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Abstract
A learning curve displays the measure of accu-
racy/error on test data of a machine learning algo-
rithm trained on different amounts of training data.
They can be modeled by parametric curve mod-
els that help predict accuracy improvement through
curve extrapolation methods. However, these learn-
ing curves have only been mainly generated from
default learning algorithms. Research into tun-
ing the machine learning algorithm and its effect
on the learning curve has not been adequately re-
searched. This research aims to look at the in-
fluence of hyperparameter tuning on the learning
curve. This regards not only how the learning curve
shape changes in general but also how different
parametric models are affected when a learner un-
dergoes tuning. We experiment with the decision
tree and KNeighbors classifier which undergo sig-
nificant hyperparameter tuning. We find that the
tuned learner performs marginally better than the
default learner for anchors past 25% of the data for
the majority of the tested datasets. We also ob-
serve that the tuned learner displays a smoothing
behaviour that makes ill-behaved curves more well-
behaved. In terms of the curve fitting, the tuned
learner does not uncover any curve models nor does
it show any statistical significance, and instead per-
forms very similarly to the default learners.

1 Introduction
In the context of machine learning, scarce data is the unavail-
ability of data that could increase a system’s accuracy [1].
The size of data is naturally one of the primary factors that in-
fluence the precision of an ML (machine learning) algorithm.
However, data collection and preparation is a significant bot-
tleneck in ML [2] . This suggests that further data sampling
may not be a viable option considering the unknown improve-
ment in accuracy it may offer-even if the gain in accuracy may
outweigh the difficult process of collecting data.

Learning curves may offer an answer to this problem of un-
known accuracy improvement. A learning curve displays the
measure of accuracy/error on test data of an ML algorithm
trained on different amounts of training data [3]. Modelling
learning curves effectively can offer insight into the amount
of data one may need to attain a certain level of classification
accuracy. Furthermore, learning curves can also be extrap-
olated by parametric learning curve models [4] which have
the potential to display the trade-off between collecting more
data and the gain in the accuracy improvement.

However, there is no concluding evidence of a one size
fits all curve model [4]. To have better fitting learning curve
models, extensive hyperparameter tuning may be required
[5]. Even if it is at the expense of worse performance, it may
lead to a better estimation of the error improvement rate.
To our knowledge, there has been limited to no research on
hyperparameter tuning and its effect on learning curves. This
paper aims to answer the question:

What is the influence of hyperparameter tuning on the
learning curve?

This question gives further insight into two sub-questions:

1. How does the general learning curve of a particular ML
algorithm change when hyperparameter tuned?

2. How does the curve fitting differ for hyperparameter
tuned models against the default models?

These questions may not only help understand how hyper-
parameter tuning improves the learning curve but it can also
give insight into the relationship between ML algorithms and
learning curve models. This research aims to answer these
questions by experimenting and analysing two classification
ML algorithms tested on six different curve models across 20
datasets.

Section 2 covers the related works and presents the cur-
rent findings of hyperparameter tuning and the current opti-
mal parametric curve fitting models. Section 3 discusses the
methodology behind this paper’s contribution; it introduces
the methods used to generate and fit the learning curve. Sec-
tion 4 covers the specific implementation choices for the ex-
perimental setup. Section 5 gives an overview of the results
obtained. Section 6 is a reflection of the paper and evalu-
ates the validity of the results. Section 7 gives concluding
remarks from the results obtained as well as motivation for
future work. Lastly, section 8 gives insight into the ethics and
reproducibility of the project.

2 Related Work
There remains a substantial amount of uncertainty with re-
gard to hyperparameter tuning and its effect on the learning
curve. However, sizeable research has been done with regard
to analysing the predominant hyperparameters of a learner.
Van Rijn et al. [6] have found that the most influential tun-
ing parameters for the random forest are the minimal samples
per leaf, maximal features for determining a split, and the
split criterion. Thus, when tuning learners such as decision
trees, the significance of these hyperparameters can be appro-
priately taken into account (such as using a wider range of
values for tuning).

In the deep learning field, hyperparameter tuning has been
investigated to a certain extent. Kornblith et al. [7] have
found that tuned deep learning models marginally outperform
the standard model as the gap is often small and narrows as
the training size grows. Hoiem et al. [5] have found that a
non-pretrained but finetuned deep learning model performs
significantly better than a non-pretrained default model. This
research indicates that patterns like these may arise with other
machine learning algorithms as well.

