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Stochastic Model Predictive Control:

uncertainty impact on wind farm power tracking

S. Boersma1, B.M. Doekemeijer1, T. Keviczky1 and J.W. van Wingerden1

Abstract— Active power control for wind farms is needed
to provide ancillary services. One of these services is to track
a power reference signal with a wind farm by dynamically
de- and uprating the turbines. Due to the stochastic nature
of the wind, it is necessary to take this stochastic behavior
into account when evaluating control signals. In this paper
we present a closed-loop stochastic wind farm controller that
evaluates thrust coefficients providing power tracking under
uncertain wind speed measurements. The controller is evaluated
in a high-fidelity wind farm model simulating a 9-turbine
wind farm to demonstrate the stochastic controller under
different uncertainty levels on the wind speed measurement and
different controller settings. Results illustrate that a stochastic
controller provides better tracking performance with respect to
its deterministic variant.

I. INTRODUCTION

A large part of the clean energy currently generated is har-

vested by wind farms that extract energy from the wind [1].

A wind farm is a collection of wind turbines placed in each

other’s proximity to, among others, reduce maintenance and

cabling costs. However, a wake develops downstream of each

turbine, which is a region that is characterized by a flow ve-

locity deficit and an increased turbulence intensity [2]. Since

wind turbines are placed together in a farm, the wakes of

upstream turbines influence the performance of downstream

turbines. For example, the flow velocity deficit influences

the power production of downstream turbines [3] while

an increased turbulence intensity increments the turbine’s

fatigue loads as suggested in [4], [5], which possibly reduces

the turbine’s lifetime.

The objective of wind farm control is to reduce the

levelized cost of wind energy by intelligently operating the

turbines inside the farm. Sub-goals may include the increase

of the farm-wide power generation, the reduction of turbine

fatigue, and the integration of energy from wind farms with

the electricity grid. This integration is related to the provision

of ancillary services. One example is secondary frequency

regulation (a subclass of active power control) in which the

objective is to have the wind farm’s power generation track

a power reference signal generated by transmission system

operators, during a time span of several minutes [6]. We call

this power tracking and turbines need to dynamically de-

and uprate their power output during this time span such

that tracking at a farm level is ensured. Since the power

reference signal is below the maximum possible power that

can be harvested, the tracking problem has a set of solutions.

For example, for generating an equal amount of power with

1Delft University of Technology, Delft Center for Systems and Control,
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the farm, one could uprate the downstream turbines while

derating the upstream turbines or the other way around. It

is therefore possible and necessary to add, besides tracking,

another performance measure, such as the decrease of control

signal variations over time and/or the increase of available

power in the farm. Two actuation methods to ensure these

objectives are axial induction and wake redirection control.

In the former, generator torques and pitch angles or thrust

coefficients are utilized as control variables while in the

latter, the yaw angles are utilized as control variables [7].

Results that provide power tracking using axial induction

actuation can be found in [8], [9], [10]. More precisely, in [8]

and [9], the authors each propose a different wind farm power

tracking solution while minimizing the axial force exerted

by the flow on the turbines. However, as stated in [5], the

dynamical turbine loading is a better measure of fatigue

than static turbine loading. In [10], the authors propose a

distributed controller providing tracking while minimizing

variation in the axial force (dynamical loading) that is exerted

by the turbine on the flow. The work presented in [11], [12]

demonstrates an optimization algorithm that provides power

tracking while minimizing the added turbulence intensity or

maximizing the available power, respectively. However, all

the above proposed controllers are evaluated in a simplified

wind farm model [13]. The questions remains if similar

results can be obtained when a more realistic dynamical

wind farm model, such as a Large-Eddy Simulation (LES)

based wind farm model, is utilized for the evaluation of

the controllers. The authors in [14] propose a distributed

tracking controller that contains a simplified wind farm

model to evaluate control signals, whereas the controller is

also evaluated in a relatively simple farm model.

A controller that is tested in an LES based wind farm

model and employs axial induction actuation providing

power tracking can be found in [15]. The optimization

problem solved in [15] contains dynamical wake and turbine

models, but the only objective is tracking and no constraint

regarding, e.g., dynamical loading is included. The con-

trollers presented in [16], [17] are also tested in an LES,

but neither a wake model nor constraints were taken into

account. The controller provides tracking and the wind farm

power reference signal is distributed heuristically among the

turbines without taking a measure of dynamical loading into

account. This controller has also been evaluated in a wind

tunnel [18].

