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1
Introduction

Climate change is an increasingly urgent topic in environmental science, with strong evidence that human
related greenhouse gas emissions are driving significant shifts in the Earth’s climate system. Some of the most
noticeable effects include the increasing frequency of hot days, a decrease in cold days, and heightened vari-
ability in precipitation patterns, including more frequent droughts and extreme wet events.

The Intergovernmental Panel on Climate Change (IPCC) concludes with high confidence in its Sixth Assess-
ment Report that extreme weather events, including temperature and precipitation extremes, are becoming
more frequent and intense as global temperatures rise [12]. The report shows that even small increases in
global warming lead to statistically significant changes in climate extremes on both global and regional scales.

At the same time, research based on NASA’s GRACE and GRACE-FO satellite data demonstrates that periods
of significant dryness and excessive precipitation have become more common and severe from 2002 to 2021
[8]. This shows that warming is causing more intense movement of water worldwide.

Global climate trends are well known, but it is still important to understand how these changes affect specific
regions and local areas. This thesis investigates climate developments in the Netherlands by analysing his-
torical weather observations from the De Bilt station, maintained by the Royal Netherlands Meteorological
Institute (KNMI). It focuses on detecting statistically significant trends in temperature and precipitation, in-
cluding the frequency of extreme events such as tropical and ice days, as well as dry, wet, and extremely wet
days. The primary research question it seeks to answer is: To what extent do historical weather observations
from De Bilt reveal statistically significant trends in temperature, precipitation, and extreme weather events
over the past century?

To answer this question, two types of climate time series are examined: continuous variables such as annual
mean temperature and total precipitation, and count-based indicators such as the yearly number of tropical
days, ice days, and extreme precipitation events. For continuous variables, both linear regression and iso-
tonic regression are used to detect possible monotonic trends. For the count data involving extreme weather
events, Poisson and Negative Binomial regression models are used to account for the discrete nature of the
outcomes. Isotonic regression is also applied as a flexible, non-parametric alternative to identify monotonic
trends in these event counts.

Chapter 2 introduces the dataset, detailing how daily observations are aggregated and how different types of
extremes are defined. Chapter 3 presents the regression models used, outlines key assumptions, and includes
visual summaries of the data. Chapter 4 describes the methods used to test for significant trends in the re-
gression models. Chapter 5 reports the results, interpreting the model outcomes and evaluating the statistical
evidence for trends in both continuous and count-based climate variables.

In sum, this thesis investigates whether local observational data support the presence of long-term changes
in temperature and precipitation patterns, as well as in the frequency of extreme weather events, contributing
to the broader understanding of climate change impacts at a regional scale.

1





2
Dataset Description and Preprocessing

All data used in this project comes from the Royal Netherlands Meteorological Institute (KNMI) [9]. The data
is publicly accessible via their web-address. This study uses data exclusively from the De Bilt station, located
centrally in The Netherlands. Due to its geographical position and long-standing measurement history, De
Bilt is widely considered representative of national climate patterns. Additionally, De Bilt is also recognized
as a long-term observing station by the World Meteorological Organization [13].

This research aims to examine whether climate change is detectable in Dutch historical weather data, with
a focus on two key indicators: temperature and precipitation. Both long-term trends and the frequency of
threshold-based events are considered. Analyses are done over different time periods, like yearly, monthly,
and by season. This to capture different patterns of variability. For seasonal assessments, meteorological def-
initions of winter (December–February) and summer (June–August) are applied. Meteorological seasons are
preferred over astronomical ones in this case, due to their simplicity and better alignment with the climato-
logical characteristics of the Northern Hemisphere [11]. Below, the specific datasets and assumptions used
for each analysis type are detailed. All data analysis, statistical evaluation, and visualization were performed
using Python [6]. The code for the data preprocessing can be found in Appendix A.1.

2.1. Temperature Data
To study long-term temperature trends, this research uses the homogenized monthly average temperature
series provided by KNMI. These data have been adjusted to correct for inhomogeneities caused by station
relocations, changes in instrumentation, or observation methods. The homogenized dataset is considered
suitable for time series analysis of climate change. It covers the period from 1901 to 2024. A visualization
of this dataset is shown in Figure 2.1. Although it is difficult to draw definitive conclusions at a glance, there
appears to be a decrease in the number of months with average temperatures at or below 0°C, and an increase
in months averaging 20°C or more. More generally, if one considers a threshold around 10°C, the number of
months exceeding this value seems to have increased over time.

When looking at trends, it could also be useful to consider annual and seasonal averages. An overview of
those can be found in Figure 2.2. Looking at this figure, the trend appears to be positive for both winter and
summer temperatures, as well as for the yearly average.

For event-based analysis, specifically the counting of

• Tropical days: days with a maximum temperature of 30 °C or higher,

• Ice days: days with a maximum temperature below 0 °C,

the non-homogenized daily temperature dataset is used. This choice is made because daily resolution is nec-
essary to count these specific events. Non-homogenized in this context means that no corrections have been
applied to account for factors such as weather station relocations or changes in instrumentation.

3



4 2. Dataset Description and Preprocessing

Figure 2.1: Monthly average temperatures at De Bilt, corrected for inhomogeneities in the historical record.

Figure 2.2: Average temperatures in each year, summer and winter measured in De Bilt.

As a result, the KNMI advises against using this dataset for trend analysis. However, since the data is only used
here for counting occurrences above or below fixed thresholds, small inconsistencies are considered accept-
able. The dataset may contain some inhomogeneities, but these are less impactful in this type of threshold-
based counting analysis.

The results of the event count are presented in Figure 2.3. A quick inspection suggests a decreasing trend in
the number of ice days and an increasing trend in the number of tropical days.
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Figure 2.3: Annual counts of tropical days (maximum temperature ≥ 30°C) and ice days (maximum temperature < 0 °C) in De Bilt.

Mathematical Description of the Temperature Data. Let t ∈ {1901,1902, . . . ,2024} denote the year and m ∈
{1,2, . . . ,12} the month. The homogenized monthly average temperature is represented as

Tm(t ) ∈R,

where Tm(t ) is the average temperature in month m of year t (in degrees Celsius). The KNMI calculates this
by first averaging the 24 hourly temperatures for each day to get a daily average. Then, it takes the average of
all the daily averages in that month. Annual and seasonal aggregates are defined as

T year(t ) = 1

12

12∑
m=1

Tm(t ),

T sum(t ) = 1

3

∑
m∈{6,7,8}

Tm(t ),

T win(t ) = 1

3
(T12(t −1)+T1(t )+T2(t ))

For threshold-based event counting, we use non-homogenized daily data. Let t denote the year, and let D(t )
be the set of all days in year t . For each day d ∈ D(t ), let Tmax(d , t ) denote the maximum temperature on that
day. Define the indicator functions

Itrop(d , t ) = 1{Tmax(d ,t )≥30}, Iice(d , t ) = 1{Tmax(d ,t )<0}.

Then, the number of tropical and ice days in year t are given by

N trop(t ) = ∑
d∈D(t )

Itrop(d , t ), N ice(t ) = ∑
d∈D(t )

Iice(d , t ).

2.2. Precipitation Data
To study long-term precipitation trends over time, the homogenized monthly precipitation dataset from
KNMI is used. This dataset is corrected for inhomogeneities such as changes in measurement instruments or
station relocations, and is therefore suitable for time series analysis. It allows for the investigation of trends
in average monthly and seasonal precipitation from 1906 onward. A first overview can be found in Figure 2.4.
Here it seems that in the last few years, dryer years occur more often.

Like with the temperature data, it could be useful to have the same look at seasonal and annual averages to
see if any trends can be discovered. When looking at Figure 2.5, where these events are visualised, it is hard
to see any kind of relation or trend when it comes to precipitation.
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Figure 2.4: Homogenized monthly precipitation measured in De Bilt.

Figure 2.5: Average precipitation in each year, summer and winter measured in De Bilt.

In addition, this study evaluates the frequency of specific precipitation events using non-homogenized daily
data. Specifically, the number of days per year that qualify as

• Dry days: days with less than 0.1 mm of precipitation1,

• Wet days: days with precipitation between 10 mm and 20 mm2,

• Extreme wet days: days with precipitation of 20 mm or more3,

The thresholds of 10 mm and 20 mm align with internationally recognized climate indices such as R10mm
and R20mm, developed by the Expert Team on Climate Change Detection and Indices (ETCCDI). These in-
dices quantify the frequency of moderate and heavy precipitation events, and are widely applied in climate
monitoring and impact assessments. R10mm represents the number of days per year with at least 10 mm of
precipitation, R20mm likewise refers to days with 20 mm of precipitation. It is good to note that exact clas-
sifications of rainfall intensity are not standardized across Europe, these thresholds are broadly used in both
global and regional analyses due to their relevance for hydrology, agriculture, and infrastructure planning. In
the Dutch context, such classifications are not formally codified, but similar thresholds are used in research

1As defined in KNMI Technical Report TR-349 [2]
2Corresponds to the widely used R10mm index for moderate rainfall events [14]
3Consistent with the R20mm index, often used to represent intense rainfall [14]
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and water management applications.

An overview of the annual counts of dry, wet, and extreme wet days are presented in Figure 2.6. Notably, the
number of dry days appears to have increased over the past 60 years, particularly in more recent decades.

Figure 2.6: Yearly totals of dry (< 0.1 mm), wet (10–20 mm), and extreme wet (≥ 20 mm) days based on daily precipitation measurements
in De Bilt.

Mathematical Description of the Precipitation Data. Let Pm(t ) ∈R≥0 denote the average monthly precipi-
tation (in mm) in month m of year t . Aggregated values are

P year(t ) =
12∑

m=1
Pm(t ),

P summer(t ) = ∑
m∈{6,7,8}

Pm(t ),

P winter(t ) = P12(t −1)+P1(t )+P2(t ).

Using daily data, let R(d , t ) denote the precipitation on day d of year t . We define the indicator functions

Idry(d , t ) = 1{R(d ,t )<0.1}, Iwet(d , t ) = 1{10≤R(d ,t )<25}, Iext(d , t ) = 1{R(d ,t )≥25}.

Annual event totals are computed as

N dry(t ) = ∑
d∈D(t )

Idry(d , t ), N wet(t ) = ∑
d∈D(t )

Iwet(d , t ), N ext(t ) = ∑
d∈D(t )

Iext(d , t ).





3
Trend Analysis Methods

This chapter examines several statistical modelling approaches, namely Linear Regression, two types of Iso-
tonic Regression, Poisson Regression, and Negative Binomial Regression. These models are used to identify
trends in Dutch climate data described in Chapter 2. All models are applied to aspects of the same underly-
ing datasets, which include annual or seasonal averages and counts of temperature and precipitation related
variables.

Let i index the years in the dataset, and let ti denote the actual calendar year (e.g., 1901, 1902, ..., 2024). Recall
that we previously defined the following variable notation in Chapter 2, but now we express each variable as
a function of the year index i :

• Ti : the average temperature in year i ,

• T win
i , T sum

i : average temperatures in winter and summer of year i ,

• N trop
i : the number of tropical days (≥ 30 °C) in year i ,

• N ice
i : the number of ice days (< 0°C) in year i ,

• Pi : the total annual precipitation in year i ,

• P win
i , P sum

i : total precipitation in winter and summer of year i ,

• N dry
i , N wet

i , N ext
i : the number of dry (< 0.1 mm), wet (10–20 mm), and extreme wet (≥ 20 mm) days in

year i .

