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I
1 Introduetion to complex systems

I

The study of cluster format ion is common in many fields of science and technology (aerosols,
colloidal suspensions, hetero-disperse particulate systems in general, growth processes far
from equilibrium, etc.). The term "cluster" is a general word indicating an object consisting
of a set of elementary unit es organised with a certain structure. In our research, a cluster is
an aggregate (fioc) of cohesive sediments formed in a turbulent environment from a number
of primary particles consisting of clay minerals. The geometrie characterisation of a cluster
is important to distinguish different features of the object under study. One of the most
important aspects of real and artificial clusters is their fractal nature, that is their capability to
occupy their own volume. From this point of view, many investigations have been performed
about geometrical features (size, volume, density, permeability and porosity properties, etc.)
and dynamical features (growth processes, pattern formation, equilibrium).

When studying a multi-disperse system consisting of cohesive particles diluted in a fiuid
in a regime of turbulence, two main processes can be identified in the process of cluster for­
mation: aggregation and break-up. A large amount of studies in the past tried to establish
the correlations between the global variables of à system (particle concentration, turbulence
shear rate, chemieals presence, viscosity of the medium, etc.) and the average characteris­
tics of the clusters (size, volume, strength, settling velocity, etc.). An indirect interpretation
of the aggregation and break-up processes could be achieved from those characterisations.
Many studies showed relations between different quantities; DYER (1989), for example, in­
vestigated the relation between sediment concentration, fioc size and turbulence shear rate;
WINTERWERP(1999) focused on the Lagrangian growth of mud fiocs; KRANENBURG(1998)
found an analytical formulation to evaluate the fioc strength on the basis of rheological mea­
surements, etc. At the same time, many efforts have been spent to investigate the properties
of individual clusters from a physical and mathematical point of view by means of numerical
simulations. In those studies the focus was on the dynamical process of cluster formation by
means of random numbers generators. Different models resulted from those investigations; in
particular, VICSEK (1992) analysed fractal DLA (Diffusion Limited Aggregation) and CCA
(Cluster Cluster Aggregation) growth processes; MEAKIN(1998) studied the sealing rules of
cluster formation far from equilibrium and the fractal characterisation of such clusters, and
many studies are still being carried out in different fields.

Evidence of the impact of the environment on cluster (or fioc) formation has been found
from experiment al investigations on cohesive sedimentary suspensions: for example, a highly
turbulent medium pro duces small spherical-shaped fiocs with high fractal dimensions, while
a lew-turbulent medium produces chain-like fiocs with low fractal dimensions, WELLS AND
GOLDBERG(1993). At the same time, numerical evidence has been found about the impact
that the structural organisation of growing clusters has on the growth itself. For this reason, it
is natural to look at the possibility to establish a correlation between the dynamical processes
of growthjbreak-up in a given environment and the internal organisation of a fractal cluster.
Moreover, from the characterisation of the environment in which a cluster grows, is likely
to induce some characteristics of the clusters themselves and, vice versa, from the structural
properties of individual cluster it is possible to deduce some kinematical and dynamical
processes which controle the growth of the cluster. In practice, a feed-back exists between
the kinematic and dynamics of aggregationjbreak-up (processes within and by means of the
environment) and the organisation of the cluster (that is alocal and individual feature).

Studies in biology by MATURANAANDVARELA(1972) showed that forms of organisation
arise in systems subject to negative feed-back; NICOLISANDPRIGOGINE(1974) investigated
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I
the spontaneous onset of organisation in chemical reactions far from equilibrium, while VIC­
SEK (1992) and MEAKIN (1998) observed spontaneous fractal organisation in particulate
systems. These issues lead us to look at fiocs as fractal structures that grow and break-up
within a population, continuously in time, under conditions far from equilibrium and in a
feed-back system with self-organisation properties.
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I
2 Introd uction to fractal geometry

I A fractal is an object which possesses a dimension d ::; de, where dE is the Euclidean
dimension of the space (support) which envelops the fractal. In the last three decades, the
development of digital computing has given astrong pulse to the investigation of fractals.
Thanks to this, it has been possible to collect a large amount of information about the
properties of fractals from numerical simulations. In this section we collect some of the
features of fractal sets in order to draw a hierarchic tree of classification of fractals. This
work will help the reader to understand the subsequent sections of the report.I1
2.1 Characteristics of fractal objects and classification

I
Fractals are fragmented geometric-shaped sets that can be subdivided into parts, each of
which is (at least approximately) a copy of the whole, They show a high degree of geomet­
rical complexity which can reproduce by analogy many natural object. Fractal objects defy
the conventional topological measures and are characterised by a non-integer value of their
dimension; such non-integer value is referred to as fractal dimension and, in a way, it is the
only quantitative measure to identify a fractal.

The fractal dimension strictly lies between the topological dimension dr (the dimension
of the set which constitute it.") and the Euclidian dimension dE (the dimension of the
supportê.) .

From the beginning of the 20th century, many scientists, like Peano (1858-1932) and
Hausdorff (1869-1942), spent many efforts in investigating objects which have a dimension
greater than the corresponding topological dimension (see for example the Peano curve).
In the course of time, different approaches led to different definitions of fractal dimensions.
For this reason, some authors now prefer to refer to the concept of fractal dimensionality
more than fractal dimension, keeping in mind that all the fractal dimensionalities are fractal
dimensions because they are non-integer numbers.

We attempt to classify fractals in a hiërarchie structure, starting from the "large-scale"
down to the "small-scale" properties. We report also examples of each of the hierarchical
branches in order to help the reader to figure out the various properties.

Fractals can be artificial (ART) or real (REA). Artificial are all the fractal non present
in nature, while real are the fractals recorded, for example, by imaging techniques. Artificial
fractals can be deterministic (DET) or random (RND). Deterministic fractals are obtained
by applying recursive functions (IF8, Iterated Function Systems) consisting of adding or sub­
dividing a set reiteratively, while random fractals are obtained by means of random number
generators". At a lower level, fractals can be classified as fully self-similar (F88) or statisti­
cally self-similar (888). 8elf-similarity is a widely discussed (and sometimes misunderstood)
property of fractals. Only regular and determinist ie fractals have a fully self-similar structure
at different scales, Meakin (1998). In most of the cases, like experiment al measurements or
random-generated fractals, self-similarity is only apparent; that is, the patterns at different
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lFor instance: a point in space has a dimension dr = 0, a curve corresponds to a dr = 1, a surface to

dr = 2, etc.
2For instance: aplane has a Euclidian dimension dE = 2, a volume has a de = 3, etc.
3Simulated random fractals are normally associated with real fractals but a distinction has to be made

with respect to the use of the terms. Real fractals often show a complex structure which is the result of
a "certain amount" of determinism and a "certain amount" of randomness. Random number generators in
digital computing are based on deterministic algorithms. Therefore, simulated random fractals cannot be
considered identically as stochastic fractals, but an approximation.
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scales only look like each other but, in detail, they do not have the same structure. These
fractals are called statistically self-similar. Deterministic fractals can be both FSS and SSS,
while random fractals are intrinsically SSS.

Real fractals (REA) can show full and statistical self-similarity properties as well, but
the largest part of natural fractals show only a small range of scales in which they can
be considered FSS. Therefore we say that real fractals are statistically self-similar. FSS
fractals can be fully homogeneous (FHO) or inhomogeneous (or statistically homogeneous or
heterogeneous ) (SHO).

