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Noise-conditioned Energy-based Annealed Rewards
(NEAR): A Generative Framework for Imitation

Learning from Observation

Anish Abhijit Diwan

Abstract

This paper introduces a new imitation learning framework based on energy-based
generative models capable of generating complex, life-like, physics-dependent
motions, through state-only expert motion trajectories. Our algorithm, called
Noise-conditioned Energy-based Annealed Rewards (NEAR), constructs several
perturbed versions of the expert’s motion data distribution and learns smooth,
and well-defined representations of the data distribution’s energy function using
denoising score matching. We propose to use these learnt energy functions as
reward functions to learn imitation policies via reinforcement learning. We also
present a strategy to gradually switch between the learnt energy functions, ensuring
that the learnt rewards are always well-defined in the manifold of policy-generated
samples, thereby improving the learnt policies. We evaluate our algorithm on
complex humanoid tasks such as locomotion and martial arts and compare it with
state-only adversarial imitation learning algorithms like Adversarial Motion Priors
(AMP). Our framework sidesteps the optimisation challenges of conventional
generative imitation learning techniques and produces results comparable to AMP
in several quantitative metrics across multiple tasks. Finally, a portion of this
paper also analyses the optimisation challenges of adversarial imitation learning
algorithms, and discusses some previously under-explored failure modes, providing
rigorous empirical results to back our argumentation. Code and videos are available
at anishhdiwan.github.io/noise-conditioned-energy-based-annealed-rewards/.

1 Introduction

Learning skills through imitation is probably the most cardinal form of learning for human beings.
Whether it is a child learning to tie their shoelaces, a dancer learning a new pose, or a gymnast learning
a fast and complex manoeuvre, acquiring new motor skills for humans typically involves guidance
from another skilled human in the form of demonstrations. Acquiring skills from these demonstrations
typically boils down to interpreting the individual features of the demonstration motion – for example,
the relative positions of the limbs in a dance pose – and subsequently attempting to recreate the same
features via repeated trial and error. Imitation learning (IL) is an algorithmic interpretation of this
simple strategy of learning to imitate by matching the features of one’s own motion with the features
of the expert’s demonstrations.

Such a problem can be solved by various means, with techniques like behavioural cloning (BC),
inverse reinforcement learning (IRL), and their variants being popular choices. The imitation learning
problem can also be formulated in various subtly differing ways, leading to different constraints
on the types of algorithms that solve the problem. One notably challenging version of the problem
is Imitation from Observation (IfO) [1], where the expert trajectories are only comprised of state
features and no information about the expert’s actions is available to the imitator. This means that
learning a policy is not as straightforward as capturing the distribution of the expert’s state-action
pairs. Instead, the imitator must also learn to capture the dynamics of its environment. From a
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practical perspective, the IfO problem is quite relevant as obtaining action-rich data for real-world
tasks – across several agent embodiments and at large scales – is rather challenging. In most tasks,
the expert only has an implicit representation of the policy. Imagine how a dancer cannot realistically
convey their low-level actions – like muscle activations or positional targets – in a dance routine.
Further, collecting action-rich data via teleoperation is time-consuming, requires access to robot
hardware, and often produces unnatural motions owing to the challenges of conveying complex
commands via a generally restrictive user interface. Imitation from observation hence closely depicts
the data-limited reality of applying IL in the real world. Unfortunately, because BC relies on the
expert’s actions, a large fraction of BC techniques (including state-of-the-art algorithms like Diffusion
Policy [2]) are inapplicable to the problem of imitating from observation. Inverse reinforcement
learning, on the other hand, can still be applied to such problems.

In this work, we mainly focus on observation-based inverse reinforcement learning (reward learning),
where the agent learns by recovering a scalar reward signal from the demonstrations. This learnt
reward signal, when maximised by updating the agent’s policy, provides the agent with the “correct”
motivation to imitate the expert. While reward learning in itself is a broad field of study, recent
works that leverage generative adversarial techniques for this task have shown markedly good results
[3; 4; 1]. The fundamental idea in adversarial imitation learning (AIL) is to simultaneously learn
and optimise the return from the reward function implied in the expert demonstrations through an
optimisation objective derived from Generative Adversarial Networks (GANs) [5]. This procedure
considers the agent’s policy as a generator and parallelly trains a discriminator to differentiate between
the motions in the expert demonstration dataset and the motions produced by the agent’s policy.
The discriminator’s prediction is used as a reward signal in reinforcement learning and the policy
and the discriminator are updated iteratively until convergence. This procedure is called min-max
optimisation as the discriminator aims to minimise its classification error, while the generator aims
to maximise the discriminator’s error (either by generating high-quality samples or by directly
maximising its rewards as in AIL). Although methods like AMP [3], GAIL [4], and GAIfO [1] have
achieved impressive results in a wide variety of imitation tasks, they are prone to challenges intrinsic
to their theoretical formulation. Adversarial training is known to suffer from a myriad of challenges
[6; 7; 8; 5]. Primarily, these techniques are prone to have unstable training dynamics and learn
non-smooth probability densities, with the source of these challenges attributed to the simultaneous
min-max optimisation in the adversarial objective.

This paper explores a new generative framework for reward learning that completely sidesteps the
limitations of adversarial imitation learning techniques. We use energy-based generative models as
the backbone of our reward learning framework to learn smooth and accurate representations of the
data distribution. We propose to use the learnt energy functions as reward functions and present a new
imitation learning algorithm called Noise-conditioned Energy-based Annealed Rewards (NEAR) that
has better, more predictable learning dynamics, and produces motions comparable to state-of-the-art
adversarial imitation learning methods like AMP. Furthermore, to better ground the advantages of
our work, we also closely analyse the challenges of using adversarial objectives in the context of
imitation learning. We discuss previously under-examined failure modes in AIL and empirically
verify our arguments on the Adversarial Motion Priors [3] algorithm. The primary contributions of
this paper are

• Propose Noise-conditioned Energy-based Annealed Rewards (NEAR), a new state-only
imitation learning algorithm based on energy-based generative modelling.

• Present theoretical arguments and empirical analysis to highlight the optimisation challenges
of adversarial imitation learning algorithms and discuss some additional limitations of using
adversarially learnt reward functions with reinforcement learning.

Before diving into our proposed framework (Sections 4 and 5), we first briefly discuss the challenges
of adversarial IL in Section 2 and energy-based generative modelling in Section 3.

2 Background: Adversarial Imitation Learning

This paper refers to adversarial imitation learning as the family of techniques that use GAN-like
objectives in their optimisation procedure. The current section briefly describes the details of this
framework and discusses some prominent failure modes that lead to poor learning dynamics and
instability.
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Figure 1: A comparison of reward functions (probability density approximations) learnt in a 2D
target-reaching imitation task. Adversarial IL techniques learn a classifier between 𝑝𝐷 and 𝑝𝐺 which
is non-smooth and prone to instability because of the changing nature of 𝑝𝐺 (non-stationary). In
contrast, energy-based models learn smooth and accurate representations of 𝑝𝐷 and do not depend
on 𝑝𝐺 (stationary.)

GANs employ a simultaneous min-max optimisation procedure that aims to minimise the distance
between two distributions, one being the distribution of data samples 𝑝𝐷 (induced by a datasetM)
and the other being the learnt distribution 𝑝𝐺 . To do this, GANs simultaneously learn parameterised
functions called the generator and the discriminator. The generator typically produces new data
samples 𝑥 as a function of a white noise vector 𝑧 1, while the discriminator returns a scalar value
representing the probability that 𝑥 was derived from 𝑝𝐷 . Overall the discriminator aims to correctly
label both samples from 𝑝𝐷 and 𝑝𝐺 and the generator aims to return samples that the discriminator
labels poorly [5]. In the context of imitation learning,M is a dataset of expert motion trajectories and
𝑝𝐷 is a distribution of the features of these trajectories. The generator, however, does not generate
these samples directly. Instead, the generator is a closed-loop policy, that returns an action as a
function of the current state, that when applied to the environment, leads to features that resemble
those in 𝑝𝐷 . As a result, the input to the discriminator is not a direct output of the generator and
there exists a functional disconnection (Appendix A.1) between the two. Owing to this, the generator
in AIL algorithms is learnt via reinforcement learning [3; 4]. The complete procedure and the AIL
optimisation problem are formalised below.

Given an expert motion dataset M containing i.i.d. data samples 𝑥 ≡ (𝑠, 𝑠′) ∈ 𝑋 implying a
distribution 𝑝𝐷 , where 𝑋 is the space of state transitions 2, adversarial IL methods aim to learn a
differentiable generator (policy) 𝜋𝜃𝐺 (𝑠) : 𝑆 → 𝐴 where 𝑆 is the state space, 𝐴 is the action space, and
𝑠 ∈ 𝑆 is a sample drawn from the occupancy measure of the policy 𝜌𝜋 . Similarly to a standard GAN,
the idea here is to learn a differentiable discriminator 𝐷 𝜃𝐷 (𝑥) : 𝑋 → [0, 1] that returns a scalar value
representing the probability that the sample 𝑥 was derived from 𝑝𝐷 . However, now there exists an
additional function 𝑊 (𝜋𝜃𝐺 (𝑠)) : 𝐴 → 𝑋 that maps the output of the policy to the discriminator’s
input space. The discriminator is learnt assuming that 𝑊 (𝜋𝜃𝐺 (𝑠)) is an i.i.d. sample in 𝑋 and the
generator is learnt via policy gradient methods by using log 𝐷 𝜃𝐷 (𝑊 (𝜋𝜃𝐺 (𝑠))) as a reward function
[3; 1].

min
𝜃𝐷

E𝑥∼𝑝𝐷 [log 𝐷 𝜃𝐷 (𝑥)] + E𝑠∼𝜌𝜋𝜃𝐺
[log(1 − 𝐷 𝜃𝐷 (𝑊 (𝜋𝜃𝐺 (𝑠)))] (1)

max
𝜃𝐺

𝐽 where ∇𝜃𝐺 𝐽 (𝜋𝜃𝐺 ) = E𝜋𝜃𝐺
[𝑄 𝜋𝜃𝐺 (𝑠, 𝑎)∇𝜃𝐺 log 𝜋𝜃𝐺 (𝑠, 𝑎)]

where 𝑄 𝜋𝜃𝐺 (𝑠, 𝑎) = E𝜋𝜃𝐺
[log 𝐷 𝜃𝐷 (𝑊 (𝜋𝜃𝐺 (𝑠)))]

Here 𝐽 is the performance measure being maximised as per the policy gradient theorem [9]. The
following section presents theoretical analyses that substantiate the claim that AIL algorithms suffer
from similar optimisation challenges as standard GANs. A closer empirical verification of each
argument can be found in Appendix A.3. In this paper, we argue that the following challenges are the
most pertinent.