After this literature survey we conclude that results, which

are obtained with a closed-loop controller providing power

tracking while taking uncertain measurements into account,
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are not yet available in current literature. Since wind farm

measurements such as wind speed are in general uncertain

quantities, it is important to take this into account in the

controller while providing power tracking.

In this paper we propose a wind farm power tracking

stochastic model predictive controller (SMPC) [19]. The

main objective of the controller is to provide power track-

ing while taking uncertain wind speed measurements into

account. While [20] presents a deterministic MPC, this

work is considered as a stochastic extension and we will

study the impact of uncertain wind measurements on the

tracking performance. This work illustrates that measure-

ments that deviate from the “true” value will deteriorate

the controller’s performance. However, when considering the

measurement as a stochastic variable in the controller, its

performance can be increased significantly. The controller is

evaluated in a high-fidelity wind farm model simulating a

9-turbine wind farm. For this case, the effect of the wind

speed measurement’s uncertainty level and settings of the

stochastic controller are investigated. This work illustrates

that a stochastic controller can provide power tracking in a

high-fidelity wind farm model under uncertain wind speed

measurements.

This paper is organized as follows. In Section II, the

high-fidelity simulation environment is briefly introduced.

In Section III, the stochastic controller is introduced. More

precisely, Section III-A describes the parameter-varying con-

troller model and Section III-B the control formulation. This

is followed by the presentation and discussion of simulation

results in Section IV and conclusions in Section V.

II. SIMULATION MODEL

The high-fidelity “PArallelized Large-eddy simulation

Model (PALM)” [21] is used to evaluate the proposed

controller. In this work, PALM includes the actuator disk

model (ADM) [22] to determine the turbine’s forcing terms

acting on the flow and power generation. A consequence of

choosing the ADM is that the control signals for turbine i

are the disk-based thrust coefficient C′

Ti
(t) following [23],

[24] and yaw angle γi(t). Both of these signals can be used

to manipulate the turbine thrust force and power generation

(see (1)). In this work, the measurements at time t are

1) the power generated by a turbine Pi(t) and 2) a mean

rotor-averaged wind velocity v̄i(t) for i = 1, 2, . . . ,ℵ with

ℵ the number of turbines. In this work we consider the

rotor-averaged wind velocity as an uncertain parameter and

it is therefore defined as the random variable vi(t) ∼
N (v̄i(t), σv) with σv the standard deviation of the (assumed

to be) Gaussian randomly distributed signal vi(t). Note that

the standard deviation can be seen as a measure of turbu-

lence intensity, i.e., a higher σv models a higher turbulence

intensity.

III. STOCHASTIC MODEL PREDICTIVE

CONTROLLER

In this section, a Stochastic Model Predictive Con-

troller (SMPC) is formulated. Prior to that, the controller

model employed in the SMPC is defined.

A. Controller model

Axial induction based wind farm power tracking results

that are presented in, i.e., [20] indicate that flow dynamics

could be neglected and a wind farm can be modeled as ℵ
uncoupled subsystems when power tracking is the objective.

Each subsystem consists of a dynamical turbine model based

on the actuator disk theory. While wake effects are neglected

in the surrogate dynamical model, the turbine dynamics are

still affected by the local flow conditions. Hence, the turbine

models are updated according to the local rotor-averaged

wind velocity, which in reality may be affected by upstream

turbines inside the farm. In this work, the following model

for turbine i is employed

Pi(t) =
πD2

8

(

vi(t) cos[γi(t)]
)3

Ĉ′

Ti
(t),

C′

Ti
(t) = τ

dĈ′

Ti
(t)

dt
+ Ĉ′

Ti
(t),

(1)

for i = 1, 2, . . . ,ℵ, with D the rotor diameter, Pi(t) the

power generated by turbine i, C′

Ti
(t) its control signal,

Ĉ′

Ti
(t) the first-order filtered control signal that is applied

in the high-fidelity wind farm simulator, γi(t) the yaw angle

and vi(t) the Gaussian distributed rotor-averaged wind speed

perpendicular to the rotor. We furthermore have τ ∈ R
+, the

time constant of the filter that acts on the control signal. In

previous work [20], the yaw angle was considered not to be

equal to zero. In this work however, we assume γi(t) = 0
and we therefore neglect its dependency in the sequel of this

paper.