The choice of model depends on the nature of the data so whether we have continuous or count data and the
type of trend or relationship that is expected. This setup helps ensure that results from different models can
be compared fairly and clearly. The Python code for all models can be found in Appendix A.2.

3.1. Linear Regression
Linear regression is a statistical method used to model the linear relationship between a dependent variable
and one or more independent variables. It estimates the coefficients of a linear equation to predict the out-
come variable based on input features, under the assumption that this relationship is approximately linear in
the parameters.

In a simple linear regression model for a bivariate dataset (x1, y1), (x2, y2), . . . , (xn , yn), we assume the values
x1, x2, . . . , xn are fixed, while the corresponding yi are realizations of random variables Yi satisfying the model

Yi = a +bxi +εi .

Here, xi is the observed value of the independent (predictor) variable, Yi is the true (unobservable) depen-
dent variable, and yi is its observed realization. The parameter a is the intercept, representing the expected

9



10 3. Trend Analysis Methods

value of Y when x = 0, and b is the slope, representing the change in Y per unit increase in x. The term εi

is a random error, assumed to follow a normal distribution with mean zero and constant variance σ2, i.e.,
εi ∼N (0,σ2), and the errors are independent.

This implies that the expected value of Yi given xi is

E[Yi ] = a +bxi .

To estimate the parameters a and b, the method of least squares is used. This involves minimizing the sum
of squared differences between the observed values yi and the predicted values ŷi = a +bxi . The objective
function is:

n∑
i=1

(yi −a −bxi )2.

Solving this minimization yields the least squares estimators:

b =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 , a = ȳ −bx̄,

where x̄ and ȳ are the sample means of the xi and yi , respectively. More details can be found in An Introduc-
tion to Mathematical Statistics [3].

In this thesis, linear regression was implemented using the Ordinary Least Squares (OLS) method provided
by the statsmodels package in Python. This computational approach was applied separately to yearly, sum-
mer, and winter datasets, allowing for an empirical estimation of trends.

3.1.1. Modelling Temperature and Precipitation Trends
We assume that the relationship between temperature or precipitation and time can be approximated lin-
early. The linear regression models are specified as

Tt = aT +bT t +εT , and Pt = aP +bP t +εP .

In these models

• aT , aP are intercept terms,

• bT ,bP are slope coefficients representing the rate of change per year,

• εT ,εP ∼N (0,σ2) are normally distributed error terms.

The slope bT provides an estimate of the average annual change in temperature, while bP reflects the average
change in precipitation per year.

3.1.2. Seasonal Trends
To capture seasonal effects, the same regression model is applied to temperature and precipitation data ag-
gregated over meteorological seasons. For each year t , we extract seasonal averages such as

T winter
t , T summer

t , and P winter
t , P summer

t ,

and fit separate linear regression models of the form

T season
t = aseason +bseasont +εseasonand P season

t =αseason +βseasont +ηseason.

Results of these linear regressions on seasonal temperature and precipitation data are shown in Figure 3.1
and Figure 3.2, respectively.

In the linear regression plot for temperature (Figure 3.1), we observe a positive trend in Winter, Summer, and
Yearly averages. This indicates a gradual increase in temperature over the years for each period. The linear
regression lines for all seasons show a steady increase, reflecting a potential warming trend in the climate
over the study period.
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Figure 3.1: Linear regression trends of average yearly, summer (June–August), and winter (December–February) temperatures in De Bilt
from 1901 to 2024. The method captures linear changes in seasonal and annual temperature averages.

The precipitation data is separated into different plots for Winter, Summer, and Yearly averages due to the
overlap of the data points as we could see in Figure 2.5. This separation helps to better visualize the trends
for each period and avoid confusion in the overlapping data. Figure 3.2 shows the linear regression plot for
the precipitation data. Here, the regression lines for winter and yearly precipitation also show an increasing
trend, confirming the potential gradual rise in precipitation. However, the summer rainfall data remains rel-
atively flat, showing little to no change over the years.

Figure 3.2: Linear regression applied to monthly precipitation averages for Winter, Summer, and Yearly data. The plot presents the
original data points and the corresponding linear regression lines for each of the seasons (Winter, Summer) and yearly averages.

Investigating trends allows one to assess whether warming or cooling, wetting or drying trends are more
pronounced in specific seasons. Statistical significance of the slopes can later be tested using hypothesis
tests. These are discussed in Chapter 4.
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3.2. Isotonic Regression for Continuous Data
Isotonic regression is a non-parametric method used to fit a monotonic function to data. Unlike linear regres-
sion, see Section 3.1, it does not assume a specific functional form, like linearity, but only that the underlying
function is either non-decreasing or non-increasing.

Given observed data points

(x1, y1), (x2, y2), . . . , (xn , yn) with x1 < x2 < ·· · < xn ,

isotonic regression seeks a function f :R→R that minimizes the sum of squared errors

f̂ = arg min
f (x1)≤ f (x2)≤···≤ f (xn )

n∑
i=1

(
yi − f (xi )

)2 ,

subject to the monotonicity constraint f (x1) ≤ f (x2) ≤ ·· · ≤ f (xn).

The resulting estimator f̂ is piecewise constant and provides the best fit while maintaining monotonicity.
This method is particularly useful when the response is expected to structurally increase or decrease with the
predictor, as in dose-response relationships or reliability analysis.

In this study, the isotonic regression model was fitted using the IsotonicRegression class from the
sklearn.isotonic module in Python. This implementation uses an efficient version of the pool-adjacent-
violators algorithm (PAVA), which works by iteratively averaging adjacent values that violate the monotonicity
constraint until a monotonic sequence is achieved. This approach is computationally efficient and well-
suited for large-scale applications.

A decreasing version of isotonic regression can be used by reversing the inequality constraint.

3.2.1. Application to Temperature and Precipitation
To detect consistent trends in climate indicators over time, isotonic regression is applied to temperature and
precipitation time series measured at De Bilt. For continuous-valued indicators such as average temperature
or seasonal precipitation, we assume the model

Yt = f (t )+ε,

where t denotes the year, Yt ∈ {Tt , T win
t , T sum

t , Pt , P win
t , P sum

t }, f is an unknown monotonic function repre-
senting the long-term trend, and ε∼N (0,σ2) is Gaussian noise where the variance may differ depending on
the indicator.

Isotonic regression is well-suited for this setting because it allows us to estimate monotonic trends without
assuming a specific functional form or model structure. This flexibility makes it appropriate for a variety of
indicators, which may show increasing, decreasing, or flat patterns. The method is also robust to short-term
variability, helping to highlight longer-term directional changes.

Seasonal trends are modelled by applying isotonic regression separately to T win
t , T sum

t , P win
t , and P sum

t . An
example of isotonic regression applied to seasonal temperature data can be found in Figure 3.3.

When looking at the plot, the isotonic regression lines at the edges of the plot show more significant fluctua-
tions due to the limited number of data points available for modelling, causing the regression to react more
sensitively to the boundary values. This characteristic contrasts with the smoother behaviour observed in the
central portion of the data, where more points provide a more stable fit. There is however a quite big jump
for the annual and winter averages especially between 1980 and 2000. This jump could indicate a sudden
shift in the temperature trend. This may be associated with a significant climate event, such as a change in
regional climate patterns, or influences from global warming or other external factors. Overall, this positive
trend aligns closely with the results from the linear regression in Figure 3.1.

For the isotonic regression on this precipitation data, results can be found in Figure 3.4. The plot shows how
the data for each period is adjusted to smooth out fluctuations while retaining the overall trend. For the winter
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Figure 3.3: Isotonic regression trends of average yearly, summer (June–August), and winter (December–February) temperatures in De
Bilt from 1901 to 2024. The method captures non-linear changes in seasonal and annual temperature averages.

and yearly rainfall, the isotonic regression curve shows a slight upward trend, indicating a general increase
in precipitation over the years. This trend could reflect potential changes in climate or regional weather
patterns. On the other hand, the summer rainfall data presents almost a straight line. This suggests a stable
trend in summer precipitation over time, with less variation compared to the winter and yearly averages.
These observations align with the result from the linear regression in Figure 3.2.

Figure 3.4: Isotonic regression applied to monthly rainfall averages for Winter, Summer, and Yearly data. The plot shows the original data
points along with the smoothed curves obtained from isotonic regression for each of the seasons (Winter, Summer) and yearly averages.
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3.3. Poisson Regression
Poisson regression is a fundamental method for modelling count data, where the response variable represents
the number of times an event occurs within a fixed period or spatial domain. In this framework, the count
variable Yi for observation i is assumed to follow a Poisson distribution with mean λi , such that

Yi ∼ Poisson(λi ), λi > 0.

The expected count λi = E[Yi ] is linked to a predictor variable xi through a log-linear relationship

log(λi ) =α+βxi ,

which implies
λi = exp(α+βxi ).

Here, α is the intercept and β the slope or trend parameter. This log-link function guarantees that the pre-
dicted mean λi remains strictly positive.

The model coefficients α and β are typically estimated using maximum likelihood estimation (MLE). Un-
der the Poisson model, the likelihood function for a set of independent observations {(xi , yi )}n

i=1, where xi

denotes the predictor and yi the corresponding count response, is given by

L(α,β) =
n∏

i=1

e−λiλ
yi
i

yi !
, where λi = exp(α+βxi ).

Taking the logarithm of the likelihood yields the log-likelihood function

ℓ(α,β) =
n∑

i=1

[
yi (α+βxi )−exp(α+βxi )− log(yi !)

]
.

The maximum likelihood estimates α̂ and β̂ are obtained by solving for the values of α and β that maximize
this log-likelihood. Since these equations do not have closed-form solutions and are typically solved using
numerical methods such as Newton-Raphson or Iteratively Reweighted Least Squares (IRLS) [1]. I applied
Poisson regression models using the Generalized Linear Model (GLM) framework in Python, implemented
via the statsmodels library. This library estimates the model coefficients using the IRLS algorithm.

A distinctive feature of the Poisson distribution is that the mean and variance are equal, i.e.,

E[Yi ] = Var(Yi ) =λi .

This property, known as equidispersion, often does not hold in practice. In many real-world datasets, partic-
ularly those involving environmental phenomena, we encounter overdispersion, where the variance exceeds
the mean. Such excess variability may stem from unobserved heterogeneity, temporal correlation, or omitted
covariates. If unaccounted for, overdispersion can lead to underestimated standard errors and misleading
significance tests.

A common diagnostic for overdispersion involves the dispersion statistic, computed as the ratio of the Pear-
son chi-square statistic to the residual degrees of freedom

φ̂=
∑

i (yi − λ̂i )2/λ̂i

n −p
,

where n is the number of observations and p the number of model parameters. Values of φ̂ significantly
greater than 1 indicate overdispersion. In such cases, alternative models such as Isotonic regression or Neg-
ative Binomial regression are recommended. These Regression models are further discussed in Section 3.4
and 3.5 respectively.

In addition to overdispersion, the presence of a substantial number of zero counts can also impact model
performance and the suitability of the Poisson distribution. As noted by Cameron and Trivedi [4], the Poisson
model assumes that the variance equals the mean and may underpredict the frequency of zeros when the
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data contain more zeros than expected under this assumption. In the current dataset, zero counts occur
relatively frequently for some variables: 37 years (29.8%) had no tropical days and 11 years (8.9%) had no ice
days. In contrast, no years with zero counts were observed for wet, dry, or extreme wet day totals. Hilbe [7]
suggests that when the proportion of zeros exceeds approximately 20–30%, standard Poisson regression may
be deficient, motivating the use of alternative approaches such as Isotonic or Negative Binomial regression.
These models can better accommodate excess zeros and overdispersion, as discussed earlier on.

