two options: either

• Give a general proof that having more than 2⌊𝑛2/4⌋ graphs inside a collection gives rise to two
graphs whose symmetric difference contains a triangle, thereby immediately proving the upper
bound of inequality (3.4), or

• Give a construction for a collection of 2(𝑛
2)−⌊𝑛2/4⌋ graphs such that every two graphs in that col-

lection have their symmetric difference contain a triangle, for any 𝑛, thereby proving the tightness
of inequality (3.5), implying the tightness of inequality (3.4).

Alon et al. [2] gave constructions for the clique problem 𝑀{𝐾3}(𝑛) for 𝑛 = 3,4,5,6. These con-
structions give the exact value as the upper bound in (3.5), thereby giving the exact lower bound in
(3.4).
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3.2. Bounds on the independence ratio 𝑑H(𝑛) for some families H
We introduce the independence ratio as defined in Alon’s paper ”Graph Codes” [1]:

Definition 3.11 (Independence ratio). For the maximum cardinality of an H-free code on 𝑛 vertices
𝐷H(𝑛) we define the independence ratio as

𝑑H(𝑛) = 𝐷H(𝑛)
2(𝑛

2) .

By Lemma 3.3 and Remark 3.8, this is the ratio of the independence number of the Cayley graph
corresponding to H, compared to the total number of graphs on 𝑛 vertices, hence the name. This can
be a helpful definition, since the order of 𝐷H(𝑛) is often around the same as that of the total number
of graphs. Alon [1] only considered the families H′ that are isomorphism classes H′ = {𝐻 ∶ 𝐿 ≅ 𝐻},
for some graphs 𝐿. For this section, the new proofs consider only the families H = {𝐻 ∶ 𝐿 ⊆ 𝐻},
and therefore (most of) the new proofs will not work for determining an upper bound of 𝑑H′(𝑛) for the
isomorphism classes.

Due to the difference in definition, Alon’s [1] approach for giving a lower bound on the independence
ratio with H′ = {𝐻 ∶ 𝐿 ≅ 𝐻} does not work for determining a lower bound for the classes H = {𝐻 ∶ 𝐿 ⊆
𝐻}. This discrepancy will be quickly discussed in Section 3.2.3.

We will now start with some theorems proven by Alon [1] in Section 3.2.1, and build on these
theorems to get a result regarding the independence ratio for cycles of even length: H = {𝐻 ∶ 𝐶2𝑘 ⊆ 𝐻},
in Section 3.2.2.

3.2.1. Upper bounds for the independence ratio
The next definition concerns a type of graph with an even number of edges, which will be helpful for
Lemma 3.13.

Definition 3.12 (Copies of graphs on an independent set). Let 𝐻′ be a graph and let 𝐼 be the vertices
of an independent set of 𝐻′. A graph 𝐻 is made from two copies of 𝐻′ on 𝐼 , say 𝐻1 and 𝐻2 (so
𝐻1 ≅ 𝐻2 ≅ 𝐻′), if

• 𝑉 (𝐻) = 𝑉 (𝐻1)∪𝑉 (𝐻2) and 𝐸(𝐻) = 𝐸(𝐻1)∪𝐸(𝐻2),

• 𝑉 (𝐻1)∩𝑉 (𝐻2) = 𝐼 and 𝐸(𝐻1)∩𝐸(𝐻2) = ⌀.

Particularly, 𝐻 ≅ 𝐻1 ⊕𝐻2.

An example of a graph made from two copies of another graph can be seen in Figure 3.1. Definition
3.12 can be extended for any number of copies on the same independent set; the only vertices each
of the copies share with each other is the same independent set 𝐼 .

The following theorem gives an upper bound on 𝑑H(𝑛) regarding the class H of graphs containing
a subgraph 𝐻, where 𝐻 of the form as in Definition 3.12:

Lemma 3.13 ([1]). For a graph 𝐻′ with an independent set 𝐼 , let 𝐻 be the graph made from two copies
of 𝐻′ on 𝐼 . Then for H = {𝐺 ∶ 𝐻 ≅ 𝐺} we have

𝑑H(𝑛) ≤ 1
⌊ 𝑛−|𝐼|

|𝑉 (𝐻′)|−|𝐼| ⌋
= 𝑂(𝑛−1) .

Proof. Write down the number of vertices of 𝐻′ as 𝑎+𝑏 where 𝑎 = |𝐼| and 𝑏 = |𝑉 (𝐻′)|−|𝐼|. The number
of vertices of 𝑚 copies of 𝐻′ on 𝐼 , is equal to

∣
𝑚
⋃
𝑖=1

𝑉 (𝐻′
𝑖 )∣ =

𝑚
∑
𝑖=1

|𝑉 (𝐻′
𝑖 )|−(𝑚−1)|𝐼| = 𝑚(𝑎+𝑏)−(𝑚−1)𝑎 = 𝑎+𝑚𝑏,

since we are counting the vertices in the independent set 𝑚 times in the sum. Consider now the vertex
set of 𝐻: [𝑛] = {1,2,…,𝑛}. The maximum number of copies of 𝐻′ on 𝐼 we can fit in [𝑛] is hence equal
to 𝑚 = ⌊(𝑛−𝑎)/𝑏⌋.



12 3. Central theorems, and new results on H-codes

To this effect, fit 𝑚 copies of 𝐻′ on 𝐼 in the index set [𝑛] and let F be the set consisting of these 𝑚
copies. WLOG, each copy 𝐻′

𝑖 shares the independent set 𝐼 on the last 𝑎 vertices {𝑛 − 𝑎 + 1,𝑛 − 𝑎 +
2,…,𝑛}, and each copy 𝐻′

𝑖 for 1 ≤ 𝑖 ≤ 𝑚 has its non-shared vertices on the vertex set {(𝑖−1)𝑏 +1,(𝑖−
1)𝑏 +2,…,𝑖𝑏}.

Since for any two 𝑖, 𝑗 with 𝑖 ≠ 𝑗 we have that the copies 𝐻′
𝑖 ,𝐻′

𝑗 have the property that 𝐻 ≅ 𝐻′
𝑖 ⊕𝐻′

𝑗,
the set F forms a clique in the Cayley graph associated with theH-code. Therefore by Lemma 3.3, we
get

𝑀{𝐻}(𝑛) ≥ 𝑚 ⟹ 𝐷{𝐻}(𝑛) ≤ 2(𝑛
2)

𝑚 ⟹ 𝑑{𝐻}(𝑛) ≤ 1
𝑚 = 1

⌊ 𝑛−𝑎
𝑏 ⌋ = 1

⌊ 𝑛−|𝐼|
|𝑉 (𝐻′)|−|𝐼| ⌋

.

Note that this lemma is only applicable when 𝑛 ≥ |𝑉 (𝐻)|. As a consequence of Lemma 3.13, we
can give an upper bound for cycles 𝐶2𝑘 of even length, where 𝑘 ∈ Z≥2. Any even cycle of length 2𝑘
can be seen as being made of two copies of the path graph on (𝑘 + 1) vertices 𝑃 ′ and 𝑃 ″, on the
independent set being the two degree 1 vertices of the path, as shown in Figure 3.1. Please note that
in this figure, the vertices 𝑘+2 up to 2𝑘 that are drawn in 𝑃 ″ do not appear in 𝑃 ′. This is for readability;
these vertices are in 𝑃 ′ and should be thought of as isolated vertices in the graph. The same goes for
the vertices 2 up to 𝑘 which are in 𝑃 ′ but not in 𝑃 ″.

1 2 ⋯ 𝑘 𝑘 +1 ⊕𝑃 ′

1 𝑘 +2 ⋯ 2𝑘 𝑘 +1𝑃 ″ =

1

2 ⋯ 𝑘

𝑘 +1

𝑘 +2 ⋯ 2𝑘 −1

𝐶2𝑘

Figure 3.1: Two paths 𝑃 ′ and 𝑃 ″ of length 𝑘+1, with the independent set being the two outer vertices, labeled in red. ”Glueing”
the two paths on the red vertices gives the 2𝑘 cycle. All graphs here are graphs on the same 𝑛 vertices, isolated vertices are
omitted.

From this we see, by Lemma 3.13:
Corollary 3.14. For all 𝑘 ∈ Z≥2

𝑑{𝐻∶𝐶2𝑘≅𝐻}(𝑛) ≤ 1
⌊ 𝑛−2

(𝑘+1)−2 ⌋
= 1

⌊ 𝑛−2
𝑘−1 ⌋ = 𝑂𝑘(𝑛−1).

For any prime 𝑘, we can give a slightly better upper bound for 𝑑{𝐻∶𝐶2𝑘⊆𝐻}(𝑛) than 𝑂(𝑛−1). Before
giving this bound, we will give context and go through a proof given in Alon’s 2023 paper ”Graph Codes”
[1]. The proof in question concerns an upper bound given to the independence ratio for when H is the
collection of graphs isomorphic to stars with an even number of edges 𝐾1,2𝑘. A direct upper bound
for this independence ratio was proven for any prime 𝑘 using a modular version of the Frankl-Wilson
Theorem, see Theorem 3.15, and for an arbitrary 𝑘 an asymptotic bound was proven using a result
from Frankl and Füredi, see Theorem 3.16.
Theorem 3.15 (Frankl-Wilson 1981 ([16])). Let 𝑝 be a prime, and let 𝐿 be a list of 𝑟 distinct residue
classes modulo 𝑝. Let F be a family of subsets of [𝑛] and suppose that |𝐹 | ∉ 𝐿 (mod 𝑝) for all 𝐹 ∈ F
and that for every two distinct 𝐹1,𝐹2 ∈ F , |𝐹1 ∩𝐹2| ∈ 𝐿 (mod 𝑝). Then

|F | ≤
𝑟

∑
𝑖=0

(𝑛
𝑖).
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Theorem 3.16 (Frankl-Füredi 1985 ([9])). Let ℓ be a fixed positive integer. For every fixed nonnegative
integers ℓ1, ℓ2 such that ℓ > ℓ1 +ℓ2 there exist constants 𝑛0 = 𝑛0(ℓ) and 𝑑ℓ > 0 so that for all 𝑛 > 𝑛0, if F
is a family of ℓ-subsets of [𝑛] in which the intersection of each pair of distinct members is of cardinality
either at least ℓ −ℓ1 or strictly smaller than ℓ2, then

|F | ≤ 𝑑ℓ ⋅ 𝑛max{ℓ1,ℓ2}.

We will also need another theorem regarding the relationship between independence ratios of sub-
graphs within a vertex transitive graph. This result, Theorem 3.17, is well-known and part of the folklore
when it comes to vertex transitive graphs.

Theorem 3.17. Let 𝐺 be a vertex transitive graph, and let 𝐻 ⊆ 𝐺 be a subgraph of 𝐺, then

𝛼(𝐺)
|𝑉 (𝐺)| ≤ 𝛼(𝐻)

|𝑉 (𝐻)| .

A proof of this theorem is explained in Appendix A, as the proof is lengthy and showing the proof
here would distract from the logic of this section.

The theorem proven in Alon’s paper, which is given with a more expanded proof, is the following:

Theorem 3.18 ([1]). Let H = {𝐻 ∶ 𝐾1,2𝑘 ≅ 𝐻}. For prime 𝑘,

𝑑H(𝑛) ≤ ∑𝑘−1
𝑖=0 (𝑛−1

𝑖 )
( 𝑛−1

2𝑘−1)

and for all 𝑘 ∈ Z≥2, for sufficiently large 𝑛, there exists a constant 𝑐𝑘 such that

𝑑H(𝑛) ≤ 𝑐𝑘 ⋅ (𝑛−1)𝑘−1

( 𝑛−1
2𝑘 −1)

, i.e. 𝑑H(𝑛) = 𝑂𝑘 (𝑛−𝑘) .

Proof. In accordance to Theorem 3.17, we will bound the independence ratio of the Cayley graph
associated with the H-code by the independence ratio of some appropriate subgraph of the Cayley
graph.

To this effect, consider, on the vertex set [𝑛], the collection G of all stars with its center at the vertex
1 and (2𝑘 − 1) leaves in the vertices {2,3,…,𝑛}, with 𝑘 ∈ Z≥2. Then |G| = ( 𝑛−1

2𝑘−1). Using Theorem 3.17
we get:

𝑑H(𝑛) ≤ 𝐷H(𝑛)
2(𝑛

2)
Theorem 3.17

≤ maxF⊆G indep |F |
|G| ≤ maxF⊆G indep |F |

( 𝑛−1
2𝑘−1)

. (3.6)

We now try to bound the size of an independent set F ⊆ G, using the Frankl-Wilson Theorem 3.15.
If two stars from G intersect in exactly 𝑘 − 1 leaves, then the resulting symmetric difference of the two
stars will form a star with its center at 1 and 2𝑘 leaves, see Figure 3.2.

