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Abstract

How can robots without expressive faces or bodies convey emotions? Why would it be useful if robots

could express emotion? In the context of human-robot interaction, could emotional expression lead to a

greater comprehension of robotic behaviors and intents? These are questions addressed by the field of

affective robotics, which seeks to develop and establish naturalistic social interaction between robots and

humans. Emotions can provide a natural communication modality to augment the multi-modal capabilities

of social robots in a variety of domains.

Historically, the emphasis in the field has been on facial and bodily expressions, relying heavily on

anthropomorphic or zoomorphic robot appearances. This presents a challenge, as most robots are

designed with functionality in mind, often lacking expressive faces and bodies, which limits their ability to

effectively convey emotions. This study investigates the potential for appearance-constrained robots to

convey emotions through variations in motion, light, and sound parameters.

We conducted an experiment where participants rated the emotional qualities of a non-humanoid,

faceless robot’s behaviors, which were manipulated through variations in motion, light, and sound

parameters. Our approach is unique in that it adopts a bottom-up methodology similar to the work of Jack

et al. [44] on facial expressions. By systematically varying individual features and observing the resultant

emotional perceptions, we aimed to discern the specific affective contributions of each parameter. Using

machine-learning based regression models, we sought to predict the perceived emotional qualities based

on these systematically varied parameters.

Our findings reveal that variations in motion parameters, particularly speed, significantly influence the

perceived intensity of arousal, joy, and dominance. Light temperature was found to affect the perceived

intensity of anger and joy, while sound pitch influenced perceptions of surprise and fear. The regression

models showed varying degrees of success, with the random forest models often outperforming linear

models but also exhibiting a higher tendency to overfit the training data. The linear models, while less

prone to overfitting, struggled to capture the full complexity of the emotional responses. These findings

suggest that non-anthropomorphic robots can indeed convey emotional qualities through controlled

variations in their behaviors, though the strength and clarity of these emotions remain limited. Future

research should focus on enhancing the expressiveness of these parameters and testing the models with

new data to better understand their generalizability and effectiveness.
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1
Introduction

The more ubiquitous and autonomous robots become, the more interpretability becomes important for

humans to be able to interact with them effectively [82]. According to Graziani et al. [38], an artificial

intelligence (AI) system is interpretable if its working principles and outputs can be translated into human-

comprehensible language without compromising the system’s validity. In the context of human-robot

interaction (HRI), interpretability refers to the the extent to which the internal state and decision making

processes of a robot are understandable to the user [98]. In HRI, achieving interpretability is crucial as it

enhances the natural and fluid interaction between humans and robots, making it desirable for human

users.

However, due to the diverse range of tasks and environments in which robots operate, it is impossible

to preprogram behaviors that guarantee interpretability in all situations. Therefore, robotic agents should

possess the capability to learn, adapt, and change their behaviors autonomously or with the input and

feedback of a human to maximize interpretability [50]. This requirement implies that we need robots that

not only can understand us, but are also easy to understand. Consequently, there is a need to make

robot behavior more interpretable to improve mutual understanding.

To address the gap in mutual understanding between humans and robots, the utilization of affective

signals can be considered. Emotional expression, as described by Zych and Gogolla [100] and Trevarthen

[94], is a dynamic multimodal behavioral pattern that transcends language and species. Emotional

expressions serve as social feedback signals and as a means of empathizing with others [39]. In the

context of robotic learning, emotions may provide insights into robot intentions, decision-making, and

learning progress. Emotional displays also facilitate feedback and engagement [2], and contribute to

building trust and affinity between robots and human teachers [82].

1.1. Background and Motivation
Previous efforts in the development of autonomous intelligent machines have focused primarily on the

emulation of human cognitive faculties, including problem solving, logic, learning, sensory perception,

language, and various cognitive processes [52, 97]. However, a relatively small sample of this research

have explored the potential of emotions [59], despite evidence showing that emotions have a significant

influence on high-level cognitive processes [14]. Furthermore, emotions not only make interactions

more engaging, but also have a considerable impact on how well individuals understand each other.

Effective human communication depends on emotional skills, particularly the ability to perceive and convey

emotions [90]. As a result, humans depend on their emotional skills for a multitude of cognitive and

behavioral tasks, including but not limited to reasoning, problem solving, social interaction, consciousness,

memory, learning, and creativity. Considering the role that emotions play in human cognition, there is

compelling motivation to delve into the integration of emotional behavior in robotic agents, especially

within the context of HRI.

1.1.1. Affective Computing and Human-Robot Interaction
Affective computing is a multidisciplinary field that investigates how technology can inform our under-

standing of human emotions, influence interactions between humans and technology, design systems

to harness emotions to enhance capabilities and transform human-computer interaction (HCI) through

sensing and affective strategies [26]. Within this field, experts agree that emotions are essential to enable

socially interactive robots to create natural and fluid human-robot interactions. This point of view is

supported by several studies [25, 36, 54, 68, 80].

1



2 Chapter 1. Introduction

Emotional expression can therefore be seen as an important aspect to consider in HRI, as it fosters

engagement and aligns the goals of humans and robots. When robots exhibit emotions that resonate

with human expectations and experiences, it cultivates familiarity, encourages natural interactions, and

improves understanding of robot behavior [18]. Furthermore, emotional displays induce empathy and help

humans form mental models of the robot’s internal state, allowing them to interpret the robot’s behavior

more effectively in a human-like manner, thus facilitating communication and support [22].

1.1.2. Methods for Implementing Emotions in Robots
The implementation of emotions in robots is a multifaceted process that depends on the robot’s ability

to both elicit and express emotions. The capacity of a robot to elicit (i.e., to simulate), emotions relies

on affective computing methods. Affective computing in robotics draws from an array of methodologies

including symbolic knowledge representation, cognitive models, fuzzy models, Markov models, neural

networks, and reinforcement learning [77]. Traditional approaches like symbolic and cognitive techniques

enable robots to perform diverse tasks, however, they are somewhat restricted in their ability to learn

through exploration and feedback, particularly in unstructured tasks.

