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Abstract
Accurate shortterm forecasts, also known as nowcasts, of heavy precipitation are desirable for cre
ating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this
research, we explore the use of machine learning for shortterm prediction of heavy summer rainfall
showers in the Netherlands.

We explore the use of a recurrent, convolutional neural network (TrajGRU, Shi et al., 2017) with lead
times of up to 100 minutes. We aim to train the model to predict the formation and dissipation of dy
namic, heavy, localized rain events, a task for which traditional Lagrangian extrapolation based now
casting methods still come up short. The network is trained, validated and tested on a 13year archive
of radar images with 5min temporal and 1km spatial resolution from the precipitation radars of the
Royal Netherlands Meteorological Institute (KNMI).

We report on different ways to optimize predictive performance for heavy precipitation events through
two experiments. In the first experiment different training dataset compositions are explored. The large
dataset available provides many possible configurations for training. To focus on heavy rainfall intensi
ties, we use different subsets of the radar dataset through using different conditions for event selection
and varying the ratio of light and heavy precipitation events present in the training data set. In the
second experiment we change the loss function used to train the model.

To assess the performance of the model, we compare our method to a current stateoftheart deter
ministic Lagrangian extrapolationbased nowcasting system from the pySTEPS library, SPROG (Seed
et al, 2003). The results of the experiments are used to discuss the pros and cons of machinelearning
based methods for precipitation nowcasting and possible ways to further increase performance.

Model behaviour was found to be significantly influenced by the formulation of the loss function. It
was concluded that there is always a tradeoff between performance at low rainfall intensities and per
formance at high rainfall intensities: (1) If a model makes smaller errors at low rainfall intensities this
results in a low total error, but also in the failure to detect high rainfall intensities. (2) If model perfor
mance is improved at detecting high rainfall intensities, this results in a decreased performance at low
rainfall rates and increases the total error.
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Acronyms
ANN Artificial Neural Network.

CNN Convolutional Neural Network.

CSI Critical Succes Index.

DL Deep Learning.

FAR False Alarm Ratio.

FSS Fractions Skill Score.

GRU Gated Recurrent Unit.

LR Learning Rate.

LSTM Long ShortTerm Memory.

MAE Mean Absolute Error.

MSE Mean Square Error.

NWP Numerical Weather Prediction.

OF Optical Flow.

POD Probability Of Detection.

QPE Quantitative Precipitation Estimation.

QPF Quantitative Precipitation Forecast.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.
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Glossary
lead time Forecast horizon; the length of time into the future for which predictions are prepared.

optical flow The pattern of apparent motion of objects in consecutive images..

reflectivity Expression for the amount of backscattered radiation measured by a radar.
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1
Introduction

Nowcasting is defined as short term (06 hours) quantitative precipitation forecasting. Accurate now
casts are desirable for creating reliable early warning systems for extreme weather and its conse
quences, e.g. urban flooding. With the projected increase in frequency and intensity of precipitation
extremes (KNMI, 2014; Lenderink et al., 2011) this becomes even more important.

Quantitative precipitation forecasts (QPFs) are traditionally generated in one of two ways: with nu
merical weather prediction (NWP) models or with statistical extrapolation of radar observations. NWP
models simulate the physical state of the atmosphere by numerically solving a set of partial differential
equations that govern the physical state of the atmosphere and by parameterizing small scale (subgrid)
processes, bounded by a set of initial conditions and boundary conditions. This can produce reliable
forecasts but it is a computationally expensive process and it generates forecasts at coarse temporal
and spatial scales and with low update rates due to long spinup times (the time it takes for the model
to reach physical equilibrium). Lots of improvements have been made in this field with for example
data assimilation for lower calculation times and increased accuracy, and higher spatial and temporal
resolution (Sun et al., 2014). However, NWP models are still outperformed by extrapolationbased
methods in 02 h forecasting range (Simonin et al., 2017; Sun et al., 2014). This is the reason that for
nowcasting in this time range, radar extrapolationbased models are used.

Extrapolationbased methods predict the evolution of the rainfall process based on the last radar ob
servations. These models are based on the fundamental assumption that both the rainfall intensity
and the motion fields are stationary: rain cells are assumed to only evolve slowly over time and move
along a principal direction of motion. This concept is commonly referred to as ”Lagrangian persistence”
(Germann & Zawadzki, 2002). This type of forecast consists of two steps. (1) Tracking: Determine the
motion field based on the most recent observations with for example an optical flow (OF) algorithm.
(2) Extrapolation: Application of an advection scheme to extrapolate the last observation along the
direction of the flow. In Figure 1.1 this process is illustrated.

Figure 1.1: An example of an extrapolationbased nowcast at t0 = 20200816 17:00. In step (1) the motion field is determined
from previous radar observations, in step (2) the last observation is extrapolated with an advection scheme.

These nowcasts can also be made in a probabilistic sense, by adding perturbations in the forecasting
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2 1. Introduction

process, generating an ensemble of nowcasts. Extrapolationbased models, with varying methods for
tracking and extrapolation, are employed in many operational nowcasting systems (Reyniers, 2008;
Woo & Wong, 2017). Many studies have been done on the verification of these models in various
regions of the world (e.g. Foresti et al., 2016; Woo & Wong, 2017). In the Netherlands, Imhoff et al.
(2020) performed an analysis of model performance of several different extrapolationbased models.
Skillful lead times (the time span a forecast is deemed useful) between 25 minutes, up to almost 2
hours were found and model performance was found to be worst for summer precipitation events.

Uncertainty in extrapolationbased nowcasts can originate from three sources (adapted from Germann
et al. (2006) and Foresti et al. (2019)): (1) Uncertainty in the radar derived quantitative precipitation es
timation (QPE, refers to the rainfall field), (2) The assumption of Lagrangian persistence does not hold
because either the rainfall field is not stationary (e.g. due to dissipation, intensification or initiation of
rainfall), or the motion field is not stationary; (3) Model errors in the implementation of Lagrangian per
sistence (e.g. inaccuracies in motion field retrieval or extrapolation scheme application). Improvement
in these types of nowcasts can be made by reducing these uncertainties. For example, by blending with
NWP (Chung & Yao, 2020; Nerini et al., 2019; Sun et al., 2014) , data assimilation, e.g. using observed
or model derived wind variables (Bechini & Chandrasekar, 2017; Winterrath & Rosenow, 2007) and by
trying to model growth and decay processes in the rainfall field (Foresti et al., 2019).

In recent years, several studies have also explored the potential of deep learning for nowcasting. With
deep learning, no assumptions have to be made and no explicit rules are programmed. A model ar
chitecture is provided and the model parameters are determined by the deep learning process. So
in contrary to extrapolationbased models, the underlying processes don’t need to be understood and
described. You let the deep learning model search for the relationship between input and output based
on historical data. By using deep learning for nowcasting, the hope is to overcome the assumptions
that are made in extrapolationbased models, like Lagrangian persistence, and hope that the model
can capture more complex processes, like intensification and dissipation of the rainfall field, as well.

One of the first successful implementations of deep learning for rainfall nowcasting can be attributed to
Shi et al. from the Hong Kong Meteorological Observatory with his introduction of ConvLSTM (2015)
and in a follow up study with TrajGRU (2017), two convolutional, recurrent neural networks. Both
outperformed extrapolation based model ROVER (Realtime Optical flow by Variational methods for
Echoes of Radar), the currently operational nowcasting system employed in the Hong Kong area. Since
then, manymore studies have been published on the topic of deep learning for precipitation nowcasting.
Notable studies included research into fully convolutional networks (Ayzel et al., 2020) , different type
memory blocks (Cao et al., 2019; Wang et al., 2019), the use of attention mechanisms (Yan et al.,
2020), model stacking (Franch et al., 2020), multichannel radar input (Jing et al., 2019; Tran & Song,
2019), adding realtime meteorological reanalysis data (Song et al., 2019; W. Zhang et al., 2019),
the use of vanilla recurrent neural networks (RNNs) to reduce the number of parameters (Singh et al.,
2017b) and adversarial training (Jing et al., 2019; Singh et al., 2017a; Tian et al., 2019). Although many
successes have been achieved in terms of low forecast errors, some recurring weaknesses have been
noted. Deep learning models tend to produce excessively smoothed rainfall fields and consistently
underestimate high rainfall values (e.g. Ayzel et al., 2020; Franch et al., 2020; Marrocu & Massidda,
2020).

1.1. Research objective
As mentioned, summer precipitation events were found to have worse extrapolationbased model per
formance compared to events in other seasons (Imhoff et al., 2020). Summer precipitation is often
caused by convection and is of a more dynamic nature, and the assumption of Lagrangian persistence
applies to a lesser degree. These type of events are however the heaviest and prone to cause prob
lems, like flooding. It is thus important to improve nowcasts for this type of event.

This research is an exploration how deep learning can be used to predict heavy summer precipitation in
the Netherlands with lead times up to 100 minutes. The goal of this research is not to produce the best
possible model, but to investigate how our choices in model training setup influence the model’s abil
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ity to accurately predict heavy summer rainfall events specifically. To that end, different strategies for
training a deep learning model based on TrajGRU (Shi et al., 2017) were explored. Model performance
was compared to an extrapolationbased benchmark, SPROG (SpectralPROGnosis) as introduced
by Seed et al. (2003). A 13year long archive of radar reflectivity images from the Royal Netherlands
Meteorological Institute (KNMI) was available for training, validation and testing. A method to extract
(heavy) precipitation events from this archive is presented. The nowcasts were verified using several
metrics. Both averagemodel performance and eventbyevent basedmodel performance are analysed.

