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Abstract
Deep Neural Network (DNNs) have increased significantly in size over the past decade. Partly due
to this, the accuracy of DNNs in image classification and speech recognition tasks has increased as
well. This enables a great potential for such models to be applied in real­world applications. However,
due to their size, the compute and power requirements are often too large to deploy these models on
edge devices. This prohibits applying such models within a rich field of application demanding high­
throughput and real­time execution.

Deploying quantized DNNs on Field Programmable Gate Arrays (FPGAs) overcomes this problem.
FPGAs are well known for their low­latency, high­throughput, and low­energy capabilities. However,
creating hand­tuned FPGA designs requires expert­level knowledge of the underlying hardware do­
main. Especially for mathematicians or software engineers that develop new quantized DNNs, but
also for experienced hardware designers that want to implement a large DNN on an FPGA, the imple­
mentation burden is often too large to reap any practical benefits from accelerating the application on
an FPGA.

The open­source FINN compiler, introduced by Xilinx Research Lab, provides an excellent bridge
between the software and hardware domain by allowing quantized DNN inference FPGA accelerators
to be generated from a high­level description of the quantized DNN in the widely adopted open­source
ONNX format. Due to lower­level implementation details being abstracted away, the question is how
this affects the performance of the generated accelerator.

This work examines whether FPGA implementations of CNN­based models for speech­to­text in­
ference can be generated automatically by means of FINN. For this purpose, a sub state­of­the­art
CNN for speech­to­text recognition, named QuartzNet, is targeted for FPGA acceleration. To achieve
this, extensions to the FINN compiler are proposed to enable generating 1D CNN inference accelerat­
ors for FPGAs. Furthermore, a proof­of­concept FPGA accelerator of a quantized QuartzNet model is
implemented by means of FINN. Compared to a high­end CPU device, the proposed FPGA acceler­
ator achieves 7.7× higher throughput and 8.2× lower latency for a speech recognition inference task.
Compared to a high­end GPU device, the proposed FPGA accelerator improves the energy efficiency
by 6.8% at the expense of lower throughput and higher latency.

By generating an FPGA accelerator for a quantized version of the QuartzNet model, this work
bridges the software and hardware domain by showcasing how a trained CNN in the software domain
can be transformed to create a high­throughput, low­latency, and energy­efficient FPGA accelerator
with a fraction of the design effort required compared to constructing a handwritten RTL implementa­
tion.
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1
Introduction

1.1. Context & problem statement
With the advent of faster compute infrastructure and more training data becoming available, Deep
Neural Networks (DNNs) have started to become increasingly useful [28]. DNNs have shown to beat
humans in their own designed games, such as chess and Go [59], and have for example shown to
surpass human­level accuracy on image classification tasks [57, 60]. For speech recognition tasks,
DNNs have also become increasingly more accurate.

These successes are partly attributed to models becoming larger and larger. For example, a state­
of­the­art speech­to­text recognition network employs more than 1 billion floating point parameters [80].
As models are growing in size, their compute and storage requirements, as well as power consumption,
are increasing likewise. This makes deploying suchmodels on edge devices, that have limited compute
and memory and demand low­power and low­latency model execution, infeasible. Offloading such
operations to the cloud is also not an option if low­latency inference is required, which is for example
the case for real­time applications. This severely limits the applicability of large DNNs.

Researchers have been addressing the issue to make DNNsmore power­efficient [17]. One popular
method to achieve this is called quantization; it has been shown that lowering the bit precision of weights
and intermediate results in a DNN has a minor impact on the accuracy of the model [5, 81, 82]. This
method reduces the memory footprint and allows for faster and more power­efficient low­precision
arithmetic, potentially allowing the deployment of such models to a whole new field of devices and
applications.

Clearly, this only has a theoretical advantage if it cannot be applied in practice, as conventional
compute infrastructure, such as CPUs/GPUs, are not able to fully reap the benefits of lower precision
arithmetic. Considering alternative hardware platforms, Field Programmable Gate Arrays (FPGAs) are
highly suited for such tasks. As opposed to CPUs/GPUs, FPGAs allow users to implement custom
bit­width arithmetic and memory hierarchy tailored to meet user­defined performance targets. Each
layer in the DNN can be executed at themoment data is available, allowing for a fully streamed dataflow­
style design achieving high­throughput, low­latency and a power­efficient accelerator for the DNN of
interest. FPGAs offer a high level of flexibility and offer a cost affordable solution, as opposed to
Application­Specific Integrated Circuits (ASICs).

Again, this only implies a theoretical advantage if the architecture of the DNN maps efficiently to the
streaming dataflow paradigm and available resources on an FPGA. Convolutional Neural Networks
(CNNs) have a favourable property that potentially allows the design and implementation of high­
performance and energy­efficient FPGA accelerator. CNNs are highly parallelisable due to the inherent
matrix multiplication that forms the main building block of such models, meaning that it matches well to
the acceleration profile of FPGA devices. On top of that, quantized CNNs have a significantly reduced
memory footprint, allowing to store all the weights onto on­chip memory, which implicitly reduces the
latency and increases power efficiency. Hence, quantized CNNs on FPGAs could lead to low­latency
and low­power inference accelerators, which allows the increasingly larger and more accurate CNNs to
be deployed in practical use­cases on edge devices that require real­time and power­efficient inference
execution.

1
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However, the development efforts and design space exploration for an FPGA are considerably larger
compared to creating a CPU or GPU accelerator. In fact, for very large models, it is arguably infeasible
to implement such a model by hand in RTL on an FPGA. Academia and industry have been addressing
this issue by introducing tools that abstract low­level hardware details away, which effectively lowers
the design effort required for FPGA devices. The FINN compiler is an excellent example thereof [7].
The FINN compiler is an open­source framework for developing high­throughput and low­latency DNN
inference accelerators on a wide variety of FPGA devices. Every single layer can be time­multiplexed
to ensure that the design meets a user­defined latency or throughput target. This allows for large
portability of the custom­designed DNN model; low­latency and high­throughput, e.g. for real­time
inference applications, can be targeted at the cost of higher resource utilisation, or area­efficient designs
can be created to target a smaller (cheaper) FPGA device. Compared to implementing a network in
RTL, such higher­level tools generally result in less optimal solutions in terms of throughput, latency,
and area and power efficiency. However, the design effort becomes significantly smaller.

In this work, the focus is on developing an FPGA accelerator for a speech­to­text inference model.
The potential advantage of an FPGA accelerator over a CPU or GPU implementation is that the FPGA­
based solution could be more energy­efficient and even result in higher throughput and lower latency
inference execution. The network of interest is a quantized version of the QuartzNet model developed
by the Xilinx Research Lab [16]. In order to lower the design effort to make the implementation feasible
within the time span of this project, as well as aiding reproducibility, the open­source FINN framework
is used and extended to design and implement the FPGA accelerator.

Research questions
The research questions for this work can be summarised as follows:

1. Can we automatically generate speech­to­text CNN inference FPGA accelerators using a data­
flow compiler for DNN inference on FPGAs?

2. What are the throughput and latency characteristics of such a generated FPGA accelerator?

3. How does the generated FPGA accelerator compare to mainstream CPU and GPU­based imple­
mentations of the CNN inference model?

1.2. Challenges & contributions
In order to create an FPGA accelerator for a speech­to­text CNN, this project has been divided into
two parts. The first part is focused on extending the FINN framework. The FINN framework currently
only supports DNNs that operate on 2D square input data. For speech­to­text networks, the input is
typically a 1D audio waveform. This means that the architecture of the DNN is tailored to operate on 1D
tensors instead of 2D tensors. Hence, the FINN framework needs to be extended to enable creating
efficient FPGA accelerators for 1DDNNs. In order to achieve this, the challenge is framedmore broadly;
the FINN framework needs to be extended to enable creating efficient FPGA accelerators for DNNs
operating on non­square 2D input images. This would allow a wide variety of networks to be mapped
onto an FPGA by means of the FINN framework. For my specific work, note that a model that operates
on a 1D input can be considered as a model operating on a non­square 2D input with one dimension
set to the extreme case of 1.

The second part is focused on using the FINN framework to create a high­performance and energy­
efficient FPGA accelerator for a DNN performing a speech­to­text inference task. The specific network
that is targeted is QuartzNet, which is a CNN. Due to the size of the network, the challenge lies in
ensuring that the model can fit on an FPGA. With the FINN framework, an extensive design space
exploration can be performed to assure that this condition is met. By doing so, this work bridges
the software and hardware domain by showcasing how a trained CNN in the software domain can
be transformed to create a high­throughput, low­latency, and energy­efficient FPGA accelerator with
a fraction of the design effort required compared to constructing a handwritten RTL implementation.
Most importantly, it showcases how this bridge is accessible to both hardware and software engineers
due to a lowered design burden offered by the FINN framework.
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Contributions
To summarise, the contributions of this work are:

1. Extensions to the FINN compiler to support non­square and 1D CNNs. This enlarges the set of
networks and application domains that can potentially be accelerated with FINN.

2. Design, implementation, and evaluation of a proof­of­concept FPGA accelerator for a CNN for a
speech­to­text inference application. This work showcases the largest topology for a speech­to­
text CNN ever implemented on an FPGA and the largest topology ever mapped on an FPGA by
means of FINN. Compared to a high­end CPU device, the proposed FPGA accelerator achieves
7.7× higher throughput and 8.2× lower latency. Furthermore, the proposed FPGA accelerator
improves the energy efficiency by 6.8% compared to a GPU­based implementation at the expense
of lower throughput and higher latency.

The majority of the extensions mentioned in 1) are available in the open­source GitHub repository of
FINN [36, 37, 40].

1.3. Thesis outline
The rest of this thesis is organised in the following way. Chapter 2 discusses inmore detail what speech­
to­text neural networks are, why and how the quantization technique is useful in such networks, and
how these two combined can be suited for FPGA implementation. A brief overview of FPGA acceler­
ators for speech­to­text inference applications is also presented. Furthermore, a detailed discussion
of the QuartzNet model proposed by NVIDIA and the quantized QuartzNet model developed by Xilinx
Research Lab is presented, as well as an in­depth discussion of the FINN framework. Based on this,
the challenges for the QuartzNet model in FINN are summarised. Chapter 3 presents in more detail
how the FINN framework needs to be adjusted to support the QuartzNet model. Chapter 4 presents a
design space exploration of various layers encountered in the QuartzNet model. More precisely, the
effect of time­multiplexing specific layers from the QuartzNet model on compute and memory resource
utilisation is studied. Chapter 5 profiles and compares the implementation of the quantized QuartzNet
model on a CPU, GPU, and FPGA device. As last, Chapter 6 concludes the work and presents future
research directions.



2
Background

This chapter will cover topics that are required to understand the proposed extensions to the FINN com­
piler as well as the design choices made for QuartzNet. First, an introduction to speech­to­text neural
networks and convolutional neural networks is given in Section 2.1. After having identified the trend of
models getting increasingly larger, a popular model compression technique named quantization is dis­
cussed in Section 2.2. After having established that Field Programmable Gate Arrays (FPGAs) provide
excellent opportunities for implementing custom bit­precision logic, a brief introduction on FPGAs as
well as one specific target board, the Alveo U250, is presented in Section 2.3. Subsequently, a brief
introduction on related work targeting FPGA inference accelerators for speech­to­text recognition tasks
is given in Section 2.4. Next, we will present more details of the architecture of the QuartzNet model in
Section 2.5. As the model is too large and complex to design an FPGA accelerator by hand, we shall
motivate why the FINN compiler is an excellent tool to create an FPGA accelerator and also discuss the
internal details of the tool in Section 2.6. After that, Section 2.7 presents an overview of how the main
building block of QuartzNet, a convolution, is mapped to FINN custom operators and a brief overview
of the underlying hardware component is given. Finally, the design and implementation challenges for
enabling the FINN compiler to create an FPGA accelerator for the QuartzNet model is discussed in
Section 2.8.

2.1. Neural networks
A neural network (NN) architecture can be seen as a function family 𝑓(𝑥) that produces some out­
put given an input 𝑥 [6]. The architecture describes the sequence of operations used as well as the
configuration of those operations. The basic computational structure of a neural network is the per­
ceptron introduced in 1958 [56]. A schematic of the perceptron model is shown in Figure 2.1. The
nodes/vertices are referred to as neurons and the edges are referred to as synapses. The synapses
have a certain weight associated with them. The output of each neuron consists of a weighted sum of
neurons plus an additional bias term followed by an activation function, as shown by the highlighted
box. The weights are typically trained during a phase referred to as training. The activation function is
typically a simple mathematical operation, such as a Rectified Linear Unit (ReLU) activation function.
This operation will be introduced for the specific network of interest in Section 2.5.2. The output of a
neuron is also referred to as the (output) activation.

Typically, neural network architectures consist of a sequence of layers composed of neurons as
shown on the right side of Figure 2.1. The first and last layers are called the input and output layers,
respectively. The layer in the middle is referred to as hidden layers. Essentially, each layer transforms
the input, also called the input feature (map), into an intermediate representation, also referred to as
the output feature (map). The so­called input image can be, for example, a 2D vector representing an
image or a 1D vector representing an audio waveform, and is typically composed of several channels.
These channels are also referred to as features of the image; such as the RGB channels in an image.
The final layer is typically fully connected, meaning that all of the neurons in the previous hidden layer
are connected to all of the neurons in the final output layer. In the end, an output is produced that
matches with the scope of the task; in image recognition tasks, a label is produced that relates to the
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Figure 2.1: High level schematic of a perceptron model and simple neural network.

supplied input image.
The configuration of a layer relates to specific properties of the operations; e.g. convolutions can

have different filter shapes. A neural network model describes also the parametrisation of the neural
network architecture, i.e. 𝑓(𝑥;𝑊) [6]. The inference phase refers to deploying a model with fixed
parameters to perform a specific classification task. Note that the following discussions will be focused
on the inference aspects of NNs.

2.1.1. Speech­to­text deep neural networks
Deep learning is a specific type of machine learning where the neural network is composed of many
consecutive layers, hence the name ’deep’, that are able to extract relevant features from raw inputs
and subsequently combine those features to produce some output. Deep neural networks (DNNs)
have become increasingly useful over time as the amount of training data has increased and computer
infrastructure has improved [28]. This is partly attributed to the increasing size of deep neural network
models and is in accordance with one of the pillars deep learning is based on; namely, the philosophy
of connectionism [8, 28]. A single biological/artificial neuron might not express any kind of intelligence,
but a large pool of connected neurons might create an intelligent system. Deep neural networks have
proven to surpass human capabilities in various tasks. A DNN named AlphaZero is able to achieve
superhuman performance in the games of chess, shogi and Go [59], and GoogLeNet is even able to
surpass a human annotator, albeit a not thoroughly trained one, on a 1000­label image classification
task [57, 60]. Within natural language processing, deep learning models are also achieving increasingly
lower word­error­rates (WERs). In this work, our focus is on models that perform Automatic Speech
Recognition (ASR), which is the task of recognising words from audio and converting them to text.
More formally, given an acoustic sequence 𝑋 and a linguistic sequence 𝑦, the goal of ASR is to create a
function that maximises the conditional distribution (𝑃) that relates the acoustic inputs 𝑋 to the linguistic
target 𝑦, as given in Equation (2.1) [28].

𝑓𝐴𝑆𝑅(𝑋) = argmax
𝑦

𝑃(𝑦|𝑋 = 𝑋) (2.1)

In other words, the task is: given a sequence of words, what is the most likely string of characters. In
this work, the focus is on creating an FPGA accelerator for a model performing inference for an ASR
task.

Since 1980, systems combining Hidden Markov Models (HMMs) and Gaussian Mixture Models
(GMMs) were used to solve this task [28]. However, with the advent of deeper and larger models, neural
networks were able to achieve state­of­the­art accuracy results on ASR tasks. There are many variants
to DNNmodels, such as Long Short TermMemory (LSTM) models [24], other types of Recurrent Neural
Networks (RNNs) and variants thereof [79], Transformer models [64], Convolutional Neural Networks
(CNNs) such as Jasper and QuartzNet [34, 43], or combinations of CNNs and Transformer models,
so­called Conformer models [18]. Discussing the architectural details of each model goes beyond the
scope of this work, but one particular type of DNN is of interest: CNNs [41]. These networks are
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similar to MultiLayer Perceptrons (MLPs) meaning that the network consists of a group of neurons with
learnable weights and biases. Each of these neurons receives an input image, perform a dot product
with a weight value and apply an activation function to produce the output. The main difference for
CNNs is that MLPs are fully connected, while CNNs are not. CNNs are characterised by the convolution
operator.

Convolutional Neural Networks
A convolution operation in deep learning can be thought of as a filter that applies a linear transform­
ation on the input pixels within its local field and as it slides over the input image, it creates a new
representation of the image. A visual example is given in Figure 2.2; the input image (𝐼𝐹𝑀) is of size
[𝐼𝐹𝑀𝐻 , 𝐼𝐹𝑀𝑊] with 𝐼𝐹𝑀𝐶 channels and there are 𝑂𝐹𝑀𝐶 kernels related to the number of output chan­
nels, where each kernel is of size [𝐾𝐻 , 𝐾𝑊] with 𝐼𝐹𝑀𝐶 channels. The output value, the red box in the
right matrix, is obtained by a sum of the dot products of each convolutional operation. Note that a 1D
convolution is obtained by setting 𝐼𝐹𝑀𝐻 and 𝐾𝐻 or 𝐼𝐹𝑀𝑊 and 𝐾𝑊 to 1.

Figure 2.2: Convolution operation between an input image of 3 channels, kernel with 3 channels, producing a single output value.

For output location (𝑖, 𝑗), the 2D convolution operation with a kernel of size 𝐾ℎ by 𝐾𝑤 can be ex­
pressed as a discrete convolution operation as shown in Equation (2.2), where 𝑂𝐹𝑀, 𝐼𝐹𝑀 and 𝐾 rep­
resent the output image, input image, and kernel respectively.

𝑂𝐹𝑀(𝑖, 𝑗) =∑
ℎ
∑
𝑤
𝐼𝐹𝑀 (𝑖 − ℎ, 𝑗 − 𝑤)𝐾(ℎ, 𝑤) (2.2)

The important point to notice is that a convolution can be expressed as a matrix multiplication if the
weight matrix is restructured into a Toeplitz matrix [28]. However, as this matrix is very sparse, this
particular computation cannot be done efficiently. In Section 2.6.2, a more efficient way of performing
a convolution operation is explained.

This work is focused on QuartzNet, which is a CNN. The convolution operation has several favour­
able properties with respect to fully connected layers which are worth mentioning [28]:

1. Convolutions have sparse interactions and rely on parameter sharing. Each neuron in a hidden
layer is connected to a limited set of neurons from the previous layer and the weights of these
connections are all dictated by the kernel. The practical advantage of having fewer parameters
to train is that the final model requires fewer parameters to be stored in hardware. Secondly,
sparse interactions also imply fewer computational operations to produce the output of a neuron.
A more theoretical advantage is that fewer parameters reduces the complexity of the model and
could reduce the chance of overfitting.
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2. Convolutions are equivariant to translation. In the case of images or time­series data as input,
if a certain shape is moved in space or a certain sound event occurs earlier or later in time, the
same representation will appear at the output of the convolution; i.e. certain corners or sounds
can be detected at different points in space or time respectively. In the case of ASR, this prop­
erty can provide robustness against speaker and environment variance, as shown in [3], albeit
with a different type of weight sharing technique compared to those used for the convolutions in
QuartzNet.

Besides the convolution operator, several other operators can be found which are used for the
activation function and normalisation respectively. The activation function can be linear or non­linear,
where a well­known example is the ReLU. Regarding normalisation, Batch Normalisation (BN) is also
commonly found in DNNs [29]. These operators are explained later when the QuartzNet model is
introduced.

Accuracy of ASR models
There are essentially two objectives when using a DNN; training and inference. Training relates to the
process of estimating the model parameters to optimise a certain loss function. Inference relates to
the actual deployment of the model, i.e. using the model with the learned parameters to perform a
particular task. As mentioned before, in this work the focus is on inference. To evaluate and compare
the accuracy of different models in ASR tasks, standardised benchmark datasets are used. There exist
many different benchmark datasets to train and validate a model on, such as LibriSpeech [51], Wall
Street Journal [53], Fisher [12], Mozilla’s Common Voice [47], or CHiME­6 [68], each having differences
either in the audio context or size and hence each provide a different challenge for the model. A
common metric for the accuracy of the speech­to­text recognition model is the WER; this metric relates
to how well the predicted string of characters matches the actual transcript. As the state­of­the­art WER
has dropped significantly in recent years, researchers have identified and discussed shortcomings in
the benchmark models that portray an unrealistic accuracy of ASR models [46, 61]. The benchmark
datasets do not represent well a spontaneous human conversation and lack diversity in speakers.
Such biases in datasets have for example shown to create a racial and gender discrepancy in ASR
systems [33]. However, training a model falls out of the scope of this work and hence a thorough
analysis of which dataset to train and/or evaluate on is not considered. For implementation purposes,
a pre­trainedmodel on a single or a combination of the standard benchmark datasets will be considered.
The benchmark dataset of interest is LibriSpeech, as the targeted model introduced in Section 2.5.4 is
trained on, amongst others, this dataset and benchmark results are reported for this dataset.

Regarding the LibriSpeech dataset, there are two versions; clean, which represents clean speech
and controlled environments, and others, which represents more noisy and challenging speech.

2.2. Quantization
State­of­the­art DNN models for ASR tasks utilise more than a billion floating point parameters [80].
A large number of learnable parameters implicitly lead to high compute and memory bandwidth chal­
lenges. This makes this kind of models impractical for devices with limited compute, memory, and
power budgets, which limits their use cases.

Researchers have been addressing the question on how to make DNNs more efficient in terms
of power, latency, and memory footprint [17]. One category falls under designing efficient NN model
architectures. One example of this, as will be introduced in Section 2.5.2, are depthwise separable con­
volutions. Other methods are pruning and knowledge distillation. The methods of interest for this work
are quantization and implementing an NN architecture on an alternative hardware platform, namely
an FPGA. Quantizing an NN model refers to mapping the set of continuous floating point parameters,
such as the weights and activations, to a discrete set of integer values within a specific range dictated
by the number of bits used to represent the quantized value. The newly obtained NN model can be
fine­tuned by re­training the model, which is referred to as Quantization­Aware Training, or kept as­is,
which is referred to as Post­Training Quantization.

The advantage of a quantized architecture is that the computations are expressed in lower precision
arithmetic, which is more power and area­efficient and faster than floating point arithmetic. Figure 2.3a
and Figure 2.3b visualise the energy and area costs of various operations in 45nm technology respect­
ively. Note that an 8­bit integer addition is 30 times more energy­efficient and roughly 166 times smaller
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than a 32­bit floating point addition. The same holds for an 8­bit integer multiplication, which is over
18 times more energy­efficient and over 27 times smaller than the 32­bit floating point counterpart.
Secondly, quantized parameters imply a smaller memory footprint, meaning that fewer bits would be
needed to be stored and transferred. Hence, a quantized network also lowers the power consumption
of memory transactions and the weights can be stored in smaller, often faster, types of memory ’closer’
to the compute logic. Clearly, this only has a theoretical advantage if it cannot be implemented in prac­
tice. This is where FPGAs can be used to realise a fast and energy­efficient DNN inference engine.
Different to CPUs and GPUs, with FPGAs users can implement any type of bit­precision arithmetic and
due to the small memory footprint, the weights can be stored on­chip instead of having power­hungry
and slow off­chip memory transactions.
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Figure 2.3: Energy and area comparison of different operations for different precision of operands in 45nm technology.

The question is, what happens to the accuracy of the quantized model? Interesting to note is that
neural networks are often over­parametrised, i.e. containing millions of floating point parameters, and
it has been shown that applying a quantization method often has a minor impact on the accuracy of the
model [17, 45]. In fact, for particular models and quantization techniques, the quantized model could
achieve higher accuracy compared to the baseline floating point model [45]. For a specific set of floating
point CNNs and quantized CNNs, the trade­off in terms of accuracy and hardware cost is visualised
in Figure 2.4 for an image classification task. The x­axis represents the hardware cost expressed in
Look­up Tables (LUTs), which is one of the components in an FPGA that can implement arithmetic
logic and will be explained in further detail in Section 2.3. As mentioned above, quantized networks
can significantly lower the hardware cost at the expense of a slight accuracy drop.