Machine Learning (ML) approaches, in contrast, focus on adaptive learning and environmental

interaction. Reinforcement learning (RL), a subset of ML, is particularly noteworthy as it allows robots

to learn via trial and error, constantly interacting with their surroundings to identify and select optimal

actions [48]. This learning process is integral for a robot to accurately express appropriate emotions, both

in intensity and timing, aligning the elicitation process with the robot’s learning mechanism.

After the elicitation process, the next requirement is that the robot should be able to express the elicited

emotion in an interpretable manner. In this study, the expression of emotions will be the main focus. For

anthropomorphic robots (i.e., robots that resemble humans in form), this is relatively straightforward as

they have been the primary type of robots used in studies that explore the design of robotic emotional

expressions in the context of HRI. In these studies, non-verbal communication methods such as gestures,

facial expressions, and gaze play significant roles [76].

1.1.3. Challenges with Appearance-Constrained Robots
However, the majority of robots currently in use are non-humanoid and appearance-constrained, pre-

venting them from using said non-verbal communication methods. Appearance-constrained robots are

non-humanoid robots that lack the expressive faces and bodies necessary for the non-verbal cues com-

monly used in HRI [21]. Appearance-constrained robots are typically designed with a focus on functionality

over form, resulting in a limited ability to utilize facial or somatic expressions for emotion conveyance [87].

A few examples of these robots are shown below:

Figure 1.1: Examples of appearance-constrained robots

This limitation presents a significant challenge in HRI. Appearance-constrained robots, despite being

the most prevalent variety of robots, are the least capable of interacting with humans in a manner that is

perceived as fluid and natural [10]. Their inherent non-anthropomorphic characteristics severely restrict

their capacity to convey emotions in a manner comprehensible to human users, which stresses the need

for increased exploration of alternative expression modalities for this type of robots.

1.1.4. Alternative Expression Modalities for Appearance-Constrained Robots
Because of the inherent morphological limitations of appearance-constrained robots in conveying emotions

through anthropomorphic modalities such as facial expressions, body language, and gait, it is necessary

to explore alternative expressive modalities, which include motion, lights, sounds, etc. To determine how

effective these modalities can be in improving the ability of appearance-constrained robots to communicate

emotions, a variety of design principles and techniques must be explored. The aim is to facilitate the

design of expressions that allow appearance-constrained robots to effectively evoke and convey emotions,
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thus fostering engaging interactions with human users.

Researchers have investigated various methods through which appearance-constrained robots may be

able to communicate emotions by using alternative expressive modalities such as motion, lights, sounds,

etc. [85, 86, 87, 75]. The challenge here is not only identifying the specific features of these modalities

that could potentially convey emotions, but also in ensuring that they are sufficiently interpretable by

human users. Given the inherent variation in how individuals perceive and interpret emotions, and the

level of abstraction at which these robots express emotions, it is crucial to assess the effectiveness of

different features of these alternative modalities in conveying emotions in a manner that is clear and

understandable to humans.

1.2. Research Objective and Scope
Consequently, this study will focus on investigating the relationship between specific parameters within

the modalities of motion, light, and sound, and the emotional perceptions attributed to a non-humanoid,

faceless robot. Unlike traditional approaches that design expressions or relations upfront and then test

the perception, our methodology employs a bottom-up approach. This unbiased method systematically

explores how variations in parameters influence emotional perceptions, without preconceived notions

about the outcomes.

Based on this, a key aspect of this research is to determine whether it is possible to predict the emotional

qualities perceived in the robot’s behaviors based on changes in these parameters. By manipulating

factors such as speed, light intensity, and sound pitch across the robot’s three primary behavior modalities

(motion, light, and sound), we aim to establish a quantitative link between these input parameters and the

emotional qualities they convey.

To achieve this, we will analyze how changes in each parameter influence the intensity of Ekman’s basic

emotions and the emotional dimensions of pleasure, arousal, and dominance (PAD). This methodological

approach allows for a comprehensive evaluation of emotional responses across both discrete and

dimensional models of affect.

The data for this study will be collected from a sample of participants recruited via Prolific, who will

watch videos of the robot displaying behaviors characterized by different combinations of motion, light,

and sound parameters. Participants will then rate the intensity and type of emotional qualities perceived

in each scenario.

The ultimate goal of this research is not only to enhance our understanding of how non-verbal cues in

robots can be interpreted emotionally by humans but also to gather insights that can effectively guide

the design of emotionally expressive robots. This enhancement will facilitate more natural and intuitive

interactions between humans and robots, particularly in situations where emotional expressions could be

beneficial.

1.2.1. Research Questions
Following this, the main objective of this study is to address the following main research question (MRQ).

MRQ: Can variations in motion, light, and sound parameters of the behaviors of a non-humanoid,

faceless robot influence the perceived emotional qualities of those behaviors?

To comprehensively address this overarching question, we will break it down into specific subquestions

focusing on each modality and the combined effects:

RQ1: How do variations in motion parameters (speed, roundness, cycle rate) influence the

perceived emotional qualities of the robot’s behavior?

RQ2: How do variations in light parameters (light temperature, change in brightness, tempo)

influence the perceived emotional qualities of the robot’s behavior?

RQ3: How do variations in sound parameters (pitch, intonation, tempo) influence the perceived

emotional qualities of the robot’s behavior?

RQ4: Can regression models, trained with features derived from the input parameters of the

robot’s modal behaviors, effectively predict the perceived emotional qualities of those

behaviors?
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To enable robots to convey emotions effectively, it is essential to establish a clear definition of emotion.