1𝑧 is a sample drawn from a known prior 𝑝𝑍 which, in most cases, this is just a noise distribution.
2In this paper we define all expressions for the partially observable case, however, the same results also apply

to the fully observable cases.
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• The generator suffers from poor training dynamics, especially at the initial stages of training.
Additionally, training is quite unstable and the quality of the generated motions fluctuates
drastically.

• In the context of reinforcement learning, the rewards learnt via adversarial techniques are
non-smooth and do not always provide an unambiguous signal for improvement. Here,
smoothness refers to the ability of a reward function to convey informative gradients in the
sample space. It is important to note that the gradient of the reward function is not a direct
part of the policy update in policy gradient methods, however, a smooth reward function is
necessary for “sensible” policy updates.

2.0.1 Consequences of A Perfect Discriminator: Non-Smoothness, Non-Stationarity &
Erratic Predictions

The iteratively changing nature of their training procedure and the formulation of the discriminator
as a classifier are the root causes of the optimisation challenges in AIL algorithms. Throughout
the training, the policy is updated to bring 𝑝𝐺 closer to 𝑝𝐷 , meaning that the support of 𝑝𝐺 – the
manifold of the samples generated by the policy – keeps changing. Simultaneously, the discriminator’s
decision boundary is also constantly changing to distinguish between the samples in supp(𝑝𝐷) and
supp(𝑝𝐺). [8] present seminal theoretical work on the dynamics of the GAN optimisation procedure.
Their work introduces the perfect discriminator theorems that state that if 𝑝𝐷 and 𝑝𝐺 have disjoint
supports or have supports that lie in low-dimensional manifolds (lower than the dimension of the
sample space 𝑋), then there exists an optimal discriminator 𝐷∗ : 𝑋 → [0, 1] that has accuracy 1
and ∇𝑥𝐷∗ (𝑥) = 0∀𝑥 ∈ supp(𝑝𝐷) ∪ supp(𝑝𝐺) (Theorems 2.1 and 2.2 in [8]). They also prove that
under these conditions 𝑝𝐺 is non-continuous in 𝑋 and it is increasingly unlikely that supp(𝑝𝐷) and
supp(𝑝𝐺) perfectly align (Lemmas 2 and 3 in [8]).

This means that at the initial stages of training, the discriminator very quickly learns to perfectly
distinguish between the samples in the expert datasetM and those in 𝑝𝐺 , assigning a prediction of 0 to
any sample in the agent’s trajectory. When used as a reward function, log 𝐷 𝜃𝐷 (𝑊 (𝜋𝜃𝐺 (𝑠))) = log 0,
instantly leads to arbitrary policy updates. Even when using a modified reward formulation, say 𝐷 ()
instead of log 𝐷 (), the agent would receive a nearly constant reward, say 𝑐. Under such a constant
reward function, the gradient of the performance measure quickly goes down to zero – since the
expectation of the gradient of the log probability of a parameterised distribution (Fisher score) is zero
at the parameter [10]. We verify these claims by replicating the experiments from [8] on adversarial
motion priors (AMP) (Appendix A.3.1).

𝑄 𝜋𝜃𝐺 (𝑠, 𝑎) = E𝜋𝜃𝐺
[log 𝐷 𝜃𝐷 (𝑊 (𝜋𝜃𝐺 (𝑠)))] = E𝜋𝜃𝐺

[𝑐] = 𝑐

∇𝜃𝐺 𝐽 (𝜋𝜃𝐺 ) = 𝑐 · E𝜋𝜃𝐺
[∇𝜃𝐺 log 𝜋𝜃𝐺 (𝑠, 𝑎)] = 𝑐 · 0 = 0

Furthermore, even without a perfect discriminator, the iteratively changing nature of adversarial
learning leads to high-variance discriminator predictions and causes performance instability. At any
point in training, the discriminator is trained to discriminate 𝑝𝐷 from 𝑝𝐺 – and not 𝑝𝐷 from all
that is not 𝑝𝐷 – meaning that it is quite accurate on samples in supp(𝑝𝐷) and supp(𝑝𝐺) but is often
arbitrarily defined in other regions of the sample space [8]. The changing nature of supp(𝑝𝐺) means
that after a policy update, some of the samples being passed on to the discriminator could potentially
have come from a region outside of these two supports. Since the discriminator is arbitrarily defined
here, it is likely to return misleading predictions, leading to misleading policy updates. This variance
is potentially further heightened by the stochastic nature of reinforcement learning techniques like
Proximal Policy Optimisation (PPO) [11], meaning that the agent’s exploration is typically met with
poor rewards – we agree that the KL diverge constraint in PPO might somewhat reduce the negative
impacts of this, however, penalising policy change with worse rewards is still non-ideal. The high
variance hypothesis is also empirically verified with experiments on AMP (Appendix A.3.2).

Finally, we touch on the consequences of the non-smooth nature of the learnt reward function.
Although smooth reward functions are not a mathematical necessity for policy gradient methods like
PPO, reward smoothness is indeed an important criterion for faster convergence and sensible policy
improvements. An ideal data-driven reward function is both smooth in the sample space as well as
consistent throughout training (stationarity). Unfortunately, because 𝐷 𝜃𝐷 is non-smooth in the whole
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Figure 2: Policy degradation in the mummy style walking imitation task. With sufficient training,
the policy does learn to complete the task, however, performance fluctuates substantially (with
degradation seen at 16𝑒6 training samples).

space 𝑋 and is arbitrarily defined in (supp(𝑝𝐷) ∪ supp(𝑝𝐺))c – parts of the sample space that are
unexplored and not in the demonstration datasetM –, the rewards in this region are also non-smooth.
As a result, an agent “stuck” in such a region would receive constant or arbitrarily changing rewards
and hence the policy would receive uninformative updates. Moreover, it is also important for the
reward function to be consistent in terms of the prediction assigned to a sample across different
training iterations. However, because 𝑝𝐺 and the discriminator’s decision boundary are gradually
changing, the learnt rewards are also non-stationary. If a sample is assigned a high reward at the
initial stages and suddenly assigned a low reward at some point in training (or vice-versa), policy
updates would also be rather misleading, regardless of the true desirability of that sample. We also
carry out experiments to highlight the non-smoothness of the learnt reward function as well as its
changes over training iterations (Appendix A.3.3).

To conclude this section, we point to Figures 1 and 2 that show a visual example of the non-smooth
nature of the discriminator and qualitative results demonstrating policy instability. Having discussed
several issues with adversarial IL, the next section introduces an alternative method of learning the
expert’s data distribution using which we subsequently propose a new imitation learning algorithm.

3 Score-Based Generative Models

Score-based generative models are a family of techniques that model the data distribution as a
Boltzmann distribution and subsequently learn a parameterised function for the gradient of the log
probability (score function) to generate samples [12]. Similarly to GANs, the aim here is to learn a
probability distribution 𝑝𝐺 that closely resembles the data distribution 𝑝𝐷 , with 𝑝𝐺 ≜ 𝑒−𝐸 (𝑥)

𝑍
and

𝐸 (𝑥) called the energy function of the distribution. Intuitively, the energy function is a measure of
the closeness of a sample to 𝑝𝐷 while the score is a vector pointing towards the steepest increase in
the likelihood of 𝑝𝐷 .

Because it is rather challenging to directly learn 𝑝𝐺 , score-based models approximate the score
function (∇𝑥 log 𝑝𝐺 (𝑥)) and use this to generate new samples with techniques like Markov Chain
Monte Carlo sampling [13; 14]. Given data samples drawn from 𝑝𝐷 , the score function is learnt by
first perturbing the data samples by artificially adding noise and then learning a function to denoise a
perturbed data sample by returning the vector that points towards the original sample – the denoising
vector being the score of that perturbed sample. Learning the score function implicitly also learns the
energy function as ∇𝑥 log 𝑝𝐺 (𝑥) = ∇𝑥 log 𝑒−𝐸 (𝑥)

𝑍
= −∇𝑥𝐸 (𝑥). In this paper, we propose to explicitly

learn the energy function to then use the energy of a sample to guide reinforcement learning. To do
so, we make modifications to a score-based framework called Noise Conditioned Score Networks
(NCSN) [15; 16].

3.1 Noise-Conditioned Score Networks (NCSN)

A score-based generative model requires three main components: samples drawn from a data
distribution, a perturbation technique, and a way to learn the denoising process via a parameterised
score function. Given i.i.d. data samples {𝑥 ∼ 𝑝𝐷 ∈ R𝐷}, Noise Conditioned Score Networks [15]
formulates a perturbation process that adds Gaussian noise N(𝑥, 𝜎) to each sample 𝑥, where 𝜎 is
the standard deviation representing a diagonal covariance matrix and is sampled uniformly from a
geometric sequence {𝜎1, 𝜎2, ..., 𝜎𝐿}. Following this perturbation process, we obtain a conditional
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distribution 𝑞𝜎 (𝑥′ |𝑥) = N(𝑥′ |𝑥, 𝜎𝐼) from which a marginal distribution 𝑞𝜎 (𝑥′) can be obtained as∫
𝑞𝜎 (𝑥′ |𝑥)𝑝𝐷 (𝑥)𝑑𝑥. Given this perturbed marginal distribution, NCSN attempts to learn a score

function 𝑠𝜃 (𝑥, 𝜎) : R𝐷 → R𝐷 . The idea is to learn a conditional function to jointly estimate the
scores of all perturbed data distributions, i.e., ∀𝜎 ∈ {𝜎𝑖}𝐿𝑖=1 : 𝑠𝜃 (𝑥′, 𝜎) ≈ ∇𝑥 log 𝑞𝜎 (𝑥′). The score
network is learnt via denoising score matching (DSM) [17] on samples drawn from the conditional
distribution 𝑞𝜎 (𝑥′ |𝑥) – we leverage the fact that DSM(𝑞𝜎 (𝑥′)) = DSM(𝑞𝜎 (𝑥′ |𝑥)) + const. [12; 17].
The final DSM loss is averaged over the various 𝜎 values assigned to data samples in the training
batch.