Note that quantization is not limited to CNN models or image classification tasks; for example, a
transformer­based model for speech recognition, named BERT, has been quantized from floating point
to 8­bit format, compressing the model by 4× with a minimal reduction in accuracy [77].

Figure 2.4: Accuracy versus hardware cost, expressed in look­up tables (LUTs), for floating point CNNs and several quantized
CNNs, taken from [7]. W𝑤 ,A𝑎 refers to the precision in bits (𝑤,𝑎) of the weights (𝑊) and activations (𝐴). Note that 𝐹𝑃 refers to
floating point.
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2.3. Field Programmable Gate Arrays
As discussed in the previous section, quantized NNs can offer multiple advantages in terms of per­
formance, area, and energy efficiency. FPGAs are an excellent device to implement such lower­bit
precision arithmetic as a programmer has full control over the instantiated compute logic.

FPGAs are a specific type of integrated circuit that can be reconfigured after fabrication [73]. Fig­
ure 2.5 visualises in a broad sense the differences between CPUs, GPUs, FPGAs, and Application­
Specific Integrated Circuits (ASICs) in terms of their flexibility and performance, area, and power effi­
ciency. Compared to CPUs and GPUs, FPGAs can potentially provide improvements in the throughput
and/or latency of an algorithm by exploiting its parallel dataflow­style architecture and it is typically more
power and energy­efficient. Despite the fact that an ASIC seems superior in terms of performance and
power efficiency, note that developing and producing an application on an ASIC is time­consuming
and expensive. Besides, FPGAs are reconfigurable, which means that any type of application can be
changed and optimised in the course of time. Especially in the fast­developing field of neural network
inference, this flexibility is important. In this section, a brief and broad overview of FPGAs is given.

Flexibility

Performance, Area, Power Efficiency 

CPU GPU FPGA ASIC

Figure 2.5: A spectrum showing the differences in terms of flexibility and performance, area, and power efficiency between
CPUs, GPUs, FPGAs and ASICs.

FPGAs are composed of programmable logic blocks (slices) and memory elements that are connec­
ted to each other bymeans of a programmable interconnect, denoted by the routing channel and switch­
box, as shown by the highlighted block in Figure 2.6. Modern FPGAs also contain on­chip memories,
coarse grain hard­wired functions and are even integrated with an on­chip CPU. The typical resources
found in an FPGA are look­up tables (LUTs), flip­flops (FFs), Digital Signal Processing (DSP) blocks,
memory components, wires and input/output (IO) ports. A simple overview of a modern FPGA device
is shown on the right side of Figure 2.6. Computations are expressed as truth tables, which are imple­
mented using LUTs and FFs. An n­bit LUT consists of a 2𝑛:1 multiplexer and an 2𝑛­bit memory, where
𝑛 is typically six. An FF can be seen as a storage component that can hold a certain output signal for a
specific duration and is regulated by the clock. An FF is useful for example for temporary data storage
and breaking up long signal paths or computations into multiple cycles. Note that the longest duration
of a signal path between two FFs dictates the clock frequency.

Typically, FPGAs also contain other primitives, such as DSPs, which is a specialised hardware block
that allows efficient computation of 𝑎 ⋅ (𝑏 + 𝑑) + 𝑐, where 𝑎, 𝑏, 𝑐, 𝑑 are scalars. Besides DSPs, there
are also other specialised computational components, such as an optimised adder. As stated before,
all types of computations can also be implemented with LUTs. However, for specific computations, a
DSP can be preferred over a LUT­based implementation due to lower power consumption and/or faster
execution.

Within an FPGA, there are also embedded memory elements that can be instantiated as random­
access memory (RAM), read­only memory (ROM), or shift registers. Depending on the device, the
on­chip memory elements can be implemented in LUTs (LUTRAM), Block RAMs (BRAMs) and Ultra
RAM blocks (URAMs).

Vivado High­Level Synthesis (HLS) compiler abstracts away many details from the target platform
and enables a user to describe the intended algorithm in a High­Level Language (HLL) instead of
Hardware Description Language (HDL). A programmer can still have control over lower­level details by
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Figure 2.6: High level overview of the different components that can be typically found in a modern FPGA, taken and adapted
from [31].

means of pragmas, such as which types of memory resources should be used to implement a specific
array, how to partition a memory element, how much a specific loop should be unrolled in hardware,
whether specific variables have a specific dependency. This lowers the design effort significantly, but
often results in sub­optimal performance of the inferred hardware implementation. In Chapter 4, a more
detailed analysis of the inferred hardware components is given.

In order to aid the discussions and interpretations in Chapter 4 and Chapter 5, the following sections
will discuss the target device, the Alveo U250 card, in more detail.

2.3.1. Alveo U250
TheAlveoU250 card is built on the Xilinx 16nmUltraScale architecture and uses the XCU250 FPGA [74].
The U250 card is one of the largest, in terms of compute capabilities, of its kind, and is designed to
suit the needs of data centre tasks such as machine learning inference. Due to its large physical size,
the U250 FPGA is split into multiple interconnected dies. Hardware components are divided among
these so­called Super Logic Regions (SLRs) [71]. Hardware components that are implemented on
different SLRs are connected to each other via Super Long Lines (SLLs). Note that these SLLs are
slower than regular lines connecting the components within an SLR [66]. Secondly, these SLLs are
scarce and they only connect adjacent SLRs. For large designs where resources must be allocated
among multiple SLRs, SLR crossings are inevitable. Hence, in order to aid timing closure and obtain
a design that runs potentially on a higher clock frequency, SLR crossings must be minimised. Another
benefit of minimising SLR crossings is that it can reduce the power consumption [71]. The Xilinx tools
offer algorithms that attempt to provide the fastest design by, among others, limiting the number of
(critical) paths that cross SLRs and balancing the allocated resources among SLRs [71]. However,
it has been shown that for large designs, the obtained solution attains a low performance due to the
longest path traversing multiple SLRs [4]. The team from Xilinx Research Lab proposed a floorplanning
algorithm that can provide designs with significantly higher performance; it has been shown that the
clock frequency could in some cases be increased by 80MHz.

2.3.2. Alveo U250 resources
To aid the understanding of the discussion presented in Chapter 4, the differences between the various
hardware memory resources of the Xilinx Ultrascale FPGAs will be discussed. For those devices, there
are three types of memory; LUTRAM, BRAM, and URAM.
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LUTRAM
LUTRAMs are the smallest type of memory and are often preferred to implement smaller arrays in
hardware. As mentioned before, LUTs can either be used to implement logic or to store data. More
precisely, all LUTs can be initialised by the bitstream and used as read­only memory (ROM), while only
a specific subset contains a data port and can therefore be used as both ROM and random­access
memory (RAM) (i.e. written to during execution of the algorithm). The UltraScale FPGAs contain
6­input LUTs, meaning that they can be configured as 64­bit ROM and/or RAM [72]. A single 6­input
LUT can either be initialised as a 64 addresses deep, 1­bit wide or 32 addresses deep, 2­bit wide
single­port RAM. Within these slices, multiple LUTs can be combined to create a larger 512­bit RAM
module. LUTRAMs are the most fine­grained type of memory; within a single slice, the RAM block
can be inferred as, among others, single, dual, quad, or octal port memory with a range of address­
width ratios such as (32, 64, 128, 256, 512) addresses and (1 to 16)­bits [72]. Note however that only a
subset of combinations of port configuration and address­width ranges is possible, but the amount of
flexibility for Xilinx tools to map an array to the most suited LUTRAM implementation is nevertheless
large. Besides, a single LUT can also be used as a 32­bit shift register and combining the LUTs in a
slice, up to a 256­bit shift register can be constructed.

BRAM
To implement larger memories, BRAMs or URAMs are more suited due to their more coarse­grained
structure. BRAMs in the UltraScale architecture can store 36 kbits; either as a single 36 kbits RAM
module or two independent 18 kbits RAM modules [75]. Table 2.1 visualises for each BRAM primitive
the number of read and write ports and the address­width ratios that can be set for each port independ­
ently. Note that the limited amount of read ports influences how arrays are partitioned among BRAMs,
which is further analysed in Chapter 4. Compared to LUTRAMs, BRAMs are more coarse­grained.

Primitive N.o. read ports N.o. write ports Addresses Width
RAMB18E2 2 2 16384 1
RAMB18E2 2 2 8192 2
RAMB18E2 2 2 4096 4
RAMB18E2 2 2 2048 9
RAMB18E2 2 2 1024 18
RAMB18E2 1 1 512 36

RAMB36E2 2 2 32768 1
RAMB36E2 2 2 16384 2
RAMB36E2 2 2 8192 4
RAMB36E2 2 2 4096 9
RAMB36E2 2 2 2048 18
RAMB36E2 1 1 1024 36
RAMB36E2 1 1 512 72

Table 2.1: Summary of various depth­width ratios for RAMB18 and RAMB36 primitives, as well as the number of read/write
ports [75].

URAM
URAMs are the largest and least flexible type of memory resource available on the Alveo U250 device.
A single URAM can store 288 kbits [75]. The URAM block has a fixed shape of 4096 addresses deep
and 72­bits wide entries. Similar to BRAM, URAMs have two ports that can either perform a read or
write operation per clock cycle. Furthermore, URAMs cannot be initialised by means of the bitstream;
during power­up or device reset, URAMs are initialised to all 0’s. This will pose a limitation for using
URAMs due to the limited number of AXI­Lite interfaces that can be instantiated per Xilinx Object file
and will be explained in more depth in Section 4.1.
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2.4. Inference accelerators on FPGAs for ASR tasks
As CNNs become larger and larger, dedicated hardware has gained more attention for CNN accelera­
tion due to the potential performance gain that can be attained. GPUs are a well known computational
platform that is relatively easily accessible and usable to accelerate NN inference. However, FPGAs
are more power­efficient. Secondly, for quantized neural networks with low precision integer weights
and activations, FPGAs can potentially outperform GPUs in terms of performance. Lastly, the imple­
mentation barrier for FPGA­based CNN inference accelerators is becoming increasingly lower, where
the FINN framework is an excellent example. Hence, CNN inference on FPGAs has become progress­
ively popular [19].

The different speech­to­text implementations on FPGAs can be roughly divided into three groups:
CNNs, RNNs, and HMMs. CNN­based networks are the best fit for an FPGA due to the fully parallelis­
able matrix multiplication. Due to the recurrent nature of RNN­based networks, hardware implement­
ation is typically more complicated. On top of that, quantized NNs are also frequently considered. As
FPGAs have limited on­chip memories, the memory footprint is typically lowered by compression or
quantization techniques.

A brief summary of several FPGA accelerators for speech­to­text inference applications is shown in
Table 2.2. Note that model size refers to the size of the learnable parameters and OnC and OffC refer
to whether the weights are stored on­chip or off­chip respectively. CNN­based image classification
networks have numerous FPGA accelerators in literature [19, 70]. However, interesting to note is that
for ASR tasks, little proof of concepts have been demonstrated. Similar to this work, Wen et al. proposed
an energy­efficient quantized CNN accelerator on an FPGA for speech recognition inference [69]. The
main difference compared to this work is the complexity of the CNN, the ASR task, as well as the
framework used to implement the accelerator. The CNN used in [69] consists of two convolutional
layers and three fully connected layers and is trained to classify six words only. The size of the CNN
in this work is much larger; it consists of 84 convolutional layers, as well as a large number of other
types of layers such as activation functions and batch normalisation, trained to perform ASR tasks on
29 characters. Dinelli et al. also present a quantized CNN­based speech­to­text implementation on
an FPGA with weights stored onto on­chip memory; however, this model is also small in terms of the
number of layers and is able to recognise 10 different words only.

A lot of other research is focused on RNNs. Lee et al. presented an implementation of an LSTM
based speech­to­text recognition network on an FPGA [42]. The weights of the LSTM are quant­
ized to 6­bits and are stored onto on­chip memory. Besides, the authors have also implemented an
RNN­based language model (LM), which improved the accuracy of the model. Han et al. proposed
a framework named ESE to allow efficient implementation of a sparse LSTM model. To reduce the
memory utilisation, they have applied pruning and quantization techniques, but the weights of the net­
work still cannot fit fully onto on­chip memory. Another framework for implementing LSTMs is proposed
by Wang et al., named C­LSTM. The difference to ESE is that the compression technique in C­LSTM
allows to store all weights onto on­chip memory and allows for a more efficient hardware implementa­
tion. Another framework for implementing LSTM and Gated Recurrent Unit (GRU) RNNs on FPGAs is
proposed by Li et al., named E­RNN [44]. Compared to the ESE and C­LSTM frameworks, the E­RNN
models achieved higher performance and higher energy efficiency.

As RNNs are harder to implement in hardware due to their recurrent nature, the focus of this work
is on CNNs. As the models shown in Table 2.2 are evaluated on different data and also vary in size,
one­to­one comparison with the accelerator proposed in this work is unfortunately not trivial.

Model Model size Frequency Power Latency Performance Board[MB] [MHz] [W] [µs] [GOps]

CNN [69] 0.09 (OnC) 150 9.758 218.4 71.55 XCKU­115
CNN [13] ­ (OnC) 116.2 2.259 390 ­ Zynq­UltraScale+
LSTM [42] 1.1 (OnC) 100 9.2 ­ ­ XC7Z045
LSTM [20] ­ (OffC) 200 41 82.7 0.0233 XCKU060
LSTM [67] ­ (OnC) 200 22 16.7 ­ XCKU060
LSTM [44] ­ (OnC) 200 25 8.3 ­ ADM­PCIE­7V3

Table 2.2: Comparison of several FPGA accelerators for speech­to­text inference.
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2.5. QuartzNet
QuartzNet is an end­to­end CNN for ASR [34]. End­to­end models allow a single model to convert
raw audio, or a pre­processed format, to a transcript [9]. The advantage of end­to­end models is that
it simplifies training and inference. Compared to most other speech­to­text recognition models, the
QuartzNet model has two fundamental differences. First, the QuartzNet model is based on a CNN.
Compared to RNNs, CNN­based models are simpler to implement in hardware as it does not have a
recurrent structure and consists of solely matrix multiplications. Secondly, QuartzNet uses a relatively
small amount of parameters. Hence, fewer memory resources are required to store the parameters,
making it suited to be implemented on edge devices. In the case of FPGA devices, the parameters
can potentially be stored on­chip, which reduces memory access latency as well as power consump­
tion. Besides, fewer parameters, in this particular case, translates to fewer compute operations and
potentially a higher inference throughput.

The entire pipeline, starting from the raw audio signal and ending with a transcript, is shown in
Figure 2.7. On the left, a high­level overview of the pipeline is given and moving to the right, the
QuartzNet model is presented in more detail. The audio waveform gets converted into an intermediate
format by means of the pre­processing stage. This intermediate format represents features of the audio
waveform and is fed to the QuartzNet model. The QuartzNet model, in turn, predicts the most probable
sequence of characters. Finally, the decoding stage converts the predictions of the model to a readable
string of characters.

QuartzNet

Pre-processing

Decoding

hello reader

TCSConv - BN - ReLU

TCSConv - BN - ReLU

TCSConv - BN - ReLU

Pointwise Conv - BN -
ReLU

Pointwise Conv

1D Depthwise Conv

Pointwise Conv

Batch Norm 

ReLU

Pointwise Conv

Batch Norm

 S  R

ReLU

1D Depthwise Conv

Pointwise Conv

Batch Norm

h e

Figure 2.7: Schematic of the ASR pipeline in this work consisting of three stages: pre­processing or feature extraction, the
acoustic model, which in this case is QuartzNet, and decoding.

The following subsections will discuss the various components of the QuartzNet model in more
detail. Note that the focus of the discussion is on inference.

2.5.1. Pre­processing
The front­end of the pipeline is denoted as the pre­processing stage. Note that the QuartzNet model
is not trained on raw audio data, but on an intermediate representation extracted from the raw audio
waveform. The intermediate representation contains multiple features extracted from the audio data
which are referred to as Mel­filterbanks. It is interesting to note that CNNs have shown to be able
to learn directly from the raw waveform [50, 78], as CNNs can inherently learn and optimise/tailor the
computation of Mel­filterbank features. For example, Zeghidour et al. propose a filter that can be treated
as an additional layer and trained with backpropagation with the rest of the model, which allows an end­
to­end model to learn from the raw waveform instead of pre­processed Mel­filterbanks [78]. However,
re­training the QuartzNet model and examining the pros and cons of learning from raw waveforms
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versus Mel­filterbanks falls out of the scope of this work. Hence, we will simply take Mel­filterbanks as
input to the network.

The input audio is sampled at 16 kHz. Converting the raw audio to Mel­filterbanks consists of several
steps [14]. The audio data is first dithered and subsequently, a pre­emphasis filter is applied to amplify
high frequencies. This balances the frequency spectrum, avoids numerical problems for the Fourier
transform that will follow, and could improve the signal­to­noise ratio. Next, the Hann window function
and the Short­Time­Fourier­Transform are applied and the power spectrum of the signal is computed.
After that, another filter function is applied to the power spectrum on a Mel­scale followed by taking
the log of the obtained filterbank energies. The advantage of the Mel scale over the Hertz scale is that
the Mel scale resembles the human perception of sound better; i.e. the Mel scale is more selective
at lower frequencies compared to higher frequencies. Finally, the obtained spectrum is normalised by
subtracting the mean of each filterbank and the output is padded to a convenient length. The resulting
output consists of 1D tensors where each element represents the Mel­filterbanks. Each time­sample
has 64 features and resembles 20ms of raw­audio speech, where each sample has a 10ms overlap
with the previous sample. Due to the complexity of the steps involved to obtain the Mel­filterbanks, this
step is not considered for hardware acceleration in this work. Besides, the execution of the QuartzNet
model is expected to be the most computationally intensive part.

2.5.2. QuartzNet architecture
The entire architecture of QuartzNet consists of a sequence of 1D time­channel separable convolu­
tions, batch normalisation, and ReLU layers as shown in the middle image in Figure 2.7. Besides, the
QuartzNet architecture contains residual blocks. Note that the architecture of the QuartzNet model is
based on the Jasper model [43]. The size of the QuartzNet model depends on the number of residual
blocks 𝐵, the number of repetitions of each residual block 𝑆, and the repetitions of a particular sub­block
within each block residual block 𝑅. Within each residual block, all 1D convolutions are identical in their
shape (𝐾) and the number of input/output channels 𝐶, with the exception of two convolutions in the
third residual block (𝐵3) which operate on 256 input channels and produce 512 output channels.

More precisely, the first layer of the QuartzNet model consists of a time­channel separable con­
volution with a stride value of 2, followed by a batch normalisation and ReLU activation. Next, there
are 5 residual blocks 𝐵𝑖, where the deeper ones have wider kernel widths for the convolution and an
increased number of channels. The number of repetitions of each residual block 𝐵𝑖 is either 1, 2, or
3. Each residual block 𝐵𝑖 consists of a sub­block of time­channel separable convolutions, batch nor­
malisation and ReLU activations. Each of these sub­blocks has the same general structure for the
convolution, i.e. the same kernel width and the number of input/output channels, but with different
weights. The sub­blocks are repeated 𝑅 times. Note further that each residual block 𝐵𝑖 contains a
pointwise convolution and batch normalisation layer on the residual lane.

The authors have presented the following notation for the size of the architecture: (5 ⋅ 𝑆)×𝑅. Thus,
a 5x5 architecture refers to each residual block 𝐵𝑖 being repeated once. By varying the number of
repetitions of each sub­block, 𝑆, the number of parameters used for the model is altered. Note that this
also has a consequence for theWER on the LibriSpeech dev­other dataset; the smaller models achieve
a lower WER on the LibriSpeech dev­other and dev­clean dataset as reported in [34]. An overview is
presented in Table 2.3.
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Block R K C S Others5x5 10x5 15x5
C1 1 33 256 1 1 1 Stride is 2

B1 5 33 256 1 2 3
B2 5 39 256 1 2 3
B3 5 51 512 1 2 3
B4 5 63 512 1 2 3
B5 5 75 512 1 2 3

C2 1 87 512 1 1 1 Dilation is 2
C3 1 1 1024 1 1 1
C4 1 1 29 1 1 1

Params (M) 6.7 12.8 18.9

WER dev­other (300 epochs) 15.69 12.33 11.58
WER dev­other (1500 epochs) ­ ­ 10.78

Table 2.3: Summary of the QuartzNet architecture, taken and adapted from [34].

Table 2.4 summarises the best­reported WER for the QuartzNet model from the original publica­
tion [34]. Note that an LM essentially adds additional information about whether a sequence of char­
acters or words is a valid combination and as can be seen from Table 2.4, an LM can substantially
improve the accuracy. The decoding and post­processing phase will be explained in further detail in
Section 2.5.3. Note that the focus of this work is to create an FPGA accelerator for the QuartzNet model
and hence, the focus is solely on the QuartzNet architecture. Creating a hardware accelerator for the
LM or applying an LM to improve the WER is not considered.

Model Language Model Test
clean other

QuartzNet 15x5 None 3.90 11.28
QuartzNet 15x5 6­gram 2.96 8.07
QuartzNet 15x5 Transformer­XL 2.69 7.25

Table 2.4: WER accuracy on test clean and test other LibriSpeech dataset for the best proposed QuartzNet model with and
without a language model. Data is taken from [34].

Depthwise separable convolutions
The main difference with respect to the Jasper model is that the QuartzNet model is based on 1D time­
channel separable convolutions, also called depthwise separable convolutions [58]. Intuitively, a reg­
ular convolution can be thought of as performing two steps; each input channel is transformed/filtered
and subsequently, all of the input channels are combined to produce a new representation. A 1D
time­channel separable convolution splits the regular convolution operation, as shown in Figure 2.2, in
two parts: a depthwise convolution and a pointwise convolution. The depthwise convolution applies a
single 1D filter of size 𝐾 to each of the input channels resulting in the same number of output chan­
nels. The pointwise convolution applies a single 1D filter of size 1 over all input channels, producing
one or multiple output channels. Note that the depthwise convolution operates on each channel indi­
vidually, but takes into account 𝐾 time frames, while the pointwise convolution takes into account all
channels, but operates on a single time frame. For this reason, these convolutions are also referred to
as time­channel separable convolutions [34].



2.5. QuartzNet 16

A schematic overview of a depthwise separable convolution is shown in Figure 2.8. Note that a
regular convolution for the same kernel width and number of output channels, as shown in Figure 2.2,
contains 𝐾𝐻 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝑂𝐹𝑀𝐶 weights. A depthwise separable convolution requires only 𝐾𝐻 ⋅ 𝐾𝑊 ⋅
𝐼𝐹𝑀𝐶 + 𝐼𝐹𝑀𝐶 ⋅ 𝑂𝐹𝑀𝐶 weights. Thus, the reduction in number of parameters and computations is given
by Equation (2.3).

𝐾𝐻 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 + 𝐼𝐹𝑀𝐶 ⋅ 𝑂𝐹𝑀𝐶
𝐾𝐻 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝑂𝐹𝑀𝐶

= 1
𝑂𝐹𝑀𝐶

+ 1
𝐾𝐻 ⋅ 𝐾𝑊

(2.3)

The advantage of these convolutions is two­fold. Depthwise separable convolutions reduce the
number of parameters in the model to be learnt, without having to sacrifice the number of convolutions
applied or the width of the convolutional kernel. Fewer parameters to be learnt reduces the com­
plexity of the model and implies less storage and computational requirements for edge devices. Note
that this type of convolution has already been used before in image recognition networks, such as
MobileNets [27], and speech recognition [22].

In practice, a batch normalisation and ReLU activation can be inserted after the depthwise convolu­
tion, instead of applying the pointwise convolution right after the depthwise convolution. Furthermore,
note that QuartzNet contains 1D depthwise separable convolutions. The analysis and discussion above
applies as well to 1D convolutions by setting 𝐼𝐹𝑀𝐻 and 𝐾𝐻 or 𝐼𝐹𝑀𝑊 and 𝐾𝑊 to 1.

Depthwise convolution Pointwise convolution

Figure 2.8: Overview of a depthwise separable convolution consisting of a depthwise convolution followed by pointwise convo­
lution.