According to the James-Lange theory of emotion, emotion is commonly defined as a combination of

psychological aspects, including subjective experiences, expressive behaviors (such as facial expressions,

bodily movements, and verbal communication), and physiological responses (such as changes in heart

rate and respiration) [19]. Emotions are widely recognized as central to human psychology [65], and

several prominent psychological approaches contribute to our understanding of emotions [39].

These theories significantly contribute to our understanding of social psychology, human cognition,

emotions, and how we perceive the world. However, it is less clear how these approaches apply to

non-human entities, including animals, plants, and artificial autonomous agents like robots, computers,

and inanimate objects. The study of emotions in robotic and artificial agents raises important questions,

such as what these agents mean as emotional and how best to study their emotions. Answering these

questions is vital for advancing our knowledge of emotions in non-human entities and their interactions

with humans.

2.1. Theories of Emotion applied to Affective Robotics
Our understanding of emotions is enriched by several influential psychology approaches. One such

approach employs categorical models of emotion, aiming to identify fundamental emotions governed

by distinct mechanisms, resulting in unique mental states with quantifiable manifestations. Another

approach, known as the appraisal model of emotion, contends that emotions or their constituents originate

from the evaluation of stimuli in terms of goal congruence, expectation alignment, controllability, and

causal attribution. Psychological constructionist viewpoints regard emotions as integral components of an

ongoing, continuously evolving construction process, rather than discrete mental states. These theories

propose that emotions arise from cognitive and perceptual elements that are intertwined with other mental

processes. Furthermore, social constructionist approaches perceive emotions as socially constructed

entities, influenced by sociocultural factors and delimited by participant roles and social contexts [39].

These theories make substantial contributions to the field of social psychology and our understanding

of human cognition, emotions, and perceptual paradigms. Nonetheless, it is less evident how these

frameworks apply to non-human entities, encompassing not only animals, plants, and other living organ-

isms, but also robots, computers, and inanimate objects. The examination of emotions in robotic agents

and other autonomous artificial entities poses pivotal questions. What attributes define these entities

as emotional, and what are the most effective methodologies for investigating the emotions of these

artificial beings? These inquiries are indispensable for advancing our understanding of the emotional

terrain inhabited by non-human entities and the consequences of their interactions with humans.

2.1.1. Categorical Theories of Emotion
According to Ekman [29], each fundamental emotion is an indivisible building block of the mind, uniquely

caused by dedicated mechanisms, resulting in specific experiences and expressive behaviors. Ekman

identifies six primary emotions: joy, sadness, anger, fear, surprise, and disgust, which are believed to be

universally and innately recognized. This idea stems from Darwin’s seminal work [6], which suggests

that facial expressions are a universal language for conveying internal emotional states, transcending

cultural boundaries. The universality hypothesis posits that these six core human emotions are universally

expressed through identical facial movements in all cultures, enabling universal recognition. In Figure 2.1

an illustration of Ekman’s six basic emotions is presented.

5
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(a) Joy (b) Sadness (c) Fear (d) Anger (e) Disgust (f) Surprise

Figure 2.1: Ekman’s six basic emotions [30]

Many studies in affective robotics, as noted by Bretan et al. [17], prefer the Ekman model because

these emotions are intuitive, easily understood, and conveniently positioned on the core affect plane for

regression. Furthermore, Löffler et al. [53] argue that the six basic emotions offer the most potential for

intuitive HRI as they are innate, fleeting emotional reactions to external stimuli and are shared between

cultures. Some studies adopt Ekman’s model simply because it is widely accepted in the scientific

community [28].

Other research endeavors aim to explore how a single modality, often motion, can express Ekman’s six

emotions by varying specific parameters. For example, [92] investigated how shape-changing behaviors

involving changes in speed, orientation, fluidity, and movement direction could convey Ekman’s basic

emotions. Similarly, Schwenk and Arras [78] explored using sound sequences to enhance the gestural

display of primary emotions like joy, sadness, and fear, as well as secondary emotions like embarrassment,

disappointment, and curiosity.

In general, the choice of categorical emotion models is driven by the assumption that people can

intuitively perceive basic emotions without extensive training, minimizing the mental workload [3]. However,

many articles challenge these models, particularly because they tend to rely heavily on human facial

expressions, raising doubts about their applicability to other modalities [5] and the universal validity of

cultural interpretations of facial expressions [44]. Therefore, while studies using these models may yield

promising results in emotion recognition for robotic agents, they come with certain limitations that need

consideration when evaluating the effectiveness of emotional modeling in robotics.

2.1.2. Dimensional Theories of Emotion
In addition to categorical emotion models, some studies focus on using dimensional models. One such

model is the circumplex model of affect (Figure 2.2a), developed by Russell in 1980 [72]. Unlike categorical

models, the circumplex model does not treat emotions as distinct categories but instead places them on

a two-dimensional scale: the arousal (activation) of an emotion and the valence (pleasantness) of an

experience. Valence, representing pleasure-displeasure, is depicted horizontally, while arousal, ranging

from high arousal to low arousal, is represented vertically. Emotions are evenly distributed around a

central point, forming a circular pattern.

Researchers favoring this model argue that it is valuable for designing emotional expressions and is

often seen as a more precise tool for evaluating how accurately emotions are perceived. For example,

Strohmeier et al. [89] examined specific shape parameters to study their correlation with valence and

arousal in an empirical study. They found that while participants may differ in how they categorize

emotions, they tend to agree more when it comes to distinguishing positive vs. negative valence and

high vs. low arousal. This suggests that treating emotions as continuous variables within the circumplex

model provides a better way to assess emotion perception.

Inspired by this approach, Song and Yamada [85] proposed that emotions within the same quadrant

of the valence-arousal space are similar to each other but distinct from emotions in other quadrants.