DSM Loss = E𝑞𝜎 (𝑥′ ) [
1
2
∥∇𝑥 log 𝑞𝜎 (𝑥′) − 𝑠𝜃 (𝑥′, 𝜎)∥]

= E𝑞𝜎 (𝑥′ |𝑥 ) [
1
2
∥∇𝑥 log 𝑞𝜎 (𝑥′ |𝑥) − 𝑠𝜃 (𝑥′, 𝜎)∥] + const.

=
1
2
E𝑝𝐷E𝑥′∼N(𝑥,𝜎) [∥∇𝑥 log 𝑞𝜎 (𝑥′ |𝑥) − 𝑠𝜃 (𝑥′, 𝜎)∥] (drop const.)

=
1
2
E𝑝𝐷E𝑥′∼N(𝑥,𝜎) [∥

𝑥′ − 𝑥
𝜎2 − 𝑠𝜃 (𝑥′, 𝜎)∥] (2)

By perturbing individual data samples with noise sampled from a Gaussian distribution with the mean
as the data sample, NCSN essentially creates a perturbed distribution that is a smooth, dilated version
of 𝑝𝐷 (Figure 1). Gradually changing the standard deviation 𝜎 leads to a gradual change in the level
of dilation. The use of this perturbation strategy has a few notable benefits.

• It is possible that 𝑝𝐷 is supported in some low-dimensional manifold in the high-dimensional
space R𝐷 . This was highlighted by previous experiments on the perfect discriminator and
we saw that it is rather challenging to learn a continuous function over such a space as
gradients are typically undefined in the ambient space. Adding a very small amount of
Gaussian noise ensures that 𝑝𝐷 is supported in the whole space, allowing the computation
of gradients from which a score function can then be learnt.

• Even if 𝑝𝐷 is supported in the whole space, it is possible that some regions are especially
data-sparse. Since the expectation in Equation (2) is approximated by averaging over data
samples, the learnt score function in these data-sparse regions could be misleading. The
addition of a large amount of Gaussian noise can fill such data-sparse regions in 𝑝𝐷 , leading
to better score function approximation.

• From the point of view of reinforcement learning, it is better to learn dilated versions of 𝑝𝐷
as opposed to learning a transformation from a Gaussian distribution to 𝑝𝐷 (as in Diffusion
[18; 19]). With reinforcement learning, the focus is not to generate new data samples but
to use the energy function of the learnt distribution to guide an agent towards the true data
distribution. As the agent always starts an episode from a starting state that is close to one
of the expert’s states, it is likely to also be in one of these perturbed distributions at the
start of the episode (and quite unlikely to be in a zero-mean identity covariance Gaussian
distribution, the sampling distribution of Diffusion). NCSN is hence more likely to provide
meaningful guidance to the agent.

• Finally, NCSN has the added advantage of providing multiple, gradually dilated learnt
distributions, using which an agent could be gradually motivated to converge to 𝑝𝐷 .

4 Noise-conditioned Energy-based Annealed Rewards (NEAR)

The perturbed conditional distribution 𝑞(𝑥′ |𝑥) is formulated as a Boltzmann distribution such that
𝑞(𝑥′ |𝑥) = 𝑒DIST(𝑥

′ ,𝑥)

𝑍
where DIST() is a function that defines some distance measure between a sample

and its perturbed form. In NCSN, DIST𝜎 () is the energy function of a Gaussian distribution with 𝜎
standard deviation and can be thought of as a dilated representation of the energy landscape of the
expert data distribution 𝑝𝐷 . Our approach leverages the fact that for a sample 𝑥 ∈ 𝑋 , DIST𝜎 (𝑥) is
essentially just a scalar-valued measure of the closeness of 𝑥 to 𝑝𝐷 , meaning that it can be used as
a reward signal to guide a policy to generate motions that gradually resemble those in 𝑝𝐷 . Unlike
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AMP, we propose to train NCSN before training the reinforcement learning policy and subsequently
use the learnt energy function as a reward function. There are several significant advantages to this:

• Since the energy function is learnt via score matching on samples arbitrarily far away from
the 𝑝𝐷 , DIST𝜎 () is both well-defined and continuous in the relevant parts of the sample
space 𝑋 . Continuity in the whole space indeed requires an infinitely large 𝜎, however,
realistically a 𝜎 that is sufficiently large to cover the worst-case policy would guarantee
continuity in the relevant parts of 𝑋 .

• Since DIST𝜎 () is a dilated version of the energy function of 𝑝𝐷 , it is also not prone to being
constant valued. It will indeed be arbitrarily defined for samples that are very far from 𝑝𝐷
(because those samples were never passed on to the network), however again, a sufficiently
large 𝜎 would mean that it is non-constant in the parts of 𝑋 where the policy-generated
samples are realistically expected to lie.

• Finally, DIST𝜎 () is learnt using perturbed samples from 𝑝𝐷 and hence does not rely on
the policy-generated samples. This means that it is disconnected from the policy and is not
prone to issues of high variance that come with simultaneous training. Further, we propose
to learn DIST𝜎 () in a one-shot manner, eliminating any concerns of non-stationarity.

The following sections discuss the procedure to learn these energy functions and other algorithmic
details of our approach (Algorithm 1).

4.1 Learning Energy Functions

This paper modifies NCSN [15] to learn energy functions instead of score functions. Given 𝐷-
dimensional i.i.d. data samples {𝑥 ∼ 𝑝𝐷 ∈ R𝐷} where 𝑝𝐷 is the distribution of state-transition
features in the expert’s trajectories, NEAR learns a parameterised energy function 𝑒𝜃 (𝑥′, 𝜎) : R𝐷 →
R that approximates the energy of samples 𝑥′ in a perturbed data distribution obtained by the local
addition of Gaussian noise N(𝑥, 𝜎) to each sample 𝑥. The idea here is to jointly estimate the energy
functions of several perturbed distributions, i.e., ∀𝜎 ∈ {𝜎𝑖}𝐿𝑖=1 : 𝑒𝜃 (𝑥′, 𝜎) ≈ DIST𝜎 (𝑥′). The
sample’s score is computed by taking the gradient of the predicted energy w.r.t the perturbed sample,
𝑠(𝑥′, 𝜎) = ∇𝑥′𝑒𝜃 (𝑥′, 𝜎). The energy network is learnt via denoising score matching using this
computed score and the final DSM loss in a training batch is computed as an average over the various
𝜎 values assigned to data samples in the training batch.

𝑙DSM (𝜎) =
1
2
E𝑝𝐷E𝑥′∼N(𝑥,𝜎) [∥

𝑥′ − 𝑥
𝜎2 − ∇𝑥′𝑒𝜃 (𝑥′, 𝜎)∥]

LDSM ({𝜎𝑖}𝐿𝑖=𝑖) ≜
1
𝐿

𝐿∑︁
𝑖=1

𝑙DSM (𝜎𝑖) (3)

We modify the definition of the perturbed conditional distribution 𝑞(𝑥′ |𝑥) by flipping the sign of
the energy function such that higher energies indicate closeness to 𝑝𝐷 . This is done to simplify
the downstream reinforcement learning such that the predicted energy can be maximised directly.
Following the improvements introduced in [16], we define 𝑒𝜃 (𝑥′, 𝜎) = 𝑒𝜃 (𝑥′ )

𝜎
where 𝑒𝜃 (𝑥′) is an

unconditional energy network 3. This allows us to learn the energy function of a large number of
noise scales with a very small sized dataset.

The appropriate selection of the noise scale ({𝜎𝑖}𝐿𝑖=𝑖) is highly important for the success of this
framework. 𝜎𝐿 must be small enough that the perturbed distribution 𝑞𝜎𝐿

() is nearly identical to 𝑝𝐷 .
This ensures that the policy aims to truly generate samples that resemble those in 𝑝𝐷 . In contrast,
𝜎1 must be sufficiently large such that 𝑒𝜃 (𝑥′, 𝜎1) is well-defined, continuous, and non-zero for any
sample that is generated by the worst-possible policy. This ensures that the agent always receives an
informative signal for improvement. Assuming that policy degradation is unlikely, 𝜎1 must be such
that supp(𝑞𝜎1 ()) effectively contains the support of the distribution induced by a randomly initialised
policy network. In practice, these are dataset-dependent hyperparameters.

3The score is the gradient of the energy function and the norm of the score scales inversely with 𝜎. The score
can hence be approximated by rescaling the energy with 1

𝜎 [16].
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Algorithm 1 Noise-conditioned Energy-based Annealed Rewards

Require: Dataset of reference motions,M ≡ {(𝑠, 𝑠′)}
Require: NCSN noise scale {𝜎𝑖}𝐿𝑖=𝑖 (𝜎1 is highest std. and 𝜎𝐿 is lowest std.)
Require: Threshold percentage to change noise level 𝑇 (say 0.05)
Ensure: Energy network 𝑒𝜃 , policy 𝜋𝜃𝐺 , and value fn. 𝑉 are initialised
Ensure: Replay buffer B ← ∅ and annealing buffer A ← ∅ are initialised
Ensure: Current noise level 𝜎𝑘 = 𝜎1, mean initial return 𝑅′𝜎𝑘

, number of iterations after noise level
change 𝑁𝑖𝑡𝑒𝑟𝑠 = 0 are initialised

Ensure: Mean return of the last 𝛽 training iterations with the current noise level 𝑅𝜎𝑘
is initialised

1: procedure NCSN(M, noise scale)
2: for update step = 1, . . . , 𝑁𝑖𝑡𝑒𝑟𝑠 do
3: 𝑏M ← sample a batch of transitions fromM
4: 𝑏𝑠𝑖𝑔𝑚𝑎 ← sample nose levels 𝜎𝑘 for every sample in 𝑏M uniformly from {𝜎𝑖}𝐿𝑖=𝑖
5: Update 𝑒𝜃 according to Equation (3) using pairing 𝑏M : 𝑏𝑠𝑖𝑔𝑚𝑎

6: procedure RL(learnt 𝑒𝜃 )
7: Initialise starting nose level 𝜎𝑘 = 𝜎1
8: while not done do
9: for trajectory = 1, . . . , 𝑚 do

10: 𝜏𝑖 ← {[𝑠, 𝑎, 𝑠′, 𝑟 ′ = rew-tf(𝑒𝜃 (𝑠, 𝑠′, 𝜎𝑘))]till horizon}𝜋𝜃𝐺
⊲ rew-tf - Section 5.1

11: Store 𝜏𝑖 in B
12: Store {(𝑠, 𝑠′)till horizon} in A
13: 𝜎𝑘 ← anneal(A) ⊲ anneal - Section 4.2
14: Reset A ← ∅
15: Update 𝑉 and 𝜋𝜃𝐺 by sampling trajectories from B