A considerable amount of research has been done with re-
gard to analysing the ideal parametric curve model across a
range of learners. Viering et al. [4] have reviewed the em-
pirical and analytic experiments on learning curves and have
found that there continues to be contention between the op-
timal learning curve model. For example, Frey et al.[8] and
Last [9] have claimed that the power law fits best for decision



Figure 1: Experiment setup with regards to creating a general learning curve.

tree algorithms, while Singh [10] tests four learning algo-
rithms (Decision trees, K-nearest neighbors, SVM, ANN) and
finds that using an exponential function is ideal. Booonya-
nunta’s [11] analytical research supports Singh’s paper by
claiming the exponential function is best suited for fitting a
learning curve. Thus, it seems there is no concluding evi-
dence of a one size fits all learning curve model. Not only do
the results remain indecisive, but they also come with a few
limitations. Firstly, none of the aforementioned papers tune
the learners at all. Instead, the default implementations are
used. Secondly, Singh et al. [10] only test the four learners
on four datasets, while Last et al. [9] test one learner on 5
datasets. This brings to light that perhaps an inadequate num-
ber of datasets have been used to make such a generalisation
on the best fitting model. This paper will experiment with 20
datasets (varied in class and feature distribution) which may
help give a more concrete result in the best fitting model. Re-
cently, Mohr et al. [12] did an empirical analysis on learn-
ing curves and model fitting with 20 different learners and
246 datasets. It was found that the four parameter models
performed one of the best(pow4, mmf4, exp4) followed by
pow3 with regards to the mean squared error. However, the
paper takes an average of all learners across all datasets which
may lose or miss partially fine detail that a certain dataset or
learner displays. A key difference in this work is that we
focus on only two supervised learners and analyse them inde-
pendently and together in terms of the general learning curve
performance and the curve fitting.

3 Learning Curve Estimation
This section discusses the motivation for using certain meth-
ods and tools in the experiment. We first describe the meth-
ods for constructing the general learning curve and collecting
the data. We then describe the methods for extrapolating the
estimated general learning curve.

3.1 General learning curve
The general learning curve is carefully constructed through
nested cross validation [13]. The outer nest is generated
through k stratified folds. For each of these folds, a train-
ing set and a test set is generated. The stratified folds help
ensure the class distribution of the dataset is represented ap-
propriately in the sets [13].

Figure 1 displays the step-by-step process of generating a
learning curve. The first step is to preprocess the data and set

the hyperparameter grid for the appropriate learners. The sec-
ond step constructs the training and testing sets through cross-
validation, and the final step displays the resulting learning
curve of the default learner compared to the tuned learner.
Steps 2 and 3 will be outlined below in more detail.

Within the training set, we create training anchors. These
anchors are defined as being a certain number of data points
that the learner trains on. We vary the training anchors by Sn

and they are computed by the formula

Sk = ⌈2 7+k
2 ⌉ [12]

where the smallest anchor is 16 for k = 1. The range of k
is defined as [1, ⌊2 · log2 N − 7⌋] where N is the size of the
dataset.

Each training anchor is monotonically increasing. This
means that if we have training samples S1 and S2 and |S1| <
|S2| then S1 ⊂ S2. With the established anchors, training
and testing can be done. Once the learner is trained on the
training set, all unused training samples are appended to the
test set. The advantage that comes with this is that no data is
being discarded/unused which would have been wasteful.

For each anchor within each fold, the tuned learner under-
goes cross-validation (inner nest) to estimate the optimal hy-
perparameters while the default learner is just trained on the
anchor. Since there are k stratified folds, k learning curves
are generated and averaged to make a final learning curve as
seen in step 3 of Figure 1.

3.2 Extrapolation
The curve fitting was done using the existing LCDB code
which is explained in the ECML paper [12]. The implementa-
tion utilises a curve optimise function to analytically estimate
the curves for a certain parametric curve model. For curve
fitting, the Levenberg-Marquadt [14] algorithm is used. This
algorithm is used to solve non-linear least squared problems
which tries to fit a set of m observations to n unknown pa-
rameters where m ≥ n. Using random initial parameters, the
optimisation runs numerous times to try and find the best pa-
rameters. If no parameters can be found after a certain num-
ber of attempts then the particular fit is discarded from the
analysis. More detail can be found in the supplement of the
paper.