ReLU activation
TheReLU activation function is a simplemathematical function that, in the case of QuartzNet, adds non­
linearity to the model. The function is applied on each element of the feature vector and is expressed
in Equation (2.4). There are many variants to the ReLU activation function, as well as alternatives to
the ReLU activation [49]. Discussing the pros and cons falls out of the scope of this work. However, it
is interesting to note two favourable properties of the ReLU activation; it is computationally simple and
secondly, a quantized ReLU is a uniform quantizer. The importance of a uniform quantizer will become
clear when considering how such an activation is implemented in FINN, as explained in Section 3.2.

𝑓(𝑥) =max(0, 𝑥) (2.4)

Batch normalisation
Batch normalisation was introduced to accelerate the training of deep neural networks [30]. Given a
feature map 𝑥, the output value 𝑦 is obtained as given by Equation (2.5). Note that the parameters
𝜇, 𝜎, 𝛿, 𝑆, 𝐵 are fixed during inference. The parameters 𝜇, 𝜎 refer to the mean and variance of each
channel of the feature map and are estimated during training. Note that 𝛿 ensures that a division
by 0 never occurs. The batch normalisation layer restricts the output values to approximately have
zero mean and unit variance. As this reduces the possible set of output representations that can be
produced, the parameters 𝑆, 𝐵 are added as additional scaling and bias terms that can potentially undo
the batch normalisation. These parameters are learnt during training.

𝑦 = 𝑥 − 𝜇
√𝛿 + 𝜎

⋅ 𝑆 + 𝐵 (2.5)
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Residual blocks
Lastly, the QuartzNet model also contains skip connections [23]. These skip connections form a so­
called residual block as denoted by 𝐵1 in Figure 2.7. In short, the intuitive idea is the following: a
specific deep neural network should be able to have the same accuracy as its shallower counterpart
because, in the worst­case, the deeper layers can simply be learnt to perform an identity mapping.
However, in practice, this is not the case. By inserting a skip connection, deeper neural networks are
easier to optimise and achieve higher accuracy compared to their counterparts that do not have these
skip connections.

2.5.3. Decoding
The range of outputs of the QuartzNet model consists of 29 tokens; 26 tokens represent the characters
of the English alphabet, one token represents an apostrophe, one token represents a space, and there
is one so­called empty token. Each time­step in the output tensor contains a certain score for each
of the 29 characters; by applying the softmax function, we can consider this output to be a probability
distribution over the range of characters for each time­step. Note that the empty token is part of the
output set as QuartzNet is trained with Connectionist Temporal Classification (CTC) loss [21].

More formally with regards to the CTC algorithm, the output of the QuartzNet model consists of a
series of token predictions for 𝑇 time­steps. At each time­step 𝑡, the output represents a probability
distribution over the 29 possible tokens 𝑎 given an input 𝑋, i.e. 𝑝𝑡 (𝑎𝑡|𝑋) [21]. We are interested in
finding the most probable alignment of tokens 𝑎∗ out of all possible alignments 𝐴. A simple algorithm to
do this is to take the most probable token for each time step. In equations, the algorithm is expressed
as Equation (2.6).

𝑎∗ = argmax
𝐴

𝑇

∏
𝑡=1

𝑝𝑡 (𝑎𝑡|𝑋) (2.6)

There exist other more advanced heuristics or combinations with LMs for the decoding step, but
employing and testing these are out of the scope of this work.

To obtain a readable sequence of characters, subsequent duplicate tokens are collapsed and the
empty tokens are removed. In the example shown in Figure 2.7, assume that the output from the
QuartzNet model is the sequence ’heell𝜖loo rreadderr’, where 𝜖 refers to the empty token. This would
in turn be collapsed to: ’hello reader’. Notice how the empty token is useful for distinguishing duplicate
characters.

2.5.4. Quantized QuartzNet
The model used in this work is a pre­trained quantized 15x5 QuartzNet model developed by the Xilinx
Research Lab [16]. The model is constructed and trained with Brevitas, which is a PyTorch library for
Quantization­Aware Training that allows exporting the network to a FINN­supported ONNX graph [52].
Three different quantized models have been published. Two models have all weights and activations
quantized to 8­bit values; onemodel is per­tensor scaled, the other per­channel scaled. The third model
has the inner layers quantized to 4 bits, while the first and last layers are quantized to 8­bit values with
a per­channel scaling technique. A summary of the published accuracy on the dev­other LibriSpeech
dataset is provided in Table 2.5. Note that the reported WERs are obtained without an LM.

Kim et al. have also proposed several per­tensor quantized QuartzNet models with a particular
technique named Q­ASR [32]. Their method does not require any training data as opposed to the
quantized QuartzNet model from Xilinx Research Lab, which could be useful as gathering training data
in a medical/healthcare context can be hard due to privacy concerns. Similar to the model published
by Xilinx Research Labs, the quantization scheme reported is static; i.e. the algorithm does not require
any statistics to be gathered or computed during inference. The authors have presented three different
quantized models: 8­bit weights and activations, 6­bit weights and 8­bit activations, and 6­bit weights
and activations.

As discussed previously, the accuracy drop for the quantized models is minor compared to the
original floating point model. However, the memory footprint reduced by at least 4×.



2.6. FINN 18

Model Scaling type Bit width WER Memory MACsinner layers outer layers footprint
NVIDIA [34] ­ 32 FP 32 FP 10.78 % 75.38 MB 1659

Brevitas [16] Per­tensor 8 INT 8 INT 11.03 % 18.58 MB 415
Brevitas [16] Per­channel 8 INT 8 INT 10.98 % 18.58 MB 415
Brevitas [16] Per­channel 4 INT 8 INT 12.00 % 9.44 MB 105

Q­ASR [32] Per­tensor 8 INT 8 INT 10.28 % 18.45 MB ­
Q­ASR [32] Per­tensor 6 INT 6 INT 12.31 % 13.84 MB ­

Q­ASR [32] Per­tensor W: 6 INT W: 6 INT 10.83 % 13.84 MB ­A: 8 INT A: 8 INT

Table 2.5: Reported WER on LibriSpeech dev­other dataset for the QuartzNet model and various quantized QuartzNet models.
Numbers are taken from [16, 32, 34, 52]. If not stated otherwise in the bit width columns, the bit width of weights and activations
are equal to each other.

The final model used in this work is the QuartzNet model with per­channel scaling with 4­bit weights
and activations for the inner layers and 8­bit weights and activations for the first and last layers. Note
that the first and last layers have increased bit­width as these layers are more sensitive to quantiza­
tion [7]. There are two specific reasons why this model was considered:

1. As the model is developed in Brevitas, the model can be exported in a specific open­source and
widely used format (ONNX) that is suited to the FINN compiler. This work also serves to indicate
how the software and hardware domains can be bridged by means of Brevitas and FINN.

2. The Q­ASR model was published on 31 March 2021, which is roughly at half of the timeline of
this project. Thus, this model could not be taken into consideration.

2.6. FINN
There exists a wide variety of CNN to FPGA toolflows [65]. The generated accelerators can be divided
into two categories: matrix of processing elements (MPE) and customised streaming dataflow (DF)
architectures [4, 65]. The main difference is that the former executes the network layer­by­layer and
contains a more generic hardware implementation that suits multiple layers, while the latter architecture
executes each layer in parallel. DF­style accelerators contain optimised datapaths and compute units
tailored to each individual layer and can theoretically lead to lower latency and more power­efficient
designs compared to MPE­style accelerators, but have as disadvantage high resource and memory
requirements for the FPGA device. FINN is a tool for enabling quantized DNN inference models to be
mapped to a DF­style FPGA accelerator [7, 63]. There are four reasons that make FINN suited for
creating an FPGA accelerator for the quantized QuartzNet model:

1. FINN is open­source; meaning that we have access to every part of the design flow to adjust it to
support QuartzNet.

2. FINN is already used by a relatively large community and has already been used before to create
a low­latency and high­throughput FPGA inference accelerator for other popular networks, such
as MobileNet and ResNet­50 [38]. Note that similar to the QuartzNet model, the MobileNet model
also contains depthwise­separable convolutions, albeit 2D instead of 1D.

3. FINN targets DF­style architectures and allows for a thorough design space exploration. As the
QuartzNet model poses a challenge for the hardware implementation due to its very large size
in terms of the number of layers and memory requirements, it is hard to fit this on an FPGA
platform. Having the freedom to tailor each layer’s compute and memory footprint allows for a
trade­off between resource utilisation and throughput, which increases the likelihood of fitting the
design on the target FPGA.
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4. FINN supports arbitrary precision weights and activations and allows to target a wide variety of
FPGA cards. This gives designers a lot of flexibility in quantizing the network; essentially allowing
a more fine­grained trade­off between accuracy and compute required. Besides, the latter also
offers a trade­off between target platform and target throughput.

A high­level overview of the various stages of the FINN compiler is shown in Figure 2.9. We typically
start with a neural network description in PyTorch and trained with Brevitas. Brevitas is a PyTorch
library for Quantization­Aware Training and allows for exporting models suited for the FINN compiler
flow; models are exported in ONNX format with datatype annotations to weights to enable quantizing
the weights to datatypes smaller than 8­bit integers [52]. ONNX is an open­source format to describe
machine learning models [15]. The format defines what a neural network consists of in a protobuf
description; e.g. a neural network model consists of a graph which in turn consists of nodes/operators.
The ONNX format also describes a set of operators which are extended by FINN. An example will be
given in Section 2.7.

A network of high­level ONNX layers is the starting point of the FINN compiler. The FINN compiler
consists of a sequence of graph transformations that converts an ONNX graph with standard operators,
found in [2], to a graph with FINN generated custom ONNX operators. Each of these custom operators
has a corresponding C++ description in the FINN­hlslib library suited for the Xilinx Vivado HLS tool [40,
76]. The sequence of graph transformations can be divided into three main parts:

1. Streamlining floating point operations

2. Lowering convolutions

3. Conversion to HLS layers

4. Layer folding

Brevitas
export

Neural Network description in
PyTorch/Brevitas

Frontend

Streamlining Convolution
lowering

Conversion to
HLS layers

Vivado/Vitis
synthesis

Graph transformations & optimizations Backend

ONNX model representation
Bitfile and driver

Folding

Figure 2.9: FINN compiler flow, inspired from [4].

2.6.1. Streamlining floating point operations
The first graph transformation is the streamlining transformation. Note that the FINN compiler currently
only supports fully quantized NNs. However, in practice, quantized NNs can contain floating point com­
putations in between quantized layers in order to improve the accuracy of the model [62]. For example,
in the case of the quantized QuartzNet model, batch normalisation layers with floating point paramet­
ers for the mean and standard deviation can be found in front of several activation functions as well as
channel­wise scaling operators after several convolutional layers. These floating point computations
limit the ability to fully leverage the benefits of deploying such a model on an FPGA; floating point com­
putations and floating point parameters are more expensive in terms of resources and power than their
integer counterparts. The streamlining transformation eliminates all floating point operations from the
model [62].
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To understand how the floating point parameters get eliminated, or also referred to as absorbed, the
underlying principle of the streamlining transformation must be explained. First, note that the stream­
lining algorithm only works for uniform quantizers. The algorithm contains three fundamental steps that
enable the conversion to a network with only integer operations and parameters:

1. representing uniform quantizers as a thresholding function,

2. re­ordering and collapsing linear transformations, and

3. absorbing linear transformations into the weights of the thresholding function.

First, note that any uniform quantizer can be expressed as a thresholding operation followed by a
linear transformation. A thresholding operation 𝑓(𝑥; 𝑇), also referred to as the (thresholding) activation
function, maps real numbers 𝑥 to an integer number 𝑦 ∈ [0, 𝑛], where 𝑦 is the number of thresholds in 𝑇
that 𝑥 is greater than or equal to [62]. Note that 𝑇 denotes the set of thresholds used for the activation
function. Formally, this is expressed by Equation (2.7).

𝑓(𝑥; 𝑇) =
⎧⎪
⎨⎪⎩

0 for 𝑥 ≤ 𝑡0
1 for 𝑡0 < 𝑥 ≤ 𝑡1
... ...
𝑛 for 𝑡𝑛−1 < 𝑥

(2.7)

Figure 2.10 visualises on the left a thresholding operation for three thresholds. Note that by apply­
ing scalar multiplication and addition, any other uniform quantizer 𝑞(𝑥) can be obtained. There is an
important difference between the outputs of both quantizers; 𝑓(𝑥; 𝑇) has integer outputs, while 𝑞(𝑥)
has floating point outputs.

Figure 2.10: A 2­bit uniform HWGQ quantizer (𝑞(𝑥)) expressed as uniform quantizer (𝑓 (𝑥; 𝑇)) followed by a multiplication by
0.538 and addition of 0 in this particular case. Example inspired from [62].

The question is, how can we get rid of the addition and multiplication in Figure 2.10, as we would
then have our result after the thresholding function in integer format instead of floating point format.
First, note that these linear transformations have favourable properties; linear transformations can be
moved past subsequent convolutions or matrix multiplications without affecting the result and multiple
consecutive linear transformations can be collapsed into a single linear transformation. By doing so,
linear transformations at the output of a thresholding activation can be moved to the input of the sub­
sequent activation. These linear operations can then be absorbed into the thresholds of the activation
function. This is achieved by noting that for each input 𝑥′ = 𝑎⋅𝑥+𝑏, where 𝑎, 𝑏 are scalars for simplicity,
we can rewrite the thresholding function expressed by Equation (2.8) as Equation (2.9) by updating the
thresholds.

𝑡𝑖−1 < 𝑎 ⋅ 𝑥 + 𝑏 ≤ 𝑡𝑖 (2.8)
𝑡𝑖−1 − 𝑏
𝑎 < 𝑥 ≤ 𝑡𝑖 − 𝑏

𝑎 (2.9)

Note that this kind of absorption of floating point values into the thresholds can also be done for other
floating point scalar operations in the network and, with some exceptions, also for channel­wise addi­
tions and multiplications. This will be explained further in Section 3.2. Finally, given that the input 𝑥
to the quantization function is in integer format, all of the thresholds can be rounded up to the nearest
integer without affecting the final result.
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To summarise, the goal of the streamlining transform is to represent particular layers as linear trans­
formations, re­order those linear transformations to appear in front of the thresholding activation, absorb
those linear transformations into the thresholds of the thresholding activation function, and finally round
the thresholds to the nearest integer. In that way, batch normalisation layers, which can be modelled
by linear transformations (a multiplication and an addition), and other (channel­wise) scaling trans­
formations can be absorbed into the activation function, which converts the graph into an integer only
representation mathematically equivalent to the original graph.

2.6.2. Lowering convolutions
The second graph transformation is to lower convolutions to matrix multiplications [10]. The operation
of a standard convolutional layer can be thought of as a filter sliding over the input data, as explained
in Section 2.1.1. A naive convolution operation can be implemented in software as six nested loops
where you first iterate over the batches, the 2D input image, the 2D kernel, and over the input channels.
However, implementing this in hardware is not efficient, as it will impose large storage requirements to
buffer the input images and the throughput will suffer due to the data access pattern [10].

For a convolution operation, note that each output pixel is obtained by a dot product between a vector
of input pixels and a vector of kernel weights. The convolution lowering approach is taking advantage of
this and replaces the aforementioned convolution operator with two steps: a sliding window unit (SWU),
also referred to as an im2col operation, and a matrix multiplication. For the FINN compiler, there are
two domains in which lowered convolutions can be executed; software domain (Python, ONNX­runtime)
and hardware domain. In the software domain, an ONNX Conv operator is lowered to a custom FINN­
ONNX operator named Im2Col followed by a MatMul ONNX operator. In the hardware domain, specific
optimised kernels are written for the SWU and matrix multiplication. These will be explained further in
Section 2.7.

An example of a regular convolution expressed as matrix multiplication is shown in Figure 2.11. This
example shows a convolution between an input image with three input channels (𝐼𝐹𝑀𝐶) of dimensions
[𝐼𝐹𝑀𝐻 , 𝐼𝐹𝑀𝑊] = [3, 3] and a kernel of dimension [𝐾𝐻 , 𝐾𝑊] = [2, 2]. For simplicity, the strides and dilation
value is assumed to be 1 and the input image is not padded. The SWU reorganises the input image
into rows that contain all the input pixels needed to compute a single output pixel. This is visualised
by the lower leftmost matrix. Note that each row of the matrix contains, for each of the output pixels,
all of the input pixels that are in the receptive field of a particular output pixel. As the weights are also
reshaped in the appropriate format, each vector product results in a single output pixel.
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Figure 2.11: An example of a convolution lowering method for a regular convolution. Note that the image represents the SWU
and matrix multiplication from the perspective of the HLS implementation of these kernels as well as how a lowered convolution
is executed in the FINN ONNX domain.
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An example of an equivalent depthwise convolution lowered is shown in Figure 2.12. Note that
the depthwise convolution requires significantly fewer parameters and multiply­and­additions than the
regular convolution.
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Figure 2.12: An example of a convolution lowering method for a depthwise convolution. Note that the image represents the
SWU and matrix multiplication from the perspective of the HLS implementation of these kernels. In the ONNX domain of FINN,
a depthwise convolution is executed in a similar way as shown in Figure 2.11, except that the weight matrix is sparse to ensure
that a depthwise convolution is performed.

Lowering the convolutions as shown in Figure 2.11 and Figure 2.12 has the advantage of increasing
the throughput as a matrix multiplication can be executed fast in parallel on GPUs. A similar approach
to convolution lowering can for example also be found in the GPU acceleration library for deep neural
networks [11]. In FINN, the matrix multiplication can be executed efficiently with a so­called Matrix
Vector Activate Unit (MVAU) component. This will be discussed in more detail in Section 2.7.

2.6.3. Conversion to HLS layers
The next graph transformation bridges the gap to a hardware implementation. Note that after lowering,
we have a graph consisting of a sequence of ONNX operators. In order to realise a hardware imple­
mentation, for each of the ONNX operators an equivalent C++ (HLS) implementation must be available
that is suited for creating an HDL implementation with Vivado HLS. The FINN hls­library contains a
large set of C++ kernels for several standard and custom FINN­ONNX operators, such as the Im2Col,
MatMul, Add, and MultiThreshold operators [40]. Optimising the C++ implementation of the kernel is
vital to achieving an efficient hardware implementation. The main difference between the operators
from the QuartzNet model and the operators from other models previously used with FINN is that all
operators from the QuartzNet model assume 1D input images instead of 2D. The implications and
challenges of this will be discussed further in Section 2.8.
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2.6.4. Layer folding
The parallelism factor of each layer, related to the amount of time multiplexing, can be adjusted to ex­
plore different configurations of the model. This parallelism factor, also referred to as the folding factor,
specifies the amount of processing elements (PE) within each compute unit (layer) and the amount of
Single Instruction, Multiple Data (SIMD) lanes per PE. Figure 2.13a and Figure 2.13b visualise the dif­
ferent levels of parallelism for the FINN layer that performs the matrix multiplication of a regular lowered
convolution. At the highest level, note that each layer is executed in parallel as FINN generates a DF­
style hardware architecture. Next, multiple output pixels can be generated in parallel. At the time of
writing, this is still an experimental feature in FINN and hence, not considered in this work. Finally, the
number of PEs and SIMD lanes in each PE can be scaled accordingly. Important to note is that this
only holds for the so­called MVAU. Other types of layers have different levels of parallelism, which will
be explored and discussed further in Chapter 4.

(a) Simple schematic that visualises the different levels of parallelism
for the first layer. This specific example assumes that the first layer is a
particular FINN node responsible for the matrix multiplication in regular
(lowered) convolutions.

(b) Simple schematic in pseudo­code that visualises the different
levels of parallelism in FINN.

Figure 2.13: Schematics that visualise the different levels of parallelism for a particular FINN layer. Images are taken from [4].

Setting the right parallelism for each layer is not a simple task. There are two parameters that are
tuned by the parallelism factors; throughput and resource utilisation. The goal is often to maximise the
throughput of the design while staying within the resource bounds of the target device.

In general, a designer would try to tune the parallelism in such a way to match the latency of each
individual layer (compute unit); the goal is to create a latency balanced design. This is because the
throughput of the network is essentially limited by the largest latency of a compute unit in the design.
Decreasing the latency of other layers beyond the largest latency will not improve the throughput, but
merely cost in terms of resource utilisation. However, in terms of end­to­end latency of the network, it
is beneficial to have the latency of each layer as low as possible. However, as the QuartzNet model is
large and resources are expected to become scarce, a latency balanced design is preferred.

Note that the folding factors of a layer have a linear relationship with the latency of that layer;
increasing/decreasing the parallelism by a factor of 2 will decrease/increase the latency by a factor of 2
respectively. However, by tuning the parallelism of a layer, the logic and memory resource utilisation
will be affected. As a simple and representative example, consider the node responsible for the matrix
multiplication in a regular lowered convolution, referred to as the MVAU. Figure 2.14 visualises such
a matrix multiplication, where the first operand represents the matrix with weights and the second
operand represents the lowered image. Note that this figure is the same as Figure 2.11, but then
with both matrices transposed and swapped in order. The blue colour indicates the dimension along
which the 𝑆𝐼𝑀𝐷 parallelism operates, the green colour indicates the 𝑃𝐸 parallelism, and the red colour
indicates the 𝑀𝑀𝑉 parallelism which is always 1 as explained before.

This layer performs a matrix multiplication between the input pixels and weight matrix of shape
[𝑀𝐻,𝑀𝑊], where 𝑀𝑊 and 𝑀𝐻 are related to the number of input and output channels respectively.
For this layer, the parallelism factors 𝑃𝐸 and 𝑆𝐼𝑀𝐷 are directly related to how many multipliers and
adders are used to unroll the matrix multiplication. Hence, by increasing the parallelism, the expectation
is that the logic resources, i.e. either DSPs or LUTs, will increase depending on which are used to
implement the arithmetic logic. However, the parallelism factors 𝑃𝐸 and 𝑆𝐼𝑀𝐷 will also dictate the
shape for the array implemented in hardware that holds the weights. Note that the weight array contains
a total of 𝑀𝑊 ⋅𝑀𝐻 ⋅𝑊𝐵­bits, where𝑊𝐵 stands for the number of bits used to represent a weight value.
Furthermore, note that each 𝑃𝐸 will have 𝑆𝐼𝑀𝐷 number of multiplication/additions in parallel between
the input pixels and weights.
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Figure 2.14: Convolution operation expressed as matrix multiplication between the weights (first operand) and input image
(second operand).

Therefore, when the MVAU reads in a new data packet for processing, it should also read
𝑃𝐸 ⋅ 𝑆𝐼𝑀𝐷 ⋅ 𝑊𝐵­bits from the weight array. Experiments have shown that this results in a weight array
of width and depth as expressed by Equation (2.10) and Equation (2.11) respectively.

Width = 𝑃𝐸 ⋅ 𝑆𝐼𝑀𝐷 ⋅ 𝑊𝐵 (2.10)

Depth = 𝑀𝑊 ⋅ 𝑀𝐻
𝑃𝐸 ⋅ 𝑆𝐼𝑀𝐷 (2.11)

As explained in Section 2.3.2, the memory resources in hardware have a fixed set of shapes. There­
fore, if for example the width of the weight array is not utilising the full width of the hardware memory
component, the memory component will not be fully occupied and the remaining bits along the width
are wasted. Especially for memory components that are less flexible, such as URAMs, this might lead
to severe under­utilisation of the memory component. Thus, by changing the 𝑃𝐸 and 𝑆𝐼𝑀𝐷 parallelism
factors, the memory utilisation efficiency is affected. For large models such as QuartzNet, it is vital to
ensure that the memory resources are utilised efficiently in order to fit the design on the board. There­
fore, a thorough design space analysis regarding the effect of the parallelism factors on the logic and
memory utilisation is presented Chapter 4.

2.7. FINN custom operators
FINN contains a set of custom ONNX operators that are used to represent the model in intermediate
steps during the transformation flow. In general, there are three types of operators used:

1. ONNX operators: such as a Conv and MatMul.

2. Custom FINN­ONNX operators: such as an Im2Col and MultiThreshold.

3. FPGA dataflow nodes: such as aConvolutionInputGenerator and StreamingFCLayer_Batch, also
referred to as SWU and MVAU respectively.

The first two nodes are used to represent the graph until the layers are converted to HLS layers, as
shown in Figure 2.9, and can be used used to execute the graph by means of ONNX­runtime. After
the conversion to HLS layers, FPGA dataflow nodes are inserted and C++ and RTL simulation can be
used to functionally verify the model.