16: procedure ANNEAL(anneal buffer A = {(𝑠, 𝑠′)})
17: 𝑁𝑖𝑡𝑒𝑟𝑠 += 1
18: if 𝑁𝑖𝑡𝑒𝑟𝑠 < 𝛽 then
19: Update 𝑅′𝜎𝑘

with mean(𝑒𝜃 (A, 𝜎𝑘))
20: Update 𝑅𝜎𝑘

with mean(𝑒𝜃 (A, 𝜎𝑘))
21: if 𝑁𝑖𝑡𝑒𝑟𝑠 > 𝛽 then
22: if 𝑅𝜎𝑘

≥ (1 + 𝑇) · 𝑅′𝜎𝑘
then

23: Increase 𝜎𝑘 ⊲ Do not change if at 𝜎𝐿

24: Reset 𝑅𝜎𝑘
and 𝑅′𝜎𝑘

. 𝑁𝑖𝑡𝑒𝑟𝑠 = 0
25: else if 𝑅𝜎𝑘

< (1 − 𝑇) · 𝑅′𝜎𝑘
then

26: Decrease 𝜎𝑘 ⊲ Do not change if at 𝜎1
27: Reset 𝑅𝜎𝑘

and 𝑅′𝜎𝑘
. 𝑁𝑖𝑡𝑒𝑟𝑠 = 0

4.2 Annealing

The trained energy network 𝑒𝜃 (𝑥′, 𝜎) can directly be used as a reward function to train a policy
network 𝜋𝜃𝐺 (say initialised at 𝜃𝐺0) using some fixed noise level 𝜎𝑘 . But how do we decide on
an appropriate 𝜎𝑘? Assuming that during training the noise scale was set appropriately, 𝑞𝜎𝐿

() is
nearly identical to 𝑝𝐷 but supp(𝑞𝜎𝐿

()) has a low intersection with supp(𝜋𝜃𝐺0 ) 4. On the other hand
𝑞𝜎1 () is an extremely dilated version of 𝑝𝐷 but supp(𝑞𝜎1 ()) is likely to have a high intersection with
supp(𝜋𝜃𝐺0 ). This means that any chosen noise-level 𝜎𝑘 offers a tradeoff between sample quality and
𝑒𝜃 (𝑥′, 𝜎𝑘) being continuous and well-defined in the manifold of the samples generated by the current
policy.

We propose an annealing framework inspired by annealed Langevin dynamics and its predecessors
[15; 20; 21] to ensure that the learnt reward function is always well-defined and continuous while
also gradually changing to motivate the policy to get closer to 𝑝𝐷 . Instead of focusing on sample

4As a shorthand, we abbreviate the support of the distribution of state transitions induced by rolling out a
policy as supp(𝜋𝜃𝐺 ).
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generation, annealing in the context of reinforcement learning focuses on making gradual changes to
the agent’s reward function. Our annealing framework hence depends on the agent’s progress from an
imitation perspective. Training is initialised with the energy function of the lowest noise level. Then,
at every new noise level, the agent tracks the average return of the first few policy updates. The noise
level is increased if the average return of the last few policy updates is higher than some percentage
of the initial return. We note that changing the reward function introduces non-stationarity in the
reinforcement learning problem, meaning that the learnt policy is susceptible to degradation. To
account for this, our framework also lowers the noise level if the return drops below some percentage
of the initial return. This means that if the policy gets worse, the noise level decreases, thereby
increasing the intersection between supp(𝑞𝜎 ()) and supp(𝜋𝜃𝐺 ) and ensuring that the degraded policy
still has an informative reward signal for improvement.

5 Experiments

The following subsection discusses the implementation details of NEAR, the experimental setup
used in this paper, and other information like performance metrics and comparisons. Additional
details of the experimental implementation can be found in Appendix C and a detailed reproduction
guide is available in the documentation of our opensource codebase (github.com/anishhdiwan/near).
Section 5.2 presents our results and a discussion on some notable trends which is followed by ablation
experiments in Section 5.3.

5.1 Experimental Setup

We evaluate NEAR (Algorithm 1) on complex, physics-dependent, contact-rich humanoid motions
such as stylised walking, running, and martial arts. The chosen task set demands an understanding of
physical quantities such as gravity and the mass/moments of inertia of the character and contains a
variety of fast, period, and high-acceleration motions. The expert’s motions are obtained from the
CMU and SFU motion capture datasets and contain trajectories of several motions. For each motion,
a dataset of state transitionsM ≡ {(𝑠, 𝑠′)} is created to learn an imitation policy.

𝑟 (𝑠, 𝑎, 𝑠′, 𝑔) = 𝑤𝑡𝑎𝑠𝑘𝑟 𝑡𝑎𝑠𝑘 (𝑠, 𝑎, 𝑔) + 𝑤𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝜃 (𝑠, 𝑠′) (4)

To understand the impact of motion data availability on the algorithm, we also train NEAR in a
single-clip setting – using a single expert motion for training – on challenging motions like mummy-
style walking and spin-kick. Further, to understand the composability of the learnt rewards, we train
NEAR with both environment-supplied rewards (such as a target reaching reward) and energy-based
rewards learnt from different motion styles (to perform hybrid stylised motions). To incorporate
the environment-supplied task reward 𝑟 𝑡𝑎𝑠𝑘 (𝑠, 𝑎, 𝑔) ∈ [0, 1], we use the same strategy from [3]
and formulate learning as a goal-conditioned reinforcement learning problem, where the policy is
now conditioned on a goal 𝑔 and maximises a reward 𝑟 (𝑠, 𝑎, 𝑠′, 𝑔) (Equation (4)). Details of the
tasks and goals can be found in Appendix B. We also apply an additional reward transformation of
tanh ( 𝑟−𝑟 ′10 ) where 𝑟 ′ is the mean horizon-normalised return received by the agent in the last 𝑘 = 3
policy iterations, 𝑟 ′ = mean({ 𝑅̃𝑡−𝑖

ℎ𝑜𝑟𝑖𝑧𝑜𝑛
}𝑘
𝑖=1). This bounds the unnormalised energy reward to a fixed

interval so that changes between the noise levels 𝜎 are smoother. Additionally, it grounds the agent’s
current progress in relation to its average progress in the last few iterations. The policy is trained
using Proximal Policy Optimisation [11] and we use the following quantitative metrics to measure
the performance of our algorithm.

Average Dynamic Time Warping Pose Error: This is the mean dynamic time warping (DTW)
error [22] between trajectories of the agent’s and the expert’s poses averaged across all expert motions
in the dataset. The DTW error is computed using ∥𝑥𝑡 − 𝑥𝑡 ∥2 as the cost function, where 𝑥𝑡 and 𝑥𝑡 are
the Cartesian positions of the reference character and agent’s bodies at time step 𝑡. To ensure that the
pose error is only in terms of the character’s local pose and not its global position in the world, we
transform each Cartesian position to be relative to the character’s root body position at that timestep
(𝑥𝑡 ← 𝑥𝑡 − 𝑥𝑟𝑜𝑜𝑡𝑡 and 𝑥𝑡 ← 𝑥𝑡 − 𝑥𝑟𝑜𝑜𝑡𝑡 ).

Spectral Arc Length: Spectral Arc Length (SAL) [23; 24; 25] is a measure of the smoothness of
a trajectory and is an interesting metric to determine the policy’s ability to perform periodic motions
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in a controlled manner. SAL relies on the assumption that smoother motions are comprised of fewer
and low-valued frequency domain components while jerkier motions have a more complex frequency
domain signature. SAL is computed by adding up the lengths of discrete segments (arcs) of the
normalised frequency-domain map of a motion. In our experiments, we use SPARC [23], a more
robust version of the spectral arc length that is invariant to the temporal scaling of the motion. Note
that in this case, we do not transform the positions to the agent’s local coordinate system.

Root Body Position Derivatives: Finally, we also compute the average velocity and jerk of the
character’s root body (hip) and match this with those of the expert motions. The learnt rewards favour
velocity similarity with the expert’s motions, however, a similarity in jerk is not directly maximised.

5.2 Results

We compare Noise-conditioned Energy-based Annealed Rewards (NEAR) with Adversarial Motion
Priors (AMP) and in both cases only use the learnt rewards to train the policy. Each algorithm-task
combination is trained 5 times independently and the mean performance metrics across 20 episodes
of each run are compared. Both algorithms are trained until some pre-defined maximum training
samples.

Figure 3 shows snapshots of the policies trained using NEAR. We find that NEAR achieves very
close imitation performance with the expert’s trajectory and learns policies that are visually smoother
and more natural (videos here). For the quantitative metrics, we use the average performance at the
end of training for a fair comparison and find that both NEAR and AMP are roughly similar across
all metrics (Table 1). In most experiments, NEAR is closer to the expert in terms of the spectral arc
length, root body velocity, and jerk (Figures 4 and 5) while AMP has a better pose error. NEAR also
outperforms AMP in stylised goal-conditioned tasks, producing motions that both imitate the expert’s
style while simultaneously achieving the desired global goal (Table 2 and Figure 3 bottom). From the
experiments on spatially composed learnt rewards, we find that NEAR can also learn hybrid policies
such as waking while waving. Finally, we notice that NEAR performs poorly in single-clip imitation
tasks, highlighting the challenges of accurately capturing the expert’s data distribution in data-limited
conditions. Conversely, AMP is less affected by data unavailability since the discriminator in AMP is
simply a classifier and does not explicitly capture the expert’s distribution. An extended set of results
is provided in Appendix D.

In the experiments on NEAR, it was noticed that the pose error seemingly grows at the early stages
of training. This is counterintuitive as the energy return and visual inspection show that the policy-
generated motions indeed get better over time. The reason behind this could be the large dilation
of the initial perturbed distributions 𝑞𝜎𝑘

() compared to 𝑝𝐷 . Even though the policy is maximising
the energy function of these highly dilated perturbed distributions, the policy itself might be so far
from 𝑝𝐷 that the motions in supp(𝜋𝜃𝐺 ) do not exactly resemble those in the expert dataset. However,
annealing over time does lead to a slow shift in supp(𝜋𝜃𝐺 ) towards 𝑝𝐷 . Hence, we believe that this
trend does not necessarily indicate a drawback of NEAR but rather shows that a larger importance is
needed for other metrics during the early stages of training.

