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Introduction 1
In this chapter the outline of the thesis is presented together with some background
information on the thesis topic, a set of research questions, and a description of the
contributions made.

1.1 Thesis outline

In this thesis the details of the work done towards accelerating the Chan-Vese model are
discussed. This is done in a top-down fashion. In Chapter 1, the problem is stated to-
gether with some questions and details on the contributions made. Chapter 1 also gives
some background information on the thesis topic. In Chapter 2 the Chan-Vese model
is introduced, by first describing some methods, which the model uses and is based on.
Chapter 2 also goes in detail on how to guide the Chan-Ve model by varying the parame-
ters. Chapter 3 discusses all the details regarding the discretization and implementation
of the model for both 2D and 3D. Chapter 3 also investigates parallelization opportuni-
ties and discusses acceleration of the given implementations for the Chan-Vese model. In
Chapter 4 some results of tests run with the implementation are presented. And finally
in Chapter 5 some conclusions are drawn and a list of suggestions for future work is
given.

1.2 Background information

This section introduces some concepts which are key to the thesis topic.

1.2.1 Medical imaging for cancer diagnostics

Cancer is a group of diseases which involve abnormal growth of cells. This abnormal
growth is also referred to as neoplasm, or tumor, in the case where these cells start to
form a mass. Not all tumors are malignant i.e. cancerous. There are also noncancerous
or benign tumors. Cancer can be detected when certain signs and symbols start to
appear or through screening tests, the latter becoming more and more common. Further
investigation and precise diagnostics are committed through all kinds of medical tests
which often include medical imaging. The diagnostics are commonly confirmed by means
of a biopsy and examination of the tissue sample by a pathologist.

In the early stages, when cancer starts to develop, there may be little to none ob-
servable signs and symptoms. Only when the mass continues to grow, some signs and
symptoms might appear. This also strongly depends on the type and position of the
cancer. Screening tests can help early detection and diagnostics of cancer, but this does
not hold for all cancers.

1



2 CHAPTER 1. INTRODUCTION

Recent advances in medical imaging technology have caused a drastic change in the
way people are diagnosed and treated for all kinds of different diseases. Not only has
it become easier and less intrusive, the resulting images contain more detail and allow
medical experts to do quicker and better diagnosis.

Several medical imaging technologies are widely used in cancer diagnostics and treat-
ment. These resulting images allow medical experts to learn more about a tumor, plan
cancer treatments, monitor the effectiveness of a treatment or learn more about the stage
of cancer. Different medical imaging techniques can be used for different cancers.

With these medical imaging techniques becoming more and more advanced, there is a
growing need for more advanced image processing algorithms and computation methods.

1.2.1.1 Machine learning

There is an ongoing trend to screen large populations for different types of cancer. As a
result, medical researchers are getting access to much larger data sets with images and
volumes. By annotating the data, a training data set can be built to be used within
a machine learning framework. The task of annotating data, to prepare for usage in
a training data set, can be cumbersome due to, for example, the lack of responsive,
efficient and effective image processing algorithms which could prevent medical experts
from having to annotate the data fully by hand. This thesis does not go into detail on
how machine learning methods can be used to improve the accuracy of diagnosis. This
thesis rather focuses on speeding up the annotation process to speed up the process of
building the training data sets.

1.2.2 Image processing

Digital image processing can be used to do all kinds of analysis on image data. Image
data here can be a two dimensional image resulting from, for example, a radiograph. It
can also be a stack of two dimensional images combined to a three dimensional volume
resulting, for example, from an X-ray computed tomography.

By applying some form of filtering or analysis, several tasks can be completed. For
example, one could try to extract features, classify the image or objects within the image,
project onto the image, recognize patterns or segment an object or objects.

The annotation task focused on in this thesis is the separation of healthy tissue from
cancerous tissue within a three dimensional volume resulting from an X-ray compute
tomography scan of an human brain, by means of a segmentation technique.

1.2.2.1 Segmentation

Segmentation techniques can be used in image processing to delineate an object, or
objects, in an image. There exist several segmentation algorithms and techniques that
each try to tackle this problem, where background and foreground items need to be
separated, in a different way.

A possible and common way to segment objects within an image is, to find edges
within the image, and then define these edges to be the boundaries of the objects. Finding
the edges is not a trivial task. A commonly used edge detection technique is based on
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the gradient[1]. This works for a large set of images, but this technique fails where the
boundary of the object, for example, is defined by a smooth boundary or by texture,
which can be the case in noisy images. Most of the time a smoothing filter is applied to
remove noise before the edges are detected.

1.3 Problem statement

This thesis aims to solve the problem of the time-consuming task for a medical expert
to segment a tumor by hand from a three dimensional X-ray compute tomography, by
implementation of an accelerator for a user guided segmentation model, which does not
depend on edges.

Segmentation models which allow for user guidance exist, however these models are
compute intensive which results in a bad user experience. The feedback loop is stalled
every time the model needs to be reevaluated with a new set of parameters. This makes
it difficult to get good segmentation results for different images, and as a result, medical
experts might be better off doing the segmentation by hand. This is a problem since
it slows the process of building large data sets for the training and learning phase of
machine learning frameworks, which in the end can be used to improve the rate and
accuracy at which people can be diagnosed.

This is also visualized in Figure 1.1.

Figure 1.1: Overview of the different aspects related to the segmentation task.

1.3.1 Algorithmic challenges

The first challenge is to pick or design a segmentation technique or model, which gives
the user good control over the segmentation process, and which does not depend on
gradient to define the boundaries of objects.

The Chan-Vese model is a model for active contours, which is able to detect objects
whose boundaries are not defined by gradient[2]. It is based on several techniques which
all need to be understand in order to be able to understand the Chan-Vese model.
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1.3.2 Computative challenges

Most segmentation techniques and models are mathematical models which need to be
numerically approximated and discretized in order for them to be leveraged with digital
images on computer hardware. For the Chan-Vese model, a numerical approximation
of the model is described in the original paper. However, it still is important to have a
good understanding of this in order to be able to map this approximation efficiently on
hardware.

An iterative method to solve the PDE, which describes the evolvement of the contour
in the model, needs to be evaluated and picked carefully, to make sure the PDE converges
to its solution in reasonable time.

Since the input images, and volumes, will be of reasonable size, the number of com-
putations required to solve the problem of segmentation for a single set of parameters, is
large. It is a challenge to keep the feedback loop as short as possible in order to provide
the best user experience, which allows the medical expert to converge quickly to the
sought segmentation.

1.3.3 Implementative challenges

Acceleration of image processing algorithms require both a good understanding of all
the different steps required to solve the problem, and a deep understanding of the com-
putation platform used, in terms of architecture and memory organization.

The challenge is to determine a suitable computation platform for an accelerated
implementation. Also, the accuracy of the accelerated implementation needs to match
the accuracy of the given sequential implementation.

1.3.4 Questions

The discussed problems and challenges raise the following questions;

1. Can medical experts use the Chan-Vese model for segmentation to delineate tumors
visible in a volume resulting from an X-ray computed tomography, in a semi-
automatic fashion, where the results of the segmentation can be influenced by a
set of parameters, to guide the model towards the required solution?

2. Is it possible to extend a given sequential implementation of a numerical approx-
imation of the Chan-Vese model for two dimensional images, to support three
dimensional volumes for segmentation of surfaces?

3. Can the implementation be accelerated without loss of accuracy, using special
hardware which exploits parallelization, to streamline the experience for medical
experts when model parameters need to be fine tuned?

1.4 Contributions

This thesis’ goal is to find solutions for, and answers to the problems and questions stated
in the previous section. The following can be considered to be contributions made.
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• An detailed overview and explanation of minimization of an energy functional as
framework for segmentation of objects in images.

• A set of figures to visualize and help understand the role of the different parameters
in the Chan-Vese model.

• A description of the link between the mathematical description of the Chan-Vese
model, and an implementation in computer hardware.

• Details on how to extend a given implementation for the Chan-Vese model for two
dimensional images, which uses SOR to solve the PDE, to support three dimen-
sional volumes.

• Detailed evaluation of parallelization opportunities in the given implementation of
the Chan-Vese model.

• Details on an accelerated implementation of the Chan-Vese model using the parallel
computing platform CUDA for General-purpose computing on graphics processing
units (GPGPU), which improves the user experience in the process of fine tuning
the parameters of the model, in order to get the sought segmentation.

• Evaluation and comparison of sequential, OpenMP and CUDA implementations of
the Chan-Vese model on two different hardware platforms.
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Chan-Vese model 2
In this chapter the Chan-Vese model is introduced. In order to be able to understand
this algorithm, first the level set method and the active contour model are discussed.
Then the Chan-Vese model is discussed in detail.

2.1 Level set method

The level set method, as developed in [3], is a method where level sets are used in
computations of shapes and surfaces in a discretized fixed rectangular grid. Level sets
are mathematical functions of the form as given in Equation (2.1).

L = {(x1, . . . , xn)|f(x1, . . . , xn) = c} (2.1)

It can be described as a set where the function f takes a given constant c.

Figure 2.1 visualizes some aspects of the level set method. Figure 2.1a shows a level
set function φa. Figure 2.1b shows a contour with a nice, smooth boundary. The level
set function φa can, for example, be used to define the interior of the shape as the points
for which the level set function φa is positive. The boundary of the shape then is defined
by the zero level set φa0 of φa i.e. all the points for which φa equals zero. By updating
the level function φa to φb, and using the zero level set of φb to define the boundary of
the shape, the shape can undergo topology changes easily as can be seen in Figure 2.1c
and Figure 2.1d. This aspect has proven that the use of level set functions to describe
the evolvement of a contour in image processing can be very effective[4][5].

Mathematically this can be expressed as follows. In this example the level set method
is used in two dimensions to represent a closed curve, Γ, by using a level set function, φ.
The curve, Γ, is represented by the zero level set of φ i.e. where the constant c is zero,
as can be seen for two dimensions in Equation (2.2).

Γ = {(x, y)|φ(x, y) = 0} (2.2)

The level set method can represent the contour implicitly through the level set func-
tion. The evolution of the curve is given by the zero level curve of the function φ(t, x, y)
at time t. To evolve the curve Γ in normal direction with a speed v requires to solve the
differential equation as given in Equation (2.3).

δφ

δt
= |∇φ|v

φ(0, x, y) = φ0(x, y)
(2.3)

Here, (x, y)|φ0(x, y) = 0, the zero-level set, defines the initial contour.

7
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(a) Level set: φa (b) Zero level set: φa0 i.e. φa = 0

(c) Level set: φb (d) Zero level set: φb0 i.e. φb = 0

Figure 2.1: Visualization of the level set method.

2.2 Active contour model

Active contours, also referred to as snakes, are dynamic curves that evolve within an
image in order to delineate objects within that image. The evolvement of the contour
is based on constraints from a given image. The active contour model is widely used in
all kinds of computer vision applications e.g. segmentation [2], edge detection [6], shape
recognition [7], stereo matching [8] and object tracking [9].

2.2.1 Energy functional

Kass investigated the use of energy minimization as a framework to solve these delin-
eation problems [10]. Energy minimization models allow the user to guide the model by
adding energy terms to the minimization. This level of interaction makes it easy to find
usable energy functions which do not have a strong dependence on the starting points
and which have few local minima. It is important to note that the model is an active
model that always behaves dynamically because it minimizes the energy functional.
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In order to define the energy functional, let Ω be a bounded open subset of R2, with
δΩ its boundary. Let u0 be a given image. With the position of the active contour
represented parametrically as C(s) : [0, 1] → R2, in terms of its x and y coordinates,
C(s) = (x(s), y(s)), the energy functional E1 of the basic active contour model, as
proposed by Kass, can be written as can be seen in Equation (2.4).

E1(C) =

∫ 1

0
Econtour (C(s)) ds

=

∫ 1

0
(Einternal (C(s)) + Eexternal (C(s))) ds

=

∫ 1

0
(Einternal (C(s)) + Eimage (C(s)) + Econstraint (C(s))) ds

(2.4)

The total energy in the basic active contour model is split into 3 terms. The internal
energy, Einternal, controls the deformation of the contour. The external energy, Eexternal,
which in the original paper by Kass [10], is a combination of Eimage and Econstraint, the
image energy, Eimage, which is a function of the features in the image which attracts the
contour towards the object in the image, and the constraint energy, Econstraint, allows
for some user interaction by giving users some tools to interactively guide the contour
towards the object.

2.2.2 Internal energy

The internal energy term is composed of two components which control both the conti-
nuity and smoothness of the contour as can be seen in Equation (2.5).

Einternal = Eelastic + Ebending

= α(s)|C(s)′|2 + β(s)|C(s)′′|2
(2.5)

Here, α(s) and β(s) are both user-defined positive weights which control the sensitiv-
ity of the energy function to stretch and curvature of the contour, respectively. Another
way to describe it is that the first-order term makes the contour behave like a membrane,
whereas the second-order term makes the contour behave like a thin plate. This means
that for large values of α the changes in distances between the points in the contour are
penalized whereas large values of β penalize oscillations in the contour.

C ′(s) denotes the first derivative of C(s) with respect to s, and C ′′(s) denotes the
derivate of C ′(s) with respect to s i.e. the second derivative of C(s).

It is important to note here that the user-defined weights are not scale-invariant.