3.3.1. Application to Tropical and Ice Days
For the tropical and ice day count data, Poisson regression models were fitted using the year ti as the predictor
variable. The general form of the models is

log
(
E
[

N trop
t

])
=αtrop +βtrop t ,

log
(
E
[
N ice

t

])=αice +βice t ,

where α represents the intercept and β the slope coefficient indicating the trend over time for each count
variable.

In the left plot of Figure 3.5, the increase in the number of tropical days is clearer than in Figure 2.3. It is
especially noticeable that in the past 30 years, there has not been a single year without at least a few tropical
days. The right plot shows the opposite trend: the number of years with many ice days, which were common
in the mid-1900s, has decreased significantly. In the last 20 years, such years have become rare.

Figure 3.5 also illustrates the fitted Poisson regression models for the number of tropical and ice days over
time. A clear upward trend is visible in the tropical days, indicating an increasing frequency of hot days as the
years progress. Conversely, the ice days exhibit a subtle downward trend, suggesting a gradual decline in the
number of cold days.

Figure 3.5: Poisson regression of extreme weather events per year. The left plot shows the number of Tropical Days (maximum tempera-
ture ≥ 30°C) per year with the Poisson regression fit, and the right plot shows the number of Ice Days (maximum temperature < 0°C) per
year with the Poisson regression fit.

3.3.2. Application to Precipitation Event Counts
To model the temporal trends in the annual counts of dry, wet, and extreme wet days, we again apply Poisson
regression. Specifically, for year t , the model expresses the logarithm of the expected count Nt as a linear
function of time

log
(
E
[

N dry
t

])
=αdry +βdry t ,

log
(
E
[
N wet

t

])=αwet +βwet t ,

log
(
E
[
N ext

t

])=αext +βext t ,
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where α represents the baseline log-count and β measures the trend over time for each precipitation cate-
gory. Positive values of β indicate an increasing trend in the number of days, while negative values indicate a
decrease. This framework allows us to quantify and test for significant changes in precipitation patterns over
the observation period.

Figure 3.6: Poisson regression preformed on annual number of days in De Bilt categorized as dry, wet, or extreme wet.

Visualizations of annual counts of dry, wet, and extreme wet days from 1906 onwards can be found in Fig-
ure 3.6. The separated bar plots here offer a clearer and more detailed visualization of annual trends in daily
precipitation categories compared to a stacked bar chart in Figure 2.6. This format makes it easier to observe
year-to-year fluctuations and long-term patterns. Each subplot shows the observed counts as bars and the
fitted Poisson regression trends. The dry and wet day trends exhibit somewhat steeper slopes over time com-
pared to the extreme wet days, indicating a stronger temporal change in those categories. However, since
Poisson regression assumes the mean equals the variance, it is important to check for overdispersion in the
count data. This is further discussed in Chapter 4 and 5.

3.4. Isotonic Regression for Count Data
Classical isotonic regression (see Section 3.2) provides a non-parametric method for estimating monotonic
trends in continuous data. However, because it relies on squared error loss, it is not well suited for count data.
In cases where the response variable takes only non-negative integer values and is better described by a Pois-
son process, using a Gaussian error model can result in biased estimates and an inaccurate representation
of the data’s variability. Therefore, we adopt a slightly different approach that combines the monotonicity
constraint of isotonic regression with the likelihood-based framework of Poisson regression (see Section 3.3),
which is more appropriate for modelling counts.

The Isotonic regression for count data used here, assumes that the observed counts y1, y2, . . . , yn follow inde-
pendent Poisson distributions

yi ∼ Poisson(λi ),

where the intensity parameters λi are constrained to follow a monotonic trend, such that λ1 ≤ λ2 ≤ ·· · ≤ λn .
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Instead of minimizing squared errors, the model minimizes the Poisson negative log-likelihood,

λ̂= arg min
λ1≤λ2≤···≤λn

n∑
i=1

(
λi − yi logλi

)
,

which corresponds to maximizing the likelihood under the Poisson assumption. This formulation ensures
that the discrete nature of the response is respected, and that the variance is modelled appropriately as a
function of the mean, as opposed to being held constant. More details can be found in Generalized isotonic
regression [10].

In this study, we used the Python library cvxpy to fit the Poisson isotonic regression model. The model was
estimated by minimizing the negative log-likelihood under monotonicity constraints, using the ECOS solver.
We applied these constraints either directly to the rate parameters λi or to their log values for better stability.
This approach works well for modelling monotonic trends in count data, especially in settings where the data
are discrete and follow a natural order, such as event counts over time.

As with other isotonic methods, a decreasing form of Poisson isotonic regression is obtained by reversing the
inequality constraints to enforce a non-increasing trend in the fitted intensity parameters.

3.4.1. Application on Counts of Extreme Weather Events
For climate indicators expressed as annual counts, such as the number of tropical days or ice days, we apply
isotonic regression within a Poisson modelling framework. We assume the count response Y follows a Poisson
distribution with mean λ(t ), which varies monotonically over time:

Y ∼ Poisson(λ(t )), with log(λ(t )) = f (t ),

where f is a monotonic function to be estimated.

This approach is used for variables such as Y ∈ {N trop
t , N ice

t , N dry
t , N wet

t , N ext
t }, which represent event counts

per year. For example, N trop
t (number of tropical days) is expected to increase over time, while N ice

t is expected
to decrease. By fitting f under a monotonicity constraint, we preserve the expected direction of change while
avoiding assumptions about the exact rate or form of the trend.

The isotonic Poisson regression framework is well-suited for detecting long-term trends in climatological
count data, such as the frequency of extreme events. It does not assume a specific functional form for the
trend, making it flexible and robust. Because isotonic regression makes minimal assumptions, it can be ap-
plied directly to count data.

In Figure 3.7, isotonic regression has been applied to both the number of tropical and ice days. The tropical
days trend shows a clear and consistent upward pattern, with the line rising in almost constant upward steps
over time. This indicates a steady increase in the number of tropical days throughout the observed period.
In contrast, the number of ice days follows a downward trend, with the steps starting to decline around 1970.
This suggests that the frequency of ice days has gradually decreased since then, with fewer years experienc-
ing a significant number of ice days. These trends are consistent with the results obtained from the Poisson
regression analysis that is visualized in Figure 3.5.

However, it is important to note that interpreting the trends at the start and end of the data can be somewhat
misleading, like mentioned before. At these points, the regression is influenced by data from only one side,
which may not fully represent the underlying long-term trend. Caution is needed when drawing conclusions
from the boundaries of the dataset.

In Figure 3.8, for each category, an isotonic regression line is included, which provides a smoothed, non-
decreasing trend based on the data. These regression lines show small step-like increases, indicating subtle
upward trends over the long term. Although the number of days changes from year to year, the isotonic trends
suggest that the number of dry, wet, and very wet days has generally increased slightly since the early 1900s.
This may reflect shifts in precipitation intensity or frequency over time. Overall, this pattern aligns well with
previous Poisson regression analyses in Figure 3.6, suggesting positive trends in precipitation regimes.
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Figure 3.7: Isotonic regression trends of Tropical and Ice Days per year. The left plot shows the number of Tropical Days (maximum
temperature ≥ 30°C) and the right plot shows the number of Ice Days (maximum temperature < 0°C), the maximum temperature is
measured in the Bilt.

Figure 3.8: Annual number of days in De Bilt categorized as dry, wet, or extreme wet based on daily precipitation totals (1906–2024) in
De Bilt. Isotonic regression lines highlight trends in each category.

3.5. Negative Binomial Regression
Negative Binomial regression is a count regression model used to analyze outcome variables that represent
counts and exhibit overdispersion. This occurs when the variance of the response variable exceeds the mean,
violating the equidispersion assumption of the Poisson regression model and motivating the use of a more
flexible alternative [7].

In our case, we consider a single predictor variable xi . The model expresses the expected count µi = E[yi ] as

log(µi ) =β0 +β1xi .

The variance of the outcome yi is then modelled as

Var(yi ) =µi +θµ2
i ,

where θ > 0 is the dispersion parameter that quantifies the degree of overdispersion. When θ = 0, the model
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reduces to standard Poisson regression.

The standard approach to estimating parameters in the Negative Binomial model is to maximize the full log-
likelihood over both β = (β0,β1) and θ simultaneously. For observation i , the log-likelihood contribution
is

ℓi (β,θ) = logΓ(yi +θ−1)− logΓ(yi +1)− logΓ(θ−1)+ yi log(θ−1µi )− (yi +θ−1) log(1+θ−1µi ).

The total log-likelihood is then

ℓ(β,θ) =
n∑

i=1
ℓi (β,θ).

Because the likelihood function for the Negative Binomial model does not have a closed-form solution, it
must be maximized using numerical methods. Although this allows for joint estimation of both the regression
coefficients β and the dispersion parameter θ, the procedure can be unstable in practice. It is often sensitive
to poor starting values or to covariates that are on very different scales, which can lead to convergence issues
or unreliable estimates. To avoid these difficulties, a two-step estimation procedure is often used as a more
stable and practical alternative.

3.5.1. Two-Step Estimation
This approach first fits a Poisson regression model to estimate β, and then estimates θ separately using the
residual variation captured by the Pearson chi-squared statistic. Note overdispersion is ignored to obtain
initial fitted means

µ̂i = exp(β̂0 + β̂1xi ).

These fitted values serve as estimates for the true conditional means µi .

The key idea is to estimate the dispersion parameter θ by comparing the observed variance to the variance
implied by the Poisson model using the Pearson chi-squared statistic

X 2 =
n∑

i=1

(yi − µ̂i )2

µ̂i
.

This statistic is used because it provides a standardized measure of the discrepancy between observed counts
yi and their expected values µ̂i under the fitted Poisson model. Specifically, it sums the squared residuals
scaled by the model-implied variance. Since the Poisson model assumes the variance equals the mean, the
denominator µ̂i standardizes each squared difference, making the contributions from all observations com-
parable regardless of their mean level.

Under the Poisson assumption, the variance equals the mean, so E[X 2] ≈ n − p, where p is the number of
estimated parameters in the model (degrees of freedom). When overdispersion is present, the observed vari-
ability in the residuals will be larger than expected under the Poisson model, causing the Pearson chi-squared
statistic to be systematically larger than n − p. Therefore, comparing the observed X 2 to its expected value
under the Poisson assumption allows us to quantify the extra variability in the data. This extra variability can
then be attributed to the dispersion parameter θ in the Negative Binomial model, which models the variance
as

Var(yi ) =µi +θµ2
i .

Thus, the Pearson chi-squared statistic serves as a natural tool to estimate θ by capturing how much the ob-
served variance deviates from the Poisson variance assumption.
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We derive an estimator for θ by equating the observed Pearson statistic to its expectation under the Negative
Binomial model

E[X 2] =
n∑

i=1

Var(yi )

µ̂i

=
n∑

i=1

µ̂i +θµ̂2
i

µ̂i

=
n∑

i=1
(1+θµ̂i )

= n +θ
n∑

i=1
µ̂i .

Now, we approximate the expectation with the observed value X 2, treating the fitted means µ̂i as plug-in
estimates for µi . This is a form of moment matching, where the sample-based Pearson statistic is assumed
to be close to its theoretical expectation under the Negative Binomial model. More detail can be found in the
book Statistical Inference [5]. Equating the two expressions gives

X 2 ≈ n +θ
n∑

i=1
µ̂i .