Depthwise separable convolutions are the main type of layer encountered in QuartzNet and hence
will be the focus point of this discussion. A depthwise separable convolution after streamlining has
a similar structure as shown as the leftmost graph in Figure 2.15. After convolution lowering, notice
that a depthwise convolution is replaced by an Im2Col operator followed by a MatMul operator, while
a pointwise convolution is simply replaced by a MatMul operator. After conversion to HLS layers, the
Im2Col operator is replaced by the SWU operator. The MatMul is either replaced by a Vector Vector
Activate Unit (VVAU) or Matrix Vector Activate Unit (MVAU) depending on whether a depthwise or
regular/pointwise convolution is applied respectively.
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Figure 2.15: Schematic of how the ONNX operators are transformed to FPGA dataflow nodes, starting from a regular convolution
and applying the lowering transformation and subsequently converting the layers to HLS layers. For simplicity, additional nodes
such as ONNX Transpose operators are left out, but a more detailed example will be studied in Section 3.2. Blue nodes are
standard ONNX operators, orange nodes are FINN­ONNX operators, and green nodes represent FPGA dataflow nodes.

The core of the MVAU and VVAU consists of a processing element as shown in Figure 2.16a.
The variable 𝑄 refer to the number of input channels computed in parallel (𝑆𝐼𝑀𝐷). 𝐴,𝑊, 𝑇 refer to
the bit width of the input/output activations, weights, and thresholds respectively. Each 𝑃𝐸 performs
𝑆𝐼𝑀𝐷 multiplications in parallel, reduces the results in an adder tree and accumulates the result with
the previous intermediate output. After the entire row of kernel weights and column of image values
is multiplied and accumulated, referring to the row and column in Figure 2.14, the output value is
compared against a set of threshold values to obtain the final output activation. Note that the weight
memory can either be embedded within the component, or synthesised separately and streamed into
the MVAU block. The former is referred to as const memory mode, while the latter is referred to as
decoupled memory mode. Note further that the thresholding operation is embedded within the PE in
Figure 2.16a. This thresholding operation can also be synthesised as a separate block.

Figure 2.16b shows a hardware level overview of a regular convolution. As explained before, a
regular convolution is implemented by means of an SWU and MVAU. Internally, the SWU buffers the
incoming stream of pixels and by means of a specific indexing logic, the buffer entries are written to
the output stream to obtain a lowered image as shown in Figure 2.11. The MVAU executes the matrix
multiplication, similar to what is shown in Figure 2.14, by broadcasting the weights and thresholds
among multiple SIMD lanes and PEs and fetching 𝑆𝐼𝑀𝐷 input pixels from the input stream in parallel.
In Section 3.4.2, a more detailed analysis of the SWU is given. More precisely, the SWU implementation
for 1D images is discussed and another SWU implementation for 1D images is presented that minimises
the size of the intermediate buffer.

(a) A hardware level overview of a PE.
(b) A hardware level overview of a (regular) convolution which consists of a SWU
followed by an MVAU.

Figure 2.16: Hardware level overview of how a convolution is represented in HLS layers and a schematic of a PE. Images are
taken from [7].
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2.8. Challenges for QuartzNet in FINN
Due to the size of the QuartzNet model, creating an FPGA implementation by hand is not feasible to
do. Furthermore, exploring different architectural choices within a design space will be vital to obtain
a successful implementation on an FPGA. The FINN compiler provides an excellent way to overcome
these challenges, but the current version of the tool requires some extensions to support the layers
encountered in the QuartzNet model. These are summarised below:

• The transformations and custom operations in FINN assume that the neural network description is
2D. However, the QuartzNet model is based on 1D convolutional layers. Thus, the FINN compiler
needs to be extended to support 1D neural networks. This will be explained further in Section 3.1.

• The sequence of transformations to streamline the model needs to be tailored to successfully
streamline the QuartzNet model. This will be explained further in Section 3.2.

• Lowering 1D convolutions requires extensions to the FINN­ONNX Im2Col operator, as well as a
custom 1D C++ (HLS) implementation of the SWU. This will be explained further in Section 3.3
and Section 3.4 respectively.

• The design space must be explored carefully to ensure that the QuartzNet model can fit on a
target device. Besides, balancing the resource utilisation and staying within recommended limits
imposed by the synthesis tool is expected to ease timing closure and potentially achieve a higher
frequency design. This will be explained further in Chapter 4.



3
Design challenges & implementation

As explained in Section 2.6, the entire end­to­end flow can be subdivided into the following five stages:

1. Exporting the ONNX model

2. Streamlining floating point parameters

3. Lowering convolutions

4. Converting (ONNX layers) to HLS layers

5. Layer folding

This chapter will discuss in more detail which modifications were required for enabling 1D convolu­
tions to be mapped on an FPGA bymeans of the FINN compiler. First, design considerations for export­
ing the ONNX model are motivated in Section 3.1. Next, the sequence of streamlining transformations
is elaborated on and the motivation behind new graph transformations is explained in Section 3.2. After
that, the design challenges for lowering 1D convolutions is explained. Lastly, the required modifications
for enabling 1D ONNX layers to be mapped to equivalent 1D HLS kernels is explained and the HLS
implementation of a custom 1D SWU is discussed in Section 3.3. As the layer folding stage is critical
to ensure that the model can fit on an FPGA, an extensive design space exploration is presented in
Chapter 4.

Most of the extensions proposed in this chapter can also be found merged into the open­source
GitHub repository of either FINN [36], FINN­base [37] or FINN hls­library [40].

3.1. Exporting ONNX model
Brevitas supports exporting the trained model into a FINN supported ONNX format with datatype an­
notations to weights to enable quantizing the weights to datatypes smaller than 8­bit integers. However,
note that the input to the quantized QuartzNet model in Brevitas is still in floating point format. In or­
der to create an FPGA implementation, note that all of the supported HLS kernels in the back­end
of FINN assume integer format inputs. Secondly, transferring integer quantized input data instead of
floating point input data is faster and more energy­efficient due to the compression in size. Thus, the
first question when exporting the model into the ONNX format is: how to quantize the input data to the
FPGA­based QuartzNet implementation to integer format? This will be discussed in Section 3.1.1.

Furthermore, note that the graph transformations in FINN assume to operate on 4D tensors, while
the quantized QuartzNet model from Brevitas is exported with 3D tensors. Therefore, the second
question when exporting the model is: how to enable support for 3D tensors in FINN? This will be
discussed in Section 3.1.2.

27
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3.1.1. Quantization
The first consideration is whether to quantize the input images to integer format. The task of quantizing
the input to integer format is to convert a continuous number in the range [𝛼, Β] to a discrete set of
values in the range [𝛼𝑞 , Β𝑞]. The disadvantage is that information is lost as floating point values are
clamped within a much smaller discrete set of values. There are a few design choices to be made
here; e.g. whether to implement a symmetric or asymmetric quantization scheme, what the quantiza­
tion granularity is, whether to implement a uniform or non­uniform quantization scheme, and what the
range (𝛼, Β) of the floating point values is [17, 48]. To simplify the implementation, we will consider
a uniform quantization scheme. Given a floating point number 𝑥 ∈ [𝛼, Β] and a quantized number
𝑥𝑞 ∈ [𝛼𝑞 , Β𝑞], converting the number between the two formats can be accomplished as shown in Equa­
tion (3.1) and Equation (3.2). The constants 𝑠, 𝑧, 𝑏 refer to the scale, zero­point and bit­width of the
targeted quantized format respectively. Note that ⌈.⌋ refers to the rounding operator. The minimum
and maximum number in the continuous domain can be derived from the training set. If we assume
that the minimum and maximum number in the continuous domain map to the minimum and maximum
number in the integer domain respectively, i.e. 𝛼 maps to 𝛼𝑞 and Β maps to Β𝑞, then the expression
for 𝑠, 𝑧 can be found by substituting 𝛼 → 𝛼𝑞 and Β → Β𝑞 in Equation (3.1) and solving for 𝑠 and 𝑧. Note
that during inference, 𝑥 can lie out of the range [𝛼, Β] that was derived from the test set. In that case,
𝑥𝑞 can exceed the predefined range [𝛼𝑞 , Β𝑞] and the input sample 𝑥𝑞 will not represent the original
floating point value 𝑥. To overcome this, 𝑥𝑞 should be clamped within the range [𝛼𝑞 , Β𝑞]. However, for
simplicity, it is assumed that the domain derived from the training set is representative for the test set.

𝑥 = 𝑠 ⋅ (𝑥𝑞 − 𝑧) (3.1)

𝑥𝑞 = ⌈
𝑥
𝑠 + 𝑧⌋ (3.2)

𝑠 = Β − 𝛼
Β𝑞 − 𝛼𝑞

= Β − 𝛼
2𝑏 − 1 (3.3)

𝑧 = Β𝑞 −
Β
𝑠 =

Β𝛼𝑞 − Β𝑞𝛼
Β − 𝛼 (3.4)

A symmetric quantization scheme has the zero­point in Equation (3.1) set to 0. We will consider
asymmetric quantization as the distribution of floating point input values to the quantized QuartzNet
model is likely to be asymmetric as well. Regarding the granularity, we will for simplicity consider two
types; per­tensor and per­channel quantization. Per­tensor quantization refers to quantizing the entire
input image with the same scale and zero­point constants. These constants can be found for example
by taking the min and max values of the tensors in the training dataset. Per­channel quantization
refers to quantizing each channel individually by calculating for each channel the scale and zero­point
constants. These constants can be found by taking the min and max values of each channel for all
of the tensors in the training dataset. Per­channel quantization can achieve a higher model accuracy
compared to per­tensor quantization, but it would require channel­wise divisions/multiplications and
additions/subtractions which is slightly more complicated and expensive in terms of hardware. As will
be shown later, both scalar and channel­wise operations can be streamlined away, incurring no costs
in hardware resources on an FPGA. Lastly, note that finding the scale and zero­point requires us to
know what the range of input values (𝛼, Β) is. As mentioned before, the range can either be determined
statically; i.e. by taking the minimum and maximum values of the tensors in the training dataset and
assume that these values are representative for the input images encountered during inference. This
might cause a higher rounding error and thus more noise on the input image, possibly degrading the
accuracy of the model. Another method would be to dynamically calculate the range during inference,
but this requires floating point operations which are costly in terms of area and energy. Hence, static
quantization is preferred.

There are three different designs to consider in order to quantize the input data to the model to
integer format to obtain a fully quantized model. Note that the first activation layer effectively quant­
izes the output to a signed 8­bit integer number, as this is how the thresholding function operates as
explained in Section 2.6.1. The three methods are:

1. Execute the first convolution and activation encountered in the QuartzNet model on a CPU as
shown on the left in Figure 3.1.
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2. Create a custom HLS kernel for the first convolution and activation to support a floating point input
stream.

3. Apply a per­tensor or per­channel quantization of the input data and execute the first convolution
and activation on an FPGA as shown on the right Figure 3.1.
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Figure 3.1: Schematic overview of two ways of ensuring that the input data to the FPGA is in integer format.

Regarding the first and second proposed methods, note that if the inputs to the QuartzNet model
are in floating point format, the first depthwise convolution and MultiThreshold operator would have to
be executed on a CPU. The reason for this is because the current HLS kernels for these operators
in the FINN hls­library are written for integer format inputs. Note that the format of the intermediate
tensors is also visualised next to each layer output in Figure 3.1. A custom HLS kernel could be
written to overcome this problem, but for simplicity, exploring the existing infrastructure/components is
prioritised. Besides, despite being a single convolution and activation function, implementing a floating
point equivalent hardware implementation for these kernels will incur large resource overhead and
power consumption compared to the integer counterparts as explained in Section 2.2.

Regarding the third proposedmethod, note that quantizing the input image to a reduced bit­precision
and feeding it directly to the QuartzNet model, without any form of retraining, will most likely incur a
relatively high penalty on the accuracy of the model. To minimise the accuracy loss, the trick shown in
the right graph of Figure 3.1 can be applied. Note that the floating point tensor 𝑥 is quantized to integer
format and subsequently, converted back to floating point format. This introduces some additional
computational overhead as the input data needs to be quantized on a CPU. Secondly, due to the non­
linear rounding operation, the original floating point value is not reconstructed exactly; some noise is
incurred on the input image. Note further that the input to the first depthwise convolution is still floating
point format at this point. However, the point is that the floating point operations that convert the
quantized tensor back to the original floating point format can be streamlined away. This would result
in a graph where the input to the first depthwise convolution is in integer format. As will be explained in
Section 3.2, both a scalar and channel­wise addition/multiplication can be moved past the depthwise
convolution. Therefore, both a per­channel and per­tensor quantization technique can be considered
to be applied.

To summarise, the first method requires the first two layers to run on the CPU, which will incur a
(minor) penalty on the end­to­end execution time compared to executing those layers on an FPGA.
The second method does not incur a penalty on the end­to­end execution time, but will incur additional
hardware resources as it requires a floating point depthwise convolution and MultiThreshold hardware
implementation. The third method requires only a scalar or channel­wise division and addition of the
input tensor to be performed on the CPU, which is assumed to be negligible compared to a convolution
operation as in the first method. Secondly, it does not incur additional hardware costs as the floating
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point subtraction and multiplication at the input of the quantized QuartzNet model can be streamlined
away. However, the downside is that the accuracy of the model will be lower as effectively noise is
added to the input image due to the rounding operation.

To conclude, the first method is preferred as it does not incur an accuracy loss. For future work, it
is worth investigating the third method to ensure that all layers of the QuartzNet model are executed
on an FPGA to achieve a lower latency and higher throughput on an end­to­end inference task with an
FPGA accelerated quantized QuartzNet model.

3.1.2. Handling 1D models
The second consideration to take into account is specific to the QuartzNet model. Note that the model
operates on 1D images, while almost all of the core infrastructure in FINN, such as graph transforma­
tions for streamlining and graph transformations that infer HLS kernel implementations for the nodes in
the graph, rely on the assumption of 4D input images. The simplest method to overcome this issue is
to export the 3D tensors as 4D tensors by inserting a dummy dimension. In other words, a tensor of the
format [𝑁, 𝐶,𝑊] becomes [𝑁, 𝐶, 𝐻 = 1,𝑊], where 𝑁, 𝐶, 𝐻,𝑊 represent the batch size, number of chan­
nels, and height and width of the input image respectively. Secondly, we must ensure that the attributes
of the nodes are compatible with 2D tensors. For example, a Conv ONNX operator should have the
kernel dimension attribute extended from [𝐾𝑊] to [1, 𝐾𝑊]. The implementation of this transformation
can be found on GitHub in the FINN­base repository [37]. The specific details of implementation are
not deemed relevant for discussion.

3.2. Streamlining floating point parameters
As explained in Section 2.6.1, quantized NNs can still contain floating point operations despite having
quantized weights and activations. The goal of streamlining is to absorb floating point multiplications
and additions into the activation function, which is called the MultiThreshold operator. This is achieved
by applying graph transformations to rearrange the floating point multiplication and addition nodes in
such a way that they are placed in front of a MultiThreshold node. A scalar or channel­wise floating point
addition or multiplication can then be absorbed within the thresholds of the MultiThreshold operator;
i.e. the same linear transformation can be applied effectively on the tensor by updating the threshold
values of the activation function, as explained in Section 2.6.1. Note that this trick only works for scalar
and channel­wise floating point multiplications and additions. Lastly, assuming that the input values of
the MultiThreshold node are integers, the thresholds can be rounded up to the nearest integer while
preserving the same outcome.

Regarding streamlining, the main challenge for the QuartzNet model is:

• As there is currently no support for running the streamlining transformation out­of­the­box, the
right sequence of graph transformations must be found and/or new transformations must be writ­
ten.

Figure 3.2a visualises a residual block of the ONNX graph for the QuartzNet model after exporting
it from Brevitas. On the left, the residual lane is shown, and on the right, the first out of five of the
repetitive sub­blocks is highlighted. As each of the repetitive sub­blocks and residual blocks is exactly
the same, the analysis shown below extends to the rest of the residual blocks. However, as explained
in Section 2.6, there are also a few layers before and after the residual blocks. These layers have
minor differences and the analysis presented below is sufficient to apply to those layers as well. The
grey boxes indicate FINN­ONNX operators, which is the node performing the activation named Multi­
Threshold. The red boxes indicate floating point additions and multiplications, also referenced as Add
and Mul nodes. The orange boxes indicate batch normalisation layers, also written as BatchNormal­
ization, and the blue boxes indicate quantized convolutions. The convolutions, also denoted as Conv,
are either depthwise or pointwise. Note that in Figure 3.2a, the graph consists of a large number of
floating point operators.

In order to get rid of the floating point operations, a sequence of transformations, that either expand,
re­order or combine the nodes in the graph, must be applied. In general, the sequence of transform­
ations should not matter as each of them preserve the functionality of the graph, but there is one
particular graph transformation that must be executed first. Note that in Figure 3.2a certain activation
functions are signed. Each of these MultiThreshold nodes is succeeded by a scalar addition which
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Figure 3.2: Overview of the nodes in QuartzNet before and after streamlining floating point operations.

follows from the way how Brevitas exports such an activation function. In order to have the signed
ONNX MultiThreshold node compatible with the equivalent HLS layer named Thresholding_Batch, the
scalar addition must be absorbed into the output bias term of the preceding (signed) MultiThreshold
operator. Next, as explained in Section 2.5, the BatchNormalization operator can be expressed as a
channel­wise multiplication followed by a channel­wise addition.

By absorbing the scalar additions into the preceding MultiThreshold and converting the ONNX
BatchNormalization operator to a channel­wise multiplication and channel­wise addition, the graph will
end up as shown in Figure 3.2b. Note that the residual block now solely consists of the MultiThreshold,
Convolution, Add and Mul operators. Now, the question is: how to rearrange the multiplications and
additions such that they can be absorbed into the thresholds of the MultiThreshold operator?

First, note that the scalar multiplication after the first unsigned MultiThreshold operator cannot be
absorbed into the thresholds of the preceding MultiThreshold; the MultiThreshold operator is a non­
linear operation. Hence, instead of applying a scalar multiplication on a tensor and broadcasting it to
two other nodes, we can simply move the scalar multiplication to each lane and broadcast the output
of the MultiThreshold operation to both of the lanes. The same applies for the two final scalar multi­
plication on both lanes; multiplying two addends by the same constant or vector and then adding the
two outputs is the same as first accumulating the addends and then multiplying it by the constant or
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vector (distributive property). Next, note that applying a scalar multiplication on a tensor followed by a
depthwise or pointwise convolution is mathematically equivalent to applying first the convolution and
then the scalar multiplication; these operations are commutative. The same holds for a channel­wise
multiplication and depthwise convolution. For a scalar and channel­wise addition followed by a con­
volution, this property does not hold. However, note that applying a convolution operation on an input
tensor 𝑥 + 𝑐, where 𝑐 is either a scalar or 1D vector, is the same as applying a convolution on both 𝑥
and 𝑐 separately and then accumulating the results. To summarise, scalar Mul nodes can be moved
past depthwise and pointwise convolutions, channel­wise Mul nodes can be moved past depthwise
convolutions, and scalar and channel­wise additions can be moved past depthwise and pointwise con­
volutions. Finally, note that multiple consecutive Add/Mul nodes can be absorbed into a single Add/Mul
node by updating the additive/multiplicative constants respectively.

These graph transformations already exist in FINN. By applying them in the right sequence and
absorbing the constants of the Add/Mul nodes into the MultiThreshold operator, we obtain the stream­
lined graph as visualised in Figure 3.2c. There is one important exception to note when absorbing the
Add/Mul constants into the thresholds of the MultiThreshold operator. Negative multiplicands need to
be split into a bipolar vector of signs and a vector of magnitude, where the vector of signs gets ab­
sorbed into the preceding Conv operator, and the vector of (positive) magnitudes into the thresholds
of the succeeding MultiThreshold operator. The reason for this is that if a negative multiplicand would
get absorbed in the thresholds, both the threshold and comparator must get updated to preserve the
same mathematical expression, as shown in Equation (3.5). This flexibility would make the design of
the MultiThreshold operator more complex. A simpler solution is to absorb the 1­bit bipolar vector of
signs into the weights/multiplicands of the preceding convolution or matrix multiplication operation.

𝑡𝑖−1 < −𝑥 ≤ 𝑡𝑖 == −𝑡𝑖 ≤ 𝑥 < −𝑡𝑖−1 (3.5)

3.3. Lowering 1D convolutions
Regarding lowering 1D convolutions, there are mainly two extensions to the FINN compiler that are
made. The first one is related to the im2col algorithm, while the second one arose due to a practical
limitation that occurs when the ONNX model becomes too large in size in terms of bytes.

3.3.1. Extensions im2col algorithm
Lowering convolution operators to an Im2Col ONNX operator followed by a MatMul operator allows
for efficient hardware implementation as explained in Section 2.6.2. The previous models that have
been successfully implemented on an FPGA by means of FINN were networks with 2D inputs. Thus,
the FINN­ONNX Im2Col operator that implements the im2col algorithm only supported convolutions on
2D square images with equal padding along both dimensions and a 2D square convolutional kernel.
Besides, convolutions with different stride values along the width and height dimension, as well as
convolutions with a dilation value of greater than 1, were also not supported. Thus, to enable support
for a 1D convolution, the Im2Col FINN­ONNX operator needs to be extended. For QuartzNet, the
following design choices and challenges arose:

• The im2col algorithm needs to be extended to support 1D convolutions. To do so, a generic
extension is made such that the im2col algorithm supports non­square convolutions. Note that
a 1D convolution can be seen as an edge case of a non­square convolution. Besides, as 1D
convolutions only apply padding along one dimension, support for non­equal padding must be
enabled as well.

• The first 1D convolution in QuartzNet has a stride value of 2, as shown in Table 2.3 in Section 2.5.
As a 1D convolution is treated as a non­square 2D convolution with one of the dimensions set
to 1, the Im2Col operator should be able to support different stride values along both the width
and height dimension of the image. Previously, the Im2Col operator only supported equal stride
values along both of the image dimensions.

• The third­to­last 1D convolution in QuartzNet has a dilation value of 2, as shown in Table 2.3
in Section 2.5. Hence, the im2col algorithm needs to be extended in a generic way to support
convolutions with a dilation value of greater than 1.
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Besides adjusting the core of the Im2Col operator, adjustments to the attributes of the operator as
well as to the transformation that lowers convolutions to a MatMul node, possibly with the Im2Col node
in case of depthwise or regular convolutions, were made. These adjustments were mainly to break
the assumption of operating on a square kernel; all of the changes can be found in the open­source
GitHub repository of FINN­base [37]. The main contribution of the extensions is that the FINN­ONNX
Im2Col node supports both square and non­square convolutions, with any kind of sensible combination
between stride value and dilation value, with either equal or non­equal padding along the dimensions.
Thus, within the ONNX domain of FINN, every type of convolution is supported as far as the tests
performed can guarantee that. For future work, the only consideration is to extend the FINN hls­library
with optimised HLS implementations of specific edge­cases in order for the FINN compiler to support
any type of convolution. As explained before, a 1D convolution used in QuartzNet is an edge case
of non­square convolutions; i.e. one of the dimensions of the image is equal to 1. The proposed
extensions allow all of the convolutions encountered in QuartzNet to be lowered to a FINN­ONNX
Im2Col node followed by an ONNX MatMul node.

3.3.2. Partitioning the model into sub­models
There is one important extension that arose from a practical limitation. Note that, as explained in Sec­
tion 2.6.2, the transformation that lowers depthwise convolutions to a MatMul preceded by an Im2Col
operator infers a sparse matrix multiplication. The weight matrix essentially contains a lot of zeros
and this simplifies the depthwise convolution to an Im2Col and MatMul operation. However, as the
QuartzNet model contains a lot of depthwise separable convolutions, the size of the ONNX model in
bytes (to store) exceeds the maximum capacity due to the large memory footprint of the sparse weights
associated to each MatMul. These large and sparse matrix multiplications also lead to a large run­time
when executing the ONNX model with ONNX­runtime. There are two ways to solve this:
1. Implement a custom MatMul ONNX operator for depthwise separable convolutions that performs

a dense matrix multiplication.