Temporally discretizing (1) at sample period ∆t using

the zero-order hold method yields the following state-space

representation of turbine i

xi,k+1 = Aixi,k +Bi(vi,k)C
′

Ti,k, yi,k = xi,k, (2)

with

Ai = e−∆t/τI2 ∈ R
2×2,

Bi(vi,k) =

∫ ∆t

0

1

τ
e−s/τds

(

πD2

8
v3i,k
1

)

∈ R
2,

xT
i,k =

(

Pi,k Ĉ′

Ti,k

)

∈ R
2, C′

Ti,k ∈ R.

(3)

Lifting the state variables of the turbines and adding the wind

farm power error signal to the state variable results in the

following wind farm state-space model:

xk+1 = Axk +B(vk)C
′

T,k,

ek = P ref
k −

ℵ
∑

i=1

Pi,k,
(4)

with wind farm power reference signal P ref
k ∈ R and tracking

error signal ek ∈ R. Note that the latter signals is stochastic

due to the occurrence of vk in the system matrix B(vk) as

defined in (4). Furthermore we have:
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vT
k =

(

v1,k v2,k . . . vℵ,k
)

∈ R
ℵ,

xT
k =

(

x1,k x2,k . . . xℵ,k

)

∈ R
2ℵ,

C′

T,k =
(

C′

T1,k
C′

T2,k
. . . C′

Tℵ,k

)T
∈ R

ℵ,

Ĉ′

T,k =
(

Ĉ′

T1,k
Ĉ′

T2,k
. . . Ĉ′

Tℵ,k

)T

∈ R
ℵ,

A = blkdiag

(

A1, A2, . . . , Aℵ

)

∈ R
2ℵ×2ℵ,

B(vk) = . . .

blkdiag

(

B1(v1,k), . . . , Bℵ(vℵ,k)
)

∈ R
2ℵ×ℵ,

where blkdiag(·) denotes block diagonal concatenation

of matrices or vectors. The model described above will be

employed in the controller that is presented in the following

subsection.

B. Stochastic control formulation

Stochastic Model Predictive Control (SMPC) [19] is an

advanced control technique that can determine control inputs

by solving a finite-horizon stochastic constrained optimiza-

tion problem at each sampling time. Then, following the

receding horizon concept, the first step of the optimal control

sequence is applied after which new measurements are taken

and the optimization procedure repeats itself. We employ

SMPC using the presented dynamical model in (4) for a

specified finite-horizon (from k0 to k0 + Nh) such that the

following cost function is minimized:

V (ek,C
′

T,k) =

k0+Nh
∑

k=k0

eTkQek +C′

T,k

T
R C′

T,k, (5)

with Nh the prediction horizon and can be regarded as,

together with Q,R, controller tuning variables. Increasing

Q relative to R results in better tracking, but decreases the

importance of finding low energy control signals, and visa

versa. Note that the proposed cost function is uncertain as it

is a function of the wind farm power tracking error signal

ek. The stochastic constrained optimization problem for wind

farm power tracking is now defined as follows:

min
C′

T,k

E [V (ek,C
′

T,k)]

s.t. xk+1 = Axk +B(vk0
, )C′

T,k,

ek = P ref
k −

ℵ
∑

i=1

Pi,k, vk0
∼ N (v̄k0

, σv)

C′

T,min ≤ C′

Ti,k ≤ C′

T,max,

|C′

Ti,k − C′

Ti,k−1| < dC′

T ,

k = k0, k0 + 1, · · · , k0 +Nh ,

(6)

where dC′

T is an upper-bound on the maximum variation

of the control actions between two time sequences. In (6),

the thrust coefficient is considered as decision variable while

the yaw angles take on constant values. Moreover, the mean

value v̄k0
of the uncertain variable is considered as the “true”

wind speed.

To solve the problem formulation given in (6), one should

calculate a multidimensional integral to obtain the value of

the cost function (5), which is in general computationally

expensive. In the interest of having a computational efficient

controller, we follow a sample-based approach, where Ns

samples (realizations) of the random variable vk0
are gener-

ated from the assumed distribution to approximate the value

of the cost function (5). The number of samples Ns should

be considered as a tuning variable. More precisely, if Ns

increases, then the gap between the true cost function and

the approximated version decreases.