1.2. Research questions
The research questions of this master thesis project are as follows:

1. How can a deep, recurrent, convolutional neural network, be trained to nowcast heavy rainfall
events in the Netherlands, using a large radar reflectivity composites archive?

2. How does this model compare to SPROG, a stateoftheart extrapolation based nowcasting
system?

To answer research question one, different training setups for the deep learning model are employed,
with the aim to emphasize heavy precipitation. Two experiments were conducted: (1) comparison of
different training datasets: dataset size and ratio of heavy precipitation events are varied, and (2) com
parison of different loss functions. To answer research question two, the deep learning models that
were created, are compared to the extrapolationbased benchmark SPROG.

In Chapter 2, background information is provided on the radar reflectivity dataset and the models that
are used in this research. In Chapter 3, the methodology is explained. In Chapter 4, the results are
presented and interpreted. Results are discussed and compared to related work in Chapter 5, and
conclusions and recommendations are given in Chapter 6.





2
Background

In this chapter, background information is provided on extreme precipitation in the Netherlands. The
radar extrapolationbased model SPROG and deep learning model TrajGRU are introduced, including
some deep learning principles that are needed to understand the workings of TrajGRU.

2.1. Extreme precipitation in the Netherlands
In the Netherlands, extreme precipitation can be caused by two mechanisms: frontal precipitation and
convective precipitation. The mechanisms are illustrated in Figure 2.1. Frontal precipitation occurs
when two air masses of different temperatures meet. The cold, dense air will cause the warm, less
dense air to rise over the cold air, which causes the air to cool and decrease its ability to hold moisture.
This causes the moisture in the air to condensate and form clouds, which leads to precipitation. When
warm air moves towards a cold air mass (a warm front), this leads to longer periods of low intensity
rainfall. When cold air moves towards a warm air mass (a cold front), this leads to shorter periods of
higher intensity rainfall.

Convective precipitation is the result of convection: the upwards motion of air due to warming of the
Earth’s surface by the sun. When the air near the surface warms, it becomes less dense and starts
to rise. This will cause the air to cool and decrease its ability to hold moisture, causing condensation.
Convective rain showers are typically of high intensity and short duration.

Figure 2.1: Diagrams illustrating the mechanisms of frontal precipitation formation and convective precipitation formation.

Frontal precipitation is responsible for precipitation extremes in winter. It is easier to predict because
of longer lifespans and less vertical development. Convective precipitation is responsible for most pre
cipitation extremes in summer. It is much harder to predict because it’s a smaller scale process, both

5
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spatial and temporal, and vertical development plays a large role.

Increased frequency and intensity of precipitation extremes have been observed over the past century
(Buishand et al., 2013) and this trend has been projected to continue. Because of increased tempera
ture due to climate change, the atmosphere can hold more moisture, resulting in precipitation extremes
occurring more often and with higher rainfall rates (KNMI, 2014; Lenderink et al., 2011).

2.2. KNMI radar reflectivity dataset
Radar is an acronym for RAdio Detection And Ranging. A radar emits pulses of electromagnetic ra
diation with a wavelength between 110 cm and measures the backscattered radiation at the emitted
wavelength. In meteorology, radars are used for the observation of precipitation. Rainfall rates can be
derived from the amount of backscattered radiation, expressed as radar reflectivity z. Since z spans
over a large range, reflectivity is expressed on a logarithmic scale in unit dBZ. The relationship between
reflectivity and rainfall rate used in this research is one defined by Marshall et al. (1955), see (2.1), with
reflectivity 𝑍 in dBZ and rainfall rate 𝑅 in mm/h.

𝑍 = 200𝑅1.6 (2.1)

Although the quality of the radar reflectivity measurements and the conversion to rainfall rates are im
portant factors in making accurate nowcasts, this is outside the scope of this research. For further
information on radar meteorology, see Rauber and Nesbitt (2018).

The data used in this research are radar reflectivity composites produced by the Royal Netherlands
Meteorological Institute (KNMI). KNMI operates two Cband Doppler weather radars, previously in De
Bilt and Den Helder, and in 2016/2017 replaced by new radars in Herwijnen and Den Helder. See figure
2.2 for the locations and ranges of the radars. The radars operate at a 5.3 cm wavelength. Multiple
products derived from the radars measurements are available, among which quantitative precipitation
estimations (QPE) that are validated with ground observations. For the purpose of this research it is
important that data is available in near realtime, so the low level processed, unvalidated radar reflec
tivity composites at 1500 m height were used.

Figure 2.2: Weather radar network of the Royal Netherlands Meteorological institute, old locations (Den Helder and De Bilt) and
new locations (Den Helder and Herwijnen).

Radar reflectivities are measured by both radars in scans with elevation angles of 0.3, 1.1, 2.0, and 3.0
degrees. From the volumetric scans performed by the radars, horizontal cross sections of reflectivity
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at 1,500 m height are generated by linear interpolation. These images are then combined into one
radar reflectivity composite by taking a weighted average of the radar reflectivities. The weight of a
point is a function of the distance to the radar. The product has a 1 km x 1 km spatial resolution and a
5minute temporal resolution. The data is provided in hdf5 files, which contain images (700x765 pixels
2D arrays) of the 8bit (range 0255) radar reflectivity values in 0.5 dBZ intervals. Where no reflectivity
measurements are available, outside the range of the radars or when one of the radars wasn’t working,
a nodata value of 255 is used. Transformation from 8bit integer to reflectivity in dBZ is done with the
following formula: Z = (pixel value * 0.5)  32.0.

The described product has been archived since 2008, so over 13 years of data was available for this
research. The radar reflectivity composites can be retrieved through the KNMI data platform via an API.
The product name of the archive is radar_tar_refl_composites/versions/1.0. The near real
time images are available after 3 to 4 minutes and have product name
radar_reflectivity_composites/versions/2.0.

2.3. Benchmark: SPROG
In the Netherlands, KNMI has recently employed STEPS (Bowler et al., 2006) as the new operational
nowcasting system. This is a probabilistic, radar extrapolationbased nowcasting method. This re
search focuses on deterministic nowcasts, so the deterministic extrapolationbased model SPROG,
on which STEPS was based, was chosen as the benchmark. SPROG is short for Spectral PROGno
sis and was introduced by Seed (2003). In this research the model was implemented using pySTEPS
(Pulkkinen et al., 2019), an opensource Python framework for nowcasting systems.

SPROG is an opticalflow advection based nowcasting system that also takes the temporal evolution of
the rainfall field into account. The estimation of the evolution of the rainfall field is based on the property
that every rainfall field contains features at different spatial scales, which develop at different tempo
ral scales. Smaller features evolve faster and bigger features evolve slower (Germann & Zawadzki,
2002). The precipitation field is disaggregated into j cascade levels, each cascade level representing a
different spatial scale. For each cascade level, autoregressive parameters are determined in order to
determine the temporal evolution at this scale. Each scale is extrapolated separately using the result
ing autoregressive models. The final nowcast is then calculated by summing the advected Lagrangian
forecasts at all cascade levels. In case of the pySTEPS implementation, the workflow is as follows:

1. Read radar composites. Values are transformed from dBZ to rainfall rate R in mm/h, and then
logtransformed to dBR.

2. Determine of motion field with LucasKanade method. LucasKanade is an optical flow method
that yields a dense motion field by computing the motion vector for every pixel (Lucas & Kanade,
1981). In Figure 2.3 an example of a motion field is presented.

3. Extrapolate the rainfall field using semiLagrangian advection.

4. Apply a spectral decomposition into j cascade levels with a fast Fourier transform (FFT) and a
Gaussian bandpass filter. In Figure 2.4 an example of a decomposition into 7 cascade levels is
presented.

5. Estimate the Lagrangian autocorrelation coefficients 𝜌𝑗,1 and 𝜌𝑗,2 for each cascade level.

6. Determine the AR(2) autoregressive model parameters 𝜙𝑗,1 and 𝜙𝑗,2 from estimated Lagrangian
autocorrelation coefficients 𝜌𝑗,1 and 𝜌𝑗,2 using the YuleWalker equations. The resulting autore
gressive model is equation 2.2.

𝑅𝑗(𝑥, 𝑦, 𝑡) = 𝜙𝑗,1𝑅𝑗(𝑥, 𝑦, 𝑡 − Δ𝑡) + 𝜙𝑗,2𝑅𝑗(𝑥, 𝑦, 𝑡 − 2Δ𝑡) (2.2)

7. Calculate the forecast by summing the advected Lagrangian forecasts of each cascade level,
thereby recomposing the rainfall field.
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Figure 2.3: Motion field at t = 20200816 17:00, derived with the Lucas Kanade method, from frames t3, t2, t1 and t. The
motion vector for every 50th pixel is shown.

Figure 2.4: Precipitation field at t = 20200816 17:00 and the resulting cascade levels from a decomposition into 7 levels with a
fast Fourier transform using a Gaussion bandpass filter.