Solving for θ, we obtain the following estimator:

θ̂ = X 2 −n∑n
i=1 µ̂i

=
∑n

i=1
(yi−µ̂i )2

µ̂i
−n∑n

i=1 µ̂i
.

Using the estimated θ̂ from above, we then refit the regression coefficients β by maximizing the Negative
Binomial likelihood while keeping θ fixed. This two-step procedure typically improves numerical stability
and convergence properties compared to joint estimation, especially with moderate sample sizes or complex
models.

We implemented this two-step method using Python’s statsmodels library. The Poisson regression pro-
vides fitted means µ̂i , which are used to estimate θ̂. This estimate is passed as a fixed parameter to the
NegativeBinomial family in the final model to estimate β via maximum likelihood.

3.5.2. Application to Temperature and Precipitation
Each of the annual event counts defined above (e.g., N trop

t , N ice
t , N dry

t , N wet
t , N ext

t ) is modelled separately using
a negative binomial regression. As an example, for the number of tropical days N trop, we assume

N trop
t ∼ NB(µt ,θ)

with a log-linear model for the expected value:

log(µt ) =β0 +β1t

Here, µt is the expected number of tropical days in a given year, t is the year (used as a continuous predictor),
and θ is the dispersion parameter that accounts for overdispersion.

The variance is given by
Var(N trop

t ) =µt +θµ2
t

Models for the other event counts N ice
t , N dry

t , N wet
t , N ext

t are specified in the same way, with time as predictor.

Figure 3.9 shows the Negative Binomial regression fits for the counts of tropical days and ice days. Visually,
there is a clear increasing trend in tropical days and a clear decreasing trend in ice days over time. These
patterns are consistent with earlier observations from Isotonic and Poisson regression and suggest notable
changes in temperature extremes over the study period.
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Figure 3.9: Negative Binomial regression of extreme weather events per year. The left plot shows the number of Tropical Days (maximum
temperature ≥ 30°C) per year with the Negative Binomial regression fit, and the right plot shows the number of Ice Days (maximum
temperature < 0°C) per year with the Negative Binomial regression fit.

Lastly, Figure 3.10 shows the Negative Binomial regression fits for the counts of dry days, wet days, and ex-
treme wet days. All three variables display a slight increasing trend over the study period. These visual obser-
vations also align with the trends identified by the other models discussed earlier. Formal hypothesis testing
of these models for Negative Binomial regression will be addressed in Chapter 4 and 5.

Figure 3.10: Negative Binomial regression preformed on annual number of days in De Bilt categorized as dry, wet, or extreme wet.





4
Hypothesis Testing for Trend Detection

This chapter focuses on hypothesis testing for detecting trends in temperature, precipitation, and climate-
related count data such as tropical and ice days. Based on the regression models introduced in previous
chapters, namely isotonic, linear, Poisson, and negative binomial, we present the appropriate testing frame-
works to evaluate the presence of statistically significant trends. In particular, we are interested in detecting
whether, in most cases, there is a positive trend or, in the case of ice and dry days, negative trend over time.
The Python implementation can be found in Appendix A.3.

4.1. Linear Regression
As introduced in Section 3.1, linear regression models the relationship between a continuous response vari-
able and time:

Yi = a +bxi +εi , εi ∼N (0,σ2).

In this study, separate linear models are fitted to the yearly, summer, and winter subsets of the data to assess
seasonal differences in trends, where t denotes the year (or year index).

4.1.1. Estimated Models for Temperature and Precipitation
The fitted linear regression models for the yearly average temperature over time are:

T̂ year
t =−23.5830+0.0169 t ,

T̂ summer
t =−20.7640+0.0189 t ,

T̂ winter
t =−30.7065+0.0171 t ,

The fitted models for total precipitation over time are:

P̂ year
t =−122.4626+0.0965 t ,

P̂ summer
t = 64.0527+0.0056 t ,

P̂ winter
t =−223.2284+0.1473 t ,

Here, Tt represents the average temperature (in °C) and Pt the total precipitation (in millimetres) for year t .
The slope coefficients represent the estimated average change per year.

All temperature models show positive slopes, indicating increasing trends over time. Specifically, the yearly
temperature increases by approximately 0.0965◦C per year, while summer and winter show smaller but still
positive increases of about 0.0189◦C and 0.0171◦C per year, respectively. This suggests a stronger overall
warming trend on an annual basis. For precipitation, the positive slopes indicate increasing trends as well,
with the strongest increase in winter precipitation (0.1473 mm/year), a modest increase in summer (0.0056
mm/year), and a smaller increase annually (0.0169 mm/year).

23
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4.1.2. Slope Testing
To test whether a statistically significant positive trend exists over the years (i.e., whether the slope parameter
b is greater than zero), we consider the one-sided hypotheses:

H0 : b = 0 (no trend, i.e., no change in expected response)

H1 : b > 0 (positive trend in the response variable)

The test statistic is defined as:

t = b̂

SE(b̂)
,

where b̂ is the estimated slope and SE(b̂) its standard error. Under H0, t follows a t-distribution with n −2
degrees of freedom. The corresponding p-value assesses statistical significance.

We reject H0 in favour of H1 if the test statistic exceeds the critical value t1−α,n−2 from the t-distribution at
significance level α, or equivalently if the one-sided p-value is less than α.

P (T > t1−α,n−2) =α, T ∼ tn−2.

Additionally, a (1−α)× 100% confidence interval for the slope can be used; if the entire interval lies above
zero, this further supports a positive trend. This testing procedure is applied to different seasonal and annual
temperature and precipitation data subsets. Test statistics, p-values, critical values at α = 0.05, and confi-
dence intervals for slopes are computed for each model. The results of these tests are presented in Chapter
5.

4.2. Classic Isotonic Regression
Isotonic regression is, as introduced in Section 3.2, a non-parametric technique for estimating a monotonic
(non-decreasing or non-increasing) relationship between an ordered explanatory variable x and a response
variable y , without assuming a specific functional form. Given data points (x1, y1), . . . , (xn , yn) with x1 < x2 <
·· · < xn , isotonic regression estimates a monotonic function f by solving

min
f (x1)≤ f (x2)≤···≤ f (xn )

n∑
i=1

(
yi − f (xi )

)2 .

The goal is to test whether there is evidence of a monotonic trend in the data. This can be formalized as a
hypothesis test on the expected values µi = E[Yi ] at each ordered xi :

H0 : µ1 =µ2 = ·· · =µn (no trend)

H1 : µ1 ≤µ2 ≤ ·· · ≤µn (with at least one strict inequality)

Because classical parametric tests are not suitable in this setting, a permutation-based hypothesis test based
on the reduction in residual sum of squares (RSS) from fitting an isotonic regression versus a flat (constant
mean) model as the test statistic is used. This approach is well-suited for detecting monotonic trends without
assuming linearity or normality.

4.2.1. Permutation Test
To quantify how much better isotonic regression fits the data compared to a null model with no trend, we
compute the test statistic

Tobs = RSSconstant −RSSisotonic,

where

RSSconstant =
n∑

i=1
(yi − ȳ)2,

RSSisotonic =
n∑

i=1
(yi − f̂ (xi ))2.
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Here, ȳ is the sample mean and f̂ (xi ) is the fitted value from the isotonic regression. The larger the value of
Tobs, the greater the improvement in fit by the isotonic model, compared to the constant model, indicating
stronger monotonic structure.

To give an example, the original isotonic regression fits were plotted alongside the mean temperature val-
ues for the yearly, summer, and winter average temperature in Figure 4.1. These plots show clear monotonic
trends in the data, with the isotonic regression lines deviating from the constant mean lines, indicating po-
tential temporal changes in temperature averages.

Figure 4.1: Isotonic regression trends of average yearly, summer, and winter temperatures in De Bilt, shown alongside the corresponding
mean temperatures.

To assess the significance of the observed test statistic, we generate a draw from the null distribution, given
the individual values of yi , by permuting the response values yi while keeping xi fixed. For each permutation
b, the isotonic regression is refitted and the test statistic Tb is recomputed

Tb = RSSconstant −RSS(b)
isotonic.

An example of a permutation result can be found in Figure 4.2. When comparing the fitted isotonic regression
line from the permuted data to the mean, it is often relatively flat and closely follows the average, indicating
an absence of a clear monotonic trend. This contrasts with the original fit (in Figure 4.1), where the isotonic
regression captures a more pronounced upward trend.

This process is repeated B times (in this research, B = 10,000) to generate an empirical null distribution under
the assumption that there is no monotonic relationship between x and y .

The one-sided p-value is then computed as

p = 1+∑B
b=1 I(Tb ≥ Tobs)

B +1
,

where I(·) is the indicator function. A small p-value indicates that the observed improvement in fit is unlikely
under the null hypothesis, supporting the presence of a statistically significant monotonic trend.
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Figure 4.2: Example of a permuted time series of average temperatures (yearly, summer, and winter). The isotonic regression lines fitted
to the permuted data are solid lines. Horizontal lines indicate the mean temperature for each season.

4.3. Poisson Regression
To model count data, such as the number of tropical or ice days per year, Poisson regression is used (see
Section 3.3). This approach assumes that the dependent variable follows a Poisson distribution, with a mean
that varies as a function of time:

Yi ∼ Poisson(λi ), with log(λi ) = a +bxi .

The logarithmic link function ensures that the expected count λi remains strictly positive. A positive value
of the slope b implies an increasing expected count over time, while a negative value indicates a decreasing
trend.

4.3.1. Estimated Models for Extreme Temperatures and Precipitation Counts
To illustrate, the fitted Poisson regression models for tropical and ice days take the following forms:

álogE
[
N trop

t

]=−30.2804+0.0159 t ,álogE
[
N ice

t

]= 12.1281−0.0050 t .

Similarly, the fitted models for dry, wet, and extremely wet days are:

á
logE

[
N dry

t

]= 1.3010+0.0019 t ,álogE
[
N wet

t

]=−3.6373+0.0033 t ,álogE
[
N ext

t

]=−6.7669+0.0042 t .

These equations describe the logarithm of the expected number of days of each type as a linear function of
year t . The slope coefficient b in each model reflects the annual rate of change in the log-expected count. For
example, a slope of b = 0.0159 for tropical days implies that the expected number of tropical days increases
by a factor of exp(0.0159) ≈ 1.016 per year, or roughly 1.6% growth per year. Conversely, the negative slope of
−0.0050 for ice days indicates a declining trend, with expected counts decreasing by about 0.5% per year.

The other models for precipitation show small positive slopes, suggesting slightly increasing trends over time.
A formal test of statistical significance for these slopes is presented in the next section.
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4.3.2. Slope Testing
To determine whether there is a statistically significant trend in the count data, we test the slope parameter b
of the Poisson regression model.

For variables with expected increases (e.g., tropical days and the precipitation models), the hypotheses are:

H0 : b = 0 (no trend)

H1 : b > 0 (positive trend)

For variables with expected decreases (e.g., ice days), the alternative hypothesis is reversed

H0 : b = 0 (no trend)

H1 : b < 0 (negative trend)

Unlike linear regression, where slope inference is based on a t-distribution and normally distributed errors,
Poisson regression assumes a count response with a Poisson distribution. This makes classical t-tests invalid
for testing coefficients. Therefore different methods suited for generalized linear models are needed.

The first approach to hypothesis testing is the Wald test, which uses the estimated slope coefficient b̂ and its
estimated standard error ŜE(b̂). The standard error is defined as the square root of the estimated variance of
b̂, typically obtained from the inverse Fisher information matrix. The test statistic is given by

z = b̂

ŜE(b̂)
.