An approximated counterpart of the optimization problem

in (6) is defined as follows:

min
C′

T,k

1

Ns

Ns
∑

j=1

V (ejk,C
′

T,k)

s.t. x
j
k+1

= Ax
j
k +B(vj

k0
)C′

T,k,

e
j
k = P ref

k −
ℵ
∑

i=1

P
j
i,k, v

j
k0

∼ N (v̄k0
, σv)

C′

T,min ≤ C′

Ti,k ≤ C′

T,max,

|C′

Ti,k − C′

Ti,k−1| < dC′

T ,

k = k0, k0 + 1, · · · , k0 +Nh

j = 1, 2, · · · , Ns ,

(7)

where v
j
k0

is one realization of the random variable vk0
and

V (ejk,C
′

T,k) the cost evaluated for the realization v
j
k0

for j =
1, . . . , Ns. The proposed problem in (7) is then solved at each

sampling time and performance of the SMPC is addressed in

the following section for different values of Ns and different

values of σv in one case study.

IV. SIMULATION RESULTS

A. Simulation initialization

Simulations are initialized as follows: a fully developed

flow field is generated in the precursor such that the free-

stream wind speeds are U∞=8 [m/s] and V∞=W∞=0 [m/s]

in the longitudinal, lateral and vertical direction, respectively,

and a turbulence intensity of approximately 6% at hub-height

in front of the farm. The flow is then propagated N seconds

in advance with 9 turbines in the flow field, and with C′

Ti,k
=

2 (corresponding to the Betz-optimal value) and γi,k = 0 for

i = 1, . . . ,ℵ. Hence for each case study, the wakes are fully

developed at the start of each simulation.

The greedy power (P greedy) is defined as the time-averaged

wind farm power harvested with C′

Ti,k
= 2 and γi,k = 0

for i = 1, . . . ,ℵ and N seconds of simulation starting

with the previous described initial flow field. With unyawed

turbines, a wind farm can potentially harvest above the

P greedy threshold for only a relatively short period of time.

This period is defined by the wake propagation time. Table I

presents a summary of both case studies.

The sample period ∆t is chosen such that in both case

studies, the Courant condition [25] holds. The simulation

domain is indicated by the parameters Lx, Ly, Lz and repre-

sent the length in the x- y- and z-direction, respectively. The
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TABLE I

SUMMARY OF THE 9-TURBINE SIMULATION CASE STUDY.

Lx × Ly × Lz 15.3 × 3.8× 1.3 [km3]
D, zh 120, 90 [m]

∆x×∆y ×∆z 15 × 15× 10 [m3]
U∞, V∞,W∞ 9, 0, 0 [m/s]
∆t 1 [s]
TI∞, 6%
N, τ,Nh 850, 5, 10 [s]
C′

T,max
, C′

T,min
, dC′

T
, 2, 0.1, 0.2

grid dimensions in the x- y- and z-direction are represented

by ∆x,∆y,∆z, respectively and the turbulence intensity

is denoted as TI∞. The controller parameters τ,Nh are

chosen following [20] and provide power tracking, and dC′

T

prevents the actuator from changing too fast. In this work,

no sensitivity analysis is done on the controller parameters.

Instead, sensitivity analysis on the SMPC parameter Ns and

the level of uncertainty in the wind σv are presented for two

case studies.

B. Performance measure

To assess the controller’s tracking performance, the fol-

lowing indicator is introduced

erms =

√

√

√

√

1

N

N
∑

k=1

|ek|2, (8)

with tracking error signal as defined before, i.e., ek =
P ref
k −

∑

ℵ

i=1
Pi,k. A smaller erms indicates better tracking

performance.

C. Nine-turbine case study

The turbine spacing is 5D× 3D [m], i.e., the turbines are

separated 5D in the longitudinal direction from each other

and 3D in the lateral direction (see Fig. 1 for the initial flow

field). The controller parameters are Q = 1 and R = Iℵ
(with Iℵ the identity matrix with dimension ℵ) and chosen

such that tracking performance is maximized and the control

signal amplitudes are minimized.

1

2
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8

9

0 500 1000 1500 2000 2500

0

500

1000

0

2

4

6

8

10

Fig. 1. Initial longitudinal flow velocity component at hub-height. The
flow is going from west to east and the black vertical lines represent the
wind turbines.