2. Implement a graph transformation that allows an ONNX model to be partitioned into multiple
smaller ONNX sub­models.

The second method is preferred due to its simplicity. Note that this does not resolve the large run­
time problem when executing the lowered model with ONNX­runtime. However, this is assumed to be
acceptable as ONNX­runtime is not used for inference purposes, but merely for functional verification of
themodel during graph transformations. On top of that, the preferredmethod of verification is simulating
the C++ kernels and performing RTL simulation as that matches closer to the functionality that will be
implemented on the FPGA. Note that the HLS kernels for the equivalent Im2Col and MatMul node
perform a dense multiplication. Converting the model into multiple sub­models was already added as
transformation in FINN. However, going the other way around, i.e. expanding the sub­models and
creating a single model out of it, had to be added. Discussing the details of the implementation is not
deemed relevant; the changes can be found in the open­source GitHub repository of FINN­base [37].
Note further that the partitioning of the ONNX model into multiple connected sub­models also requires
careful handling when a transformation is applied; the model needs to be partitioned into multiple sub­
models, each sub­model needs to be expanded individually, the specific transformations need to be
applied, and in the end, the sub­model needs to be packed again.

After partitioning the model into multiple sub­models and lowering the convolutions accordingly,
there remains a final set of optimisations that have to be performed. Lowering a convolution introduces
several transpose nodes as well. This is because the ONNX operators assume to operate on a tensor
of [𝑁, 𝐶, 𝐻,𝑊] format, where 𝑁, 𝐶, 𝐻,𝑊 represents the batch size, the number of channels, and the
height and width of the image. The HLS kernels are written for tensors in [𝑁, 𝐻,𝑊, 𝐶] format. Thus,
after streamlining and lowering, the obtained model typically looks like Figure 3.3a. Note that only
a sub­part of the residual block is shown, similar to what has been shown in Figure 3.2. Notice the
difference with respect to the streamlined graph in Figure 3.2c; the Conv operator got replaced by
a sequence of Im2Col, MatMul, and Transposes. The grey boxes indicate the activation layer, the
red boxes indicate the Transpose ONNX operators, and the blue boxes indicate the layers that are
responsible for performing a convolutional operation.

Note that the custom ONNX MultiThreshold operator can operate on a tensor of both layouts, but
it is preferred to have this node to output a tensor with [𝑁, 𝐻,𝑊, 𝐶] format as that matches with the
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actual HLS kernel for that node. To simplify the design, the Transpose operators can be optimised
away; a Transpose operator converting the tensor layout from [𝑁, 𝐶, 𝐻,𝑊] to [𝑁, 𝐻,𝑊, 𝐶] followed by
another Transpose operator restoring the original tensor layout [𝑁, 𝐶, 𝐻,𝑊] can be removed from the
graph. Furthermore, a Transpose operator converting the tensor layout from [𝑁, 𝐻,𝑊, 𝐶] to [𝑁, 𝐶, 𝐻,𝑊]
followed by a MultiThreshold operator and another Transpose converting the layout from [𝑁, 𝐶, 𝐻,𝑊]
to [𝑁, 𝐻,𝑊, 𝐶] can be optimised away by ensuring that the MultiThreshold node internally operates on
the right format. Note that these graph transformations already exist and by applying them, we end up
with Figure 3.3b. Due to the residual architecture of QuartzNet, several Transpose operators are still
present in the graph. This required three additional transformations to be added:

1. A graph transformation to move Transpose nodes past MultiThreshold nodes.

2. A graph transformation to move a Transpose node past a node that ’joins’ two lanes; which in this
case is an Add node as shown in Figure 3.3b.

3. A graph transformation to move a Transpose node in front of a node that ’forks’ two lanes; which
in this case is the (first) MultiThreshold operator as shown in Figure 3.3b.

The idea of all of the proposed graph transformations is to move the Transpose nodes to the Multi­
Threshold layers in front and after the residual block as shown in Figure 3.3b. As QuartzNet consists
of a sequence of such residual blocks, what will effectively happen is that the MultiThreshold operat­
ors will be surrounded by two opposing Transpose operators. As explained above, these Transpose
operators can then be optimised away.

By partitioning the graph into multiple sub­models, applying the convolution lowering transform,
moving the Transpose nodes to appropriate places in the graph and finally, optimising the Transpose
nodes away, we end up with a graph where the bulk consists of solely convolutional and MultiThreshold
operators as shown in Figure 3.3c.
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Figure 3.3: Overview of the nodes in QuartzNet before and after optimising Transpose nodes away.

3.4. Converting HLS layers
Converting the ONNX layers to HLS layers is done before the layers are folded. An extensive design
space exploration regarding the folding for the ConvolutionInputGenerator (also referenced as Sliding
WindowUnit, SWU), StreamingFCLayer_Batch (also references asMatrix Vector Activate Unit, MVAU),
and VectorVectorActivate_Batch (also referenced as Vector Vector Activate Unit, VVAU) is presented in
Chapter 4. In this section, the focus is on discussing the design challenges in order to enable converting
the ONNX layers to another set of ONNX layers with appropriate methods for generating the HLS
kernels. To be more precise, after streamlining the floating point operations, lowering the convolutions
and optimising the Transpose operators away, the network should consist of a series of nodes that
have an equivalent C++ kernel description for HLS in the FINN hls­library. In this stage of the FINN
flow, the resulting nodes, or ONNX operators, are used to infer a C++ description of the corresponding
operator. This is achieved by converting each node to another so­called FPGA dataflow node, which is
essentially a wrapper around the FINN custom operator class for ONNX nodes with several additional
attributes and methods that are used to infer the right HLS description for that kernel. When converting
these ONNX layers to HLS layers, there are two things that should be taken care of. First, the right
graph transformation should be present to ensure that the HLS layers are inferred correctly, as shown
for the Conv operator in Section 2.7; i.e. the nodemust be inserted in the right place in the graph and the
correct attributes must be inferred. Secondly, the FINN hls­library must contain an HLS description that
matches with the ONNX operator. The former aspect will be discussed in Section 3.4.1. Regarding the
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latter aspect, the motivation, design challenges and implementation of a custom SWU will be explained
in more detail in Section 3.4.2.

3.4.1. Connecting the ONNX layers to HLS layers
As mentioned before, QuartzNet consists of 1D convolutions, while the FINN compiler only supports 2D
square convolutions. Section 3.1 described how 1D ONNX nodes are converted to 2D ONNX nodes
by extending the attributes and inferring a dummy dimension for 1D tensors to ensure that the graph
transformations in FINN are compatible with the layers in QuartzNet. The C++ (HLS) implementations
for a non­square SWU already exist in FINN. However, the transformations that infer these C++ ker­
nel templates assume that the layers are 2D. Thus, the graph transformations for inferring a SWU,
VVAU and Thresholding_Batch are extended to account for non­square images and attributes. These
changes can be found merged in the open­source GitHub FINN repository [36].

3.4.2. 1D Sliding Window Unit HLS implementation
The FINN hls­library contains an SWU implementation for a non­square im2col algorithm. As a 1D
convolution can be considered as an edge case of a non­square convolution, the first attempt to real­
ising an SWU for a 1D convolution was to infer the non­square SWU with one of the dimensions of the
image set to 1. However, this resulted in an overhead in memory utilisation. To understand why, we
have to take a closer look at the internals of the SWU implementation. From a functional perspective,
the SWU is responsible for re­arranging the stream of input samples into a particular sequence that
corresponds to the so­called lowered image as explained in Section 2.6.2. From an implementation
perspective, this is achieved by buffering the input image in an intermediate buffer and subsequently
indexing elements from the buffer to write it to an output stream. The memory overhead is caused by
how this intermediate buffer is allocated. Assume that on each cycle, a single value corresponding to
the input image is read. The input image has a size of [𝐼𝐹𝑀𝐻 , 𝐼𝐹𝑀𝑊 , 𝐼𝐹𝑀𝐶] and values are read starting
from the innermost (𝐼𝐹𝑀𝐶) dimension. A naive implementation is to buffer the entire input image and
then implement pointer logic to select the indices to produce the expected stream of output values.
The disadvantage is that this approach requires the intermediate buffer to store the entire input image,
which will incur a large cost in terms of memory utilisation. As hardware memory resources are scarce,
the intermediate buffer should be made as small as possible. For a kernel size of [𝐾𝐻 , 𝐾𝑊], the non­
square SWU stores 𝐾𝐻 + 1 rows of the input image along all channel dimensions in the intermediate
buffer. After 𝐾𝐻 rows of the input image are buffered, subsequent cycles can buffer the incoming data
samples as well as produce output values by indexing which buffer entries should be written to the
output stream. However, note that for a 1D convolution, the image and kernel are assumed to be flat
along the height dimension (𝐻). Thus, the intermediate buffer in the non­square SWU implementation
is sized in such a way to account for 2 rows of the input image along all channel dimensions; i.e. ef­
fectively, the intermediate buffer is sized in such a way that it can store the entire input image twice. To
overcome this overhead, a custom SWU for a 1D convolution needs to be constructed.

The author of FINN hls­library has provided an implementation of an SWU for a regular 1D convo­
lution. The intermediate buffer in this implementation is sized in such a way to store the entire input
image of size [1, 𝐼𝐹𝑀𝑊 , 𝐼𝐹𝑀𝐶]. As QuartzNet contains 1D depthwise­separable convolutions, the pro­
posed SWU is extended to support depthwise convolutions and dilated depthwise convolutions. These
changes only involved how the pointer logic indexes the buffer. As an example, consider an input
image of dimensions [1, 𝐼𝐹𝑀𝑊 , 𝐼𝐹𝑀𝐶] and a kernel of dimension [1, 𝐾𝑊]. 𝑆𝐼𝑀𝐷 dictates the width of
the input stream; i.e. the number of input/output channels read/produced in parallel. For simplicity,
assume that 𝑆𝐼𝑀𝐷 is equal to 1. Figure 3.4 shows a simplified overview of how the SWU operates on
this particular example for a regular convolution as well as a depthwise convolution. The input image
is streamed to the SWU and the SWU stores the entire image in the intermediate buffer. The arrows
indicate which output values from the intermediate buffer are written to the output stream. Note that
the leftmost value in the output stream indicates the most recent value produced. The highlighted box
in red indicates the input pixels that are used to produce an output pixel in the convolutional operation.
In this particular example, 𝐼𝐹𝑀𝑊 = 5, 𝐾𝑊 = 3, 𝑂𝐹𝑀𝑊 = 3 and 𝐼𝐹𝑀𝐶 = 3.
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Figure 3.4: Simplified overview of a 1D SWU for regular and depthwise convolutions.

The main take­away points from this implementation are:

1. First, 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 cycles are required to fill a portion of the intermediate buffer with input values.
Secondly, 𝑂𝐹𝑀𝑊 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 cycles are needed to generate the output stream. Note that while
producing the output stream, subsequent input samples could be stored in the buffer, which hides
the latency. The upper bound on the latency in cycles is shown in Equation (3.6).

Latency = 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 + 𝑂𝐹𝑀𝑊 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 (3.6)

2. The intermediate buffer has a size in bits as shown in Equation (3.7). 𝐼𝐹𝑀𝑊, 𝐼𝐹𝑀𝐶, and 𝐼𝐹𝑀𝐵
refer to the input image width, number of input channels, and the number of bits used to represent
the input values respectively.

Intermediate buffer size = 𝐼𝐹𝑀𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵 (3.7)

Note that buffering the entire input image allows for relatively simple pointer logic to read values
from the intermediate buffer and write them to the output stream. However, as the kernel is sliding
over the input image, certain values in the intermediate buffer are redundant. For example, for both
the regular and depthwise convolution, note that the input values 0 along all three channels are only
referenced once for the first output pixel, as shown in Figure 3.4. Similarly, the input values 1 along all
three channels are referenced only for the first and second output pixel. This pattern can be exploited
to reduce the size of the intermediate buffer significantly by overwriting input values in the intermediate
buffer that are redundant after the relevant output pixels are produced. As memory resources are
scarce on an FPGA, it is worth examining the pros and cons of implementing an SWU with a smaller
intermediate buffer. More specifically, the trade­off between reducing the size of the intermediate buffer
and the overhead in resources, caused by for example more complicated pointer logic, to efficiently
store and read indices from the intermediate buffer will be analysed in depth in Chapter 4. The rest of
this section will discuss the internal details of a so­called optimised buffer SWU implementation.

Optimised buffer SWU implementation
As the QuartzNet model contains only depthwise and pointwise convolutions, this discussion will only
focus on the implementation of an optimised buffer implementation for a 1D SWU for depthwise convo­
lution. The analysis can be easily extended to regular convolutions as well. Furthermore, for simplicity
𝑆𝐼𝑀𝐷 is assumed to be 1, but the proposed algorithm extends for 𝑆𝐼𝑀𝐷 > 1 as well. The proposed
implementation can also be found in the open­source GitHub repository of FINN hls­library [40].

For the 1D SWU described above, the intermediate buffer can store the entire input image, which
imposes a large memory resource overhead as explained above. The question is, what is the smallest
possible size for the intermediate buffer to still enable an efficient implementation for the SWU. From
analysing how the intermediate buffer gets indexed, it was found that the buffer can be made as small
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as 𝐾𝐻 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵­bits to still allow for a relatively efficient implementation of the algorithm. To see
why, note that each output pixel is composed of 𝐾𝐻 ⋅ 𝐼𝐹𝑀𝐶 input samples of 𝐼𝐹𝑀𝐵­bits. For an input
image of 𝐼𝐹𝑀𝑊 = 3, 𝐼𝐹𝑀𝐶 = 3, and a kernel of 𝐾𝑊 = 3, a simplified cycle­by­cycle analysis of the
proposed SWU is presented in Figure 3.5. Each row on the right side of Figure 3.5 indicates a single
cycle. The input stream column indicates which value is being read from the input image; following
the convention where the innermost dimension of the input image of size [1, 𝐼𝐹𝑀𝑊 , 𝐼𝐹𝑀𝐶] is being read
first. The intermediate buffer column visualises the content of the intermediate buffer at each cycle. The
output stream indicates which output values are written to the output stream. A pseudo­code variant is
shown in Algorithm 1.

The proposed algorithm works as follows. For the first 𝐾𝐻 ⋅ 𝐼𝐹𝑀𝐶 cycles, the intermediate buffer is
reading from the input stream and buffering the input value. Note that after (𝐼𝐹𝑀𝐶−1)⋅(𝐾𝑊−1) cycles,
the first output value can be written to the output stream with the idea to produce a continuous stream
of output pixels. After the buffer is partly filled, output values are already being generated, with the
idea of explicitly hiding the latency between filling the intermediate buffer and producing output values.
The red and green highlighted boxes in Figure 3.5 indicate which entry of the buffer is written or read
respectively. The highlighted boxes indicate how the write and read pointer logic traverses over the
intermediate buffer. From Figure 3.5, note that there is regular pattern between reading/writing data
from/to the intermediate buffer. Furthermore, note that the input stream needs to be halted for a certain
number of cycles such that entries are freed up in the intermediate buffer. This will likely cause an
overhead in resources as these input values need to be stored somewhere; in Chapter 4, it will be
clear that FFs seem to be used for this purpose. The latency and buffer size of the proposed algorithm
are:

Latency = 𝐼𝐹𝑀𝐶 ⋅ (𝐾𝑊 − 1) − (𝐾𝑊 − 1) + 𝑂𝐹𝑀𝑊 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶 (3.8)
Intermediate buffer size = 𝐾𝐻 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵 (3.9)

Algorithm 1 Proposed SWU algorithm in pseudo­code. HLS implementation can be found in Ap­
pendix B.
1: for Every cycle do
2: if Intermediate buffer not partly filled then
3: Read from stream and write to intermediate buffer
4: else
5: if Input image is not entirely read OR redundant entries from buffer can be overwritten then
6: Read from input stream
7: Update write index pointer
8: Write to intermediate buffer
9: end if
10: Read from intermediate buffer
11: Write to output stream
12: Update read index pointer
13: end if
14: end for

To summarise, the proposed SWU can theoretically lower the memory footprint of the intermediate
buffer by a factor shown in Equation (3.10), obtained by dividing the size of the intermediate buffer of
the original 1D SWU and the buffer optimised implementation described above. Note that generally,
𝐼𝐹𝑀𝑊 is much larger than 𝐾𝐻. The penalty paid is that additional FFs and logic resources need to be
used to ensure that the correct entries from the intermediate buffer are read and written to the output
stream. Furthermore, note that the analysis presented above extends for 𝑆𝐼𝑀𝐷 > 1 by simply replacing
𝐼𝐹𝑀𝐶 by

𝐼𝐹𝑀𝐶
𝑆𝐼𝑀𝐷 and reading/writing 𝑆𝐼𝑀𝐷 input values in parallel to the input/output stream. The HLS

implementation of the custom SWU for depthwise convolutions with details on how the pointer logic is
implemented to exploit the regular read/write accesses can be found in Appendix B.

𝐼𝐹𝑀𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵
𝐾𝐻 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵

= 𝐼𝐹𝑀𝑊
𝐾𝐻

(3.10)
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Figure 3.5: Simplified cycle­by­cycle analysis of the proposed SWU algorithm.



4
Design space exploration & analysis

In order to solve the design challenges presented in Section 2.8 and find a configuration for QuartzNet
that could fit on an FPGA, this chapter will discuss in more detail the effect on the resource utilisation
caused by (un)folding a layer. Figure 4.1 summarises the expected trade­off between the resources
and throughput by varying the parallelism of the layers. As explained in Section 2.6.4, the compute
resources are expected to scale up when increasing the parallelism of a layer as shown in Figure 4.1.
However, despite the fact that the number of weight/threshold values remains constant, how these
arrays are realised in hardware by Vivado is not always trivial to predict. Several factors influence
the efficiency of the utilisation of hardware memory resources, such as how the weight/threshold array
maps to the available hardware resource shape or how the memory hierarchy needs to be constructed
to ensure low­latency read/write accesses.

Layer 1

Layer 2

Layer 3Compute resources

Memory resources
? ?

Fold 2x Fold 2x

Fully unfolded Folded 2x

Parallelism ~ Total # MACs 
Resources ~ 4x 

Throughput ~ Fclk

Parallelism ~ Total # MACs / 2 
Resources ~ 2x 

Throughput ~ Fclk / 2

Folded 4x

Parallelism ~ Total # MACs / 4 
Resources ~ 1x 

Throughput ~ Fclk / 4

Figure 4.1: Example of trade­off between resources and throughput by varying the parallelism of the layers, inspired and adapted
from [4].

The three main building blocks of QuartzNet are:

1. ConvolutionInputGenerator (or SWU): this layer is responsible for lowering the input image.

2. Vector_Vector_Activate_Batch (or VVAU): this layer is responsible for multiplying the weight mat­
rix with the lowered image. Together with the SWU, these two layers form a depthwise convolu­
tion.

3. StreamingFCLayer_Batch (or MVAU): this layer is responsible for multiplying the weight matrix
with the lowered image. Together with the SWU, these two layers form a regular convolution.
Furthermore, this layer is also used to represent a pointwise convolution (without an SWU layer).

From early synthesis experiments, it was also observed that these components are the main contribut­
ors to the resource utilisation. Performing an extensive analysis for each individual layer is not feasible

40
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to do. For that purpose, for each of the main building blocks of QuartzNet, a single layer from the
QuartzNet model that resides roughly in the middle of the network has been selected for analysis;
hence it is neither the largest nor the smallest in terms of size and complexity. It is assumed that the
discussions for each of these selected layers can be generalised to hold also for the other layers of the
same type, as the layer configuration differences within the QuartzNet model are minor.

In the remainder of this chapter, the folding strategy, as well as other practical limitations to the
design space, are elaborated on in Section 4.1. After that, an analysis of the resource utilisation for
each of the three aforementioned layers is presented in more detail in Section 4.2, Section 4.3, and
Section 4.4. After that, a brief analysis on why FIFOs need to be inserted in the graph will be given
in Section 4.5. Based on the analysis presented, the final configuration for the QuartzNet model is
summarised in Section 4.6.

4.1. Design space
Before addressing the folding strategy, a brief overview of the entire design space and other practical
limitations that limit this design space is presented. For the rest of this chapter, note that certain terms
are used interchangeably; a highly folded layer refers to a layer with low parallelism/folding factors.

FINN estimations
For the purpose of exploring the design space, the resource utilisation of FINN HLS layers can be
estimated by means of an approximation model constructed from extensive HLS experiments for dif­
ferent configurations of those layers [7]. However, for highly folded layers, these estimations can be
inaccurate. Secondly, such a model has not been constructed for the custom 1D SWU yet. Therefore,
to obtain accurate utilisation reports, Vivado RTL synthesis results are gathered.

Design space
Note that apart from the parallelism, a user also has the ability to change which hardware resources are
used for implementing the weight and threshold memory and arithmetic logic for specific layers. For
both the MVAU and VVAU, the multiplications can either be implemented in LUTs or DSPs. Additionally,
for an MVAU, the desired memory resource for the weights can be selected as well as whether the
weight array will be embedded within the component or whether the memory subsystem is decoupled
from the component, as explained in Section 2.7. Decoupling the memory subsystem is achieved by
means of an additional weight streamer which supplies the weights to the MVAU component. The
weight streamer could be useful for designs where the BRAM resources are utilised poorly, as it allows
the memory subsystem to run at a higher clock frequency relative to the rest of the system. This allows
multiple addresses of the BRAM module to be supplied to the MVAU within the same clock cycle,
meaning that multiple weight buffers can be packed within a single BRAMmodule and thereby improve
the utilisation efficiency of the resource components [35]. It has been shown that the decoupled weight
system can improve the BRAM utilisation at the cost of (relatively small) resource overhead. However,
running the memory subsystem at a higher clock frequency than the compute is currently not supported
in FINN. Thus, themain advantage of the decoupledmemory subsystem ismainly that it allows for faster
HLS synthesis time and that the memory primitive can be utilised more efficiently as the entire width
(including the additional parity bits) can be used to store data. Note that both BRAM and LUTRAM
can be embedded within or decoupled from the MVAU component. URAM is only supported when
implemented with the memory streamer component, as this type of memory cannot be initialised during
bitfile generation and will require an AXI­lite interface to initialise it.

Finally, as the SWU layer buffers the stream of incoming data packets and reorganises the packets
accordingly, it is not considered a computational intensive layer. Therefore, the only attribute that is
sensible to change is the memory resource type for the intermediate buffer within the layer.

Practical limitations
Aside from the design challenges, there are also a few practical limitations, in most cases specifically
related to the QuartzNet model, that make the design space exploration more complex. Before going
into detail, the limitations are first briefly highlighted:

1. The implementation of the weights of the VVAU cannot be set to a user­defined hardware resource
type.
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2. For depthwise convolutions, both the SWU and VVAU must have the same parallelism factor.

3. HLS synthesis of the VVAU consumes a significant amount of system memory. The same holds
for an MVAU with weights embedded within the component (const memory mode).

4. The Vivado floorplanning algorithm results in a low­performance implementation.

5. Each Xilinx Object file can only have a single outgoing AXI­Lite interface.

6. Large weights of the MVAU cannot be stored in URAM on an Alveo board due to an address
range mismatch.

The first limitation is that for the VVAU, the weights cannot be stored in a user­defined hardware
resource type. Furthermore, for both the VVAU and MVAU, if the thresholds are embedded within the
computational kernel, the hardware resource type cannot be specified. In these cases, Vivado HLS
will infer the best possible hardware primitive to store the weights/thresholds. In some cases, this
might be useful as the designer does not require to know lower­level details of the hardware resources.
However, as will be shown later, the resulting hardware implementation is often not efficient and more
control over the inferred hardware memory resource is preferred.

The second limitation is that for depthwise convolutions, both the SWU and VVAU must have the
same parallelism factor. Note that by increasing the parallelism of a layer, the width of the output
stream (𝑆𝐼𝑀𝐷 ⋅ 𝑊𝐵) is increased, where 𝑊𝐵 denotes the number of bits used to represent the input
values. For other subsequent layers with different parallelism factors, a mismatch between the width of
the streams between two layers can be solved by inserting a StreamingDataWidthConverter (SDWC)
node, which essentially converts a sequence of 𝐼𝑖𝑛­bit input samples to𝑂𝑜𝑢𝑡­bit output samples by either
chopping or concatenating the input packets. However, due to the underlying algorithm of the SWU,
the ordering of output pixels from the SWU changes significantly with different levels of parallelism.
Therefore, inserting an SDWC node will not solve the problem and hence, the successive VVAU node
must process these data packets in the right order. This can only be achieved if the VVAU operates at
the same level of parallelism as the SWU.