I

I
(ART) Artificial

I \__----_ ~

~l
I

1
(SSS)

~at~,;,al ïlf'""il~
(SHO)

Statistically
homogeneous

Artificial

Al) ART +DET + FSS + FHO +MNO
A2) ART +DET + FSS + FHO +MLT
A3) ART +DET + FSS + SHO +MLT
A4) ART + DET + FSS + SHO +MLT
A5) ART + RND + SSS + SHO +MLT

I

(MNO)
Monofractal

Real

Rl) REA + SSS + SHO +MLT I(MLT)
Multifraetal

Figure 1: Hierarchical classification of fractals.

IFor example, deterministic FSS and FHO fractals are well known in literature, like the
Koch curve or the Sierpinsky carpet. They can be built also in such a way to have inhomo­
geneity by applying the iterative function a different number of times at different regions of
the fractal, MEAKIN (1998). SSS fractals show homogeneity only in a small range of differ­
ent scales and therefore they can be classified as inhomogeneous. An example is given by
growing fractals in the regime of DLA (DiffusionLimited Aggregation). According to recent
investigations, MEAKIN(1998) observed a progressive space filling ability of the structure of
a cluster growing in DLA regime. This corresponds to slight increases in fractal dimension
and a consequent loss of self-similarity.

The last hierarchical step is the monofractal (MNO) and multifractal (MLT) nature of
fractal sets. Deterministic FSS and FHO fractals possess only one fractal dimension, while
all the other fractal sets are multifractals because of the presence of a spectrum of fractal
dimensionalities. A representation of such hierarchic classification is shown in Figure 1, while
examples of the classes of fractals represented within this tree are collected in Figure 2 -
Figure 7.
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. . Figure 3: A2-class 2-D 2- .Figure 2: Al-class reiteratiue let t M Figure 4: A3-class Koek curve,

f sca es an or se, ACH ET AL. M (1998)
ractal. (1995). EAKIN.

I

I

I
Figure 5: A4-class Ikeda map, F' 6 A5 l DLA Figure 7: Rl-class kaolinite ag-19ure: -c ass aggre- .
IKEDA ET AL. (1980). gate, VICSEK (1992). gregate, opiical measurements.

The fractal Al in Figure 2 is a DET FSS FHO and MNO fractal obtained by an additive
iteration function. The fractal A2 in Figure 3 is a DET FSS FHO MLT 2-D 2-scale Cantor
set investigated by MACH ET AL (1995). The fractal A3 in Figure 4 is a DET FSS SHO
and MLT Koch curve obtained as reported in MEAKIN(1998). The fractal A4 in Figure 5 is
DET SSS SHO MLT fractal representing the strange attractor of the chaotic dynamic of the
Ikeda equations, called Iked map, IKEDAET AL. (1980). A5 in Figure 6 is a RND SSS SHO
and MLT fractal obtained by aggregation of elementary particles in a DLA regime, VICSEK
(1992). Finally, the fractal Rl in Figure 7 is a REA SSS SHO and MLT obtained by digital
grabbing of a real aggregate made from kaolinite particles.

I

I
2.2 Fractal dimensions

Fractals, as already mentioned, have a non-integer dimension normally referred to as fractal
dimension. The term fractal dimension means, in fact, that the object under investigation
does not fill its Euclidian space fully or, in analogy, that the object occupies a space dimen­
sionally greater than its topological space. Mandelbrot (1983) defines fractals as:I

ra fractal isj. .. a point-set for which the so colled Hausdorff-Besicovitch dimension
is strictly greater than the topological dimension.

I 9



I
It is worth while to define the Hausdorff-Besicovitch dimension. To do this we pass

through the Hausdorff measure in order to establish the knowledge required to understand
other fractal dimensions as weU as to give an indication of the difficulty involved in the
calculation of this dimension. Let us consider a set AERn: the diameter of A is defined as the
greatest distance between any two points Pi and Pj in A:

I
(1)

For a given Ó> 0 we can cover the set A with a collection of subsets ni where Inil :=:; Ó,
called Ó-coverset of A. Ifwe now consider a parameter s > 0 we define the Hausdorff measure
HA(Ó, s) of the set A: I

(2)

and the s-dimensional Hausdorff- Besicovitch measure HA (s) of A: I
(3)

The value of HA(S) jumps from 00 to 0 for a certain value of the parameter s. The
Hausdorff-Besicovitch dimension dH is the critical value of s for which we have the disconti­
nuity in H. Formally: I

dn = sup{s: HA(S) = oo} = inf{s: HA(S) = O]. (4)

This concept of dimension does not provide a practical approach to measure the fractality
of a set from experimental results. The difficulty is in essence due to the minimisation of the
covering set, as discussed in TURNER (1998). For experimental purpose we apply a fractal
dimension normally used to characterise fractals: such dimension is called capacity dimension
de proposed by KOLMOGOROV(1958). The capacity dimension de offractal objects such as
those in Figures 2 - 7 is a measure of their space filling ability. For a set AERn the capacity
dimension is defined as follows:

I

d (n) = l' InN (e)
e (. im In'.e-too n{. (5) I

where N(e) is the number of hyper-cubes (or n-dimensional cubes"] of size E covering the
fractal set A, and € is the non-dimensionallength € = LjE. The value of € corresponds to
the number of units e required to define the linear size L of the support. For example, if we
consider a 2-D support as in Figures 2-7 and a pixel of size E, the fractal dimensionality de
of the fractal set (clusters) of Figure 2, at the third iteration, can be computed as follows: I

de = InN(e) = In125 = 4.828 = 1.464...,
In e In 27 3.295 .

(6)

Such fractal dimension has been used, for example, by KRANENBURG(1994) in the fractal
characterisation of mud flocs and by WINTERWERP(1999) in the framework of Lagrangian
modelling of mono-floc size time evolution. I

4Hyper-cube is a generalised term in a n-dimensional space. When n = 2 we prefer to use the term box,
since in our context we deal with objects embedded in 2-D supports.

10 I



I

I
This approach for computing the fractal dimensionality de can be performed by means of

a technique called box counting which is widely discussed, for example, in ARGYRISET AL.
(1994) and in TURNER (1998).

A different (probabilitstic) fractal dimension is the information dimension dl, proposed
.by BALATONIANDRENYI (1957) as follows:

. I(f)
dI(f) = lim -1 0'

.e-+oo n{.
(7)

I with I(f) the Shannon information function, SHANNON(1948), defined as:

N

I(f) = -KLPilnPi'
i=l

(8)

I
where K is a constant and Pi is the probability that the i-th box of size e is occupied by
the fractal. The information function I(f) represents a measure of the possible number
of realisations that the system can have. Imagine to have an ordered set of n numbers
{Xl, X2, ... , Xn} where all the Xi are equal to a constant value c. Imagine now to select n* ~ n
adjacent numbers; the number of possible realisations np of the system is unique because
all the n - n* + 1 subsets show the same sequence, i.e. there is only one pattern in the
system, np = 1. In this case, the information gain I is zero because the probability Pj = IV'
(n - n* + 1). If the set of numbers {Xl, X2, ... , xn} is composed ofrandom values we can have
a number of different patterns np 2: 1. np corresponds to the number of possible realisations.
In such a case the information gain I is greater then zero.

A further fractal dimension is the correlation dimension d« defined by GRASSBERGER
AND PROCACCIA (1983). It ean be formally written as follows:

d () 1· lnC(r)
K r = im 1 'r-+O n r (9)

I

I

,I

where C(r) is the correlation function between any two points Pi and Pj of the fractal:

1 N N

C(r) = N2 L L H(r -Ipi - Pjl),
j=l i=j+l

(10)

with H the Heaviside function, which is H(x) = 0 for x ~ 0 and H(x) = 1 for X > O. The
function C(r) expresses the spatial correlation of two generic points Pi and Pj and is called
the correlation integral of the fractal, while the parameter r is a critical Euclidian distance
used to correlate two generic points with distance Ipi- Pj I.