4 Experimental Setup
This section gives an overview of the setup of the experiment.
It will discuss the specific algorithms, values, and iterations



used for constructing the general learning curve as well as
extrapolating and fitting the curve.

4.1 Datasets
The datasets were all retrieved from an open-source platform
called OpenML [15]. 20 different datasets were used in this
experiment and details of the datasets can be viewed in the
appendix in section A. The learning curves generated by the
decision tree and KNeighbors learners can also be viewed in
the appendix in section B.

4.2 General learning curve
For the preprocessing of dataset, missing values are imputed
by the median of the corresponding attribute. All categorical
attributes are mapped to a one hot encoding. The prepro-
cessing is carried out per stratified split to avoid bias. For
the outer (stratified) folds and inner (cross-validation) folds,
k = 10 and k = 5 were used, respectively. The learners
used were the KNeighbors classifier (KN) and the decision
tree classifier (DT). Table 1 and table 2 display the hyperpa-
rameters used for the KNeighbors and decision tree classifier.
It shows the hyperparameters used for the default learners as
well as the hyperparameter ranges used for the tuned learner.
Numbers within square brackets denote the interval of num-
bers used. The code was made in collaboration with Nguyen
et al. [16] and can be found in the Github 1.

Hyperparameters KN default KN tuned
neighbors 5 [1,20]
weights uniform uniform, distance
p 2 2
metric Minkowski Minkowski

Table 1: Hyperparameter used for the default and tuned KNeighbors
learner

Hyperparameters DT default Dt tuned
criterion gini gini, entropy, log-loss
splitter best best, random
max depth None None, [1,10]
min samples split 2 2
min samples leaf 1 [1,12]
random state 42 42
min weight leaf 0 0
max features None None

Table 2: Hyperparameter used for the default and tuned decision tree
learner

To clarify some of the lesser-known hyperparameters uses,
for the Kneighbors, the Minkowski metric along with the p
value of 2 means that euclidean distance is used to compare
the data points. For the decision tree, min samples leaf refers
to the minimum number of samples required to be consid-
ered a leaf node. Min weight leaf refers to the minimum
weighted fraction of the sum of total weights required to be
at a leaf node. This is only applied if samples are given un-
equal weights. More detail about each hyperparameter can be

1https://github.com/pbhaskaran/Research-Project

found in the Sci-kit documentation for the KNeighbors 2 and
decision tree 3 learners.

4.3 Extrapolation

model Formula

POW2 −an−b

POW3 an−b + c
EXP2 aexp(−bn)

EXPP3 c−exp((n− b)α)
log2 c− a

log(n)

logpow3 a/((nexp(−b))c + 1)

Table 3: Parametric learning curve models and their respective for-
mulas where n is the varying training sizes

Table 3 displays the six different parametric models taken
into consideration.Here a, b, c denote the parameters of the
function and n denotes the training sizes. For the curve fit-
ting, initial parameters were randomly generated at most 1000
times per fit, and the optimisation was repeated 25 times with
random initial parameters. Extrapolation performance was
measured through ranks, which display the average rank of
a model relative to other models and is tested against the
Wilcoxon signed rank test. The ranks , that this report fo-
cuses on, are determined by the average MSE values of a
fitted model on a particular dataset. This means that differ-
ent training anchors are used to fit the curve and then the
MSE is averaged across the rest of the anchors (test anchors).
The lower the MSE value is for a model in a certain dataset,
the lower it will rank. Its rank is then averaged across all
datasets. A Friedman test [17] is also conducted to determine
whether the difference in model performance is significant
with α = 0.05. The ranks are also visualised with the critical
diagrams (CD) that display the average ranking of the para-
metric models and red lines connected between two models
display statistically non-significant pairs.

In order to speed up the process of generating the learning
curves and fitting the models, we used Delft’s high perfor-
mance computing centre [18]. This allows for parallel com-
puting and can speed up parts of the experiment such as the
cross-validation, and curve fitting.

