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Abstract: In this work we propose a Self-Triggered Control (STC) strategy for linear time-
invariant (LTI) systems subject to bounded disturbances, using LTI discrete-time dynamic
output-feedback. The STC logic computes worst-case triggering times from available informa-
tion, based on a Periodic Event Triggered Control (PETC) triggering function. In the case of no
perturbation and full state information, the discrete times can be determined exactly, defining
unions of cones in the state space. When bounded disturbances are present, we compute worst-
case triggering times and their associated state-space regions. If full state information is also
not available, we use a special observer to compute the worst-case triggering times, yielding an
STC logic that only needs the current system output and the controller state. For all cases, we
provide sufficient conditions for stability and L2-gain from disturbance to output.

Keywords: Control systems, digital control, linear systems, bounded disturbances,
self-triggered control, networked control systems.

1. INTRODUCTION

In Networked Control Systems (NCSs), communication
constraints can impose limits to the number of devices
sharing a network. Promising to reduce the amount of
transfered control data, aperiodic sampling methods like
Event-Triggered Control (ETC) and Self-Triggered Con-
trol (STC) have been gaining increased attention, espe-
cially since the results obtained over the past decade in,
e.g., Tabuada (2007); Anta and Tabuada (2008); Mazo Jr.
et al. (2010); Fiter et al. (2012); Heemels et al. (2013).

Through a simple triggering mechanism, ETC only up-
dates sensors data and actuator commands when certain
conditions are met. While effective in reducing the number
of communications, ETC has little communication pre-
dictability. Such predictability is critical for NCSs because
communications need to be properly scheduled so as to
avoid conflicts and lose control performance. STC was pro-
posed aiming at this predictability. In STC, the controller
decides the next sampling instant based on the estimate
of when an underlying triggering condition would occur.
Unfortunately, even for linear systems, estimating the
triggering time involves solving a transcendental equation
(Mazo Jr. et al., 2010), so existing solutions are generally
conservative when compared to the ETC equivalent, i.e.,
sampling occurs more often. Another drawback is that
the implementation loses its original simplicity and more
computational power is needed for the time computations.

Another approach to deal with communication predictabil-
ity in the ETC/STC context is to design a scheduler for
ETC. A promising approach is by abstracting the closed-
loop system by Timed Automata, whose discrete states
are partitions of the original state-space. Kolarijani and
� This work is supported by the European Research Council through
the SENTIENT project (ERC-2017-STG #755953).

Mazo Jr (2016) have been successful in defining these par-
titions for linear time-invariant (LTI) systems. However,
the number of resulting polytopes grows exponentially
with the plant’s state space dimension.

When systems are subject to disturbance, some important
properties of ETC are lost if the well established relative
triggering is used. In particular, the event separation prop-
erty can be lost when the state norm is small enough, i.e.,
the Zeno effect can occur (Borgers and Heemels, 2014).
When output-feedback is used, Zeno can occur even in the
absence of disturbances. One possible solution to avoid
Zeno is using Periodic ETC (PETC), proposed by Heemels
et al. (2013), where the controller runs in a periodic fashion
– in that way, event separation of at least one sample
time can be ensured. In his thesis, Fu (2018) derives
an abstraction for PETC for linear systems subject to
bounded disturbances, in the same philosophy as Kolar-
ijani et al. (2015); Kolarijani and Mazo Jr (2016). Such
abstraction suffers from the same curse of dimensionality
and introduces significant conservatism when disturbances
are taken into account. Also, for the output-feedback case,
the abstraction still relies on full-state information.

We set ourselves the task of finding improved timing
prediction for ETC of LTI systems subject to bounded
disturbances. We start from the STC implementation of
the PETC for the unperturbed state-feedback case in
Donkers (2011). Our contribution is expanding it for the
perturbed case and for the output-feedback case. In both
cases, the corresponding worst-case triggering times can be
used either as an STC or as a worst-case estimate for the
next triggering time of a PETC. For the perturbed case,
our solution results in a state-space partition for lower
bounds of triggering times that is less conservative than
the ones existing in the literature, such as in Fu (2018).
Our partitioning also does not suffer from the curse of
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dimensionality as the number of sets is a function of the
time steps, growing linearly with the selected precision.

STC for perturbed LTI systems has also been considered
in Mazo Jr. et al. (2010). While the authors succeed in
proposing an STC that renders the closed loop exponen-
tially input to state stable (EISS), the resulting EISS-gain
from disturbance to state is often very high. In a sense, our
work on perturbed state-feedback STC is also similar to
the “State-Dependent Sampling” (SDS) proposed in Fiter
et al. (2012), but instead of using the same regions as in
the unperturbed case, we propose new ones. Compared to
it, our approach is significantly simpler, as their solution
requires solving a significant number of LMIs and line
searches (at least 400 in the provided 2-state example).
For output feedback, the literature is more scarce. Almeida
et al. (2014) have proposed STC for output-feedback, but
they constrained their solution to observer-based state
feedback. In this work we consider a more general form
of linear dynamic output-feedback controller.

1.1 Notation

We denote as N0 the set of natural numbers including
0 and N the same set without it. For a vector x ∈ Rn

we denote by ‖x‖ :=
√
xTx its 2-norm. For a matrix

A ∈ Rn×m we denote by AT its transpose, by λmax(A)
its maximum eigenvalue, by |A| its 2-induced norm and
by Tr (A) its trace. For a symmetric matrix A described in
blocks, we may use � to denote blocks that can be induced
by symmetry. Also, for any matrix A, a row index set
I ⊆ {1, ..., n} and a column index set J ⊆ {1, ...,m}
we denote A|I,J the sub-matrix of A indexed by those
sets. If I = {1, . . . , n} or J = {1, . . . ,m} we use A|I,•
or A|•,J , respectively. For a symmetric square matrix
S ∈ Rn×n, we use S � 0 if it is positive-definite and
S � 0 if it is semi-positive definite. For a signal ξ : R+ →
Rn, ‖ξ(t)‖L2

:=
√∫∞

0
ξ(τ)2dτ denotes its L2-norm and

‖ξ(t)‖L∞ := ess supt |ξ(t)| denotes its L∞-norm.