I 2.3 Generalised dimensionality and multifractality

I

The definitions of fractal dimensions reported in the previous section have been investigated
in detail by HENTSCHELANDPROCACCIA(1983), leading to the concept of fractal dimen­
sionalities (rather than fractal dimensions) and multifractality. The authors showed that an
infinite number of generalised dimensions dq is required to describe the characteristics of a
fractal with an arbitrary inhomogeneous mass-density distribution, ARGYRISET AL. (1994).
Let us once again consider a covering of a fractal by N boxes of size e in a support of size L,
such that f = L[e; if Ni is the number of measuring points in the i-th box, then Pi = NdN
determines the probability of a measuring point lying in the i-th box. By using a mean
information function Iq of order q-th, RENYIANDBALATONI(1957), as follows:

I 11
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1 N

Iq(f) = -~ In .l:)Pi)q,
q i=l

we write the generalised dimensionality of the q-th order as follows:

(11) I
dq(P) = lim Iq(f) = __ 1_ lim InL:~l (Pi)q.

l-'too In f 1 - q l-'too InP (12)

GRASSBERGER AND PROCACCIA (1983) proved analytically that the fractal dimension­
ions dl, de and d« are special cases of the generalised dimensionality dq. In particular: I

dq=o = de
dq=l = dl
dq=2 = dtc

capacity dimension
information dimension
correlation dimension

(13)

The fractal dimensions are organised over a scale which can be written in the following
form: I

(14) Iwhere the Euclidian dimension de is an integer number.
The concept of generalised fractal dimensionality expresses that fractals may show a

spectrum of fractal dimensions as a function of the moment q. The presence of an infinite
number of fractal dimensions can be associated with the presence of an infinite number of
fractals, each with a different fractal dimension. This has been investigated in some fields of
science and has resulted in the formulation of the multifractal theory. This approach to the
fractal geometry states that some fractals are multifractals, that means that some fractals
can be described as a combination of many monofractals. In particular, it can be proved
that, for monofractals, the generalised dimension dq collapses to a constant value dq = de,
that is the capacity dimension. In practice, for monofractals the followingequality reads:

I

(15) I
We can elaborate this concept by considering a homogeneous and a heterogeneous fractal

set. In the first (monofractal) case, the generalised probability of a measure P scales with
the length scale L as follows:

(16) I
where dj is a fractal dimension. In the case of multifractals, the generalised probability
within any i-th region Pi scales as:

(17)

with ai the Lipschitz-Holder exponent or singularity strength. If we now imagine to cover
a multifractal set with boxes of size e and we define N(O'.) as the number of boxes where
the probability Pi has singularity strength between a and 0'. + da, we achieve the following
sealing law:

I
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(18)

I

I

where f (a) is called the spectrum of fractal dimensions of the family of boxes with singulari ty
a. f(a) is a continuous function of a and, usually, a unimodal curve with a maximum at
df(a)/da = O. CHHABRAANDJENSEN (1989) proposed an efficient technique to compute
the spectrum of fractal dimensionalities f(a) as discussed further in Section 4.

The concept of multifractality can be applied, for instance, to the description of the
geometrical organisation of the primary particles forming a mud fioc and to the growth
probability distribution of fractal bodies. In Section 4 we apply this concept to some samples
of real mud fiocs and we give an interpretation of the results.

2.4 Thermodynamics of fractal sets

I Fractal sets are complex structures characterised by fractal dimensionalities. The complexity
of such structures has always been related to the predictability of the strange behaviours
(chaotic, for instance) of the processes that, in nature, give form to fractal bodies. From
this point of view, attempts have been made to look at the properties of fractals by using
concepts of thermodynamics such as the one of entropy. A definition of the entropy S of a
system, according to CHHABRAANDJENSEN (1989), is:

I (19)

I

where Pi is the probability to find a given pattern in the system. The state variable S
corresponds to the Shannon information function I of Eq. 8, except for the constant K.
Therefore, sometimes, it is also referred to as Shannon entropy. This definition of entropy
(or, better, the information function I) is the information gain per single measurement,
ARGYRISET AL. (1994)5. From a theorem by BILLINGSLEY(1965), the entropy S relates
to the Hausdorff dimension dn as follows":

d 1· I:~lPi lnp, l' S
H = - lm = lm --.

N-too lnN N-too lnN
(20)

I The entropy of a fractal body is a measure of the disorder of its structure. Since S is a
probabilistic-based quantity, it gives a measure of the probability to find recursive patterns
at different scales of the set. Consequently, it measures the production of information for
infinitesimal refinements in the estimation of the fractal dimension of the set. As already men­
tioned, the term information refers to the knowledge of the possible realisations of a system.
For example, chaotic systems never repeat themselves identically and the information gain
is much higher than the information of a system which shows repetitions. The information
gain corresponding to one single realisation is zero, in fact Pvi = 1 and I = O. Consequently,
through Eq. 19 we obtain S = 0, which means that the system under investigation pos­
sesses the maximum order possible or, in analogy, the minimum uncertainty or the minimum
complexity. In practice, complex structures can show regularities which are repeated in a
(fully or nearly fully) self-similar way. The value of S expresses how much determinism (or

I

I 5If the measurement applies to a dynamical system we then find the definition of entropy due to Kolmogorov
(1958) and Sinai (1959), also called KS-entropy: H = limn-+oo 7{:~:»),where X is the intersection of the
partition of the support and the image measured at time tand t + 6..t.

BIn reality, it is more correct to refer to the information dimension rat her than the Hausdorff dimension.
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order) there is in such structures. From here derives the importance to evaluate the entropy
Sof real fractal structures (like mud flocs), in order to obtain a quantitative measure of the
organisation or complexity of their mass distribution. We will develop this concept further
in Section 5.1. I

I

I

I

I
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I
3 Numerical method for computing the fractal (capacity ) di-.mension

I We now discuss some items related to the numerical computation of the quantities previously
introduced, paying attention to some details which are sometimes neglected.

I
3.1 Specification on the non-dimensionallength e
The technique normally employed for computing the fractal (capacity) dimension dJ = de
is called "box counting". It consists of making a series of partitions of the support (space
domain) using boxes of decreasing sizes E and plotting on a log-log scale the points of coor­
dinates (InN (f), ln(f)), with f = L / E. Then, de is the slope of the linear regression of the
points in the scat ter plot, TURNERET AL. (1998). This technique is based on the fact that
the space domain is discrete and regular (square) and that the fractal develops itself over the
whole domain in such a way that the length scale L is unique, VICSEK(1992). In the study
of random cluster formation by numerical simulations as DLA (Diffusion Limited Aggrega­
tion) or CCA (Cluster Cluster Aggregation), it is common to use discrete and fixed lattice
domains in which a fractal body grows. In these cases, it is not possible to identify a unique
characteristic length of the cluster because the cluster itself grows randomly in an infinity
number of directions. Moreover, natural fractals formed by aggregation, like mud fiocs, do
not grow on a discrete and regular frame. This is astrong difference between deterministic
and real fractals. In the first case the length L is the frame size, while for growing fractals,
the length L is not clearly defined and, consequently neither is f.

For measuring purpose, therefore, different definitions of non-dimensional length e have
been proposed. Such definitions may be required when, for example, we want to characterise
the hydrodynamic behaviour of an aggregate in a fiuid medium. In this case it is possible
to refer to the hydraulic radius Rhyd of a cluster (definition below, Eq25) such that the non­
dimensionallength f reads as f = Rhyd/ Rp, where Rp is radius of the primary particle. From
this, a wide spectrum of possibilities is derived in order to identify a characteristic length
L (diameter-like) of a complex cluster (realor artificial), through which a non-dimensional
length f and the fractal dimension de are computed.