2.4. Deep learning: TrajGRU
Deep learning is the part of machine learning that concerns artificial neural networks with many layers
and thus many model parameters. This makes these type of networks suited for modelling complex,
highly nonlinear processes. The model used in this research is a recurrent, convolutional neural net
work. In Appendix A, some of the fundamentals of these tools are explained. For more information on
the fundamentals of deep learning, see A. Zhang et al. (2021).
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One of the first successful implementations of deep learning for precipitation nowcasting was the Con
volutional Long ShortTerm Memory (ConvLSTM) as introduced by Shi et al. (2015), who approached
precipitation nowcasting from a computer vision perspective and treated it as a video prediction prob
lem. This resulted in a sequencetosequence (both input and output are spatiotemporal sequences)
deep learning model using LSTMs (Long Short Term Memory) models for the temporal dependencies,
but replacing the vector operations of a traditional LSTM with convolutional operations to capture spa
tial dependencies. In a followup study the Trajectory Gated Recurrent Unit (TrajGRU) was introduced
(Shi et al., 2017), replacing the LSTM with a GRU, which is easier to train, and introducing a ”trajectory”
component to learn locationvariant structures.

A GRU is a mechanism in a recurrent neural network (RNN) that controls the information flow between
inputs and outputs by applying gating mechanisms. The module contains a reset gate that controls
what information from the previous inputs (hereafter referred to as the hidden state) should be kept
and what should be forgotten, and an update gate which controls what information from the new input
should be written to the new hidden state. This allows the model to have both a short term memory
through the reset gate, and a long term memory through the update gate. For a more detailed expla
nation on GRUs see Appendix A.

Depending on the direction of flow, different locations in the new inputs are related to locations in
the previous hidden state. Where the recurrent connections in ConvLSTM are fixed for every location,
TrajGRU allows for dynamic recurrent connections. Specifically, the network employs a subnetwork 𝛾 in
every GRU cell: a onehiddenlayer convolutional neural network that generates a motion field between
the new input 𝑋𝑡 and the previous hidden state 𝐻𝑡−1. A ’warp’ function then determines important
neighbourhoods for each location at each time step, using these motion fields and the previous hidden
state. These neighbourhoods are then used in the creation of the update gate 𝑍𝑡, (Equation 2.4),
the reset gate 𝑅𝑡 (Equation 2.5) and the candidate hidden state �̃�𝑡 (Equation 2.6), which control what
information flows to the new hidden state. The activation function that is used in the calculation of the
candidate hidden state is a Leaky ReLU with negative slope parameter 0.2. The new hidden state is
calculated the same as in a regular GRU (Equation 2.7).

𝑈𝑡 , 𝑉𝑡 = 𝛾(𝑋𝑡 , 𝐻𝑡−1) (2.3)

𝑍𝑡 = 𝜎(𝑊𝑥𝑧 ∗ 𝑋𝑡 +
𝐿

∑
𝑙=1
𝑊𝑙
ℎ𝑧 ∗warp(𝐻𝑡−1, 𝑈𝑡,𝑙 , 𝑉𝑡,𝑙)) (2.4)

𝑅𝑡 = 𝜎(𝑊𝑥𝑟 ∗ 𝑋𝑡 +
𝐿

∑
𝑙=1
𝑊𝑙
ℎ𝑟 ∗warp(𝐻𝑡−1, 𝑈𝑡,𝑙 , 𝑉𝑡,𝑙)) (2.5)

�̃�𝑡 = 𝑓(𝑊𝑥ℎ ∗ 𝑋𝑡 + 𝑅𝑡 ∘ (
𝐿

∑
𝑙=1
𝑊𝑙
ℎℎ ∗warp(𝐻𝑡−1, 𝑈𝑡,𝑙 , 𝑉𝑡,𝑙))) (2.6)

𝐻𝑡 = (1 − 𝑍𝑡) ∘ �̃�𝑡 + 𝑍𝑡 ∘ 𝐻𝑡−1 (2.7)

TrajGRU employs an encoderforecaster structure. It downsamples three times in the encoder, and
upsamples three times in the forecaster. The setup used in this research takes 5 input images and
yields 20 output images. Parameters like kernel size, stride, padding etc. are listed in Table 2.1 and
visualized in Figure 2.6. A schematic overview of the complete model can be seen in Figure 2.5.
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Figure 2.5: Model architecture of TrajGRU with 5 input frames and 20 output frames

Figure 2.6: Closeup of TrajGRU model architecture
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Name Kernel Stride Pad L Ch I/O In Res Out Res Type In In State
econv 7 x 7 5 x 5 1 x 1  1/8 480 x 480 96 x 96 Conv input 
ernn1 3 x 3 1 x 1 1 x 1 13 8/64 96 x 96 96 x 96 TrajGRU econv1 
edown1 5 x 5 3 x 3 1 x 1  64/192 96 x 96 32 x 32 Conv ernn1 
ernn2 3 x 3 1 x 1 1 x 1 13 192/192 32 x 32 32 x 32 TrajGRU edown1 
edown2 3 x 3 2 x 2 1 x 1  192/192 32 x 32 16 x 16 Conv ernn2 
ernn3 3 x 3 1 x 1 1 x 1 9 192/192 16 x 16 16 x 16 TrajGRU edown2 
frnn1 3 x 3 1 x 1 1 x 1 9 192/192 16 x 16 16 x 16 TrajGRU  ernn3
fup1 4 x 4 2 x 2 1 x 1  192/192 16 x 16 32 x 32 Deconv frnn1 
frnn2 3 x 3 1 x 1 1 x 1 13 192/192 32 x 32 32 x 32 TrajGRU fup1 ernn2
fup2 5 x 5 3 x 3 1 x 1  192/64 32 x 32 96 x 96 Deconv frnn2 
frnn3 3 x 3 1 x 1 1 x 1 13 64/64 96 x 96 96 x 96 TrajGRU fup2 ernn1
fup3 7 x 7 5 x 5 1 x 1  64/8 96 x 96 480 x 480 Deconv frnn3 
fconv4 3 x 3 1 x 1 0 x 0  8/8 480 x 480 480 x 480 Conv fup3 
fconv5 1 x 1 1 x 1 0 x 0  8/1 480 x 480 480 x 480 Conv fconv4 

Table 2.1: Features of the TrajGRU architecture





3
Methodology

3.1. Process overview

Figure 3.1: Schematisation of research process

In Figure 3.1 a schematisation of the research is presented. The radar reflectivity composites un
dergo preprocessing, as described in Section 3.2. Events are extracted from the radar archive, both
heavy summer events for testing, and training and corresponding validation events for training the deep
learning model. This process is described in Section 3.3. In Section 3.4 the model setup is stated and
Section 3.5 lists the experiments that are performed. In Section 3.6, verification methods that are used
for model performance analysis are discussed.

3.2. Data preprocessing
The dataset that was used in this study is low level processed. The data has not been validated with
ground observations and there is still clutter present in the images. Since the focus of this research is
on heavy precipitation, removing clutter with high reflectivity values is more important than removing
clutter with low reflectivity values. In order to visualize the nature of the high reflectivity values, density
maps were created for several reflectivity intervals, see Figure 3.2. The majority of the values in the
visualized intervals seem to be of nonmeteorological nature: The stripes are caused by ship radars
and correspond with the vessel density map in Figure 3.3, the dots in the upper left corner are expected
to originate from offshore wind farms. Because only a small fraction of reflectivity values above 50 dBZ
seems to be of meteorological nature, the decision was made to put all these values to 0 dBZ.

The deep learning model that is used has a fixed input size of 480x480, which will be referred to as the
model input. Model performance of both models was measured in a domain of 360x360 at the center

13
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Figure 3.2: Density maps of pixels in reflectivity intervals for 2008.

Figure 3.3: Vessel density map, retrieved from https://www.vesselfinder.com/

of the model domain, which will be referred to as the ’research domain’, see Figure 3.4.

Figure 3.4: Image extent: the 700x765 array the data is provided in. Radar extent: the pixels containing radar measurements.
Model input: 480x480 array. Research domain: 360x360 array.

3.3. Event extraction
The deep learning model that is used, takes 5 historical radar frames to predict 20 future frames (+100
minutes), which means sequences of 25 consecutive frames are needed for training, validation and
testing. The goal of the research is to train the machine learning model to nowcast heavy, summer
type precipitation. So the first step is to extract these type of events from the dataset. Then, an
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appropriate training dataset needs to be chosen to train the machine learning model on. The dataset is
split into three parts, 20082018 (11 years) is used for training, 2019 for validation and 2020 for testing.
In Figure 3.5, a schematic representation of the proposed sequence selection process is presented.
First, all frames are assigned one of three labels: ’no rain’, ’light rain’ or ’heavy rain’. Then, events
are extracted based on these labels. A sequence is defined as a series of 25 consecutive frame, and
is categorized based on what labels are present within this series. There are two event categories:
’regular’ and ’heavy’, the latter being a subset of the former. Applying different conditions for labelling
and sequencing results in different subsets of the data set that can be chosen from for training and
testing purposes.