2. PROBLEM DEFINITION

Consider an LTI system of the form:{
ξ̇p(t) = Apξp(t) +Bpυ̂(t) + Eω(t)

ψ(t) = Cpξp(t),
(1)

where ξp(t) ∈ Rnp is the plant state, υ̂(t) ∈ Rnυ is its
input, ω(t) ∈ Rnω is the unknown disturbance and ψ(t) ∈
Rnψ is the plant’s output. Ap, Bp, E and Cp are constant
matrices of appropriate dimensions. The plant is controlled
with discrete-time output feedback as in Heemels et al.
(2013); Fu (2018):{

ξc(k + 1) = Acξc(k) +Bcψ̂(k)

υ(k) = Ccξc(k) +Dcψ̂(k),
(2)

where ξc(k) ∈ Rnc is the controller state, υ(k) ∈ Rnυ is the

controller command and ψ̂(k) ∈ Rnψ is its available input.
Ac, Bc, Cc and Dc are constant matrices of appropriate
dimensions.

The controller runs every h time units, so we define
tk = kh as the time instant at which the controller runs
its k-th update. A sample-and-hold mechanism is used

between controller and plant, such that, for a sampling
sequence K := {kb|b ∈ N0} we have that υ̂(t) = υ(kb) for

t ∈ [hkb, hkb+1) and ψ̂(k) = ψ(hkb) for k ∈ [kb, kb+1).

On a self-triggered control strategy, every time the output
vector ψ is updated and υ is sent to the actuator, the
controller decides at which instant the next update will be
required. On the discrete-time controller considered, if the
controller updates its data at instant k, then it will decide
a value ∆k ∈ N such that data will be updated again at
k+∆k. This is when the controller requests data from the
sensors, updates its output and sends it to the actuators.
We can then define the sequence of triggering instants on
a self-triggered control strategy as:

Ks := {kb|b ∈ N0, k0 = 0, kb+1 = kb +∆kb} . (3)

Throughout this paper, the following assumptions hold:

Assumption 1. Disturbances satisfy ω ∈ L2 and the pair
(Ap, Cp) in (1) is observable.

We now define our main problem:

Problem 2. Given a plant model (1) and a controller model
(2) with time step h, design an algorithm that computes
∆kb at instant tkb

, such that the closed loop system
sampled under the sequence (3) is input-to-state stable.

3. SELF-TRIGGERED CONTROL FOR PERTURBED
SYSTEMS

In this section we revisit a PETC strategy and design a
self-triggering rule that guarantees stability for systems
with bounded disturbances ω(t).

3.1 Periodic Event-Triggered Control

Let ζT :=
[
ψT υT

]
and ζ̂T :=

[
ψ̂T υ̂T

]
. The centralized

version of the output-feedback PETC proposed in Heemels
et al. (2013) is as follows:

ζ̂(tk) =

{
ζ(tk), if ‖ζ(tk)− ζ̂(tk−1)‖ > σ‖ζ(tk)‖
ζ̂(tk−1), otherwise.

(4)

The event condition for (4) and several other PETC mech-
anisms can be reformulated as a quadratic form (Heemels
et al., 2013), defining the following event sequence:

Kb :=
{
kb|b ∈ N0, χ

T (tkb
)Qχ(tkb

) > 0
}
, (5)

where χT (tk) :=
[
ξT (tk) ζ̂T (tk)

]
, ξT (tk) :=

[
ξTp (tk) ξTc (k)

]
,

with (Fu, 2018):

Q =

[
Q̄1 Q̄2

Q̄T
2 Q̄3

]
, (6)

Q̄1 =

[
ςCT

p Cp 0

0 ςCT
c Cc

]
, Q̄2 =

[
−CT

p 0

ςCT
c Dc −CT

c

]
,

Q̄3 =

[
I + ςDT

c Dc −DT
c

−Dc I

]
.

(7)

Matrices I and 0 are respectively the identity and the zero
matrix, both with appropriate dimensions, and ς := 1−σ2.

The vector ζ̂(tk) can be expressed as a function of the
current state after the last trigger:

ζ̂(tk) = CEξ(tk), CE =

[
Cp 0

DcCp Cc

]
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dimensionality as the number of sets is a function of the
time steps, growing linearly with the selected precision.
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proposing an STC that renders the closed loop exponen-
tially input to state stable (EISS), the resulting EISS-gain
from disturbance to state is often very high. In a sense, our
work on perturbed state-feedback STC is also similar to
the “State-Dependent Sampling” (SDS) proposed in Fiter
et al. (2012), but instead of using the same regions as in
the unperturbed case, we propose new ones. Compared to
it, our approach is significantly simpler, as their solution
requires solving a significant number of LMIs and line
searches (at least 400 in the provided 2-state example).
For output feedback, the literature is more scarce. Almeida
et al. (2014) have proposed STC for output-feedback, but
they constrained their solution to observer-based state
feedback. In this work we consider a more general form
of linear dynamic output-feedback controller.