5 Results
How does the general learning curve of a particular ML
algorithm change when hyperparameter tuned?

With regards to the general learning curve, numerous
important features come to the surface. Figure 2 displays
the performance of the default KNeighbors classifier against
the tuned Kneighbors classifier on a particular dataset. The
vertical lines show the standard error at each anchor. As

2https://scikit-learn.org/stable/mod
ules/generated/sklearn.tree.DecisionTreeClassifier.html

3https://scikit-learn.org/stable/mod
ules/generated/sklearn.neighbors.KNeighborsClassifier.html



Figure 2: Learning curves of tuned and default KNeigh-
bors classifier with standard error

Figure 3: performance difference of tuned and default
Decision tree classifier

represented in figure 2, the performance of the default learner
against the tuned learner for small anchors does not indicate
better performance for the tuned learner. The main reason
for this is due to the construction of the experiment. For
small anchors in fairly complex datasets (datasets with more
than two classes or having more than 5 important features),
even though the splits are stratified, the tuned learner does
not have enough training samples that properly represent
the full dataset, and so it does not optimally classify the
data points correctly. This is also reflected by the large
standard errors. The figure shows that the tuned learner has
greater standard error than the default learner for the smaller
anchors. This occurs because the training set anchors are
quite varied within the different stratified folds so there is
a large fluctuation in the error estimate. In figure 2, the
standard error in the early anchors(until 300) for the tuned
classifier is at least as large as the standard error in the default
classifier.

However, the previous figure also displays that as the train-
ing anchors increase, the tuned learner starts performing bet-
ter than the default learner. In fact, from the 15/20 datasets,
the tuned learners performed better than the default learners
after around the 25% anchor mark (25% of all data being used
for training). This is expected because, with more training
data, the tuned learner can get a much better representation of
the class and feature distribution within the dataset and find
ideal hyperparameters through minimising the loss function
and maximisng the model performance.

One question that arises from the previous findings is
whether this improvement in accuracy is significant. Qualita-
tively, looking at figure 2, we can see that the standard error
lines do not overlap for the later anchors. This means that
the tuned learner will always perform better than the default
learner for later anchors in this particular dataset. Further-
more, we can also perform a paired t-test to confirm the re-
sults. The reason we can do a paired t-test is because the data
are paired by having the same training and testing data. As-
suming all the conditions of the paired t-test hold, we get a
t-value of 4.56. This is larger than the t-value, against α =
0.05, of 2.11. We can therefore conclude that the difference
is significant. Another thing to note is that when looking at

error performance differences between the default and tuned
learner, certain properties arise. Figure 3 displays the differ-
ence in accuracy between the tuned decision tree classifier
and the default decision tree classifier. The accuracy, d, is
computed as d =

Edefault−Etuned

Edefault
. The standard errors are

also shown as the vertical lines. The graph displays that the
tuned learner does not outperform the default learner at the
start (as seen by a negative difference), but as the anchors in-
crease, the performance of the tuned learner also increases.
The shape of the difference curve in figure 3 also resembles a
log shape with plateauing. In fact, 6/20 datasets also seemed
to display this log behaviour with plateauing. This may indi-
cate that a certain parametric function may be able to model
the difference between the default and tuned learner. If an ap-
propriate model is found, then we have a more concrete idea
of error improvement a tuned learner may offer at certain an-
chors. Out of the 20 datasets tested, 16 displayed positive
accuracy at the later training anchors for both the decision
tree and the KNeighbors classifier.

Figure 4: Default vs Tuned KNeighbors classifier

One interesting thing to note is that tuning learners can
also smooth out unexpected behaviour and make a curve



model DT D DT T KN D KN T

POW2 0.091 ± 0.240 0.066 ± 0.193 0.065 ± 0.178 0.042 ± 0.134

POW3 0.011 ± 0.016 0.009 ± 0.014 0.006 ± 0.017 0.005 ± 0.015

EXP2 0.262 ± 0.670 0.225 ± 0.330 0.231 ± 0.670 0.180 ± 0.662

EXPP3 0.206 ± 0.324 0.012 ± 0.018 0.012 ± 0.013 0.007 ± 0.010

LOG2 0.012 ± 0.017 0.016 ± 0.031 0.089 ± 0.019 0.010 ± 0.018

logpower3 0.062 ± 0.016 0.013 ± 0.020 0.012 ± 0.036 0.007 ± 0.018

Table 4: MSE values averaged across all test anchors against default
and tuned learners. D stands for the default learner. T stands for the
tuned learner