2.2.3 External energy

The external energy term can be seen as a combination of two separate energy terms, as
can be seen in Equation (2.4). The first being the image energy and the second being
the constraint energy.
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2.2.3.1 Image energy

The image energy is some function of the features of the image. There are many ways in
which one can process or evaluate image features. As a result, there are many possible
ways in which one can define the image energy term. The goal of this energy term is
to generate some force or velocity which will attract or move the contour towards the
boundary of the object of interest. Kass presents a combination of three energy terms
for the image energy. His formulation includes lines, edges and terminations present in
the image. These terms each have their own weights as can be seen in Equation (2.6).

Eimage = wlineEline + wedgeEedge + wterminationEtermination (2.6)

The first energy term is the line functional which is simply the intensity of the image
itself. It can be represented as can be seen in Equation (2.7). The constant weight,
wline, determines whether the contour will be attracted by either darker or lighter lines
in the image i.e. wline < 0 penalizes high intensity, which means that the contour gets
attracted by darker lines, whereas wline > 0 penalizes low intensity and attracts the
contour towards lighter lines in the image.

Eline = u0(x, y) (2.7)

The edge energy term is the edge functional which is based on the gradient of the
image. There are several ways to approach edge detection. A possible implementation
is given in Equation (2.8).

Eedge = −|∇u0(x, y)|2 (2.8)

The absolute contribution of this edge energy term, for wedge > 0, is the attraction
of the contour towards large gradients in the image i.e. possible edges or boundaries of
objects in the image. In some cases part of the contour might be attracted towards a
low-energy feature of the image. When that happens, the contour will pull neighboring
points on the contour towards a possible continuation of this feature. The result is a
large energy wall around that specific local minimum. This can be avoided by using
scale space continuation[11][12]. To avoid these local minima, the image is smoothened
using a blur filter where the amount of blur is reduced as the contour evolves. The scale
space continuation is applied to the Marr-Hildreth theory for edge-detection[13]. This
theory defines edges to be at the zero-crossings of the convolution of the image with the
Laplacian of a Gaussian i.e. the divergence of the gradient of a Gaussian. The different
edge functional can be seen in Equation (2.9), where Gσ(x, y) is a Gaussian function,
Gσ(x, y) = σ−1/2e−|x

2+y2|/4σ, with σ the standard deviation.

EMH
edge = −|Gσ(x, y) · ∇2u0(x, y)|2 (2.9)

The last energy term, Etermination, can be used to find termination of corners and
line segments. This is done in a slightly blurred image using the curvature of level lines.
Let u1(x, y) be u0 filtered with a Gaussian i.e. u1(x, y) = Gσ(x, y) · u0(x, y). With the
gradient angle defined as θ = arctan(u1y/u1x), unit vectors along the gradient direction
defined as n = (cos(θ), sin(θ)), and unit vectors perpendicular to the gradient direction
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defined as n⊥ = (−sin(θ), cos(θ)), the termination energy term can be written as can
be seen in Equation (2.10).

Etermination =
δθ

δn⊥

=

δ2u1

δ2n⊥
δu1

δn

=
u1yyu

2
1x − 2u1xyu1xu1y + u1xxu

2
1y

(1 + u2
1x

+ u2
1y

)3/2

(2.10)

The absolute contribution of this energy term is the attraction of the contour towards
terminations in the image.

2.2.3.2 Constraint energy

The constraint energy term allows for user interaction to put some constraints on either
the initial contour or the evolvement of the contour. Again, the possible ways to define
this term are endless. Kass [10] gives two possible examples for this term. The first
example is the definition of a spring between two points, one point being connected
to any point on the contour, and the other point either anchored at a fixed point or
connected to another point on the contour. The resulting constraint energy term of
the defined spring adds to the total energy function, which in the end penalizes the
movement in the contour of these points away from each other. The other example given
by Kass is the definition of a repulsion force. This repulsion force can be used to push
the contour out of a certain local minimum into another.

2.2.4 Geometric active contours

With the constraint and termination energy terms set to zero, Equation (2.4) can be
rewritten to Equation (2.11) using Equation (2.5), Equation (2.6), Equation (2.9) and
Equation (2.10).

E1(C) = α

∫ 1

0
|C ′(s)|2ds+ β

∫ 1

0
|C ′′(s)| ds− λ

∫ 1

0
|∇u0(C(s))|2 ds (2.11)

Active contours and energy minimization as a framework for segmentation can be
successfully used to delineate objects within an image. However, there is a big limitation
to the given approach. The described energy model is not capable of coping with changes
in the topology of the contour when implemented directly. The topology of the contour
will be the same as the initial contour. This is limiting in cases where the number of ob-
jects to be segmented is unknown. There is some work done towards special procedures,
mostly heuristics, which allow the contour to split and merge [14][15][16]. These effects
are hard to describe in terms of parameterization of the contour.
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A new model for active contours is introduced in [17]. This model is described by
a geometric flow i.e. by a Partial differential equation (PDE), and is based on mean
curvature motion [18]. Instead of energy minimization as framework, it is motivated
by curve evolution. When used with the level set method[3], it allows for topology
changes[19] of the active contour.

Evolving the active contour in these models, where the problem is discretized on a
fixed rectangular grid, requires to solve the differential equation given in Equation (2.3).
In the model proposed in [17], which uses the case of motion by mean curvature, v be-
comes div(∇φ(x, y)/|∇φ(x, y)|), which is the curvature of the level-curve φ going through
(x, y). With this Equation (2.3) becomes the mean curvature equation and can be seen
in Equation (2.12).


δφ

δt
= |∇φ|div

(
∇φ
|∇φ|

)
, t ∈ (0,∞), x ∈ R2

φ(0, x, y) = φ0(x, y), x ∈ R2
(2.12)

The geometric active contour model [17] adds a term to the equation which acts as
a constant force in the direction of the normal. The equation is also multiplied with
a function g(|∇u0(x, y)|) which acts to stop the contour at the sought boundary. The
model can be seen in Equation (2.13).


δφ

δt
= g (|∇u0|) |∇φ|

(
div

(
∇φ
|∇φ|

)
+ ν

)
, t ∈ (0,∞), x ∈ R2

φ(0, x, y) = φ0(x, y), x ∈ R2
(2.13)

The constant ν ≥ 0, can be interpreted as a force which pushes the contour towards
the boundary of the object when the curvature of the contour becomes zero i.e. it ensures
the term (div(∇φ/|∇φ|) + ν) stays positive. The function g(x), which can be seen in
Equation (2.14), controls the speed at which the contour moves. For the geometric active
contour model p = 2. The movement of the contour stops at the boundary of the object
where g(x) goes to zero i.e. when |∇Gσ(x, y) ∗ u0(x, y)|, the gradient, is large.

g(|∇u0(x, y)|) =
1

1 + |∇Gσ(x, y) ∗ u0(x, y)|p
, p ≥ 1 (2.14)

2.2.5 Geodesic active contours

Another model for active contours, introduced in [19], is the geodesic model. A geodesic
curve is a minimum distance path between given points. The energy functional, E2, of
the model, which is to be minimized, can be seen in Equation (2.15).

E2(C) = 2

∫ 1

0
|C ′(s)| · g(|∇u0(C(s))|) ds (2.15)

This model also has a level set formulation given in Equation (2.16).
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δφ

δt
= |∇φ|

(
div

(
g(|∇u0|)

∇φ
|∇φ|

)
+ νg(|∇u0|)

)
, t ∈ (0,∞), x ∈ R2

φ(0, x, y) = φ0(x, y), x ∈ R2
(2.16)

2.3 Chan-Vese model

All the models described in the previous section rely on some edge-function to stop the
evolvement of the contour. This limits the objects that can be detected by these active
contour models to objects with their boundaries defined by a gradient. Also, when
discretized, the gradient is bounded, and therefore the stopping function g will never
be zero on the boundary. As a result, a discretized implementation of the model might
drive the contour through the actual boundary.

The active contour model proposed by Chan and Vese in [2], does not rely on an edge
stopping function, but instead relies on Mumford-Shah techniques for segmentation [20]
to stop the evolvement of the contour on the boundary of the object. This results in a
model which can detect objects both with and without the gradient defining the edges.
The model also has a level set formulation which allows for topology changes and allows
for the initial contour to be placed anywhere in the image.

The basic idea of the model is best explained with an example image where two
regions exist with distinct approximate constant grayscale intensities, ui0 and uo0. Here i
and o denote inside and outside respectively. In other words, u0 ≈ ui0 inside the object
and u0 ≈ uo0 outside the contour or object.

For this thesis only grayscale images, i.e. images with a single channel, are consid-
ered, however it is also possible to use the model with vector-valued images e.g. RGB
images[21].

Now let C be the evolving curve in Ω, as the boundary of an open subset ω. In
other words ω ⊂ Ω and C = δω. Furthermore inside(C) is defined as the region ω and
outside(C) is defined as the region outside of ω i.e. Ω \ ω̄. The method to segment
the object is segmentation with the minimization of an energy functional[2]. The fitting
term is given in Equation (2.17).

F1(C)+F2(C) =

∫
inside(C)

|u0(x, y)−c1|2 dx dy+

∫
outside(C)

|u0(x, y)−c2|2 dx dy (2.17)

Here c1 and c2 are region averages of the intensity inside the contour and outside the
contour respectively. The fitting energy is minimized if the contour C is on the boundary
of the object i.e. the difference between u0(x, y) inside the contour and c1 goes to zero,
and the difference between u0(x, y) outside the contour and c2 goes to zero. This is
demonstrated in Figure 2.2[22].

The model minimizes the term given in Equation (2.17) together with some other
terms to regularize the evolvement of the contour. Firstly the length of the curve C can
be penalized, and secondly the area of the region inside the contour can be penalized.
The resulting energy functional of the active contour model is given in Equation (2.18).
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F1(C) > 0
F2(C) ≈ 0

F1(C) > 0
F2(C) > 0

F1(C) ≈ 0
F2(C) > 0

F1(C) ≈ 0
F2(C) ≈ 0

Figure 2.2: Simple source image to demonstrate minimization of the fitting term. Taken
from [22].

F (c1, c2, C) =µ · Length(C) + ν ·Area(inside(C))

+ λ1

∫
inside(C)

|u0(x, y)− c1|2 dx dy

+ λ2

∫
outside(C)

|u0(x, y)− c2|2 dx dy

(2.18)

Here, µ ≥ 0, ν ≥ 0 are constants penalizing the length of the contour and the area
inside the contour respectively. λ1 > 0 and λ2 > 0 are fixed parameters which penalize
the average terms, inside and outside the contour respectively. The evolvement of the
contour is the minimization of the given energy functional.

The relation with the Mumford-Shah functional EMS , which is given in Equa-
tion (2.19), is the approximation in a reduced form, where the functional is restricted
to piecewise constant functions of u i.e. all different regions in the image have the same
constant intensity [20].

EMS(u,C) = µ · Length(C) + λ

∫
Ω
|u0(x, y)− u(x, y)|2 dx dy +

∫
Ω\C
|∇u(x, y)|2 dx dy

(2.19)

This reduced case is referred to as the minimal partition problem. If the active
contour model as given in Equation (2.18) is taken with ν = 0 and λ1 = λ2 = λ, u can
only take two values as can be seen in Equation (2.20), where C is the active contour.

u =

{
average(u0) inside C

average(u0) outside C
(2.20)

2.3.1 Level set formulation

The given minimal partition problem as given in Equation (2.20) can be solved using
the level set method[3]. The contour is represented by the zero level set of a level set
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function φ. The resulting level set formulation can be seen in Equation (2.21). This is
also visualized in Figure 2.3.

C = δω = {(x, y) ∈ Ω : φ(x, y) = 0}
inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0}
outside(C) = Ω \ ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0}

(2.21)

Figure 2.3: The curve C moving in normal direction according to Equation (2.21) and a
level set function φ. Taken from [2].

Considering the level set formulation, and with H the Heaviside function and δ0

the one-dimensional Dirac measure, which can be seen in Equation (2.22) and Equa-
tion (2.23), the different terms in Equation (2.18) can be rewritten as follows in Equa-
tion (2.24), Equation (2.25), Equation (2.26) and Equation (2.27).

H(z) =

{
1, if z ≥ 0

0, if z < 0
(2.22)

δ0 =
d

dz
H(z) (2.23)

Length(φ = 0) =

∫
Ω
|∇H(φ(x, y))| dx dy

=

∫
Ω
δ0(φ(x, y))|∇φ(x, y)| dx dy

(2.24)

Area(φ ≥ 0) =

∫
Ω
H(φ(x, y)) dx dy (2.25)

∫
φ>0
|u0(x, y)− c1|2 dx dy =

∫
Ω
|u0(x, y)− c1|2H(φ(x, y)) dx dy (2.26)
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∫
φ<0
|u0(x, y)− c2|2 dx dy =

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y))) dx dy (2.27)

This allows the energy functional as given in Equation (2.18) to be written as can be
seen in Equation (2.28).

F (c1, c2, φ) = µ

∫
Ω
δ(φ(x, y))|∇φ(x, y)| dx dy

+ ν

∫
Ω
H(φ(x, y))) dx dy

+ λ1

∫
Ω
|u0(x, y)− c1|2H(φ(x, y)) dx dy

+ λ2

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y))) dx dy

(2.28)

Again, considering the level set formulation, the minimal partition problem as given
in Equation (2.20) can be rewritten to Equation (2.29).

u(x, y) = c1H(φ(x, y)) + c2(1−H(φ(x, y))), (x, y) ∈ Ω̄ (2.29)

This then allows to write the constants c1 and c2 as functions of φ, as can be seen in
Equation (2.30).

c1(φ) =

∫
Ω u0(x, y)H(φ(x, y)) dx dy∫

ΩH(φ(x, y)) dx dy

c2(φ) =

∫
Ω u0(x, y)(1−H(φ(x, y))) dx dy∫

Ω(1−H(φ(x, y))) dx dy

(2.30)

The result is that c1 and c2 are now the region averages inside and outside the contour
respectively, as can be seen in Equation (2.31).{

c1(φ) = average(u0) in φ ≥ 0

c2(φ) = average(u0) in φ < 0
(2.31)

With Hε and δε as regularized versions of the Heaviside function H and the one
dimensional Dirac measure δ0, as defined in Equation (2.22) and Equation (2.23), the
energy functional, as defined in Equation (2.28), can be rewritten to Equation (2.32).