Under the null hypothesis H0 : b = 0, this statistic approximately follows a standard normal distribution,

z ∼N (0,1).

This allows one to assess whether the slope significantly differs from zero by comparing z to critical values
from the normal distribution.

The second approach is the Likelihood Ratio Test (LRT), which compares the goodness of fit between the full
model (including the slope term) and a reduced model (excluding it). The test statistic is

Λ=−2[ℓreduced −ℓfull] ,

where ℓ denotes the log-likelihood. Under the null hypothesis, Λ∼ χ2
1. A significant value of Λ indicates that

the model with the time trend fits the data significantly better.

A statistically significant result from either test suggests the presence of a systematic change in the count data
over time.

4.4. Isotonic Regression for Count Data
Classical isotonic regression (see Section 4.2) works well for continuous data with constant variance. It typi-
cally assumes Gaussian errors and minimizes the residual sum of squares (RSS). However, these assumptions
do not hold for count data, where observations are discrete and their variability scales with the mean.

To address this, we use a generalized isotonic regression framework that replaces the RSS with a likelihood-
based loss function appropriate for the data’s distribution. For count data, this leads to a Poisson-based
model, where each observed count yi is assumed to follow a Poisson distribution with mean λi , subject to
monotonicity

yi ∼ Poisson(λi ), λ1 ≤λ2 ≤ ·· · ≤λn .

Instead of minimizing squared errors, the model minimizes the Poisson negative log-likelihood

min
λ1≤···≤λn

n∑
i=1

(
λi − yi logλi

)
,

which properly accounts for the mean-variance relationship in count data [10]. This approach generalizes
isotonic regression to settings where distributional assumptions other than Gaussian are more appropriate.
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4.4.1. Permutation Test with Poisson Likelihood
Similar to the classical isotonic regression permutation test (Section 4.2), we test for a monotonic trend by
comparing the isotonic model for count data against a null model where the rate is constant. The test statistic
is

Tobs =Lconstant −Lisotonic,

where

Lconstant =
n∑

i=1

(
ȳ − yi log ȳ

)
,

Lisotonic =
n∑

i=1

(
λ̂i − yi log λ̂i

)
.

Here, ȳ is the overall mean count and λ̂i are the fitted values from the isotonic regression.
To understand if the observed test statistic is unusual, we create a null distribution by permuting the count
data many times, fitting the generalized isotonic model to each permuted set, and calculating

Tb =Lconstant −L (b)
isotonic for b = 1, . . . ,B.

The p-value is the proportion of permuted statistics Tb that are as large or larger than Tobs:

p = 1+∑B
b=1 I(Tb ≥ Tobs)

B +1
.

This method respects the discrete and overdispersed nature of count data, making it a more appropriate test
for monotonic trends in counts than classical isotonic regression [10].

4.5. Negative Binomial Regression
When overdispersion is present, the Poisson model’s assumptions are violated. In such cases, the Negative
Binomial (NB) regression offers a more flexible alternative by introducing a dispersion parameter. The model,
as discussed in Section 3.5, is specified as

Yi ∼ NB(µi ,θ), log(µi ) = a +bxi ,

where µi is the expected count, and θ is the dispersion parameter that accounts for extra variability.

4.5.1. Estimated Models for Extreme Temperatures and Precipitation Counts
The fitted NB regression models for tropical and ice days are:álogE

[
N trop

t

]=−30.0591+0.0157 t with θ = 0.7568,álogE
[
N ice

t

]= 14.6205−0.0063 t with θ = 0.8425,

These functions describe the logarithm of the expected count of extreme temperature days as a linear func-
tion of time. The positive slope in the tropical day model indicates a rising trend over the years, while the
negative slope in the ice day model suggests a decline, both in line with expectations under climate change.

Similarly, the models for dry, wet, and extremely wet days areá
logE

[
N dry

t

]= 1.3650+0.0019 t with θ = 0.0119,álogE
[
N wet

t

]=−3.5656+0.0033 t with θ = 0.0321,álogE
[
N ext

t

]=−6.7666+0.0042 t with θ = 0.0393.

These equations also suggest slight upward trends in precipitation-related extremes. For example, the in-
creasing slope for extremely wet days implies a rise in the frequency of such events over time.

Notably, the Negative Binomial regression estimates are numerically quite similar to those obtained from
the Poisson regression in Section 4.3.1. This similarity indicates that the primary trend patterns are consis-
tent across models, while the NB formulation provides better accommodation for overdispersion and excess
zeros.
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4.5.2. Slope Testing
As with Poisson regression, we test for the presence of a time trend by evaluating the slope parameter b. The
null and alternative hypotheses follow the same one-sided logic

H0 : b = 0, H1 : b > 0 (or H1 : b < 0 for expected negative trends).

For negative binomial regression, the same two hypothesis testing approaches, described in Section 4.3.2 can
be applied: the Wald test and the Likelihood Ratio Test. These tests retain their general structure, but account
for the distinct variance specification of the negative binomial model.

The first approach is the Wald test, which has the same mathematical form as in the Poisson case:

z = b̂

ŜE(b̂)
,

where b̂ is the estimated slope coefficient and ŜE(b̂) is its standard error. In the Negative Binomial setting, this
standard error is derived from the inverse of the observed Fisher information matrix based on the Negative
Binomial likelihood, which includes the estimation of a dispersion parameter α that allows the variance to
exceed the mean. Under the null hypothesis H0 : b = 0, the test statistic approximately follows a standard
normal distribution,

z ∼N (0,1).

Although the formula is identical to that used in Poisson regression, the standard error in Negative Binomial
regression is typically larger due to the extra variability captured by the dispersion parameter, making the test
more conservative in the presence of overdispersion. The second approach is the Likelihood Ratio Test (LRT),
which compares the fit of the full model (including the slope term) to that of a reduced model (excluding it).
The test statistic is given by

Λ=−2[ℓreduced −ℓfull] ,

where ℓ denotes the log-likelihood under the Negative Binomial model. As in Poisson regression, the test
statistic approximately follows a chi-squared distribution with one degree of freedom under the null hypoth-
esis,

Λ∼χ2
1.

A key consideration is that the dispersion parameter θ must be estimated under both the full and reduced
models to ensure a valid comparison of likelihoods. A statistically significant value of either the Wald test or
the LRT statistic provides evidence that the slope coefficient differs significantly from zero, indicating a sys-
tematic change in the count data over time. Compared to the Poisson framework, Negative Binomial regres-
sion yields more reliable inference when the data exhibit overdispersion, by adjusting both standard errors
and likelihoods to better reflect the underlying variance structure.





5
Results of Trend Tests

This chapter evaluates whether Dutch climate indicators show statistically significant increasing or decreas-
ing trends over time by testing the trend under a one-sided alternative. For each variable, we estimate the
trend using different regression models discussed in the chapter before, e.g. linear, two types of isotonic,
Poisson, and negative binomial, depending on its distribution and scale. We report the estimated slopes,
confidence intervals, and one-sided p-values to assess the strength and direction of these trends across tem-
perature and precipitation metrics.

5.1. Linear Regression
The regression analysis results for temperature and precipitation in Table 5.1 reveal several interesting pat-
terns in the trends of temperature and precipitation over time. The yearly temperature exhibits a highly sig-
nificant positive trend, with an estimated slope of 0.0169 and a one-sided p-value effectively equal to zero,
indicating strong evidence of warming across the entire period analysed. This warming is consistent across
seasons, as reflected by the winter temperature trend, which also shows a statistically significant positive
slope of 0.0171 and a correspondingly low p-value, further confirming that the observed increase is not lim-
ited to the annual average but persists during colder months as well. In both cases, the absolute t-statistics
exceed the one-sided critical value of 1.645 at the 5% significance level, providing strong support for the al-
ternative hypothesis of a positive trend.

Table 5.1: Results of linear trend analysis for temperature and precipitation trends. Temperature models use 124 observations (df = 122),
precipitation models use 118 observations (df = 116).

Model Coef. Std. Err. t-stat p-value (1-sided) 95% CI
Yearly Temperature 0.0169 0.0017 10.183 0.0000×100 [0.0136, 0.0201]
Summer Temperature 0.0189 0.0021 9.111 9.9920×10−16 [0.0148, 0.0230]
Winter Temperature 0.0171 0.0044 3.907 7.6956×10−5 [0.0084, 0.0258]
Yearly Precipitation 0.0964 0.0303 3.188 9.2027×10−4 [0.0365, 0.1564]
Summer Precipitation 0.0057 0.0634 0.089 4.6463×10−1 [-0.1199, 0.1312]
Winter Precipitation 0.1472 0.0554 2.659 4.4746×10−3 [0.0376, 0.2569]

In contrast, precipitation trends demonstrate greater variability across seasons. While the overall yearly pre-
cipitation displays a significant upward trend with a slope of 0.0964 and a p-value below 0.001, this pattern
is not uniform throughout the year. Specifically, the summer precipitation trend is small and statistically in-
significant, with a slope near zero and a p-value around 0.46. The corresponding t-statistic falls far below the
critical threshold, suggesting no clear evidence of increased precipitation during summer months. On the
other hand, winter precipitation shows a significant positive trend, with a slope of 0.1472 and a p-value of ap-
proximately 0.0045. Here, the t-statistic again exceeds the critical value of 1.645, indicating that precipitation
has increased notably in the winter season.
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5.2. Classic Isotonic Regression
To assess the presence of significant monotonic trends in the Dutch climate data, we compared the fit of a
constant model to that of an isotonic regression using a permutation test as described in Section 4.2. The
difference in residual sum of squares (RSS) between the two models served as the test statistic, and its signif-
icance was evaluated based on 10,000 permutations under the null hypothesis of no trend.

Figure 5.1 shows the permutation distributions of RSS differences for average yearly, summer, and winter
temperatures. All three distributions are sharply peaked near zero, as expected under the null hypothesis,
with frequencies rapidly decreasing as the RSS difference increases. In each subplot, the observed RSS differ-
ence (marked by a vertical line) lies far to the right of the distribution, indicating that the isotonic regression
captures a strong monotonic trend in temperature that would be highly unlikely to happen by chance.

Figure 5.1: Permutation distributions of RSS differences between constant and isotonic regression models for Dutch average yearly,
winter, and summer temperatures. The distributions are based on 10,000 permutations under the null hypothesis of no trend. The
vertical line in each plot indicates the observed RSS difference from the original data.

Figure 5.2 displays the results for average precipitation, split by season and year. Significant monotonic trends
are observed in both yearly and winter rainfall, where the observed RSS values lie near the upper tail of the
permutation distributions. Summer precipitation, by contrast, shows no such trend. The observed RSS dif-
ference is near the peak of the null distribution, suggesting that any trend is likely due to random variation.

Figure 5.2: Permutation distributions of RSS differences between constant and isotonic regression models for average precipitation:
yearly, winter, and summer. Each distribution is based on 10,000 permutations. Vertical lines indicate the observed RSS differences.

Table 5.4 summarizes the permutation test outcomes. The observed test statistics consistently exceed the
maximum values from the permutation distributions for most variables, particularly for temperature, con-
firming that the trends seen in the figures are not due to random variation. The extremely low p-values (often
near or below 10−3) provide strong statistical evidence for these trends.
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Table 5.2: Permutation test results for isotonic regression on temperature and precipitation data.