They suggested that focusing on four emotions could best represent the participants’ perceptions without

introducing unnecessary complexity. Similarly, Feldmaier et al. [33] sought to assess the importance

of arousal when portraying simulated sadness or fear compared to joy and anger. Rather than asking

participants to categorize emotions, they measured perceived valence and arousal to avoid the bias of

affect categorization.

The Pleasure, Arousal and Dominance (PAD) model (Figure 2.2b) is another widely recognized

dimensional theory of emotion frequently cited in the literature [57, 73]. According to this model, emotions
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(a) Circumplex model of affect [72] (b) PAD theory of emotion [56]

can be effectively captured within a three-dimensional coordinate system, providing a comprehensive

framework. Within the PAD model, general mood types are categorized into eight octants, while emotional

states are represented as dynamic 3D vectors. The pleasure component of the PAD model reflects

the affective balance, spanning from positive to negative. Arousal signifies the level of physical activity,

ranging from excited to calm. Lastly, dominance indicates the degree of control or influence over the

environment, ranging from weak to strong [56].

Various studies have embraced the PAD model as a foundational framework to understand and

implement emotional theories. For example, Claret et al. [23] and Rincon et al. [69] explicitly reference the

PAD model and use it to map motion features such as jerkiness, activity, and gaze to generate emotional

movements in robots. Another approach, presented by Nanty and Gelin [60], combines the PAD model

with fuzzy logic in a humanoid robot to simulate internal emotional states and achieve emotional coherence

over time.

Other studies indirectly employ the PAD model, using measures based on this emotional framework.

One such example is the self-assessment manikin (SAM), a non-verbal pictorial assessment technique that

directly measures pleasure, arousal, and dominance associated with an individual’s affective reaction to

diverse stimuli [16]. The works of Bethel andMurphy [12], Klausen et al. [47], Novikova et al. [61], Saerbeck

and Bartneck [74], and Tan et al. [92] utilize SAM and draw upon the PAD model in their research.

2.2. Robotic Appearance and Morphology
As this thesis addresses the design of emotional expressions for a robot with appearance constraints, it is

imperative to establish clear criteria for classifying different robotic morphologies. A key consideration

in this classification is the differentiation between humanoid and non-humanoid robots. A concept that

holds significance in this context is “morphological similarity,” initially introduced by Epley et al. [32].

Morphological similarity refers to the extent to which observable features of a non-human agent resemble

those of a human. Limb configuration constitutes one aspect of this similarity, with humanoid robots

featuring limb structures akin to humans, while non-humanoid robots may possess different configurations

tailored to their intended functions. Furthermore, humanoid robots often incorporate features that resemble

human facial expressions, such as eyes, a mouth, or a realistic face, whereas non-humanoid robots

possess unique or specialized features relevant to their specific purposes.

To clarify the boundary between humanoid and non-humanoid characteristics and explore the ex-

isting literature on this topic, it is crucial to consider the work of Bethel [9]. Bethel categorizes robot

implementations involving affective expressions into three fundamental groups: non-anthropomorphic

(or non-humanoid) robots and appearance-constrained robots that employ non-facial and non-verbal

affective expression; anthropomorphic (or humanoid) robots that heavily rely on non-facial and non-verbal

affective expression; and traditional anthropomorphic robots that combine non-facial and non-verbal

affective expressions with conventional facial expressions. An essential term within these categories is

“appearance-constrained.” As per Bethel and Murphy [11], appearance-constrained robots are not delib-

erately engineered to be anthropomorphic and lack the ability to exhibit facial expressions or make eye

contact. Thus, “appearance-constrained” serves as an additional criterion for distinguishing non-humanoid

robots.
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Figure 2.3: The SAM used to measure pleasure (top), arousal and dominance (bottom)

(a) Atlas [40] (b) Asimo [81] (c) Pepper [51] (d) Nao [37]

(e) iCub [58] (f) Ameca [88] (g) Sophia [67] (h) Geminoid DK [95]

Figure 2.4: Examples of humanoid robots, sorted by degree of morphological similarity

In general, appearance-constrained robots are not engineered to be anthropomorphic or zoomorphic

and lack the ability to exhibit facial expressions or make eye contact. Appearance-constrained robots

are inherently non-humanoid, non-zoomorphic, and faceless. Consequently, all the robots featured in

Figure 2.5 can be regarded as both non-humanoid and appearance-constrained. They are engineered for

specific tasks without expressive capabilities in mind, possessing non-human or non-animal morphologies.

Due to the inherent morphological limitations of appearance-constrained robots, alternative modalities

may be used for the design of emotional expressions. Examples of robots with appearance constraints

include devices such as the Greeting Machine [4], robot vacuum cleaners such as the iRobot Roomba

[86], Woodie [43], and Post-plant [46], among others.

Concerning the differentiation between humanoid and non-humanoid robots, it is imperative to establish

a clear definition for what qualifies as a humanoid robot. According to Siciliano and Khatib [83], humanoid

robots draw direct inspiration from human capabilities and deliberately emulate human form and behavior.
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(a) Robotic prototype [15] (b) Maah [24] (c) Shimi [41] (d) Kip1 [42]

(e)Woodie [43] (f) Social robot probe [53] (g) Robotic box [92] (h) Greeting Machine [4]

Figure 2.5: Examples of appearance-constrained (and therefore non-humanoid) robots

These robots come in various sizes and shapes, ranging from full-sized legged robots to isolated robotic

heads that simulate human sensing and expression. The key emphasis here is on a human-like form,

signifying that for a robot to be classified as a humanoid, it must possess a conspicuously human-like

shape. Consequently, a high degree of morphological similarity is paramount.