I

I

I

I 3.2 Cluster diameter

I

Before defining the diameter of a cluster, it is not trivial that we approximate complex shapes
by means of circles (in a 2-D domain) or spheres (in a 3-D domain). This approximation
enables us to use a unique length scale easily accessible, such as the diameter. In nature,
unfortunately, regular shapes are not often recognisable (as far as mud fiocs, for instance, are
concerned) and this leads to geometrical approximations.

We can then observe that regular shapes (spheres, cubes, etc.) possess a unique length
scale, the so-called diameter. For a different set of shapes (cylinders, cones, etc.) the length
scale is in general a compromise. For random fractal objects, the identification of a length
scale remains rat her fuzzy, see Table 1.

For this reason, many definitions can be used to quantify the diameter of a complex shape
or cluster. Consider a 2-D support, discretised with boxes of the size of pixels, a number of
definitions are plausible, such as:

I

1. radius of gyration Rgyr; it is defined as follows:

I 15



I
Object Shape Fractal Length

Dimension scale

0 I
Sphere Dr=3 Unique

LIJ Cube Dr=3 Unique I

El Cylinder Dr=3 Compromise

I

~~

3D-Random 2 < Dr< 3 FuzzyFractal

I
Table 1: Qualitative uncertainty relation between shape and linear length.

Rgyr = (21 ) I
where [p, - PBI is the distance of the i-th box Pi from the center-of-mass PB of the
cluster.

2. maximum radius Rmax; it is the maximum distance between the center of mass and
any of the boxes of the perimeter. It is defined as follows:

Rmax =maxj lp, - PBI}· (22)
I

3. minimum radius Rmin; it is the minimum distance between the center of mass and any
of the boxes of the perimeter. It is defined as follows:

Rmin = minj lp, - PBI}· (23) I
4. average radius Rave; it is the aritmetic mean of Rmax and Rmin

Rave = (Rmax + Rmin)/2. (24)

5. hydraulic radius (areal equivalent radius) Rhyd; it is the diameter of a circle, whose area
A is equivalent to the cluster's area: I

(25)
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6. perimeter equivalent radius Rper; it is the diameter of a circle, whose perimeter P is

equivalent to the cluster's perimeter:

I P
Rper = 21T" (26)

7. major axis radius Rmaj; it is half of the maximum distance of any two boxes i and j
belonging to the cluster.

I, Rmaj = 0.5 .max{lpi - Pjl} (27)

8. box radius Rbox, it is half size of the minimum square circumscribing the object.

9. Feret radius Rfer; it is half distance s between two tangents on opposite sides of the
cluster. It can be an average of nf repetition of the procedure from different directions:

I 1 nf
Rfer = nf L snf

i=l
(28)

I
Since the definition of Feret radius involves an arbitrary select ion of directions, we prefer

to take into account the definitions 1 - 8 only.

I

3.3 Computation of de of random clusters

It is clear that each of the previous definitions of cluster radius Rx results in a different value
of the non-dimensionallength i of the cluster, i = ~. This causes the fractal dimension to
change according to the definition of diameter employed, in fact:

InN
de(Rx) = ( )'In &..

Rp

(29)

I
The fractal dimension computed by means of the box radius Rbox corresponds to the box

counting technique employed in the original definition of fractal dimension of Eq. 5. In fact,
the space domain relative to Rbox corresponds to the minimum square support enveloping
the fractal by a unique length scale L = 2Rbox. For this reason, the fractal dimension
df (Rbox) = de is the reference for validating the usage of other lengths than Rbox,

We now perform some simple tests by evaluating the fractal dimension of some idealised
fractals by using the measures of the cluster diameter introduced in Section 3.2. The aim
is to validate the use of a numerical technique for fractal characterisation of both natural
complex clusters (flocs) formed by turbulence-induced fiocculation, and simulated clusters
in the CCA regime as well. The test allows a comparison between the fractal dimension
de{Rbox) of Eq. 5 and the fractal dimensions de{Rx) computed by means of the lengths Rx
previously mentioned. In particular, we have identified two methods to compute the fractal
dimensions. The first takes into account all the activated boxes of the fractal (pixels in our
case, that correspond to the primary particles), while the second takes into account only the
boxes activated within the radius Rx considered. Formally:

I

I
I N (a)

d(a)(R ) = n
e x ---;"( ------R )'In ~

Rp

(30)
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where N(a) is the total number of seeds forming the fractal. The second method reads as
follows:

I N (b)
d(b)(R ) = n

C x -----;--(R----;---) ,In .!.!:*.
Rp

(31) I
where N(b) is the number of particles whose distance lp - PBI from the center-of-mass PB is
smaller than Rx. The condition lp - PBI :::;Rx means that N(b) :::;N(a) as well, and therefore
we can already state that d~)(Rx) :::;d~)(Rx).

We introduce in Figure 8 the set of fractals which has been considered for testing the different
measures of the non-dimensionallength f = Rx/ Rp and the fractal dimension dc(Rx). All
the fractals employed are built in a square frame of 300 by 300 pixels, except the fractal
F3, whose size is 243 by 243 pixels because it is obtained by five multiplicative iterations
of a 3 pixels-based initial element. The fractals Fl and F2 correspond to objects of known
fractal (capacity) dimension, dg"l)(Rbox) = 2 and dg"2\RbOX) = 1, respectively. F3 and F4
are artificial fractals while F5 and F6 are natural fractals from experimental measurements
on kaolinite flocs. They have been obtained from pictures made by an analog camera of
a resolution of 640 x 480 pixels, rotated in order to fit the minimum square support and
resized to 300 x 300 pixels. The pixel is considered the unit quantity e for the box counting
technique. Black color means non activated pixel, white corresponds to activated pixel.

3.4 Validation set

a) Fl

d) F4

b) F2

e) F5

Figure 8: Fractals used in the tests.
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I
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I
3.5 Evaluation of the approach
The results of the computation from both methods of Eq. 30 and Eq. 31 are given in Table
2 a) and b) respectively.

As we can see from Table 2 a) a wide variability of fractal dimension is obtained when
considering different lengths L = 2Rx. We cannot consider the computations of d~)(Rx) (the
first method) satisfactory since the measurements performed on the testing fractals show a
strong over- or under- estimation. Indeed, 31% of the measurements fall either out of the
upper limit de = 2 or the lower limit de = 1.

Things change when computing d~) (Rx) (second method), that is considering only the
seedswithin the radius Rx, see Table 2 b). In this case the statistics showastrong convergence
to the reference fractal dimension de (Rbox), although some exceptions remain. By computing
d~) (Rx) only 17%of the measurements fall above or below the limits of the fractal dimension
in a 2- D domain. Moreover, all these cases involvefractal F2, which is a limit case offractal
dimension dg"2\RbOX) = 1.

Let us now consider the results from the second computation. We can count the frequency
f (d~) (Rx) :::::::de (Rbox)) of occurrence of the dimension d~) (Rx) nearest to the reference fractal
dimension de(Rbox) for all the fractals tested. In this way we can identify the corresponding
length L = 2Rx which properly approximates the fractal dimension de(Rbox), as reported in
Table 2 b). The result is that both Rmaj and Rhyd occur as best approximations. We can
identify Rhyd as a generallength for the computation of the fractal dimension by considering
its distance from the reference fractal dimension de(Rbox), as reported in Table 3.

I

I

I
3.6 Considerations
A first set of results can be summarised:

I 1. The capacity dimension computed according to the definition of Eq. 5 represents a
reference point for numerical investigations of fractal structures whatever their prop­
erties are. This definition makes use of a non-dimensional length e = 2Rbox, which
corresponds to the size of the minimum square enveloping the fractal.