1.1 Notation

We denote as N0 the set of natural numbers including
0 and N the same set without it. For a vector x ∈ Rn

we denote by ‖x‖ :=
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xTx its 2-norm. For a matrix

A ∈ Rn×m we denote by AT its transpose, by λmax(A)
its maximum eigenvalue, by |A| its 2-induced norm and
by Tr (A) its trace. For a symmetric matrix A described in
blocks, we may use � to denote blocks that can be induced
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we denote A|I,J the sub-matrix of A indexed by those
sets. If I = {1, . . . , n} or J = {1, . . . ,m} we use A|I,•
or A|•,J , respectively. For a symmetric square matrix
S ∈ Rn×n, we use S � 0 if it is positive-definite and
S � 0 if it is semi-positive definite. For a signal ξ : R+ →
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:=
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0
ξ(τ)2dτ denotes its L2-norm and

‖ξ(t)‖L∞ := ess supt |ξ(t)| denotes its L∞-norm.

2. PROBLEM DEFINITION

Consider an LTI system of the form:{
ξ̇p(t) = Apξp(t) +Bpυ̂(t) + Eω(t)

ψ(t) = Cpξp(t),
(1)

where ξp(t) ∈ Rnp is the plant state, υ̂(t) ∈ Rnυ is its
input, ω(t) ∈ Rnω is the unknown disturbance and ψ(t) ∈
Rnψ is the plant’s output. Ap, Bp, E and Cp are constant
matrices of appropriate dimensions. The plant is controlled
with discrete-time output feedback as in Heemels et al.
(2013); Fu (2018):{

ξc(k + 1) = Acξc(k) +Bcψ̂(k)

υ(k) = Ccξc(k) +Dcψ̂(k),
(2)

where ξc(k) ∈ Rnc is the controller state, υ(k) ∈ Rnυ is the

controller command and ψ̂(k) ∈ Rnψ is its available input.
Ac, Bc, Cc and Dc are constant matrices of appropriate
dimensions.

The controller runs every h time units, so we define
tk = kh as the time instant at which the controller runs
its k-th update. A sample-and-hold mechanism is used

between controller and plant, such that, for a sampling
sequence K := {kb|b ∈ N0} we have that υ̂(t) = υ(kb) for

t ∈ [hkb, hkb+1) and ψ̂(k) = ψ(hkb) for k ∈ [kb, kb+1).

On a self-triggered control strategy, every time the output
vector ψ is updated and υ is sent to the actuator, the
controller decides at which instant the next update will be
required. On the discrete-time controller considered, if the
controller updates its data at instant k, then it will decide
a value ∆k ∈ N such that data will be updated again at
k+∆k. This is when the controller requests data from the
sensors, updates its output and sends it to the actuators.
We can then define the sequence of triggering instants on
a self-triggered control strategy as:

Ks := {kb|b ∈ N0, k0 = 0, kb+1 = kb +∆kb} . (3)

Throughout this paper, the following assumptions hold:

Assumption 1. Disturbances satisfy ω ∈ L2 and the pair
(Ap, Cp) in (1) is observable.

We now define our main problem:

Problem 2. Given a plant model (1) and a controller model
(2) with time step h, design an algorithm that computes
∆kb at instant tkb

, such that the closed loop system
sampled under the sequence (3) is input-to-state stable.

3. SELF-TRIGGERED CONTROL FOR PERTURBED
SYSTEMS

In this section we revisit a PETC strategy and design a
self-triggering rule that guarantees stability for systems
with bounded disturbances ω(t).

3.1 Periodic Event-Triggered Control

Let ζT :=
[
ψT υT

]
and ζ̂T :=

[
ψ̂T υ̂T

]
. The centralized

version of the output-feedback PETC proposed in Heemels
et al. (2013) is as follows:

ζ̂(tk) =

{
ζ(tk), if ‖ζ(tk)− ζ̂(tk−1)‖ > σ‖ζ(tk)‖
ζ̂(tk−1), otherwise.

(4)

The event condition for (4) and several other PETC mech-
anisms can be reformulated as a quadratic form (Heemels
et al., 2013), defining the following event sequence:

Kb :=
{
kb|b ∈ N0, χ

T (tkb
)Qχ(tkb

) > 0
}
, (5)

where χT (tk) :=
[
ξT (tk) ζ̂T (tk)

]
, ξT (tk) :=

[
ξTp (tk) ξTc (k)

]
,

with (Fu, 2018):

Q =

[
Q̄1 Q̄2

Q̄T
2 Q̄3

]
, (6)

Q̄1 =

[
ςCT

p Cp 0

0 ςCT
c Cc

]
, Q̄2 =

[
−CT

p 0

ςCT
c Dc −CT

c

]
,

Q̄3 =

[
I + ςDT

c Dc −DT
c

−Dc I

]
.

(7)

Matrices I and 0 are respectively the identity and the zero
matrix, both with appropriate dimensions, and ς := 1−σ2.

The vector ζ̂(tk) can be expressed as a function of the
current state after the last trigger:

ζ̂(tk) = CEξ(tk), CE =

[
Cp 0

DcCp Cc

]
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Since the system is LTI, the state after ∆k samples can be
written as ξ(tk+∆k) = M(∆k)ξ(tk) + θ(∆k), with:

M(∆k) =

[
M1(∆k)
M2(∆k)

]
, θ(∆k) =

[
θ1(∆k)

0

]
.

M1(∆k) = [I 0] +

∫ h∆k

0

eApsds (Ap [I 0] +Bp [DcCp Cc]) ,

M2(∆k) = A∆k
c [0 I] +

∆k−1∑
i=0

Ai
cBc [Cp 0] , (8)

θ1(∆k) =

∫ ∆kh

0

eAp(∆kh−s)Eω(s)ds.