Numerous metrics are employed to gauge anthropomorphism, including assessments of a robot’s

perceived resemblance to humans. Examples of such metrics include the Godspeed questionnaire [7]

and the RoSAS [20], both of which encompass criteria to evaluate anthropomorphism and the perception

of human-likeness. Furthermore, Ferrari et al. [34] introduced a method in a preliminary study to classify

robots into three groups based on their level of similarity to humans: minimal similarity or non-humanoid

(Group 1), moderate similarity or humanoid (Group 2), and high similarity or android (Group 3). As a

result, any robot failing to meet the criteria for androids or humanoids is categorized as non-humanoid,

including zoomorphic robots.

Based on these definitions, it can be inferred that a non-humanoid robot may possess a body, head,

or face, provided that these components significantly diverge from human-like forms. This encompasses

a wide spectrum of non-humanoid robots, including zoomorphic robots, aerial robots, underwater robots,

search and rescue robots, industrial robots (including robotic arms), autonomous vehicles, mobile robots,

and other robotic systems, as long as they distinctly deviate from human-like appearances.

2.3. Modalities of Expression
As discussed in Section 2.2, appearance-constrained robots face limitations in their available output

modalities to simulate emotional expression. Depending on the robot, some robots may only have

the ability to express emotions through more abstract modalities such as motion, light, sound, haptics,

etc. These modalities, as opposed to anthropomorphic modalities, such as facial expressions, body

language, and gait, may not immediately be effective in conveying affective signals. Consequently, prior

research has focused on establishing the connections between each modality and its ability to effectively

communicate specific emotional information. The overarching objective is to assess the viability of

using these modalities in the design of appearance-constrained robots and to evaluate their efficiency in

conveying emotions.

2.3.1. Motion
Epley et al. [32] highlight the importance of movement as a highly effective modality to achieve anthropo-

morphism and attributed mental states, including emotional states. However, the ability to communicate

emotions through movement is largely based on the degrees of freedom available to the robot performing

the action. This is important because appearance-constrained robots can exhibit significant variation

in their degrees of freedom, depending on the specific application area and tasks they are designed to

perform.

This raises the fundamental question of how individual motion components contribute to different
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affective features. According to Kim et al. [46], the speed and size of the movement can effectively convey

arousal. Furthermore, they suggest that for valence, if the robot’s shape is contorted, shrunken, or twisted

and its movement pattern is erratic or unstable, it would be perceived as negative. On the contrary, if all

components move smoothly and maintain an open and upright posture, it would be perceived as positive.

This concept draws inspiration from plant behavior, where positive emotions are associated with unfurling,

standing upright, and opening up, while negative emotions are associated with curling up, rolling inward,

bending down, and withering.

Consistent with this study, the research by Tan et al. [91] investigated the kinematic properties related

to arousal and valence in emotional states. They found that velocity and range of movement strongly

correlate with arousal. Several studies have also indicated that movement orientation serves as a cue

for valence. For example, joy can be expressed by moving forward and upward with high speed, while

moving backward indicates surprise, shame, or fear. Leaning the body backward is associated with

anxiety, panic, and fear, while leaning the whole body forward can represent anger. However, no definitive

conclusions have been drawn regarding which kinetic or structural parameters contribute to valence,

aside from the orientation of the movement. The authors designed shape-changing movements based

on biological motion studies that demonstrated relationships between emotions and shape-changing

parameters, such as velocity and orientation.

Furthermore, a study by Löffler et al. [53] devised and validated a set of unimodal and multimodal

expressions for basic emotions such as joy, sadness, fear, and anger, using color, motion, and sound as

output modalities. They developed metaphorical design guidelines to effectively convey specific emotions

through movement. To express joy, metaphors like “joy is up” and “joy is active” guided the design,

emphasizing the importance of conveying vitality and positive energy. For sadness, metaphors such as

“sadness is down,” “sadness is passive,” and “sadness is a burden” influenced the design, symbolizing a

lack of vitality, passiveness, and reticence. The metaphor “fear is a hidden enemy” translated into “hiding”

and “escaping” movements, reflecting the experience of being pursued by fear. Inspired by metaphors

for anger such as “anger is hot fluid in a container,” “anger is an opponent in a struggle” and “anger

is aggressive animal behavior,” shaking and forward movements were designed to mimic a bursting

container and an inner struggle, as well as fast motion toward the user.

In their analysis, Rooij et al. [71] provide a comprehensive overview of the effects of essential char-

acteristics of affective movement on the attribution of emotions. They highlight several key findings of

previous studies. First, they note that perceived instability tends to lead to negative emotion attribution,

while perceived stability is associated with positive emotion attribution, as demonstrated by Pavlova et al.

[64]. Furthermore, researchers consistently find that acceleration is associated with perceived arousal,

which aligns with the findings of Saerbeck and Bartneck [74]. Based on the hypothesis proposed by

Kim et al. [46], Rooij et al. [71] suggest that velocity contributes to arousal, smoothness of movement

is associated with positive emotions, and size of the movement plays a significant role in both valence

and arousal. For example, fast and jerky movements are attributed to joy, whereas large, fast and jerky

movements are linked to anger. On the contrary, small and slow movements are associated with sadness

and fear, aligning with the metaphors presented by Löffler et al. [53]. Furthermore, round movements

tend to evoke positive emotions, while sharp and angular movements are more likely to elicit negative

emotions, supporting the hypotheses presented by both Saerbeck and Bartneck [74] and Song and

Yamada [86]. Furthermore, Rooij et al. [71] highlight social attributions related to relative motion and

perceived goal direction, such as animacy, which contribute to emotional attributions by influencing

perceived intentionality.