Model Test Statistic Permutation p-value Permuted Stats Min Permuted Stats Max
Yearly Temperature 63.169 9.9900×10−4 0.0000 16.219
Summer Temperature 71.919 9.9900×10−4 0.0000 26.638
Winter Temperature 107.26 9.9900×10−4 0.0000 66.741
Yearly precipitation 3003.3 1.1999×10−3 0.0000 3798.8
Summer precipitation 1518.8 6.1904×10−1 0.0000 16150
Winter precipitation 7436.8 5.3995×10−3 0.0000 11109

In summary, the isotonic regression analysis reveals strong and statistically significant monotonic trends in
Dutch climate data, particularly for temperature and dry extremes. These trends are evident across most
seasons and variables, although some, like summer precipitation and Ice Days, show more subdued signals.
The results underline a consistent pattern of warming and drying, with notable seasonal and variable-specific
variation.

5.3. Poisson Regression
The Poisson regression models examined the relationship between time and counts of various climate-related
events: Ice Days, Tropical Days, and precipitation extremes categorized as Dry Days, Wet Days, and Extreme
Wet Days. The results can be found in Table 5.3.

Table 5.3: Results of Poisson regression one-sided tests on the effect of time. Models for Ice and Tropical Days use 124 observations (df =
122), and precipitation models (Dry, Wet, Extreme Wet Days) use 119 observations (df = 117).

Model Coef. Std. Err. z-stat p-value (1-sided) 95% CI Dispersion
Ice Days -0.0050 0.0008 -6.1228 4.5974×10−10 [-0.0067, -0.0034] 8.96
Tropical Days 0.0159 0.0017 9.4203 0.0000×100 [0.0126, 0.0191] 3.07
Dry Days 0.0019 0.0002 9.1892 0.0000×100 [0.0015, 0.0023] 3.00
Wet Days 0.0033 0.0006 5.1527 1.2837×10−7 [0.0020, 0.0046] 1.57
Extreme Wet Days 0.0042 0.0013 3.1191 9.0689×10−4 [0.0015, 0.0068] 1.20

Among the trends that are analysed, the decline in Ice Days stands out as particularly strong and statistically
robust. With a slope of −0.0050 and a z-value of −6.12, the result is well below the one-sided critical thresh-
old of −1.6449, supporting a significant decrease over time (p < 5×10−10). This decline is consistent with a
warming climate, where fewer days meet the freezing requirements.

Equally notable is the sharp rise in Tropical Days, with a steep slope of 0.0159 and a z-value of 9.42, far ex-
ceeding the critical value of 1.6449. This indicates a highly significant increase (p ≈ 0), pointing to a growing
prevalence of extremely hot days.

Dry Days also exhibit a very strong upward trend (z = 9.19), suggesting a marked shift toward more frequent
dry conditions. This is supported by an extremely low p-value (< 1× 10−20), reinforcing concerns over in-
creasing dryness in the observed region.

However, it is important to note that most Poisson models exhibited overdispersion, where the variance of
the response variable exceeds its mean. This violates the key Poisson assumption of equidispersion and may
reflect underlying heterogeneity or temporal clustering not captured in the model. As a result, while all trends
here are statistically significant, the standard errors may be underestimated, and caution is warranted when
interpreting these results quantitatively.



34 5. Results of Trend Tests

5.4. Isotonic Count Regression
We assess monotonic trends in climate-related count data using the Poisson-based permutation test de-
scribed in Section 4.4.1. The test compares a constant-rate model to a Poisson isotonic model, with the
difference in log-likelihoods serving as the test statistic. Significance is determined by comparing the ob-
served value to a null distribution generated from 10,000 random permutations under the assumption of no
trend.

Permutation results for extreme temperature indicators are presented in Figure 5.3. While the distribution
for Tropical Days mirrors the patterns seen in temperature, since the with the observed test statistic is clearly
separated from the permutation values, the result for Ice Days is more modest. The observed value for Ice
Days is near the tail of the distribution but not as far removed, suggesting a weaker though still detectable
trend. This contrast highlights the relative strength of warming trends compared to reductions in cold ex-
tremes.

Figure 5.3: Permutation distributions of test statistics quantifying the improvement in fit between a constant-rate model and an isotonic
count trend model for Tropical Days and Ice Days. The vertical lines indicate the observed Test statistic from the original data.

Figure 5.4 concerns extreme precipitation day counts. Here, Dry Days exhibit a particularly strong trend: the
observed test statistic far exceeds the values seen in any of the permutations. Wet Days also show a sub-
stantial deviation from the null, though less pronounced. The trend for Very Wet Days is weaker, with the
observed value located at the edge of the permutation distribution.

Figure 5.4: Permutation distributions of likelihood-based test statistics comparing constant and isotonic count models for Dry, Wet, and
Extreme Wet Days. The vertical dashed lines shows the observed test statistics.

Table 5.4 summarizes the results of permutation tests evaluating the strength of monotonic trends in various
count-based climate indicators using isotonic count modeling. For each category, the test statistic reflects the
improvement in fit when replacing a constant model with an isotonic model that allows for a non-decreasing
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or non-increasing trend over time. The permutation p-values quantify the probability of observing such im-
provements under the null hypothesis of no trend.

Table 5.4: Permutation test results for isotonic regression on various count data categories.

Model Test Statistic Permutation p-value Permuted Stats Min Permuted Stats Max
Tropical Days 76.866 9.9990×10−5 12.556 60.961
Ice Days 82.289 2.0998×10−3 1.432 108.416
Dry Days 86.617 9.9990×10−5 0.0460 49.707
Wet Days 23.475 9.9990×10−5 0.7410 22.706
Extreme Wet Days 13.027 1.0999×10−3 0.0669 16.737

The low p-values (all below 0.01) across categories suggest strong evidence for temporal trends in the data.
For Tropical and Ice Days, the maximum of most permuted distributions exceed the test statistic from the
original regression, indicating highly significant departures from constancy. Among the precipitation-related
counts, Dry Days show the strongest trend, followed by Wet and Extreme Wet Days, which also demonstrate
significant but more modest effects. Overall, the results support the presence of systematic changes over time
in both temperature and precipitation related extremes.

5.5. Negative Binomial Regression
Table 5.5 summarizes the results of one-sided Negative Binomial regressions examining the effect of year on
several climatic indices. All models account for overdispersion relative to the Poisson distribution, with cor-
responding dispersion values reported in the last column of Table 5.3. It is important to note that not all
models exhibit strong overdispersion; in particular, the model for Extreme Wet Days shows an overdispersion
value of 1.20, suggesting that a Poisson model might already provide a reasonable fit in that case.

Table 5.5: Results of Negative Binomial regression one-sided tests on the effect of year. Models for Ice and Tropical Days use 124 obser-
vations (df = 122), and precipitation models (Dry, Wet, Extreme Wet Days) use 119 observations (df = 117).

Model Coef. Std. Err. z-stat p-value (1-sided) 95% CI Dispersion
Ice Days -0.0063 0.0027 -2.2983 1.0774×10−2 [-0.0117, -0.0009] 1.03
Tropical Days 0.0157 0.0028 5.5494 1.4334×10−8 [0.0102, 0.0213] 1.15
Dry Days 0.0019 0.0004 5.3192 5.2117×10−8 [0.0012, 0.0026] 1.02
Wet Days 0.0033 0.0008 4.1240 1.8615×10−5 [0.0017, 0.0048] 1.01
Extreme Wet Days 0.0042 0.0014 2.8961 1.9000×10−3 [0.0013, 0.0070] 1.03

The model for Tropical Days required a two-step estimation approach due to instability in maximum likeli-
hood optimization. First, a Poisson model was fit to the data, and the dispersion parameter θ was estimated
using the Pearson chi-squared statistic. This estimated θ was then used to fit a Negative Binomial model with
a fixed dispersion parameter, like discussed in Section 3.5.1. For all other models, the optimization procedure
successfully converged, allowing all parameters, including θ, to be estimated jointly.

The regression results reveal several notable trends. The number of Tropical Days shows a strong and highly
significant positive trend, with a coefficient of 0.0157 and a one-sided p-value of 1.43×10−8, indicating an
accelerating increase in hot days over time. Conversely, Ice Days show a significant decreasing trend, with
a negative coefficient of −0.0063 and a p-value of 0.0108. All precipitation based indices display significant
positive associations with year. This suggests an intensification of both dry days and extreme precipitation
events. The overdispersion statistics are all close to 1, indicating that the Negative Binomial models ade-
quately capture extra-Poisson variability across all outcomes.





6
Conclusion and Discussion

This thesis investigated long-term trends in Dutch climate data using more than a century of observations
from the De Bilt weather station. The analysis focused on changes in temperature, precipitation, and the
frequency of extreme weather events, using a variety of statistical models suited to different types of data.
Continuous variables such as average temperature and total precipitation were examined with both linear
and isotonic regression, while count-based variables such as tropical days and extreme precipitation events
were analysed using isotonic, Poisson, and Negative Binomial regression.

The central research question posed in this thesis was: To what extent do historical weather observations from
De Bilt reveal statistically significant trends in temperature, precipitation, and extreme weather events over the
past century? Based on the results presented in Chapters 4 and 5, this question can be answered clearly: the
long-term data from De Bilt show strong and statistically significant evidence of warming, along with chang-
ing patterns in both average and extreme precipitation.

Table 6.1: Summary of trend directions and significance across climate indicators and regression models. Arrows indicate direction of
trend; checkmarks denote significance at the 5% level.

Category Variable Linear Isotonic (2 types) Poisson NegBin
Average Temperature Yearly ↑✓ ↑✓ – –

Summer ↑✓ ↑✓ – –
Winter ↑✓ ↑✓ – –

Average Precipitation Yearly ↑✓ ↑✓ – –
Summer ↑ × ↑ × – –
Winter ↑✓ ↑✓ – –

Extreme Temperature Tropical Days – ↑✓ ↑✓ ↑✓
Ice Days – ↓✓ ↓✓ ↓✓

Extreme Precipitation Dry Days – ↑✓ ↑✓ ↑✓
Wet Days – ↑✓ ↑✓ ↑✓
Extreme Wet Days – ↑✓ ↑✓ ↑✓

All temperature indicators, including yearly, summer, and winter averages, show statistically significant up-
ward trends. These results are consistent across both linear and isotonic models, which strengthens confi-
dence in the observed patterns. Similarly, the number of tropical days has increased and the number of ice
days has decreased, with isotonic, Poisson, and Negative Binomial models confirming these changes as sta-
tistically significant.

Precipitation trends show a more varied picture. Yearly and winter precipitation averages have increased sig-
nificantly, while summer precipitation shows no statistically significant trend. In contrast, the number of dry,
wet, and extremely wet days has increased slightly but consistently, with dry days showing the clearest up-
ward trend. These changes suggest a gradual shift toward more frequent precipitation extremes, in line with
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broader expectations under climate change.

An overview of the trend directions and their statistical significance is provided in Table 6.1. The table shows
clearly which trends are significant and which are not, based on the chosen regression models. All observed
trends are statistically significant at the five percent level, with the exception of summer precipitation. The
consistency across different methods reinforces the reliability of the findings.

Although the analysis reveals clear climate trends at the De Bilt station, there are some limitations. The study
is based on data from a single location and assumes independence between years. Future research could
expand the spatial scope to include more weather stations across the Netherlands, apply time series models
that account for autocorrelation, or make use of regional climate model data to explore attribution. It would
also be valuable to investigate compound events, such as hot and dry summers, which pose particular risks
under climate change.