Fε(c1, c2, φ) = µ

∫
Ω
δε(φ(x, y))|∇φ(x, y)| dx dy

+ ν

∫
Ω
Hε(φ(x, y))) dx dy

+ λ1

∫
Ω
|u0(x, y)− c1|2Hε(φ(x, y)) dx dy

+ λ2

∫
Ω
|u0(x, y)− c2|2(1−Hε(φ(x, y))) dx dy

(2.32)
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The minimization can be solved by alternating between updating φ and the region
averages, c1 and c2. By keeping φ fixed, c1 and c2 can be computed using Equation (2.30)
with regularized versions for the Heaviside function H and the one dimensional Dirac
measure δ0. To update φ, c1 and c2 are kept fixed, and Fε is minimized with respect
to φ. This allows to deduct the associated Euler-Lagrange equation for φ(t, x, y), with
t ≥ 0 an artificial time and φ(0, x, y) = φ0(x, y) the initial contour, as can be seen in
Equation (2.33).

δφ

δt
= δε

[
µ div

(
∇φ
|∇φ|

)
− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

]
= 0 in Ω,

φ(0, x, y) = φ0(x, y) in Ω,

δε(φ)

|∇φ|
δφ

δ~n
= 0 on δΩ

(2.33)

Here ~n denotes the exterior normal to the boundary δΩ. δφ/δ~n denotes the normal
derivative of φ at the boundary.

2.3.2 Guiding the model

In order to be able to guide the Chan-Vese model to segment the object of interest, there
are a few parameters to guide the contour. It is important to have a good understanding
of the effect that varying each parameters has on the contour, in order to quickly converge
to a suitable set of a parameters for a particular segmentation problem.

The parameters for the Chan-Vese model are listed below in Table 2.1.

Parameter Penalizes

µ Length of the contour
ν Area inside the contour
λ1 Average term inside the contour
λ2 Average term outside the contour

Table 2.1: Chan-Vese model parameters

The figures in this subsection, which are used to demonstrate the different aspects
which are controlled by these parameters, were generated by the implementation which
is discussed in detail in Chapter 3. In all these figures, the top row shows the source
image together with the contour, and the bottom row is a visualization of the level set
description φ.

2.3.2.1 Initial contour

Another aspect which can be varied is the placement of the initial contour. A good
initial contour results in quick convergence of the contour towards the solution. There
are two [2][23] common ways to generate the initial contour. The first is a simple circle
around the object to be segmented, and the second is a checkerboard pattern of small
circles over the circle, visualized in Figure 2.4 and Figure 2.5. For some segmentation
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problems the former might be more suitable than the latter, but this might be the other
way around for other segmentation problems. In the case of segmentation of tumors, it
is recommended to place a circle around the tumor in the image. This should simplify
the search for the right set of parameters for the Chan-Vese model compared to the
checkerboard initialization.

Figure 2.4 and Figure 2.5 shows the difference in evolvement of φ for an example
image with the checkerboard and circle initialization respectively.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.4: Evolvement of φ for the checkerboard initialization.

2.3.2.2 Length of the contour

µ penalizes the length of the contour. Larger values for µ cause the contour to have a
smoother boundary, whereas small values for µ allow for a more precise delineation. To
demonstrate the effect of varying µ, the segmentation results per iteration step of the
Chan-Vese model are visualized for two different types of images, for different µ. The
first example demonstrates the ability to delineate a group of elements as a single object,
for a large µ, or to segment the elements within the group as separate objects, with a
small µ. The second example demonstrates the effect µ has on an image from a CT-scan
of a brain with a tumor. Both examples show the segmentation or zero-level set, φ0,
projected onto the source image in the upper row, and the level set φ in the bottom
row, at different iterations. Iteration 0 shows the initial contour. The initial contour is
a circle with r = 200 for the image with a group of elements, whereas the initial contour
for the image from a CT-scan of a brain with a tumor is a circle with r = 500. In these
examples ν = 0, λ1 = λ2 = 1.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.5: Evolvement of φ for the circle initialization.

Figure 2.6, Figure 2.7 and Figure 2.8 visualize the effect for the first example with
µ = 0, µ = 0.01 · 2552 and µ = 1 · 2552 respectively. Figure 2.9, Figure 2.10 and
Figure 2.11 visualize the effect for the second example with µ = 0, µ = 0.01 · 2552 and
µ = 1 · 2552 respectively.

It can clearly be seen from these examples that µ controls the smoothness of the
contour, by penalizing the length of the contour. Larger values for µ tend to slow the
evolvement of the contour down. The level set description φ looks much smoother for
larger values of µ, since quick evolvement is penalized. Smaller values, or even µ = 0,
tend to result in very quick evolvement and precise delineation of the objects. Figure 2.6
shows that µ = 0 results in segmentation of the individual elements in the groups,
whereas Figure 2.7 and Figure 2.8 show that µ = 0.01 · 2552 and µ = 1 · 2551 result in
segmentation of the separate groups for the former, and segmentation of all elements as
one group for the latter.

2.3.2.3 Area inside the contour

ν penalizes the area inside the contour. By setting this value to something other than
ν = 0, the area inside the contour can be forced to either shrink for ν > 0, or the area
inside the contour can be kept large by setting ν < 0. By choosing too large values for ν
the contour tends to shrink until it completely vanishes, whereas too negative values tend
to grow the contour so that it sits at the borders. The example below demonstrates the
effect of varying ν in a noisy image with a simple object. In this example µ = 0.001·2552,
λ1 = λ2 = 1.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.6: Varying the penalty for the length of the contour, for an image with grouped
elements. µ = 0.

Figure 2.12, Figure 2.13 and Figure 2.14 visualize the effect of varying ν for ν = 0,
ν = 0.07 · 2552 and ν = −0.015 · 2552 respectively.

It can clearly be seen in Figure 2.13, that large values of ν tend to shrink the contour.
Figure 2.14 shows that negative values for ν will grow the contour.

2.3.2.4 Average terms inside and outside the contour

λ1 and λ2 can be used to guide the contour towards either more or less uniform regions
in terms of pixel intensities. Most of the times it makes sense to set λ1 = λ2 = 1. This
will force the model towards the most uniform regions inside and outside the contour,
in terms of pixel intensities. This is best understand for the image where only two
intensities exists. The sums of the energy terms minimize when the difference between
the actual pixel intensity and the region average is zero inside and outside of the contour
i.e. in the case where the contour perfectly separates the two intensity levels, as can be
seen in Figure 2.2.

By either setting λ1 or λ2 to a higher value, the uniformity of the region inside
or outside the contour respectively, is weighted more heavily. Setting λ1 > λ2 weighs
uniformity of pixel intensities inside the contour more heavily than uniformity of pixel
intensities outside the contour i.e. this allows more variation in pixel intensities in
the background and limits the variation in pixel intensities inside the contour. Setting
λ1 < λ2 can be useful if the pixel intensities in the background are more uniform than
the pixel intensities in the object to be segmented e.g. an object with non-uniform pixel
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.7: Varying the penalty for the length of the contour, for an image with grouped
elements. µ = 0.01 · 2552.

intensities placed on a completely black background.
In the next example, the result of varying λ1 and λ2 are demonstrated for an image

with some circles with different intensities. In this example µ = 0.0001 · 2552 and ν = 0.
The effect of λ1 = λ2, λ1 < λ2 and λ1 > λ2 are visualized in Figure 2.15, Figure 2.16
and Figure 2.17 respectively.

Figure 2.15 clearly shows that λ1 = λ2 = 1 results in the outer two darker circles to
be segmented. Since the inner circle intensity is relatively close to the intensity of the
white background, it is excluded from the segmentation. The level set description φ in
iteration 1 nicely shows the gap this generates in the middle. Figure 2.16 demonstrates
that λ1 < λ2 forces more uniformity outside the contour. In this case this results in
inclusion of the inner circle to the segmentation even though the intensity of the inner
circle is relatively close to the intensity of the background. Figure 2.17 demonstrates
the effect of setting λ1 > λ2. In this case uniformity inside the contour weighs heavier,
thus resulting in a single circle to be segmented. This inner circle has a single intensity,
minimizing the difference in the energy term. The result is less uniformity in the pixel
intensities outside the contour.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.8: Varying the penalty for the length of the contour, for an image with grouped
elements. µ = 1 · 2552.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.9: Varying the penalty for the length of the contour, for an image from a
CT-scan of a brain with a tumor. µ = 0.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.10: Varying the penalty for the length of the contour, for an image from a
CT-scan of a brain with a tumor. µ = 0.01 · 2552.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.11: Varying the penalty for the length of the contour, for an image from a
CT-scan of a brain with a tumor. µ = 1 · 2552.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.12: Varying the penalty for the area inside the contour, for a noisy image with
a simple object. ν = 0.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.13: Varying the penalty for the area inside the contour, for a noisy image with
a simple object. ν = 0.07 · 2552.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.14: Varying the penalty for the area inside the contour, for a noisy image with
a simple object. ν = −0.015 · 2552.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.15: Varying the penalty for the average terms inside and outside the contour,
for an image with some circles with different intensities. λ1 = λ2 = 1.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.16: Varying the penalty for the average terms inside and outside the contour,
for an image with some circles with different intensities. λ1 = 0.3 and λ2 = 10.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 2.17: Varying the penalty for the average terms inside and outside the contour,
for an image with some circles with different intensities. λ1 = 1.4 and λ2 = 1.



Implementation 3
This chapter discusses all the details regarding the implementation of an accelerator for
the Chan-Vese model. Section 3.1 introduces a sequential implementation of a numer-
ical approximation for the Chan-Vese model in two dimensions. Section 3.2 discusses
the required steps to extend the given sequential implementation for contours in two
dimensional images, to surfaces in three dimensional volumes. Section 3.3 analyses the
opportunities for parallelization of both implementations, after which Section 3.4 reveals
all the details of an accelerated implementation.

3.1 Sequential implementation of a numerical approxima-
tion

This section will lay out a possible sequential implementation of the Chan-Vese model for
segmentation. The implementation uses the Successive over-relaxation (SOR) iterative
method to solve the Partial differential equation (PDE). First SOR is explained and the
discretization from [2] is presented, before the different steps of the implementation are
given and linked to the model description as given in Chapter 2.

3.1.1 SOR

SOR is a variant of the Gauss-Seidel method, which is an iterative method used to solve
a system of linear equations. SOR aims to speed up the convergence of the Gauss-Seidel
method by setting the relaxation factor ω.

Let Ax = b be a square system of n linear equations with x the unknown. Here A
is a n× n matrix and both x and b are column vectors of size n.

With this iterative technique, the left hand side of the equation can be solved for x
using values from the previous iteration on the right hand side i.e. with k the iteration

count and xki the i-th element of x at iteration k, x
(k+1)
i can be written in terms of A, b

and x
(k)
i . This can be achieved by decomposing A into a diagonal component and strictly

lower and upper triangular components, D, L and U respectively i.e. A = D + L + U .
This allows the system of equations to be written as (D+ωL)x = ωb− [ωU+(ω−1)D]x
where ω > 1 is the constant relaxation factor.

SOR then solves the equation for x, using an iterative method, which means that
the equation can also be written as can be seen in Equation (3.1).

x(k+1) = (D − ωL)−1(ωU + (1− ω)D)x(k) + ω(D − ωL)−1b (3.1)

Writing this in terms of the matrix and vector elements yields Equation (3.2).

27
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x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
, i = 1, 2, . . . , n (3.2)

Here aij denotes the element of matrix A from the i-th row and the j-th column, and
bi denotes the i-th element of b.

3.1.2 Discretization

This section presents the discretization of the iterative algorithm introduced in [2].

A finite differences implicit scheme is used to discretize the equation in φ. Finite
differences methods are numerical methods in which difference equations are used to
solve differential equations i.e. the derivatives are approximated by finite differences.

The problem is mapped onto a grid with h the space step. For an input image
with N and M the width and height respectively, grid points are defined according to
(xi, yi) = (ih, jh), where 1 ≤ i ≤ N and 1 ≤ j ≤ M . With ∆t the time step and n ≥ 0
the iteration step, φni,j = φ(n∆t, xi, yj) approximates φ(t, x, y), and φ0 = φ0.

3.1.2.1 Finite differences

This allows to define the finite differences as given in Equation (3.3).

∆x
−φi,j = φi,j − φi−1,j

∆y
−φi,j = φi,j − φi,j−1

∆x
+φi,j = φi+1,j − φi,j

∆y
+φi,j = φi,j+1 − φi,j

(3.3)

3.1.2.2 Heaviside function and one-dimensional Dirac measure

A smooth approximation, Hε(z), for the Heaviside function H(z) as defined in Equa-
tion (2.22), and a smooth approximation δε(z), for the one-dimensional Dirac measure
δ0(z) as defined in Equation (2.23), are presented in Equation (3.4) and Equation (3.5).
For ε→ 0 these approximations converge to H(z) and δ0(z).