The performance of NEAR was also seen to become unpredictable as training progressed beyond a
certain point (typically after 40e6 training steps). We attribute this to issues with annealing at higher
noise levels. We hypothesise that NEAR learns quite accurate policies before exhausting the complete
noise scale. Meaning that the policy is the closest to the expert’s motions midway through training.
Training the policy beyond this point while still annealing the noise level leads to the introduction of
drastic non-stationarity in the problem. This could be because of the geometric nature of the noise
scale which causes the perturbed distributions to change drastically at higher levels. While at the
early stages, the supports of these perturbed distributions are large enough to still encompass the
manifold of the policy-generated motions after a noise level change, the supports of the later perturbed
distributions might only partially contain this manifold. This means that a change in noise level
suddenly causes the energy function to be ill-defined on a portion of the manifold of policy-generated
motions, leading to poor rewards for these transitions. This can be verified with the energy return
plot, where the return often drops at noise level changes indicating that the changed noise level
is suddenly low-rewarding (Figure 6). This is further corroborated by the ablations that follow in
the next section, where it can be seen that the configurations without annealing are generally more
predictable at the later stages of training. Degradation at higher noise levels highlights the sensitivity
of NEAR to the noise scale and is a limitation of this framework. Improvements can perhaps be
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Figure 3: Snapshots of the policies trained with NEAR. Mummy-style walking and spin-kick are
single-clip imitation tasks. The bottom row shows goal-conditioned RL policies that also optimise an
environment-provided task reward.
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Figure 4: The character’s root body velocity
throughout training.
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Figure 5: The character’s spectral arc length
throughout training.
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Figure 6: Annealing at higher noise levels causes a drop in the energy reward’s return, indicating that
the new reward function could be poorly defined on a portion of the manifold of policy-generated
motions.

made by experimenting with a linear noise scale, even more noise levels, or a more dynamic form of
annealing. However, we leave these improvements for future work.

5.3 Ablations

We also conduct ablation experiments that help identify the crucial components of NEAR. The main
focus of these experiments is to understand the contributions of annealing and the effects of using
an environment-provided task reward (no goal-conditioning). For walking and running, the task
reward favoured forward motion and episode length while for the crane pose task it only favoured
episode length. Further, we also ablate parts of the NCSN algorithm to understand the benefits
of the strategies discussed in [16]. Specifically, instead of defining the energy function using an
unconditional energy network, we directly train a conditional energy network 𝑒𝜃 (𝑥′, 𝜎). We also
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Table 1: A comparison of the avg. pose error (lower is better) and spectral arc length (closer to expert
is better) at the end of training.

Task Num. Motion Clips Algorithm Avg. Pose Error (m) Spectral Arc Length

Walking 74 (249.38 sec.)
NEAR 0.51 -7.52
AMP 0.51 -8.78
Expert’s Value -5.4

Running 26 (32.55 sec.) NEAR 0.62 -7.24
AMP 0.65 -9.71
Expert’s Value -3.79

Crane Pose 3 (24.62 sec.) NEAR 0.94 -6.6
AMP 0.82 -8.1
Expert’s Value -12.28

Left Punch 19 (4.91 sec.) NEAR 0.37 -6.87
AMP 0.32 -9.93
Expert’s Value -1.73

Mummy Walk 1 (5.40 sec.) NEAR 0.66 -4.72
AMP 0.41 -13.84
Expert’s Value -4.71

Spin Kick 1 (1.15 sec.) NEAR 0.78 -5.59
AMP 0.58 -3.16
Expert’s Value -3.39

Table 2: A comparison of the avg. pose error (lower is better) and task return (higher is better) at the
end of training with temporally and spatially composed reward functions.

Task Algorithm Avg. Pose Error (m) Task Return

Target Reaching (walking) NEAR 0.94 2.75
AMP 1.09 2.23

Target Reaching (running) NEAR 1.18 1.74
AMP 1.77 -0.15

Target Reaching & Punching NEAR 3.6
AMP 3.85

Task Algorithm Avg. Walking Pose Error (m) Avg. Waving Pose Error (m)

Walking & Waving NEAR 1.33 0.86
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Figure 7: The average pose error of the ablated NCSN configuration throughout training. Notice that
the ncsn-v1 configuration has a higher variance.

redefine 𝜎1 = 10 as per [15] and reduce the noise scale to only have 10 noise levels. We hypothesise
that the modified NCSN configuration – which we call NCSN-v1 – would learn a poor energy function
because of the challenges of learning a complex conditional function with limited data. Further, we
hypothesise that this would poorly impact reinforcement learning because supp(𝑞𝜎1 ()) would have
a lower intersection with supp(𝜋𝜃𝐺0 ) and the change between noise scales would be much more
pronounced (thereby leading to poor annealing). Given these parameters of interest, we train five
ablated configurations of NEAR (with 5 independent runs each and performance averaged over 20
episodes of each run) and show some of the key results in Table 3 and Figure 7 (full list of results in
Appendix E).
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Table 3: A comparison of ablated configurations of NEAR. Shaded rows compare the effect of
annealing (boldface is better) while the non-shaded regions compare the addition of environment-
provided task rewards (underlined is better).

Task Ablated Configuration Avg. Pose Error (m) Spectral Arc Length
Walking 𝜎5 & 𝑒𝜃 0.49 -7.1

𝜎5 & 𝑟 0.42 -8.7
anneal & 𝑒𝜃 0.51 -7.52
𝜎5 & 𝑒𝜃 0.49 -7.1
Expert’s Value -5.4

Running 𝜎5 & 𝑒𝜃 0.62 -6.69
𝜎5 & 𝑟 0.57 -8.61
anneal & 𝑒𝜃 0.62 -7.24
𝜎5 & 𝑒𝜃 0.62 -6.69
Expert’s Value -3.79

Crane Pose 𝜎5 & 𝑒𝜃 1.38 -6.03
𝜎5 & 𝑟 1.23 -4.34
anneal & 𝑒𝜃 0.94 -6.6
𝜎5 & 𝑒𝜃 1.38 -6.03
Expert’s Value -12.28

First, these experiments provide conclusive evidence of the improvements obtained by the NCSN
modifications from [16]. In all cases, the ablated configuration had highly unstable learning dynamics
and often also had poor average performance. From visual inspection of the learnt policies, it was
apparent that the ablated version’s policies were rather non-smooth and often failed mid-episode. The
policy was also prone to converging to locally optimal behaviours similar to the ones highlighted in
[3], where the character would simply jitter forwards and backwards while not actually moving. This
jittering might also be the reason for the unusually low spectral arc length and pose error in some
tasks.

Secondly, it can be seen that the addition of the task reward leads to an improvement in the pose error.
This is especially apparent in tasks like walking and running where the task reward is closely aligned
with the imitation objective. The addition of the task reward also counteracted the unpredictability
of NEAR at the later stages of training, which again corroborates the hypothesis that the source of
this instability was the non-stationarity introduced by annealing. It must however be noted that the
addition of the task reward does mean that the agent has a reduced closeness to specific characteristics
of the expert’s motion like spectral arc length, velocity, and jerk. Ultimately the closeness of the
imitation under a combined reward still highly depends on the harmony between the two reward
functions.

Finally, annealing does not have a significant impact on performance in walking and running, however,
leads to an improvement in more complex, non-periodic cases like the crane-pose task. It is possible
that for complex tasks, the expert distribution is more densely concentrated. In this case, a higher noise
level for a complex task might be more informative than one for a simpler task for which the expert
distribution is more spread out. The increased information available from annealing might hence be
the reason for better results with annealing in complex tasks. We also notice that in configurations
with an added task reward, annealing also does not cause any significant policy degradation. A reason
for this could be the reduction in non-stationarity by the addition of a non-changing component to the
reward function.

6 Limitations & Conclusions

While NEAR is capable of generating high-quality, life-like motions and also outperforms AMP in
several tasks, it is still prone to some limitations. The annealing strategy discussed in Section 4.2
does lead to progressively improving rewards, however, effective annealing at high noise levels is
still a challenge. Results from Section 5.2 highlight that annealing the energy function when the
policy-generated motions are close to convergence leads to a drop in the received reward, thereby
leading to policy degradation. While the fundamental idea behind annealing might not be flawed,
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there is certainly scope for an improved mechanism for changing noise levels that does not cause the
rewards to be ill-defined for the current policy.

State-only reward learning techniques like NEAR and AMP are also quite sensitive to the motion
dataset. We find that the policy is prone to converging to locally optimal behaviour if the dataset
contains bi-directional state transitions (such that (𝑠, 𝑠′) and (𝑠′, 𝑠) are equally likely to occur). We
found greater success when the motion clips of repeating tasks were temporally cropped to only
contain a few cycles of the motion. Another limitation of state-only imitation reward learning is
obtaining adequate exploration. We found that actions such as jumping that require sudden and
explosive actions took increasingly long to learn. The reason for this could be the need for having
explored a very specific action at a very specific state – say a suddenly large positional target at
the jumping instance. Finally, we find that the quality of the learnt policy varies depending on the
initial state from which the rollouts are started. The policy is fairly robust in imitating the expert
starting from a state in the expert’s motions, however, it often fails if the initial state is out of the
distribution. For example, punching from a “defensive stance” is quite robust but punching from
a “standing position” fails easily. Again, we attribute these issues to a lack of exploration and
hypothesise that longer training runs would iron out these inconsistencies. Unfortunately, because of
the resource-contained nature of our research, we were not able to run very long training experiments.
Further, it must be noted that these trends were true for both NEAR and AMP.

To conclude, this paper proposes an energy-based framework for imitation learning in partially
observable conditions. Our framework builds on Noise-conditioned Score Networks [15] to explicitly
learn a series of smooth energy functions from a dataset of expert demonstration motions. We propose
to use these energy functions as reward functions to learn imitation policies via reinforcement learning.
Further, we propose an annealing framework for reinforcement learning tasks to gradually change
the learnt reward functions as the policy improves. Our proposed imitation learning algorithm called
Noise-conditioned Energy-based Annealed Rewards (NEAR) outperforms state-of-the-art methods
like Adversarial Motion Priors (AMP) in several quantitative metrics as well as qualitative evaluation
across a series of complex contact-rich human imitation tasks. To ground the advantages of our work,
a part of this paper also presents a series of theoretical arguments and empirical results that show the
various optimisation-related challenges of adversarial imitation learning algorithms.
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A Optimisation Challenges in Adversarial IL

A.1 Distinctions Between Adversarial IL and Standard GANs

As explained in Section 2, in AIL methods, the input to the discriminator is not a direct output of
the generator, meaning that the generator does not directly generate samples in expert data space.
Instead, the generator is a policy 𝜋𝜃𝐺 that returns actions. The input to the discriminator is typically
obtained by passing these actions to another arbitrary function 𝑊 () that maps the generator’s output
to the discriminator’s sample space X. The key problem is that 𝑊 () is potentially unknown and is not
guaranteed to be differentiable. This does not pose a problem to the discriminator as updates to the
discriminator do not rely on the gradients of the generator –it can be assumed that 𝑊 (𝜋𝜃𝐺 (𝑠)) is just
another i.i.d. sample in 𝑋 . However, if the gradients from the discriminator can not flow back to the
generator, how then is the generator (policy) updated? The generator is learnt via policy gradient
methods by using the discriminator’s prediction as a reward function. The policy gradient theorem
ensures that the gradients of the reward function (discriminator) are not a part of the policy update.