Taken together, these results paint a clear picture: the Dutch climate, as observed at De Bilt, is undergo-
ing measurable and statistically significant changes. Rising temperatures, shifts in the frequency of extreme
events, and evolving precipitation patterns all point to a climate in transition. Still, more research is needed,
especially covering larger areas, these findings highlight the importance of ongoing climate monitoring and
help guide practical plans to adapt to changing conditions.



A
Modelling

A.1. Data Processing Code
Data preprocessing for all 4 indicators.

Temperature Data Preprocessing

df = pd . read_csv ( " data /temperature . t x t " , sep=r "\ s +" , skiprows =27 , names=["STN" , "DATE" , "TG_hom" ] )
df [ "DATE" ] = pd . to_datetime ( df [ "DATE" ] , format="%Y%m%d" )
df [ "TG_hom" ] = pd . to_numeric ( df [ "TG_hom" ] , errors ="coerce " )
df = df . drop ( columns="STN" )

df [ " Year " ] = df [ "DATE" ] . dt . year
df [ "Month" ] = df [ "DATE" ] . dt . month

Seasonal Temperature Averages

yearly_avg = df . groupby ( " Year " ) [ "TG_hom" ] .mean( )
summer_avg = df [ df [ "Month " ] . i s i n ( [ 6 , 7 , 8 ] ) ] . groupby ( " Year " ) [ "TG_hom" ] .mean( )

df [ " WinterYear " ] = df [ " Year " ]
df . loc [ df [ "Month" ] == 12 , " WinterYear " ] += 1
winter_avg = df [ df [ "Month " ] . i s i n ( [ 1 2 , 1 , 2 ] ) ] . groupby ( " WinterYear " ) [ "TG_hom" ] .mean( )

Precipitation Data Preprocessing

df_rain = pd . read_csv ( " data / r a i n f a l l . t x t " , sep=r "\ s +" , skiprows =15)
df_rain = df_rain . dropna ( subset =["YEAR" ] )

months = [ ’ JAN ’ , ’FEB’ , ’MAR’ , ’APR’ , ’MAY’ , ’JUN’ ,
’JUL ’ , ’AUG’ , ’SEP ’ , ’OCT’ , ’NOV’ , ’DEC’ ]

monthly = df_rain . melt ( id_vars =["YYYY " ] , value_vars=months ,
var_name="Month" , value_name=" R a i n f a l l " )

month_number = {month : i for i , month in enumerate (months , 1 ) }
monthly [ "Month_Num" ] = monthly [ "Month " ] .map(month_number)
monthly [ " Date " ] = pd . to_datetime ( d i c t ( year=monthly [ "YYYY " ] ,

month=monthly [ "Month_Num" ] ,
day =1))
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Tropical and Ice Days Classification

df = pd . read_csv ( " data / weather_data . t x t " , comment= ’# ’ , header=None,
names=["STN" , "DATE" , "TG" , "TN" , "TX" , "SQ" , "RH" ] )

df = df . drop ( columns="STN" )
df [ "DATE" ] = pd . to_datetime ( df [ "DATE" ] , format="%Y%m%d" )

for col in [ "TG" , "TN" , "TX" , "SQ" , "RH" ] :
df [ col ] = pd . to_numeric ( df [ col ] , errors = ’ coerce ’ ) / 10

df [ [ ’ SQ’ , ’RH’ ] ] = df [ [ ’ SQ’ , ’RH’ ] ] . replace ( −1 , 0)
df = df [ df [ "DATE" ] . dt . year != 2025]

df [ "TD" ] = ( df [ "TX" ] >= 3 0 ) . astype ( i n t )
df [ " ID " ] = ( df [ "TX" ] < 0 ) . astype ( i n t )

Precipitation Day Classification

df = pd . read_csv ( " data / weather_data . t x t " , comment= ’# ’ , header=None,
names=["STN" , "DATE" , "TG" , "TN" , "TX" , "SQ" , "RH" ] )

df = df . drop ( columns="STN" )
df [ "DATE" ] = pd . to_datetime ( df [ "DATE" ] , format="%Y%m%d" )

for col in [ "TG" , "TN" , "TX" , "SQ" , "RH" ] :
df [ col ] = pd . to_numeric ( df [ col ] , errors = ’ coerce ’ ) / 10

df [ [ ’ SQ’ , ’RH’ ] ] = df [ [ ’ SQ’ , ’RH’ ] ] . replace ( −1 , 0)
df = df [ df [ "DATE" ] . dt . year != 2025]

df [ " dry " ] = ( df [ "RH" ] < 0 . 1 ) . astype ( i n t )
df [ " wet " ] = ( ( df [ "RH" ] >= 10) & ( df [ "RH" ] < 2 0 . 0 ) ) . astype ( i n t )
df [ " very_wet " ] = ( df [ "RH" ] >= 2 0 . 0 ) . astype ( i n t )

df [ " year " ] = df [ "DATE" ] . dt . year
df = df [ df [ " year " ] >= 1906]

rain_counts = df . groupby ( " year " ) [ [ " dry " , "wet " , " very_wet " ] ] . sum( )

A.2. Regression Models
Examples of fitting different regression models.

Linear Regression

ols_year ly = sm. OLS( Y_yearly , X_const ) . f i t ( )
ols_summer = sm. OLS(Y_summer, X_const ) . f i t ( )
ols_winter = sm. OLS( Y_winter , X_const ) . f i t ( )

Classic Isotonic Regression

iso = IsotonicRegression ( increasing=False )
y e a r l y _ i r = iso . f i t_transform ( x _ f l a t , yearly )
summer_ir = iso . f i t_transform ( x _ f l a t , summer)
winter_ir = iso . f i t_transform ( x _ f l a t , winter )

Isotonic Count Regression
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def poisson_isotonic_regression ( x , y , increasing=True , log_scale=True ) :
"""
F i t a Poisson isotonic regression model using convex optimization .

Args :
x ( array − l i k e ) : 1D array of predictors ( used only for sort ing ) .
y ( array − l i k e ) : 1D array of count responses .
increasing ( bool ) : Whether to enforce increasing trend . I f False , decreasing .
log_scale ( bool ) : Whether to model = exp ( ) to ensure p o s i t i v i t y .

Returns :
lambda_hat : Fi t ted Poisson rates (same shape as y ) .

"""
# Ensure inputs are numpy arrays
x = np . asarray ( x )
y = np . asarray ( y )

# Sort x and reorder y accordingly
sorted_indices = np . argsort ( x )
x_sorted = x [ sorted_indices ]
y_sorted = y [ sorted_indices ]
n = len ( y_sorted )

# Define variables
i f log_scale :

theta = cp . Variable (n) # log ( )
lam = cp . exp ( theta )

else :
lam = cp . Variable (n)
theta = cp . log ( lam)

# Define monotonicity constraints
d i f f s = theta [ 1 : ] − theta [ : − 1 ] i f log_scale else lam [ 1 : ] − lam [ : − 1 ]
i f increasing :

constraints = [ d i f f s >= 0]
else :

constraints = [ d i f f s <= 0]

# Poisson negative log −l ikel ihood : sum( _i − y_i * log ( _i ) )
objective = cp .sum(lam − cp . multiply ( y_sorted , theta ) )
prob = cp . Problem ( cp . Minimize ( objective ) , constraints )
prob . solve ( )

i f prob . status not in [ " optimal " , " optimal_inaccurate " ] :
r a i s e RuntimeError ( " Optimization f a i l e d . " )

# Return f i t t e d values in o r i g i n a l x order
f i t t e d = lam . value
unsorted_fitted = np . empty_like ( f i t t e d )
unsorted_fitted [ sorted_indices ] = f i t t e d

return unsorted_fitted

Poisson Regression

poisson_td = smf . glm( formula = ’TD_sum ~ YEAR’ , data=extreme_year ,
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family=sm. fa m i l i e s . Poisson ( ) ) . f i t ( )

def check_dispersion (model ) :
pearson_chi2 = sum(model . resid_pearson * * 2 )
df_resid = model . df_resid
dispersion = pearson_chi2 / df_resid
print ( f " Dispersion s t a t i s t i c : { dispersion : . 2 f } " )
i f dispersion > 1 . 5 :

print ( " Evidence of overdispersion . " )
e l i f dispersion < 0 . 8 :

print ( " Evidence of underdispersion . " )
e lse :

print ( " Dispersion i s approximately acceptable . " )

Negative Binomial Regression

nb_td = smf . glm(
formula = ’TD_sum ~ YEAR’ ,
data=extreme_year ,
family=NegativeBinomial ( )

) . f i t ( )

Two step alpha

# Tropical Days
poisson_td = smf . glm ( ’TD_sum ~ YEAR’ , data=extreme_year , family=sm. fa mi l i e s . Poisson ( ) ) . f i t ( )
mu_td = poisson_td . f i t t e d v a l u e s

n = len ( extreme_year )
pearson_td = np .sum( ( extreme_year [ ’TD_sum’ ] − mu_td) * * 2 / mu_td)
alpha_td = ( pearson_td − n) / np .sum(mu_td)

nb_td = smf . glm ( ’TD_sum ~ YEAR’ , data=extreme_year ,
family=NegativeBinomial ( alpha=alpha_td ) ) . f i t ( )
extreme_year [ ’ TD_nb_pred ’ ] = nb_td . predict ( extreme_year )

A.3. Trend Testing
Functions used to preform one sided and permutation tests.

Linear Regression

def test_trend_one_sided ( o l s _ r e s u l t , alpha =0.05 , verbose=True ) :
"""
Performs a one−sided t e s t of the slope c o e f f i c i e n t from an OLS regression .

H0: beta = 0
H1: beta > 0

Returns t e s t s t a t i s t i c , c r i t i c a l value , one−sided p−value ,
confidence i nte r v a l , and standard error .
"""
coef = o l s _ r e s u l t . params [ 1 ]
stderr = o l s _ r e s u l t . bse [ 1 ]
t _ s t a t = o l s _ r e s u l t . tvalues [ 1 ]
df = i n t ( o l s _ r e s u l t . df_resid )
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# One−sided p−value
i f coef > 0 :

p_one_sided = 1 − s t a t s . t . cdf ( t _ s t a t , df )
e lse :

p_one_sided = 1.0

# C r i t i c a l t −value
t _ c r i t = s t a t s . t . ppf (1 − alpha , df )

# Confidence i n t e r v a l ( two−sided )
ci_low , ci_high = o l s _ r e s u l t . conf_int ( ) [ 1 ]

# Decision
r e j e c t = t _ s t a t > t _ c r i t

i f verbose :
print ("=== One−sided Test for Trend ===")
print ( f " Toetsingsgrootheid ( t − s t a t i s t i c ) : { t _ s t a t : . 4 f } " )
print ( f "Standard Error : { s tderr : . 4 f } " )
print ( f " C r i t i c a l value ( alpha = { alpha } ) : { t _ c r i t : . 4 f } " )
print ( f "One−sided p−value : { p_one_sided : . 4 e } " )
print ( f "95% Confidence I n t e r v a l ( slope ) : [ { ci_low : . 4 f } , { ci_high : . 4 f } ] " )
print ( f " Reject H0? { ’ Yes ’ i f r e j e c t e lse ’No’ } \ n" )

return {
" c o e f f i c i e n t " : coef ,
" standard_error " : stderr ,
" t _ s t a t i s t i c " : t _ s t a t ,
" t _ c r i t i c a l " : t _ c r i t ,
" p_value_one_sided " : p_one_sided ,
" confidence_interval " : ( ci_low , ci_high ) ,
" r e j e c t _ n u l l " : r e j e c t