The other limitations are imposed by the tools that are used. From experiments, it was found that
converting the VVAU to an RTL implementation with Vivado HLS took an extreme amount of time (in the
order of tens of hours) and memory (in the order of more than 100GB) for very low parallelism settings.
In early experiments, HLS synthesis for several VVAUs could not be done due to out­of­memory errors.
The reason for the large HLS synthesis time was due to how the weights array was instantiated. Each
weight value would be cast explicitly to a predefined number of bits. However, this did not have any
practical advantage and the problem was resolved by disabling the casting. The root cause for the
high memory usage was not found and assumed to be due to something internally to the Vivado HLS
compiler. A potential solution to the problem would be to decouple the weight array from the VVAU
block such that it is not part of HLS synthesis anymore. However, this is considered out of the scope
of this work and hence, a workaround had to be found. From experiments, it was found that there is
a causation between the shape of the weight array and the memory usage. For very low parallelism
factors, i.e. implicitly instantiating very narrow and deep memory arrays, HLS synthesis consumes an
excessive amount of system memory. By increasing the parallelism by a factor of 2, which implicitly
makes the weight array more wide and shallow, the memory usage would reduce by a factor of 2.
Therefore, this limitation implies a lower bound on the parallelism of VVAUs. The same problem was
also observed during HLS synthesis of an MVAU with weights embedded inside of the component. To
overcome the memory bottleneck during HLS synthesis, the weights of the MVAU will be decoupled
from the computational block.

Another limitation is imposed by the Vitis platform and Vivado. In the current flow, subsequent layers
that should be placed on the FPGA are stitched together into a single IP block. The IP block is then
compiled into a Xilinx Object (XO) file resulting in a total of three XO files: two XO files for the input
and output DMA and one XO file for the model. All of the XO files are then linked together (with Xilinx
Runtime) to produce the FPGA binary container file. Note that each IP block corresponds to a Compute
Unit (CU). During the linking process, a specified amount of CUs are set to be instantiated, the kernel
ports are mapped to memory, the CUs are connected to each other, and, the layers within a CU are
assigned to SLRs. Determining which layer gets assigned to which SLR in an efficient manner is a
non­trivial task and requires attention to several factors; e.g. spreading the resources across the SLRs
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evenly, minimising the SLR crossings which minimises the SLLs required, and ensuring that the first
and last layer reside on the same SLR as this requires a single DMA engine. There exists a heuristic in
the FINN­experimental library where this optimisation problem is framed as cutting a graph into disjoint
graphs according to a specific objective function to minimise SLR crossings and constraints such as
not exceeding compute and connection resources for each SLR [39]. It is solved by means of Integer
Linear Programming. However, this solution relies on the FINN resource estimates for each layer.
Those resource estimates are obtained through experiments and regression analysis for the already
existent layers, but are missing for the 1D SWU layer. Thus, in its current form, this method cannot
be applied. Instead, Vivado tries to schedule the layers within the CU efficiently among the SLRs.
However, due to the size of the QuartzNet model, this results in a detrimental impact on the attainable
frequency [4]. This was also observed from the generated design; the critical path crosses all four of
the SLRs of an Alveo U250 board for a particular reset signal, which severely limits the achievable
frequency.

Regarding another limitation imposed by the Vitis platform, note that each XO file can only have
a single outgoing AXI­lite interface. Hence, each IP block can contain at most a single MVAU with
weights in URAM. For the QuartzNet model, this means that the model needs to be partitioned into mul­
tiple sub­models where each sub­model contains at most a single MVAU with weights in URAM. This
required adjustments to the particular FINN­ONNX custom operator that encapsulates the FPGA data­
flow nodes, named StreamingDataflowPartition, as well as the transformation that infers the Streaming­
DataflowPartition. In particular, this custom operator was built on the assumption to have a single input
and output tensor for the sub­model. As QuartzNet contains residual blocks, this assumption could
be broken as particular nodes have multiple inputs and outputs. Despite the implemented adjustment
to the StreamingDataflowPartition node and transformation that infers the StreamingDataflowPartition
node, other limitations arose that obstructed storing the weights of the MVAU in URAM. The maximum
number of XO files that can be linked together is by default set to 60. A user could increase this limit,
but pushing the tool beyond its suggested limit could lead to unforeseen problems. Early experiments,
where each MVAU would have its weights stored in URAM, lead to a design with 99 XO files. By imple­
menting the AXI SmartConnect IP, a larger number of MVAUs with weights in URAM can be instantiated
while still staying within the recommended limits. This IP block allows multiple AXI memory­mapped
master devices to connect to multiple memory­mapped slave devices. By grouping multiple AXI­Lite
interfaces and presenting a single output AXI­Lite interface, multiple MVAUs with weights in URAM
could be encapsulated within the same XO file. Another solution is to implement the weights of the
MVAU in either LUTRAM or BRAM as these memories can be initialised during bitfile generation. This
reduces the design space, but due to its simplicity, the latter solution is preferred, while the former is
kept for future work.

On top of the aforementioned limitation, it was found during experiments with a generated acceler­
ator for QuartzNet that the weights cannot be stored in URAM due to an address space misalignment
which caused that the weights cannot be initialised properly. Resolving this problem will require extens­
ive testing and debugging which falls out of the time span of this work. Thus, it is left for future work.
The workaround to this problem is to not use URAM for storing the weights of an MVAU component.
Despite the limitation, this chapter will also analyse the effect of varying the folding of an MVAU with
weights in URAM to provide more insights.

Now that the design space and limitations are introduced, Section 4.2, Section 4.3, and Section 4.4
will discuss the resource utilisation for the SWU, VVAU, and MVAU respectively. It is assumed that the
core of this analysis extends to other layers as well.

4.2. Sliding Window Unit
To determine the optimal folding and implementation of the SWU, the memory utilisation is analysed
at different levels of parallelism. As explained in Section 3.4.2, a variant of the SWU has been imple­
mented that minimises the size of the intermediate buffer and thereby also the size of the hardware
memory utilisation. However, it is expected that this method requires more complicated indexing logic
to correctly read and write from the intermediate buffer, as well as additional FFs to temporarily store in­
coming data packets. In order to find which variant is more suited for QuartzNet, both implementations
of the SWU will be analysed. The examined layer has the following attributes:
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• Kernel width: 51

• Input channels: 512

• Input image width: 178

• Output image width: 128

• Input precision: 4­bits

4.2.1. Memory utilisation
Figure 4.2 visualises the LUTRAM, BRAM tile, and URAM utilisation for both variants of the algorithm.
A detailed table can be found in Appendix A.1. Note that in all three cases, the optimised algorithm
reduced the memory footprint by roughly a factor of 3. This is conform the expected reduction in
memory footprint as discussed in Section 3.4.2; the ratio input image width to kernel width is 3.49.

Interesting to note from Figure 4.2 is that for the LUTRAM implementation of weights, the fully folded
layer (i.e. when SIMD is equal to 1) has a significantly larger memory footprint compared to unfolded
layers for both the base and optimised buffer kernel. For a fully folded layer, the memory shape of
the buffer is expected to be narrow (4­bits wide) and deep. The root cause for the inefficient memory
utilisation is likely due to how Vivado HLS internally is unable to efficiently implement such a narrow
and deep memory array.

Note that the BRAM modules support configurable data width, as explained in Section 2.3. This
allows the Vivado tool to tailor the hardware memory shape to match the (synthesised) shape of the
intermediate buffer. When the intermediate buffer is implemented in BRAM, the memory utilisation
remains constant for all 3 of the algorithms for different levels of parallelism, except for the case where
SIMD is 64 for the base kernel implementation. Note that for cases where the layers are unfolded by
a relatively large amount, the memories become wider and shallower. This is again assumed to be
due to how Vivado HLS internally implements such a wide and shallow memory array. One possible
explanation for the base kernel could be due to the fact that a BRAM module has a limited amount of
read/write ports per cycle. When 𝑆𝐼𝑀𝐷 is relatively large, the number of reads/writes to the memory
buffer in a single cycle increases. Thus, to still enable low­latency access to the weights, the Vivado
tool could potentially decide to implement the weight array spread across multiple BRAM modules,
leading to inefficient utilisation of the BRAM module.

When the intermediate buffer is implemented in URAM, there is a clear pattern deducible. This can
be explained by looking into the properties of the hardware resource and the underlying algorithm of
the SWU. Note that the URAMmodule has a fixed shape of 72­bits wide and 4096 addresses deep and
contains two ports [75]. Each port can perform either one read or write operation per clock cycle. As
explained before, the baseline SWU instantiates a relatively large intermediate buffer to store the input
image. The entire input image contains 𝐼𝐹𝑀𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵­bits, where 𝐼𝐹𝑀𝑊 , 𝐼𝐹𝑀𝐶 , 𝐼𝐹𝑀𝐵 denote the
input image width, number of input channels, and bit­precision respectively. The intermediate buffer
contains 𝐼𝐹𝑀𝑊⋅𝐼𝐹𝑀𝐶

𝑆𝐼𝑀𝐷 entries of 𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵­bits. Note that after the buffer has been filled, in each cycle
one specific entry of 𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵­bits is read out and written to the output stream. This can also be
seen from the results, where the number of URAM modules is given by Equation (4.1) for cases where
𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵 < 72.

𝐼𝐹𝑀𝑊 ⋅ 𝐼𝐹𝑀𝐶 ⋅ 𝐼𝐹𝑀𝐵
𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵 ⋅ 4096

= 𝐼𝐹𝑀𝑊 ⋅ 𝐼𝐹𝑀𝐶
𝑆𝐼𝑀𝐷 ⋅ 4096 (4.1)

Note that if 𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵 > 72, the entry of the intermediate buffer exceeds the width of the URAM
module. Depending onwhether the desired access latency can be reached, Vivado potentially partitions
this long word into multiple URAM modules.

The most efficient URAM utilisation is achieved by ensuring that 𝑆𝐼𝑀𝐷 ⋅ 𝐼𝐹𝑀𝐵 equals the full width
of the URAM module or an integer multiple thereof. With the current form of the HLS algorithm, the
user must ensure that this condition is met.
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Figure 4.2: SWU memory utilisation reported from RTL synthesis post­implementation and route reports for various hardware
primitives and SIMD factors.

4.2.2. LUT logic & FF utilisation
From Figure 4.2, we can conclude that the memory utilisation is indeed lowered with the optimised
SWU kernel. However, the implementation requires more complicated accesses to the intermediate
buffer and additional storage elements (FFs), which translates to additional logic used. Figure 4.3a
and Figure 4.3b show the LUT logic and FF utilisation for both kernels for various SIMD factors. Note
that in all 3 of the cases, the optimised kernel requires more FFs. Note that for the cases where
the intermediate buffer is implemented in BRAM and URAM, the LUT logic utilisation is higher for the
optimised buffer kernel. However, when the buffer is implemented in LUTRAM, the LUT logic utilisation
is lower for the optimised buffer kernel. The root cause for this observation is assumed to be due to
how Vivado HLS internally implements the weight array in LUTRAM.

To summarise, the optimised buffer kernel is preferred if thememory utilisation is themain bottleneck
in realising an FPGA design. However, it will incur an overhead in FFs and, in case the buffer is
implemented in BRAM or URAM, also in LUT logic. Furthermore, in case the buffer is implemented in
URAM, the designer must ensure that the width of the URAM module gets utilised efficiently by tuning
the parallelism.
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(a) LUT logic utilisation.
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Figure 4.3: SWU LUT logic and FF utilisation obtained from RTL synthesis post­implementation and route reports.
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4.3. Vector Vector Activate Unit
As discussed earlier, the VVAU and SWU must operate on the same level of parallelism by having the
same PE and SIMD factors respectively. The VVAU utilises two resources mainly: memory for storing
the weights and thresholds, and LUT logic or DSPs for performing the vector­vector product. As noted
in Section 4.1, the current HLS kernel allows us to only modify which resource type is used to implement
the vector­vector product. The examined layer has the following attributes:

• Kernel width (InnerProdDim): 51

• Input channels: 512

• Output image pixels (numReps): 128

• Input precision: 4­bits

• Weight precision: 4­bits

4.3.1. Memory utilisation
Figure 4.4 visualises the BRAM tile utilisation for various parallelism settings. From Figure 4.4, the
BRAM utilisation seems to decrease until PE is equal to 8 and for PE greater than or equal to 8, the
BRAM utilisation increases by a factor of two for every doubled parallelism factor. By inspecting the
synthesis log files, we can find an explanation for this remarkable utilisation. For PE=2 and PE=4,
the threshold values are implemented in BRAM, while for PE=8, the thresholds are implemented by
means of LUTs and FFs. Thus, for different folding factors, the Vivado HLS tool infers a different
hardware resource to implement the thresholds. To understand why this happens, we have to look
at how the Vivado tool synthesises the thresholds in hardware memory. Note that each PE applies a
vector­vector product and the activation function. As explained in Section 3.2, the activation function
is expressed as a threshold operation; for each output channel, the output of the vector­vector product
is compared against a set of thresholds and the final output represents the number of thresholds that
the output product is greater than or equal to. In the specific context of this experiment, there are 512
output channels (𝐼𝐹𝑀𝐶) and 15 thresholds (𝑇𝐻) for each output channel. When applying the activation
function, each PE will therefore require 15 threshold values. To achieve the lowest latency, all of these
threshold values must be fetched within a single clock cycle. Thus, the tool will partition the threshold
array into 𝑃𝐸 ⋅ 𝑇𝐻 modules of 𝐼𝐹𝑀𝐶/𝑃𝐸 words of a specific size in bits (depending on the size of the
accumulated product) for a total of 𝐼𝐹𝑀𝐶 ⋅ 𝑇𝐻 threshold values. Thus, by increasing the parallelism 𝑃𝐸,
the number of modules are increased and the size of each module (in words) is decreased. For PE=2
and PE=4, the number of bits for each module is relatively large and the Vivado tool determines that the
most efficient implementation for the thresholds is BRAM. Note that the BRAMs are highly underutilised
(as the product 𝐼𝐹𝑀𝐶/𝑃𝐸 ⋅ 𝑇𝐵 is much smaller than the size of RAMB18 unit, where 𝑇𝐵 is the number of
bits used to represent the threshold value); ≈ 1200/18432­bits are utilised for a RAMB18. For PE=8
and larger, the number of bits for each module is relatively small and the Vivado tool determines that the
most efficient implementation for the thresholds is by means of FFs and LUTs. This can be confirmed
from Figure 4.5 as well. Note that the reported LUT logic utilisation increases for both the LUT and DSP
logic implementation of the VVAU from PE=8 onward. This is due to the fact that the thresholds can be
implemented as read­only and hence, are not implemented as LUTRAM but in ’regular’ LUTs that could
be used for logic as well. For that reason, the LUTRAM remained unused, while the reported LUT logic
number encapsulated both the LUTs used for logic as well as LUTs used as ROM for implementing the
thresholds.

Perhaps it could be possible to make a trade­off between latency and how the tool infers the hard­
ware resource. If the initiation interval in the function is not set to 1, the tool could possibly infer
something more efficient in terms of memory resources. However, for low­latency applications that
are targeted, this is not prioritised. Another possible method to overcome this problem is to implement
the threshold comparison in a separate layer following the VVAU. This layer, also called Threshold­
ing_Batch, effectively decouples the threshold array from the VVAU and allows a user to select which
hardware primitive should be used to implement the threshold array.

From the synthesis reports, it was observed that the weights are implemented in BRAM. Note that
each output channel has a separate filter. In this specific context, there are 512 (𝐼𝐹𝑀𝐶) input/output
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channels, the 1D kernel has a length of 51 (𝐾𝑊) and each kernel value is expressed with 4 bits (𝑊𝐵). To
achieve the lowest latency, each PE should be able to fetch the weights independently from other PEs
(i.e. there are no stalls due to the fact that the BRAM module has a limited number of read/write ports).
Thus, the memory array is implemented as PE chunks/modules of 𝐼𝐹𝑀𝐶 ⋅𝐾𝑊/𝑃𝐸 words of size𝑊𝐵­bits.
As the size of each module is relatively large, each module is implemented in BRAM. Thus, the number
of utilised BRAMs increases linearly with the number of instantiated modules. Note that this only holds
when the number of bits within each module does not fully occupy a single RAMB18 unit. For example,
for PE=4, there are 4 modules of each 26112 bits and hence 2 RAMB18 (2 ⋅ 18432 = 36864­bits) units
are used for each module to store all of the bits. For PE=8, there are 8 modules of each 13056 bits and
hence 1 RAMB18 (18432­bits) is used for each module. Thus, the optimal BRAM utilisation is achieved
by ensuring that 𝐼𝐹𝑀𝐶 ⋅ 𝐾𝑊 ⋅ 𝑊𝐵/𝑃𝐸 is as close as possible to the size of a RAMB18 unit (18432 bits)
or an integer multiple thereof. In this specific experiment, PE=4 and PE=8 result in the most efficient
BRAM utilisation.

Improving the BRAM utilisation efficiency could be achieved by decoupling the weight memory from
the compute kernel and running the weight subsystem at a higher clock than the compute, similar to
what is proposed for the MVAU in [35]. This would allow the tool to implement different modules within
the same BRAM instance without sacrificing the throughput of the system. However, as this is not yet
supported in FINN, this is considered out of the scope of this work.

2 4 8 16 32 64

PE

0

5

10

15

20

25

30

35

B
R

A
M

ti
le

Figure 4.4: VVAU BRAM tile utilisation obtained from RTL synthesis post­implementation and route reports.

4.3.2. LUT logic & DSP utilisation
Figure 4.5 visualises the LUT logic and DSP utilisation for various parallelism steps for both resource
type implementations of the kernel. A detailed table of the resource utilisation can be found in Ap­
pendix A.2. As the number of PEs doubles, the resource utilisation increases by roughly a factor of
2. Note that we would expect the number of DSPs to be equal to the number of Processing Engines;
i.e. the number of multiplications performed in parallel. By inspecting the log files, it was noted that
one of the MAC operations could not be implemented in DSPs. The exact reason for this error is not
found, but expected to be something internal to the Vivado HLS compiler. For that reason, the number
of DSPs is thus equal to the number of PEs minus 1.
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Figure 4.5: VVAU LUT logic and DSP utilisation obtained from RTL synthesis post­implementation and route reports.

4.4. Matrix Vector Activate Unit
For theMVAU, there are two parameters that govern the parallelism: the number of PEs and the number
of SIMD lanes within each PE. As explained in Section 2.6.2, an SWU and MVAU essentially perform
a convolution operation by lowering the image and then performing a matrix multiplication respectively.
Note that the result of a matrix multiplication is composed of multiple vector­vector multiplications.
Referring to this analogy, the SIMD parameter determines the parallelism of the vector­vector multiplic­
ation; i.e. the number of multiply­and­accumulate operations performed in parallel. The PE parameter
determines how many of such vector­vector multiplications are performed. The latency of the matrix
multiplication, as shown in Figure 2.14 in Section 2.6.4, is given by Equation (4.4), where 𝑁𝐹 and 𝑆𝐹
indicate the so­called neuron and synapse fold respectively. 𝑂𝐹𝑀𝐶, 𝐼𝐹𝑀𝐶, 𝑂𝐹𝑀𝐻, 𝑂𝐹𝑀𝑊, 𝐾𝐻, 𝐾𝑊 refer
to the number of output and input channels, output image height and width, and kernel height and
width respectively. Note that both the SIMD and PE factors contribute equally to a reduction in the
latency, which raises the question: what is the difference in terms of resource utilisation between the
two parameters? This will be examined in further detail in Section 4.4.3.

𝑁𝐹 =
𝑂𝐹𝑀𝐶
𝑃𝐸 (4.2)

𝑆𝐹 =
𝐾𝐻 ⋅ 𝐾𝑊 ⋅ 𝐼𝐹𝑀𝐶

𝑆𝐼𝑀𝐷 (4.3)

Latency = 𝑁𝐹 ⋅ 𝑆𝐹 ⋅ 𝑂𝐹𝑀𝐻 ⋅ 𝑂𝐹𝑀𝑊 (4.4)

The examined layer in this experiment has the following attributes:

• Height of weight matrix (MH): 512

• Width of weight matrix (MW): 512

• Output image pixels (numReps): 128

• Input precision: 4­bits

• Weight precision: 4­bits

The SIMD and PE parallelism influences the logic and memory resources in different ways. Com­
pared to the VVAU, the MVAU has a larger design space to explore. A designer can choose to imple­
ment the MAC operations in either LUTs or DSPs. Furthermore, a designer can choose which hardware
resource type to use for the weight memory and whether or not the weight subsystem is decoupled from
the compute kernel. As the memory resources are the main bottleneck in fitting the design on an Alveo
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board, the main focus of the following analysis will be on the relationship between the scaling factors
and the hardware memory utilisation. From early experiments, it was also found that a shortage of
DSPs is less likely to become a bottleneck compared to a shortage of LUT logic. For the final design,
the MAC operations will be implemented with DSPs in an attempt to reduce the LUT logic utilisation.
Thus, for the first part of this analysis, it is assumed that the MACs are implemented in DSP units.
A complete table, from which all of the graphs below are obtained, can be found in Appendix A.3; it
contains for both the LUT and DSP implementation the estimated resources.

4.4.1. LUT logic utilisation
Figure 4.6, Figure 4.7, and Figure 4.8 visualise the logic utilisation for various folding factors for a
configuration with weights implemented LUTRAM, BRAM, and URAM respectively. For each figure, the
SIMD and PE scaling is examined in isolation; i.e. SIMD/PE is increased while PE/SIMD is kept equal to
1. In terms of logic utilisation, note that increasing SIMD and PE is directly related to the number of DSP
blocks as can be seen from Figure 4.6, Figure 4.7 and Figure 4.8. Note that a similar error appeared
for the VVAU where one particular MAC could not be implemented with a DSP block, which is also
assumed to be caused by how Vivado HLS internally infers and implements a DSP. Furthermore, note
that the LUT logic utilisation remains roughly constant while scaling SIMD. On the contrary, scaling PE
increases the LUT logic utilisation significantly. This holds for all of the three different implementations
of the weight array in hardware. This observation is examined in further depth in Section 4.4.3.
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Figure 4.6: LUT logic utilisation for MVAU with decoupled weights in LUTRAM obtained from RTL synthesis post­implementation
and route reports.
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Figure 4.7: LUT logic utilisation for MVAU with decoupled weights in BRAM obtained from RTL synthesis post­implementation
and route reports.
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Figure 4.8: LUT logic utilisation for MVAU with decoupled weights in URAM obtained from RTL synthesis post­implementation
and route reports.

4.4.2. Memory utilisation
Another interesting observation can be made when analysing the memory utilisation. Figure 4.9, Fig­
ure 4.10, and Figure 4.11 visualise the relevant memory utilisation for various folding factors for a
configuration with weights LUTRAM, BRAM, and URAM respectively. For each plot, the SIMD and PE
scaling is visualised; i.e. SIMD/PE is increased while PE/SIMD is kept equal to 1.

Note that the BRAM utilisation for all three of the implementations seems to depend highly on the
number of PEs, while it remains constant when scaling SIMD. A similar observation was made for the
VVAU and the same explanation holds. Note that, by keeping PE constant, increasing the number of
parallel MACs does not influence the partitioning of the threshold array. However, as each PE requires a
set of thresholds to be fetched within a single clock cycle, the Vivado HLS tool will partition the threshold
array in a specific shape to assure that this condition is met. For a small amount of PEs, the threshold
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array is partitioned in relatively large modules that are mapped to BRAMs. For a larger amount of PEs,
in this case when PE>=8, the threshold array is partitioned into relatively small modules for which the
Vivado tool infers LUTs and FFs. This can also be seen from Figure 4.12a, Figure 4.12b, and the right
plot in Figure 4.10; the FF utilisation increases by a significant factor for PE>=8 for the case where PE
scaling is applied. Additionally, from Figure 4.6, Figure 4.7, and Figure 4.8 it can be observed that the
LUT logic utilisation also increases by a significant factor for PE>=8. Furthermore, from the synthesis
report generated by out­of­context synthesis with Vivado, the additional LUTs used to implement the
thresholds does not seem to be reported under the LUTRAM utilisation. Again, the same explanation
holds as for the VVAU; the thresholds are implemented as ROM and hence, ’regular’ LUTs instead of
LUTRAM can be used. For this reason, the LUTs are captured under the ’LUT as logic’ section in the
utilisation report.