Each star in G is represented by a (2𝑘 −1)-subset of {2,3,…,𝑛}. For a collection F ⊆ G of (2𝑘 −1)-
subsets to be independent in the Cayley graph corresponding to H, any two distinct 𝐹1,𝐹2 ∈ F has an
intersection of size unequal to 𝑘 −1.

Hence each of the subsets of F is of cardinality −1 mod 𝑘 and each intersection of distinct subsets
of F is of cardinality unequal to −1 mod 𝑘. For prime 𝑘 we can now apply the Frankl-Wilson Theorem
3.15 to find |F | ≤ ∑𝑘−1

𝑖=0 (𝑛−1
𝑖 ), and so by (3.6)

𝑑H(𝑛) ≤ ∑𝑘−1
𝑖=0 (𝑛−1

𝑖 )
( 𝑛−1

2𝑘−1)
. (3.7)

For the non-prime 𝑘 we can use the Frankl-Füredi Theorem 3.16. In this case ℓ = 2𝑘 − 1 and we
take ℓ1 = ℓ2 = 𝑘 − 1. This choice is acceptable, since the cardinality of the intersection of two distinct
(2𝑘 − 1)-subsets in F is unequal to 𝑘 − 1, which will either be at least 𝑘 = 2𝑘 − 1 − (𝑘 − 1) = ℓ − ℓ1, or
strictly smaller than 𝑘 −1 = ℓ2. The Frankl-Füredi Theorem therefore proves for sufficiently large 𝑛 the
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1

23
⋯

𝑘 −1

𝑘
𝑣1 𝑣2

⋯

𝑣𝑘−1

𝑣𝑘

⊕

𝐾1,2𝑘−1

1

23
⋯

𝑘 −1

𝑘
𝑣′

1 𝑣′
2

⋯

𝑣′
𝑘−1

𝑣′
𝑘

=

𝐾′
1,2𝑘−1

1

𝑣1𝑣2

⋯

𝑣𝑘−1

𝑣𝑘

𝑣′
1 𝑣′

2

⋯

𝑣′
𝑘−1

𝑣′
𝑘

𝐾1,2𝑘

Figure 3.2: Two (2𝑘 − 1)-stars with common center 1 intersecting in 𝑘 − 1 vertices, labeled in yellow, with their symmetric
difference creating a (2𝑘)-star. Similarly as with Figure 3.1, all stars here are graphs on 𝑛 vertices, and the isolated vertices are
omitted.

existence of a constant 𝑐𝑘 such that |F | ≤ 𝑐𝑘 ⋅ (𝑛 − 1)max{𝑘−1,𝑘−1} = 𝑐𝑘 ⋅ (𝑛 − 1)𝑘−1. Hence, in the same
way as (3.6), we acquire

𝑑H(𝑛) ≤ maxF⊆G indep |F |
|G| ≤ 𝑐𝑘 ⋅ (𝑛−1)𝑘−1

( 𝑛−1
2𝑘 −1)

, i.e. 𝑑H(𝑛) = 𝑂𝑘 (𝑛−𝑘) .

The proofs for the upper bounds of the independence number by Alon presented so far concern the
isomorphism classes H = {𝐻 ∶ 𝐿 ≅ 𝐻}. These bounds do still hold for the independence number of
the classes H = {𝐻 ∶ 𝐿 ⊆ 𝐻} via Remark 3.19:

Remark 3.19. If two graphs 𝐺1,𝐺2 on the vertex set [𝑛] have that 𝐺1 ⊕𝐺2 contains no 𝐿 as a subgraph,
then 𝐺1 ⊕𝐺2 is surely not isomorphic to 𝐿. Therefore any collection F valid for 𝐷H(𝑛) where H = {𝐻 ∶
𝐿 ⊆ 𝐻}, is also valid for 𝐷H′(𝑛) where H′ = {𝐻 ∶ 𝐿 ≅ 𝐻}. Hence 𝐷H′(𝑛) ≥ 𝐷H(𝑛).

Therefore any lower bound on 𝐷H(𝑛) is a lower bound on 𝐷H′(𝑛), and similarly, any upper bound
on 𝐷H′(𝑛) is an upper bound on 𝐷H(𝑛).
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3.2.2. Upper bound for the independence ratio, for even cycles
We will use the idea of the proof of Theorem 3.18, to prove an upper bound to the independence ratio
for the family H = {𝐻 ∶ 𝐶2𝑘 ⊆ 𝐻} of graphs containing cycles of length 2𝑘. This is a separate result
from the results Alon [1] found since the families Alon considers are the familiesH = {𝐻 ∶ 𝐿 ≅ 𝐻}. This
new result however improves the bound we found from Corollary 3.14.

Theorem 3.20. For an integer 𝑎, denote H2𝑎 = {𝐻 ∶ 𝐶2𝑎 ⊆ 𝐻}. For all 𝑘 ∈ Z≥2, there exists a constant
𝑐𝑘 such that for sufficiently large 𝑛:

𝑑H2𝑘
(𝑛) ≤ 𝑐𝑘 ⋅ 𝑛max{𝑘−2,2}

( 𝑛
𝑘 +1)

= 𝑂𝑘 (𝑛max{−3,−𝑘+1}) .

Particularly,
𝑑H6

(𝑛) = 𝑂(𝑛−2) , 𝑑H2𝑘
(𝑛) = 𝑂𝑘 (𝑛−3) ∀𝑘 ≥ 4

Note: the upper bound Theorem 3.20 does not give a better upper bound for 𝑑H4
(𝑛) than Corollary

3.14, so it is left out here.

Proof. Like Theorem 3.18, we use Theorem 3.17 and bound 𝑑H2𝑘
(𝑛) the independence ratio of some

appropriate subgraph of the Cayley graph corresponding to H2𝑘.
Consider the collection G of (𝑘 +1)-cliques on the vertex set [𝑛]. The cardinality of G is equal to the

number of combinations of 𝑘 +1 elements from 𝑛 elements, i.e, |G| = ( 𝑛
𝑘+1).

Similarly to equation (3.6) we get:

𝑑H2𝑘
(𝑛) ≤

𝐷H2𝑘
(𝑛)

2(𝑛
2)

Theorem 3.17
≤ maxF⊆G indep |F |

|G| ≤ maxF⊆G indep |F |

( 𝑛
𝑘 +1)

. (3.8)

We now want to bound the size of an independent set F ⊆ G in the Cayley graph corresponding
to H, using the Frankl-Füredi Theorem 3.16. To be able to use this theorem, we will show that if two
(𝑘 +1)-cliques on the same 𝑛 vertices intersect in exactly 2 vertices, omitting the isolated vertices, that
its symmetric difference contains a 2𝑘-cycle. For no other number of intersections will the symmetric
difference of the two (𝑘 + 1)-cliques contain a 2𝑘-cycle. Therefore, we may use the Frankl-Füredi
Theorem 3.16 to bound an independent set F ⊆ G by forbidding vertex intersections of size 2.

For two (𝑘 +1)-cliques 𝐾′ and 𝐾″ on 𝑛 vertices, omitting the isolated vertices, if they intersect in:

• 0 vertices, the symmetric difference𝐾′ ⊕𝐾″ will be two disjoint (𝑘+1)-cliques, and cannot contain
a 2𝑘-cycle,

• 1 vertex, the symmetric difference 𝐾′ ⊕ 𝐾″ does not contain a 2𝑘-cycle, since we cannot cross
the same vertex in a cycle.

• ≥ 3 vertices, then the number of vertices in the symmetric difference 𝐾′ ⊕ 𝐾″ that have edges
connected to them will be less or equal than (𝑘 + 1) + (𝑘 + 1) − 3 = 2𝑘 − 1, and therefore the
symmetric difference cannot contain a 2𝑘-cycle.

If 𝐾′ and 𝐾″ intersect in 2 vertices, say the vertices 𝑎 and 𝑏, a 2𝑘-cycle can be made as shown in
Figure 3.3. More explicitly, let 𝑃 ′ be a Hamiltonian path from 𝑎 to 𝑏 in 𝐾′ and let 𝑃 ″ be a Hamiltonian
path from 𝑏 to 𝑎 in 𝐾″. Since the symmetric difference of 𝐾′ and 𝐾″ in this case only removes the
intersecting edge 𝑎𝑏 of 𝐾′ and 𝐾″, and 𝑃 ′ and 𝑃 ″ do not contain the edge 𝑎𝑏, stitching the Hamiltonian
paths 𝑃 ′ and 𝑃 ″ together forms a 2𝑘-cycle.

Therefore we have that F ⊆ G is an independent set in the Cayley graph corresponding to H, if and
only if for every two (𝑘 + 1)-cliques 𝐾′,𝐾″ ∈ F we have that 𝐾′ and 𝐾″ do not intersect in exactly 2
vertices, omitting the isolated vertices.

Since every (𝑘 + 1)-clique can be represented by an unordered (𝑘 + 1)-subset of [𝑛], we can use
the Frankl-Füredi Theorem to bound the number of unordered (𝑘 + 1)-subsets of [𝑛] with forbidden
intersection 2, which in turn bounds the cardinality of F . Since for two unordered (𝑘 + 1)-subsets we
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𝑎

𝑏

𝐾𝑘−1 ⊕

𝐾′
𝑎

𝑏

𝐾𝑘−1 =

𝐾″
𝑎

𝑏

𝐾𝑘−1𝐾𝑘−1

Figure 3.3: Two (𝑘 + 1)-cliques intersecting only in the vertices 𝑎 and 𝑏, with their symmetric difference creating a (2𝑘)-cycle.
The straight lines are edges, while the thick lines represent all edges from the vertices in 𝐾𝑘−1 going to the vertices 𝑎 and 𝑏. A
2𝑘-cycle in the symmetric difference is created by starting from 𝑎, then going to the left 𝐾𝑘−1 and taking a path through every
vertex, then going to 𝑏, then going to the right 𝐾𝑘−1 and taking a path through every vertex there, and then returning to 𝑎.
Similarly as with Figure 3.1, all graphs here are graphs on 𝑛 vertices, and the isolated vertices are omitted.

are forbidding intersections of size 2, the size of an intersection is either at least 3 = ℓ − (𝑘 − 2), or
strictly less than 2. Hence letting ℓ1 = 𝑘 −2 and ℓ2 = 2 meets the requirements.

The Frankl-Füredi Theorem therefore proves for sufficiently large 𝑛 the existence of a constant 𝑐𝑘
such that |F ′| ≤ 𝑐𝑘 ⋅ 𝑛max{𝑘−2,2}. Hence we acquire using equation (3.8):

𝑑H2𝑘
(𝑛) ≤ maxF⊆G indep |F |

( 𝑛
𝑘 +1)

≤ 𝑐𝑘 ⋅ 𝑛max{𝑘−2,2}

( 𝑛
𝑘 +1)

= 𝑂𝑘 (𝑛max{−3,−𝑘+1}) .

For 𝑘 = 3 this will give an order of 𝑂(𝑛−2) and for any 𝑘 ≥ 4 we get an order of 𝑂𝑘(𝑛−3), which was
to be demonstrated.

One difference between the proof of Theorem 3.18 and the proof of Theorem 3.20, is that the
Frankl-Wilson Theorem is not used. As for the reason the Frankl-Wilson Theorem was not used: The
number of intersections for two (𝑘 +1)-cliques has to be exactly 2 for a 2𝑘-cycle to be in the symmetric
difference. Therefore, an independent set F in G would be a collection of subsets of size 𝑘 + 1 ≡ 1
mod 𝑘 where each intersection is unequal to 2 mod 𝑘. The conditions for the Frankl-Wilson Theorem
are not satisfied this way.

One way to perhaps generally improve the bound is to consider, instead of cliques of size 𝑘 + 1,
larger cliques of size 𝑘+𝑚 for some 𝑚 > 1. If two (𝑘+𝑚)-cliques on the vertex set [𝑛] were to intersect
in, say, 𝑠 vertices, omitting the isolated vertices, then the resulting symmetric difference is of the form
described in Figure 3.4.