Therefore the triggering condition can be written as:

∆k(ξ(tk)) = inf
{
∆k ∈ N

∣∣χ(tk+∆k)
TQχ(tk+∆k) > 0

}
,

χ(tk+∆k) =

[
M(∆k)ξ(tk) + θ(∆k)

CEξ(tk)

]
. (9)

If we design an STC logic that triggers no later than
the PETC, i.e., computing ∆k ≤ ∆k(ξ(tk)), closed loop
stability and L2-gain can be verified with the following
corollary to Theorem V.2 in Heemels et al. (2013):

Corollary 3. Consider the following non-deterministic im-
pulsive model:[

χ̇(t)
τ̇(t)

]
=

[
Āχ(t) + B̄ω(t)

1

]
, when τ(t) ∈ [0, h]

[
χ+(t)
τ+(t)

]
=




[
J1χ(t)

0

]
, when t = h,

[
J2χ(t)

0

]
, when t = h, χT (t)Qχ(t) ≤ 0,

ψ(t) = C̄χ(t), (10)

where

Ā =



Ap 0 0 Bp

0 0 0 0
0 0 0 0
0 0 0 0


 , B̄ =



E
0
0
0


 , C̄ = [Cp 0 0 0] ,

J1 =




I 0 0 0
BcCp Ac 0 0
Cp 0 0 0
0 Cc Dc 0


 , J2 =



I 0 0 0
0 Ac Bc 0
0 0 I 0
0 0 0 I


 , (11)

with Ā, B̄, J1 and J2 being partitioned according to

χT =
[
ξTp ξTc ψ̂T ν̂T

]
. Let ρ > 0, γ > 0 and consider also

H :=

[
Ā+ ρI B̄B̄T

−γ2C̄T C̄ −(Ā+ ρI)T

]
,

G(t) := e−Ht =

[
G11(t) G12(t)
G21(t) G22(t)

]
.

(12)

Assume G11(t) in invertible for all t ∈ [0, h] 1 . Denote
Ḡ11 := G11(h), Ḡ12 := G12(h) and Ḡ21 := G21(h). Suppose
there exists a symmetric matrix Ph � 0 and a scalar µ ≥ 0
such that 


Ph JT

1 Ḡ−T
11 PhS̄ JT

1 Φ(Ph)
� I − S̄TPhS̄ 0
� � Φ(Ph)


 � 0,



Ph + µQ JT

2 Ḡ−T
11 PhS̄ JT

2 Φ(Ph)
� I − S̄TPhS̄ 0
� � Φ(Ph)


 � 0,

(13)

1 It always holds for sufficiently small h (Heemels et al., 2013)

with Φ(Ph) := Ḡ−1
11 PhḠ

−1
11 + Ḡ21Ḡ

−1
11 and S̄ satisfying

S̄S̄T = −Ḡ−T
11 Ḡ12. Then the PETC implementation in

(4) is Globally Exponential Stable (GES) with decay rate
ρ when ω(t) ≡ 0 and has an L2-gain from ω to ψ smaller
or equal than γ. Moreover, any logic that triggers no later
than such a PETC logic has the same stability and L2-gain
properties.

Proof. (Sketch) We kindly refer the reader to the proof
of the original theorem in (Heemels et al., 2013, Theorem
V.2), where a similar set of Linear Matrix Inequalities
(LMIs) are derived as sufficient conditions for the stability
and L2-gain properties of the PETC. From that, consider
a centralized version of the output feedback, constraining
the J matrices to J1 and J2 in (11). The main change
with respect to the original Theorem is to consider that
triggering may happen earlier, so the triggering function
χT (t)Qχ(t) may still be smaller than zero. Therefore, we
allow the jumps in (10) according to J1 at any situation,
not only when the triggering function is positive. Then,
while the second LMI in (13) uses the S-procedure to
encode the triggering function being non-positive, the first
LMI assumes nothing related to the triggering function,
and the term Ph comes alone in the first block. 2

3.2 Computation of self triggering times

Based on Eq. (9) we start by constructing a self-triggered
logic depending solely on the state value ξ(kb) at each
triggering time. To simplify the notation, we hereafter
denote x := ξ(tkb

) as the current state available to the
controller and use subscripts for the sample dependence
on the matrices: M∆k := M(∆k) and θ∆k := θ1(∆k).

We start by considering zero disturbance. In this case, the
PETC has an equivalent STC implementation as noted by
Donkers (2011). The minimum triggering time in (9) can
be written as:

∆k(x) = inf
{
∆k ∈ N

∣∣xTQ∆kx > 0
}
, (14)

where

Q∆k =

[
M∆k

CE

]T
Q

[
M∆k

CE

]
. (15)

We denote by R∆k ⊆ Rnp+nc the set of states x such that
triggering occurs according to (14). These subspaces can
be calculated as:

R1 = {x ∈ Rnp+nc |xTQ1x > 0}

R∆k = {x ∈ Rnp+nc |xTQ∆kx > 0} \
∆k−1⋃
l=1

Rl

(16)

With a designed maximum triggering time ∆k, the values
of Q∆k,∆k = 1, ...,∆k, can be computed off-line. Hence,
checking at which region R∆k the state belongs takes at
most ∆k operations.

Now we consider the effect of disturbances. We start from
the following assumption (Fu, 2018):

Assumption 4. The disturbance ω(t) satisfies ω(t) ∈ L∞.
Besides, an upper bound W > 0,W ∈ R for the latter is
known, i.e., W ≥ ‖ω(t)‖L∞ .