Hε(z) =
1

2

(
1 +

2

π
arctan(

z

ε
)
)

(3.4)

δε(z) =
d

dz
Hε(z) =

ε

π(ε2 + z2)
(3.5)

3.1.2.3 Region averages

For the numerical approximation of the divergence operator in Equation (2.33), the
discretization of [24] is used. For the iterative algorithm the method of [25] is used.
As stated before in Chapter 2, the steps are to alternatingly update φ and the region
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averages c1 and c2. Given a φn, cn1 and cn2 can be computed using the equations as can
be seen in Equation (3.6).

c1(φn) =

∫
Ω u0(x, y)Hε(φ

n(x, y)) dx dy∫
ΩHε(φn(x, y)) dx dy

c2(φn) =

∫
Ω u0(x, y)(1−Hε(φ

n(x, y))) dx dy∫
Ω(1−Hε(φn(x, y))) dx dy

(3.6)

3.1.2.4 Discretization of φ in space

The evolvement of φ, as described in Equation (2.33), is discretized in space accord-
ing to [2] and [23], who adopted their methods from [25] and [24], as can be seen in
Equation (3.7).

δφi,j
δt

= δh(φi,j)

[
µ

h2
∆x
− ·

(
∆x

+φi,j√
(∆x

+φi,j)
2/(h2) + (φi,j+1 − φi,j−1)2/(2h)2

)

+
µ

h2
∆y
− ·

 ∆y
+φi,j√

(φi+1,j − φi−1,j)2/(2h)2 + (∆y
+φi,j)

2/(h2)


−ν − λ1(u0,i,j − c1(φ))2 + λ2(u0,i,j − c2(φ))2


(3.7)

Here δh is defined by Equation (3.5) with ε = h. With the space step h = 1, the
addition of a small constant η to prevent division by zero, and substitution of the finite
differences as defined in Equation (3.3), this simplifies to Equation (3.8).

δφi,j
δt

= δh(φi,j)

µ
∆x

− ·

 ∆x
+φi,j√

η2 + (∆x
+φi,j)

2 + (∆y
+φi,j + ∆y

−φi,j)
2/4

+

∆y
− ·

 ∆y
+φi,j√

η2 + (∆y
+φi,j)

2 + (∆x
+φi,j + ∆x

−φi,j)
2/4


−ν − λ1(u0,i,j − c1(φ))2 + λ2(u0,i,j − c2(φ))2


(3.8)

In order to simplify Equation (3.8) further, the weights as suggested in [23] and given
in Equation (3.9) are used to rewrite the discretization to Equation (3.10).
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ρxi,j =
µ√

η2 + (∆+
x φi,j)2 + (∆y

+φi,j + ∆y
−φi,j)

2/4

ρyi,j =
µ√

η2 + (∆+
y φi,j)2 + (∆x

+φi,j + ∆x
−φi,j)

2/4

(3.9)

δφi,j
δt

= δh(φi,j)
[
(ρxi,j∆

x
+φi,j − ρxi−1,j∆

x
−φi,j) + (ρyi,j∆

y
+φi,j − ρ

y
i,j−1∆y

−φi,j)

−ν − λ1(u0,i,j − c1(φ))2 + λ2(u0,i,j − c2(φ))2

] (3.10)

3.1.2.5 Discretization of φ in time

Equation (3.10) is discretized in time according to [23] and [25]. The idea is to compute
all the elements of φn+1 in a row-by-row sweep from the top to the bottom and from left
to right. A result of this method is that, in order to compute the φn+1, the elements
above and to the left are evaluated at time step n + 1, since they are computed earlier
in the sweep, and all other values are evaluated at time step n i.e. computation of φn+1

i,j

depends φn+1
i−1,j , φ

n+1
i,j−1, φni+1,j and φni,j+1. This is also visualized in Figure 3.1. This allows

Equation (3.10) to be rewritten to Equation (3.11).

Figure 3.1: Sequential SOR sweep dependencies.
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φn+1
i,j − φni,j

∆t
= δh(φni,j)

[
ρxi,jφ

n
i+1,j + ρxi−1,jφ

n+1
i−1,j + ρyi,jφ

n
i,j+1 + ρyi,j−1φ

n+1
i,j−1

−(ρxi,j + ρxi−1,j + ρyi,j + ρyi,j−1)φn+1
i,j

−ν − λ1(u0,i,j − c1(φn))2 + λ2(u0,i,j − c2(φn))2
] (3.11)

Moving φn+1
i,j in Equation (3.11) to the right hand side of the equation and applying

SOR for the iteration, results in the actual computation to be performed for all elements
in the grid except for the borders, as shown in Equation (3.12).

φn+1
i,j =(1− ω)φni,j+

ω ·
[
φni,j + ∆tδh(φni,j)

(
ρxi,jφ

n
i+1,j + ρxi−1,jφ

n+1
i−1,j + ρyi,jφ

n
i,j+1 + ρyi,j−1φ

n+1
i,j−1

−ν − λ1(u0,i,j − c1(φn))2 + λ2(u0,i,j − c2(φn))2
) ]

/
[
1 + ∆tδh(φni,j)

(
ρxi,j + ρxi−1,j + ρyi,j + ρyi,j−1

)]
(3.12)

The value of ω determines the convergence rate of the SOR iteration. For SOR,
1 < ω < 2 normally gives good convergence[26].

3.1.3 Algorithm

An overview of the different steps in the implementation of the algorithm is given below.

1. Initialization

• Initialize φ0 by φ0 and set n = 0.

2. Main loop

(a) Copy

• Copy φn+1 to φn

(b) Boundary conditions

• Enforce Neumann boundary conditions

(c) Region averages

• Compute region averages for φn i.e. c1(φn) and c2(φn)

(d) Finite differences

• Compute finite differences for φn

(e) Weights

• Compute weights for φn

(f) Solve the PDE

• Solve the PDE using SOR to obtain φn+1 using φn, c1(φn) and c2(φn)

3. Generate binary output image of segmentation.
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3.1.4 Setup

This subsection describes the details regarding the setup in terms of input and output
parameters, required data structures and used libraries.

Table 3.1 lists all input and output arguments of the sequential implementation. The
input arguments are parsed using the tclap library.

Name Type Default Description

input String Path to input image
output String Path to output image
timestep float 10 Timestep (∆t) size for the PDE
steps int 10 Main loop iterations
iterations int 100 Fixed number of SOR iterations per step
lambda1 float 1 Penalty for average term inside the contour (λ1)
lambda2 float 1 Penalty for average term outside the contour (λ2)
mu float 50 Penalty for the length of the contour (µ)
nu float 0 Penalty for the size of area inside the contour (ν)
omega float 1.97 Relaxation factor for SOR (ω)
checkerboard int 0 Use checkerboard initialization
circle x int xc x-coordinate of circle origin
circle y int yc y-coordinate of circle origin
circle r int min(xc, yc)/2 Circle radius

Table 3.1: Input and output arguments

In this implementation all grids are defined with a space step of h = 1. Let u0 define
a grayscale input image, with nx the width and ny the height. Empty borders are added
to u0. The question how to handle the boundaries often arises in image processing.
Here the borders, which are added to the input image, make sure that evaluation of
neighboring pixels at the edges is defined and segmentation faults are prevented. With
bx and by the widths of the borders on the sides, and top and bottom respectively, nxx
is defined as the width of the image including the borders i.e. nxx = nx + 2 · bx, and nyy
is the height of the image including the borders i.e. nyy = ny + 2 · by. xc and yc denote
the center coordinates of the image i.e. xc = nxx/2 and yc = nyy/2. This can also be
seen in Figure 3.2. The complete grid is referred to as Γ0 whereas the grid without the
borders is referred to as γ0.

The first data object described in Table 3.2 holds the input image grayscale data
where each pixel value is stored in a byte. The empty borders in the input image, in
this case, do not have to be added for possible problems around the edges, but they are
added to keep pointer arithmetic simple and similar to other nxx × nyy objects, where
the borders are required due to the reason given before.

The input image is loaded into memory from the disk using OpenCV[27], an open
source computer vision library, and is then stored in a Mat container.

In this numerical approximation a two-dimensional five-point stencil is used to solve
the PDE using SOR. The five-point stencil for a point (x, y) in a grid with space step h
can be seen in Equation (3.13) and Figure 3.3. With the grid space step set to h = 1, the
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Figure 3.2: Overview of dimension symbols. Here nx = ny = 400, bx = by = 50 and
nxx = nyy = 500. This gives xc = yc = 250.

Object Type Dimensions

u0 uchar nxx × nyy
φ float nxx × nyy
φold float nxx × nyy
ψ float nxx × nyy × 2
ρ float nxx × nyy × 5

Table 3.2: Objects in memory used in the implementation, with their types and sizes

five-point stencil determines the requirement for the border size to be bx = by = h = 1.

{(x, y), (x− h, y), (x+ h, y), (x, y − h), (x, y + h)} (3.13)

The two other objects listed in Table 3.2 are used to store intermediate computation
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Figure 3.3: The five-point stencil for a point (x, y) in a grid with space step h.

results i.e. the finite differences in ψ, and some weights, used in the SOR iteration, in ρ.

Both tables list single precision floating-point representation for most data objects.
Normally when using floating-point representation one should use double precision where
possible. In this implementation single precision representation is favored over double
precision, not to reduce memory usage, but due to the extra performance for single
precision in the special hardware targeted in the accelerated implementation. The texture
memory, for example, can not be leveraged with double precision values.

3.1.5 Initialization

This subsection discusses the initialization step of the algorithm.

The active contour is represented by the zero level set of a level set function, which
is stored in φ. Since different initial contours may result in quicker convergence, as
discussed in Chapter 2, different initial contours can be selected in the implementation.
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The two initial contours as seen in Figure 2.4 and Figure 2.5 are implemented according
to Equation (3.15) and Equation (3.14) respectively. The former results in a zero level
set that looks like a checkerboard pattern, whereas for the latter the resulting zero level
set, or initial contour, is a circle with radius r and (xc, yc) as center coordinates. The
radius and origin coordinates can be set using an input argument.

Values for φ are stored per pixel in a Mat container, as single precision floating points
as can be seen in Table 3.2. After convergence of the model, the final contour can be
collected by evaluating the zero level set of φ i.e. points for which φ = 0. The inside of
the contour can be collected by evaluating the points for which φ > 0. The outside of
the contour can be collected by evaluating the points for which φ < 0. This can also be
seen from Equation (2.21) and Figure 2.3.

The φold object is allocated to hold a copy of φ between iterations of the main loop,
which is discussed in the next subsection.

φi,j = −

(√
2i−bx−xc + 2j−by−yc

r
− 1

)
(3.14)

φi,j = sin

(
iπ

5

)
sin

(
jπ

5

)
(3.15)

The result of the initialization step for φ, with Equation (3.14) and r = 15, visualized
for a 500× 500 image can be seen in Figure 3.4.

(a) Level set: φ (b) Zero level set: φ0 i.e. φ = 0

Figure 3.4: Initialization with circle of radius r = 15 in a 500× 500 image, using Equa-
tion (3.14)

3.1.6 Main loop

The main loop, or outer loop, implements the evolvement of the contour by updating
the level set description, φ, of the contour in each iteration. Iterations of the outer loop
are referred to as steps. The outer loop can be set by an input argument to iterate for
a fixed number of iterations.
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3.1.6.1 Copy

At the beginning of each step, a copy is made of the level set description, φ, to φold. In
the main loop, φ is updated to the evolved level set description of the active contour
whereas φold holds the level set description of the active contour of the previous step i.e.
φ is the equivalent of φn+1 and φold is the equivalent of φn.

3.1.6.2 Boundary conditions

After making a copy of the level set description of the active contour, φ, the Neumann
boundary condition is enforced on the borders of φ[28][29]. This assumes that the data in
the borders, which is outside the input image overlap, is assumed to be a reflection of the
data within the borders i.e. where the input image overlaps with φ i.e. bx ≤ x ≤ nx + bx
and ny ≤ y ≤ ny + by. Since the border size is set to bx = by = 1, the implementation
becomes relatively simple and applies the reflections as can be seen in Equation (3.16)
and Equation (3.17). Equation (3.16) is applied for 0 ≤ i ≤ nxx and reflects the copy of
values in the top and bottom row, whereas Equation (3.17) is applied for 0 ≤ j ≤ nyy
and reflects the copy of values in the first and last column.

φi,0 = φi,1

φi,nyy = φi,nyy−1
(3.16)

φ0,j = φ1,j

φnxx,j = φnxx−1,j
(3.17)

The order in which these boundary conditions are applied determines the values of
the corner pixels. However, this race condition can be considered non-critical since these
values are never accessed in any of the other steps.

3.1.6.3 Region averages

The region averages, as described in Section 2.3, are computed by evaluating the regular-
ized Heaviside step function, as proposed by [2] and given in Equation (3.4) with ε = 1,
for all the values in γ0 i.e. φn for which bx ≤ i ≤ nx + bx and by ≤ j ≤ ny + by. These
results are multiplied with pixel intensities and accumulated according to Equation (3.6)
to compute c1 and c2, as can be seen in Equation (3.18).
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c1 =

nx+bx∑
i=bx

ny+by∑
j=by

Hε(φi,j) · u0i,j

nx+bx∑
i=bx

ny+by∑
j=by

Hε(φi,j)

c2 =

nx+bx∑
i=bx

ny+by∑
j=by

(1−Hε(φi,j)) · u0i,j

nx+bx∑
i=bx

ny+by∑
j=by

(1−Hε(φi,j))

(3.18)

3.1.6.4 Finite differences

In this step, the required finite differences, as given in Equation (3.3), are computed for
all values in γ0, and stored in ψ.