The adversarial optimisation procedure in AIL algorithms is hence, not exactly the same as it is in
their conventional sample-generation-focused counterparts – the primary difference being the use of
reinforcement learning and the disconnected gradient flow. Given this distinction, do adversarial IL
algorithms still suffer from the same training limitations? Our theoretical analysis in Section 2.0.1
and the supplementary experimental analysis in Appendix A.3 show this is indeed true.

A.2 Perfect Discriminator Theorems Elaboration

To fully understand the points of failure in GAN training, let us first look at the mechanics of the
discriminator’s and the generator’s objectives. Given samples drawn from a data distribution 𝑝𝐷 , the
idea of a GAN is to learn a generator that induces a distribution 𝑝𝐺 . The generator aims to iteratively
change 𝑝𝐺 to bring it closer to 𝑝𝐷 while the discriminator aims to update its weights to maximise
the distance (typically, the Jensen Shannon Divergence) between the two. Changing 𝑝𝐺 refers to the
process of changing its support to contain samples that progressively resemble those in the support of
𝑝𝐷 . At the end of training the goal is to have a high intersection between supp(𝑝𝐷) and supp(𝑝𝐺).
[8] introduce two theorems that state that there exists a perfect discriminator if supp(𝑝𝐷) and
supp(𝑝𝐺) are disjoint or if 𝑝𝐷 and 𝑝𝐺 are non-continuous (which they also prove).

• Given two distributions 𝑝𝐷 and 𝑝𝐺 with supports contained on disjoint manifoldsM and
P respectively, then there exists an optimal discriminator 𝐷∗ : 𝑋 → [0, 1] that is smooth in
these supports, has accuracy 1, and ∇𝑥𝐷∗ (𝑥) = 0∀𝑥 ∈ M ∪ P.

• Given two distributions 𝑝𝐷 and 𝑝𝐺 with supports contained on disjoint manifoldsM and
P that don’t perfectly align and don’t have full dimension, assuming the distributions are
continuous in their respective manifolds, then again, there exists an optimal discriminator
𝐷∗ : 𝑋 → [0, 1] that has accuracy 1 inM ∪ P, ∇𝑥𝐷∗ (𝑥) = 0, and 𝐷∗ is smooth in these
manifolds.

An accuracy of 1 means that the discriminator perfectly distinguishes between the samples from the
dataset and the samples generated by the generator – i.e. it takes a value of 1 for samples in supp(𝑝𝐷)
and a value of 0 for those in supp(𝑝𝐺). These theorems rely on the fact that 𝑝𝐺 is non-continuous and
that there isn’t a perfect match between supp(𝑝𝐷) and supp(𝑝𝐺). This is shown with the following
lemmas.

• If 𝐺 : 𝑍 → 𝑋 is a function that resembles a neural network (comprising of affine transfor-
mations and pointwise non-linearities) and the dimension of 𝑍 is lower than that of 𝑋 then
it is impossible for 𝑝𝐺 to be continuous in the whole space (Lemma 1 in [8]).

• Given that 𝑝𝐷 and 𝑝𝐺 are continuous in the manifolds of their respective supports, it is
increasingly unlikely that supp(𝑝𝐷) and supp(𝑝𝐺) perfectly align such that no arbitrarily
small perturbation can dissatisfy this property (Lemmas 2 and 3 in [8]).

Having shown these theorems, [8] show that the gradient of the generator’s objective in a standard
GAN rapidly vanishes (Theorem 2.4). Further, they also show that when the generator objective is
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modified to avoid this vanishing, the gradient of the log discriminator tends to have infinite variance
(Theorem 2.6).

Both these results explain the degrading generator updates and instability in GAN training from a
theoretical point of view. However, because the generator (policy) update procedure in adversarial IL
is based on policy gradient methods, it is independent of the gradient of the discriminator (reward
function in adversarial IL), meaning that the results on the generator’s gradients are inapplicable
to adversarial IL. In any case, the perfect discriminator theorems still apply to the discriminator in
adversarial IL. This is because the generator is indeed a neural network mapping low-dimensional
samples (features 𝑠 ∈ 𝑆) to the discriminator’s high dimensional input space (the space 𝑋 comprising
state transitions), albeit with an arbitrary function 𝑊 () acting on the generator’s outputs. Further,
𝑝𝐺 and 𝑝𝐷 are potentially disjoint and it is at least unlikely that their supports perfectly align.
Hence, even though the high-level mechanisms are different, adversarial IL is still inherently prone to
optimisation-related training challenges.

A.3 Experiments on Optimisation Challenges in AIL

This section presents several experimental analyses that substantiate the theoretical reasoning in
Section 2.0.1. Each set of experiments is elaborated in its own subsection.

A.3.1 Perfect Discriminator

To test the perfect discriminator hypothesis, we conduct the experiments from [8] on adversarial
IL (Figure 8). We train adversarial motion priors [3] on a humanoid motion imitation task using
the loss function from Equation (1) for the discriminator and Proximal Policy Optimisation (PPO)
[11] to train the policy. Training is continued normally until some cut-off point. Then, with the
policy updates paused, we retrain a discriminator to distinguish between samples in the expert
datasetM and samples in 𝑝𝐺 . The cut-off point is varied across runs to obtain varying levels of
intersection between supp(𝑝𝐷) and supp(𝑝𝐺). Our experiments reproduce the results from [8] on
adversarial IL. The discriminator loss from Equation (1) rapidly declines indicating a near-perfect
discriminator prediction and highlighting the fact that even after sufficient training, 𝑝𝐺 and 𝑝𝐷 are
non-continuous. The accuracy of the discriminator reaches a value of 1.0 in at most 75 iterations and
∇𝑥𝐷 (𝑥) rapidly declines to be 0, further corroborating the theoretical results. Finally, we also find
that the discriminator’s predictions on the motions generated by the policy rapidly drop down to zero,
meaning that the policy receives unhelpful updates.

A.3.2 High Discriminator Variance

To verify the high variance hypothesis, we use the same experimental setup as before but now train
AMP for longer to obtain even more intersection between supp(𝑝𝐷) and supp(𝑝𝐺). The discriminator
is slightly modified by removing the sigmoid activation at the output layer and instead computing
the loss on sigmoid(𝐷 ()) 5. Here, instead of retraining the discriminator after the cut-off point, we
continue its training to maintain the learnt decision boundary and visualise the variance in the trained
discriminator’s predictions on the motions generated by an unchanging policy. We hypothesise that
as training continues and the supports of the two distributions get closer, the discriminator is less
likely to see samples from a region outside supp(𝑝𝐷) ∪ supp(𝑝𝐺), meaning that its variance reduces
as training progresses. We observe that the discriminator’s predictions indeed have quite a high
variance and the range of the predictions varies vastly across training levels (Figure 9). Further, the
variance indeed reduces over the training level, indicating a gradually increasing intersection between
supp(𝑝𝐷) and supp(𝑝𝐺). The adversarial optimisation is likely to get stabilised as the policy gets
closer to optimality, however, training for the most part is still rather unstable because of the high
variance in the discriminator’s predictions.

A.3.3 Discriminator Non-Smoothness

Finally, we carry out experiments to understand the smoothness of the learnt reward function as well
as its changes over training iterations (Figure 10). To do this, we again train AMP on a humanoid

5This is done to allow the network to predict any arbitrary value and to allow more flexibility in the reward
function transformation. The same is done in the original AMP procedure [3] and we make no additional
modifications to their code.

18



0 250 500 750 1000 1250 1500
Training Iterations

10−3

10−2

10−1

100

C
ro

ss
-E

nt
ro

py

Discriminator Error

After 0.5e6 samples

After 2e6 samples

After 5e6 samples

0 250 500 750 1000 1250 1500
Training Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Discriminator Accuracy (on both pG and pD)

After 0.5e6 samples

After 2e6 samples

After 5e6 samples

0 250 500 750 1000 1250 1500
Training Iterations

10−3

10−2

10−1

‖(
∇
x
D

(x
))
‖ 2

Grad. Disc()

After 0.5e6 samples

After 2e6 samples

After 5e6 samples

0 250 500 750 1000 1250 1500
Training Iterations

0

10

20

30

D
θ D

(W
(π

θ G
(s

))
)

Discriminator Predictions

After 0.5e6 samples

After 2e6 samples

After 5e6 samples

Figure 8: Perfect discriminator experiments. The policy was first trained for 0.5𝑒6, 2𝑒6, and 5𝑒6 data
samples. Then, with the policy updates paused, the discriminator was retrained. We find that the
discriminator very quickly learns to perfectly distinguish between the motions inM and the motions
produced by the policy (notice the logarithmic scale).
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Figure 9: Discriminator variance experiments. The policy was first trained for 2𝑒6, 5𝑒6, and 10𝑒6
data samples. Then, with the policy updates paused, discriminator training was continued. We
observe high variance in the rewards received. Given that the policy is unchanging, a high variance in
the reward indicates poor reinforcement learning.

walking task. This time we do not make any modifications to the algorithm and simply evaluate
the discriminator at gradually increasing distances from the true data manifold at various points in
training. We find that the discriminator’s predictions on average, decline as we move farther away
from the true data manifold. However, again, the predictions are quite noisy and have a fairly large
standard deviation.
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Figure 10: Discriminator non-smoothness experiments. Plots show the mean and std. discriminator
prediction over a large batch of perturbed expert data samples. Notice the high value of the std.
compared to the mean at any given distance from 𝑝𝐷 .

Figure 11: Top Left: Structure of the 2D environment. Top Right: Rewards learnt using NEAR.
Bottom: Various stages of the AMP discriminator during learning.