2 The first LMI is a sufficient condition for the periodic controller
to have such stability and L2-gain properties.
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This allows us to determine a bound to ‖θ∆k‖ (Fu, 2018):

‖θ∆k‖ ≤
∫ h∆k

0

e
λmax

(
AT

p +Ap

2

)
s
ds|E|W = Θ∆k. (17)

Now we can design a triggering condition that triggers no
later than the one in (4). Recall that it can be expressed
in the form (9), which in turn can be expanded as:

xTQ∆kx+2xT

[
M∆k

CE

]T[
Q̄1

Q̄T
2

][
I
0

]
θ∆k + θT∆kQ̄1pθ∆k >0, (18)

where Q̄1p := Q̄1|N ,N ,N := {1, ..., np}. Using the bound
in (17) we define a new triggering logic of the form:

xTQ∆kx+ 2‖FT
∆kx‖Θ∆k + c∆k > 0, (19)

where F∆k :=[I 0](Q̄1M∆k + Q̄2CE) and c∆k := |Q̄1p|Θ2
∆k.

The left-hand side (LHS) of (19) is by construction always
greater than or equal to the LHS of (18). Therefore, (19)
constitutes a conservative triggering logic with respect to
the disturbances which only depends on the state. It can
be implemented as an STC with the following algorithm:

Algorithm 1. Computation of triggering times.

∆k ← 1
s ← xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k

while (s ≤ 0) ∧ (∆k ≤ ∆k) do
∆k ← ∆k + 1
s ← xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k

end while

This algorithm can be used for the unperturbed case by
taking Θ∆k = 0, ∀∆k ∈ {1, ...,∆k}. Notice that F∆k

and c∆k can be computed off-line. For the state-space
partitioning, we can compute the sets S∆k as S1 = {x ∈
Rnp+nc |xTQ1x + 2‖FT

1 x‖Θ1 + c1 > 0} and S∆k = {x ∈
Rnp+nc |xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k > 0} \⋃∆k−1
l=1 Sl.

Remark 5. Since c∆k > 0, the LHS of (19) is positive for
x = 0 (and for sufficiently small x). Therefore, this logic
tends to yield periodic control, with ∆k = 1 as the state
approaches the origin.

4. OUTPUT-BASED SELF-TRIGGERED CONTROL

Up to this point, we have defined self-triggered policies
based on the last available state. While they work for the
output feedback case, their implementation still relies on
some information of the full state; namely, in which of the
regions R∆k or S∆k they belong. This hinders its appli-
cability to output-feedback. In this Section, we design an

STC strategy that relies solely on the plant output ψ̂(kb)
and the controller states ξc(kb). However, we start by not-
ing that some information on the unmeasured subspace of
the state space is necessary to sample less frequently than
periodically with ∆k = 1. We can see that by segregating
the contribution of the unmeasured component of the
states to the function χT (t)Qχ(t) ignoring disturbances.
Since the plant is assumed observable, take the plant in
its normal observable form. Hence, Cp = [I 0] and we can

set ξ(t)T :=
[
ψ(t)T ψ̄(t)T

]
, where ψ̄(t) ∈ Rnp−nψ is the

vector of unmeasured states at time t. Assume we have an
estimate ȳ0 for ȳ := ψ̄(tkb

) and denote the estimate residue

rȳ := ȳ − ȳ0. Note that x = x̃ + [0 I 0]
T
rȳ. From (4), we

can rewrite the condition in (14) as:

x̃TQ∆kx̃+ 2x̃TQ∆k|•,J rȳ + rTȳ Q∆k|J,J rȳ > 0, (20)

where x̃T =
[
yT ȳT0 xT

c

]
, xc := ξc(kb) and J = {nψ +

1, . . . , np}. From (7) and (15), we have that Q∆k|J,J =
(1 − σ2)M∆k|TI,JM∆k|I,J � 0, with I = {1, . . . , nψ}.
Therefore, unless M1|I,J = 0, there will always be rȳ,
large enough, such that the LHS in (20) is positive.

The observation above hints that bounds are needed
for the unmeasured subspace, even without disturbances.
Hence, we will later build an observer that computes
bounds to rȳ. For now, we assume an ellipsoidal bound
is known to propose the following Lemma:

Lemma 6. Consider the triggering function χ(tkb
)TQχ(tkb

)
in (5), with the triggering logic defined in (4). Let Assump-
tion 4 hold. Assume there is a matrix Hb := H(kb) and an
estimate ȳ0 such that rTȳ H

−1
b rȳ ≤ 1. Then the function

η(x̃, Hb,∆k) := x̃TQ∆kx̃+ 2‖FT
∆kx̃‖Θ∆k + c∆k+

2
√
x̃TQ∆k|•,JHbQ∆k|T•,J x̃+ λmax (HbQ∆k|J,J )+

2Θ∆k

√
λmax (Q∆k|TJ,NHbQ∆k|J,N ) (21)

is an upper bound to χ(tkb
)TQχ(tkb

).

Proof. We apply a similar procedure to the one described
in Sec. 3.2 and bound the individual terms of the triggering
function expanded in terms of x̃, rȳ and θ∆k:

x̃TQ∆kx̃+ 2x̃TFT
∆kθ∆k + θT∆kQ̄1pθ∆k+

2x̃TQ∆k|•,J rȳ + rTȳ Q∆k|J,J rȳ + 2rTȳ Q∆k|J,N θ∆k.