It is evident that drawing inspiration from biology provides valuable insight for designing robot move-

ments. However, according to Papenmeier [63], animation principles can also be used to create lifelike

movements, convey foresight and intelligence, and enhance the expression of intent in robots. One

significant advantage of using animation principles is their adaptability to different robot forms, including

non-biologically inspired structures like drones. Nevertheless, with a wide range of techniques proposed

in the literature and a lack of comparative studies, choosing the appropriate methodology to implement

expressive movement can be a daunting task for designers. There is no one-size-fits-all approach, as

different strategies are suitable depending on the desired level of expressiveness and the specific robot

morphology.
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Table 2.1: Summary of characteristics of motion in terms of affect attribution

Modality Characteristics in Affect Attribution

Motion

Rounded movement patterns convey positive valence.

Sharp and angular movement patterns convey negative valence and high arousal.

High speed is perceived as more positive with round movement patterns.

High speed conveys higher arousal, regardless of movement patterns.

Acceleration and curvature also influence valence.

Perceived instability lead to negative emotion attribution.

Perceived stability is associated with positive emotion attribution.

Fast and jerky movements are attributed to joy.

Large, fast, and jerky movements are attributed to anger.

Small and slow movements are attributed to sadness and fear.

2.3.2. Light
Lights are a versatile and promising visual tool with widespread applications in various machines, such

as computers, vehicles, handheld devices, and robots. They are used primarily as simple indicators,

offering benefits such as simplicity, readability, and adjustability in terms of visibility [55]. This adaptability

enables lights to serve as effective signaling mechanisms for different levels of notification and criticality.

Although the core design of most appearance-constrained robots does not incorporate the ability to utilize

light and color for emotional displays, it may sometimes be possible to augment them with the necessary

interfaces to exploit the potential benefits of light and color, as shown in Figure 2.6.

(a)Woody [43] (b) Husky [3] (c) Olly [96] (d) Roomba [66]

Figure 2.6: Examples of appearance-constrained robots augmented with light interfaces for emotional

expression

Betella et al. [8] explored using light parameters such as color, pattern motion, and pattern complexity

to express emotions and affective states, based on previous studies that connected colors with emotional

attribution [1]. Cool colors (e.g., blue, green) tend to evoke positive and soothing feelings, while warm

colors (e.g., yellow, orange) are associated with negativity and physical arousal. The concept of comple-

mentary color schemes and the influence of light pattern motion and complexity on valence, interest, and

arousal were also examined. These variables were condensed into three abstract motifs (warm, cool,

and complementary) and one neutral motif (plain white). The participants then evaluated the emotions

attributed to these motifs.

The results of this study showed that color significantly influenced the valence and arousal ratings.

Warm colors received lower valence ratings compared to complementary and cool colors, while cool

colors received lower arousal ratings compared to warm and complementary colors. The neutral motif

produced lower arousal ratings compared to the warm motif. Furthermore, there was a positive correlation

between arousal and the motion of light patterns. This suggests that using colors to express affective

states can potentially increase the interpretability of emotional states in robots.

Moreover, several studies have explored the importance and effectiveness of light and color in a

multimodal context compared to other modalities like sound and vibration. For example, Song and

Yamada [85] studied the impact of color, sound, and vibration on human emotional perception of an

appearance-constrained robot. They found conflicting mappings between emotional states and colors in

the literature, but they selected mappings that received support from the majority of studies. Ultimately,
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color emerged as the most important modality for expressing affect, although they noted challenges in

expressing joy effectively.

However, Löffler et al. [53] challenged these findings by systematically designing and validating

unimodal and multimodal expressions for basic emotions using color, motion, and sound. Surprisingly,

unimodal use of color was found to be the weakest predictor of emotion classification, whereas motion and

sound performed equally well. Combining color and motion significantly improved emotion classification

accuracy and participants’ confidence in identifying the robot’s emotion. The authors recommended

choosing output modalities based on the specific emotions to be conveyed, as no single modality covers

all emotions equally well.

Table 2.2: Summary of characteristics of light in terms of affect attribution

Modality Characteristics in Affect Attribution

Light

Warm colors convey negative valence and high arousal.

Cool colors convey positive valence and low arousal.

Positive correlation between arousal and motion of light patterns.

Multimodal use of light and motion leads to improved accuracy in emotion classification.

2.3.3. Sound
Sound serves as a versatile means of conveying both practical and emotional information in the realm of

robot design. Robots naturally generate noise during their operations, but they can also utilize explicit

auditory signals, including simple non-linguistic utterances (NLUs) like beeps or chirps, as well as speech.

However, while speech is a familiar mode of human communication, it may be inefficient for non-humanoid

robots and create unrealistic expectations beyond their expressive capabilities. Therefore, Cha et al. [21]

suggests that NLUs could serve as a viable alternative means of expression for non-humanoid robots.

Synthetic NLUs, reminiscent of sounds used by fictional non-humanoid robots, offer a consistent and

fitting form of communication. Examples include sound clips from iconic robot movie scenes featuring

characters like Wall-E, R2-D2, BB8, and Transformers, which effectively use sound to convey the robot’s

internal state. Despite its potential, research has shown that the unimodal use of sound may not efficiently

convey affective information compared to the use of multiple modalities. This limitation might be attributed

to various constraints that render the sound less suitable when used in isolation, as discussed below.

(a) Bumblebee (b) BB8 (c) R2-D2 (d)Wall-E

Figure 2.7: Examples of robotic characters from popular motion pictures that make use of NLUs

In their study, Jeong et al. [45] examined how people perceive the functional and emotional intentions

conveyed by robot sounds and whether these perceptions are influenced by prior exposure to science

fiction movies. The results revealed a significant gap between the intended emotional messages of

the sounds and how they were actually interpreted. Participants struggled to correctly identify “positive”

sounds as positive, while “neutral” and “negative” sounds were predominantly correctly classified as

neutral or negative. Furthermore, some sounds were mistakenly associated with functional messages

when their intention was emotional. These findings highlight concerns about the challenges that users

may face in accurately interpreting and categorizing unimodal sound expressions. Furthermore, the

emotional nature of sounds can be easily confused and mistakenly perceived as conveying a functional

message.