well-behaved. Viering et al.[4] define a curve as being well
behaved if it shows a reducing error with increasing training
sample sizes (for all training sizes). This phenomenon can
be seen in figure 4 which displays the default KNeighbors
classifier against the tuned KNeighbors classifier on dataset
50. The default learner’s learning curve displays a few
fluctuations. Firstly, there is a slight increase in error in the
early anchors (from anchor 45 to anchor 64), then up until
250, it behaves as expected, and then right after the error
seems to increase as the training sizes increase which clearly
violates the property of being well behaved. On the other
hand, the tuned learner continues to display the expected
decreasing relationship between the error and training size
and smooths out the unexpected behaviour. 4/20 datasets
displayed this smoothing phenomenon that occurs in figure
4. This behaviour is important because the curves follow
a more sensible shape (error decreases as training sizes
increase) and can also produce better curve fits. However, the
question arises of how much better the curve fitting becomes
for the tuned learners compared to the default learners for the
4 datasets. This can be seen by measuring the average MSE
of the test anchors.

How does the curve fitting differ for hyperparame-
ter tuned models against the default models?

We can analyse how the curve fit MSE changes for the de-
fault learner against the tuned learner for the four datasets
that display this smoothing behaviour. Table 4 displays the
average MSE of the decision tree and KNeighbors classifier
against its tuned counterparts. The table shows that the MSE
for the tuned decision tree classifier is lower for 5/6 of the
curve models. Furthermore, the tuned KNeighbors classi-
fier has MSE values lower for all of the curve models. The
standard deviation for both tuned learners is also consider-
ably lower for each parametric curve fit. This suggests that
when dealing with ill-behaved learning curves shown in table
4, tuning may offer much better curve fits for the different
parametric models.

To compare the curve performances for the 20 datasets,
ranks are used as it helps deal with outlier bias. Table 5 dis-
plays the curve performances on the decision tree classifier
of the six parametric models for different anchor percentages.
Table 6 displays the same attributes but for the tuned decision
tree classifier. Table 5 displays that the pow3 model outper-

Decision tree default
curve pow2 exp2 log2 pow3 expp3 logpow3
all 4.09 5.59 3.11 2.54 2.91 2.77
5% 4.00 5.83 3.00 2.00 2.67 3.50
10% 4.17 5.83 3.25 2.58 2.17 3.00
20% 3.67 5.67 3.27 2.73 3.00 2.67
40% 4.42 5.58 3.26 2.58 2.53 2.63
80% 3.68 5.11 2.74 2.89 3.47 3.11

Table 5: Ranks for extrapolating to all test anchors of default deci-
sion tree

Decision tree tuned
curve pow2 exp2 log2 pow3 expp3 logpow3
all 3.93 5.66 3.34 2.76 2.77 2.54
5% 3.33 5.83 3.00 3.33 2.67 2.83
10% 3.86 5.43 3.14 2.71 2.29 3.57
20% 3.60 5.93 3.20 3.80 1.93 2.53
40% 3.94 5.61 3.61 2.83 2.78 2.22
80% 4.42 5.32 3.37 2.68 2.95 2.26

Table 6: Ranks for extrapolating to all test anchors of tuned decision
tree

forms all other models for anchors all and 5%. The expp3
model outperforms for anchors 10% and 40%, logpow3 out-
performs for anchors 20%, while log2 outperforms at 80%.
The tuned decision tree learner, in table 6, shows that the
pow3 model does not outperform all models at all. Instead,
the expp3 and logpow3 models have the best rank for the cor-
responding anchors. This displays that hyperparameter tun-
ing for the decision tree does not uncover a certain paramet-
ric model. Furthermore, the 2 parameter models(pow2, exp2,
log2) perform much worse than the three parameter models-
for both the default and tuned decision tree. Although the
tuned table has different results to the default table, the ques-
tion arises of whether the change in model performance is
significant. Figure 5 displays that for the test MSE, even as
the default DT learner and the DT tuned learner have differ-
ent top three rankings for anchors up to 10%, the results are
not statistically significant. The first critical diagram displays
that pow3 is not better than the three models ranked below
it, and the second critical diagram displays that expp3 is not
statistically better than any of the other models.
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Figure 5: Critical diagram of decision tree default(top) and
tuned(bottom) for MSE test anchor up to 10% of total dataset. Curve
models connected with a red line are statistically insignificant