The first three terms are bounded like in Sec. 3.2. The
remaining bounds can be derived by using the transforma-
tion rȳ = Sr, with S satisfying SST = Hb. Then rT r ≤ 1.
We therefore use matrix norms and eigenvalues to bound
each term. The remaining terms are x̃TQ∆k|•,JSr ≤
‖x̃TQ∆k|•,JS‖, rTSTQ∆k|J,JSr ≤ λmax(S

TQ∆k|J,JS);
and rTȳ Q∆k|J,N θ∆k ≤ Θ∆k

∣∣STQ∆k|J,N
∣∣. Computing each

term replacing SST with Hb and using the property of
invariance to product order of the eigenvalue function
provides the expression (21), which requires no explicit
factorization of the matrix Hb.

Finally we can use this bound to establish a self-triggering
logic for the case with incomplete state information and
disturbances:

Theorem 7. Let the assumptions and conditions in Lemma
6 and Corollary 3 hold for given ρ and γ. Then the
triggering logic

∆k = inf {∆k ∈ {1, ...,∆k} : η(x̃, Hb,∆k) > 0} (22)

renders the closed loop system (1), (2) GES with decay
rate ρ and L2-gain smaller or equal than γ.

Proof. Since the h superiorly bounds the PETC trig-
gering function, the STC logic will trigger no later than
when the PETC would. Therefore the stability and L2-
gain properties are inherited from Corollary 3.

Now we design the observer that generates the ellipsoidal
bounds defined by the matrix Hb. Based on (8), for a given
triggering time ∆k we have:

ψ̄(kb+1) = M∆k|J,J̄

[
ψ̂(kb)
ξc(kb)

]
+M∆k|J,J ψ̄(kb) + [0 I] θ∆k,
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This allows us to determine a bound to ‖θ∆k‖ (Fu, 2018):

‖θ∆k‖ ≤
∫ h∆k

0

e
λmax

(
AT

p +Ap

2

)
s
ds|E|W = Θ∆k. (17)

Now we can design a triggering condition that triggers no
later than the one in (4). Recall that it can be expressed
in the form (9), which in turn can be expanded as:

xTQ∆kx+2xT

[
M∆k

CE

]T[
Q̄1

Q̄T
2

][
I
0

]
θ∆k + θT∆kQ̄1pθ∆k >0, (18)

where Q̄1p := Q̄1|N ,N ,N := {1, ..., np}. Using the bound
in (17) we define a new triggering logic of the form:

xTQ∆kx+ 2‖FT
∆kx‖Θ∆k + c∆k > 0, (19)

where F∆k :=[I 0](Q̄1M∆k + Q̄2CE) and c∆k := |Q̄1p|Θ2
∆k.

The left-hand side (LHS) of (19) is by construction always
greater than or equal to the LHS of (18). Therefore, (19)
constitutes a conservative triggering logic with respect to
the disturbances which only depends on the state. It can
be implemented as an STC with the following algorithm:

Algorithm 1. Computation of triggering times.

∆k ← 1
s ← xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k

while (s ≤ 0) ∧ (∆k ≤ ∆k) do
∆k ← ∆k + 1
s ← xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k

end while

This algorithm can be used for the unperturbed case by
taking Θ∆k = 0, ∀∆k ∈ {1, ...,∆k}. Notice that F∆k

and c∆k can be computed off-line. For the state-space
partitioning, we can compute the sets S∆k as S1 = {x ∈
Rnp+nc |xTQ1x + 2‖FT

1 x‖Θ1 + c1 > 0} and S∆k = {x ∈
Rnp+nc |xTQ∆kx+ 2‖FT

∆kx‖Θ∆k + c∆k > 0} \⋃∆k−1
l=1 Sl.

Remark 5. Since c∆k > 0, the LHS of (19) is positive for
x = 0 (and for sufficiently small x). Therefore, this logic
tends to yield periodic control, with ∆k = 1 as the state
approaches the origin.

4. OUTPUT-BASED SELF-TRIGGERED CONTROL

Up to this point, we have defined self-triggered policies
based on the last available state. While they work for the
output feedback case, their implementation still relies on
some information of the full state; namely, in which of the
regions R∆k or S∆k they belong. This hinders its appli-
cability to output-feedback. In this Section, we design an

STC strategy that relies solely on the plant output ψ̂(kb)
and the controller states ξc(kb). However, we start by not-
ing that some information on the unmeasured subspace of
the state space is necessary to sample less frequently than
periodically with ∆k = 1. We can see that by segregating
the contribution of the unmeasured component of the
states to the function χT (t)Qχ(t) ignoring disturbances.
Since the plant is assumed observable, take the plant in
its normal observable form. Hence, Cp = [I 0] and we can

set ξ(t)T :=
[
ψ(t)T ψ̄(t)T

]
, where ψ̄(t) ∈ Rnp−nψ is the

vector of unmeasured states at time t. Assume we have an
estimate ȳ0 for ȳ := ψ̄(tkb

) and denote the estimate residue

rȳ := ȳ − ȳ0. Note that x = x̃ + [0 I 0]
T
rȳ. From (4), we

can rewrite the condition in (14) as:

x̃TQ∆kx̃+ 2x̃TQ∆k|•,J rȳ + rTȳ Q∆k|J,J rȳ > 0, (20)

where x̃T =
[
yT ȳT0 xT

c

]
, xc := ξc(kb) and J = {nψ +

1, . . . , np}. From (7) and (15), we have that Q∆k|J,J =
(1 − σ2)M∆k|TI,JM∆k|I,J � 0, with I = {1, . . . , nψ}.
Therefore, unless M1|I,J = 0, there will always be rȳ,
large enough, such that the LHS in (20) is positive.