Figure 3.5: Schematic representation of sequence selection process. X and Y are area percentage thresholds, A en B are rainfall
intensity thresholds in mm/h, Z is the minimum ’heavy rain’ label count for a ’heavy rainfall sequence’.

3.3.1. Labelling
Labels are assigned based on spatial rainfall properties within the research domain. Two properties are
defined for every frame: wet area, which is defined as the area of the domain where the rainfall intensity
≥ 1 mm/h, and peak intensity, the maximum rainfall intensity occurring in the domain. To prevent that
the peak intensity is caused by a spurious pixel a minimum amount of 0.05% of the area (64 pixels) is
required. Labels are then assigned based on whether the frames fulfill a certain set of conditions, for
example a minimum wet area of 1% and a minimum peak intensity of 10 mm/h. With these conditions,
a dry frame (’no rain’) is characterized by a wet area < 1%. Light frames are characterized by a wet
area ≥ 1% and a peak intensity < 10 mm/h. Heavy rainy frames are characterized by a wet area ≥
1% and a peak intensity ≥ 10 mm/h. In order to investigate the balance between labelling conditions
and resulting numbers of labels and sequences, six different labelling conditions were constructed. In
Table 3.1, the conditions and the resulting percentages of labels in the training dataset (20082018)
are presented.

3.3.2. Sequencing
Sequences are classified based on what labels are present in 25 consecutive frames. If there is any
’no rain’ frame within the sequence, it is automatically deemed invalid. If all frames have either a ’light
rain’ or ’heavy rain’ label, the sequence is classified as a ’regular rainfall sequence’. If a sequence
also contains ≥ 12 frames with a ’heavy rain’ label, the event is also classified as a ’heavy rainfall se
quence’. See Table 3.2 for the resulting numbers of train and test sequences for the labelling conditions
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Name Condition for light rain Peak intensity
for heavy rain % no rain % light rain % heavy rain

C1 ≥ 1% at 1 mm/h 10 mm/h 77.80 % 15.17 % 7.02 %
C2 ≥ 1% at 1 mm/h 20 mm/h 77.80 % 18.97 % 3.23 %
C2 ≥ 1% at 1 mm/h 30 mm/h 77.80 % 20.49 % 1.70 %
C4 ≥ 2% at 1 mm/h 10 mm/h 86.20 % 8.90 % 4.90 %
C5 ≥ 2% at 1 mm/h 20 mm/h 86.20 % 11.95 % 1.85 %
C6 ≥ 2% at 1 mm/h 30 mm/h 86.20 % 13.04 % 0.76 %

Table 3.1: Six different labelling condition with resulting percentages of assigned labels 20082018.

introduced in Table 3.1.

Name Min area of ≥ 1 mm/h RR
for 25 consecutive frames

Min peak RR for
≥ 12 of 25 frames

No. of train
sequences

No. of test
sequences

All_c1 1% at 1 mm/h None 185,324 15,872
Heavy_c1 1% at 1 mm/h 10 mm/h 65,726 4,613
Heavy_c2 1% at 1 mm/h 20 mm/h 26,875 1,529
Heavy_c3 1% at 1 mm/h 30 mm/h 13,292 612

All_c4 2% at 1 mm/h None 107,855 8,976
Heavy_c4 2% at 1 mm/h 10 mm/h 44,611 3,250
Heavy_c5 2% at 1 mm/h 20 mm/h 15,967 946
Heavy_c6 2% at 1 mm/h 30 mm/h 6,264 476

Table 3.2: Resulting number of train and test sequences for the different labelling conditions Name prefix ”All_” denotes the
’regular rainfall sequences’, prefix ”Heavy_” refers to the ’heavy rainfall sequences’.

3.3.3. Selecting test sequences
Figure 3.6 shows how the different labelling conditions affect the amount and distribution of heavy
rainfall sequences in the test year 2020. It is clearly visible that as the labelling conditions become
more strict, the total number of events goes down and the events get more concentrated around the
summer months, resulting in events only in June and August for the conditions which require a 30
mm/h peak intensity. Because heavy summer precipitation is the focus of this research, it is chosen to
continue with the strictest condition because this results in the heaviest precipitation events. Thus, the
test set is chosen to be heavy_c6 (bottom right in Figure 3.6). The result is 13 different rainfall events
of different lengths as presented in Table 3.3. The distribution of pixel values within the sequences in
the test events is presented in Figure 3.7.

Event no. Start event Stop event Event duration No. of test events
1 12 Jun 2020 18:40 12 Jun 2020 23:40 05:00 37
2 14 Jun 2020 12:20 14 Jun 2020 15:50 03:30 19
3 17 Jun 2020 14:35 17 Jun 2020 19:55 05:20 41
4 26 Jun 2020 18:00 26 Jun 2020 21:35 03:35 20
5 27 Jun 2020 06:25 27 Jun 2020 10:00 03:35 20
6 27 Jun 2020 12:10 27 Jun 2020 14:40 02:30 7
7 11 Aug 2020 18:35 11 Aug 2020 20:40 02:05 2
8 13 Aug 2020 15:25 13 Aug 2020 19:30 04:05 26
9 14 Aug 2020 01:00 14 Aug 2020 07:55 06:55 60
10 16 Aug 2020 13:20 16 Aug 2020 01:05 11:45 118
11 17 Aug 2020 11:15 17 Aug 2020 20:35 09:20 89
12 20 Aug 2020 20:45 20 Aug 2020 23:45 09:00 13
13 21 Aug 2020 01:55 21 Aug 2020 05:50 03:55 24

Table 3.3: Event properties of the events in the test set.
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Figure 3.6: Temporal distribution of test events for different condition sets.

Figure 3.7: Bar chart of number of pixels in different intensity classes for all sequenes in the test set. Note the logarithmic scale:
96% of all pixels fall within the first category, 0  2.5 mm/h.

3.4. Model setup
3.4.1. TrajGRU
The model is implemented using PyTorch and is trained on an 8 GB Nvidia GeForce RT2080 GPU.
Batch size is set to 2. Any larger batch size exceeds the GPU’s memory. Every training, 100,000
iterations are performed. This takes approximately 7090 hours. A learning rate (LR) schedule with
stepdecay is used, with a decay factor of LR * 0.1 at the 30,000th and 60,000th iteration. Learning rate
decay factors of 0.3 and 0.7 were also tried in some preliminary experiments. Both led to overfitting,
so 0.1 is used for every model in this research. After preprocessing as described in Section 3.2, the
radar reflectivity images are normalized with 0 = 32 dBZ and 1 = 50 dBZ.

3.4.2. SPROG
Model setup and parameters were adopted from Imhoff et al. (2020), which is the same setup that
KNMI uses for their STEPS implementation. The number of cascade levels is set to 8, rainfall is thresh
olded at 0.1 mm/h minimum, and the last 4 time steps (t, t1, t2, and t3) are used to determine the
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motion field. The data preprocessing step of removing all values ≥ 50 dBZ is applied here too, but
the input data is not cropped. The fixed input size is a limitation of the deep learning model and not of
SPROG. The results are however only evaluated in the research domain as defined in Figure 3.4.

3.5. Experiments
In order to answer research question 1, two concepts in terms of deep learning training set up are
explored: the influence of the training data (Section 3.5.1) and the influence of the loss function (3.5.2).
The resulting deep learning models that need to be trained for this are listed in Section 3.5.3. To answer
research question 2, these models are compared to SPROG.

3.5.1. Influence of training data
When constructing a training dataset for a deep learning model two things should be kept in mind:

1. The training data needs to contain enough information to learn the task at hand, in other words:
the training data needs to be representative for the testing data

2. The training dataset needs to be sufficiently large to adequately train the model. Preferably as
large as possible, because in theory, the performance of a deep learning model keeps increasing
as the dataset size increases (e.g. Hestness et al., 2017).

Point 1 can be achieved by applying the same conditions that were used to extract the test sequences,
to extract the train sequences. However this yields only 6,264 sequences from the training years. This
is not enough to train a deep learning model, so a different subset needs to be chosen. A balance needs
to be found between the amount of examples in the training dataset, and to what extend the sequences
in the training dataset represent the sequences in the test dataset. Three models with three different
training datasets are trained in order to find this balance. As the training dataset size increases, the
share of heavy events decreases. The subsets that are tested are all_c1 (wet area ≥1% in all frames),
all_c4 (wet area ≥2% in all frames) and heavy_c1 (wet area ≥1% in all frames + peak intensity of ≥10
mm/h in ≥12 frames), as defined in Table 3.2, listed from largest (smallest share of heavy events, thus
less representative) to smallest (largest share of heavy events, thus more representative). These train
ing datasets will be referred to as L, M and S, respectively. The amount and distribution of the events
within these subsets is shown in Figure 3.8. It is visible that all datasets have more training sequences
in summer than in other seasons of the year. This is most pronounced in dataset S, which is the only
dataset that employed a minimum peak intensity.

Figure 3.8: Number of sequences per month for the three different subsets of the training data.

3.5.2. Influence of loss function
Several loss functions are explored. A simple RMSE loss, a balanced loss function to emphasize high
rainfall intensities and the application of a mask to exclude pixels at the border of the model domain.