}

Permutation testing
Function used to test the classic isotonic regression models

def isotonic_permutation_test ( y , x=None, B=10000 , random_state=None ) :
rng = np . random . default_rng ( random_state )
y = np . asarray ( y )

i f x i s None :
x = np . arange ( len ( y ) )

e lse :
x = np . asarray ( x )

# Remove NaNs
mask = ~np . isnan ( y )
y = y [mask]
x = x [mask]

# F i t isotonic regression on r e a l data
i r = IsotonicRegression ( increasing=True )
y_iso = i r . f i t_transform ( x , y )
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r s s _ n u l l = np .sum( ( y − np .mean( y ) ) * * 2 )
r s s _ i s o = np .sum( ( y − y_iso ) * * 2 )
T_obs = r s s _ n u l l − r s s _ i s o

T_perm = [ ]
for _ in range (B ) :

y_perm = rng . permutation ( y )
y_iso_perm = i r . f i t_transform ( x , y_perm)
rss_null_perm = np .sum( ( y_perm − np .mean(y_perm ) ) * * 2 )
rss_iso_perm = np .sum( ( y_perm − y_iso_perm ) * * 2 )
T_perm . append( rss_null_perm − rss_iso_perm )

T_perm = np . array (T_perm)
p_value_raw = (np .sum(T_perm >= T_obs ) + 1) / (B + 1)
p_value_str = f " { p_value_raw : . 4 e } " # format as s c i e n t i f i c notation with 4 decimals

return T_obs , p_value_str , T_perm

This is for testing the continuous isotonic regression

def isotonic_permutation_test ( y , x=None, B=10000 , random_state=None ) :
rng = np . random . default_rng ( random_state )
y = np . asarray ( y )

i f x i s None :
x = np . arange ( len ( y ) )

e lse :
x = np . asarray ( x )

# Remove NaNs
mask = ~np . isnan ( y )
y = y [mask]
x = x [mask]

# F i t isotonic regression on r e a l data
i r = IsotonicRegression ( increasing=True )
y_iso = i r . f i t_transform ( x , y )

r s s _ n u l l = np .sum( ( y − np .mean( y ) ) * * 2 )
r s s _ i s o = np .sum( ( y − y_iso ) * * 2 )
T_obs = r s s _ n u l l − r s s _ i s o

T_perm = [ ]
for _ in range (B ) :

y_perm = rng . permutation ( y )
y_iso_perm = i r . f i t_transform ( x , y_perm)
rss_null_perm = np .sum( ( y_perm − np .mean(y_perm ) ) * * 2 )
rss_iso_perm = np .sum( ( y_perm − y_iso_perm ) * * 2 )
T_perm . append( rss_null_perm − rss_iso_perm )

T_perm = np . array (T_perm)
p_value_raw = (np .sum(T_perm >= T_obs ) + 1) / (B + 1)
p_value_str = f " { p_value_raw : . 4 e } "

return T_obs , p_value_str , T_perm

This is for testing the count data
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def poisson_isotonic_regression ( x , y , increasing=True , log_scale=True ) :
"""
F i t a Poisson isotonic regression model using convex optimization .

Args :
x ( array − l i k e ) : 1D array of predictors ( used only for sort ing ) .
y ( array − l i k e ) : 1D array of count responses .
increasing ( bool ) : Whether to enforce increasing trend . I f False , decreasing .
log_scale ( bool ) : Whether to model = exp ( ) to ensure p o s i t i v i t y .

Returns :
lambda_hat : Fi t ted Poisson rates (same shape as y ) .

"""
# Ensure inputs are numpy arrays
x = np . asarray ( x )
y = np . asarray ( y )

# Sort x and reorder y accordingly
sorted_indices = np . argsort ( x )
x_sorted = x [ sorted_indices ]
y_sorted = y [ sorted_indices ]
n = len ( y_sorted )

# Define variables
i f log_scale :

theta = cp . Variable (n) # log ( )
lam = cp . exp ( theta )

else :
lam = cp . Variable (n)
theta = cp . log ( lam)

# Define monotonicity constraints
d i f f s = theta [ 1 : ] − theta [ : − 1 ] i f log_scale else lam [ 1 : ] − lam [ : − 1 ]
i f increasing :

constraints = [ d i f f s >= 0]
else :

constraints = [ d i f f s <= 0]

# Poisson negative log −l ikel ihood : sum( _i − y_i * log ( _i ) )
objective = cp .sum(lam − cp . multiply ( y_sorted , theta ) )
prob = cp . Problem ( cp . Minimize ( objective ) , constraints )
prob . solve ( solver=cp .ECOS, verbose=False , max_iters =10000)

# Return f i t t e d values in o r i g i n a l x order
f i t t e d = lam . value
unsorted_fitted = np . empty_like ( f i t t e d )
unsorted_fitted [ sorted_indices ] = f i t t e d

return unsorted_fitted

# Example usage with your extreme_year DataFrame :
# Assuming extreme_year has columns : ’YEAR’ , ’TD_sum’ , ’ID_sum’

x_td = extreme_year [ ’YEAR ’ ] . values
y_td = extreme_year [ ’TD_sum’ ] . values
td_poisson_iso_pred = poisson_isotonic_regression ( x_td , y_td , increasing=True , log_scale=True )
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extreme_year [ ’ TD_poisson_iso_pred ’ ] = td_poisson_iso_pred

x_id = extreme_year [ ’YEAR ’ ] . values
y_id = extreme_year [ ’ ID_sum ’ ] . values
id_poisson_iso_pred = poisson_isotonic_regression ( x_id , y_id , increasing=False , log_scale=True )
extreme_year [ ’ ID_poisson_iso_pred ’ ] = id_poisson_iso_pred

def poisson_neg_log_likelihood ( y , lam ) :
"""
Compute Poisson negative log −l ikel ihood (up to constants ) :
sum( lam_i − y_i * log ( lam_i ) )
"""
return np .sum(lam − y * np . log ( lam ) )

def poisson_isotonic_permutation_test ( y , x=None, increasing=True , B=10000 , random_state=None ) :
rng = np . random . default_rng ( random_state )
y = np . asarray ( y )

i f x i s None :
x = np . arange ( len ( y ) )

e lse :
x = np . asarray ( x )

mask = ~np . isnan ( y )
y = y [mask]
x = x [mask]

lam_iso = poisson_isotonic_regression ( x , y , increasing=increasing ) # pass increasing here

l l _ n u l l = poisson_neg_log_likelihood ( y , np . f u l l _ l i k e ( y , y .mean ( ) ) )
l l _ i s o = poisson_neg_log_likelihood ( y , lam_iso )
T_obs = l l _ n u l l − l l _ i s o

T_perm = [ ]
for _ in range (B ) :

y_perm = rng . permutation ( y )
lam_perm = poisson_isotonic_regression ( x , y_perm ,
increasing=increasing ) # pass here too
ll_null_perm = poisson_neg_log_likelihood ( y_perm , np . f u l l _ l i k e (y_perm , y_perm .mean ( ) ) )
ll_iso_perm = poisson_neg_log_likelihood (y_perm , lam_perm)
T_perm . append( ll_null_perm − ll_iso_perm )

T_perm = np . array (T_perm)
p_value_raw = (np .sum(T_perm >= T_obs ) + 1) / (B + 1)
p_value_str = f " { p_value_raw : . 4 e } "

return T_obs , p_value_str , T_perm

t e s t _ r e s u l t s = { }
l a b e l s = {

" Tropical Days " : ( ’TD_sum’ , True ) , # increasing isotonic regression
" Ice Days " : ( ’ ID_sum ’ , False ) # decreasing isotonic regression

}

for label , (column , increasing ) in l a b e l s . items ( ) :
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T_obs , p_val_str , T_perm = poisson_isotonic_permutation_test (
extreme_year [ column ] . values ,
extreme_year [ ’YEAR ’ ] . values ,
increasing=increasing ,
B=10000 ,
random_state=42

)

t e s t _ r e s u l t s [ l a be l ] = {
"T_obs " : T_obs ,
" p_value_str " : p_val_str ,
"T_perm " : T_perm

}

print ( f " { l ab e l } : \ n"
f " Observed Test S t a t i s t i c = { T_obs : . 4 f } \n"
f " p−value = { p_val_str } \n"
f " Permuted s t a t s min : {T_perm . min ( ) : . 4 f } , max: {T_perm .max ( ) : . 4 f } \n" )

Poisson Regression

def format_p_value (p ) :
dec_p = Decimal ( s t r (p ) )
i f dec_p == 0 :

return " { : . 4 e } " . format (p i f p > 0 else 1e−20)
else :

return " { : . 4 e } " . format (p)

def poisson_one_sided_test (model , param_name= ’ year ’ , a l t e r n a t i v e = ’ less ’ , model_name= ’Model ’ ) :
coef = model . params [param_name]
se = model . bse [param_name]
z _ s t a t = coef / se
z_95 = norm. ppf ( 0 . 9 7 5 )
ci_lower = coef − z_95 * se
ci_upper = coef + z_95 * se

i f a l t e r n a t i v e == ’ less ’ :
p_val = norm. cdf ( z _ s t a t )
a l t _ t e x t = " l e s s than 0"

e l i f a l t e r n a t i v e == ’ greater ’ :
p_val = 1 − norm. cdf ( z _ s t a t )
a l t _ t e x t = " greater than 0"

else :
r a i s e ValueError ( " a l t e r n a t i v e must be ’ less ’ or ’ greater ’ " )

p_val_str = format_p_value ( p_val )

print ( f "\n{model_name} − Poisson Regression One−Sided Test on ’ {param_name } ’ " )
print("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
print ( f " Co eff i c ie nt ( slope ) : { coef : . 4 f } " )
print ( f "Standard Error : { se : . 4 f } " )
print ( f "95% Confidence I n t e r v a l : ( { ci_lower : . 4 f } , { ci_upper : . 4 f } ) " )
print ( f "Z S t a t i s t i c : { z _ s t a t : . 4 f } " )
print ( f "One−sided p−value (H1: coef { a l t _ t e x t } ) : { p_val_str } " )

check_dispersion (model , model_name)
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Negative Binomial Regression

def negbinom_one_sided_test (model , param_name= ’YEAR’ , a l t e r n a t i v e = ’ less ’ ,
model_name= ’ Negative Binomial Model ’ ) :

coef = model . params [param_name]
se = model . bse [param_name]
z _ s t a t = coef / se
z_95 = norm. ppf ( 0 . 9 7 5 )
ci_lower = coef − z_95 * se
ci_upper = coef + z_95 * se

i f a l t e r n a t i v e == ’ less ’ :
p_val = norm. cdf ( z _ s t a t )
a l t _ t e x t = " l e s s than 0"

e l i f a l t e r n a t i v e == ’ greater ’ :
p_val = 1 − norm. cdf ( z _ s t a t )
a l t _ t e x t = " greater than 0"

else :
r a i s e ValueError ( " a l t e r n a t i v e must be ’ less ’ or ’ greater ’ " )

p_val_str = format_p_value ( p_val )

print ( f "\n{model_name} − Negative Binomial Regression One−Sided Test on ’ {param_name } ’ " )
print("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
print ( f " Co eff i c ie nt ( slope ) : { coef : . 4 f } " )
print ( f "Standard Error : { se : . 4 f } " )
print ( f "95% Confidence I n t e r v a l : ( { ci_lower : . 4 f } , { ci_upper : . 4 f } ) " )
print ( f "Z S t a t i s t i c : { z _ s t a t : . 4 f } " )
print ( f "One−sided p−value (H1: coef { a l t _ t e x t } ) : { p_val_str } " )
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