To get a better visual understanding of the discriminator’s behaviour, we also conduct the same
experiment in a 2D imitation problem (where the agent’s state is its 2D position) shown in Figure 11.
Here, the agent is a spherical object whose goal is to reach the target at the bottom-right corner. Expert
demonstrations were collected such that the expert’s trajectory does not reach the target directly but
instead first passes through an L-shaped maze. It is expected that the agent learns to imitate this by
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also passing through the maze. We visualise the discriminator’s predictions on the 4D state transition
features by plotting the mean prediction in the agent’s reachable set at every point in a 2D discredited
grid. AMP is trained on this simple task for 0.5𝑒6 training samples and the discriminator’s predictions
are plotted at several points in training. The experiment visually demonstrates the non-smooth and
non-stationary nature of the discriminator. In contrast, we also train our proposed method on this
task and see that the learnt reward function is smooth and very closely resembles the expert’s data
distribution.

B Tasks

The task reward and goal features for each imitation task are described below.

Target Reaching

In this task, the agent’s objective is to navigate towards a randomly placed target. The agent’s state is
augmented to include a goal 𝑔𝑡 = 𝑥∗𝑡 where t is the current timestep, and 𝑥∗𝑡 is the target’s position in
the agent’s local coordinate frame. During training, the target is randomly initialised in a 240◦ arc
around the agent within a radius in the range [2.0, 6.0] meters. The agent is rewarded for minimizing
its positional error norm and heading error to the target. Here, 𝑥𝑡 is the agent’s position, 𝑣𝑡 is the
agent’s velocity vector, 𝑑∗𝑡 is a unit vector pointing from the agent’s root to the target, and 𝑣∗ is a
scalar desired velocity set to 2.0 for walking and 4.0 for runninng.

𝑟 𝑡𝑎𝑠𝑘 = 0.6(exp (−0.5


𝑥∗𝑡 − 𝑥𝑡

2)) + 0.3(1 − 2

1 + exp (5 ∗ (𝑣𝑡∗𝑑∗𝑡 )∥𝑣𝑡 ∥ )
) + 0.1(1 − (∥𝑣𝑡 ∥ − 𝑣∗)2) (5)

Target Reaching & Punching

In this task, the agent’s objective is to both reach a target and then strike it with a left-handed punch.
Here, the goal is a vector of the target’s position in the agent’s local frame and a boolean variable
indicating whether the target has been punched, 𝑔𝑡 =< 𝑥∗𝑡 , punch state >. We use the same target
initialisation strategy as before with an arc of 45◦ and an arc radius in [1.0, 5.0] meters. The agent
is rewarded using the target location reward when it is farther than a threshold distance from the
target and with a target striking reward when it is within this threshold. The striking reward aims
to minimise the pose error and heading error between the agent’s end effector and the target while
simultaneously aiming to achieve a certain end effector velocity and height. The complete reward
function is shown below where 𝑥

𝑒 𝑓 𝑓
𝑡 is the end effector position, 𝑣𝑒 𝑓 𝑓𝑡 is the end effector velocity

vector, ℎ𝑒 𝑓 𝑓𝑡 is the end effector height, and 𝑣∗𝑒 𝑓 𝑓 = 4.0 and ℎ∗𝑒 𝑓 𝑓 = 1.4 are scalar desired punch
speed and height.

𝑟 𝑡𝑎𝑠𝑘 =


1.0 target has been hit
𝑟𝑛𝑒𝑎𝑟



𝑥𝑡 − 𝑥∗𝑡 

 < 1.2
𝑟 𝑓 𝑎𝑟 otherwise

(6)

𝑟 𝑓 𝑎𝑟 = Equation (5)

𝑟𝑛𝑒𝑎𝑟 = 0.3 + 0.3(0.1(exp (−2.0



𝑥∗𝑡 − 𝑥𝑒 𝑓 𝑓𝑡




2
)) + 0.4(1 − 2

1 + exp (5 ∗ (𝑣
𝑒 𝑓 𝑓
𝑡 ∗𝑑∗𝑡 )


𝑣𝑒 𝑓 𝑓

𝑡




 )
)

+ 0.3(1 − (



𝑣𝑒 𝑓 𝑓𝑡




 − 𝑣∗𝑒 𝑓 𝑓 )2) + 0.2(1 − (ℎ𝑒 𝑓 𝑓𝑡 − ℎ∗𝑒 𝑓 𝑓 )2)) (7)

Unconditioned Rewards

These reward functions were used in our ablation experiments. In this case, we do not use any
additional goal-conditioning.

Walking & Running: The agent is rewarded positively for every time step in the episode,
encouraging longer episode lengths. Further, the agent is also rewarded for relative positive dis-
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placement, with the clipping at 0.5 meters. The final task reward is a weighted combination of both.
𝑟 𝑡𝑎𝑠𝑘𝑡 = 0.5 · 1 + 0.5 · clip(𝑥𝑡−𝑥𝑡−1 ,0.0,0.5)

0.5 .

Crane Pose & Punching: The agent is rewarded positively for every time step in the episode,
encouraging longer episode lengths. 𝑟 𝑡𝑎𝑠𝑘𝑡 = 1.

C Training & Evaluation Details

C.1 Architectures

For both NEAR and AMP, the policy is a simple feed-forward neural network that maps the agent’s
state 𝑠 to a Gaussian distribution over actions, 𝜋𝜃𝐺 = N(𝜇(𝑠), Σ) with the mean 𝜇(𝑠) being returned
by the neural network and a fixed diagonal covariance matrix Σ. In our experiments, the neural
network is a fully-connected network with (1024, 512) neurons and ReLU activations. Σ is set to
have values of 𝑒−2.9 and stays fixed throughout training. The critic (value function) is also modelled
by a similar network. The value function is updated with TD(𝜆) [26] and advantages are computed
using generalised advantage estimation [27]. When using the environment-supplied task reward, we
set 𝑤𝑡𝑎𝑠𝑘 = 𝑤𝑒𝑛𝑒𝑟𝑔𝑦 = 0.5.

The NCSN neural network is a fully-connected network with an auto-encoder style architecture.
Here, the encoder has (512, 1024) neurons and maps the input to a 2048-dimensional latent space.
The decoder has (1024, 512, 128) neurons with the output being the unconditional energy of a
sample. We use ELU activations between all layers of the auto-encoder and use Xavier uniform
weight initialisation [28] to improve consistency across different independent training runs. Further,
we standardise samples before passing them to the network. The NCSN noise scale was defined
as a geometric sequence with 𝜎1 = 20, 𝜎𝐿 = 0.01, and 𝐿 = 50 following the advice from [16].
Following [16] also track the exponentially moving average (EMA) of the weights of the energy
network during training and use the EMA weight during inference, as it has been shown to further
reduce the instability in the sample quality. All models in this paper were trained on the Nvidia-A100
GPU [29; 30].

C.2 Reinforcement Learning

We borrow the experimental setup from [3] where the agent’s state is a 105-dimensional vector
consisting of the relative position of each link with respect to the root body and the rotation of each
link (represented as a 6-dimensional normal-tangent vector of the link’s linear and angular velocities).
All features are in the agent’s local coordinate system. Similarly to [3], we do not add additional
features to encode information like the feature’s phase in the motion, or the target pose. Further, the
character is not trained to replicate the phase-wise features of the motion and the learnt rewards are
generally only a representation of the closeness of the agent’s motion to the expert’s data distribution.
The agent’s actions specify a positional target that is then tracked via PD controllers at each joint.
The expert’s motions are obtained from the CMU and SFU motion capture datasets and contain
trajectories of several motions. For each motion, a dataset of state transitionsM ≡ {(𝑠, 𝑠′)} is created
to learn an imitation policy.

We use asynchronous parallel training in the IsaacGym simulator [31] for all experiments and analyses
in this paper and spawn 4096 independent, parallel environments during both training and evaluation.
Given an initial policy, training is carried out by first rolling out the policy in all environments for
a rollout horizon (16 in our experiments). During rollouts, an environment is reset if it happens to
reach the done state. A replay buffer is then populated with all agents’ transitions obtained from
the rollouts. Then, with rollouts paused, the policy and value function are updated with the data
from the replay buffer. After the update, the rollouts are restarted with the updated policy. We use
multiple mini epochs to update the policy and value function at every update step. In each mini epoch,
several mini-batches of data samples are drawn from the replay buffer. The number of mini-batches
depends on the relative size of each mini-batch and the replay buffer 6 In the experiments on the
AMP discriminator, we used 𝑁𝑒𝑛𝑣𝑠 = 1024, meaning that 500k training steps correspond to about
1464 iterations. In this setup, 500k samples was also approximately the training needed to see

6Given a horizon ℎ, 𝑁𝑒𝑛𝑣𝑠 = 4096, 𝑁𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 8, and 𝑁𝑚𝑖𝑛𝑖𝑒𝑝𝑜𝑐ℎ𝑠 = 6, the number of training
iterations for 𝑁 training steps is 𝑁

ℎ·𝑁𝑒𝑛𝑣𝑠
· 𝑁𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ𝑒𝑠 · 𝑁𝑚𝑖𝑛𝑖𝑒𝑝𝑜𝑐ℎ𝑠 .
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any noticeable improvement in the learnt policy and was hence also chosen as a training bound to
determine the variance in the discriminator’s predictions.

During policy evaluation, the same rollout procedure is used, however this time, the rollout horizon is
set to 300 and the networks are of course not updated. Performance metrics are recorded every main
training epoch as a mean across the 𝑘 = 20 most rewarding environments. In the experiments on
the AMP discriminator, the standard deviation across these environments was used to plot the error
regions. Finally, we use reference state initialisation to initialise all environments at a random state
in the expert’s motion dataset use early termination to reset when the agent falls over. For certain
tasks like spin-kick, we find that it is especially challenging to learn a policy starting from certain
initial states (such as the jumping-off point). Additional exploration is required to learn the optimal
actions starting from these states. In these cases, reference states are drawn from a beta distribution
instead of a uniform distribution (with 𝛽 = 3.0 and 𝛼 = 1.0). For temporally composed tasks like
target reaching and punching, we use both reference motions during initialisation. In this case, both
reference motions are used with a probability of 0.5 and the target is initialised in the range [1.0, 1.2]
when the agent is initialised with the punching reference.