RMSE loss The average root mean square error between the observation and the prediction is used
as the loss function:
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Loss = RMSE = √ 1
𝑁 ∗ 360 ∗ 360

𝑁

∑
𝑛=1

360

∑
𝑖=1

360

∑
𝑗=1
(𝐹𝑛,𝑖,𝑗 − 𝑂𝑛,𝑖,𝑗)2 (3.1)

Balanced loss To emphasize the importance of predicting high values correctly, Shi et al. (2017)
introduced a balanced loss function: a combination of mean squared error (MSE) and mean absolute
error (MAE), where the weight of the error depends on observed rainfall intensity. Weights are deter
mined by discrete rainfall intensity classes. In this research, a continuous scheme is used: the weight
of the error of an estimated value is equal to the observed rainfall intensity in mm/h. The loss function
is thus defined as following:

Loss = BMSE+ BMAE (3.2)
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𝑤𝑛,𝑖,𝑗 = {
1 if 𝑅𝑛,𝑖,𝑗 ≤ 1
𝑅𝑛,𝑖,𝑗 if 1 < 𝑅𝑛,𝑖,𝑗 ≤ 30
30 if 𝑅𝑛,𝑖,𝑗 > 30

(3.5)

Where 𝑁 is the number of output frames, and 𝐹𝑛,𝑖,𝑗, 𝑂𝑛,𝑖,𝑗 and 𝑤𝑛,𝑖,𝑗 are the forecast, observation and
weight, respectively, corresponding to the (𝑖, 𝑗)th pixel in the 𝑛th frame. The weight 𝑤𝑛,𝑖,𝑗 is equal to
the rainfall intensity 𝑅𝑛,𝑖,𝑗 observed at this point, with a minimum weight of 1 and a maximum weight of
30. The rainfall intensity is derived by transforming pixel value to dBZ and using (2.1) to transform to
rainfall intensity in mm/h.

Border mask Because the model cannot be expected to predict what is coming in from outside the
model domain, it is decided not to penalize errors made within close range of the border of the domain.
The exclusion of these pixels is done by applying a mask within the loss function, that multiplies the
pixels that are excluded from evaluation by 0 and multiplies the other pixels by 1. It was chosen to
exclude a range of 60 km from the border of the model domain, which corresponds to the research
domain defined in 3.4.

3.5.3. List of models
In order to determine the influence of the above explained concepts, five different deep learning models
are trained, see Table 3.4. Models 1, 2 and 3 are compared in the first experiment, where the influence
of the training dataset is explored. Models 3, 4 and 5 are compared in the second experiment, where
the influence of the loss function is explored. By compare models 3 and 4 the effect of the mask can
be distinguished and by models 3 and 5 the effect of the balanced loss function can be analysed. In
experiment three, the deep learning models are compared to SPROG.

3.6. Verification
3.6.1. Continuous metrics
Mean Absolute Error MAE measures the average magnitude of the absolute error.

𝑀𝐴𝐸 = 1
360 ∗ 360

360

∑
𝑖=1

360

∑
𝑗=1
|𝐹𝑖,𝑗 − 𝑂𝑖,𝑗| (3.6)
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Training data Loss Function
1 Small: 65,726 samples (heavy_c1) BMSE + BMAE + mask
2 Medium: 107,855 samples (all_c4) BMSE + BMAE + mask
3 Large: 185,324 samples (all_c1) BMSE + BMAE + mask
4 Large: 185,324 samples (all_c1) BMSE + BMAE
5 Large: 185,324 samples (all_c1) RMSE + mask

Table 3.4: List of performed ML experiments

Root mean square error RMSE measures the square root average of the squared error. This puts
more emphasis on the larger errors and less emphasis on smaller errors.

𝑅𝑀𝑆𝐸 = √ 1
360 ∗ 360

360

∑
𝑖=1

360

∑
𝑗=1
(𝐹𝑖,𝑗 − 𝑂𝑖,𝑗)2 (3.7)

Conditional absolute error and bias As shown in Figure 3.7, 96% of all pixels in the test sequences
are between 0  2.5 mm/h. This means that any averaged error is dominated by errors made in the
smallest rainfall intensities. In order to also be able to say something about errors made at different
rainfall intensities, (mean) Absolute error and (mean) bias (sum of the errors) are calculated separately
for different rainfall intensity classes. For example: The total absolute error for intensity class 0  2.5
mm/h represents the sum of the absolute error for the pixels where in the observations 0  2.5 mm/h
rainfall rate was measured. The mean values are the error values averaged over the area within this
intensity class.

3.6.2. Categorical metrics
To calculate categorical metrics both the observation and forecast maps have to be converted into
dichotomous maps (positive/negative) based on a chosen threshold. If a pixel value is smaller than
threshold, the value is ’negative’, and if a pixel value larger than or equal to the threshold, the value
is ’positive’. By comparing the maps, a contingency table as in figure 3.9 can be constructed. The
categorical metrics are then calculated from the number of hits (true positives), misses (false negatives),
false alarms (false positives) and correct negatives.

Figure 3.9: Contingency table

Probability Of Detection POD expresses what ratio of observed positives was predicted correctly.
It ranges form 0 to 1, where 1 is the perfect score, which means all observed positives were predicted.
Score ignores false alarms, so it is sensitive to overforecasting: score increases when more positives
are forecasted.

𝑃𝑂𝐷 = hits
hits+misses

(3.8)

False Alarm Ratio FAR expresses what ratio of forecast positives were false alarms. It ranges from
0 to 1, where 0 is the perfect score, which means that none of the predicted positives were false alarms.
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𝐹𝐴𝑅 = false alarms
hits+ false alarms

(3.9)

Critical Success Index CSI measures how well the forecasted positives correspond to observed
positives. It is similar to the POD, but it also penalizes false alarms. It ranges from 0 to 1, where 0
indicates no skill and 1 is the perfect score and indicates a perfect forecast.

𝐶𝑆𝐼 = hits
hits+misses+ false alarms

(3.10)

Frequency bias measures the ratio between forecasted positives and observed positives. Ranges
from 0 to ∞. A score >1 indicates overforecasting and a score <1 indicates underforecasting. 1 is the
perfect score: the number of forecasted positives is the same as the number of observed positives, but
this does not say anything about whether these forecasted positives were correct.

𝐵𝐼𝐴𝑆 = forecasted positives
observed positives

= hits+ false alarms
hits+misses

(3.11)

Fractions Skill Score FSS is a spatial verification metric that scores model performance on different
intensity and different spatial scales. It ranges from 0 to 1, where 0 indicates no skill and 1 indicates a
perfect forecast. A forecast is deemed useful if FSS > FSS𝑢𝑠𝑒𝑓𝑢𝑙 = 0.5+

𝑓0
2 , where 𝑓0 is the area of the

observed scale divided by the area of the observed domain. With this FSS𝑢𝑠𝑒𝑓𝑢𝑙, the smallest scale
for a skillful forecast can be determined per intensity threshold, or, the maximum skillful lead time can
be determined for a desired scale and intensity. For a deterministic forecast with threshold 𝑛 the FSS
is defined as in equation 3.12. (Roberts & Lean, 2008)

𝐹𝑆𝑆(𝑛) = 1 −
𝑀𝑆𝐸(𝑛)
𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓

(3.12)

where
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where 𝑁𝑥 and 𝑁𝑦 are the number of columns and rows of 𝑛 x 𝑛 cells, and 𝑂(𝑛)𝑖,𝑗 and 𝑀(𝑛)𝑖,𝑗 are the
fraction of pixels exceeding the set threshold within cell 𝑖, 𝑗 in the observation and the forecast, re
spectively. 𝑀𝑆𝐸(𝑛) is then the mean squared error of these fractions, and 𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓 represents the
largest possible 𝑀𝑆𝐸 between the observation and the forecast. See Figure 3.10 for a visualization
and example calculation of the FSS for one cell.
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Figure 3.10: FSS at scale 1: 𝑂(1) = 1/1, 𝐹(1) = 0/1, so 𝑀𝑆𝐸(1) = 1 and 𝑀𝑆𝐸(1)𝑟𝑒𝑓 = 1. This yields 𝐹𝑆𝑆(1) = 0.
FSS at scale 5: 𝑂(5) = 6/25, 𝐹(1) = 6/25, so 𝑀𝑆𝐸(1) = 0 and 𝑀𝑆𝐸(1)𝑟𝑒𝑓 = 36/625. This yields 𝐹𝑆𝑆(5) = 1.
Adapted from Roberts & Lean (2008).



4
Results

In this chapter the model performance of all experiments are presented. In Section 4.1 the different
TrajGRU training setups are compared in two parts: in Section 4.1.1 the different training datasets
are compared and in section 4.1.2 the different loss functions. In Section 4.2, model performance
between the TrajGRU models and SPROG are compared. For every experiment, the following things
are presented: a visualization of a +100 minute prediction of one test event, a graph with MAE and
RMSE, a table listing CSI, POD, FAR and frequency bias for 1, 5, 10 and 20 mm/h thresholds and
figures showing FSSbased maximum skillful lead times for several spatial spatial scales and intensity
thresholds.