For example, let i = 4 and j = 8. This defines ∆x
+φ4,8 = φ5,8 − φ4,8. Now, if the

cell to the right is considered i.e. i = 5 and j = 8, ∆x
−φ5,8 = φ5,8 − φ4,8. It can clearly

be seen that ∆x
+φ4,8 = ∆x

−φ5,8. The same hold true for the ∆y
− and ∆y

+ operators. In
general this can be formulated as follows in Equation (3.19).

∆x
+φi,j = ∆x

−φi+1,j

∆x
−φi,j = ∆x

+φi−1,j

∆y
+φi,j = ∆y

−φi,j+1

∆y
−φi,j = ∆y

+φi,j−1

(3.19)

As a results, only two finite differences per cell need to be computed and stored i.e.
∆x

+ and ∆y
+. Then in order to access ∆x

−φi,j one can simply access ∆x
+φi−1,j .

3.1.6.5 Weights

In this step, the weights ρx and ρy, as given in Equation (3.9), and as used in Equa-
tion (3.12), are computed for all values in γ0, for all directions i.e. ρxi,j , ρ

x
i−1,j , ρ

y
i,j and

ρyi,j−1. The center weight, (ρxi,j + ρxi−1,j + ρyi,j + ρyi,j−1), as used in the denominator of
Equation (3.12) is also computed and stored.

3.1.7 Iterative solver loop

This implementation uses the SOR iterative solver loop to solve the PDE, as described
in Subsection 3.1.1.

In this implementation the number of iteration is fixed to the value provided as input
argument. However, instead one could also add a check to investigate if the solution has
converged i.e. if the smallest maximum difference of values in the solution between
iterations is below a certain threshold.
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Equation (3.12) is evaluated in each iteration for all cells in γ0, and φ is updated to
converge to the solution. ω can be set using an input argument or it defaults to ω = 1.97.

In each iteration, φ gets updated, and in the next iteration φ is used again as φn+1

where needed.

3.1.8 Segmentation

The final segmentation can be obtained by evaluation of φ in γ0, according to Equa-
tion (2.21). The output is a binary image with pixel values set to 0 for all φ < 0 and
pixels values to set to 1 for all φ ≥ 0.

3.2 Extending to 3D

This section extends the given sequential implementation of the Chan-Vese model with
SOR as method to solve the PDE, as described for 2D in the previous section, to an
implementation for segmentation of surfaces in 3D.

There are two ways, in general, to extend the 2D implementation to a 3D implemen-
tation. The first, most trivial way to solve 3D segmentation problems, is by using a 2D
segmentation model for each slice. However, there are many downsides to this approach
e.g. different slices require different input parameters to find the sought segmentation.
It is better to redefine the model. For the Chan-Vese model the energy functional[2], as
defined in Equation (2.32), becomes Equation (3.20), now with Ω a bounded open subset
of R3, and v0 the input volume.

F 3D
ε (c1, c2, φ) = µ

∫
Ω
δε(φ(x, y, z))|∇φ(x, y, z)| dx dy dz

+ ν

∫
Ω
Hε(φ(x, y, z))) dx dy dz

+ λ1

∫
Ω
|v0(x, y, z)− c1|2Hε(φ(x, y, z)) dx dy dz

+ λ2

∫
Ω
|v0(x, y, z)− c2|2(1−Hε(φ(x, y, z))) dx dy dz

(3.20)

The steps in the algorithm are the same as described for the 2D implementation in
Subsection 3.1.3.

3.2.1 Discretization

This subsections lists differences in the discretization, compared to the one described for
2D in Subsection 3.1.2, which are used in the implementation for 3D.

3.2.1.1 Finite differences

For the finite differences, the operators as introduced in Equation (3.3) are updated to
reflect the addition of an extra dimension, and two new operators, which reflect the finite
differences in the z direction, are introduced as can be seen in Equation (3.21).
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∆x
−φi,j,k = φi,j,k − φi−1,j,k

∆y
−φi,j,k = φi,j,k − φi,j−1,k

∆z
−φi,j,k = φi,j,k − φi,j,k−1

∆x
+φi,j,k = φi+1,j,k − φi,j,k

∆y
+φi,j,k = φi,j+1,k − φi,j,k

∆z
+φi,j,k = φi,j,k+1 − φi,j,k

(3.21)

3.2.1.2 Volume averages

Region averages c1 and c2, as introduced in Equation (3.6), are updated to integrate
over the extra dimension as can be seen in Equation (3.22), and are now referred to as
volume averages.

c1(φn) =

∫
Ω v0(x, y, z)Hε(φ

n(x, y, z)) dx dy dz∫
ΩHε(φn(x, y, z)) dx dy dz

c2(φn) =

∫
Ω v0(x, y, z)(1−Hε(φ

n(x, y, z))) dx dy dz∫
Ω(1−Hε(φn(x, y, z))) dx dy dz

(3.22)

3.2.1.3 Discretization of φ in space

The discretization of φ in space as described in Subsection 3.1.2.4, is updated to reflect
the addition of the extra dimension.

Equation (3.8) becomes Equation (3.23).

δφi,j,k
δt

= δh(φi,j,k)·µ
∆x

− ·

 ∆x
+φi,j,k√

η2 + (∆x
+φi,j,k)

2 + (∆y
+φi,j,k + ∆y

−φi,j,k)
2/4 + (∆z

+φi,j,k + ∆z
−φi,j,k)

2/4

+

∆y
− ·

 ∆y
+φi,j,k√

η2 + (∆y
+φi,j,k)

2 + (∆x
+φi,j,k + ∆x

−φi,j,k)
2/4 + (∆z

+φi,j,k + ∆z
−φi,j,k)

2/4

+

∆z
− ·

 ∆z
+φi,j,k√

η2 + (∆z
+φi,j,k)

2 + (∆x
+φi,j,k + ∆x

−φi,j,k)
2/4 + (∆y

+φi,j,k + ∆y
−φi,j,k)

2/4


−ν − λ1(v0,i,j,k − c1(φ))2 + λ2(v0,i,j,k − c2(φ))2


(3.23)

With the weights ρ, as given in Equation (3.9), updated as given in Equation (3.24),
Equation (3.10) can be rewritten to Equation (3.25).
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ρxi,j,k =
µ√

η2 + (∆+
x φi,j,k)2 + (∆y

+φi,j,k + ∆y
−φi,j,k)

2/4 + (∆z
+φi,j,k + ∆z

−φi,j,k)
2/4

ρyi,j,k =
µ√

η2 + (∆+
y φi,j,k)2 + (∆x

+φi,j,k + ∆x
−φi,j,k)

2/4 + (∆z
+φi,j,k + ∆z

−φi,j,k)
2/4

ρzi,j,k =
µ√

η2 + (∆+
z φi,j,k)2 + (∆x

+φi,j,k + ∆x
−φi,j,k)

2/4 + (∆y
+φi,j,k + ∆y

−φi,j,k)
2/4

(3.24)

δφi,j,k
δt

= δh(φi,j,k)
[
(ρxi,j,k∆

x
+φi,j,k − ρxi−1,j,k∆

x
−φi,j,k)+

(ρyi,j,k∆
y
+φi,j,k − ρ

y
i,j−1,k∆

y
−φi,j,k)+

(ρzi,j,k∆
z
+φi,j,k − ρzi,j,k−1∆z

−φi,j,k)−
ν − λ1(v0,i,j,k − c1(φ))2 + λ2(v0,i,j,k − c2(φ))2

]
(3.25)

3.2.1.4 Discretization of φ in time

The discretization of φ in time uses the same method as described in Subsection 3.1.2.5.
φn+1 is computed in a sweep from z-top to z-bottom, from left to right and from top to
bottom. Computation of φn+1

i,j,k depends on φn+1
i−1,j,k, φ

n+1
i,j−1,k, φ

n+1
i,j,k−1, φni+1,j,k, φ

n
i,j+1,k and

φni,j,k+1. This allows Equation (3.11) to be rewritten to Equation (3.26).

φn+1
i,j,k − φ

n
i,j,k

∆t
=δh(φni,j,k)·[

ρxi,j,kφ
n
i+1,j,k + ρxi−1,j,kφ

n+1
i−1,j,k+

ρyi,j,kφ
n
i,j+1,k + ρyi,j−1,kφ

n+1
i,j−1,k+

ρzi,j,kφ
n
i,j,k+1 + ρzi,j,k−1φ

n+1
i,j,k−1−

(ρxi,j,k + ρxi−1,j,k + ρyi,j,k + ρyi,j−1,k + ρzi,j,k + ρzi,j,k−1)φn+1
i,j,k

−ν − λ1(v0,i,j,k − c1(φn))2 + λ2(v0,i,j,k − c2(φn))2
]

(3.26)

Applying the same step from Subsection 3.1.2.5 allows Equation (3.12) to be rewritten
to Equation (3.27).
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φn+1
i,j,k =(1− ω)φni,j,k+

ω ·
[
φni,j,k + ∆tδh(φni,j,k)·(

ρxi,j,kφ
n
i+1,j,k + ρxi−1,j,kφ

n+1
i−1,j,k+

ρyi,j,kφ
n
i,j+1,k + ρyi,j−1,kφ

n+1
i,j−1,k+

ρzi,j,kφ
n
i,j,k+1 + ρzi,j,k−1φ

n+1
i,j,k−1+

−ν − λ1(v0,i,j,k − c1(φn))2 + λ2(v0,i,j,k − c2(φn))2
) ]

/
[
1 + ∆tδh(φni,j,k)

(
ρxi,j,k + ρxi−1,j,k + ρyi,j,k + ρyi,j−1,k + ρzi,j,k + ρzi,j,k−1

)]

(3.27)

3.2.2 Implementation

This section discusses the differences between the sequential implementation of the al-
gorithm for 2D and the implementation for 3D.

3.2.2.1 Setup

The setup is slightly different compared to the setup as described for 2D in Subsec-
tion 3.1.4. Input and output arguments no longer point to images, but instead they
point to volumes. Also, the penalties for the length of the contour and the size of the
area inside the contour, become penalties for the surface area of the surface and the
volume inside the surface.

Let v0 define a volume consisting of nz grayscale images, with nx and ny the width
and height respectively. nz could also be referred to as the depth. Empty borders,
bx = by = bz = 1 are added in all dimensions to prevent out of bound accesses. nxx,
nyy and nzz are defined as the dimensions of the volume including the borders. The
five-point stencil becomes a seven-point stencil, as can be seen in Equation (3.28), for
a grid point (x, y, z) with space step h = 1. The volumetric grid with the borders is
referred to as Γ1 whereas the grid without borders is referred to as γ1.

{(x, y, z), (x−h, y, z), (x+h, y, z), (x, y−h, z), (x, y+h, z), (x, y, z−h), (x, y, z+h)} (3.28)

The data objects, as described in Table 3.2, increase in size as can be seen in Table 3.3.
v0, φ and φold need to store the extra dimension. The finite differences, stored in

ψ, requires an extra dimension for the volume, but also another dimension for the extra
finite difference in the z direction. ρ requires two additional dimensions for a seven-
point stencil, one to compensate for extra dimension of the volume, and the other to
compensate for the added weights in the z direction.

3.2.2.2 Initialization

The initialization of φ with a circle with radius r, as described for 2D in Equation (3.14),
is updated to initialize φ according to Equation (3.29). Here zc = nzz/2.
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Object Type Dimensions

v0 uchar nxx × nyy × nzz
φ float nxx × nyy × nzz
φold float nxx × nyy × nzz
ψ float nxx × nyy × nzz × 3
ρ float nxx × nyy × nzz × 7

Table 3.3: Objects in memory used in the implementation for 3D, with their types and
sizes

φi,j,k = −

(√
2i−bx−xc + 2j−by−yc + 2k−bz−zc

r
− 1

)
(3.29)

Again, the radius and origin coordinates can be changed by input arguments.

The checkerboard initialization as given in Equation (3.15) is updated as can be seen
in Equation (3.30).

φi,j,k = sin

(
iπ

5

)
sin

(
jπ

5

)
sin

(
kπ

5

)
(3.30)

3.2.2.3 Main loop

In the main loop, the computations are updated to reflect the changes in the model.
Equation (3.31) shows the Neumann boundary conditions which are applied.

φ0,j,k = φ1,j,k

φnxx,j,k = φnxx−1,j,k

φi,0,k = φi,1,k

φi,nyy ,k = φi,nyy−1,k

φi,j,0 = φi,j,1

φi,j,nzz = φi,j,nzz−1

(3.31)

Here the subscripts indicate iterations over all elements in γ1 in the specific dimension.

The volume averages are computed according to Equation (3.32).
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c1 =

nx+bx∑
i=bx

ny+by∑
j=by

nz+bz∑
k=bz

Hε(φi,j,k) · v0i,j,k

nx+bx∑
i=bx

ny+by∑
j=by

nz+bz∑
k=bz

Hε(φi,j,k)

c2 =

nx+bx∑
i=bx

ny+by∑
j=by

nz+bz∑
k=bz

(1−Hε(φi,j,k)) · v0i,j,k

nx+bx∑
i=bx

ny+by∑
j=by

nz+bz∑
k=bz

(1−Hε(φi,j,k))

(3.32)

For the finite differences, the same method as described in Section 3.1.6.4 is applied
to save memory by only storing the forward finite differences. The formulation is given
in Equation (3.33).