For the implementation with weights in LUTRAM, the parallelism factors do not alter the utilisation
significantly. Note that for PE scaling, the LUTRAM utilisation is higher compared to SIMD scaling. This
is assumed to be caused by how the weight array is partitioned and implemented in hardware. The
observation that the number of LUTRAMs seems relatively equal among the folding factors aligns with
what is expected from LUTRAMs; due to the fine­granularity of LUTRAMs as explained in Section 2.3.2,
the hardware memory resource maps well to the shape of the weight array.

For the implementation with weights in URAM, note that higher folding factors result in more efficient
memory utilisation. The same analysis as for the SWU holds. By increasing the parallelism factor, either
the number of PEs or SIMD lanes, the width of the entries in the URAM are increased as well. As long
as the width of the weight memory entry is smaller than the width of a URAM module, which is indeed
the case for relatively small folding factors, the width of the URAM module gets utilised more efficiently.
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Figure 4.9: Memory utilisation for MVAU with decoupled weights in LUTRAM obtained from RTL synthesis post­implementation
and route reports.
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Figure 4.10: Memory utilisation for MVAU with decoupled weights in BRAM obtained from RTL synthesis post­implementation
and route reports.
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Figure 4.11: Memory utilisation for MVAU with decoupled weights in URAM obtained from RTL synthesis post­implementation
and route reports.
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(a) FF utilisation for MVAU with decoupled weights in LUTRAM.
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(b) FF utilisation for MVAU with decoupled weights in URAM.

Figure 4.12: FF utilisation obtained from RTL synthesis post­implementation and route reports.
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4.4.3. PE versus SIMD folding for an MVAU
As noted, there are multiple ways to unfold the matrix computation to achieve a specific latency target.
Early experiments and estimations have shown that the VVAUs in the QuartzNet model achieve the
lowest BRAM utilisation at a specific folding rate that results in a latency of (roughly) less than 600 000
cycles. Thus, for this experiment, a target latency of 600 000 cycles for the MVAU will be considered.
By filling in Equation (4.4), there are seven different PE and SIMD configurations that achieve this
latency target. However, each of them has different implications on the generated hardware. To simplify
the visualisations, the following experiments are all performed with the MACs implemented in LUT
logic. Figure 4.13 visualises for each of the seven configurations the differences in LUT logic utilisation
and BRAM tile utilisation. Note that the graph is obtained for an MVAU with weights implemented in
LUTRAM. Similar observations are made for an MVAU with weights in BRAM or URAM. Furthermore,
there are small differences in other resource utilisation metrics, such as FF and DSP utilisation in
case MACs are implemented with DSP blocks. However, based on experiments and previous FINN
accelerator builds, these blocks are not expected to be as scarce as LUT logic and BRAM tiles. Similar
graphs for cases where the weights are implemented in either BRAM or URAM, as well as detailed
tables with other types of resource utilisation, can be found in Appendix A.3.

Figure 4.13 shows that BRAMs are utilised only for cases where PE<8. This is in line with our
previous observation regarding the Vivado HLS tool inferring BRAMs or LUTROMs for the thresholds
depending on the parallelism factor. Furthermore, note that there are significant differences in terms
of LUT logic utilisation. As explained before, one of the reasons is caused by the fact that Vivado is
reporting the LUTs used for implementing the threshold memory as LUT logic instead of LUTRAM.
From the synthesis report, it was however observed that the LUTs used for the thresholds remained
roughly constant for higher values of PE and that mainly the FF utilisation increased for scaling PE.
In fact, the synthesis report showed that the main factor contributing towards the increased LUT util­
isation for scaling PE is caused by an increase in the number of LUTs used to implement logic such
as comparators. Note that by design, the number of MACs implemented should not differ as long as
the product 𝑃𝐸 ⋅ 𝑆𝐼𝑀𝐷 remains equal. However, note that in the current form of the implementation,
each PE performs an activation in the form of threshold comparisons. Hence, by increasing PE, more
logic is required to implement and execute these activations in parallel. That explains why scaling PE
increases the LUT logic utilisation. Furthermore, increasing SIMD also has consequences on the parti­
tioning of the threshold array, as well as implications on the stream width which might increase routing
congestion.
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Figure 4.13: BRAM tile and LUT logic utilisation for MVAUwith weight in LUTRAMwith various folding factors achieving≈ 500000
cycles latency. Results are obtained from RTL synthesis post­implementation and route reports.
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Note that Figure 4.13 shows a Pareto­front, where the most optimal configuration is the closest to
the origin. Based on this, we can draw three design rules:

1. Firstly, PE should be scaled large enough to ensure that the threshold array gets partitioned in
such a way that the Vivado tool infers LUTs for its implementation. This is required as experiments
have shown that BRAM utilisation is most likely to become a bottleneck in fitting the design on an
FPGA. Another workaround to this problem is to decouple the threshold array by performing the
threshold comparison functionality in a Thresholding_Batch layer following the MVAU.

2. Secondly, the number of PEs should be minimised as the required LUTs to implement the logic
increases significantly.

3. Lastly, SIMD should be kept within reasonable bounds as it affects the width of the weight and
input stream. Note that, depending on the hardware resources chosen to implement the weight,
a user might also take into consideration to optimise the width of the weights to match an integer
multiple of the width of the chosen hardware resource. This is especially required for more coarse­
grained hardware memory types such as URAM.

4.5. FIFO analysis
A skip connection, as introduced in Section 2.5, is a simple mathematical operation; the outputs from
two specific layers are added to each other produce. For example, tensor 𝐴, which is the output from
the layer residing on the skip connection, gets added to tensor 𝐵, producing a new tensor 𝐶 = 𝐴+𝐵. In
terms of hardware implementations, this might cause problems. Note that the data path along the skip
connection is much smaller in terms of latency as the skip connection consists of a pointwise convolu­
tion and activation function only. In other words, it takes much fewer cycles to produce output values
for tensor 𝐴 compared to output values being produced for tensor 𝐵. Thus, from the perspective of
the adder, the stream of input values from the operands 𝐴 and 𝐵 are highly unbalanced. Experiments
showed that this causes a deadlock in the implementation, which could be resolved by inserting appro­
priately sized FIFOs at the output of the layer on the skip connection. The FINN compiler provides a
transform that solves this problem. By performing RTL simulation of the design with very deep FIFOs
inserted between all layers, the transform keeps track of the occupancy of each FIFO and resizes the
final FIFO configuration accordingly. The downside of the current transformation is that it has a very
long execution time for models that have a high end­to­end latency; for QuartzNet, it takes ≈ 9 days of
runtime. However, this transformation is required to run only once for a specific folding configuration.
On top of that, inserting FIFOs can balance out the entire design and can lead to a higher throughput
in general.

The same design idea applies with specifying which resource type a FIFO should use; i.e. spreading
the hardware resource utilisation as much as possible to stay within recommended limits posed by the
Vivado tool in an attempt to ease timing closure and achieve potentially a higher frequency design. To
achieve this, either LUTRAM, BRAM, or URAM is used accordingly. As the FIFOs are well understood,
extensive tests are not performed.

4.6. Strategy for QuartzNet
Taking into account all of the aforementioned challenges and limitations, finding the right configuration
with regards to folding is not a trivial task. During experiments with a highly folded QuartzNet configur­
ation, it was found that inefficient memory utilisation resulted in a model that could not be placed on the
target FPGA board due to a shortage of memory (BRAM and LUTRAM) resources. Therefore, the first
objective is to ensure that the memory resources are utilised efficiently and that the utilisation of the
various components is balanced. In order to achieve this, note that only two layers can be specified to
utilise URAMs: SWU and MVAU. However, due to the limitation with regards to utilising URAMs to store
the weights of MVAUs, only an SWU can utilise URAMs for the intermediate buffer. Therefore, URAMs
might become underutilised. Note further that for the SWU, the URAMs do not need to be initialised
and hence the IP block does not require an AXI­lite interface. As mentioned before, Vitis supports each
Xilinx Object file (i.e. each IP) to have at most 1 outgoing AXI­lite interface. This limitation is thus not
playing a role for the intermediate buffer of the SWU and therefore makes the SWU suited for utilising
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URAMs. Therefore, to ensure that the memory resources are spread evenly, the intermediate buffer
of all SWU layers will be implemented in URAM.

From experiments, it was found that the weights of the VVAU are implemented in BRAM. Thus, to
spread the resource utilisation, the MVAUs will have the weights implemented in LUTRAM. This is not
particularly ideal as the MVAU has relatively large weights which would be more suited to be placed in
URAM.

In terms of computational resources, the goal is to spread the logic utilisation between the DSPs and
LUTs evenly. Therefore, all of the multiplication operations for the VVAU andMVAUwill be implemented
in DSPs as DSPs are expected to be underutilised.

Furthermore, note that for simplicity, the threshold activation function is embedded within the MVAU
and VVAU component, similar to the layer analysed in the previous sections.

From the analysis presented in Section 4.2, Section 4.3, and Section 4.4, it was found that the
number of PEs for the VVAU and MVAU should be increased to at least 4, 8, or 16, depending on the
size and complexity of the layer, in order to ensure that Vivado implements the thresholds in LUTROM.
Note that the parallelism of the SWU must be the same as the parallelism of the VVAU, as described in
Section 4.1. With this in mind, it is expected that it is feasible to obtain a baseline design with a critical
latency of roughly 500000 cycles; i.e. the latency of the largest node in the model is roughly 500000
cycles.



5
Profiling & baseline comparison

This chapter will discuss the profiling of the quantized QuartzNet model on a high­end CPU and GPU
device in Section 5.1. Subsequently, the proposed FPGA accelerator is analysed in terms of through­
put, latency, and energy efficiency in Section 5.2. A comparison between the CPU, GPU, and FPGA
based implementation of the quantized QuartzNet model is also presented.

5.1. Profiling QuartzNet baseline CPU & GPU
In order to provide a fair comparison, a high­performance CPU and GPU are considered to profile the
quantized version of QuartzNet presented by the Xilinx Research Lab [16]. The CPU type of interest
is the Intel Xeon CPU E5­2667 rated at 3.192GHz with 6 cores and 112 GB of memory. The GPU type
of interest is the Tesla V100 rated at 1.230GHz with 16 GB of memory. Both hardware devices are
reserved with Microsoft Azure. As mentioned before in Chapter 2, the reported accuracy of the original
(floating­point) QuartzNet and quantized QuartzNet models on the LibriSpeech dev­other dataset are:

• QuartzNet NVIDIA [34]: 10.78% WER

• Quantized QuartzNet Xilinx Research Lab [16]: 12.00% WER

Table 5.1 shows for both the CPU and GPU implementation the execution time as well as the accur­
acy of evaluating the model on the LibriSpeech dev­other dataset. Note that there is a minor difference
with respect to the previous presented speech­to­text pipeline in Section 2.5. The pre­processing step
refers to extracting Mel­filterbank features from the raw audio waveform. However, the QuartzNet
model step refers to the entire QuartzNet model as presented in Section 2.5, except for the final fully­
connected layer. The FC layer & decoding step relates to the final fully connected layer followed by a
softmax and logarithm operation. Finally, the post­processing step refers to the CTC decoding step that
converts the predicted sequence of characters to a sensible sentence. Note that the pre­processing,
decoding, and post­processing step are only a fraction of the total execution time. The main factor
contributing to the execution time is, as expected, the bulk of the QuartzNet model.

First, notice that the GPU achieves roughly 25× improvement in execution time over the CPU. Fur­
thermore, note that the WER of both the CPU and GPU implementation of the quantized QuartzNet
model are slightly larger than the original (floating point) QuartzNet model. This is an expected con­
sequence of quantizing the model to lower precision weights and activations. Interesting to note is
that the WER of the CPU and GPU implementation of the quantized QuartzNet model, as well as the
reported WER of the quantized QuartzNet model, are all different. This is assumed to be caused by
the unstable/non­deterministic sorting function in PyTorch. More precisely, when a list of numbers with
duplicate entries gets sorted, the order of arrangement is non­deterministic. For quantized models, the
output consists of a finite sequence of numbers and hence, it is more likely to end up with duplicate
entries in the final prediction scores.

For the CPU implementation, power measurements could not be performed on an Azure virtual
machine. However, a rough estimation can be given. Note that all cores were active in parallel during
inference execution. The so­called thermal design power of the device, which represents the average
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CPU GPU CPU GPU
Batch size 100 250

Pre­processing 26.63 s ­ 31.95 s ­
QuartzNet model 1496.03 s ­ 1818.74 s ­

FC layer & Decoder 1.98 s ­ 2.36 s ­
Post­processing 0.241 s ­ 0.305 s ­

Total 1525.85 s 53.78 s 1855.14 s 55.83 s
WER 12.22 % 12.08 % 12.20% 12.09 %

Maximum power 130W 1 211W 130W 1 242W

Table 5.1: Accuracy and execution time of the quantized QuartzNet model performing inference on LibriSpeech dev­other dataset
on both a CPU and GPU.

power dissipated when operating at base frequency with all cores active, is 130W [1]. Thus, the power
utilisation is assumed to be near 130W. For the GPU implementation, the command line tool nvidia­smi
was used to obtain power measurements by sampling the power consumption several times during the
execution of the model.

Interesting to note is that dividing the dataset into larger batch sizes takes longer to process than a
smaller batch size for both the CPU and GPU implementation.

5.2. QuartzNet FPGA
Due to the size of the QuartzNet model, the FPGA card of interest is the Alveo U250 as it is the
largest one of the family of FPGAs suited for data centre workloads. Two implementations of an FPGA
accelerator for the QuartzNet model are tested. For the first implementation, referred to as the baseline
FPGA implementation, deep FIFOs are inserted between each of the layers to overcome the problems
introduced in Section 4.5. The second implementation, also referred to as the FIFO optimised design,
has been obtained by running the automatic FIFO sizing transformation from FINN. This transformation
resizes the FIFOs according to their occupancy that has been tracked during RTL simulation. The
downside of this transformation is that it takes roughly 9 days to complete for a model as large and
relatively highly folded as the proposed QuartzNet implementation. The advantage compared to a
baseline implementation with deep FIFOs between every layer is that a more area­efficient and higher­
throughput implementation can be obtained.

Figure 5.1 visualises the entire speech­to­text pipeline in more detail. Note that grey boxes indicate
steps that are executed on the CPU and the red boxes indicate steps that are executed on the FPGA.
As noted before, the first convolution and activation are executed on a CPU to convert the data to an
integer format to be streamed to the FPGA. To minimise the latency and increase the throughput of the
entire speech­to­text pipeline, the first depthwise convolution and activation should also be mapped to
an FPGA. However, this is expected to degrade the WER due to round­off errors caused by quantizing
the input data. Besides, as the QuartzNet model contains 78 convolutional layers in total, the benefits
in terms of throughput and latency of accelerating the first depthwise convolution and threshold layer
are expected to be small as well. Especially considering the fact that deeper convolutional layers are
larger in terms of computational effort. Thus, the proposed design executes the first convolutional layer
and activation on a CPU, the bulk of the model is executed on the FPGA, and the final prediction and
post­processing step are also executed on a CPU.

1Estimated quantity, has not been measured.
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Figure 5.1: Overview of the accelerated quantized QuartzNet model.

5.2.1. Area utilisation for baseline and FIFO optimised design
Figure 5.2 visualises the resource utilisation for various hardware components categorised by the layer
type. As noted before, the QuartzNet model consists of mainly depthwise and pointwise convolutions.
The pointwise convolutions contain more weights and computations compared to the depthwise convo­
lutions and as expected, the MVAU consumes the largest fraction of resources followed by the VVAU.
Furthermore, note that the ConvolutionInputGenerator mainly utilises memory; in this case URAM as
explained in Section 4.6. Comparing Figure 5.2a and Figure 5.2b, notice that the utilisation of LUTs,
BRAMs and URAMs for the FIFO layer is also smaller. More precisely, the FIFO optimised implement­
ation has a 5.8% and 9.0% reduction in total BRAM and URAM utilisation respectively. Note further
that the recommended maximum resource utilisation by the Vivado tool is 50% for registers, 70% for
LUTs, 25% for LUTRAM, and 80% for BRAM, URAM and DSP blocks. Both of the obtained FPGA im­
plementations stay within these limits, with the only exception of LUTRAM utilisation peaking at roughly
62.6%. LUTRAMs are primarily used for storing the weights of the MVAU component, which are rel­
atively large (in the order of 0.2 − 0.5 MB). As can be seen from Figure 5.2b, the memory utilisation
of LUTRAM, BRAM and URAM is spread evenly around 60%. Thus, in order to lower the memory
utilisation, it is worth investigating to implement some of the weights of the MVAU in URAM and some
of the intermediate buffers of the SWU and FIFOs in LUTRAM. Note that the intermediate buffer of the
SWU ranges from 0.03−0.15 MB, while some FIFOs are as small as 0.02 MB. However, as mentioned
in Section 4.1, the weights of the MVAU could not be implemented in URAM due to an address range
problem and hence, this investigation is left for future work.

The Alveo U250 device utilisation for the quantized QuartzNet model with optimised FIFOs can be
found in Figure C.1 in Appendix C.
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(a) Resource utilisation for the baseline FPGA implementation.
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(b) Resource utilisation for the FIFO optimised FPGA implementation.

Figure 5.2: Resource utilisation for two different FPGA implementations of the quantized QuartzNet model.

5.2.2. Comparison between CPU, GPU, and FPGA implementation
To provide a fair comparison between theCPU,GPU, and FPGA­based implementation of theQuartzNet
model, the same exact part of the QuartzNet model should be implemented on all three hardware plat­
forms. The FPGA implementation is taken as a point of reference here. As shown in Figure 5.1, this
implementation encapsulates the entire QuartzNet model except for the first depthwise convolution
and activation and the final decoder and post­processing block. To simplify the experiments, the CPU
and GPU implementations of the QuartzNet model encapsulate all of the residual blocks similar to the
FPGA implementation, except that the CPU/GPU implementations also account for the first depthwise
convolution and activation. This means that for the results presented below, the CPU and GPU imple­
mentation are slightly disadvantaged due to the fact that the tested model contains two more layers.
However, as reasoned above, this is deemed acceptable due to the negligible size of the first two layers
compared to the bulk of the QuartzNet model. Hence, the impact on the results and the conclusions
derived from the results is deemed negligible.

The experiments below are performed in the following way. A random tensor of the appropriate
size and format is constructed; [𝐵, 64, 256] for the CPU/GPU implementation in floating point format,
and [𝐵, 64, 128] for the FPGA in integer format. 𝐵 refers to the batch size, which is increased until the
point where the system would run out of memory. The idea is to isolate the inference pass of the model
as much as possible and neglect other types of overhead such as memory transfers. For this reason,
a single batch size is chosen and fed to the model, instead of processing a larger dataset in several
chunks. For the CPU and GPU implementation, several runs are performed, which are then averaged
to obtain the final runtime. During experiments, it was noticed that the first batch processed by the GPU
had a large overhead in runtime which is assumed to be due to the fact that the GPU is in sleep­mode
initially. For the FPGA, a single run was performed for each batch size up until out­of­memory bound
would be reached.

Figure 5.3a visualises the throughput in images per second at various batch sizes for a CPU, GPU,
and two FPGAs implementations. As expected, the CPU implementation achieves the lowest through­
put. Furthermore, note that the FIFO optimised FPGA implementation of the QuartzNet model is able
to achieve almost a 2× improvement in throughput compared to the baseline FPGA implementation.
Comparing the two FPGA implementations, it was observed that the number of FIFOs is halved in the
FIFO optimised implementation compared to the baseline FPGA implementation. Secondly, several
FIFOs in the FIFO optimised design were also 2− 4× larger compared to the sizes of the FIFOs in the
baseline implementation. Thus, a possible explanation for the low throughput in the baseline design
could be that the FIFOs are still too shallow to prevent stalls due to layer outputs being generated in a
bursty instead of continuous way.

Lastly, note that the GPU implementation is able to achieve the highest throughput. This is partly
expected, as GPUs are suited for achieving high throughput at highly parallelisable tasks. As explained
in Section 2.3, FPGA implementations could potentially be favoured due to less power being consumed.

Figure 5.3b visualises the throughput in images per second normalised over the maximum power
consumption at various batch sizes for a GPU and two FPGA implementations. In other words, the
energy efficiency in images per Joule is visualised. Note that the gap between the FPGA implement­
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ation and GPU implementation got considerably smaller. In fact, the FPGA implementation is able to
achieve the highest achievable energy efficiency.
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(a) Comparison of throughput in images per second at various batch
sizes for a CPU, GPU, and FPGA implementation.
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sizes for a GPU and FPGA implementation.

Figure 5.3: Throughput and energy efficiency of a CPU, GPU, and FPGA­based quantized QuartzNet implementation.

Table 5.2 summarises various metrics for the CPU, GPU, and best performing FPGA implementa­
tion. With the GPU implementation, the lowest latency and highest throughput are achieved. In terms
of energy efficiency, the FPGA implementation is better than the GPU implementation. In terms of
WER, the best obtained WER for the GPU model outperformed the best obtained WER for the CPU
model. As explained before, this is assumed to be caused due to the non­deterministic sorting in Py­
Torch. With regards to the FPGA model, note that the WER on the LibriSpeech dev­other dataset has
not been measured as the experiment setup has not been constructed. The WER of the FPGA­based
model is assumed to be the same as the CPU and GPU­based models, because the FPGA­based
model is by design functionally equivalent to the Brevitas model run on a CPU and GPU device.

CPU GPU FPGA
Frequency 3.2GHz 1.230GHz 0.108GHz

Highest achievable throughput [images/s] 18.86 611.86 145.40
Latency [ms] 56.42 1.54 6.88

Maximum power [W] 130 1 222 49
Highest achievable energy efficiency [images/J] 0.15 1 2.78 2.97

WER LibriSpeech dev­other 12.20% 12.08% ≈12%1

Table 5.2: Comparison between CPU, GPU and FPGA implementation in terms of throughput, latency, maximum power, and
energy efficiency.

5.2.3. Comparison to other FINN­generated accelerators
Finally, to put this work in line with other accelerators developed by FINN, Table 5.3 compares various
metrics among the MobileNetV1, ResNet­50, and QuartzNet models. In terms of novelty, the FPGA
accelerator for QuartzNet is the first model generated with the FINN compiler that targets the speech­
to­text recognition domain. Inherently coupled with the novel domain, the QuartzNet model is based on
layers operating on 1D tensors, while the other models are based on layers operating on 2D tensors.

Furthermore, this work also showcases the largest FPGA implementation achieved so far with the
FINN framework as well as the largest CNN for speech­to­text recognition implemented on an FPGA.

Note that in terms of model size, the ResNet­50 model is slightly larger than the QuartzNet model,
while the QuartzNet model contains roughly three times more FINN nodes. This is in accordance with
one of the motivations behind the design of the QuartzNet model. As explained in Section 2.5, the
use of depthwise separable convolutions significantly lowers the number of parameters used. The
ResNet­50 model is composed of regular convolutions, as opposed to the QuartzNet model, which
1Estimated quantity, has not been measured.
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consists of solely depthwise separable (and pointwise) convolutions. For that reason, the architecture
of the QuartzNet model is deep, while still containing a relatively low amount of learnable parameters.

Furthermore, note that MobileNetV1 is the smallest in terms of model size and FINN nodes. Inter­
esting to note is that MobileNetV1 has, similar to QuartzNet, depthwise separable convolutions.

MobileNetV1 [4] ResNet­50 [4] QuartzNet (this work)
Application Image classification Image classification Speech­to­text recognition

Precision W4A4 W1A2 Inner layers: W4A4
Outer layers: W8A8

Model Size [MB] 2.1 11.25 9.95
GOps 1.1 6.8 4.8

FINN nodes 115 277 871

Table 5.3: Comparison of proposed accelerator with other accelerators generated with FINN. Note that the model size refers to
the size in bytes of the weights and thresholds of the model.



6
Conclusion & future work

As deep neural networks are becoming increasingly large, alternative hardware platforms have gained
attention to create more power­efficient, high­throughput, and low­latency accelerators. In this work,
we have studied three research questions and addressed them as follows:

1. We have investigated the applicability of generating efficient CNN inference accelerators for
speech­to­text applications on an FPGA by means of a dataflow­style compiler named FINN.