C.3 Evaluation Metrics

Average Dynamic Time Warping Pose Error: This is the mean dynamic time warping (DTW)
error [22] between trajectories of the agent’s and the expert’s poses averaged across all expert
motions in the dataset. Given a set of 𝑗 expert motion trajectories 𝜏𝑗 of arbitrary length 𝐿 𝑗 where
each trajectory is a series containing the Cartesian positions of the reference character’s joints 𝑥𝑖 ,
𝐷 = {𝜏𝑗 }

𝑁𝑡𝑟𝑎 𝑗

𝑗=1 where 𝜏𝑗 = {𝑥𝑖}
𝐿 𝑗

𝑖=1, first, we roll out the trained policy deterministically 7 across
several thousand random starting-pose initialisations 8. Then, the 𝑘 = 20 most rewarding trajectories
are selected to form a set of policy trajectories 𝐷 𝜋 = {𝜏𝑚}𝑘𝑚=1 where 𝜏𝑚 = {𝑥𝑖}𝐿𝑚

𝑖=1 and each trajectory
has an arbitrary length 𝐿𝑚. The average dynamic time warping pose error is then computed as the
average DTW score of all 𝜏𝑚 across all expert trajectories 𝜏𝑗 with ∥𝑥𝑖 − 𝑥𝑖 ∥2 as the cost function. To
ensure that the pose error is only in terms of the character’s local pose and not its global position in
the world, we transform each Cartesian position to be relative to the character’s root body position at
that timestep (𝑥𝑖 ← 𝑥𝑖 − 𝑥𝑟𝑜𝑜𝑡𝑖

and 𝑥𝑖 ← 𝑥𝑖 − 𝑥𝑟𝑜𝑜𝑡𝑖
).

Spectral Arc Length: Spectral Arc Length (SAL) [23; 24; 25] is a measure of the smoothness
of a motion. The smoothness of the character’s trajectory is an interesting metric to determine the
policy’s ability to perform periodic motions in a controlled manner. The underlying idea behind SAL
is that smoother motions typically change slowly over time and are comprised of fewer and low-
valued frequency domain components. In contrast, jerkier motions have a more complex frequency
domain signature that consists of a lot of high-frequency components. The length of the frequency
domain signature of a motion is hence an appropriate indication of a motion’s smoothness (with low
values indicating smoother motions). SAL is computed by adding up the lengths of discrete segments
(arcs) of the normalised frequency-domain map of a motion. In our experiments, we use SPARC
[23], a more robust version of the spectral arc length that is invariant to the temporal scaling of the
motion. We track the average SAL of the 𝑘 = 20 most rewarding trajectories generated by the policy
at different training intervals and use the root body Cartesian coordinates to compute the SAL. Note
that in this case, we do not transform the positions to the agent’s local coordinate system.

C.4 Repeatability & Determinism

Each algorithm was trained 5 times independently on every task with separate random number
generator seeds for each run. However, using a fixed seed value will only potentially allow for
deterministic behaviour in the IsaacGym simulator. Due to GPU work scheduling, it is possible
that runtime changes to simulation parameters can alter the order in which operations take place,
as environment updates can happen while the GPU is doing other work. Because of the nature of
floating point numeric storage, any alteration of execution ordering can cause small changes in the
least significant bits of output data, leading to divergent execution over the simulation of thousands
of environments and simulation frames. This means that experiments from the IsaacGym simulator
(including the original work on AMP) are not perfectly reproducible on a different system. However,

7Deterministic here means that we use the predicted mean as the action instead of sampling fromN(𝜇(𝑥), Σ).
8This is done to ensure that the computed performance is not biased to any single initial state.
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parallel simulation is a major factor in achieving the results in this paper and minor non-determinism
between independent runs is hence just an unfortunate limitation. More information on this can
be found in the IsaacGymEnvs benchmarks package. Note that this is only a characteristic of the
reinforcement learning side of our algorithm. The pretrained energy functions are also seeded and
these training runs are perfectly reproducible.

D Extended Experiment Results

Table 4: A comparison of the mean performance of NEAR and AMP at the end of training (Avg. pose
error: lower is better. Others: closeness to expert is better).

Task Num. Motion Clips Algorithm Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (𝑚
𝑠

) Root Body Jerk ( 𝑚
𝑠3 )

Walking 74 (249.38 sec.)
NEAR 0.51 -7.52 1.25 360.89
AMP 0.51 -8.78 1.87 736.32
Expert’s Value -5.4 1.31 130.11

Running 26 (32.55 sec.) NEAR 0.62 -7.24 3.52 1298.42
AMP 0.65 -9.71 3.79 1560.14
Expert’s Value -3.79 3.55 513.68

Crane Pose 3 (24.62 sec.) NEAR 0.94 -6.6 0.12 46.77
AMP 0.82 -8.1 0.03 19.29
Expert’s Value -12.28 0.03 49.05

Left Punch 19 (4.91 sec.) NEAR 0.37 -6.87 0.01 11.34
AMP 0.32 -9.93 0.06 29.6
Expert’s Value -1.73 0.16 72.49

Mummy Walk 1 (5.40 sec.) NEAR 0.66 -4.72 0.33 189.73
AMP 0.41 -13.84 0.98 354.49
Expert’s Value -4.71 0.73 79.63

Spin Kick 1 (1.15 sec.) NEAR 0.78 -5.59 0.53 286.63
AMP 0.58 -3.16 0.5 278.25
Expert’s Value -3.39 1.05 273.61
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Figure 12: An extended set of performance metrics recorded in our experiments.
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Figure 13: An extended set of performance metrics recorded in our experiments.
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Figure 14: An extended set of performance metrics recorded in single-clip imitation tasks.
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E Extended Ablations

Table 5: Task reward composition ablation with annealing.

Task Ablated Configuration Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (𝑚
𝑠

) Root Body Jerk ( 𝑚
𝑠3 )

Walking
anneal & 𝑒𝜃 0.51 -7.52 1.25 360.89
anneal & 𝑟 0.42 -6.11 0.88 249.97
Expert’s Value -5.4 1.31 130.11

Running
anneal & 𝑒𝜃 0.62 -7.24 3.52 1298.42
anneal & 𝑟 0.59 -8.02 4.86 1875.44
Expert’s Value -3.79 3.55 513.68

Crane Pose
anneal & 𝑒𝜃 0.94 -6.6 0.12 46.77
anneal & 𝑟 1.33 -7.24 0.14 72.24
Expert’s Value -12.28 0.03 49.05

Table 6: Task reward composition ablation without annealing.

Task Ablated Configuration Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (𝑚
𝑠

) Root Body Jerk ( 𝑚
𝑠3 )

Walking 𝜎5 & 𝑒𝜃 0.49 -7.1 1.58 653.17
𝜎5 & 𝑟 0.42 -8.7 1.25 360.86
Expert’s Value -5.4 1.31 130.11

Running 𝜎5 & 𝑒𝜃 0.62 -6.69 3.48 1334.1
𝜎5 & 𝑟 0.57 -8.61 4.76 1826.98
Expert’s Value -3.79 3.55 513.68

Crane Pose 𝜎5 & 𝑒𝜃 1.38 -6.03 0.07 29.5
𝜎5 & 𝑟 1.23 -4.34 0.02 16.3
Expert’s Value -12.28 0.03 49.05

Table 7: Annealing ablation with learnt energy reward.

Task Ablated Configuration Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (𝑚
𝑠

) Root Body Jerk ( 𝑚
𝑠3 )

Walking
anneal & 𝑒𝜃 0.51 -7.52 1.25 360.89
𝜎5 & 𝑒𝜃 0.49 -7.1 1.58 653.17
Expert’s Value -5.4 1.31 130.11

Running
anneal & 𝑒𝜃 0.62 -7.24 3.52 1298.42
𝜎5 & 𝑒𝜃 0.62 -6.69 3.48 1334.1
Expert’s Value -3.79 3.55 513.68

Crane Pose
anneal & 𝑒𝜃 0.94 -6.6 0.12 46.77
𝜎5 & 𝑒𝜃 1.38 -6.03 0.07 29.5
Expert’s Value -12.28 0.03 49.05

Table 8: Annealing ablation with composed task reward.

Task Ablated Configuration Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (𝑚
𝑠

) Root Body Jerk ( 𝑚
𝑠3 )

Walking anneal & 𝑟 0.42 -6.11 0.88 249.97
𝜎5 & 𝑟 0.42 -8.7 1.25 360.86
Expert’s Value -5.4 1.31 130.11

Running anneal & 𝑟 0.59 -8.02 4.86 1875.44
𝜎5 & 𝑟 0.57 -8.61 4.76 1826.98
Expert’s Value -3.79 3.55 513.68

Crane Pose anneal & 𝑟 1.33 -7.24 0.14 72.24
𝜎5 & 𝑟 1.23 -4.34 0.02 16.3
Expert’s Value -12.28 0.03 49.05

28



0 1 2 3 4 5 6
Training Samples ×107

0

1

2

A
ve

ra
ge

P
os

e
E

rr
or

0.5
0.51

Humanoid Walk NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ

0 1 2 3 4 5 6
Training Samples ×107

1

2

A
ve

ra
ge

P
os

e
E

rr
or

0.39

0.62

Humanoid Run NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ

0 1 2 3 4 5 6
Training Samples ×107

1

2

3

A
ve

ra
ge

P
os

e
E

rr
or

0.94

1.86

Humanoid Crane Pose NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ

0 1 2 3 4 5 6
Training Samples ×107

−10

−5

S
p

ec
tr

al
A

rc
L

en
gt

h
(S

P
A

R
C

)

-5.4

-7.52

-7.93

Humanoid Walk NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

−15

−10

−5

S
p

ec
tr

al
A

rc
L

en
gt

h
(S

P
A

R
C

)

-3.79

-6.58

-7.24

Humanoid Run NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

−10

−5

S
p

ec
tr

al
A

rc
L

en
gt

h
(S

P
A

R
C

)

-12.28

-8.9

-6.6

Humanoid Crane Pose NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

1

2

R
oo

t
B

od
y

V
el

oc
it

y

1.31

1.25

1.28

Humanoid Walk NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

2.5

5.0

7.5
R

oo
t

B
od

y
V

el
oc

it
y

3.55

2.38

3.52

Humanoid Run NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

0

1

R
oo

t
B

od
y

V
el

oc
it

y

0.03
0.12

0.41

Humanoid Crane Pose NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

500

1000

1500

R
oo

t
B

od
y

Je
rk

130.11

360.89

399.73

Humanoid Walk NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

1000

2000

R
oo

t
B

od
y

Je
rk

513.68

825.43

1298.42

Humanoid Run NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

0 1 2 3 4 5 6
Training Samples ×107

0

200

400

R
oo

t
B

od
y

Je
rk

49.05

46.77

186.2

Humanoid Crane Pose NCSN Ablation

ncsn-v2 | anneal | eθ
ncsn-v1 | anneal | eθ
Expert’s Value

Figure 16: An extended set of NCSN ablations.
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