Similar behaviour is reflected in the rank tables for the



KNeighbours classifier. For the ranking table which extrapo-
lates all test anchors, the default learner has the pow3 model
as the best for 5/6 anchor percentages while the tuned learner
has the pow3 model as the best for 4/6 anchors percentages.
Once again, the tuned KN learner does not offer an improve-
ment to a certain curve fitting model.However, with the KN
default and tuned learner, the pow3’s performance is statisti-
cally significant compared to the other models for certain an-
chor percentages. This is shown in figure 6 where the pow3
model is significantly better than the other models. Further-
more the two parameter models for the KN default and tuned
learner continue to perform badly by consistently ranking at
the bottom.
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Figure 6: Critical diagram of KNeighbors default(top) and
tuned(bottom) for MSE test anchor up to 100% of total dataset.
Curve models connected with a red line are statistically insignifi-
cant

6 Discussion
One thing to note is that Kornblith’s et al. [7] deep learning
hyperparameter tuning observation was almost the same as
the observation noted in this paper. Both papers display that
as the training size grows, the tuned model performs consis-
tently better than the default model. This suggests that the
learning curve behaviour of deep learning models and classi-
cal models may be quite similar.

With regards to the parametric models, we use pow2,
pow3, exp2, expp3, log2, and logpower3. The reason the six
models were chosen is that, as found in section 2, they are
models that have been empirically analysed as being strong
models. Therefore, comparing them is suitable as we can ob-
serve which models outperform others when hyperparame-
ter tuned. Although Mohr et al. have found that the three
and four parameter models perform best(aside from the la-
stone model which creates a horizontal line from the last
training anchor) [12], it is important to include the two pa-
rameter models as well because it has the ability to prevent
over fitting. The nature of the two parameter model keeps the
generality which could be a more viable option compared to
the three parameter models that may overfit. However, we
have seen that the two parameter models perform extremely
weakly to the three parameter model displaying that it cannot
fully capture the extrapolation anchors.

During the test for significance between the learners, we
also assumed the conditions of the paired t-test hold. Al-
though this may not be the case. For example, the dependent

variable should be approximately normally distributed. How-
ever, after making QQ plots of the tuned and default leaner
in figure 2, normality cannot be visually seen as shown in
section C of the appendix.

Figure 7: pow2 model fit on tuned Kneighbors classifier

One reason why the results acquired for the curve fitting
may not be fully accurate is due to the LCDB database [12]
not producing optimal curves. This affects not only the MSE
values for the different anchors but also the ranking. Figure
7 displays the tuned KNeighbors classifier trying to model
the pow2 curve. It can be seen that the curve fit is clearly
not optimal which means better curve fitting models must be
researched. Donghwi et al.[19] have analysed different meth-
ods for curve fitting so using those methods may result in
more accurate results.

7 Conclusion and Future Work
The purpose of this paper was to design and implement
methods to analyse the learning curve performance of default
and tuned learners. We will list each sub-question and give a
brief description of the findings.

How does the general learning curve of a particular
ML algorithm change when hyperparameter tuned?

When a learner is hyperparameter tuned, there are a
few properties that change the learning curve. Firstly, at early
anchors, the standard error for the tuned learner is higher
than the standard error of the default learner because of the
construction of the experiment. The error for early anchors
also tend to be higher for the tuned learners. Secondly, as the
anchor sizes increase, the tuned learner starts performing bet-
ter than the default learner at each training anchor. Thirdly,
the tuned learner also displays a smoothing effect such that



it transforms an ill-behaved curve into a more well-behaved
curve.

How does the curve fitting differ for hyperparame-
ter tuned models against the default models?

The tuned learner does not uncover any new parametric
curve results. The parametric curve fits of the default
and tuned learner perform quite similarly. Even the slight
changes in curve models the tuned learner shows are not
statistically significant as it does not pass the Friedman test.
There was no clear optimal parametric model for the default
and tuned decision tree, however, the pow3 model was the
best performing for the default and tuned KNeighbors. For
curves that display ill-behaved properties, the curve fitting
for the average MSE values across all test anchors are lower
for tuned learners compared to the default learners.

Future work

To further solidify the results, the experiment should
also be conducted with more datasets, learners, and curve
models. This will not only create more reliable results, but it
will also show statistically significant results. Perhaps with
more datasets, the tuned DT or KN learner may uncover
a parametric model that is statistically significant to other
models.

Another piece of work that can be done in the future is
to model the difference of accuracy improvement as shown
in figure 3. This could be helpful in predicting the gain in
improvement a learner may offer when it undergoes hyperpa-
rameter tuning and whether it is worth to tune the learner in
question.