The observation above hints that bounds are needed
for the unmeasured subspace, even without disturbances.
Hence, we will later build an observer that computes
bounds to rȳ. For now, we assume an ellipsoidal bound
is known to propose the following Lemma:

Lemma 6. Consider the triggering function χ(tkb
)TQχ(tkb

)
in (5), with the triggering logic defined in (4). Let Assump-
tion 4 hold. Assume there is a matrix Hb := H(kb) and an
estimate ȳ0 such that rTȳ H

−1
b rȳ ≤ 1. Then the function

η(x̃, Hb,∆k) := x̃TQ∆kx̃+ 2‖FT
∆kx̃‖Θ∆k + c∆k+

2
√
x̃TQ∆k|•,JHbQ∆k|T•,J x̃+ λmax (HbQ∆k|J,J )+

2Θ∆k

√
λmax (Q∆k|TJ,NHbQ∆k|J,N ) (21)

is an upper bound to χ(tkb
)TQχ(tkb

).

Proof. We apply a similar procedure to the one described
in Sec. 3.2 and bound the individual terms of the triggering
function expanded in terms of x̃, rȳ and θ∆k:

x̃TQ∆kx̃+ 2x̃TFT
∆kθ∆k + θT∆kQ̄1pθ∆k+

2x̃TQ∆k|•,J rȳ + rTȳ Q∆k|J,J rȳ + 2rTȳ Q∆k|J,N θ∆k.

The first three terms are bounded like in Sec. 3.2. The
remaining bounds can be derived by using the transforma-
tion rȳ = Sr, with S satisfying SST = Hb. Then rT r ≤ 1.
We therefore use matrix norms and eigenvalues to bound
each term. The remaining terms are x̃TQ∆k|•,JSr ≤
‖x̃TQ∆k|•,JS‖, rTSTQ∆k|J,JSr ≤ λmax(S

TQ∆k|J,JS);
and rTȳ Q∆k|J,N θ∆k ≤ Θ∆k

∣∣STQ∆k|J,N
∣∣. Computing each

term replacing SST with Hb and using the property of
invariance to product order of the eigenvalue function
provides the expression (21), which requires no explicit
factorization of the matrix Hb.

Finally we can use this bound to establish a self-triggering
logic for the case with incomplete state information and
disturbances:

Theorem 7. Let the assumptions and conditions in Lemma
6 and Corollary 3 hold for given ρ and γ. Then the
triggering logic

∆k = inf {∆k ∈ {1, ...,∆k} : η(x̃, Hb,∆k) > 0} (22)

renders the closed loop system (1), (2) GES with decay
rate ρ and L2-gain smaller or equal than γ.

Proof. Since the h superiorly bounds the PETC trig-
gering function, the STC logic will trigger no later than
when the PETC would. Therefore the stability and L2-
gain properties are inherited from Corollary 3.

Now we design the observer that generates the ellipsoidal
bounds defined by the matrix Hb. Based on (8), for a given
triggering time ∆k we have:

ψ̄(kb+1) = M∆k|J,J̄

[
ψ̂(kb)
ξc(kb)

]
+M∆k|J,J ψ̄(kb) + [0 I] θ∆k,
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where J̄ := {1, . . . , np+nc}\J . Since the close loop system
using Theorem 7 is stable provided that the bounds are
valid, we can use an open loop observer of the form

ψ̄0(kb+1) = M∆k|J,J̄

[
ψ̂(kb)
ξc(kb)

]
+M∆k|J,J ψ̄0(kb). (23)

The remaining task is how to initialize and evolve the
ellipsoids Hb. For the initialization, some information on
the initial norm of the unmeasured states is needed. We
hence start with the following assumption:

Assumption 8. A value R ∈ R, R ≥ 0, is known such that
||ψ̄(0)|| ≤ R.

The condition above can be rewritten as

(ψ̄(0)− ψ̄0(0))
TH−1

0 (ψ̄(0)− ψ̄0(0)) ≤ 1,

with H0 = R2I and ψ̄0(0) = 0.

For the evolution of Hb we provide the following Theorem.

Theorem 9. Let δb+1 := ψ̄(kb+1) − ψ̄0(kb+1) and N∆k :=
M∆k|J,J . Assume rTȳ H

−1
b rȳ ≤ 1 and ‖ [0 I] θ∆k‖ ≤ Θ∆k.

Denote by Hθ := Θ2
∆kI. The update law

Hb+1 =
(
1 + p−1

b

)
NT

∆kHbN∆k + (1 + pb)Hθ, (24a)

pb =
√
Tr (NT

∆kHbN∆k)
(√

Tr (Hθ)
)−1

, (24b)

satisfies δTb+1H
−1
b+1δb+1 ≤ 1.

Proof. Notice that δb+1 = N∆krȳ + [0 I] θ∆k. Then δb+1

belongs to the Minkowski sum of {N∆krȳ : rTȳ H
−1
b rȳ} =

{r′ȳ : r′Tȳ (NT
∆kHbN∆k)

−1r′ȳ ≤ 1} and {[0 I] θ∆k : θT∆kθ∆k ≤
Θ2

∆k} = {θ′∆k : θ′T∆kHθθ
′
∆k ≤ 1}. Since both sets are

ellipsoids, their Minkowski sum can be tightly outer-
approximated by an ellipsoid. The rule in (24) is the
outer-approximation that minimizes the square root of the
sum of its principal axes (Kurzhanskĭı and Vályi, 1997,
Sec. 2.5).

Corollary 10. Without disturbances, the update law

Hb+1 = NT
∆kHbN∆k (25)

satisfies δTb+1H
−1
b+1δb+1 ≤ 1.