4.1. Influence of training data
In the first experiment, the influence of the training dataset is explored. Three different training datasets
are explored with varying dataset size to heavy events ratios. The different datasets are referred to as
TrajGRU S, TrajGRU M and TrajGRU L, listed from smallest (largest share of heavy events) to largest
(smallest share of heavy events). Figure 4.2 shows that TrajGRU L consistently performs better in terms
of MAE and RMSE. TrajGRU S yields the largest errors. In Figure 4.1 it seems that with decreasing
dataset size and increasing share of heavy events, more high rainfall intensities are predicted. The
values reported in Table 4.1 confirm this behaviour with the higher observed frequency bias, especially
for 10 and 20 mm/h rainfall intensities. This results in high rainfall intensities being detected more often,
shown by an increased POD. However high value are also predicted wrongly more often (false alarms),
resulting in an increased FAR. It should be note that the differences mentioned are very small. In terms
of the maximum skillful lead times noted in Figure 4.3 and the absolute error and bias calculated for
different intensity classes presented in Figure 4.4, the differences between the three models are very
small.

Figure 4.1: +100 minute predictions for t0 = 16082020 17:20, for the TrajGRU models with different training datasets.
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Figure 4.2: Mean absolute error and root mean square error for TrajGRU with different training data compositions.

CSI POD
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

S 0.474 0.218 0.129 0.041 0.736 0.474 0.258 0.070
M 0.476 0.218 0.121 0.036 0.743 0.469 0.234 0.060
L 0.474 0.215 0.115 0.031 0.729 0.444 0.214 0.051

FAR Frequency bias
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

S 0.438 0.704 0.681 0.494 1.384 1.736 1.127 0.416
M 0.438 0.701 0.662 0.388 1.390 1.742 1.011 0.362
L 0.434 0.701 0.675 0.409 1.350 1.572 0.916 0.280

Table 4.1: CSI, POD, FAR and Frequency bias for TrajGRU with different training datasets.

Figure 4.3: Maximum skillful lead times based on FSS for different scales and rainfall intensities for TrajGRUwith different training
data compositions.
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Figure 4.4: Absolute error and bias calculated separately in different rainfall intensity classes, averaged over all lead times, for
TrajGRU with training datasets.

4.2. Influence of loss function
By comparing the model with loss function BMSE + BMAE + mask and the model with loss function
RMSE + mask, the effect of the balanced loss function can be observed. By comparing the model with
loss function BMSE + BMAE + mask and the model with loss function BMSE + BMAE, the effect of
the mask can be distinguished.

4.2.1. Balanced loss function vs. RMSE
Figure 4.6 shows that in terms of MAE and RMSE, the model with the RMSE loss function consistently
outperforms the balanced loss functions. In Figure 4.5 it is clear that the model with RMSE loss function
predicts considerably smaller values than the models with the balanced loss functions. This behaviour
is consistent with the metrics presented in Table 4.2: the balanced model shows a higher frequency
bias, POD and CSI, but also a higher false alarm ratio. This is also confirmed by conditional absolute
error and bias presented in Figure 4.9: the RMSE model consistently underestimates in all intensity
classes, while the balanced model overestimates in the two lowest intensity classes, and underesti
mates to a lesser extent in the higher intensity classes. This is a direct result of how the balanced loss
function is defined: in the lower intensity class, the weight of the error is the lowest so predicting cor
rectly in this class was deemed less important in the training process. For the higher intensity classes,
the weights of the errors are higher so predicting these values is deemed more important. Because of
this, estimating higher intensities is encouraged because the penalty is small when it is wrong, and the
reward is high when it’s right.

Figure 4.7 and 4.8 show that in terms of maximum skillful lead times, the balanced loss function signif
icantly outperforms the RMSE loss function at almost all scales and intensities.

4.2.2. Border mask
Concerning the effect of the application of the mask, Figure 4.6 shows that the model trained with the
mask outperforms the model trained without the mask. The difference is smaller for the shorter lead
times, and increases for larger lead times. The differences in terms of other metrics is small. The model
with mask has slightly higher CSI, POD and FSS based skillful lead times, but also a slightly higher FAR.
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Figure 4.5: +100 minute predictions for t0 = 16082020 17:20, for the TrajGRU models with different loss functions.

Figure 4.6: Mean absolute error and root mean square error for TrajGRU with different loss functions.

CSI POD
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

B+m 0.474 0.215 0.115 0.031 0.729 0.444 0.214 0.051
R+m 0.376 0.083 0.030 0.006 0.435 0.097 0.034 0.007
B 0.478 0.222 0.124 0.035 0.751 0.478 0.240 0.063

FAR Frequency bias
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

B+m 0.434 0.701 0.675 0.409 1.350 1.572 0.916 0.280
R+m 0.278 0.280 0.146 0.089 0.583 0.163 0.062 0.019
B 0.439 0.708 0.689 0.416 1.421 1.752 1.042 0.458

Table 4.2: CSI, POD, FAR and Frequency bias for TrajGRU with different loss functions: BMSE + BMAE + mask (B+m), RMSE
+ mask (R+m) and BMSE + BMAE (B).

Figure 4.7: Maximum skillful lead times based on FSS for different scales and rainfall intensities for three different loss function
configurations.
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Figure 4.8: Improvement of skillful lead times when comparing (left) balanced loss function vs. RMSE loss functions and (right)
mask vs. no mask.

Figure 4.9: Absolute error and bias calculated separately in different rainfall intensity classes, averaged over all lead times, for
TrajGRU with different loss functions.
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4.3. Comparison to benchmark
Model performance of the benchmark SPROG is compared to two versions of TrajGRU: the model
with the RMSE loss, which resulted in low errors, but also low skill, and the model with the Balanced
loss, which resulted in higher errors, but also higher skill. These models will referred to as ’TrajGRU
RMSE’ and ’TrajGRU Balanced’, respectively.

Figure 4.10: +100 minute predictions for t0 = 16082020 17:20, for TrajGRU Balanced, TrajGRU RMSE and SPROG.

Figure 4.11: Mean absolute error and root mean square error for TrajGRU Balanced, TrajGRU RMSE and SPROG.

CSI POD
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

B 0.474 0.215 0.115 0.031 0.729 0.444 0.214 0.051
R 0.376 0.083 0.030 0.006 0.435 0.097 0.034 0.007
S 0.400 0.121 0.059 0.026 0.507 0.162 0.077 0.034

FAR Frequency bias
≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h

B 0.434 0.701 0.675 0.409 1.350 1.572 0.916 0.280
R 0.278 0.280 0.146 0.089 0.583 0.163 0.062 0.019
S 0.368 0.507 0.332 0.144 0.816 0.418 0.208 0.084

Table 4.3: CSI, POD, FAR and Frequency bias for TrajGRU Balanced (B), TrajGRU RMSE (R) and SPROG (S)

As can be seen in Figure 4.10, SPROG creates smoothed predictions, similar to TrajGRU RMSE. In
terms of MAE, TrajGRURMSE outperforms SPROG at all lead times except for the first 1020 minutes.
The difference increases with lead time. In terms of RMSE, SPROG outperforms TrajGRU RMSE at
the earliest and latest lead times, and TrajGRU RMSE is slightly better inbetween. TrajGRU Balanced
consistently has the highest errors, both in terms of RMSE and MAE.
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Figure 4.12: (left) Maximum skillful lead times based on FSS for SPROG; (middle) Difference in skillful lead times between
TrajGRU Balanced and SPROG; (right) Difference in skillful lead times between TrajGRU RMSE and SPROG.

Conversely, in terms of maximum skillful lead times as visible in Figure 4.12, TrajGRU Balanced per
forms the best, followed by SPROG and then by TrajGRU RMSE. This is consistent with what has
been observed in the previous experiments: Models with better performance at low rainfall intensities
(see Figure 4.13) score better in terms of MAE and RMSE, but score lower in terms of CSI and POD
(see Table 4.3) and FSS based skillful lead times (see Figure 4.12). Models with better performance at
high rainfall intensities score worse in terms of MAE and RMSE, but higher in terms of CSI, POD and
skillful lead times.

Figure 4.13: Absolute error and bias calculated separately in different rainfall intensity classes, averaged over all lead times, for
TrajGRU Balanced, TrajGRU RMSE and SPROG.
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4.4. Casebycase analysis
In the previous sections, average performance over all 476 sequences in the test set is analyzed. In this
section, model performance is analyzed from an event point of view. The 476 test sequences are all
part of the 13 events earlier presented in Table 3.3. In Figure 4.14 the RMSEs and difference in RMSE
between TrajGRU Balanced and SPROG are presented. Both models tend to follow approximately
the same trends for the different events, and SPROG shows a lower RMSE for almost all of the events.

Figure 4.14: RMSE averaged over all lead times for the events as defined in Table 3.3. Events are separated by the grey vertical
lines, event numbers are in the figure. Top: RMSE for both SPROG and TrajGRU balanced. Bottom: RMSE TrajGRU  RMSE
SPROG.

To get better insight into the difference in model behaviour, an in depth analysis of two test sequences
is provided: One where SPROG significantly outperforms TrajGRU Balanced in terms of RMSE (see
Figure 4.15) and one where TrajGRU Balanced significantly outperforms SPROG (see Figure 4.16.
The example where SPROG outperforms TrajGRU Balanced shows that both models do capture the
correct motion of the rainfall field, however the models predict different evolutions of the rainfall field.
SPROG correctly predicts dissipation, while TrajGRU Balanced predicts an increased area with high
rainfall intensities, resulting in large errors. In the example where TrajGRU Balanced outperforms
SPROG the same difference between the models can be observed, however this time SPROG in
correctly predicts dissipation, while TrajGRU Balanced correctly predicts an increase in area with high
precipitation values at the right side of the rainfall field.