∆x
+φi,j,k = ∆x

−φi+1,j,k

∆x
−φi,j,k = ∆x

+φi−1,j,k

∆y
+φi,j,k = ∆y

−φi,j+1,k

∆y
−φi,j,k = ∆y

+φi,j−1,k

∆z
+φi,j,k = ∆z

−φi,j,k+1

∆z
−φi,j,k = ∆z

+φi,j,k−1

(3.33)

The updated equation for the weights, as given in Equation (3.24), is used to compute
the weights for the 3D implementation. Again, SOR is used to solve the PDE. An
extra loop is added to loop over the third dimension from the top to the bottom. The
segmentation is obtained by evaluation of φ in γ1, again setting pixel values to 0 for all
φ < 0 and pixels values to 1 for all φ ≥ 0.

3.3 Parallelization opportunities

This section investigates parallelization opportunities for the given sequential implemen-
tation for the 2D segmentation using the Chan-Vese model. The 2D model is considered
here since updating it to support 3D is trivial at this point. This section is organized
as follows. First some profiling results are investigated to spot parallelization opportu-
nities. Next, different acceleration platforms are discussed and considered, after which
an accelerated implementation is discussed in detail.

Computation steps from the algorithm are now referred to as kernels. The kernels
as listed in Table 3.4 are distinguished throughout this analysis.

3.3.1 Profiling

Profiling results of the implementation as described for 2D, and executed for 4 different
setups, are shown in Figure 3.5. The 4 different setups are as follows.
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Kernel Reference

Initialization init

Copy copy

Boundary conditions boundaries

Region averages averages

Finite differences differences

Weights weights

Solve the PDE sor

Generate output output

Table 3.4: The different kernels and their reference considered in the analysis for paral-
lelization.

1. Input image size: 1000× 1000. 100 SOR iterations.

2. Input image size: 1000× 1000. 10 SOR iterations.

3. Input image size: 500× 500. 100 SOR iterations.

4. Input image size: 500× 500. 10 SOR iterations.

The initialization and output kernels are missing from the profiling results, since they
are outside the main loop.

Setup 1 Setup 2 Setup 3 Setup 4

0

20

40

60

80

100

%
of

ru
n
ti

m
e

copy boundaries averages differences weights sor

Figure 3.5: Profiling results for different input image sizes and different number of SOR
iterations.

It can clearly be seen that the most compute intensive kernel is the one which solves
the PDE i.e. sor. For 100 SOR iterations the contribution of the sor kernel is 98% of
the total runtime for both the 500× 500 and 1000× 1000 images. Even if the number of
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iterations is reduced by an order of magnitude, the sor kernel still contributes to over
80% of the runtime. For the reduced number of SOR iterations, it becomes visible that
the averages (10%) and the weights (5%) are computationally more intensive than for
example the copy (0.1%) and the boundaries (0.001%) kernels.

3.3.2 Kernels

This subsection discusses parallelization opportunities by investigation of data depen-
dencies on the kernel level. However, first parallelization opportunities at the algorithm
level are investigated.

The complexity of the kernels is analyzed using the Parallel random-access machine
(PRAM) model and the Work-Time (WT) paradigm. For simplicity N = nxx = nyy and
M = nx = ny.

3.3.2.1 Algorithm step concurrency

Before investigating the individual kernels, the different steps of the algorithm are inves-
tigated for parallelization opportunities.

It is evident that the initialization kernel, init, can not be overlapped with the
execution of another step. All computation in the main loop depend on the values of φ
set by this step.

The copy kernel, copy, prepares a copy of φ for evaluation in the sor kernel. However,
since the boundary condition, applied in the boundaries kernel, modify the borders of
this copy for evaluation in the finite differences kernel, differences, the kernel can not
be executed in parallel with these kernels.

It can be concluded that the boundary conditions kernel, boundaries, requires the
results of the copy kernel, so these two kernels can not run in parallel.

The next kernel is region averages kernel, averages. This kernel does not depend on
either the copy or boundary condition kernel. Therefor, it can be run concurrent with
these two kernels.

As stated before, the finite differences kernel, depends on the copy and boundary
condition.

The weights kernel, weights, requires the results of the finite differences kernel, so
it can not run in parallel with any of the other kernels.

The SOR kernel, sor, requires the results of the weights kernel and the region averages
kernel, therefor it can not run in parallel with any of the other kernels.

The kernel which generates the binary output image, output, requires the final result
of φ, which is computed in the main loop. Therefor it can not be run concurrently with
any other kernels.

The above is summarized in Figure 3.6, where it can be seen that the execution of
the region average kernel can be overlapped with the execution of the copy, boundary
conditions, finite differences and weights kernel. Barriers indicate a synchronization
point and arrows indicate a kernel launch.
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Figure 3.6: Algorithm step concurrency.

3.3.2.2 Initialization

The initialization kernel computes a single value for each element in φ, excluding the
borders, according to Equation (3.14). This requires O(M2) work. All these computation
are independent which means that in theory all values can be computed in parallel. This
results in a time complexity of O(1) for the parallel kernel.

3.3.2.3 Copy

In this kernel all elements of φ are copied to φold. This requires O(N2) work. All these
operations are independent which means that they could in theory all be executed in
parallel. This results in a time complexity of O(1) for the parallel copy. In theory, only
the values of φ excluding the border have to be copied, since the border values are set
by the boundary condition later on. This reduces the work to O(M2).

3.3.2.4 Boundary conditions

This kernel copies values at the boundary of the φ. This requires W = 2M = O(M)
work. All these operations are independent, which allows parallel computation of all
operations, resulting in a time complexity of O(1) for the parallel kernel.

3.3.2.5 Region averages

Computation of c1 and c2 are independent. However, this kernel is a bit more com-
plicated in terms of parallelization opportunities because the computation requires a
reduction sum. The total number of operations is W = 2M2 = O(M2). Summation of
multiple elements in parallel can be solved with a reduction tree with a time complexity
of O(log(M)).

3.3.2.6 Finite differences

The finite differences kernel computes two values per grid point resulting in W = 2M2 =
O(M2). Again there are no dependencies between the computations per grid point
resulting in a time complexity for a parallel kernel of O(1).
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3.3.2.7 Weights

The weights kernel computes 5 values for each grid point resulting in W = 5M2 =
O(M2). The computations are independent within the grid, resulting in a time com-
plexity of O(1) for the parallel kernel.

3.3.2.8 Solve the PDE

Parallelization of the SOR kernel is essential in terms of acceleration opportunities due to
the high contribution of this kernel to the runtime, however it is also the most complex.
With K the total number of SOR iterations steps, the amount of work is W = KM2 =
O(M2).

Discretization in time for φ in the sequential implementation is based on the sweep
from top to bottom and left to right. This determined where to use new values of φ
i.e. φn+1, and where to evaluate the values of φ from the previous iteration i.e. φn. In
the sequential implementation, grid values above and to the left are evaluated at φn+1

and all others at φn. If the values of φ were to be computed in parallel there is no
control over which time step is evaluated when φ is accessed i.e. either n or n+ 1. This
however is essential for the convergence to the solution [25]. This is a common problem
when solving PDE numerically. In general SOR is known to be bad for parallelization[30]
when compared to the Jacobi method for example[31]. However, there are ways to exploit
parallelism in this iterative method [32][33][34][35][36][37][38][39][40].

By using a Red-Black ordering the kernel can be parallelized. This results in K =
O(1) as the time complexity of the parallel kernel. The implementation is discussed later
in this chapter.

3.3.2.9 Generate output

This kernel evaluates φ at each pixel, and set the value of the output image to either
0 for φ < 0, or to 1 for φ > 0. There are no dependencies which allows for parallel
computation of all elements in the grid. This results in W = M2 and a time complexity
of O(1).

3.3.3 Overview

This subsection lists a summary of the discussed opportunities for parallelization. The
two different types of parallelization investigated are parallelization by launching kernels
in parallel, and parallelization within the kernels.

Figure 3.6 shows that the region averages kernel can be launched in parallel, within
the main loop, with the following kernels: copy, boundaries, differences and weights.
However, it is not expected to have a big impact on the speedup, since the profiling
results, as given in Figure 3.5, show little contribution to the total runtime by this
kernel.

Most kernels have great potential for parallelization, since in those kernels the com-
putations are independent. The results in terms of the WT paradigm for the PRAM
model are shown in Table 3.5.
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Kernel Work Time

init O(M2) O(1)
copy O(N2) O(1)
boundaries O(M) O(1)
averages O(M2) O(log(M))
differences O(M2) O(1)
weights O(M2) O(1)
sor O(M2) O(1)
output O(M2) O(1)

Table 3.5: Parallelization opportunities per kernel in terms of the WT paradigm for the
PRAM model.

3.4 Accelerated implementation

This section discusses all details regarding acceleration of the discussed implementation
for 2D on an hardware acceleration platform. An accelerated implementation which runs
on the CPU and uses OpenMP has also been implemented for both 2D and 3D. The
performance of the different implementations for both 2D and 3D, hardware acceleration
and CPU, are compared in Chapter 4.

3.4.1 Evaluation of acceleration platforms

This subsection compares and evaluates different acceleration platforms to be used to
accelerate the discussed implementation, by combining parallelization of the kernels and
the algorithm steps as described in the previous section. Two different acceleration
platforms are considered. The first is an Field-programmable gate array (FPGA), and the
second is a Graphics processing unit (GPU) for General-purpose computing on graphics
processing units (GPGPU).

3.4.1.1 FPGAs

FPGAs are integrated circuits which can be configured to implement any arbitrary func-
tion. FPGAs are often used as accelerators to exploit parallelism in a certain kernel of
an application. In most cases, the FPGA is configured to be filled with a large array of
compute or process elements. Because of the flexibility of this platform, a lot of kernels
can be implemented very efficiently in terms of energy consumption and utilization of
available resources.

FPGAs have been successfully leveraged as accelerators for kernels of image analysis
algorithms[41][42]. Also, with the introduction of Coherent Accelerator Processor Inter-
face (CAPI)[43], FPGAs can now be connected with a cache coherent interface to the
host processor running the host application. This makes movement and modification of
data relatively simple and convenient, without great loss of performance.

From the analysis of the given implementation it can be learned that most of the
computations in the kernels are dealing with floating-point numbers. FPGAs nowadays
have some support for floating-point arithmetic, however the number of floating-point
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units is still limited and performance gains compared to normal microprocessors come
from massive parallelization rather than from the floating-point operations themselves,
for which the microprocessor outperforms the FPGA[44]. It might be possible to convert
some of the floating-point operations to fixed-point arithmetic to overcome this limita-
tion. However, this is a very complex task, and well beyond the scope of this thesis.

3.4.1.2 GPUs

GPUs are integrated circuits designed to do computations and memory alterations re-
lated to the creation and output of images and video data. Their highly parallel structure
makes them very effective at image processing tasks.

With the introduction of both Compute Unified Device Architecture (CUDA) by
NVidia[45], and the open source OpenCL framework[46], GPUs became more accessible
as generalized computation devices, allowing them to act as accelerators for all kinds of
different computationally intensive tasks. This is also referred to as GPGPU.

CUDA, as mentioned before, is the parallel computing platform and application
programming interface from NVidia. Software engineers can write device kernels for the
GPU and invoke them with a certain configuration from their host application.

CUDA has been leveraged successfully to accelerate kernels for image analysis[47][48].

3.4.1.3 Overview

FPGAs and GPUs have both been leveraged to accelerate kernels in image analysis algo-
rithm. Both acceleration platforms have their advantages and disadvantages when used
in image processing[49]. There are also cases where both these platforms are combined
for a image processing task[50][51].

Available host to device and on-device memory bandwidth is another important as-
pect to consider. Applications are either limited by the available bandwidth or by the
available computation power. If the ratio of the number of floating point operations
to the number of bytes required in the algorithm is bigger than the available band-
width, the application is considered bandwidth limited, whereas if this ratio is smaller
than the available bandwidth, the application is limited by the number of floating point
operations.

Since the implementation used in this thesis for the Chan-Vese model requires a great
number of floating-point operations, and can fully be mapped on the acceleration plat-
form, the GPU is selected as the acceleration platform for the accelerated implementation
described in this section.

From now on, device refers to the GPU.

3.4.2 Data movement and kernel invocation

Two types of parallelism were investigated in the previous section. Parallel invocation
of kernels and parallelization of computations within kernels. Since the expected benefit
from parallel kernel invocation is low, this is not implemented. In order to implement
this, one could create two different CUDA streams, and launch the copy and region
average kernel in parallel.
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Data movement and allocation is explicit in CUDA. Movement of data between the
host and GPU always introduce some overhead. Profiling results, given in Figure 3.5,
show that the kernel which solves the PDE using SOR, is the most compute intensive.
Initially one could choose to accelerate this kernel solely on the GPU, however, this is far
from ideal, since the invocation of this kernel originates from within the main loop, which
runs for a number of iterations. In this case the sor kernel computes a new φ, which
then would have to be moved back to the host after the SOR iteration, and then from
the host back to the device, after applying the Neumann boundary conditions. Another
way to approach acceleration of the problem is to move all the kernels to the GPU for
computation. The data movement would then be limited to the absolute minimum i.e. a
copy of the source image and model parameters from host to device during initialization,
and a copy of the resulting segmentation image after completion of the main loop from
device to host. In this case all other data objects reside is the device’s global memory,
except for the source image. Since the source image is never altered it can be mapped to
the GPU texture memory, which is a cached read only memory optimized for 2D spatial
locality. Other data structures which are read only for other kernels are also bound to
texture memory.