Algorithm 1 can then be used to select ∆k, assigning the
value of η(x̃, Hb,∆k) to the variable s at each iteration.
The observer described in this section runs right after ∆k
is computed to update ψ̄0(kb+1) and Hb+1.

5. NUMERICAL EXAMPLES

We consider a linearized model of a batch reactor with
a discrete-time output-feedback controller. The plant is
the same as in (Donkers, 2011, Chap. 5, and references
therein), with np = 4, nψ = 2, and nυ = 2. The controller
of the form (2) is also the same, but running with h = 0.01:

Ac =

[
1 0
0 1

]
, Bc =

[
0 h
h 0

]
, Cc =

[
−2 0
0 8

]
, Dc =

[
0 −2
5 0

]
,

We add a disturbance matrix ET = [1 0 0 0], set ξTp (0) =

10 [1 −1 −1 1] and ξc(0) = 0. We then put the plant in
the normal observable form. We set σ = 0.1, which satisfies
Corollary 3 with ρ = 0.6 and γ = 0.5. The simulation is
run both with (W = 0.1) and without disturbance. When
present, ω(t) = W, if t ≤ 5; ω(t) = 0 otherwise. For the
observer based STC of Sec. 4 we set R = 1.5‖ψ̄(0)‖.

0 2 4 6 8 10
0

5

10

15

20

∆
k
(s
a
m
p
le
s)

STC, observer based

0 2 4 6 8 10
0

5

10

15

20

Time t (s)

∆
k
(s
a
m
p
le
s) ETC

STC, full state
ETC lower bound

Fig. 1. Simulation results for STC and PETC without
disturbance: STC triggering times, using the observer
(top); ETC triggering times, STC triggering times
with full state information and worst-case prediction
using the STC logic with the observer (bottom).

On the unperturbed scenario, the triggering performances
of the proposed STC strategies and the corresponding
PETC are shown in Fig. 1. Notice that the triggering
times for the STC start small and increase over time. This
happens because the ellipsoids converge faster than the
state norm in this example. Consequently, the observer
based STC timing converges to the state based. To demon-
strate that the STC logic can be used to predict a lower
bound to the PETC triggering time, we added in Fig. 1
the estimated triggering time computed by the STC logic.
The STC logic with full state information yields perfect
prediction, as expected.

The results for the perturbed case are shown in Fig. 2.
Clearly, control performances of both STC and PETC are
very similar. Due to the disturbances, the STC triggering
gets more conservative as the state norm approaches zero.
As expected from Remark 5, after 5 time units the STC
converges to periodic sampling – this is when the simulated
disturbance vanishes. When the observer is used, the STC
strategy gets more conservative in the first few time units
of simulation. When used as a lower bound predictor,
bounds are tight after 2 time units, when the observer
ellipsoid has become sufficiently small. Later, as the state
approaches the origin, the bounds converge to ∆k = 1.

The observer performance during the first time unit is
depicted in Fig. 3. We can see that the ellipsoid shrinks
over time, while guaranteeing that ψ̄(kb)− ψ̄0(kb) ∈ {rȳ :

rTȳ H
−1
b rȳ ≤ 1} for all time steps. Finally, Fig. 4 presents

the regions R∆k and S∆k projected at the unmeasured
subspace at the first triggering instant after 1.5 time units.
We can see how the observer ellipsoid touches regions
related to smaller triggering times, while the actual state
is within a region related to a higher sampling time.

6. DISCUSSION AND FUTURE WORK

In this work we presented STC strategies for perturbed
LTI systems under output feedback. We did so by devising
algorithms that compute lower bounds to the correspond-
ing PETC triggering times. This yields conservative STC
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Fig. 2. Simulation results for the output-feedback STC and
PETC, considering disturbances: state norm (top),
STC triggering sample times (middle), and ETC trig-
gering sample times with their corresponding worst-
case prediction using the STC logic (bottom).

strategies that ensure stability and L2-gain performances.
The STC algorithms are very simple for the case where
the complete state is available. When not all states are
measured, the STC logic is still relatively simple, but needs
a special type of observer, which we developed. In the nu-
merical example provided, after a certain time the output-
based STC converges to the state-based STC (which yields
the same sampling as the PETC), when disturbances
are absent. Unfortunately, the combined prediction uncer-
tainty due to absence of state information and presence of
disturbances renders the STC rather conservative. We are
working on improved observers with guaranteed ellipsoid
convergence and reduced conservativeness.

Our algorithms can also be used as a building block to
construct abstractions for ETC scheduling. The proposed
state-space partitioning is promising in this sense as its
cardinality does not scale with the number of states. We
are currently working on such an extension. Other inter-
esting extensions include: considering measurement noise;
considering dynamic triggering functions; and extending
the presented strategies to decentralized control.
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ȳ1
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strategies that ensure stability and L2-gain performances.
The STC algorithms are very simple for the case where
the complete state is available. When not all states are
measured, the STC logic is still relatively simple, but needs
a special type of observer, which we developed. In the nu-
merical example provided, after a certain time the output-
based STC converges to the state-based STC (which yields
the same sampling as the PETC), when disturbances
are absent. Unfortunately, the combined prediction uncer-
tainty due to absence of state information and presence of
disturbances renders the STC rather conservative. We are
working on improved observers with guaranteed ellipsoid
convergence and reduced conservativeness.

Our algorithms can also be used as a building block to
construct abstractions for ETC scheduling. The proposed
state-space partitioning is promising in this sense as its
cardinality does not scale with the number of states. We
are currently working on such an extension. Other inter-
esting extensions include: considering measurement noise;
considering dynamic triggering functions; and extending
the presented strategies to decentralized control.
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