2. We profiled and analysed the throughput, latency, and power efficiency characteristics of the
generated FPGA accelerator.

3. We compared the generated FPGA accelerator against mainstream CPU and GPU­based imple­
mentations of the CNN inference model.

6.1. Conclusion
The project has been divided into two parts. In the first part, I have extended the FINN compiler to
support the mapping of non­square and 1D CNNs to dataflow­style FPGA realisations. These changes
can be found in the open­source repositories of FINN, FINN­base, and FINN­hlslib [36, 37, 40]. In
the second part, I have used and tailored the transformations in the FINN compiler to create an FPGA
accelerator for a quantized version of the well­known QuartzNet model. This showcases the largest
CNN topology for speech­to­text inference implemented on an FPGA.

Regarding the first research question, this work has shown that an energy­efficient, high­throughput,
and low­latency FPGA accelerator can be created by means of the FINN compiler. An example has
been demonstrated on a quantized version of a sub state­of­the­art CNN for speech­to­text recognition
named QuartzNet. The network poses an implementation challenge due to its size in number of layers;
creating an FPGA accelerator by hand in RTL is arguably even infeasible to do for such a large network.
This work shows that, when the infrastructure in FINN has been established to support the layers in
the network, creating an efficient FPGA accelerator can be done within a fraction of the implementation
effort compared to a handwritten RTL design.

Regarding the second and third research questions, the highest throughput for the QuartzNet FPGA
accelerator that could be achieved was 145.4 images per second with a latency of 6.88ms. The highest
achievable energy efficiency is 2.97 images per Joule. Compared to a high­end CPU implementation,
the proposed FPGA accelerator achieves 7.7× higher peak throughput and 8.2× lower latency. Com­
pared to a high­end GPU implementation, the proposed FPGA accelerator improves the achievable
energy efficiency by 6.8% at the expense of lower throughput and higher latency.
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6.2. Future work
In order to extend the FINN compiler to allow a wider range of hardware implementations to be real­
ised and to lower the design burden, or to improve the proof­of­concept FPGA implementation of the
quantized QuartzNet model, the following list of items are considered worth investigating:

1. Automate the streamlining procedure. Currently, this procedure in FINN has to be done by hand
for each specific layer. For new users, this requires them to get acquainted with the streamlining
transformations in FINN and possibly write custom transformations suited for their own network.
Automating the streamlining procedure would lower the design effort to create an FPGA acceler­
ator for new networks. However, this would imply that all the required transformations to stream­
line any particular graph are present in FINN. This is often not the case, which makes this problem
hard to solve. A simpler solution is to consider automating the streamlining procedure for certain
graphs that contain a sub­set of available ONNX nodes for which the graph transformations are
well established; such as graphs consisting only out of batch normalisation layers, multiplications
and additions, convolutions, and activations, similar to QuartzNet.

2. Automate the folding procedure. As shown in Chapter 4, the folding procedure is not straight­
forward and requires several iterations to obtain a feasible hardware configuration. The difficulty
with the folding procedure is that it takes a significant amount of time to get reliable resource es­
timations; the most reliable estimations are from post­synthesis and implementation. This makes
it infeasible to perform a thorough design space exploration for a complete model. What makes
FINN powerful is that each layer has specific estimation functions that estimate the relevant com­
pute and memory utilisation based on the configuration of the layer by means of a (simple) Python
function. These estimation functions are essentially constructed by means of regression analysis
on a large set of resource utilisation numbers from HLS synthesis, or are created by means of
a rule­based system describing how Vivado HLS will most likely infer memory resources. Due
to the fact that the non­square and 1D SWU implementations are (relatively) new, these estim­
ation functions have not been constructed. Thus, in order to utilise FINN’s resource estimation
functions to allow exploring the design space of non­square and 1D models, the relevant estima­
tion models for the SWU need to be extended in a similar way to how the estimation models are
obtained for the older established FINN custom operators.

3. Optimise the folding of the quantized QuartzNet model. In order to improve the throughput and
latency by 2×, all layers should be targeted to be folded by 2×. As shown in Chapter 5, the re­
source utilisation of the generated FPGA accelerator is within the limits proposed by the Vivado
tool. It is worth exploring whether the layers can be folded by an additional factor. It is expected
that this will lower the gap between the GPU and FPGA based implementation in terms of achiev­
able throughput and latency. One possible downside is that the attainable frequency could suffer
due to the very high utilisation of resources.

4. Quantize the input data to integer format as explained in Section 3.1.1. This would allow the first
convolutional and activation layer to be implemented on an FPGA. This will improve the entire
end­to­end throughput and latency of performing an inference task with an FPGA accelerator for
the QuartzNet model. Note that the WER is expected to decrease when quantizing the input data
to integer format.

5. Apply the floorplanning transformation proposed by Alonso et al. with QuartzNet [4]. This is
expected to increase the attainable frequency of the design and therefore improve the throughput
and latency. From the current quantized QuartzNet design, reset and clock signals are causing
a worst negative slack of ≈ 2.24ns on a target path of 7 ns. If the design can be implemented
more efficiently and thereby attain the target clock period, an increase of approximately 35MHz is
expected. It is also interesting to explore whether the target clock period can be lowered further.

6. Store the weights of the MVAU component in URAM. For large weights stored in URAM in Alveo
devices, there is at the time of writing a bug in the address range that is allocated for these
weights. In order to increase the design space for the QuartzNet model, this problem should
be alleviated as it would allow for implementing the weights of the MVAU component in URAM.
In turn, exploring different hardware implementations of the quantized QuartzNet model could
possibly lead to an implementation with more efficient memory utilisation.
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7. Decouple the thresholding operation from the VVAU/MVAU to have more control over which hard­
ware resources are utilised to store the thresholds. This would increase the number of nodes in
the network, but would aid the design space exploration as the user has more control over which
resources get instantiated. As shown in Chapter 4, the Vivado tool does not always infer the most
efficient hardware memory resource for the thresholds.

8. Implement a custom FINN­ONNX MatMul operator for depthwise convolutions. In order to ex­
ecute the depthwise convolutions more efficiently, it is worth investigating to create a custom
FINN­ONNXMatMul operator that performs a densematrix multiplication as shown in Figure 2.12.
In the Python domain, depthwise convolutions are currently lowered to an Im2Col operator fol­
lowed by a sparse matrix multiplication. For normal­sized models, this has shown to be a suc­
cessful approach. However, for a model with a large number of depthwise convolutions, such as
QuartzNet, this poses two particular problems. Firstly, storing the model exceeds the maximum
size of an ONNX format file and secondly, executing the model by means of ONNX­runtime leads
to large execution time due to large (sparse) matrix multiplications.

9. Enable FINN accelerators to be used in big data pipelines. Alternative hardware platforms, such
as FPGAs, are becoming increasingly useful in big data applications as these devices can out­
perform CPUs in terms of throughput, latency, and power efficiency. However, programming and
integrating FPGAs within big data pipelines is considered hard [25]. In order to aid in bridging
the domain of machine learning inference, big data applications, and FPGA devices, integrating
Fletcher [54, 55] within the FINN framework is considered to be fruitful. Fletcher is an open­
source framework that can generate high­performance hardware interfaces to data in Apache
Arrow format. Apache Arrow is a standardised in­memory data format for big data applications
that can standardise data movement on hardware.
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Layer configuration Resource utilisation
RAM
style SIMD LUT FF BRAM URAM DSP LatencyLogic Memory tile

V1 3261 11392 545 0 0 0 34334721 V2 1603 3317 848 0 0 0 3367886
V1 3971 7120 589 0 0 0 17167362 V2 1401 2093 805 0 0 0 1683918
V1 2138 7120 656 0 0 0 8583684 V2 1309 2101 923 0 0 0 841934
V1 1907 7120 578 0 0 0 4291848 V2 1298 2117 977 0 0 0 420942
V1 1863 6586 593 0 0 0 21459216 V2 1342 2033 1236 0 0 0 210446
V1 2191 6660 876 0 0 0 10729632 V2 1589 2097 1793 0 0 0 105198
V1 2297 6808 1509 0 0 0 53648

L
U
T
R
A
M

64 V2 1794 2372 2848 0 0 0 52574

V1 136 0 216 12 0 0 34334721 V2 691 53 725 4 0 0 3367886
V1 142 0 231 12 0 0 17167362 V2 706 53 749 4 0 0 1683918
V1 140 0 261 12 0 0 8583684 V2 727 61 812 4 0 0 841934
V1 156 0 324 11.5 0 0 4291848 V2 761 77 930 4 0 0 420942
V1 198 0 451 11.5 0 0 21459216 V2 805 109 1159 4 0 0 210446
V1 299 0 706 11.5 0 0 10729632 V2 999 173 1611 4 0 0 105198
V1 486 0 1217 14.5 0 0 53648

B
R
A
M

64 V2 1272 300 2510 4 0 0 52574

V1 198 0 220 0 23 0 34334721 V2 741 46 723 0 7 0 3367886
V1 155 0 234 0 12 0 17167362 V2 751 47 747 0 4 0 1683918
V1 154 0 264 0 6 0 8583684 V2 771 48 802 0 2 0 841934
V1 166 0 326 0 3 0 4291848 V2 787 57 904 0 1 0 420942
V1 202 0 452 0 2 0 21459216 V2 834 74 1102 0 1 0 210446
V1 289 0 706 0 2 0 10729632 V2 970 107 1491 0 2 0 105198
V1 481 0 1217 0 4 0 53648

U
R
A
M

64 V2 1170 171 2263 0 4 0 52574

Table A.1: Post­synthesis and implementation hardware resource analysis for two implementations of a 1D SWU.
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A.2. Vector Vector Activate Unit

Layer configuration Resource utilisation

PE Resource
type

LUT FF Bram
tile URAM DSP LatencyLogic Memory

LUT ­ ­ ­ ­ ­ ­ ­2 DSP ­ ­ ­ ­ ­ ­ ­
LUT 907 0 351 29.5 0 0 8355844 DSP 735 0 297 29.5 0 3 835584
LUT 2554 0 1571 4 0 0 4177928 DSP 2160 0 1398 4 0 7 417792
LUT 3980 0 2942 8 0 0 20889616 DSP 3170 0 2547 8 0 15 208896
LUT 7464 0 4816 16 0 0 10444832 DSP 6083 0 4084 16 0 31 104448
LUT 13388 0 6519 32 0 0 5222464 DSP 10098 0 5151 32 0 63 52224

Table A.2: Post­synthesis and implementation hardware resource analysis for a VVAU.
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A.3. Matrix Vector Activate Unit
A.3.1. Weight memory ­ LUTRAM

Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 5345 17000 16016 7.5 0 0 167772162 1 Decoupled DSP 5347 17000 16009 7.5 0 3 16777216
LUT 5736 16996 16021 7.5 0 0 83886084 1 Decoupled DSP 5601 16996 15970 7.5 0 4 8388608
LUT 5810 17000 16149 7.5 0 0 41943048 1 Decoupled DSP 5597 17000 16058 7.5 0 10 4194304
LUT 5761 18426 18756 7.5 0 0 209715216 1 Decoupled DSP 5401 18426 18639 7.5 0 17 2097152
LUT 5340 19228 16045 14.5 0 0 167772161 2 Decoupled DSP 5429 19228 16008 14.5 0 1 16777216
LUT 5903 19288 16141 30 0 0 83886081 4 Decoupled DSP 5752 19288 16028 30 0 3 8388608
LUT 7884 19520 17736 0 0 0 41943041 8 Decoupled DSP 7469 19520 17474 0 0 7 4194304
LUT 10770 18704 19512 0 0 0 20971521 16 Decoupled DSP 9966 18704 18938 0 0 15 2097152
LUT 6302 16004 16385 14.5 0 0 20971528 2 Decoupled DSP 5876 16004 16252 14.5 0 20 2097152
LUT 6936 16132 16635 30 0 0 10485768 4 Decoupled DSP 6077 16132 16374 30 0 40 1048576
LUT 9715 16136 18679 0 0 0 5242888 8 Decoupled DSP 7997 16136 18195 0 0 80 524288
LUT 11873 18360 22046 0 0 0 26214416 8 Decoupled DSP 8798 18360 21669 0 0 136 262144
LUT 14075 16058 21269 0 0 0 262144

L
U
T
R
A
M

8 16 Decoupled DSP 10655 16058 20395 0 0 160 262144

Table A.3: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in LUTRAM.
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Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 7647 18944 20203 7.5 0 0 52428864 1 Decoupled DSP 6063 18944 19756 7.5 0 68 524288
LUT 22147 18688 28591 0 0 0 5242881 64 Decoupled DSP 20322 18688 27701 0 0 63 524288
LUT 7543 18944 19766 14.5 0 0 52428832 2 Decoupled DSP 5925 18944 19808 14.5 0 80 524288
LUT 16073 17632 23298 0 0 0 5242882 32 Decoupled DSP 11428 17632 23140 0 0 96 524288
LUT 7703 18536 19646 30 0 0 52428816 4 Decoupled DSP 6199 18536 19382 30 0 68 524288
LUT 11889 16624 20000 0 0 0 5242884 16 Decoupled DSP 10568 16624 19353 0 0 64 524288
LUT 9715 16136 18679 0 0 0 524288

L
U
T
R
A
M

8 8 Decoupled DSP 7997 16136 18195 0 0 80 524288

Table A.4: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in LUTRAM for a target of ≈ 500000 cycles latency.
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A.3.2. Weight memory ­ BRAM

Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 1209 0 2325 39.5 0 0 167772162 1 Decoupled DSP 1210 0 2318 39.5 0 3 16777216
LUT 1097 0 2328 37.5 0 0 83886084 1 Decoupled DSP 971 0 2255 37.5 0 4 8388608
LUT 1207 0 2433 36.5 0 0 41943048 1 Decoupled DSP 1006 0 2342 36.5 0 10 4194304
LUT 1455 0 2639 36 0 0 209715216 1 Decoupled DSP 1100 0 2522 36 0 17 2097152
LUT 1482 0 2322 46.5 0 0 167772161 2 Decoupled DSP 1632 0 2338 46.5 0 1 16777216
LUT 2019 0 2378 60 0 0 83886081 4 Decoupled DSP 1863 0 2333 60 0 3 8388608
LUT 4000 0 3898 29 0 0 41943041 8 Decoupled DSP 3611 0 3797 29 0 7 4194304
LUT 6930 0 5528 28.5 0 0 20971521 16 Decoupled DSP 6166 0 5250 28.5 0 15 2097152
LUT 1643 0 2607 43 0 0 20971528 2 Decoupled DSP 1227 0 2456 43 0 20 2097152
LUT 2342 0 2823 58.5 0 0 10485768 4 Decoupled DSP 1481 0 2562 58.5 0 40 1048576
LUT 5136 0 4745 28.5 0 0 5242888 8 Decoupled DSP 3426 0 4261 28.5 0 80 524288
LUT 7119 0 5598 28.5 0 0 26214416 8 Decoupled DSP 4192 0 5079 28.5 0 136 262144
LUT 9426 0 7081 28.5 0 0 262144

B
R
A
M

8 16 Decoupled DSP 6046 0 6207 28.5 0 160 262144

Table A.5: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in BRAM.
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Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 3294 0 3473 36 0 0 52428864 1 Decoupled DSP 1713 0 3024 36 0 68 524288
LUT 18324 0 14698 28.5 0 0 5242881 64 Decoupled DSP 16489 0 13774 28.5 0 63 524288
LUT 3166 0 3039 43 0 0 52428832 2 Decoupled DSP 1573 0 3099 43 0 80 524288
LUT 11933 0 9312 28.5 0 0 5242882 32 Decoupled DSP 7317 0 9210 28.5 0 96 524288
LUT 3308 0 3300 58.5 0 0 52428816 4 Decoupled DSP 1848 0 3027 58.5 0 68 524288
LUT 7556 0 6309 28.5 0 0 5242884 16 Decoupled DSP 6074 0 5421 28.5 0 64 524288
LUT 5136 0 4745 28.5 0 0 524288

B
R
A
M

8 8 Decoupled DSP 3426 0 4261 28.5 0 80 524288

Table A.6: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in BRAM for a target of ≈ 500000 cycles latency.
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Figure A.1: BRAM tile and LUT logic utilisation for MVAU with weights in BRAM with various folding factors achieving ≈ 500000
cycles latency. Results are obtained from RTL synthesis post implementation and route reports.
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A.3.3. Weight memory ­ URAM

Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 1228 0 2428 7.5 32 0 167772162 1 Decoupled DSP 1227 0 2421 7.5 32 3 16777216
LUT 1128 0 2400 7.5 16 0 83886084 1 Decoupled DSP 998 0 2327 7.5 16 4 8388608
LUT 1222 0 2538 7.5 8 0 41943048 1 Decoupled DSP 1066 0 2458 7.5 8 10 4194304
LUT 1463 0 2789 7.5 4 0 209715216 1 Decoupled DSP 1111 0 2672 7.5 4 17 2097152
LUT 1502 0 2425 14.5 32 0 167772161 2 Decoupled DSP 1649 0 2441 14.5 32 1 16777216
LUT 2045 0 2510 30 16 0 83886081 4 Decoupled DSP 1890 0 2465 30 16 3 8388608
LUT 4015 0 4003 0 8 0 41943041 8 Decoupled DSP 3633 0 3884 0 8 7 4194304
LUT 6940 0 5972 0 4 0 20971521 16 Decoupled DSP 6171 0 5382 0 4 15 2097152
LUT 1657 0 2757 14.5 4 0 20971528 2 Decoupled DSP 1237 0 2615 14.5 4 20 2097152
LUT 2421 0 3138 30 4 0 10485768 4 Decoupled DSP 1560 0 2877 30 4 40 1048576
LUT 5256 0 5060 0 4 0 5242888 8 Decoupled DSP 3547 0 4576 0 4 80 524288
LUT 7297 0 6174 0 8 0 26214416 8 Decoupled DSP 4399 0 5649 0 8 136 262144
LUT 9616 0 7648 0 8 0 262144

U
R
A
M

8 16 Decoupled DSP 6235 0 6778 0 8 160 262144

Table A.7: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in URAM.
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Layer configuration Resource utilisation
RAM
style SIMD PE Memory

mode
Resource

type
LUT FF BRAM URAM DSP LatencyLogic Memory tile

LUT 3419 0 3788 7.5 4 0 52428864 1 Decoupled DSP 1827 0 3339 7.5 4 68 524288
LUT 18437 0 15323 0 4 0 5242881 64 Decoupled DSP 16613 0 14093 0 4 63 524288
LUT 3303 0 3354 14.5 4 0 52428832 2 Decoupled DSP 1698 0 3396 14.5 4 80 524288
LUT 10910 0 9987 0 4 0 5242882 32 Decoupled DSP 7448 0 9525 0 4 96 524288
LUT 3410 0 3615 30 4 0 52428816 4 Decoupled DSP 1971 0 3342 30 4 68 524288
LUT 7681 0 6624 0 4 0 5242884 16 Decoupled DSP 6197 0 5736 0 4 64 524288
LUT 5256 0 5060 0 4 0 524288

U
R
A
M

8 8 Decoupled DSP 3547 0 4576 0 4 80 524288

Table A.8: Post­synthesis and implementation hardware resource analysis for an MVAU with weights in URAM for a target of ≈ 500000 cycles latency.
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Figure A.2: BRAM tile and LUT logic utilisation for MVAU with weights in URAM with various folding factors achieving ≈ 500000
cycles latency. Results are obtained from RTL synthesis post implementation and route reports.
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Window Unit

/ * *
* \ b r i e f S l i d i n g Window un i t t ha t produces output vec to rs f o r feed ing
* a Matr ix_Vector_Act ivate_Batch , implementing the im2col a lgo r i t hm .
* To be used when kerne l i s not square
*
* \ tparam ConvKernelDim_x Dimension o f the convo lu t i ona l ke rne l − x ax is
* \ tparam IFMChannels Number o f Inpu t Feature Maps
* \ tparam Inpu t_p rec i s i on Number b i t s per p i x e l
* \ tparam IFMDim_x Width o f the Inpu t Feature Map
* \ tparam OFMDim_x Width o f the Output Feature Map
* \ tparam SIMD Number o f i npu t columns computed i n p a r a l l e l
* \ tparam R Datatype f o r the resource used f o r FPGA implementat ion
* of the SWG − sa fe l y deduc ib le from the parameters
*
* \ param in Inpu t stream
* \ param out Output stream
* \ param numReps Number o f t ime the f unc t i on has to be repeated ly executed
* ( e . g . number o f images )
* \ param r Resource type f o r the hardware implementat ion o f the memory
* block
* /

template<unsigned in t ConvKernelDim_x ,
unsigned in t IFMChannels ,
unsigned in t I npu t_p rec i s ion ,
unsigned in t IFMDim_x ,
unsigned in t OFMDim_x,
unsigned in t SIMD,
typename R>

void Convolut ionInputGenerator_1D_dws_lowbuffer (
stream<ap_uint <SIMD* I npu t_p rec i s ion > > & in ,
stream<ap_uint <SIMD* I npu t_p rec i s ion > > & out ,
const unsigned in t numReps ,
R const &r ) {

CASSERT_DATAFLOW( IFMChannels % SIMD == 0 ) ;
const unsigned in t mu l t i p l y i n g _ f a c t o r = IFMChannels /SIMD;
const unsigned in t bu f f e r _s i ze = ConvKernelDim_x * mu l t i p l y i n g _ f a c t o r ;
ap_uint <SIMD* I npu t_p rec i s ion > inpu tBu f [ bu f f e r _s i ze ] ;

#pragma HLS ARRAY_PARTITION va r i ab l e= inpu tBu f complete dim=1
memory_resource ( inputBuf , r ) ;
const unsigned in t cyc les_read_block = mu l t i p l y i n g _ f a c t o r * ( ConvKernelDim_x−1)−
( ConvKernelDim_x −1) ;
const unsigned in t base I te r = cyc les_read_block + (OFMDim_x * bu f f e r _s i ze ) ;
unsigned in t inp = 0 , index_wr i te =0 , index_read = 0 , j = 0 , i n t e r na l _coun te r = 0 ;

#pragma HLS rese t va r i ab l e= inp
for (unsigned in t count_image = 0; count_image < numReps ; count_image++) {

for (unsigned in t i = 0 ; i < base I te r ; i ++) {
#pragma HLS PIPELINE I I =1
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i f ( inp < cyc les_read_block ) { / / I n i t i a l b u f f e r o f ConvKernelDim l i n e s
ap_uint <SIMD* I npu t_p rec i s ion > inElem ;
inElem = in . read ( ) ;
i npu tBu f [ inp ] = inElem ;
inp ++;

}
else { / / Read & wr i t e & update

/ / Read inpu t bu f f e r
i f ( inp < IFMDim_x*mu l t i p l y i n g _ f a c t o r ) {

i f ( inp < bu f f e r_s i ze | |
i n t e r na l _coun te r >= bu f fe r_s i ze −mu l t i p l y i n g _ f a c t o r ) {

ap_uint <SIMD* I npu t_p rec i s ion > inElem ;
inElem = in . read ( ) ;
i ndex_wr i te = inp % ( bu f f e r_s i ze ) ;
inpu tBu f [ i ndex_wr i te ] = inElem ;
inp ++;
i n t e r na l _coun te r ++;
i f ( i n t e r na l _coun te r ==bu f f e r_s i ze ) {

i n t e r na l _coun te r =0;
}

}
else {

i n t e r na l _coun te r ++;
}

}

/ / Wr i te output
ap_uint <SIMD* I npu t_p rec i s ion > outElem = inpu tBu f [ index_read ] ;
out . w r i t e ( outElem ) ;

/ / Update read index po i n t e r
i f ( j < ConvKernelDim_x −1) {

index_read = index_read + mu l t i p l y i n g _ f a c t o r ;
j ++;

}
else {

index_read = index_read + ( mu l t i p l y i n g _ f a c t o r +1 ) ;
j =0;

}
index_read = index_read%(bu f f e r_s i ze ) ;

}
} / / End base_ i te r

} / / End count_image
} / / End generator
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Figure C.1: Alveo U250 device utilisation of the quantized QuartzNet model with optimised FIFO sizing post­synthesis and
implementation.
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