𝐾𝑠𝐾𝑘+𝑚−𝑠 ⊕

𝐾′

𝐾𝑠 𝐾𝑘+𝑚−𝑠 =

𝐾″

𝐾𝑘+𝑚−𝑠

𝑣1

𝑣2

⋮

𝑣𝑠−1

𝑣𝑠

𝐾𝑘+𝑚−𝑠

Figure 3.4: Two (𝑘 + 𝑚)-cliques intersecting in 𝑠 vertices 𝑣1,𝑣2,…,𝑣𝑠. Thick lines represent every edge going from a vertex in
a clique to a single vertex, or to a vertex in another clique, depending on the graph 𝐾′, 𝐾″ or 𝐾′ ⊕𝐾″ in context. Similarly as
with Figure 3.1, all graphs here are graphs on 𝑛 vertices, and the isolated vertices are omitted.
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We give the following remark, which uses the same ideas as in the proof of Theorem 3.20:

Remark 3.21. If 𝐾′ and 𝐾″ are two (𝑘 +𝑚)-cliques as in Figure 3.4, then we have the following:

• If 𝑠 = 0, we have two disjoint (𝑘 + 𝑚)-cliques which cannot contain a 2𝑘-cycle in the symmetric
difference if 𝑘 +𝑚 < 2𝑘.

• If 𝑠 = 1, since a cycle cannot pass over the same vertex, this cannot contain a 2𝑘-cycle either if
𝑘 +𝑚 < 2𝑘.

• If 𝑠 > 2𝑚, then the total number of vertices in the symmetric difference which have edges con-
nected to them is equal to (𝑘 +𝑚−𝑠)+(𝑘 −𝑚+𝑠)+𝑠 = 2𝑘 −2𝑚−𝑠 < 2𝑘.

Therefore only the values of 𝑠 for which a 2𝑘-cycle could be contained in 𝐾′ ⊕ 𝐾″ if 𝑘 + 𝑚 < 2𝑘, are
2 ≤ 𝑠 ≤ 2𝑚.

This remark leads to the following general theorem.

Theorem 3.22. For an integer 𝑎, denote H2𝑎 = {𝐻 ∶ 𝐶2𝑎 ⊆ 𝐻}. For any 𝑚 ≥ 1 and 𝑘 ∈ Z≥2𝑚 such that
𝑘 +𝑚 ≤ 𝑛, there exists a constant 𝑐𝑘 such that for sufficiently large 𝑛:

𝑑H2𝑘
(𝑛) ≤ 𝑐𝑘 ⋅ 𝑛max{𝑘−𝑚−1,2}

( 𝑛
𝑘 +𝑚)

= 𝑂𝑘 (𝑛max{−2𝑚−1,−𝑘−𝑚+2}) .

Proof. This proof follows the same general idea of Theorem 3.20. We bound the independence ratio
𝑑H2𝑘

(𝑛) by considering only a subgraph of the Cayley graph corresponding to H2𝑘 and using Theorem
3.17. To this effect, let G be the collection of (𝑘 + 𝑚)-cliques on the vertex set [𝑛]. Then |G| = ( 𝑛

𝑘+𝑚).
We will show that the intersections of two 𝐾′,𝐾″ ∈ G of size 2 ≤ 𝑠 ≤ 2𝑚 result in a 2𝑘-cycle contained
in 𝐾′ ⊕𝐾″. Together with Remark 3.21 this allows for the Frankl-Füredi Theorem 3.16 to be applied to
an independent set F ⊆ G in the Cayley graph. To show this we split in two cases:

• 𝑠 is even: Consider the symmetric difference from Figure 3.4. We can draw the following cycle
given in Figure 3.5.

𝐾𝑘+𝑚−𝑠

𝑝″
1

⋮

𝑝″
𝑠/2

𝑣1

𝑣2

⋮

⋮

𝑣𝑠−1

𝑣𝑠

𝐾𝑘+𝑚−𝑠

𝑝′
1

⋮

𝑝′
𝑠/2

Figure 3.5: The symmetric difference from Figure 3.4 for an even number of intersections 𝑠. A 2𝑠-cycle is given in red arrows,
which can be padded using the leftover vertices from both 𝐾𝑘+𝑚−𝑠. Other edges have not been drawn for readability

This cycle is of length 2𝑠, but we can always make the cycle bigger by adding the leftover vertices
from both 𝐾𝑘+𝑚−𝑠. This gives a cycle of length (𝑘 + 𝑚 − 𝑠) + (𝑘 + 𝑚 − 𝑠) + 𝑠 = 2𝑘 + 2𝑚 − 𝑠. We
have 2𝑘 +2𝑚−𝑠 ≥ 2𝑘 ⟺ 𝑠 ≤ 2𝑚, hence we can always construct a 2𝑘-cycle this way if 𝑠 ≤ 2𝑚.
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• 𝑠 is odd: Consider again the symmetric difference from Figure 3.4. We can draw the following
cycle given in Figure 3.6, which is essentially Figure 3.5 only considering the vertices 𝑣1 up until
𝑣𝑠−1.

𝐾𝑘+𝑚−𝑠

𝑝″
1

⋮

𝑝″
⌊𝑠/2⌋

𝑣1

𝑣2

⋮
⋮

𝑣𝑠−2

𝑣𝑠−1

𝑣𝑠

𝐾𝑘+𝑚−𝑠

𝑝′
1

⋮

𝑝′
⌊𝑠/2⌋

Figure 3.6: The symmetric difference from Figure 3.4 for an even number of intersections 𝑠. A 2(𝑠 − 1)-cycle is given in red
arrows, which can be padded using the leftover vertices from both 𝐾𝑘+𝑚−𝑠. Other edges have not been drawn for readability

This cycle is of length 2(𝑠−1), but similarly to the even case we can always make the cycle bigger
by adding the leftover vertices from both 𝐾𝑘+𝑚−𝑠. This gives a cycle of length (𝑘 + 𝑚 − 𝑠) + (𝑘 +
𝑚 − 𝑠) + 𝑠 − 1 = 2𝑘 + 2𝑚 − 𝑠 − 1. We have 2𝑘 + 2𝑚 − 𝑠 − 1 ≥ 2𝑘 ⟺ 𝑠 ≤ 2𝑚 − 1, hence we can
always construct a 2𝑘-cycle this way if 𝑠 ≤ 2𝑚−1.

This covers every single intersection 2 ≤ 𝑠 ≤ 2𝑚. We note that both these back-and-forth constructions
can only exist if there are enough vertices in the clique 𝐾𝑘+𝑚−𝑠 to go back-and-forth to. This requires
𝑘 +𝑚−𝑠 ≥ ⌊𝑠/2⌋ or 𝑘 +𝑚 ≥ 𝑠+⌊𝑠/2⌋. In the case of 𝑠 = 2𝑚 this gives 𝑘 +𝑚 ≥ 3𝑚 or 𝑘 ≥ 2𝑚.

An independent set F ⊆ G in the Cayley graph must therefore have that no two graphs 𝐾′,𝐾″ ∈ F
have intersection 2 ≤ 𝑠 ≤ 2𝑚.

Since every (𝑘 + 𝑚)-clique may be represented uniquely by (𝑘 + 𝑚)-subsets of [𝑛], we may use
the Frankl-Füredi Theorem 3.16 with ℓ1 = 𝑘 + 𝑚 − (2𝑚 + 1) = 𝑘 − 𝑚 − 1 and ℓ2 = 2. This gives rise for
sufficiently large 𝑛 to the existence of a constant 𝑐𝑘 such that |F | ≤ 𝑐𝑘 ⋅𝑛max{𝑘+𝑚−1,2}, and therefore we
have similarly to equation (3.8):

𝑑H2𝑘
(𝑛) ≤ maxF⊆G indep |F |

|G| ≤ 𝑐𝑘 ⋅ 𝑛max{𝑘+𝑚−1,2}

( 𝑛
𝑘+𝑚) = 𝑂𝑘 (𝑛max{−2𝑚−1,−𝑘−𝑚+2}) .

Theorem 3.22 applies for 𝑘 ≥ 2𝑚, hence we have 𝑑H2𝑘
(𝑛) = 𝑂𝑘(𝑛−2𝑚−1) if 𝑚 > 3, as then

−2𝑚−1 > −3𝑚+2 ≥ −𝑘 −𝑚+2.
Furthermore, if for a fixed 𝑘 we then also set 𝑚 such that 𝑘 +𝑚 = 𝑛, then we have

𝑑H2𝑘
(𝑛) ≤ 𝑂𝑘(𝑛−2(𝑛−𝑘)−1) ≤ 𝑂𝑘(𝑛−2𝑛+2𝑘−1).

This is upper bound is quite good, yet it pales in comparison to a knwon bound. Morris and Saxton [14]
proved that a collection of graphs on 𝑛 vertices that does not contain a 𝐶2𝑘, is of cardinality at most
2𝑂(𝑛1+1/𝑘). Now let F be an independent set in the Cayley graph corresponding to H2𝑘, and let 𝐺0 ∈ F
be a fixed graph. Then 𝑓 defined by 𝑓(𝐺) = 𝐺⊕𝐺0 on the domain F is an injective function from F to
the collection of 𝐶2𝑘-free graphs. Therefore F has cardinality at most |F | ≤ 2𝑂(𝑛1+1/𝑘). Hence we find:
Corollary 3.23.

𝐷H2𝑘
(𝑛) ≤ 2𝑂(𝑛1+1/𝑘) ⟹ 𝑑H2𝑘

(𝑛) ≤ 2−(𝑛
2)+𝑂(𝑛1+1/𝑘).

Furthermore, Erdős [8] proved that ex(𝑛,𝐶2𝑘) = 𝑂(𝑛1+1/𝑘). Combined with Lemma 3.9, Corollary 3.23
gives equality for both 𝐷H2𝑘

(𝑛) and 𝑑H2𝑘
(𝑛). This big-𝑂 bound decays super-exponentially, much faster

than the 𝑂(𝑛−2𝑛) bound from Theorem 3.22.
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3.2.3. Lower bounds for the independence ratio
As mentioned at the start of this section 3.2, Alon [1] describes an approach to give a lower bound for
the independence number. In the paper, the definition H′ = {𝐻 ∶ 𝐿 ≅ 𝐻} is used, where 𝐿 is a graph
of choice. Since the new Theorems 3.20 and 3.22 use that H = {𝐻 ∶ 𝐿 ⊆ 𝐻}, lower bounds for the
independence ratio 𝑑𝐻′(𝑛) proven by Alon [1] do not give lower bounds for the independence ratio
𝑑𝐻(𝑛) by Remark 3.19. We will however describe the Alon’s idea shortly.

In the proof of Theorem 3.17, see Appendix A, it was proven that for vertex transitive graphs 𝐺
we have that 𝛼(𝐺)𝜒𝑓(𝐺) = |𝑉 (𝐺)|, and hence the independence ratio for vertex transitive graphs 𝐺
is equal to the reciprocal of its fractional chromatic number 𝜒𝑓(𝐺). Therefore, an upper bound for the
fractional chromatic number would be sufficient as a lower bound for the independence number. The
chromatic number 𝜒(𝐺) is an upper bound on the fractional chromatic number, since the LP of the
fractional chromatic number is a relaxation of the ILP of the chromatic number. Hence, if we let 𝐺 be
the Cayley graph corresponding to H,

𝑑H(𝑛) = 𝐷H(𝑛)
2(𝑛

2) = 𝛼(𝐺)
|𝑉 (𝐺)| = 1

𝜒𝑓(𝐺) ≥ 1
𝜒(𝐺) . (3.9)

To this effect, consider the following: suppose that each edge 𝑒 in 𝐾𝑛, we have assigned a vector
𝑣𝑒 ∈ Z𝑟

2 for some positive integer 𝑟 such that for any 𝐻 ∈ H′ we have that the sum of edge-vectors of
𝐻 is not the all-zero vector, i.e. ∑𝑒∈𝐸(𝐻) 𝑣𝑒 ≠ 0 ∀𝐻 ∈ H′.

We now assign a color 𝑐 ∶ 𝐺[𝑛] → Z𝑟
2 to every graph-vertex 𝐺𝑖 in the Cayley graph, via 𝑐(𝐺𝑖) =

∑𝑒∈𝐸(𝐺𝑖) 𝑣𝑒. This is a valid 2𝑟-coloring of the Cayley graph. Indeed two graphs 𝐺1,𝐺2 forms an edge
in the Cayley graph if 𝐺1 ⊕ 𝐺2 ∈ H′. Hence if 𝐺1 and 𝐺2 have an edge in the Cayley graph, then for
some 𝐻 ∈ H′ we get

𝑐(𝐺1) = ∑
𝑒∈𝐸(𝐺1)

𝑣𝑒 = ∑
𝑒∈𝐸(𝐺2)

𝑣𝑒 + ∑
𝑒∈𝐸(𝐻)

𝑣𝑒 ≠ ∑
𝑒∈𝐸(𝐺2)

𝑣𝑒 + 0 = 𝑐(𝐺2).