Figure 4.15: SPROG outperforming TrajGRU Balanced. t0 = 20200816 22:50:00. Event no. 342 in Figure 4.14.
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Figure 4.16: TrajGRU Balanced outperforming SPROG. t0 = 20200816 20:05:00. Event no. 309 in Figure 4.14





5
Discussion

In this chapter the results presented in the previous chapter are discussed. The aim of this research
was to explore how the choices made in the training set up of a deep learning model influence its ability
to accurately nowcast heavy precipitation events. Different training datasets and different loss functions
were applied. In Sections 5.1 and 5.2 the results of these experiments are discussed, respectively. The
deep learning approach was also compared to a extrapolationbased benchmark, which is discussed
in Section 5.3. Three additional topics, definition of model performance, data preprocessing and the
predictability of events are discussed as well.

5.1. Influence of training data on model performance
As stated in the Methodology there are two important things to keep in mind when constructing a train
ing dataset for a deep learning model: the data should be representative for the intended task, and
the dataset should be large enough to adequately train the model. Because the same conditions that
yielded the heavy summer precipitation events that were used for testing did not yield enough training
events, less strict conditions were needed to create a large enough training dataset. Three different
training datasets of different sizes were constructed: the larger the dataset, the smaller the share of
heavy events, the less representative the data is. It was found that the largest training dataset scored
the best in terms of RMSE and MAE. Results in terms of the other presented metrics showed only small
differences. This means that between the tested training datasets, dataset size is more important than
to what extent the data is representative.

In theory, the performance of a deep learning model keeps increasing as the dataset size increases
(Hestness et al., 2017). In the case of the datasets tested in this research, increased dataset size
resulted in less representative examples. Collecting more radar data can provide the opportunity to
increase dataset size while also maintaining a certain level of representation of heavy precipitation
events. However, there is not more radar data from the same dataset used in this research available:
the complete archive of the product was used and any older data is at a different spatial scale (2.4 x
2.4 km instead of 1 x 1 km, see (Overeem et al., 2009)). A solution to this problem could be the use of
transfer learning, where the size of the training dataset is increased by including radar data from other
locations with similar rainfall regimes (e.g. Han et al., 2021; Yao et al., 2020).

5.2. Influence of loss function on model performance
In the second experiment the influence of the loss function was investigated. Two concepts were ex
plored: a modified version of the balanced loss function as introduced in the original TrajGRU paper
by Shi et al. (2017) was compared to a simple RMSE loss, and the application of a mask to the border
of model domain was tested. It was found that the balanced loss function increased CSI, POD and
FSSbased skillful lead times, but also increased false alarms and MAE and RMSE when compared to
the RMSE loss. In the original TrajGRU paper two versions of ConvGRU (Convolutional Gated Recur
rent Unit) were compared: one trained with a balanced loss function and one with a regular MAE+MSE
loss. They also found the balanced loss function increased CSI. However they did not report on MAE
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and RMSE.

When exploring the origins of the errors it was found that TrajGRU with RMSE loss makes smaller
errors at low rainfall intensities, and TrajGRU Balanced makes smaller errors at high rainfall intensi
ties. A clear tradeoff between performance at low rainfall rates and performance at high rainfall rates
is visible: (1) If a model makes smaller errors at low rainfall intensities this results in a low total error
(indicated by low MAE and RMSE), but also in the failure to detect high rainfall intensities (indicated
by low POD, CSI and FSS). (2) If model performance is improved at detecting high rainfall intensities
(indicated by high POD, CSI and FSS), this results in a decreased performance at low rainfall rates and
increases the total error (indicated by high MAE and RMSE). Franch et al. (2020) also talks about this
tradeoff in terms of minimizing conditional bias vs. minimizing MSE. In this context, conditional bias
refers to the smoothing of forecasts by optimizing on RMSE.

It was found that the application of the mask made a slight difference, resulting in smaller errors. The
effect on other metrics was marginal so it could be said that application of the mask is beneficial for
model performance. However, the mask significantly reduces the size of the domain of the predictions,
which is something that should be taken into account when deciding whether to apply such a mask.

5.3. Comparison to the benchmark
In the third experiment two versions of the TrajGRU models were compared to SPROG. It was found
that TrajGRU trained with the balanced loss function outperformed SPROG at high rainfall intensities
and in terms of CSI and FSS based skillful lead time, but scored worse in terms of RMSE and MAE.
Conversely, the TrajGRU model trained with the RMSE loss function outperformed SPROG at low
rainfall intensities and in terms of RMSE and MAE, but scored worse in terms of CSI and FSS based
skillful lead time. This means the same tradeoff that was mentioned in the previous experiment applies
to SPROG too.

Difference in model behaviour between SPROG and TrajGRU Balanced was also analysed through
two case studies. The event where TrajGRU Balanced significantly outperformed SPROG, SPROG
predicted dissipation while there was very little dissipation in the observation. The event where SPROG
significantly outperformed TrajGRU Balanced, it correctly predicted the dissipation while TrajGRU Bal
anced overestimated rainfall intensities.

SPROGwas chosen as the benchmark in this research because of the similarity to the nowcasting sys
tem operational in the Netherlands. It is the nature of the model to predict dissipation of the precipitation
field at different spatial and temporal scales. This applies especially to high rainfall intensities: high in
tensity features are smaller, which dissipate faster (Germann et al., 2006). It is thus to be expected that
a model like this looses the ability to forecast high rainfall intensities as the lead time increases. There
are also other radar extrapolation methods available that are volume preserving and do not predict
dissipation. For example in the rainymotion library (Ayzel et al., 2019). These methods have shown to
yield longer FSSbased skillful lead times than SPROG (Imhoff et al., 2020). Since model performance
is also evaluated based on FSSbased skillful lead times in this research, it would also be useful to see
how the deep learning models presented in this research compare to these models.

5.4. Definition of model performance
So far we have refrained from using the term ’better’ or ’worse’ model performance. This is because the
results of the research are ambiguous: what model scores best depends on how model performance
is defined. The objective of this research is to accurately predict heavy summer precipitation events.
To that end, all models were test on a set of heavy precipitation events. If model performance is then
defined by the magnitude of the error, the TrajGRU model with RMSE loss function would be deemed
best. If model performance is defined by a models ability to correctly predict high rainfall intensities,
scores like CSI, FSS and bias/error at high rainfall intensities become more important and the Traj
GRU Balanced would be deemed best. Because of the earlier mentioned tradeoff between skill at low
rainfall intensity versus skill at high rainfall intensity, there is no model within this research that scored
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highest on both these levels. How model performance is defined should depend on what the intended
application of the nowcasts is. For example, if the nowcasts will be used for hydrological modelling
purposes, a metric based on larger spatial scales like the fractions skill score is more important.

5.5. Data preprocessing
The radar reflectivity composites used in this research still contain some clutter. Unvalidated, low level
processed data had to be used because of its near realtime availability. A simple preprocessing step
of removing all reflectivity values > 50 dBZ removed some of the clutter originating from ship radars and
off shore wind farms. However, no attempts were made at removing other types of clutter. Efforts could
be made to remove additional clutter, for example by using wradlib, an opensource python library for
radar data processing (Heistermann et al., 2013). By removing extra clutter, less irrelevant information
is passed to the model. The model does not (or to a lesser extent) have to learn how to deal with the
inpredictability of clutter and more learning capacity can remain for the nowcasting task.

Additionally, radar is prone to underestimate rainfall intensity (Holleman, 2007; Overeem et al., 2009).
KNMI also provides a QPE which is adjusted with rain gauge data
(https://dataplatform.knmi.nl/dataset/nlrdrdatarecor5m10). An idea could
be to include this validation step in the model by using the unvalidated radar reflectivity composites
as an input, and using the validated QPEs as the output. This could also improve the applicability of
the nowcasts for hydrological purposes.

5.6. Predictability of events
There is a limit to what extent a horizontal representation of the atmosphere can predict what is going
to happen next (Germann et al., 2006). This especially applies to heavy summer events. Convective
precipitation is a very short lived process: cells dissipate quickly. After rainfall cells have dissipated,
the formation of new rainfall cells has to predicted, which is impossible from radar images only and will
require a more detailed description of the state of the atmosphere, for example by adding atmospheric
variables like temperature, humidity or pressure. In other words, even with the perfect training dataset
and the perfect deep learning architecture, model performance will always reach a ceiling because the
predictability from radar images only is limited.





6
Conclusions and recommendations

6.1. Conclusions
The objective of this research was to explore the application of deep learning for nowcasting heavy
precipitation events in the Netherlands. In this chapter we will see how our research questions can be
answered with the results that were obtained during this research.

How can a deep, recurrent, convolutional neural network, be trained to nowcast heavy rainfall
events in the Netherlands, using a 13year radar reflectivity composites archive?