I 2. Other lengths can be used for the computation of the fractal dimension. In particular
we have evaluated two methods for the estimation of the capacity dimension de. The
first takes into account all the seeds of the fractal, the second takes into account only
the seeds within the length scale L chosen for the computation. Using the latter,
the capacity dimension computed as a function of the hydraulic radius Rhyd in the
corresponding partition of the support (second method, d~) (Rhyd)) gives results very
close to the reference fractal dimension de (Rbox).I 3. A convenient manner to compute the fractal dimension of growing bodies in numerical
simulations like DLA or CCA, is the use of the hydraulic radius Rhyd as dimensional
length of the cluster. This is much less time consuming than finding the minimum
square circumscribing the fractal and applying the common algorithms.

I
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Fractal F1 Fractal F2 Fractal F3

dc Radius [pixel] dc Radius [pixel} de Radius [pixel]

2.07 «: 122 0.00 «; 0 0.00 «.; 0 I2.00 «; 150 1.85 Rhyd 11 1.89 Rhyd 35
2.00 «.; 150 1.25 «: 47 1.56 Rave 86
1.96 Rhyd 169 1.07 Rave 105 1.50 Rgyr 109
1.94 Rave 180 1.04 Rgyr 121 1.46 Rba" 122
1.92 «; 190 1.00 Rba" 150 1.38 «.: 171
1.89 «.; 211 0.94 «.: 209 1.38 Rmaj 171 I1.89 Rmaj 211 0.94 Rmaj 209 1.17 Rper 497

Fractal F4 Fractal F5 Fractal F6
de Radius [pixel} de Radius [pixel} de Radius [pixel}
2.18 n.; 65 2.16 «; 75 2.65 Rmin 29
1.98 Rgyr 106 2.05 Rgyr 97 2.03 Rgyr 100

I1.96 Rhyd 114 1.96 Rhyd 126 2.02 Rave 102
1.90 Rave 134 1.95 Rave 129 1.96 Rhyd 121
1.86 Rba" 150 1.90 Rbax 150 1.88 Rbax 150
1.81 Rmaj 176 1.87 Rmaj 164 1.85 Rmaj 163
1.77 e.; 202 1.83 «.; 183 1.83 «.; 176
1.75 Rper 212 1.73 «; 258 1.64 «.: 343 I

a) Fractal dimensions d~) (first method) from different lengths L.

Fractal F1 Fractal F2 Fractal F3
de Radius [pixel] de Radius [pixel] de Radius [pixel]

2.00 Rba" 150 1.00 n.; 150 1.89 Rgyr 106

I1.96 «.; 150 0.94 «.: 209 1.88 Rhyd 114
1.96 Rgyr 122 0.94 e.; 209 1.88 n.; 65
1.94 Rhyd 169 0.94 Rgyr 121 1.86 Rba" 150

1.93 Rave 180 0.94 Rave 105 1.85 Rave 134
1.92 Rper 190 0.92 «; 47 1.81 Rmaj 176
1.89 Rmaj 211 0.88 Rhyd 11 1.77 «.; 202 I1.89 e.; 211 0.00 «.: 0 1.75 «: 212

Fractal F4 Fractal F5 Fractal F6
de Radius [pixel] de Radius [pixel] de Radius [pixel}

1.93 «; 15 1.95 Rgyr 97 1.91 Rgyr 100

1.91 Rgyr 101 1.95 «; 75 1.91 Rave 102
1.91 Rave 106 1.92 Rhyd 126 1.90 Rhyd 121 I1.90 Rhyd 123 1.92 Rave 129 1.88 Rmin 29
1.89 Rba" 150 1.90 Rba" 150 1.88 e.; 150
1.83 Rmaj 178 1.86 Rmaj 164 1.85 Rmaj 163
1.80 Rmax 197 1.83 «.; 183 1.83 «.; 176
1.60 Rper 415 1.73 Rper 258 1.64 Rper 343

a) Fractal dimensions d~) (second method) from different lengths L. I
Table 2: Fractal dimensions d~) and d~) computed [rom different lengths L.
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de (R x) computed trom Frequency Id c (Rx}-d c (R box}1

«.; 4 0.19

I Rhyd 4 0.07
Rave 3
Rmin 3
Rgyr 2
e.; 1
«: 0

I Table 3: Next neerest neighbours.

I

I

I

I

I

I
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4 Multifractal analysis of complex clusters

I In this section we describe the calculation of the spectrum of fractal dimensionalities of the
set of testing fractals shown in Figure 8. The aim it to extract information on the mass
distribution and the growth probability distribution within complex structures.

I
4.1 Numerical computation of the multifractal spectrum f(a)
We now apply the computation of the spectrum of fractal dimensionalities on the basis of the
theory reported in Section 2.3. We have introduced the generalised fractal dimensionality in
Eq. 12 and the sealing laws of multifractals in Eq, 18. The computation of the multifractal
spectrum f(a) of Eq. 18, which corresponds to the fractal dimensionalities dq of Eq. 12,
requires the application of the Legendre transformation of a partition function. In many
cases, the use of the Legendre transformation may give numerical problems and CHHABRA

AND JENSEN (1989) proposed a direct method to evaluate the spectrum which reduces the
computational efforts and preserves the reliability of the results. Operationally, we cover a
set A in a support of size L with N boxes of size é, we count the occupied area Mi(é) within
each i-th box (in practice, the number of activated pixels) and we derive a probability Pi(é)
as follows:

I

I
.( ) _ Mi(é)p; é - 2'e

We now build a one-parameter family of normalised measures {l(q, c):

(32)

(33)

I such that Li {li(q, €) = 1. The exponent q represents a weight moment which gives relevanee
to more singular regions" if q > 1, it accentuates the less singular regions if q < 1, and it
replicates the original measure if q = 1. Now, the fractal dimensionality f(q,é) is given by:

f( ) - li I:~l{li(q, é) ·ln{li(q, é) _ li I:~l{li(q, e) ·ln{li(q, €)q, é - - lm - Hfl ,
N -too InN é-tO In e (34)

I where N = (L/é)2 is the number of boxes. In addition, we can compute the average value of
the singularity strength ai by evaluating:

I

() 1· I:~l{li(q, e) .lnpi(q, é) l' I:~l{li(q, s) . lnpi(q, é) (35)a q é = - lm = lm ==_-,--__;_ __ _..:.;__...o..

, N-too lnN é-tO ln s
Eq. 34 and Eq. 35 provide a relationship between the fractal dimensionality f and an

average singularity strength a as functions ofthe parameter q; f is, in fact, f(a(q)), CHHABRA
AND JENSEN (1989). By means of this relation we attain an efficient method to compute
the spectrum of fractal dimensionalities formally introduced with Eq, 12.

The dimensionality spectrum of the testing fractals of Figure 8 has been computed for
values of q ranging within q = {-20, ..., 20} and for e = 100 pixels. The results are shown in
Figures 9, 10, 11 and 12. In particular, Figure 9 and 10 show the spectrum of the fractals
under investigation as a function of the moment q and the singularity strength a respectively.
We can observe that the fractals F1, F2 and F3 have a constant value of i, Figure 9. In

I

7A region of the fractal has high singularity strength when it is densely occupied by the fractal, and low
singularity strength when it is weakly occupied by the fractal.
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practice, the fractal dimensionality dq collapses into a unique value, corresponding to a unique
value of the singularity strength a, Figure 10. This is evidence of the fact that F1, F2 and
F3 are monofractals.

The fractals F4, F5 and F6 show a curved spectrum representing the fractal dimensions
within the set. The function a(q), singularity strength, is drawn in Figure 11 as a function of
q, where F1, F2 and F3 again show that the distribution of singularity strength is invariant
with different moments q. The fact that F4, F5 and F6 show a range of singularities a means
that each of the q-th J-L(q,é)-partitions of the sets possesses a distinct fractal dimensionality.
This is evidence of the multifractality nature of F4, F5 and F6.