The method described here works for any family H, not just the specific family H′ = {𝐻 ∶ 𝐿 ≅ 𝐻}.
The main problem arises when we try to assign vectors 𝑣𝑒 to edges 𝑒 of 𝐾𝑛 with the requirement that
∑𝑒∈𝐸(𝐻) 𝑣𝑒 ≠ 0. As an example, here is a Theorem from Alon [1] which proves the tightness of the
upper bound of the independence ratio for stars, as in Theorem 3.18.

Theorem 3.24 ([1]). Let H = {𝐻 ∶ 𝐾1,2𝑘 ≅ 𝐻}. For all 𝑘 ∈ Z≥1 we have

𝑑H(𝑛) = Ω𝑘 ( 1
𝑛𝑘 ).

Proof. Let 𝑠 be the smallest integer so that 2𝑠 −1 ≥ 𝑛, so 2𝑠−1 −1 ≤ 𝑛. The columns of the parity check
matrix of a BCH-code with minimum Hamming distance 2𝑘+1, show that there is a collection 𝑆 of 2𝑠 −1
binary vectors of length 𝑟 = 𝑘𝑠 so that no sum of at most 2𝑘 of them is the zero vector. Let 𝑐 be a proper
𝑛-coloring of 𝐾𝑛. For each edge 𝑒 let 𝑣𝑒 be the 𝑐(𝑒)’th element of 𝑆. Now for every graph with at most
2𝑘 edges, particularly all graphs 𝐻 which are stars with 2𝑘 edges, we have ∑𝑒∈𝐸(𝐻) 𝑣𝑒 ≠ 0.

Therefore, if 𝐺 is the Cayley graph corresponding to H, 𝑓(𝐺) = ∑𝑒∈𝐸(𝐺) 𝑣𝑒 is a proper 2𝑟-coloring
of the Cayley graph. Therefore 𝜒(𝐺) ≤ 2𝑟 = 2𝑘𝑠 = (2𝑠−1)𝑘2𝑘 ≤ (𝑛 + 1)𝑘 ⋅ 2𝑘, and hence from equation
(3.9) we get

𝑑H(𝑛) ≥ 1
𝜒(𝐺) ≥ 1

(𝑛+1)𝑘2𝑘 = Ω𝑘 ( 1
𝑛𝑘 ).

This gives the desired lower bound for stars.

The part where this proof breaks down if we were working with the family H = {𝐻 ∶ 𝐾1,2𝑘 ⊆ 𝐻} is
that now there are graphs 𝐻 ∈ H with far more than 2𝑘 edges, e.g. the complete graph 𝐾𝑛 contains
a 𝐾1,2𝑘. Therefore, for these graphs 𝐻, ∑𝑒∈𝐸(𝐻) 𝑣𝑒 might be the all-zero vector 0, which would make
𝑓 an improper coloring, breaking the proof. A different construction, or proof, is needed to adjust the
proof to the family H.





4
Bounds on the independence number,

with the use of eigenvalues
This chapter attempts to find upper bounds for 𝐷H(𝑛). By realizing that 𝐷H(𝑛) is the independence
number of the Cayley graph associated with the H-code, we can use upper bounds that are known
for the independence number. Two bounds will be used, as in Section 4.1, and also proven as the
literature likes to use the bounds, but never give the proof. These upper bounds use the eigenvalues
of that Cayley graph. The way these eigenvalues are found using character sums. The theory behind
characters, and how to use these to find eigenvalues, will be explained in Section 4.2. Finally, we
compare the used bounds against known values in Section 4.3

4.1. Someupper bounds on the independence number, using eigen-
values

Two bounds for the independence number 𝛼 will be presented here, both of which require us to know
the eigenvalues of the Cayley graph associated with the H-code, which was presented in the proof of
Lemma 3.3. Both bounds will be proven here since the literature for the proofs of the bounds, especially
for the Cvetković bound, is mostly lacking. For the following theorem we denote 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑚 as
the eigenvalues of a graph 𝐺 on 𝑚 vertices in descending order.

Theorem 4.1 (Hoffman bound). For any 𝑑-regular graph 𝐺 on 𝑚 vertices we have:

𝛼(𝐺) ≤ −𝑚⋅𝜆𝑚
𝑑 −𝜆𝑚

.

Proof. Since 𝐺 is 𝑑-regular, we know for its adjacency matrix 𝐴 that 𝐴1 = 𝑑1, and one can prove, for
instance with Gerschgorin’s circle theorem, that 𝑑 is the largest eigenvalue 𝜆1 of 𝐴. We also get that 𝐴
and the all-ones 𝑚 × 𝑚 matrix 𝐽𝑚 = 11𝑇 share the all ones vector 1 as an eigenvector, and therefore
share a basis of eigenvectors. One of which is the all one vector 1, and (𝑚 − 1) of which, label them
𝑢2,…,𝑢𝑚, are orthogonal to 1. That is, for 2 ≤ 𝑖 ≤ 𝑚 we have 𝐴𝑢𝑖 = 𝜆𝑖𝑢𝑖 and 𝐽𝑢𝑖 = 11𝑇 𝑢𝑖 = 1 ⋅ 0 = 0.

Now consider the matrix 𝐷 = 𝐴 − 𝑑−𝜆𝑚
𝑚 𝐽𝑚. The matrix 𝐷 has the exact same eigenvectors as 𝐴

and 𝐽𝑚, and we find

𝐷1 = 𝐴1 − 𝑑 −𝜆𝑚
𝑚 𝐽𝑚1 = 𝑑1 − 𝑑 −𝜆𝑚

𝑚 ⋅𝑚1 = 𝑑1 −(𝑑 −𝜆𝑚)1 = 𝜆𝑚1,

and for 2 ≤ 𝑖 ≤ 𝑚 we have

𝐷𝑢𝑖 = 𝐴𝑢𝑖 − 𝑑 −𝜆𝑚
𝑚 𝐽𝑚𝑢𝑖 = 𝜆𝑖𝑢𝑖 + 𝑑 −𝜆𝑚

𝑚 ⋅0 = 𝜆𝑖𝑢𝑖.

We see that the smallest eigenvalue of 𝐷 is 𝜆𝑚, and therefore the matrix 𝐸 = 𝐷−𝜆𝑚𝐼𝑚 has a smallest
eigenvalue of 0 and is therefore positive semi-definite. Let 𝐼 be a set of vertices which form a maximum
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independent set in 𝐴, so |𝐼| = 𝛼(𝐺). Now consider the principal submatrix 𝐸(𝐼,𝐼) of 𝐸 considering only
the rows and columns of 𝐸 which belong to the vertices of 𝐼 . This principal submatrix is positive
semidefinite because 𝐸 is. Combined with the fact that 𝐴(𝐼,𝐼) is an all zero matrix, we find that the
eigenvalues of

𝐸(𝐼,𝐼) = 𝐷(𝐼,𝐼) −𝜆𝑚𝐼𝑚,(𝐼,𝐼) = −𝑑 −𝜆𝑚
𝑚 𝐽𝑚,(𝐼,𝐼) −𝜆𝑚𝐼𝑚,(𝐼,𝐼)

are positive. Specifically, for the all-ones vector on 𝐼 we get:

𝐸(𝐼,𝐼)1𝐼 = −𝑑 −𝜆𝑚
𝑚 𝐽𝑚,(𝐼,𝐼)1𝐼 −𝜆𝑚𝐼𝑚,(𝐼,𝐼)1𝐼 = −𝑑 −𝜆𝑚

𝑚 ⋅ |𝐼|1𝐼 −𝜆𝑚1𝐼 = (−𝑑 −𝜆𝑚
𝑚 ⋅𝛼(𝐺)−𝜆𝑚)1𝐼 ,

and so finally
−𝑑 −𝜆𝑚

𝑚 ⋅𝛼(𝐺)−𝜆𝑚 ≥ 0 ⟹ 𝛼(𝐺) ≤ −𝑚𝜆𝑚
𝑑 −𝜆𝑚

.

For the Cayley graph belonging to the collection H, see Remark 3.8, we can apply the Hoffman
bound as the Cayley graph is vertex-transitive, see Lemma 3.3, and therefore regular. The eigenvalues
can be calculated, but that will be postponed until section 4.2. The only other parameter that is not
immediately apparent is the value of 𝑑, the degree of the Cayley graph. To calculate the degree of the
Cayley graph, we can use that the graph is regular. Hence, we only need to consider for example the
number of edges adjacent to the vertex in the Cayley graph belonging to the empty graph 𝐾𝑛. Namely,
the degree would be equal to the how many graphs 𝐺 exist such that 𝐾𝑛 ⊕𝐺 = 𝐺 is an element of H.
That is, the degree of the Cayley graph is precisely the cardinality of H.

For the case where H is the local graph class {𝐻′ ∶ 𝐻 ⊆ 𝐻′} for some graph 𝐻, we get that the the
degree 𝑑 is the number of graphs which contain 𝐻. This is equivalent to the total number of graphs
minus the total number of graphs which are 𝐻-free.

There is an easy lower bound to the number of H-free graphs, which uses the same idea of the
proof of Lemma 3.9: Let 𝐺 be a maximum edge H-free graph, then |𝐸(𝐺)| = ex(𝑛,H) and each of its
subgraphs is also H-free. Therefore the number of H-free graphs is at least 2ex(𝑛,H).

No exact upper bound for the number of H-free graphs is known, and for some cases only asymp-
totic results are known. For instance, for the case when H = {𝐻 ∶ 𝐾3 ⊆ 𝐻}, Erdős, Kleitman and
Rothschild [15] found that the upper bound for the number of triangle free graphs is of the same order
as the lower bound, namely 2⌊𝑛2/4⌋+𝑜(𝑛2). This gives us both bounds for the degree 𝑑:

2(𝑛
2) −2⌊𝑛2/4⌋ ≥ 𝑑 ≥ 2(𝑛

2) −2⌊𝑛2/4⌋+𝑜(𝑛2).
This is useful information, and could be expanded upon. For now we will leave it as is, because the
eigenvalues have to be calculated manually.

We continue with another bound that requires knowledge of every eigenvalue of a graph 𝐺 on 𝑚 ver-
tices, opposed to just the smallest eigenvalue. We denote 𝑚𝑅0 as the number of eigenvalues of 𝐺 with
the relation 𝑅 to 0 where 𝑅 ∈ {<,>,=,≤,≥}; e.g. 𝑚>0 is the number of eigenvalues bigger than 0.
Theorem 4.2 (Cvetković bound). For any graph 𝐺 (on 𝑚 vertices), we have

𝛼(𝐺) ≤ min{𝑚>0,𝑚<0}+𝑚=0

Proof. Let 𝐼 be the vertices of a maximum independent set in 𝐺. For the adjacency matrix 𝐴 of 𝐺, we
know then that the principal submatrix 𝐴(𝐼,𝐼) is the zero matrix, and thus 𝐴(𝐼,𝐼) has 𝛼(𝐺) eigenvalues
equal to 0.

We then use Cauchy’s interlacing theorem, and find that for the eigenvalues (𝜆𝑘)𝑘 of 𝐺 for 𝑖 ∈
{1,2,…,𝛼(𝐺)} ∶

𝜆𝑖 ≥ 0 ≥ 𝜆𝑚−𝛼(𝐺)+𝑖.
Therefore, there are at least 𝛼(𝐺) eigenvalues that are greater or equal to 0, and similarly there are at
least 𝛼(𝐺) eigenvalues that are smaller or equal to 0. Hence we get

min{𝑚≥0,𝑚≤0} ≥ 𝛼(𝐺) ⟺ 𝛼(𝐺) ≤ min{𝑚>0,𝑚<0}+𝑚=0.

We will now proceed with the calculation of the eigenvalues.
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4.2. Finding eigenvalues of the Cayley graph using character sums
From Remark 3.8, we know that 𝐺H from the proof of Lemma 3.3 is a Cayley graph Cay(Γ,𝑆) on the

group Γ = Z(𝑛
2)

2 with bitwise-XOR ⊕ as the operator, and the generating set 𝑆 is equal to the set of
binary edge representations of all graphs in H. Since 𝐺H is a Cayley graph, the eigenvalues can be
expressed using character-sums. For this we will diverge from the story to explain characters.

4.2.1. Background information on characters
We start off with the general definition of characters and build up to Theorem 4.7, which, combined with
Theorem 4.8, allows for quick calculation of all the eigenvalues of the Cayley graph. This information
is part of the folklore of spectral graph theory, and can be found in a book on the topic.