8 Responsible Research
Ethical considerations must always be accounted for in any
research paper. This paper discusses the issue of reproducibil-
ity. Being able to reproduce results is important as it can not
only solidify or contest observations made in the paper, but it
can also add further insight into the observations. However,
there are many instances of experiments that cannot be repro-
duced due to unshared code/data. Or in the context of ML,
undisclosed model parameter conditions [20].

Numerous steps have been taken to ensure reproducibility
in this experiment. Firstly, a random seed of 42 was used
for not only the hyperparameter tuning for certain learners,
such as the decision tree classifier, but also for the creation
of the stratified splits. Secondly, the curve fitting has also
been implemented with a random seed of 42, so the random
point selection, and corresponding calculations can also be
replicated. Thirdly, all the source code will be published on
GitHub as an open-source software (Github linked in section
4). Lastly, there will be an attached Readme document that
will contain the following pieces of information; a brief out-
line of what the code entails and a small description explain-
ing how to generate plots and figures.This allows for the ex-
periments to be easily replicated and also modified for future
implementation.

During the entirety of the research, all relevant revelations
and results are displayed in section 5. Furthermore, there was
no modification of the results that change the projected per-
formance of the different learners.
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A Dataset information

OpenML ID Name # of Classes # of Instances Class distribution
6 Letter 26 20000 Almost equal distribution
31 credit -g 2 1000 [700, 300]
37 diabetes 2 768 [268,500]

42 soybean 19 683 [20,20,20,88,44,20,20,92,20,
20,20,44,20,91,91,15,14,16,8]

50 tic-tac-toe 2 958 [626,332]
61 iris 3 150 equal distribution
299 libras move 15 360 equal distribution
333 monks-problem-1 2 556 [278,278]
334 monks-problem-2 2 601 [206,395]
715 fri c3 1000 25 2 1000 [443,557]
737 space ga 2 3107 [1541,1566]
823 houses 2 20640 [8914,11726]
923 visualizing soil 2 8641 [4753,3888]
1116 musk 2 6598 [1017, 5581]
1120 MagicTelescope 2 19020 [12332,6688]
1462 banknote-authentication 2 1372 [762,610]
1464 blood-transfusion-service-center 2 748 [570,178]

1466 cardiotocography 10 2126 [384,579,53,81,72,332,252,
107,69,197]

1504 steel-plates-fault 2 1941 [1268,673]
40536 SpeedDating 2 8378 [1380,6998]

B Learning curves

Figure 8: Learning curves of tuned and default Decision
classifier with standard error

Figure 9: performance difference of tuned and default
KNieghbors classifier



Figure 10: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 11: performance difference of tuned and default
KNieghbors classifier

Figure 12: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 13: performance difference of tuned and default
KNieghbors classifier

Figure 14: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 15: performance difference of tuned and default
KNieghbors classifier



Figure 16: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 17: performance difference of tuned and default
KNieghbors classifier

Figure 18: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 19: performance difference of tuned and default
KNieghbors classifier

Figure 20: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 21: performance difference of tuned and default
KNieghbors classifier



Figure 22: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 23: performance difference of tuned and default
KNieghbors classifier

Figure 24: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 25: performance difference of tuned and default
KNieghbors classifier

Figure 26: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 27: performance difference of tuned and default
KNieghbors classifier



Figure 28: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 29: performance difference of tuned and default
KNieghbors classifier

Figure 30: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 31: performance difference of tuned and default
KNieghbors classifier

Figure 32: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 33: performance difference of tuned and default
KNieghbors classifier



Figure 34: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 35: performance difference of tuned and default
KNieghbors classifier

Figure 36: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 37: performance difference of tuned and default
KNieghbors classifier

Figure 38: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 39: performance difference of tuned and default
KNieghbors classifier



Figure 40: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 41: performance difference of tuned and default
KNieghbors classifier

Figure 42: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 43: performance difference of tuned and default
KNieghbors classifier

Figure 44: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 45: performance difference of tuned and default
KNieghbors classifier



Figure 46: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 47: performance difference of tuned and default
KNieghbors classifier

C QQ Plot

Figure 48: Learning curves of tuned and default Deci-
sion classifier with standard error

Figure 49: performance difference of tuned and default
KNieghbors classifier
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