Considering all kernels have some parallelization opportunities, and ignoring overhead
from data movement, there is a small theoretical benefit from accelerating these kernels
on the GPU, even though their contribution to the compute time is small. Considering
the data movement overhead, there is a large benefit from mapping all kernels on the
GPU and therefor minimizing the data transfers between host and device.

Because the required number of iterations in the main loop might be large for certain
segmentation problems, for this implementation all kernels are mapped to the GPU,
including the initialization and output kernels.

The next design choice is related to the main loop and kernel invocation. Invoking
GPU kernels can be done from either the host or from the device. CUDA allows definition
of so called global and device functions. Global functions define kernels which can be
launched from both the host and device. Global kernels are always launched with a
certain configuration. CUDA kernels are launched in a grid, which can be 1-,2- or 3-
dimensional[52]. The grid consists of blocks, which can also be 1-,2- or 3-dimensional.
Each block has a number of threads. The configuration determines the number of blocks
in the grid and the number of threads in a block. The syntax for a kernels launch is
kernel<<<dim3 blocks, dim3 threads>>>(function parameters). When a kernel is
launched, blocks are assigned to multiprocessors by a scheduler. The blocks are then split
into warps which consist of a number of threads that can run on the GPU, and handle part
of a computation based on their coordinate within the launched grid. This scheduling
and mapping introduces some overhead. Global kernels can also be launched from the
device. This is referred to as dynamic parallelism[53]. CUDA device functions are
kernels, which are the equivalent of normal functions on the host, and which can only be
called from the device. There is little to no overhead from calling these device functions.
This brings up the design choice and consideration for kernel invocations. However, first
synchronization needs to be considered. CUDA has the ability to synchronize all threads
within a block. However, there is no barrier for synchronization between blocks other
than kernel invocations. One might use atom operations, however, this has turned out
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to be cumbersome and not very efficient.
Considering kernel invocation overhead and synchronization limitations, two possible

kernel invocation schemes were considered. The first invocation scheme uses dynamic
parallelism, and launches a single kernel, with a single thread acting as the control
thread, from the host. This kernel then launches all other kernels from the device using
dynamic parallelism. In this case the iteration counter for the main loop resides on the
device. There is no interaction with the host, other than the initial kernel launch and
data movements for initialization and output collection. With the second invocation
scheme, the iteration counter for the main loop resides on the host. Each iteration, all
the different kernels are launched by the host. Two main benefits of this scheme are the
implicit synchronization between kernel launches, and the possibility to change configu-
rations per kernel launch. In this scheme the initialization and output kernels are also
launched separately from the host, before and after the main loop kernel invocation re-
spectively. Unfortunately, the first scheme does not benefit from the possible advantages
of dynamic parallelism, since there is no change in granularity, nested parallelism or
dynamic work generation. An other scheme in which the main loop resides on the device
is not considered because there is no good option for synchronization across blocks.

This results in the second invocation scheme to be used in this implementation.
More details regarding data movement and kernel invocation configurations are dis-

cussed in the next subsection, which discusses details per CUDA kernel.

3.4.3 CUDA kernels

This subsection discusses details regarding the implementation of the CUDA kernels.
Each kernel is discussed separately.

3.4.3.1 Setup

In order to be able to use the GPU for acceleration of the given implementation, some
memory needs to be allocated on the device for storage of data objects used in the
implementation, and some data needs to be moved from the host to the device. First
memory for the data objects, as listed in Table 3.2, is allocated on the device. Then the
source image is copied to the device and bound to device texture memory. Other data
objects are also bound to device texture memory.

Function parameters can be passed with each kernel launch, but they can also be
stored in the constant memory of the device. This sounds like a good idea, however
it turns out to decrease the performance[54]. Therefor, this implementation passes the
required function parameters with each kernel launch.

During the setup, a launch configuration variable is set based on the image size. In
this implementation most kernels are launched with a thread per pixel. This does not
always ensures the best performance, however it makes building the kernels extremely
easy. In this implementation the blocks are launched in a 2D grid. The number of
required blocks in the grid depends on the number of threads per block. The number of
threads per block is limited by the GPU architecture. In this case 1024 is the maximum
number of threads per block. Launching this number of threads in a 2D configuration
results in a 32×32 grid of threads per block, because

√
1024 = 32. The dimensions of the
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grid of blocks are then determined according to Equation (3.34). One could also launch
the kernel with a different number of threads per block, however in order to maximize
the benefit from the L2 cache for reads from global memory, this method results in the
smallest number of halo cell reads. Comparison with other block dimensions showed
worse performance for configurations other than the 32× 32 configuration.

threadsPerBlockx = 32

threadsPerBlocky = 32

numBlocksx = ceil(
nxx

threadsPerBlockx
)

numBlocksy = ceil(
nyy

threadsPerBlocky
)

(3.34)

This configuration allows to determine the index and coordinates of a thread accord-
ing to Listing 1.

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

const int i = y * nxx + x;

Listing 1: Determine coordinates and index within a CUDA thread.

For some kernels, threads might be launched for grid coordinates which require no
computation. For example if there are no computations for the threads mapped on the
borders of the image or outside of the image due to the ceil function, the thread can be
terminated according to Listing 2 or Listing 3, in order to check if the thread is mapped
on the border or outside the image respectively.

const int x = blockIdx.x * blockDim.x + threadIdx.x;

if (x < bx || x >= nx + bx) return;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

if (y < by || y >= ny + by) return;

const int i = y * nxx + x;

Listing 2: Thread termination for threads mapped on the border.

const int x = blockIdx.x * blockDim.x + threadIdx.x;

if (x >= nxx) return;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

if (y >= nyy) return;

const int i = y * nxx + x;

Listing 3: Thread termination for threads mapped outside the image.
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3.4.3.2 Initialization

The initialization kernel sets all values of φ according to Equation (3.14) or Equa-
tion (3.15). Based on the input arguments the correct kernel is selected to initialize
φ.

The implementation is very straightforward for both possibilities. Since border pixels
are not set, threads outside the grid or on the border are terminated.

The function parameters are a pointer to the level set description φ and information
about the dimensions of the source image. For the circle initialization method, the radius
and origin coordinate are also passed as arguments.

Each thread writes a single value to the global memory of the device.

3.4.3.3 Copy

The copy kernel is not implemented as a global CUDA function. Instead, the cudaMemcpy
function is used with cudaMemcpyDeviceToDevice as the type of transfer.

This step reads and writes N2 values from and to global device memory.

3.4.3.4 Enforce Neumann boundary condition

The boundaries kernel is launched with a different configuration. Since it only reads
and writes 2M values from global memory it is a bad idea to launch N2 or more threads.
Instead the kernel is splitted in to a kernel which copies the rows and a kernel which
copies the columns. For the rows, the number of threads in a block in the y-direction is
set to 2, one for the top row and one for the bottom row. For the column copy kernel
the launch configuration it is the other way around.

Equation (3.16) is applied in the column copy kernel and Equation (3.17) is applied
in the row copy kernel.

Each thread read and writes a single value to the global device memory.

3.4.3.5 Region averages

The region averages kernel is a bit more interesting in terms of parallelization. The
reduction from [55] is used to reduce the values within blocks. The kernel makes use
of shared memory on the device. The shared memory on the device is shared between
different treads within a block. Each block uses 4 · 1024 · 4 = 16384 bytes of shared
memory. 4 is the amount of values that are reduced i.e. the numerator and denominator
for both c1 and c2 according to Equation (3.18). 1024 is the number of threads per
block. And the other 4 is the number of bytes per value. Since single precision-floating-
point numbers are used, this is 32 bits per value or 4 bytes. Each thread computes part
of the sum of Equation (3.18). Then threads within the block are synchronized using
__syncthreads(), and the results are reduced and stored in global device memory. Then
a second kernel is launched to reduce the summation results from the different blocks
in the grid. A second kernel launch is needed since there is no good way to synchronize
across blocks as mentioned before. This kernel is launched for a single thread which
collects, adds and divides the results from all the different blocks to compute c1 and c2,
which are then stored in the device’s global memory.
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Each thread in the average kernel fetches both the grayscale value of the image and
the value of φ from texture memory.

The reduce kernel writes the averages c1 and c2 to the device’s global memory.

3.4.3.6 Finite differences

Implementation of the CUDA kernel for the finite differences kernel is straightforward.
Each thread computes the values for the forward finite differences from Equation (3.19)
and stores them in global device memory.

Each threads fetches the required values of φ from the texture memory and stores
the finite differences in the global device memory.

3.4.3.7 Weights

The CUDA kernel which computes the weights is reads finites differences from global
device memory and writes the weights to the device memory. Each thread computes the
different weights from Equation (3.9).

Each threads reads 5 elements from global memory and writes 5 values to global
memory.

3.4.3.8 Solve the PDE

The most interesting kernel for acceleration using CUDA is the sor kernel. Since the
problems mentioned before, a straightforward implementation would not work in this
case. Instead the red-black ordering is used to update φ in the iterations[56]. In the red-
black ordering the grid is split in red and black cells. The color of a cell is determined
by (x + y) mod 2. If x + y is even cells are colored red, whereas if x + y is odd the
cells are colored black. This results in a checkerboard of red and black cells as shown in
Figure 3.7.

Since a five-point stencil is used, red cells solely depend on values of black cells,
and black cells solely depend on values of red cells. This allows for concurrency when
updating cells of the same color. In the implementation the SOR iteration counter
resides on the host. Each iteration two CUDA kernels are launched after each other.
One kernel which updates all the red cells, and one which updates all the black cells,
both according to Equation (3.12), with the difference that all the accessed cells of φ can
be considered φn+1, instead of using φn+1 for the upper cell and the cell to the left in the
sequential sweep. Because the kernels are launched from the host, there is an implicit
barrier between the two invocations.

The kernel launches half the number of blocks in the x-direction since only half the
cells in a row are updated in a single kernel launch. The indexing is determined by
setting an offset to either 0 or 1 and add this to the x-coordinate of the thread. Then
for the index the result of y mod 2 is added to generate the checkerboard read pattern
for the rows. This can be seen in Listing 4.

The kernel fetches grayscale source image values and values of φ and the weights from
texture memory. Each thread writes a single value of φn+1 to device global memory.
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Figure 3.7: Red-black ordering.

const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + offset;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

const int i = y * nxx + x + (y & 1);

Listing 4: Determine coordinates and index within the sor kernel.

3.4.3.9 Generate output

The CUDA kernel which implements the generation of the binary output image is
straightforward. Each thread sets the value at its index to either 1 or 0 based on φ.
After the generation of the output image, the image is copied from the device back to
the host.

Finally, all allocated device memory gets freed and texture memory gets unbounded.

3.4.3.10 Acceleration of the 3D implementation

In the accelerated implementation for 3D the CUDA kernels are launched in a 3D grid
of 2D blocks. The resulting index is determined as can be seen in Listing 5.

For the sor kernel, the coordinates and index are computed according to Listing 6.
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const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

const int z = blockIdx.z;

const int i = z * nyy * nxx + y * nxx + x;

Listing 5: Determine coordinates and index within a CUDA thread for the 3D imple-
mentation.

const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + offset;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

const int z = blockIdx.z;

const int i = z * nxx * nyy + y * nxx + x + (y & 1) + (z & 1);

Listing 6: Determine coordinates and index within the SOR kernel for the 3D imple-
mentation.



Results 4
4.1 Setup

Two different systems were used to analyze the performance of the implementations for
both 2D and 3D of the Chan-Vese model, as described in Chapter 3. Details on both
systems are listed in Table 4.1.

System
Name IBM Power8 S824L Similde

CPU
Processor IBM POWER8 Intel Xeon E5420
Number of processors 2 1
Number of cores per processor 10 8
Clock frequency 3.42 GHz 2.50 GHz
L2 cache 512 KB per core 3 MB per core
L3 cache 8 MB per core
L4 cache 16 MB per DIMM

Memory
RAM 256 GB 32 GB
Memory bandwidth 230 GB/s

GPU
Device K40 GTX 750 Ti
CUDA architecture Kepler Maxwell
Number of CUDA cores 2880 640
Base clock frequency 745 MHz 1.02 GHz
Boost clock frequency 810 MHz and 875 MHz 1.085 GHz
Memory 12 GB 2 GB
Memory bandwidth 288 GB/s 86.4 GB/s
CUDA compiler V7.5.17 V7.0.27

OS
Distribution Ubuntu 15.04 Ubuntu 14.04.3 LTS
Kernel Linux 3.19.0-28-generic ppc64le Linux 2.6.32-24-server x86 64

Table 4.1: Comparison of the two different test systems.

The POWER8 system, which is used, is part of the FPGA Research Infrastructure
Cloud (FAbRIC) project. This project, which is supported by grants from International
Business Machines (IBM) and National Science Foundation (NSF), allows researchers
access to powerful state of the art hardware, to explore the potential of these high perfor-
mance systems and reconfigurable hardware, without having to invest in these relatively
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expensive systems. Each POWER8 node in FAbRIC has an NVidia K40 Graphics pro-
cessing unit (GPU) and two Coherent Accelerator Processor Interface (CAPI) accelerator
cards installed. The FAbRIC is located in Texas Advanced Computing Center (TACC)
at the University of Texas at Austin.