The multifractal spectrum shows the region of probability of growth of a growing cluster.
The growth process is dominated by those regions that have the largest growth rates of
probabilities. The sealing properties of those parts correspond to small values of a or the
"left side" of the spectum f(a), MEAKIN (1998). It is, in fact, in the regions of lowest
presence of mass that the growth has the highest probability of occurrence.

The multifractal analysis is therefore a powerful tool to identify and characterise fractal
structures. In the case of multifractals, such tool aids the modelling of sealing properties as
size and porosity, and can be used to predict the probability distribution of dominant growing
patterns of real flocs. The 2-D measurements of real mud flocs will be characterised by their
multifractal spectrum in order to obtain the dominant sealing behaviours to be inserted in a
population model and improve the predictive capability of floc size dis tri but ion and settling
velocity in laboratory conditions.

I

I

I

I
4.2 Considerations

A set of considerations, based on the previous results, is summarised as follows:

1. We have seen that real fractal clusters (kaolinite aggregates) and part of artificial fractals
have multifractal properties. This means that they are characterised by a full range of
fractal dimensions (multifractal spectrum f(a)). Multifractals are a combination of an
infinite number of monofractals, with an overall multiscaling behaviour.

I
2. Real fractal flocs are statistically self-similar, as many studies in literature have already

reported. This is physically observed also in the multifractal spectrum, which shows
that complex real fractals are self-similar only at small ranges of length scales. From a
theoretical point of view, this means that the density and porosity distributions do not
scale with the same power law at different scales. Consequently, we can suppose that
also the kinematic behaviour of floc aggregation and break-up change the sealing laws
over different scales. Potentially, it is possible to improve the accuracy of predictive
models of growth processes, like the Lagrangian formulation of floc size time evolu­
tion, WINTERWERP(1999), by considering dominant sealing laws (namely the fractal
dimensionalities) for given ranges of length scales.

3. The multifractal spectrum can be used to study the distribution of the growth prob­
abilities within a growing cluster. In particular, low values of the singularity strength
a(q) are associated with the regions of the cluster that have the highest probability of
growth, MEAKIN (1998). As a consenquence, the rates of growth of fractal flocs can
be identified in space and modelled consequently in a 2-D domain.

4. The multifractal nature of particulate flocs might be evidence of the fact the real fractals
grow, in nature, in a dynamic state far from equilibrium. A thermodynamic equilibrium

I

I

I
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I
has been observed in the field of crystal growth, while chemical reactions seem to oe­
cur with a non-equilibrium (far-from-equilibrium)behaviour, NICOLIS AND PRIGOGINE
(1977). By analogy, we can imagine that also the growth process of cohesive particles
in a turbulent field possesses non-equilibrium features. In this case, the multifractality
properties of such particles, by being 1(0:) related the the entropy of the system, could
be a measure of the distance from the equilibrium of the dynamics of those particles.
In practice, the multifractality would be an evidence of distance from equilibrium.

I 5. The emergence of ordered patterns in dynamical systems far from equilibrium has been
studied in detail by NICOLIS AND PRIGOGINE (1977) in chemistry and by MATURANA
AND VARELA (1972) in biology. Their investigations converged to the theory of "self­
organisation" or "autopoiesis" by showing that systems far from equilibrium can be
sourees of negative entropy and consequent onset of spontaneous order. This results
in the autonomous organisation of the system towards complex structures. Cohesive
particles show such behaviour as well, and the basic idea that particulate cohesive
systems followan analogous behaviour of self-organisation can be stated here. The
emergence of self-organisation within a system made by cohesive particles would result

I
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in the emergence, for example, of dominant floc sizes in a population of floc different in
size. Such phenomenon has been observed and measured in laboratory, VAN LEUSSEN
(1984) and WINTERWERP (1999), and in situ DE BOER (2000). The self-organising
properties of those systems can be the physical explanation of the fact that, in general,
the floc size distribution of a population of flocs is organised in a bimodal curve.

I
6. We can distinguish a microscopie and a macroscopie level. At a microscopie level,

fractal flocs evolve individually in a state far from equilibrium. At a macroscopie level,
a population of fractal flocs approaches a statistically steady state equilibrium. I

I

I

I

I

I
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5 Thermodynamic organisation of fractal clusters

I We now apply the concepts of entropy with the thermodynamic formalism introduced in
Section 2.4.

5.1 Entropy of fractal clusters

I
The measure of how much determinism lies in a fractal system can be related to the entropy
of the system itself. The entropy of a system is a state variable and gives an indication of its
complexity because it is related to the probability to find recursive patterns in it. In practice,
the higher the probability to match a given pattern the lower the entropy is. We can use
this concept to characterise the mass organisation of a Hoc (that is the distribution of clay
particles within a Hoc) according to the following procedure. We define a box size E < L to
generate a partition of the Hoc support of size L. The number of boxes is then N = (L/é)2
and for each i-th box we compute the number of activated pixels (corresponding to the area)
Mi(é). Now, in agreement with Eq. 19 from the histogram of the function Mi(é) we obtain
the probability Pi(é) and the number of patterns Np ~ N. By using Pi(é) in the definition of
entropy S given by the Shannon theorem of Eq. 19, we attain the entropy S(é) as follows:

I

I
Np

S(é) = - LPi(é) log [Pi(é)].
i=l

(36)

I

Results of the computation of S for the testing fractals are shown in Figure 13, for box
sizes t: = {5, 10,50, 100} relative to F1, F2, F4, F5 and F6, and E = {3, 9, 27, 81} relative
to F3. For smal! box sizes (say, é = 3 and e = 5) we obtain an interesting numeri cal
characterisation of the fractals. The fractals F1 and F2 show very low values of entropy; the
obvious explanation is that they both are not real fractals. The organisation of FI and F2
is very high and essentially "Euclidian" in the meaning that they do not show fractalisation,
since dg"l) (Rbox) = 1 and dg"2) (Rbox) = 2. We can also say that FI and F2 have a very
low level of complexity, in fact they do not show any sort of self-similarity. As already said
in Section 2.2, the less the number of patterns found in a system, the lower the value of the
state variable S. S is zero for the fractals FI and F2, because there is only one pattern
recognisable in the system".

The entropy S(F3) of the fractal F3 is much higher than S(Fl) and S(F2). This is due
to the fact that F3 is a classic deterministic and fully self-similar fractal with an internal
organisation much more complex than the previous fractals. The entropy S(F4) is higher still.
That means that the internal oganisation of F4 is complex. Although not self-similar, the
fractal F4 in fact has a spatial mass distribution organised over a more complex structure
than FI and F2 9.

The fractals F5 and F6 show entropy levels that are very high compared to all the
previous fractals. This can be explained by the fact that they are stochastic clusters as
well as stochastic are the processes which formed them by aggregation and break-up. The
structural organisation is very complex with respect to the organisation of all the previous

I

I

I BThe fractal F2 shows values of S close to zero because of numerical approximations in the computation
of S.

9The level of organisation of F4 can not be related in any way to the "semantic organisation" of the shape
itself. The semantic meaning of F4 is something totally independent from what we want to pinpoint in this
study.
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fractals, because of the large number of patterns found in the partitioning procedure of the
set.