The wind farm power reference signal is defined as:

P ref
k = 0.7P greedy + 0.3P greedyδPk, (9)

with δPk a normalized “RegD” type AGC signal [26] coming

from an operator and P greedy ≈ 11.3 [MW]. Tracking results

for different values of Ns and σv = 0.3 are depicted in

Fig. 2.

4

6
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12

4

6

8

10

12

0 100 200 300 400 500 600 700

4

6

8

10

12

Fig. 2. Tracking results for different Ns (number of samples) values and
σv = 0.3.

It can be observed that tracking is ensured. However,

the wind farm power signal in the Ns = 1 case exhibits

severe oscillations. In fact, this case can be considered as

the deterministic case since one wind speed measurement

v1k0
∼ N (v̄(k0), σv) is used to construct the controller

model (see (4)). Therefore, in each time-step, the controlled

wind farm power is in general not following the reference,

but is fluctuating around it due to the noise definition (its

mean value is v̄k0
). This fluctuating behavior is undesired

due to the consequent fluctuations in the control signals.

This case illustrates the negative effect of using uncertain

measurements for the evaluation of control signals. The cases

Ns > 1 are SMPC cases and an increase in Ns results

in a decrease of these oscillations, and also better tracking

performance. This can be observed in Table II where erms

values for different Ns are given.

TABLE II

THE eRMS VALUES FOR DIFFERENT Ns AND σv = 0.3.

Ns erms [MW] Ns erms [MW]

1 0.5656 15 0.5087
5 0.5181 20 0.5082
10 0.5103

When the “true” wind speed v̄k0
is used in the controller

model, erms = 0.4463 [MW]. However, as indicated before,

assuming perfect wind speed knowledge is from a practical

point of view not realistic hence the introduction of a

stochastic controller.
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Fig. 3. Control signals for two different Ns values. The wind is coming from the west as indicated by the black arrow.

Figure 3 depicts the control signals for two Ns values. It

can be observed that different control signal distributions are

found that provide power tracking. Additional simulations

are performed for different σv values. Table III presents erms

for these different cases with Ns = 10. Table III presents

TABLE III

THE eRMS VALUE FOR DIFFERENT σv AND Ns = 10.

σv erms [MW] σv erms [MW]

0.1 0.4736 0.4 0.5434
0.2 0.4872 0.5 0.5908
0.3 0.5103 0.6 1.2517

expected results since erms increases as the uncertainty level

of the wind speed increases. Remaining open questions

are what the exact value of σv and the minimal required

tracking performance are. These questions are not touched

upon in this work. Nevertheless, a stochastic controller is

presented that can provide power tracking under different

levels of uncertainty in the wind speed measurement, and it

can improve tracking performance by tuning the controller

settings.

V. CONCLUSIONS

Power tracking is an important ancillary service that needs

to be delivered by a wind farm. This control task is not

trivial due to, among others, the stochastic behavior of the

wind in a farm. In order to ensure power tracking in such a

stochastic environment, this paper proposed a sample-based

stochastic model predictive controller. The effectiveness of

the controller has been demonstrated in one case study, a 9-

turbine wind farm, and the controller has been evaluated in

a high-fidelity simulation environment. This paper presents a

sensitivity analysis on the number of samples that are taken

into account in the controller, and the level of uncertainty

in the wind speed measurement. It has been shown that an

increase in the number of samples results in an improvement

of the tracking performance. It has furthermore been shown

that an increase of the uncertainty level results in a reduced

tracking performance. Hence, it can be concluded that an

increase of the uncertainty level demands for an increase of

the number of samples in the controller to ensure a non-

decreasing tracking performance.

Future work can entail the development of a wind speed

estimator that can predict the wind speed Nh steps ahead.

This prediction can consequently be used in the controller’s

prediction horizon, and should improve tracking perfor-
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mance. This prediction can come from, among others, a full

wake model that can be included in the controller (rather

then the simplified controller model proposed in this work).

Although tracking is ensured, including a full wake model

in the developed stochastic controller is still interesting

to research the potential improvements that then can be

achieved. Furthermore, the inclusion of a controller model

that takes on pitch and generator torque will bring the control

strategy closer to practical implementation. Such a model

can easily be implemented in the proposed control strategy.

Nevertheless, the purpose of this paper is to propose for the

first time a stochastic wind farm power tracking controller.
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