The system is configured with the Simultaneous multithreading (SMT) mode off.
This technology allows multiple instruction streams, up to 8 per physical core, within
the processor. Applications where the available chip’s memory bandwidth is not fully
utilized might see an increase in performance with SMT enabled. Investigation of the
utilization of the available memory bandwidth for the OpenMP implementation running
with 20 threads i.e. a single thread per physical core, shows up to 25% utilization
of the available bandwidth for the weights kernel, and even less for the other kernels.
This is well below the available memory bandwidth and suggests that there might be a
performance increase from enabling the SMT mode on the POWER8. This however has
not been tested due to the configuration on the FAbRIC nodes.

The Similde system is owned by the Computer Engineering laboratory of Delft Uni-
versity of Technology. The server has a consumer grade GPU installed, the NVidia GTX
750 Ti.

4.2 Segmentation of surfaces in 3D

The ability to quickly converge to a good set of parameters which allow the Chan-Vese
model to segment tumors in CT-scan volumes has not been tested due to the lack of a
good data set. The 3D implementation is tested with a generated data set and a small
data set of slices of a healthy brain.

The generated volume contains a single solid box inside a 100 × 100 × 100 volume.
The evolvement of the surface can be seen in Figure 4.1.

For the slices of a healthy brain the isosurface shown in Figure 4.2a has been seg-
mented using the implementation for 3D. The contours of different slices are plotted in
Figure 4.2b. Some slices of the brain volume used in this example are also shown in
Figure 4.2. The brain volume consists of 100 slices with a dimension of 256× 256.

4.3 Performance

The performance of the accelerated implementations is evaluated on both implementation
and kernel level. The following implementations are distinguished.

Name Description

seq Sequential implementation
omp# OpenMP implementation with # the number of threads
cuda Compute Unified Device Architecture (CUDA) implementation

Table 4.2: Different implementations.

In the following results, the IO is excluded from the results i.e. reading the image or
volume and writing the result.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 10

Figure 4.1: Evolvement of surface segmenting a solid box in a generated data set. µ =
0.01 · 2552, ν = 0 and λ1 = λ2 = 1.

Speedup comparison is indicated by implementation1-implementation2 e.g. seq-cuda
indicates the speedup between the sequential and CUDA implementation.

Figure 4.3 and Table 4.3 show the speedup of the CUDA implementation per kernel
for the 2D implementation on both systems compared to sequential implementations. A
2048× 2048 source image is used, and the number of steps is set to 10.

Kernel p8-single p8-double similde-single similde-double

init 160.7 116.5 136.0 18.5
copy 17.6 13.3 40.5 38.1
boundaries 1.1 3.4 3.3 5.4
averages 17.7 15.9 18.8 10.7
differences 165.7 123.0 21.9 22.4
weights 73.0 35.9 7.0 82.3
sor 58.8 24.7 33.6 20.1

Table 4.3: Speedup seq-cuda per kernel comparison for the 2D implementations.

All CUDA kernels outperform their sequential CPU variants. It can be seen that the
most important Successive over-relaxation (SOR) kernel has a speedup of over 56 for
single precision, and over 24 for double precision.

Figure 4.4 and Table 4.4 show the execution times for the different 2D implementa-
tions. The same input image is used and the steps are set to 10.

The CUDA implementation is able to iterate 10 steps of the main loop in little
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(a) Isosurface of the segmentation of the healthy
brain slices after 10 iterations.

(b) Plot of some contour slices from the seg-
mented surface of the healthy brain slices.

(c) Slice 36 (d) Slice 65 (e) Slice 82

Figure 4.2: Segmentation results for 100 slices of a healthy brain. µ = 0.01 · 2552, ν = 0
and λ1 = λ2 = 1.

Implementation p8-single p8-double similde-single similde-double

seq 93.44s 85.35s 162.70s 174.31s
omp2 47.55s 41.35s 81.55s 98.22s
omp4 23.50s 21.05s 45.16s 79.85s
omp8 12.87s 10.98s 40.23s 78.77s
omp10 10.34s 8.84s
omp16 6.33s 6.13s
omp20 5.11s 5.57s
cuda 1.64s 3.44s 4.97s 8.86s

Table 4.4: Execution times for the 2D implementations.

over 1.5 seconds for the input image with a size of 2048 × 2048. This is significantly
more responsive than the sequential implementation with single precision taking over 90
seconds.

Figure 4.5 and Table 4.5 show the speedup of the different implementations for 2D.
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Figure 4.3: Speedup seq-cuda per kernel comparison for the 2D implementations.

The same 2048× 2048 source image is used, and the number of steps is fixed to 10.

Implementation p8-single p8-double similde-single similde-double

seq-cuda 56.9 24.8 32.7 19.7
seq-omp2 2.0 2.1 2.0 1.8
seq-omp4 4.0 4.1 3.6 2.2
seq-omp8 7.3 7.8 4.0 2.2
seq-omp10 9.0 9.7
seq-omp16 14.8 13.9
seq-omp20 18.3 15.3
omp8-cuda 7.8 3.2 8.1 8.9
omp20-cuda 3.1 1.6

Table 4.5: Implementation speedup for the 2D implementations.
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Figure 4.4: Execution times for the 2D implementations.

It can be seen that the OpenMP speedup scales almost linear on both systems.
The speedup comparison between the OpenMP implementations running with 8 threads
and the CUDA implementation shows a speedup of roughly 8 for single and double
precision on the Similde system, whereas a speedup of roughly 8 and 4 is achieved for
single and double precision on the POWER8 system. This however is compared with
a POWER8 system with SMT mode off, and investigation of utilization of available
memory bandwidth shows that the POWER8 should be able to reduce the advantage
of the CUDA implementation by enabling SMT mode. However, there is also room for
improvement in terms of coalesced memory accesses for the CUDA implementation, as
can be seen from the efficient memory bandwidth utilization results below.

For 3D segmentation of large volumes it is important to note that the OpenMP
implementation is the better one since the available amount of memory is limited on the
K40 GPU to 12GB whereas the POWER8 system has 256GB of RAM.

Figure 4.6 and Table 4.6 show the speedup of the implementation for 3D on the
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Figure 4.5: Implementation speedup for the 2D implementations.

POWER8 system for both single and double precision. An randomly generated 100 ×
100× 100 is used with 10 iterative steps.

A speed up of 107 is achieved over the sequential implementation with single precision.
Speedup for double precision is 48 when compared to the sequential implementation.
Comparison with a 20 thread OpenMP implementation results in a speedup of 6 and 3
for single and double precision respectively.

Figure 4.7 and Table 4.7 show the efficient bandwidth for the 2D single precision
implementation on POWER8. The efficient bandwidth is defined as the ratio of between
the number of bytes read and written by a kernel over the execution time of the kernel
in seconds.

By coalesced memory accesses to global device memory one can improve the efficient
bandwidth utilization.

Other metrics for the performance of the kernels have also been investigated with the
help of the NVidia profiler tools. These results show that there is still room for improve-
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Implementation p8-single p8-double

seq-cuda 107.9 48.9
seq-omp2 2.0 1.9
seq-omp4 3.9 2.7
seq-omp8 7.6 6.4
seq-omp10 9.7 7.4
seq-omp16 13.2 8.7
seq-omp20 17.5 15.2
omp8-cuda 14.2 7.7
omp20-cuda 6.1 3.2

Table 4.6: Implementation speedup for the 3D implementations on the POWER8.
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Figure 4.6: Implementation speedup for the 3D implementations on the POWER8.

Kernel Efficient bandwidth [GB/s]

init 73.9
copy 164.4
boundaries 1.4
averages 4.0
differences 240.5
weights 236.5
sor 21.4

Table 4.7: Efficient bandwidth of the single precision implementation for 2D on the
POWER8.
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Figure 4.7: Efficient bandwidth of the single precision implementation for 2D on the
POWER8.

ment in terms of efficient bandwidth utilization of the SOR kernel. Recommendations
are given in the next chapter.



66 CHAPTER 4. RESULTS



Conclusion 5
This chapter lists some conclusions and tries to answers the questions as stated in Chap-
ter 1. It also lists a number of suggestions and recommendations for future work.

5.1 Conclusions

The following questions were stated in Chapter 1.

1. Can medical experts use the Chan-Vese model for segmentation to delineate tumors
visible in a volume resulting from an X-ray computed tomography, in a semi-
automatic fashion, where the results of the segmentation can be influenced by a
set of parameters, to guide the model towards the required solution?

2. Is it possible to extend a given sequential implementation of a numerical approx-
imation of the Chan-Vese model for two dimensional images, to support three
dimensional volumes for segmentation of surfaces?

3. Can the implementation be accelerated without loss of accuracy, using special
hardware which exploits parallelization, to streamline the experience for medical
experts when model parameters need to be fine tuned?

This thesis provides the following answers, insights and solutions to these questions.

1. The usability of the Chan-Vese model in terms of ability to segment tumor visible
in a volume has been evaluated in this thesis. From the results given in Chapter 4 it
can be seen that the Chan-Vese model can successfully be used to delineate objects
within a volume resulting from an X-ray computed tomography. The model is not
fully automatic, but from Chapter 2 it can be learned that the available parameters
of the Chan-Vese model give the user good control over the evolvement of the
contour, and therefor the implementation of the model can be considered semi-
automatic. The parameters allow the user to set penalties for the length of the
contour, the area inside the contour and the uniformity of the pixel intensities in-
and outside the contour. Besides, the shape and placement of the initial contour
also allows to influence the result of the segmentation. These tools allow the user to
guide the model in many different ways, allowing complex segmentation problems
to be solved with the use of this model. The fact that the Chan-Vese model does
not depend on a gradient to define edges makes it more versatile than other edge
based segmentation methods. The ability to delineate tumors within a computed
tomography scan of the brain has not been evaluated.
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2. The given sequential implementation which uses Successive over-relaxation (SOR)
to solve the Partial differential equation (PDE) can be extended to support three
dimensional volumes for the segmentation of surfaces, as can be learned from Chap-
ter 3. The steps to go from the mathematical description of the model for 2D to
the discretization of the model for implementation with SOR to solve the PDE,
are given together with the steps to take this discretization and implementation
from 2D to 3D.

3. The given implementation was investigated for parallelization opportunities, and
the results were shared in Chapter 3. The same chapter discusses details regarding
a possible implementation on an Field-programmable gate array (FPGA) or a
Graphics processing unit (GPU). GPUs were selected over FPGAs due to their
natural capability to deal with image data and their superior floating-point units.
The whole model was mapped onto the GPU to minimize the data transfers to an
absolute minimum. Chapter 4 shows that utilization of the accelerated Compute
Unified Device Architecture (CUDA) implementation on a POWER8 platform with
a K40 GPU results in a speedup of 56 for 2D and 107 for 3D implementations with
single precision, compared to sequential implementations, which is a significantly
reduces the delay in the feedback loop, allowing medical experts to quickly converge
to the right set of parameters for the given segmentation problem. The OpenMP
implementation shows that the feedback loop is also reduced significantly for a
multiple threaded implementation on the POWER8, which like the K40 GPU has
a high memory bandwidth.

5.2 Future work

This section lists some suggestions and recommendations for future work.

• Test the implementation of the model with real medical data. Tests with real data
could point to possible problems or areas of possible improvement.

• Integrate the ITK library to read medical data containers[57].

• Create a module for 3D Slicer to allow medical experts to interactively guide a
contour towards a perfect segmentation of the surface of a tumor. More details
regarding this suggestion can be found in Subsection 5.2.2.

• Investigate the usability and performance in terms of successful delineation of the
Chan-Vese model for vector valued images.

• Experiment with different and additional terms in the energy functional of the
Chan-Vese model to reflect certain aspects which are not influencing the evolvement
in the original Chan-Vese model.

• Evaluate the performance on the POWER8 system with Simultaneous multithread-
ing (SMT) enabled, and compare the limitations and difference in bottlenecks for
CPU and GPU implementations.
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5.2.1 Optimizations

There are several unimplemented optimizations that could be considered for the CUDA
implementation to increase the performance and speedup over the sequential implemen-
tation. Below some possible optimizations are listed.

• For this implementation most kernels were launched with a single thread per pixel.
This makes indexing extremely easy, however, it results in a lot of overhead due to
the relatively large number of threads that need to be launched and scheduled. A
possible optimization would be to change the launch configurations of the kernels
in a way which would give more work to each thread and at the same time reducing
the number of threads to be spawned with each kernel invocation.

• The efficiency of the sor kernel can be improved by storing the required data
structures separate for the red and black grid[58]. This improves memory coalescing
and the efficient memory bandwidth utilization.

• Leverage shared memory in the sor for the values of φn. Another potential op-
timization moves more computations to the sor kernel to reduce the number of
global memory reads.

• Allow for problem size reduction during initialization to reduce the number of
unwanted delineated objects. This would also improve the performance, and at
the same time it causes for quicker parameters set convergence.

5.2.2 Integration with 3D Slicer

3D Slicer is an open source software package for medical image analysis and visualiza-
tions[59].

A module could be created for 3D Slicer which allows the user to interactively make
use of the accelerated implementation of the Chan-Vese model to segment tumors in 3D
CT-scans. Ideally the user would have the ability to place any initial contour and then
start tuning the parameters to segment the object of interest. Because the accelerated
implementation is used, the feedback loop should be relatively short and finding the
right set of parameters is done in an interactive way where changes of parameters are
reflected in terms of segmentation quickly. The segmentation results could be visualized
nicely from within 3D Slicer.

Another important addition could be the ability to manually edit the contour to
fix small issues which can not be fixed easily by changing the parameters or the initial
contour.
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