The entropy S, beside the meaning of organisation, can also be interpreted as a measure of
the predictability of the system. Since S is derived from the probability of recurrent patterns
in an object, we can deduce the growth probability of a cluster with patterns that are already
present in the structure. In particular cases (self-similar fractals) those patterns are already
present in the structure, either at the same scale, or smaller. Moreover, fractal mud fiocs are
subject to a continuous-in-time process of restructuring due to aggregation and breakage; by
computing the entropy level of a fioc at different stages of its growth it is possible to identify
different regimes of the fiocculation mechanisms which are stored in the structure of the fioc
in the same way as a "memory" of the aggregation and break-up steps passed along the time.
Potentially, it is possible to identify entropy variations within the fioc structure that are
caused by different dominant processes, like turbulent shear rate or differential settling. This
technique would enable the identification of bifurcation behaviours in the evolution processes
of growing fiocs.

The state variable S, being related to the fractal dimension dl, might be fundament al in
characterising the determinism present in aggregation and break-up processes; the informa­
tion achievable from this investigation can in fact aid the modelling of the physics beyond
the fiocculation processes of colloidal particulate systems in a turbulent environment.

I

I

I

I
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Figure 13: En tropy.

5.2 Approximate entropy Wof fractal clusters I
The approximate entropy function IJ! is a state variable similar to S. It gives a measure
of the organisation of a cluster and it is based on its mass distribution. It is computed by
counting the number of the next nearest neighbours patterns'" in a partition of the support
in analogy to the one performed in the computation of S. Therefore, we set a box size e and
we compute the mass Mi(é) for each box and the corresponding probabilities Pi(é). Then
we set a similarity parameter r usually based on the standard deviation of Pi(é) in the form I
!OIn this approach, differently from the entropy, we look at similar patterns and not only at identical

patterns.
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I
r = 0.1 . sidip; (é)) and we count the number Ni (s, r) of patterns {pj (e) : j f:. i} with distance
Ipi - pjl ~ r. We define a first quantity <Pi(é, r) as follows:

Nii«, r)
<Pi(é, r) = (N _ é + 1)2' (37)

We repeat the same procedure for é + 1 in order to obtain the quantity <Pi(é + 1, r) as
follows:

I Ni(é + 1, r)
<Pi(é+ 1, r) = (N _ é)2

The function W(é, r) is eventually defined as follows,Pincus (1991):

(38)

I
,,(N-e+l)2 () ,,(N-e)2 ( )W = L..,i=l In <Pi é, r _ L..,i=l In <Pi é + 1, r

(N - e + 1)2 (N - é)2 (39)

The results of the approximate entropy function W for the testing fractals are shown in
Figure 14, for e = {5, 10,50,100, 150}. The results collected for the testing fractals confirm
the results already obtained for the computatuion of the entropy S.
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Figure 14: Approximate entropy function IJl.

I 5.3 Considerations

We now state some considerations which are related to the considerations of Section 4.2,
concerning the multifractal analysis of complex structures.

I
1. We have seen in the multifractal theory of Section 2.3 and in the entropy characterisation

of Section 2.4 that fractal structures can be classified according to their complexity.
The results of multifractal analysis and the computation of the state variabie entropy
S express that Euclidian structures do not have similarity properties. This generally
corresponds to constant levels of entropy S at different length scales. Moreover, the
values of entropy S are generally very low.
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2. Monofractal structures have a fully self-similar organisation of the mass distribution.

In this case, the level of entropy is generally higher than in Euclidian structures and it
has a constant-like slope in a log-log scale representation. This corresponds to higher
level of complexity compared to Euclidian structures. I

3. Multifractal structures are statistically self-similar and have a full range of fractal di­
mensionalities. This results in mass distributions of a higher level of complexity. In
such a case, Scan show very high values, but we cannot say what trend S has at
different scales. I4. The state variable entropy S and the approximate entropy \II are a measure of the
complexity of a structure. They give a measure of the probability to find recursive
patterns. Therefore, S and \II measure the probability that a structure might evolve in
a certain way rat her than another. By induction, it gives also an idea of the quantity
of randomness and determinism present in a structure.

5. The structure of a multifractal possesses a sort of memory of the growth dynamics
that formed it. The evolution of the entropy at different stages of the growth can,
therefore, detect bifurcation behaviours in the growth process. Fractal mud fiocs can
show different levels of entropy as a consequence of different growth mechanisms, such
as those of turbulence shear rate and differential settling.
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6 Euclidian organisation of fractal clusters

I 6.1 Symmetry of fractal clusters

I

Growing fractal clusters may show properties of symmetry. The presence of symmetries in the
structure of an aggregate may give indications of the mechanisms of formation. In particular,
we can interpret a high level of symmetries as a consequence of high determinism in the
system and a low level of symmetries as a sign of random (noisy) mechanisms. The presence
of symmetries corresponds to redundant patterns, a property that can be detected by the
state variable entropy as weU.

A simple correlation function ,(0) can be used to identify the symmetries within a fractal
aggregate. The technique consists of doubling the image of a fractal, rotating the copy around
the geometrie center and measuring the overlapping area as a function of the angle O. The
normalised function ,(0) can be written as foUows:

I J(Ion/o) P 1 ~
,(0) = f = N Z: {Pi: PiEIo n Io},

10 P i=l
(40)

I
where 10 is the reference image of the fractal, 10 is the image of the fractal rotated by an
angle 0 and Pi is the vector position of the seeds, or pixels. The correlation function ,(0) is
,(0) = 1 for 0 = 0° and 0 = 360° and it is symmetrie with respect to 0 = 180°.

The results of the computation of ,(0) for the testing fractals are shown in Figure 15.
For symmetrie fractals like F1, F2 and F3 the function ,(0) has clear peaks about 90°,
180° and 130° respectively. For complex clusters like F4, F5 and F6 no peaks are clearly
distinguishable. In the cases of F5 and F6, the nearly white noise correlation might be
evidence that the object under investigation has complex fractal properties and that those
properties are due to a certain amount of determinism and randomness. The presence of
clear peaks may be associated with determinist ie or, at least, regular growths. ,(0) can be
used, coupled with the entropy S, to identify deterministic organisation in a growing cluster.
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Figure 15: Symmetry"((8) of the testing fractals.
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I
6.2 Eccentricity and shape factor of fractal clusters

A geometrical characterisation of complex fractal clusters such as mud flocs, is the measure of
their eccentricity. We can imagine that complex kinematics may result in anisotropic pattern
formation. This causes the cluster to grow (or decrease) with different rates along various
directions. A measure of the static isotropy in the growthj decrease of floc size can therefore
be achieved by evaluating the eccentricity of the shape by means of a shape factor Je, here
defined;

I

J - 1_ Lmine- ,
Lmax

(41) I
where Lmin and Lmax are the minimum and maximum sizes of the support enveloping the
fractal. In this definition, Lmin and Lmax correspond to the minimum and maximum Feret
diameters introduced in Eq. 28. The eccentricity factor Je ranges in the intervalO::; Je ::; 1;
values of Je close to Je é:::' 1 are indicative of high eccentricity, values of Je close to Je é:::' 0 mean
regularity and symmetry in the peripherical distribution of the seeds, with a consequent low
eccentricity.

A shape factor I, of a cluster can be obtained from the eccentricity factor Je itself. In
particular, we can define a shape factor Js as:

I

Lmin
i,= 1- Je = y;---'

max
(42) IThe factor i, ranges as Je in the interval û s, I, ::;1 but this time I, = 1 means that

the bulk of cluster is uniformly distributed around its center. Then Je can be employed in
modelling the settling of mud flocs, aggregation and break-up efficiencyor other quantities
which involve directly any impact of the shape of an aggregate in a given process.

We show in Figure 16 and in Figure 17 respectively the eccentricity and the shape factor
of the fractals tested.
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Figure 16: Eccentricity fe of the testing fractals. Figure 17: Shape factor fs of the testing fractals.