Definition 4.3. For a group Γ, a function 𝜒 ∶ Γ → C is called a character of Γ if 𝜒 is a group homomor-
phism of the multiplicative group C∗, i.e. for any 𝑎,𝑏 ∈ Γ, we have 𝜒(𝑎+𝑏) = 𝜒(𝑎)𝜒(𝑏).

For any character 𝜒 it follows from the definition that 𝜒(0) = 𝜒(0 + 0) = 𝜒(0)𝜒(0), which implies
𝜒(0) = 1. For finite groups Γ we have the added property that every element 𝑎 of Γ has a finite order,
and that order must divide the size of the group |Γ|. Hence we get that since |Γ| ⋅ 𝑎 = 0, we also must
have

1 = 𝜒(0) = 𝜒(|Γ| ⋅ 𝑎) = 𝜒(𝑎+𝑎+…+𝑎) = 𝜒(𝑎)𝜒(𝑎)⋯𝜒(𝑎) = 𝜒(𝑎)|Γ|,
and therefore each 𝜒(𝑎) is an |Γ|-th root of unity. Therefore characters are typically of the form 𝜒(𝑎) =
𝑒2𝜋𝑖𝑎/|Γ| or some power of it.

The function 𝜒 ∶ Γ → C that maps everything to 1 is a character for any group Γ. This specific
character is called the principal character and is denoted by 𝜒0. For any character which is not 𝜒0,
we find the following property:

Lemma 4.4. For any group Γ, if 𝜒 is a character of Γ which is not 𝜒0, then ∑𝑎∈Γ 𝜒(𝑎) = 0.
Proof. Since 𝜒 ≠ 𝜒0, there exists a 𝑏 ∈ Γ such that 𝜒(𝑏) ≠ 1. Then:

𝜒(𝑏)∑
𝑎∈Γ

𝜒(𝑎) = ∑
𝑎∈Γ

𝜒(𝑎+𝑏) = ∑
𝑐∈Γ

𝜒(𝑐) = ∑
𝑎∈Γ

𝜒(𝑎).

Therefore (𝜒(𝑏)−1)∑𝑎∈Γ 𝜒(𝑎) = 0, and since 𝜒(𝑏) ≠ 1 we have ∑𝑎∈Γ 𝜒(𝑎) = 0.

Using the complex inner product ⟨𝜒1,𝜒2⟩ = ∑𝑎∈Γ 𝜒1(𝑎)𝜒2(𝑎), Lemma 4.4 is used to prove the fol-
lowing lemma:

Lemma 4.5. For any group Γ, if 𝜒1,𝜒2 are two distinct characters of Γ, then ⟨𝜒1,𝜒2⟩ = 0.
Proof. Note that 𝜒 = 𝜒1 ⋅ 𝜒2 is a character of Γ, as 𝜒1 and 𝜒2 are and 𝜒2(𝑎+𝑏) = 𝜒2(𝑎)𝜒2(𝑏) = 𝜒2(𝑎) ⋅
𝜒2(𝑏). Since 𝜒1 ≠ 𝜒2, there is a 𝑏 ∈ Γ such that 𝜒1(𝑏) ≠ 𝜒2(𝑏). Therefore 𝜒(𝑏) = 𝜒1(𝑏) ⋅ 𝜒2(𝑏) ≠ 𝜒2(𝑏) ⋅
𝜒2(𝑏) = 1. Therefore 𝜒 is not the principal character and from Lemma 4.4 we get

⟨𝜒1,𝜒2⟩ = ∑
𝑎∈Γ

𝜒1(𝑎) ⋅𝜒2(𝑎) = ∑
𝑎∈Γ

𝜒(𝑎) = 0.

Lemma 4.5 tells us that the characters of Γ are orthogonal to the inner product and therefore linearly
independent. Hence the set of all characters of Γ forms a linear basis of CΓ. Particularly, for a finite
group Γ, the set of all characters of Γ forms a |Γ|-dimensional space. Hence:

Corollary 4.6. For any finite group Γ, it has at most |Γ| characters.
This gives an upper bound on the number of characters of Γ if Γ is finite. A more powerful statement

can be made when Γ is also abelian, and its result will be used later:

Theorem 4.7. For any finite abelian group Γ, it has exactly |Γ| characters.
Proof. Any finite abelian group Γ is isomorphic to a finite product of cyclic groups ⨉𝑖∈[𝑘]Z/𝑛𝑖Z. We
now prove two points:
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• Z/𝑛Z has 𝑛 characters. Indeed, for any 𝑥 ∈ {0,1,…,𝑛 − 1} consider 𝜒𝑥(𝑎) = 𝑒2𝜋𝑖𝑥𝑎/𝑛. We get 𝜒
is a character of Z/𝑛Z for all 𝑥, as for any 𝑎,𝑏 ∈ Z/𝑛Z we have

𝜒𝑥(𝑎+𝑏 mod 𝑛) = 𝑒2𝜋𝑖𝑥(𝑎+𝑏+𝑝𝑛)/𝑛 = 𝑒2𝜋𝑖𝑥𝑎/𝑛 ⋅ 𝑒2𝜋𝑖𝑥𝑏/𝑛 ⋅ 𝑒2𝜋𝑖𝑥𝑝 = 𝜒𝑥(𝑎) ⋅𝜒𝑥(𝑏) ⋅ 1.
Furthermore, 𝜒𝑥(1) gives different values for all 𝑥 ∈ {0,1,…,𝑛 − 1}, hence Z/𝑛Z has at least 𝑛
characters, and no more due to Corollary 4.6.

• If Γ1,Γ2 are two finite abelian groups with |Γ1| and |Γ2| characters, then Γ1 × Γ2 has exactly
|Γ1| ⋅ |Γ2| characters. Indeed, if 𝜒1,𝜒′

1 are two distinct characters of Γ1 and 𝜒2,𝜒′
2 are two distinct

characters of Γ2, then 𝜒(𝑎,𝑏) = 𝜒1(𝑎) ⋅ 𝜒2(𝑏) and 𝜒′(𝑎,𝑏) = 𝜒′
1(𝑎) ⋅ 𝜒′

2(𝑏) are two distinct charac-
ters of Γ1 × Γ2. It follows that both 𝜒 and 𝜒′ are characters as 𝜒1,𝜒′

1 and 𝜒2,𝜒′
2 are characters,

respectively. To show they are distinct: in one case we have an 𝑎 ∈ Γ1 such that 𝜒1(𝑎) ≠ 𝜒′
1(𝑎),

and so
𝜒(𝑎,0) = 𝜒1(𝑎) ⋅ 1 ≠ 𝜒′

1(𝑎) ⋅ 1 = 𝜒′(𝑎,0),
and in the other case we have a 𝑏 ∈ Γ2 such that 𝜒2(𝑏) ≠ 𝜒′

2(𝑏), and so

𝜒(0,𝑏) = 1 ⋅𝜒2(𝑏) ≠ 1 ⋅𝜒′
2(𝑏) = 𝜒′(0,𝑏).

Therefore Γ1 ×Γ2 has at least |Γ1| ⋅ |Γ2| characters, and no more due to Corollary 4.6.

Together we find that Γ has exactly ∏𝑖∈[𝑘] |Z/𝑛𝑖Z| = |Γ| characters.

4.2.2. Calculation of the eigenvalues
Now that we have sufficient background on characters, we continue with finding the eigenvalues of the
Cayley graph in question.

Theorem 4.8. Let Γ be a finite abelian group, 𝜒 ∶ Γ → C a character of Γ, and 𝑆 ⊆ Γ a set closed under
taking inverses and not containing the identity of Γ. Let 𝑀 be the adjacency matrix of the Cayley graph
𝐺 = Cay(Γ,𝑆). Consider the vector x ∈ CΓ such that x𝑎 = 𝜒(𝑎). Then x is an eigenvector of 𝐺, with
eigenvalue ∑𝑠∈𝑆 𝜒(𝑠).
Proof. Considering the 𝑎-th entry of the vector 𝑀x we get

(𝑀x)𝑎 = ∑
𝑏∈Γ

𝑀𝑎,𝑏x𝑏 = ∑
𝑏∶𝑏−𝑎∈𝑆

x𝑏

= ∑
𝑏∶𝑏−𝑎∈𝑆

𝜒(𝑏) = ∑
𝑠∈𝑆

𝜒(𝑎+𝑠) = ∑
𝑠∈𝑆

𝜒(𝑠)𝜒(𝑎)

= (∑
𝑠∈𝑆

𝜒(𝑠))⋅𝜒(𝑎) = (∑
𝑠∈𝑆

𝜒(𝑠))⋅ x𝑎

In our case, we are working with the Cayley graph Cay(Γ,𝑆), where Γ is the finite abelian group Z(𝑛
2)

2 .
From Theorem 4.8 we get that any character is an eigenvector. Furthermore we know that the char-
acters themselves are linearly independent from Lemma 4.5, and there are exactly |Γ| characters of Γ,
which is equal to the number of vertices in the Cayley graph Cay(Γ,𝑆). Hence we can enumerate all
eigenvalues of the Cayley graph using Theorem 4.8.

All we need now is a character for every vertex of the Cayley graph. ForZ2, we canmake a character
for any 𝑥 ∈ {0,1} of the form

𝜒𝑥(𝑎) = 𝑒2𝜋𝑖𝑥𝑎/2 = 𝑒𝜋𝑖𝑥𝑎 = (−1)𝑥𝑎 .

Based on the proof of Theorem 4.7, a working character for Z(𝑛
2)

2 would be the product of the characters
from Z2, i.e. if we let 𝑑 = (𝑛

2), for any 𝑥 ∈ Z𝑑
2 we have a character of the form

𝜒𝑥(𝑎) = ∏
𝑖∈[𝑑]

(−1)𝑥𝑖𝑎𝑖 = (−1)∑𝑖∈[𝑑] 𝑥𝑖𝑎𝑖 .

This is a useful, and easy to program, representation of the character, since the sum ∑𝑖∈[𝑑] 𝑥𝑖𝑎𝑖 is
equal to the number of corresponding ones between the two binary strings 𝑥 and 𝑎 of length 𝑑. The
code used can be found in Appendix B.
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4.3. Comparing the upper bounds against known lower bounds
From Section 4.2.2 we showed for a Cayley graph Cay(Γ,𝑆) that a character 𝜒 of Γ gives the eigen-
values of the Cayley graph, via the character sum ∑𝑠∈𝑆 𝜒(𝑠). In this section we use this method to
obtain the eigenvalues and apply them to the Hoffman bound, Theorem 4.1, and Cvetković bound,
Theorem 4.2, respectively. These bounds will be applied to the local graph class H = {𝐻 ∶ 𝐿 ⊆ 𝐻} and
the collection H = {𝐻 ∶ 𝐿 ≅ 𝐻} where 𝐿 ∈ {𝐾3,𝐾4,𝑃3,𝐶4} and the number of vertices range from 3 to
6. See Tables 4.1, 4.2, 4.3 and 4.4.

The lower bounds for 𝐷H(𝑛) for H = {𝐻 ∶ 𝐾4 ⊆ 𝐻} come from Lemma 3.9 combined with the fact
that, denoting the Turán graph as 𝑇 (𝑛,𝑟), ex(5,𝐾4) = |𝐸(𝑇 (5,3))| = 8 and ex(6,𝐾4) = |𝐸(𝑇 (6,3))| = 12
via Turán’s Theorem [19]. Lower bounds for 𝐷H(𝑛) for H = {𝐻 ∶ 𝐶4 ⊆ 𝐻} come from Lemma 3.9
combined with the results from Clapham, Flockhart, Sheehan [5], which give the extremal numbers
ex(𝑛,𝐶4) for 1 ≤ 𝑛 ≤ 21.

For the case 𝑛 = 4 and H = {𝐻 ∶ 𝑃3 ≅ 𝐻}, we can bound 𝐷H(𝑛) by noting that the collection F as
in (4.1) is valid for the independence problem, and is of size 24 = 16. The span in this context is just the
collection of all possible linear combinations of the graphs in the span under the symmetric difference
operator ⊕.

F = Span

⎧{{{
⎨{{{⎩

𝐺1 =
1

2

3

4 , 𝐺2 =
1

2

3

4 , 𝐺3 =
1

2

3

4 , 𝐺4 =
1

2

3

4

⎫}}}
⎬}}}⎭

(4.1)

Indeed, 𝑃3 has only two edges. Since none of the graphs 𝐺𝑖 in the span have overlapping edges, the
only linear combinations of the graphs in the span that have 2 edges are 𝐺1 ⊕𝐺2, 𝐺3 or 𝐺4, and none
of these are paths of length 3.