A deep, recurrent, convolutional neural network, based on TrajGRU (Shi et al., 2017) was trained on
KNMI radar reflectivity composites. Multiple different training setups were constructed, yielding differ
ent versions of the model. All models were tested on a set of heavy summer precipitation events. First,
different training datasets were compared. By varying the requirements for valid samples, three train
ing sets were constructed, with different ’dataset size’ to ’average intensity of rainfall events’ ratios. It
was found that a larger dataset results in lower MAE and RMSE. Difference in model performance at
other metrics was marginal.

Two concepts in terms of loss functions were tested: (1) the application of a mask to the borders of the
domain in the loss function, so the model is not penalized for wrongfully predicting what it cannot yet
see, and (2) a balanced loss function where errors are weighted by the rainfall intensity in the obser
vation, to emphasize the importance of the higher rainfall intensities. It was found that the application
of the mask resulted in a slightly lower MAE and RMSE. Difference in model performance at other
metrics was marginal, so it was concluded that adding the mask is beneficial for model performance.
To quantify the effect of the balanced loss function (TrajGRU Balanced), it was compared to a simple
RMSE loss (TrajGRU RMSE). TrajGRU RMSE made smaller errors at low rainfall intensities, resulting
in the lowest average RMSE and MAE. TrajGRU Balanced however performed better at the higher
rainfall intensities (> 5 mm/h). It also outperformed TrajGRU RMSE in terms of CSI at all thresholds
and FSSbased maximum skillful lead times. This is a direct result of the definition of the balanced loss
functions: errors at small rainfall intensities are tolerated more than errors at high rainfall intensities.

Between the models that were trained, there is no clear winner. There seems to be a tradeoff between
performance at high rainfall intensities versus performance at low rainfall intensities. What model per
forms ’best’ depends on how the specific task and good model performance are defined. If nowcasting
heavy precipitation is defined as correctly nowcasting the high rainfall intensities, then TrajGRU Bal
anced performs better. If considering larger areas, e.g. city or catchment scale, TrajGRU Balanced
also performs better as shown by the FSS scores. But considering that all events in the test set are
heavy rainfall events, one could also argue that a lower error over all the heavy events is better model
performance, which would mean TrajGRU RMSE is superior.

How does this model compare to SPROG, a stateoftheart extrapolation based nowcasting
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system?

SPROG was tested on the same set of heavy precipitation events as abovesaid models, and results
were compared to TrajGRU Balanced and TrajGRU RMSE. SPROG was outperformed by TrajGRU
RMSE in terms of MAE, and performed similar in terms of RMSE. At low rainfall intensities, the error
was larger than TrajGRU RMSE, but smaller than TrajGRU Balanced. At high rainfall intensities, S
PROG and TrajGRU RMSE performed similarly, and TrajGRU Balanced outperforms both. In terms of
FSSbased scores, SPROG yielded significantly larger skillful lead times than TrajGRU RMSE, and
significantly smaller than TrajGRU Balanced.

The same tradeoff that was observed in the comparison between the deep learning models can be
observed in SPROG. It is either better at low rainfall intensities and worse at high rainfall intensities
and skillful lead times (TrajGRU Balanced), or the other way around (TrajGRU RMSE). So again there
is no ’better’ model. However, the deep learning approach is flexible and can yield both a model that is
better at low rainfall intensities, or a model that is better at high rainfall intensities. So one could argue
that this is the superior approach. The flexibility also gives rise to the idea that in the deep learning
approach there is still room for improvement that could be exploited.

6.2. Recommendations
Based on the results of this research some recommendations can be made for further research. It was
shown that an increased training dataset size increased model performance. Because in theory, per
formance a deep learning model keeps increasing with increasing dataset size, it should be explored
if more radar data for training could be collected e.g. through transfer learning.

In this research, the deep learning models were only compared to benchmark SPROG. It is the nature
of SPROG to predict dissipation of the rainfall field, so it did not score well at predicting high rainfall
intensities. Many extrapolationbased models do not predict dissipation and it should be investigated
if these models can compete with the deep learning approach at high rainfall intensities.

Another recommendation would be to actively take intended enduse into account when defining what
model performance is. Forecast verification can be done in many different ways and a clear idea of
what is desirable for the end product can help in picking the right metrics, or even when formulating the
loss function of a deep learning model.

In this research, little effort was made to remove clutter from the radar data. Data quality is important in
data driven processes like deep learning, so it might be useful to provide the deep learning model with
higher quality data by more extensive clutter removal, for example with the wradlib library (Heistermann
et al., 2013).

Because the predictability of precipitation events from radar images only is limited, especially concern
ing quickly intensifying and dissipating fields, it should be explored how other atmospheric variables
can be incorporated into the model.
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Appendix A

A.1. Deep learning
A.1.1. Artificial neural networks
One of the most basic forms of a deep learning model is an artificial neural network (ANN). A neuron is
a node that transforms one or multiple input value into an output value, using weights, biases and an
activation function, see Figure A.1. The activation function transforms the summation of the weighted
inputs and the bias, checking whether the magnitude of this summation activates the neuron (output
≠0), or not (output →0). This introduces nonlinearity into the model. Without it, the model is just a
linear regression model. Common activation functions are sigmoids: projecting the value between 0
and 1, tanh: projecting the value between 1 and 1, ReLU (REctified Linear Unit): if y ≤ 0, output = 0, if
y > 0, output = y, and leaky ReLU: similar to ReLU but if y ≤ 0, output = y * a, where a is a very small
value. In Figure A.2 these activation functions are shown.

Figure A.1: A single neuron. 𝑥1 ...𝑥𝑛 are the input values, 𝑤1 ...𝑤𝑛 are the corresponding weights, 𝑏 is the bias and 𝑓 is the
activation function.

An ANN consists of multiple layers of multiple neurons, see Figure A.3. In this Figure the process
of training is also described: (1) Feed forward: model output is calculated based on an initial set of
weights and biases. (2) Calculate loss: the error in the output is calculated with the loss function. (3)
Backpropagation: based on the magnitude of the error, weights and biases of the model are adjusted.
This process is repeated until the loss is below a desired value or the model performance stagnates.
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Figure A.2: Four activation functions: sigmoid, tanh, ReLU and Leaky ReLU (with a = 0.1).

Figure A.3: A multilayer perceptron network.

A.1.2. Convolutional neural networks
A convolutional neural network (CNN) is a type of network that can take images as an input. CNNs
make use of kernels (or filters) to extract important features. During training not only weights and biases
are adjusted, but also the composition of the kernels. In Figure 3.9 an example of a single convolutional
operation is shown. The new image that is created by the convolutional operation is called a feature
map. In CNNs, several different kernels are applied to a single input image, creating multiple feature
maps (channels).

Figure A.4: Example of a convolutional operation with kernel size 2x2 and stride 1.

A.1.3. Recurrent neural networks
A recurrent neural network (RNN) is a type of network that can take sequence data as an input. RNNs
make use of recurrent connections, information from previous outputs, also called ’states’, for calculat
ing new outputs. These recurrent connections also have weights, which are adjusted during training.
Traditional RNNs deal with a vanishing gradient problem: during backpropagation the gradients tend
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to disappear as it propagates back further in time. This results in the failure to capture long term de
pendencies. To solve this problem, LSTM (Long Short Term Memory) and GRU (Gated Recurrent Unit)
were invented. These are cells that have gates that regulate what information from the past is important
and should be kept, and what information should be forgotten. In Figure A.5 the computational flow of
a GRU is shown.

Figure A.5: The computational flow of a GRU. Adapted from Zhang et al., (2020).

A GRU takes two inputs: the new input 𝑋𝑡 and the hidden state from the previous time step 𝐻𝑡−1. The
update gate 𝑍𝑡, see Eq. A.1, and reset gate 𝑅𝑡, see Eq. A.2, are vectors with entries between 0 and
1, controlling what information flows through these gates. In Eq. A.3 a candidate hidden state �̃�𝑡 is
created by combining 𝑋𝑡 and 𝐻𝑡−1⊙𝑅𝑡. This means that the reset gate controls to what extend the old
hidden state is added to the new candidate hidden state. The new hidden state, see Eq. A.4, is then
a combination of the 𝐻𝑡−1⊙𝑍𝑡 and �̃�𝑡⊙(1− 𝑍𝑡). This means that the update gate control how much
of the new hidden state is old hidden state, and how much of the new hidden state is the candidate
hidden state. This way, the reset gate is responsible for the short term memory of the model, and the
update gate is responsible for the long term memory of the model.

𝑍𝑡 = 𝜎(𝑊𝑥𝑧𝑋𝑡 +𝑊ℎ𝑧𝐻𝑡−1 + 𝑏𝑧) (A.1)

𝑅𝑡 = 𝜎(𝑊𝑥𝑟𝑋𝑡 +𝑊ℎ𝑟𝐻𝑡−1 + 𝑏𝑟) (A.2)

�̃�𝑡 = tanh(𝑊𝑥ℎ𝑋𝑡 +𝑊ℎℎ(𝑅𝑡⊙𝐻𝑡−1) + 𝑏ℎ) (A.3)

𝐻𝑡 = (1 − 𝑍𝑡) ⊙ �̃�𝑡 + 𝑍𝑡⊙𝐻𝑡−1 (A.4)
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