I6.3 Porosity of fractal clusters

The porosity of a random fractal cluster can be evaluated by the ratio between empty and
occupied regions within a given length. Ifwe use the hydraulic radius Rhyd, the porosity e is
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written as:

I e = 1_ II{p : lp - ;bl ~ Rhyd} = 1_ 2:~1{Pi: Ipi - PBI ~ Rhyd} (43)
1rRhyd 1rR~yd '

where [p, - bBl is the distance of the seed Pi from the center of mass PB' The results of the
porosity e for the testing fractals are reported in Figure 18.

The porosity e and the quantities ,(0) as defined in Eq. 40 are statistically correlated. In
particular, the complement of the average value of ,(0) approximates with good agreement
the value of the porosity computed as in Eq. 43:I 111r1-,(0) = 1- - ,(O)dO c::: e.

1r 0

In fact, considering Eq. 40 and Eq. 43 we obtain the followingrelation:

(44)

I 1- II{p : lp - ;bl ~ Rhyd} c::: 1_ _!_ r ,(O)dO,
1rRhyd 1r Jo

II{P : lp - ;bl ~ Rhyd} c::: _!_ r I(Ionle) P dO = ~ Io1rI(Ionle) pdO
1rRhyd 1r Jo Ilo P Ilo P

Being 1rR~yd the area of the fractal by definition of Eq. 25, we obtain that:

1rR~yd= r p,i;
I

and consequently that:

I /, {p: lp - Pbl~ Rhyd} c::: _!_ î' r pdO.
I tt Jo J(Ion/e)

Numerical evidence of the relation of Eq. 44 is given in Figure 18.
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6.4 Considerations

We collect a set of considerations as follows.

1. From the analysis of the angular correlation function ,(0) we have seen that complex
structures (fully and statistically self-similar)have a noisy correlation. ,(0) can be used
to detect peaks of symmetry in complex shapes as fractal cluster.

I
2. The eccentricity factor Je of a shape has been used already in modelling the growth and

the settling processes of flocs made by cohesive particles, for example in Winterwerp
(1999). The eccentricity factor and the shape factor are directly related to each other
in the formulation of Eq. 41 and Eq. 42.

I
3. The porosity properties of fractal shapes can be measured by the angular correlation

function ,(0). The porosity is also related to the space fillingability of the object under
study and therefore it is related to its fractal dimension. I
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7 Conclusion

I In this section we summerise and discuss the most important issues highlighted within this
survey.

We have established a hierarchical classification tree (Figure 1) of fractals on the basis of
the large-scales properties that fractals show. Such tree takes into account artificial and real
fractals. From those, a series of properties is derived in the form of cascade: deterministic
and random, fully self-similar and statistically self-similar, fully homogeneous and statistically
homogeneous, monofractal and multifractal clusters.

We have computed the capacity dimension of a set of testing fractals in order to indicate
dimensionallength scales different from the support size L = 2Rbox. We have found that the
hydraulic radius Rhyd can be used to compute the capacity dimension of any 2-D fractal with
reliable accuracy. This allows a fast computation, above all for DLA and CCA simulations,
as discussed already in Section 3.6

We have applied the multifractal approach to characterise the geometrical structure of
fractals in general. This approach will be employed in the analysis of real measurements of
kaolinite and mud flocs in laboratory conditions. The laboratory experiments will be per­
formed in the settling column with temperature, concentration and turbulence controlled
conditions. The multifractal analysis of the population of flocs at different stages of growth
will highlight what the dominant behaviours (sealing laws) are within a set of flocculating
aggregates. Operationally, a population of flocs can be grouped into classes of similar proper­
ties to calibrate the parameters of a multisize population equation. Such an approach would
lead to an improvement in the understanding of the physics beyond the flocculation processes
and the modelling capacities of the current equations.

We have applied a thermodynamic approach to study the complexity of fractal flocs by
means of the state variabie entropy. This is a fruitful interpretative tool to describe the
organisation of primary particles in a complex set. We potentially believe that the entropy
can have a relevant role in the modelling of growing flocs, although not directly in any
population equation.

Finally, we have characterised complex flocs by means of the traditional Euclidian tools
(shape factor, porosity and eccentricity). Those parameters have already been used in some
formulations of floc size evolution and settling velocity. We will evaluate them also in our
experiments in order to calibrate empirical parameters of a population equation.
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EpAATA

Fractal F1 Fractal F2 Fractal F3
de Radius [pixel] de Radius [pixel] de Radius [pixel]

2.07 Rgyr 122.5 8.21 Rmin 1.0 11.61 e.; 1.0
2.00 «: 149.5 1.92 Rhyd 9.7 1.94 Rhyd 31.5
2.00 Rbox 150.0 1.25 Rper 47.3 1.56 Rave 86.1
1.96 «.; 169.3 1.06 Rave 105.2 1.50 Rgyr 108.7
1.94 Rave 180.5 1.04 Rgyr 121.2 1.46 «.: 121.5
1.92 e.: 190.3 1.00 «.: 148.5 1.38 s-: 171.1
1.89 «.; 211.4 0.94 «.; 209.3 1.38 Rmaj 171.1
1.89 «.; 211.4 0.94 e.; 209.3 1.17 Rper 497.4

Fractal F4 Fractal F5 Fractal F6
de Radius [pixel] de Radius [pixel} de Radius [pixel]

2.18 Rmin 65.2 2.16 Rmin 74.5 2.65 Rmin 28.7
1.98 Rgyr 105.5 2.05 Rgyr 96.8 2.03 Rgyr 99.6
1.96 Rhyd 113.3 1.96 Rhyd 126.1 2.02 Rave 102.0
1.90 Rave 133.5 1.95 Rave 128.7 1.96 Rhyd 120.5
1.86 n.: 149.5 1.90 Rbox 150.0 1.89 Rmaj 148.0
1.81 Rmaj 173.0 1.88 e.; 157.5 1.88 Rbox 148.5
1.77 «.; 201.8 1.83 «.; 182.9 1.83 «.: 175.4
1.75 Rper 211.5 1.73 Rper 257.7 1.64 Rpsr 350.3



Fractal Ft Fractal F2 Fractal F3
de Radius [pixel] de Radius [pixel] de Radius [pixel]
2.00 Rbox 150.0 1.00 Rbox 148.5 1.46 Rbox 121.5
1.96 Rmin 149.5 0.94 «.: 209.3 1.38 «.; 171.1
1.96 Rgyr 122.5 0.94 Rmaj 209.3 1.38 Rmaj 171.1
1.94 Rhyd 169.3 0.94 Rgyr 121.2 1.35 Rave 86.1
1.93 Rave 180.5 0.94 Rave 105.2 1.33 Rgyr 108.7
1.92 «.; 190.3 0.92 «.; 47.3 1.31 Rhyd 31.5
1.89 «.: 211.4 0.86 Rhyd 9.7 1.17 Rper 497.4
1.89 «; 211.4 0.00 «; 1.0 0.00 «.; 1.0

Fractal F4 Fractal F5 Fractal F6
de Radius [pixel] de Radius [pixel] de Radius [pixel]
1.89 Rgyr 105.5 1.95 «: 74.5 1.91 Rgyr 99.6
1.88 Rhyd 113.3 1.95 Rgyr 96.8 1.91 Rave 102.0
1.88 «; 65.2 1.92 Rhyd 126.1 1.90 Rhyd 120.5
1.86 Rbox 149.5 1.92 Rave 128.7 1.88 Rbox 148.5
1.85 Rave 133.5 1.90 e.; 150.0 1.88 Rmin 28.7
1.81 «; 173.0 1.88 Rmaj 157.5 1.88 «; 148.0
1.77 n.; 201.8 1.83 «.; 182.9 1.83 «.; 175.4
1.75 Rper 211.5 1.73 «.; 257.7 1.64 «: 350.3
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