Some other lower bounds can be lifted via Remark 3.19.
The question marks in Tables 4.3 and 4.4 are unknown as far as the literature is concerned. One

can use Remark 3.19 to get a lower bound, but the difference between the upper and lower bounds
in most of the cases is too big to be meaningful. Interestingly, for 𝑛 = 5 and H = {𝐻 ∶ 𝐿 ≅ 𝐻} and
𝐿 ∈ {𝑃3,𝐶4,𝐾4}, the Hoffman bounds gives upper bounds which are powers of two. This could indicate
that a linear solution of possible for these problems. Due to Example 3.6, we already know the exact
value for 𝐿 = 𝐾3, and the Hoffman upper bound agrees with the exact value for every 𝑛 ∈ {3,4,5,6}.

The Cvetković bound gives in most cases worse upper bounds compared to the Hoffamn bound
for 𝐷H(𝑛). The biggest difference in the bounds in our results can be found in Table 4.4: for 𝑛 = 6,
and H = {𝐻 ∶ 𝑃3 ⊆ 𝐻}. Here the Hoffman bound gives an upper bound of 57 compared to the upper
bound of 19565 the Cvetković bound gives. However, interestingly, for 𝑛 = 6 we get that 𝐷H(𝑛) for
H = {𝐻 ∶ 𝐾4 ≅ 𝐻} is smaller than 12952 according to the Cvetković bound. This is also the only
occurrence of the Cvetković bound being a better upper bound than the Hoffman bound in our results.
On the other hand:

Theorem 4.9. For any 𝑚 ∈ Z≥2 and for all 𝑛 ≥ 𝑚, if H = {𝐻 ∶ 𝐾𝑚 ≅ 𝐻}, then 𝑀H(𝑛) = 2.
Proof. We will first make a collection F which adheres to the clique problem 𝑀H(𝑛). Since the Cayley
graph corresponding to theH-code is vertex transitive, we can always put the empty graph on 𝑛 vertices
𝐾𝑛 in the collection. Any new graph we put in F can now only be a 𝐾𝑚. We can choose any 𝐾𝑚 by
symmetry, hence let 𝐾 be the 𝐾𝑚 on the vertices 1,2,…,𝑚. Now F = {𝐾𝑛,𝐾} is valid for the clique
problem, and 𝑀H(𝑛) ≥ 2.

For the sake of contradiction, assume we can put another 𝐾𝑚, say 𝐾′ ≠ 𝐾 in the collection F with
it being valid for the clique problem. Hence the symmetric difference of 𝐾′ and 𝐾 should produce a
new 𝐾𝑚. Denote the number of vertices than intersect between 𝐾 and 𝐾′ by 𝑘. The number of edges
in the symmetric difference 𝐾 ⊕𝐾′ is equal to

|𝐸(𝐾)|+ |𝐸(𝐾′)|−2|𝐸(𝐾)∩𝐸(𝐾′)| = (𝑚
2 )+(𝑚

2 )−2(𝑘
2)

(see also Example 3.6).
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Since 𝐾 ⊕𝐾′ is a 𝐾𝑚, 𝑘 needs to be such that 2(𝑘
2) = (𝑚

2 ). This will give a single positive solution:

𝑘 = 1
2 + 1

2√1+2𝑚(𝑚−1),

which, if integer, could imply 𝐾 ⊕𝐾′ is a 𝐾𝑚. (This is possible for e.g. 𝑛 = 4 or 𝑛 = 21.)
To this effect let𝑚 be such that 𝑘 is integer and, WLOG, let𝐾′ be the𝐾𝑚 on the vertices 1,2,…,𝑘 and

𝑣𝑘+1,𝑣𝑘+2,…,𝑣𝑚, where 𝑣𝑘+1,𝑣𝑘+2,…,𝑣𝑘 are distinct and not from {𝑘 + 1,𝑘 + 2,…,𝑚}. The symmetric
difference𝐾 ⊕𝐾′ now contains the edges {1,𝑣𝑚} and {𝑘,𝑣𝑚} but not the edge {1,𝑘}. Since the number
of edges in the symmetric difference is exactly (𝑚

2 ), 𝐾 ⊕𝐾′ is not a 𝐾𝑚, which is a contradiction.

This would implicate that the inequality from Lemma 3.3 is not tight for this H, as we now have

𝑀H(𝑛)𝐷H(𝑛) ≤ 2 ⋅ 12952 = 25904 < 32768 = 2(6
2).

Finally we note that for H = {𝐻 ∶ 𝐾3 ⊆ 𝐻}, which is the open problem mentioned in section 3.1, the
difference between the upper bounds and the known lower bound of 2⌊𝑛2/4⌋ seems to become larger as
𝑛 increases. Even worse is that Alon et al. [2] proved for 𝑛 = 3,4,5,6 vertices that the lower bound was
tight. Therefore, this approach will most likely not give useful bounds for a higher number of vertices.
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H 𝑑 𝜆𝑚

𝑚<0,
𝑚=0,
𝑚>0

Hoffman Cvetković Known lower
bound Spectrum

𝐾3 ⊆ 1 −1 4,0,4 4 4 𝑚/2 = 4, by
Example 3.5 (1)4(−1)4

𝐾3 ≅ 1 −1 4,0,4 4 4 𝑚/2 = 4, by
Example 3.5 (1)4(−1)4

𝑃3 ⊆ 4 −2 3,3,2 8
3 < 3 5

2⌊3/2⌋ = 2,
by Example
3.10

(4)1 (−2)3 (0)3 (2)1

𝑃3 ≅ 3 −1 6,0,2 2 2 2, by Re-
mark 3.19 (3)2(−1)6

Table 4.1: For 𝑛 = 3 vertices, an overview of the Cayley graphs for the collections H given. The Cayley graph is every case has
𝑚 = 2(3

2) = 23 = 8 vertices. The degree of the Cayley graph is denoted by 𝑑, 𝜆𝑚 is the smallest eigenvalue.

H 𝑑 𝜆𝑚

𝑚<0,
𝑚=0,
𝑚>0

Hoffman Cvetković Known lower
bound Spectrum

𝐾3 ⊆ 23 −9 34,0,30 18 30 2⌊16/4⌋ = 16 (23)1(−9)6(3)29(−5)7(−1)21

𝐾3 ≅ 4 −4 8,48,8 32 56 𝑚/2 = 32, by
Example 3.6 (4)8(0)48(−4)8

𝑃3 ⊆ 54 −6 36,0,28 32
5 < 7 28

2⌊4/2⌋ = 4,
by Example
3.10

(54)1 (−6)9 (−2)27 (2)27

𝑃3 ≅ 12 −4 18,32,14 16 46 16, by (4.1) (12)2(4)12(0)32(−4)18

𝐶4 ⊆ 10 −6 31,0,33 24 31 24 = 16, see
[5] (10)1(−6)6(2)29(6)3(−2)25

𝐶4 ≅ 3 −1 48,0,16 16 16 16, by Re-
mark 3.19 (3)16(−1)48

𝐾4 ⊆ 1 −1 32,0,32 32 32 𝑚/2 = 32, by
Example 3.5 (1)32(−1)32

𝐾4 ≅ 1 −1 32,0,32 32 32 𝑚/2 = 32, by
Example 3.5 (1)32(−1)32

Table 4.2: For 𝑛 = 4 vertices, an overview of the Cayley graphs for the collections H given. The Cayley graph is every case has
𝑚 = 2(4

2) = 26 = 64 vertices. The degree of the Cayley graph is denoted by 𝑑, 𝜆𝑚 is the smallest eigenvalue.
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H 𝑑 𝜆𝑚
𝑚<0, 𝑚=0,
𝑚>0

Hoffman Cvetković Known lower bound

𝐾3 ⊆ 636 −106 498, 150,
376

1024
7 < 147 526 2⌊25/4⌋ = 64

𝐾3 ≅ 10 −10 416, 192,
416 512 608 𝑚/2 = 512, by Exam-

ple 3.6

𝑃3 ⊆ 998 −18 578, 0,
446

2304
127 < 19 446 2⌊5/2⌋ = 4, by Example

3.10

𝑃3 ≅ 30 −10 542, 0,
482 256 482 ?

𝐶4 ⊆ 476 −120 497, 60,
467

30720
149 < 207 527 26 = 64, see [5]

𝐶4 ≅ 15 −5 672, 0,
352 256 352 ?

𝐾4 ⊆ 66 −36 480, 120,
424

6144
17 < 362 544 28 = 256, by Turán’s

Theorem [19]

𝐾4 ≅ 5 −5 512, 0,
512 512 512 ?

Table 4.3: For 𝑛 = 5 vertices, an overview of the Cayley graphs for the collections H given. The Cayley graph is every case has
𝑚 = 2(5

2) = 210 = 1024 vertices. The degree of the Cayley graph is denoted by 𝑑, 𝜆𝑚 is the smallest eigenvalue. Spectrum has
been left out due to its size.

H 𝑑 𝜆𝑚
𝑚<0, 𝑚=0,
𝑚>0

Hoffman Cvetković Known lower bound

𝐾3 ⊆ 26979 −1815 17407, 0,
15361

9912320
4799 < 2066 15361 2⌊36/4⌋ = 512

𝐾3 ≅ 20 −20 10112, 12544,
10112 16384 22656 𝑚/2 = 16384, by Ex-

ample 3.6

𝑃3 ⊆ 32692 −56 13203, 6825,
12740

458752
8187 < 57 19565 2⌊6/2⌋ = 8, by Example

3.10

𝑃3 ≅ 60 −12 15020, 6264,
11484

16384
3 < 5462 17748 ?

𝐶4 ⊆ 24784 −2412 14764, 1410,
16594

19759104
6799 < 2907 16174 27 = 128, see [5]

𝐶4 ≅ 45 −15 18624, 0,
14144 8192 14144 ?

𝐾4 ⊆ 5142 −1666 17441, 0,
15327

6823936
851 < 8019 15327 212 = 4096, by Turán’s

Theorem [19]

𝐾4 ≅ 15 −13 19816, 0,
12952

106496
7 < 15214 12952 (!) ?

Table 4.4: For 𝑛 = 6 vertices, an overview of the Cayley graphs for the collections H given. The Cayley graph is every case has
𝑚 = 2(6

2) = 215 = 32768 vertices. The degree of the Cayley graph is denoted by 𝑑, 𝜆𝑚 is the smallest eigenvalue. Spectrum
has been left out due to its size.



5
Open questions and future research

This chapter pertains topics from this thesis which contain unanswered questions, which can be further
explored in future research. Section 5.1 will also explain an approach made to an algorithm solving the
problem for small inputs.

5.1. Determining 𝐷H(𝑛) for H = {𝐻 ∶ 𝐾3 ⊆ 𝐻}
As mentioned in section 3.1, the maximum cardinality collection for which no two graphs have their
symmetric difference contain a 𝐾3 is still open. Alon et al. proved for 𝑛 = 3,4,5,6 that the lower bound of
2⌊𝑛2/4⌋, which stems from Lemma 3.9, is tight, by giving constructions for the clique problem 𝑀H(𝑛) and
using Lemma 3.3. For more than 6 vertices, the independence problem is still open, as per Conjecture
5.1.

Conjecture 5.1 ([2]). Let H = {𝐻 ∶ 𝐾3 ⊆ 𝐻}. For all 𝑛 ≥ 7,

𝑀H(𝑛) ≥ 2(𝑛
2)−⌊𝑛2/4⌋

Conjecture 5.1 would give equality to both 𝐷H(𝑛) and 𝑀H(𝑛) by Lemma 3.3.
Finding the value of 𝑀H(𝑛) for 𝑛 = 7 would already be an improvement, and could be able to be

computed. One would brute force this problem by solving the clique problem on the Cayley graph
corresponding to H explicitly. As a reminder, the ILP for the clique number of a graph on 𝑚 vertices is:

𝜔(𝐺) = max{
𝑚

∑
𝑖=1

𝑥𝑖 ∶ 𝑥𝑖 +𝑥𝑗 ≤ 1 ∀𝑖𝑗 ∉ 𝐸(𝐺), 𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ [𝑚]}. (C)

Note that if we were to brute force the clique problem in its current state, there are 2(7
2) = 221 =

2097152 different graphs on 7 vertices, and therefore there are (2097152
2 ) ≈ 2.199 ⋅1012 pairs of graphs to

compare. This is too much for any computer to do in a reasonable amount of time.
On the other hand, the check whether the symmetric difference of two pairs of graphs on 𝑛 vertices

contains a triangle can be done in 𝑂(|𝑉 (𝐾𝑛)||𝐸(𝐾𝑛)|) = 𝑂(𝑛3) time which, for a constant number of
vertices 𝑛, is quickly computable. The main issue is we would need a way to drastically reduce the
number of constraints we are adding.