However, Song and Yamada [85] propose that affective sounds, particularly NLUs, play an important

role in the design of synthetic expressions of emotions. They refer to previous research [49], which
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suggests that when beep sounds with rising intonation are emitted from a computer, people perceive

the computer as expressing disagreement, regardless of the duration of the beep. On the contrary,

sounds with decreasing intonation and longer duration are interpreted as the computer hesitating. These

interpretations essentially represent emotions characterized by negative valence and varying levels of

arousal.

Song and Yamada [85] argue that the same principles apply when substituting disagreement and

hesitation with emotions such as anger and sadness. Based on their findings, the authors make three

key recommendations for using sound. First, when expressing anger, a rising sound and highly intense

vibration are recommended. Second, when expressing sadness, a falling sound is recommended. Third,

whenever possible, they suggest using multiple modalities instead of relying solely on a single modality,

aligning with the recommendations of Löffler et al. [53].

In fact, Löffler et al. [53] drew several conclusions about the perceived confidence in the classification

of emotions. Experimental results led to the conclusion that sound is not effective in conveying joy and that

including sound in a trimodal expression does not improve classification accuracy or perceived confidence.

However, the authors found that sound plays an important role in conveying the emotion of sadness. In

contrast, sound had a negative impact on confidence scores for fear classification, discouraging its use

for that particular emotion. These findings support their initial hypotheses and design recommendations,

suggesting that sound can be beneficial but may not universally apply to all modalities or emotions.

Table 2.3: Summary of characteristics of sound in terms of affect attribution

Modality Characteristics in Affect Attribution

Sound

The use of NLUs might be more suitable than the use of speech for non-humanoid robots.

Unimodal use of sound is insufficient for accurate emotion classification.

Sounds can be erroneously interpreted as conveying a functional message.

Sounds are better at conveying negative emotions.

Rising intonation is attributed to anger.

Falling intonation is attributed to sadness.

2.4. Emotion Prediction Modeling
Existing research in emotion prediction modeling provides useful insights that can be used to predict

human emotional reactions based on observable data. This section delves into relevant literature that has

advanced knowledge in this area, focusing on studies that employ innovative methodologies to model

emotional qualities using data from human subjects. Notably, while significant progress has been made

in understanding and predicting emotions in various contexts, there is a distinct gap in the application of

these models to appearance-constrained robots. These robots present unique challenges for emotion

prediction modeling because of their inherent restrictions in expressive qualities. By exploring pioneering

studies, we present a theoretical foundation for addressing the complexities of emotion prediction in this

specific and relatively unexplored domain.

Firstly, we explore the work by Jack et al. [44], which challenges the universality of facial expressions of

emotion through a bottom-up modeling approach. This study highlights the cultural nuances in emotional

perception and provides a robust framework for understanding how different facial movements are

interpreted across cultures.

Next, we examine the research by Dang et al. [27], which addresses the inherent variability and

uncertainty in continuously predicting emotional states. By incorporating inter-rater variability into Gaussian

Mixture Regression models, this study offers a novel perspective on the dynamic nature of emotion

prediction and underscores the importance of accounting for uncertainty in emotion modeling.

2.4.1. Bottom-Up Modeling of Emotional Representations
The study by Jack et al. [44] challenges the universality of facial expressions of emotion through an

innovative bottom-up modeling approach. This approach is highly relevant to our thesis as it provides a

robust method for capturing the nuances of emotional expression across different cultures, aligning with

our goal of understanding how various parameters influence perceived emotions in robots.
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The authors used a computer graphics platform to reconstruct mental representations of six basic

emotions (happiness, surprise, fear, disgust, anger, and sadness) by analyzing how individuals from

Western and Eastern cultures categorized thousands of facial animations. This method involved using

generative grammars to randomly generate all possible three-dimensional facial movements, which

were then categorized by observers according to the emotions they perceived. The categorization

process captured the subsets of facial movements that correlated with the subjective, culture-specific

representations of the six basic emotions in individual observers.

The relevance of this approach lies in its ability to model emotional expressions from the ground

up, based on individual and cultural perceptions. By leveraging a similar bottom-up methodology, it

may be possible to investigate how specific behavioral parameters may influence perceived emotional

qualities. Just as the authors of this study used random facial movements to capture cultural nuances

in emotion perception, a study can manipulate various modal behavior variations to explore how its

emotional qualities are interpreted by human observers.

One of the key aspects of this research that is particularly relevant is the use of a generative grammar

framework to explore the entire space of possible facial expressions. This comprehensive approach

allowed them to identify specific facial movements that were consistently associated with particular

emotions within each cultural context. This systematic variation of behaviors to capture a wide range

of possible emotional expressions ensures that findings are grounded in a thorough exploration of the

behavioral parameter space. Furthermore, by using the aggregated individual ratings from a sample of

human subjects, similar to how the authors aggregated individual facial movement categorizations, a

predictive model may be constructed that reflects the collective perception of emotional qualities.

2.4.2. Modeling Uncertainty of Emotion Predictions
Dang et al. [27] address a crucial aspect of emotion prediction systems: the variability and uncertainty

inherent in predicting emotional states. Unlike traditional systems that assume constant prediction

certainty, this study introduces a novel paradigm to estimate prediction uncertainty using Gaussian

Mixture Regression (GMR). This approach leverages inter-rater variability as an indicator of uncertainty,

providing a more nuanced understanding of emotional expression over time.

In their study, the authors used the RECOLA database [70], which contains multimodal recordings of

spontaneous emotional interactions. Their work is focused on continuous emotion prediction, aiming to

understand how emotions fluctuate during interactions. They identified a strong correlation between inter-

rater variability (i.e., differences in how different raters perceive and annotate emotions) and prediction

uncertainty. By integrating this variability into their GMR model, the researchers were able to more

accurately reflect the natural fluctuations in emotional perception. This means that instead of treating

all predictions with equal confidence, their model adjusts its certainty based on the observed variability

among raters.