Since the graph for which we are trying to calculate the independence number of is vertex transitive,
any vertex is part of a maximum clique. This means that we could start at a random graph-vertex, say
the empty graph, and determine locally which graphs we can add to our clique collection. This gives
rise to a branch-and-cut approach, which will be explained in Section 5.1.1.

29
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5.1.1. A potential branch-and-cut approach
This approach is an iterative algorithm which should give an optimal solution, and should reduce the
number of constraints added.

Denote the number of vertices of the Cayley graph 𝐺 on 𝑛 vertices corresponding to H, by 𝑚.
First we relax the ILP for the clique number (C), by removing the condition that 𝑥𝑖 is integer by letting
𝑥𝑖 ∈ [0,1] ∀𝑖 ∈ [𝑚]. We also remove the non-edge constraints 𝑥𝑖 +𝑥𝑗 ≤ 1 for every edge 𝑖𝑗 in the Cayley
graph and define for some selection of non-edges 𝑃 ⊆ 𝐸(𝐾𝑚) ∖ 𝐸(𝐺), and two selections of vertices
𝑌 ,𝑍 ⊆ 𝑉 (𝐺):

𝜔relax(𝑃 ,𝑌 ,𝑍) = max{
𝑚

∑
𝑖=1

𝑥𝑖 ∶ 𝑥𝑖 +𝑥𝑗 ≤ 1 ∀𝑖𝑗 ∈ 𝑃 , 𝑥𝑖 ≥ 1 ∀𝑖 ∈ 𝑌 ,

𝑥𝑖 ≤ 0 ∀𝑖 ∈ 𝑍, 𝑥𝑖 ∈ [0,1] ∀𝑖 ∈ [𝑚]}.
(Cr)

Here 𝑃 will become a collection of local cuts, 𝑌 will be the collection of vertices that are forced to be in
the solution, and 𝑍 will be the collection of vertices that are forced to not be in the solution.

We initialize the branch-and-cut algorithm with the parameters (𝑃 ,𝑌 ,𝑍) = (⌀,{⌀},⌀), where we put
the vertex belonging to the empty graph in our solution.

Once we solve (Cr) for the Cayley graph once, it will give an optimal solution 𝐶. For each pair
of elements 𝑖, 𝑗 in the solution 𝐶 such that 𝑥𝑖 + 𝑥𝑗 > 1, we check whether the symmetric difference
contains a triangle. If the check is negative, we add the edge 𝑖𝑗 to the collection 𝑃 so that the inequality
𝑥𝑖 +𝑥𝑗 > 1 is is no longer possible. Once we have checked every pair in the solution 𝐶, if there was a
cut added to 𝑃 , we solve (Cr) again, and if not, we continue with the branching algorithm.

We now have a solution 𝐶 to the relaxed problem, where no more cutting planes can be added. If
the solution is integer, we are done and have found a solution for the clique ILP (C). Indeed, it satisfies
the integer requirement of (C) and if there was a non-edge 𝑖𝑗 ∉ 𝐸(𝐺) such that 𝑥𝑖 + 𝑥𝑗 > 1, it would
have been added to 𝑃 , and so 𝐶 is a solution for (C).

If the solution 𝐶 is not integer, we can find an element 𝑘 in our solution 𝐶 for which 𝑥𝑘 is non-integer.
Next we branch in two paths, one with input (𝑃 ,𝑌 ∪ {𝑘},𝑍), i.e. 𝑥𝑘 = 1 is chosen, and one with input
(𝑃 ,𝑌 ,𝑍 ∪{𝑘}), i.e. 𝑥𝑘 = 0 is chosen.

For each of the new branches we go over the entire process again, until all branches have been
pruned due to (C) returning an integer solution, or pruned due to the problem becoming infeasible. An
optimal solution has either 𝑥𝑘 = 1 or 𝑥𝑘 = 0 for every vertex 𝑘, so that optimal solution must lie on one of
the branches (𝑃 ,𝑌 ∪ {𝑘},𝑍} or (𝑃 ,𝑌 ,𝑍 ∪ {𝑘}). Therefore, once every branch has been explored, the
algorithm must have found that optimal solution. Hence the maximum objective value of all solutions
found via the branch-and-cut method is optimal for the maximum value for (C).

An attempt on building this algorithm was made, and it gives the same results as Alon [2] for small
inputs. Only issue is that, when branching in the branch-and-cut approach, we only add one vertex
to the solution at a time. However, the number 2(𝑛

2)−⌊𝑛2/4⌋ will grow exponentially, hence the program
slows down in efficiency when the number of vertices increases.

Here we explain a speedup that could be applied:. If we assume the optimal solution to the clique
problem is a linear collection, i.e. closed under taking the symmetric difference, then we can apply
the following: For every new element 𝑘 that we add to 𝑌 , add also the elements {𝑘 ⊕ 𝑦 ∶ 𝑦 ∈ 𝑌 } to 𝑌 .
Similarly, for every 𝑘 that we add to 𝑍, add also the elements {𝑘⊕𝑧 ∶ 𝑧 ∈ 𝑍} to 𝑍. Denoting the number
of branches the original method needs to explore by 𝐵, the speedup would only have to explore log2(𝐵)
branches. Using this speedup would therefore drastically increase the efficiency, and would make it
possible to calculate the value 𝑀H(7).

The big downside of this speedup is that the optimal solutions need not be linear, in which case
this speedup would only show that no linear solution exists. If one could prove that 𝑀H(𝑛) has a linear
solution for any 𝑛, which the author doubts is the case, this issue would be non-existent.



5.2. General bounds on 𝐷H(𝑛) and 𝑑H(𝑛) for H = {𝐻 ∶ 𝐿 ≅ 𝐻} 31

5.2. General bounds on 𝐷H(𝑛) and 𝑑H(𝑛) for H = {𝐻 ∶ 𝐿 ≅ 𝐻}
In the calculations of the upper bound for 𝐷H(𝑛) using eigenvalues that were done in Section 4.3, we
found that for the isomorphism classes H = {𝐻 ∶ 𝐿 ≅ 𝐻} with 𝐿 ∈ {𝑃3,𝐾4,𝐶4}, the Hoffman bounds
returned a power of 2 as an upper bound for 𝑛 = 5 and 𝑛 = 6, while lower bounds for 𝐷H(𝑛) were
unknown. Constructions for the independence problem 𝐷H(𝑛) for these 𝐿 would be very helpful to
show the accuracy of the upper bounds in these cases. Brute force solutions are also possible to do
here since the number of vertices is small, so exact values can be obtained, and can be compared
against the upper bounds.

As noted in Section 4.3, when 𝐿 = 𝐾4, we know that 𝑀H(𝑛) = 2 from Theorem 4.9, and the upper
bound on 𝐷H(𝑛) for 𝑛 = 6 showed that the inequality from Lemma 3.3 was not tight. One could alter the
proof of Theorem 3.18 such that it could be applied for the family H = {𝐻 ∶ 𝐾4 ≅ 𝐻}, and give a bound
for 𝑑H(𝑛), which would answer an open question asked by Alon [1]. One would have to find a family of
graphs for which a symmetric difference of two graphs within that collection is a 𝐾4, the existence of
which is unknown to the author.

Furthermore, from Corollary 3.14 we know that for the families H′
2𝑘 = {𝐻 ∶ 𝐶2𝑘 ≅ 𝐻} with 𝑘 ≥ 2, we

have 𝑑H′
2𝑘

(𝑛) = 𝑂(𝑛−1). Theorems 3.20 and 3.22 cannot be applied to these families since they were
proven for H2𝑘 = {𝐻 ∶ 𝐶2𝑘 ⊆ 𝐻}

5.3. Lower bounds on 𝑑H(𝑛) for H = {𝐻 ∶ 𝐿 ⊆ 𝐻}
In Section 3.2.3 we discussed the approach Alon used to prove a lower bound on 𝑑H′(𝑛) in the case
that H′ = {𝐻 ∶ 𝐾1,2𝑘 ≅ 𝐻}. We found that the proof of Theorem 3.24 was insufficient to prove the
same lower bound for the independence ratio 𝑑H(𝑛) of the subgraph family H = {𝐻 ∶ 𝐿 ⊆ 𝐻}. For this
family H we already get a lower bound from Lemma 3.9, but the approach from Section 3.2.3 might
tighten the bound even further. Hence, altering the method used here to workk for the family H might
be interesting research for later.

The proof also relied on the fact that the columns of a BCH-code with a certain minimum Hamming
distance gave rise to a collection of binary vectors which the vectors 𝑣𝑒 could be assigned to. Perhaps
a different type of code could be used that has different properties pertaining its columns or rows, which
could be used for the subgraph problem.

5.4. New upper bounds on 𝑑H(𝑛)
We were able to prove an upper bound for 𝑑H2𝑘

(𝑛) where H2𝑘 = {𝐻 ∶ 𝐶2𝑘 ⊆ 𝐻} of approximate order
𝑂(𝑛−2𝑛), using an approach by Alon [1]. This bound turned out to be worse than the upper bound
indirectly found by Morris and Saxton [14], see Corollary 3.23 and the remarks before. The method
used by Alon could most certainly be expanded upon for families of graphsH for which we do not know
any upper bound for 𝑑H(𝑛).

An earlier approach was made by the author to determine the independence ratio for H′
2𝑘 = {𝐻 ∶

𝐶2𝑘 ≅ 𝐻} where, in the style on Theorems 3.20 and 3.22, we let G be a subgraph of the Cayley graph
corresponding toH′

2𝑘 equal to the collection of (𝑘+1)-cycles. It turned out that F ⊆ G was independent
in the Cayley graph if and only if two graphs 𝐹1,𝐹2 ∈ F did not have exactly 2 vertices intersect and
those two vertices had an edge in both 𝐹1 and 𝐹2. It would not be completely possible to use the
Frankl-Füredi Theorem 3.16 immediately in this case. If one could alter the statement of the Frankl-
Füredi Theorem, one might be able to give a better upper bound than the inverse linear bound of
Corollary 3.14.





A
Proof of Theorem 3.17

To restate the theorem in question for clarity:

Theorem. Let 𝐺 be a vertex transitive graph, and let 𝐻 ⊆ 𝐺 be a subgraph of 𝐺, then

𝛼(𝐺)
|𝑉 (𝐺)| ≤ 𝛼(𝐻)

|𝑉 (𝐻)| .

For the proof we will need the definition of the fractional chromatic number.

Definition A.1 (Fractional chromatic number). Let 𝐺 be a graph and denote I(𝐺) as the collection of
all independent sets in 𝐺. The fractional chromatic number 𝜒𝑓(𝐺) of a graph 𝐺 is the solution of the
following linear optimization problem:

𝜒𝑓(𝐺) = min
⎧{
⎨{⎩

∑
𝐼∈I(𝐺)

𝜆𝐼 ∶ ∑
𝐼∈I(𝐺),𝑣∈𝐼

𝜆𝐼 ≥ 1 ∀𝑣 ∈ 𝑉 (𝐺), 𝜆𝐼 ≥ 0 ∀𝐼 ∈ I(𝐺)
⎫}
⎬}⎭

, (P)

or equivalently, the solution to its dual linear problem:

𝜒𝑓(𝐺) = max
⎧{
⎨{⎩

∑
𝑣∈𝑉 (𝐺)

𝑤𝑣 ∶ ∑
𝑣∈𝐼

𝑤𝑣 ≤ 1 ∀𝐼 ∈ I(𝐺), 𝑤𝑣 ≥ 0 ∀𝑣 ∈ 𝑉 (𝐺)
⎫}
⎬}⎭

. (D)

The equality of both forms of 𝜒𝑓(𝐺) comes from strong duality: both the primal (P) and the dual (D) are
feasible, and bounded. Indeed, for the primal (P), 𝜆 = (𝜆𝐼)𝐼∈I(𝐺) = 1 is a feasible solution, and for the
dual (D), 𝑤 = (𝑤𝑣)𝑣∈𝑉 (𝐺) = 0 is feasible.

Furthermore, in the primal (P) we can clearly see that since 𝜆𝐼 ≥ 0 for all independent sets 𝐼 in I(𝐺),
that the objective value ∑𝐼∈I(𝐺) 𝜆𝐼 is at least ∑𝐼∈I(𝐺) 0 = 0. Finally in the dual (D), since ∑𝑣∈𝐼 𝑤𝑣 ≤ 1
for all independent sets 𝐼 in I(𝐺), 𝑤𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 (𝐺) as each individual vertex is an independent
set in 𝐺. So the objective value ∑𝑣∈𝑉 (𝐺) 𝑤𝑣 is at most ∑𝑣∈𝑉 (𝐺) 1 = |𝑉 (𝐺)|.

Now we can start with the proof.

Proof of the theorem. We split the proof in four parts:

• First we prove 𝛼(𝐺)𝜒𝑓(𝐺) ≥ |𝑉 (𝐺)|. Consider the dual (D) of the fractional chromatic number.
We claim that the vector 𝑤 where 𝑤𝑣 = 1/𝛼(𝐺) for all 𝑣 ∈ 𝑉 (𝐺) is a feasible solution. Indeed,
clearly 𝑤𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 (𝐺), and for each independent set 𝐼 in I(𝐺) we have

∑
𝑣∈𝐼

𝑤𝑣 = ∑
𝑣∈𝐼

1
𝛼(𝐺) = |𝐼|

𝛼(𝐺) ≤ 1.

Hence, since 𝑤 is feasible, we must have

𝜒𝑓(𝐺) ≥ ∑
𝑣∈𝑉 (𝐺)

𝑤𝑣 = ∑
𝑣∈𝑉 (𝐺)

1
𝛼(𝐺) = |𝑉 (𝐺)|

𝛼(𝐺) ⟺ 𝛼(𝐺)𝜒𝑓(𝐺) ≥ |𝑉 (𝐺)|.

33
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• Next we prove, for vertex transitive graphs 𝐺, that 𝛼(𝐺)𝜒𝑓(𝐺) ≤ |𝑉 (𝐺)|. For vertex transitive
graphs, every vertex is contained at least one, and in the same amount of maximum independent
sets. Call this number 𝑘.
In the context of the primal problem (P), let 𝜆 = (𝜆𝐼)𝐼∈I(𝐺) where 𝜆𝐼 = 1/𝑘 if 𝐼 is of maximum size,
and 0 otherwise. This is a feasible solution to the primal problem as each 𝜆𝐼 is greater or equal
to 0, and for all vertices 𝑣 ∈ 𝑉 (𝐺) we have

∑
𝐼∈I(𝐺),𝑣∈𝐼

𝜆𝐼 = ∑
𝐼∈I(𝐺) max indep.,𝑣∈𝐼

𝜆𝐼 = 𝑘 ⋅ 1
𝑘 = 1.

If we denote the total number of maximum independent sets as ℓ, we find that

𝜒𝑓(𝐺) ≤ ∑
𝐼∈I(𝐺)

𝜆𝐼 = ∑
𝐼∈I(𝐺) max indep.

𝜆𝐼 = ℓ
𝑘 .

We prove that the ratios ℓ/𝑘 and |𝑉 (𝐺)|/𝛼(𝐺) are the same, via a double counting argument. Let
𝑆 be the set of pairs (𝑣,𝐼) where 𝐼 is a maximum independent set, and 𝑣 ∈ 𝐼 . On one side, we
have

|𝑆| = |{(𝑣,𝐼) ∶ 𝑣 ∈ 𝑉 (𝐺),𝐼 ∈ I(𝐺) max indep,𝑣 ∈ 𝐼}|

= ∑
𝐼∈I(𝐺) max indep

∣⋃
𝑣∈𝐼

{(𝑣,𝐼)}∣ = ∑
𝐼∈I(𝐺) max indep

𝛼(𝐺) = ℓ𝛼(𝐺),

and on the other side we have

|𝑆| = |{(𝑣,𝐼) ∶ 𝑣 ∈ 𝑉 (𝐺),𝐼 ∈ I(𝐺) max indep,𝑣 ∈ 𝐼}|

= ∑
𝑣∈𝑉 (𝐺)

∣ ⋃
𝐼∈I(𝐺) max indep,𝑣∈𝐼

{(𝑣,𝐼)}∣ = ∑
𝑣∈𝑉 (𝐺)

𝑘 = |𝑉 (𝐺)|𝑘.

Together we get ℓ/𝑘 = |𝑉 (𝐺)|/𝛼(𝐺), and so

𝜒𝑓(𝐺) ≤ |𝑉 (𝐺)|
𝛼(𝐺) ⟺ 𝛼(𝐺)𝜒𝑓(𝐺) ≤ |𝑉 (𝐺)|.

• Now we prove that for any subgraph 𝐻 ⊆ 𝐺, we have 𝜒𝑓(𝐺) ≥ 𝜒𝑓(𝐻). In the context of the dual
problem (D), consider an optimal solution 𝑤𝐻 for 𝜒𝑓(𝐻). We can make a solution 𝑤𝐺 for 𝜒𝑓(𝐺)
by letting

𝑤𝐺
𝑣 = {𝑤𝐻

𝑣 if 𝑣 ∈ 𝐻
0 else

This is a feasible solution for the dual problem as 𝑤𝐺
𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 (𝐺) and for any independent

set 𝐼 ∈ I(𝐺) we know 𝐼 ∩𝑉 (𝐻) is independent in 𝐻 and so

∑
𝑣∈𝐼

𝑤𝐺
𝑣 = ∑

𝑣∈(𝐼∩𝑉 (𝐻))
𝑤𝐻

𝑣 ≤ 1.

Therefore
𝜒𝑓(𝐺) ≥ ∑

𝑣∈𝑉 (𝐺)
𝑤𝐺

𝑣 = ∑
𝑣∈𝑉 (𝐻)

𝑤𝐻
𝑣 = 𝜒𝑓(𝐻).

Finally, putting everything together we have that for any graph 𝐺 we have 𝛼(𝐺)𝜒𝑓(𝐺) ≥ |𝑉 (𝐺)|, with
equality for vertex transitive graphs, and for any subgraph 𝐻 ⊆ 𝐺 we have 𝜒𝑓(𝐺) ≥ 𝜒𝑓(𝐻). Therefore,
for any vertex transitive graph 𝐺 and subgraph 𝐻 ⊆ 𝐺 we find:

𝛼(𝐺)
|𝑉 (𝐺)| = 1

𝜒𝑓(𝐺) ≤ 1
𝜒𝑓(𝐻) ≤ 𝛼(𝐻)

|𝑉 (𝐻)| .



B
Sagemath code for finding the

eigenvalues of the Cayley graph

1 from itertools import product
2 from collections import Counter
3

4 # This loads the number of vertices n, the number of edges of K_n and
5 # the collection of forbidden/necessary structures
6 n = 6
7 num_edges = n * (n - 1) // 2 # Number of edges in the complete graph K_n
8 subgraph = False # ”subgraph = False” is for isomorphism
9

10 # H, num_ver_H, num_edg_H = graphs.CompleteGraph(Integer(3)), 3, 3 # check for K_3
11 H, num_ver_H, num_edg_H = graphs.CompleteGraph(Integer(4)), 4, 6 # check for K_4
12 # H, num_ver_H, num_edg_H = graphs.CycleGraph(Integer(4)), 4, 4 # check for C_4
13 # H, num_ver_H, num_edg_H = graphs.PathGraph(Integer(3)), 3, 2 # check for P_3
14

15 # This contains helper functions for the calculation of the eigenvalues.
16 global memo
17 memo = set()
18

19 def add_in_zero_pos(binary_string) -> set:
20 ”””Given a binary string s, returns all binary strings s' such
21 that the intersection of s and s' is precisely s.
22 Equivalently, converting s to a graph G_s, this function returns all graphs
23 containing G_s as a subgraph.”””
24 # Positions where S has 0
25 zero_positions = [i for i, b in enumerate(binary_string) if b == '0']
26 k = len(zero_positions)
27 result_set = set()
28

29 for combo in product(”01”, repeat=k):
30 s_list = list(binary_string)
31 for pos, bit in zip(zero_positions, combo):
32 s_list[pos] = bit
33 result_set.add(int(””.join(s_list),2))
34 return result_set
35

36 def int_graph_subgraph_check(H_forbid, G_int) -> bool:
37 ”””Given a integer s (as a binary s_bin), the function checks if the according graph
38 contains the forbidden graph H.

35



36 B. Sagemath code for finding the eigenvalues of the Cayley graph

39 In the case of not containing H as a subgraph, this function adds all binary strings
40 s' such that the intersection of s' and s_bin is
41 precisely s_bin to a memo for speedup.”””
42 global memo
43 if G_int in memo:
44 return True
45 G_graph = Graph(n)
46 idx_counter = 0
47 pre = bin(G_int)[2:]
48 G_binary = '0'*(num_edges - len(pre)) + pre
49 for i in range(n):
50 for j in range(i+1,n):
51 if G_binary[idx_counter] == '1':
52 G_graph.add_edge((i,j))
53 idx_counter += 1
54 if H.is_subgraph(G_graph, induced = False, up_to_isomorphism = True):
55 memo = memo.union(add_in_zero_pos(G_binary))
56 return True
57 return False
58

59 def int_graph_isomorphism_check(H, G_int) -> bool:
60 ”””Given a integer s (as a binary s_bin), the function checks if the according graph
61 is the forbidden graph H. The only check needed is graphs on num_edg_H vertices”””
62 if G_int.bit_count() != num_edg_H:
63 return False
64 G_graph = Graph(n)
65 idx_counter = 0
66 pre = bin(G_int)[2:]
67 G_binary = '0'*(num_edges - len(pre)) + pre
68 for i in range(n):
69 for j in range(i+1,n):
70 if G_binary[idx_counter] == '1':
71 G_graph.add_edge((i,j))
72 idx_counter += 1
73 if H.is_subgraph(G_graph, induced = False, up_to_isomorphism = True):
74 return True
75 return False
76

77 # This contains the calculation of the eigenvalues
78 def eigenvalues_of_cayley_graph() -> tuple:
79 ”””As per the theory, there is a character chi for the Cayley graph Cay(Gamma,S) of
80 the group Gamma = {0,1}^d with bitwise xor addition (d = 2**(n(n-1)//2)) and
81 generating set $S$ of the form: chi(x) = (-1)**(sum r_i*x_i)
82 for any element r in {0,1}^d. Let x in ({-1,1})^({0,1}^d) be such that x_a = chi(a),
83 then x is an eigenvector with eigenvalue sum_{s in S} chi(s).
84

85 ”sum r_e*x_e” is equal to the number of edges in the intersection of a graph s from S
86 (x_e) and an arbitrary graph G (r_e).
87 Function returns dictionary of the eigenvalues, and the size of the
88 generating set (the degree of the Cayley graph)”””
89

90 if subgraph:
91 S = [G_int for G_int in range(0, 2**num_edges) \
92 if int_graph_subgraph_check(H, G_int)] # For subgraph
93 else:
94 S = [G_int for G_int in range(0, 2**num_edges) \
95 if int_graph_isomorphism_check(H, G_int)] # For isomorphism
96 S_size = len(S)
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97

98 eigenvalues = Counter()
99 for i, graph_1 in enumerate(range(0,2**num_edges)):

100 if i == 1 << (num_edges - 1):
101 print(”halfway”)
102 dum_sum = 0
103 for graph_2 in S:
104 # Bitwise AND, parity check
105 parity = (graph_1 & graph_2).bit_count() & 1
106 dum_sum += 1 - 2 * parity
107 eigenvalues[dum_sum] += 1
108 return dict(eigenvalues), S_size
109

110 # This last part prints the results
111 eigenvals, degree = eigenvalues_of_cayley_graph()
112 zeroes = 0
113 negative = 0
114 positive = 0
115

116 least = min(eigenvals.keys())
117 for eigval, mult in eigenvals.items():
118 if eigval < 0:
119 negative += mult
120 elif eigval == 0:
121 zeroes += mult
122 else:
123 positive += mult
124 print(f”n = {n}”)
125 print(f”H is a(n) {H} on {num_ver_H} vertices, subgraph = {subgraph}”)
126 print(f”eigenvalues of Cayley graph = {eigenvals})
127 print(f”number of eigenvalues = {2**(num_edges)}”)
128 print(f”zeroes = {zeroes}, positive = {positive}, negative = {negative}”)
129 print(f”smallest eigenvalue = {least}, degree of Cayley graph = {degree}”)
130

131 Cvetkovic = zeroes + min(positive, negative)
132 Hofmann = 2**(num_edges) * (-least/(degree - least))
133 print(f”Cvetkovic bound = {Cvetkovic}, Hofmann bound = {Hofmann}”)
134
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