Key aspects of their methodology that are particularly relevant to this study include the use of proba-

bilistic models, specifically Gaussian Mixture Models, to capture variability and uncertainty in emotional

data. The emphasis on considering inter-rater variability as a measure of uncertainty highlights the role

of variability in improving the accuracy and robustness of predictive models. While their study focuses

on continuous emotion prediction over time, utilizing the RECOLA database’s recordings of emotional

interactions, the approach of integrating variability and uncertainty into prediction models is broadly

applicable.

Although Dang et al. focused on the dynamic aspect of emotion prediction and the variability over time,

their methodology and findings provide a foundational understanding that is relevant to static emotion

prediction as well. Their emphasis on probabilistic modeling and the inclusion of uncertainty measures

offer valuable insights for improving the accuracy and reliability of emotion prediction systems. This

relevance underscores the potential benefits of integrating similar concepts into different contexts of

emotion prediction research, such as the static emotion prediction of robotic behaviors explored in this

thesis.
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Method

This chapter outlines the methodology used in this study to investigate how variations in a robot’s motion,

light, and sound parameters influence perceived emotional qualities. The primary goal of this research is

to develop predictive models that can accurately correlate these behavioral parameters with emotional

responses, utilizing a bottom-up approach. The study investigates whether changes in motion, light,

and sound can significantly alter the perceived emotions conveyed by a non-humanoid, faceless robot.

By systematically manipulating and analyzing these parameters, we aim to uncover the underlying

relationships that drive emotional perception in human-robot interactions.

To address the research question, we designed an experimental framework that includes details

on the robot used, the development of base behaviors for the robot, the measurement of emotional

responses, and the training of machine learning models for prediction. The methodology is reported to

ensure the clarity, replicability, and validity of our findings, providing a solid foundation for future research

and applications in emotionally expressive robots.

3.1. Materials
This section describes the materials used in the study, focusing primarily on the robot used and how it

was programmed. This section details the robot’s physical characteristics, capabilities, and the rationale

for its selection, emphasizing how its design supports the study’s objectives.

3.1.1. Robot and Programming
The robot used in this study is the mBot, an educational robot developed by Makeblock, designed to

introduce children to the basics of robotics, including mechanical and electronic components, and block-

based programming. The mBot kit comprises an mCore main control board (based on Arduino Uno), an

ultrasonic sensor, a line-follower sensor, two TT geared motors, an infrared remote controller, and an

LED board. The mCore board integrates various sensors (buzzer, light sensor, RGB LED lights, infrared

transmitter and receiver), four RJ25 ports, and a USB Type-B port. It supports programming in Arduino C

or via the block-based API in mBlock 5, making it ideal for educational purposes.

The mBot in its standard configuration, as illustrated in Figure 3.1a, typically features an ultrasound

sensor mounted on its front. This configuration produces a pareidolia effect due to the sensor’s resem-

blance to eyes and the semicircular perforation on the frame mimicking a smile. The taxonomy of robotic

appearance in Section 2.2 suggest that the mBot, in its standard configuration, cannot be considered as

an appearance-constrained robot. However, various build configurations for the mBot, as depicted in

Figure 3.1, offer different levels of appearance constraints. These configurations vary depending on the

components attached to the robot’s frame.

To ensure that the mBot can be considered as an appearance-constrained robot, specific modifications

were implemented. Since the face-like pareidolia primarily stems from the ultrasound sensor and the front

perforation, removing or altering these elements can significantly change its appearance. In the case

of this study, the robot was not required to avoid obstacles, allowing for the removal of the ultrasound

sensor. Additionally, the front perforation was obscured with white duct tape, which further aligned the

robot with the concept of an appearance-constrained design.

Furthermore, since light serves as one of the expressive modalities for the mBot in this study, some

necessary adjustments were made to the mCore control board. This was necessary because when the

15
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(a) Variant 1 (b) Variant 2 (c) Variant 3 (d) Variant 4

Figure 3.1: Different build configuration for the mBot

mCore is powered on, a red LED light located at the center of the board illuminates and remains active as

long as the board is in operation. Moreover, the mCore has a Bluetooth 4.0 dongle that emits intermittent

blue flashes to indicate that the control board is not connected to any device via Bluetooth. To ensure

that these lights do not introduce biases or affect the interpretation of the light modality generated by the

primary RGB LED lights on the control board, the sections of the plastic cover where these lights are

located on the mCore control board were concealed with white duct tape.

3.2. Base Behaviors
As outlined in Section 1.2, this study adopts a bottom-up approach to identify whether features in each of

the available modalities on the mBot (i.e., motion, light, and sound) can have a significant effect on affect

attribution. To do this, three base behaviors for each modality were developed to showcase how different

features are expressed in the robot. The selection of these features was guided by comprehensive

literature review, as detailed in Tables 2.1, 2.2, and 2.3.

The designed behaviors exhibit a quasi-periodic nature, including input parameters that introduce

stochastic patterns in the behaviors to create a natural appearance. The base behavior for motion is

named “wander,” metaphorically representing the robot’s action during this behavior. Similarly, the basic

behaviors for light and sound are called “blink” and “beep,” respectively. The following subsections will

provide a detailed discussion on the design and rationale behind each of these fundamental behaviors,

offering insights into their implementation.

3.2.1. Wander
The wander base behavior is a programmed behavior for the robot that allows it to move around in a

seemingly random or exploratory manner. The wander behavior is structured into cycles, each consisting

of a forward-moving segment and a turning segment. The cycle is repeated for the duration of the

behavior.

Input Parameters

This behavior is influenced by several input parameters that define how the robot will move, how long it

will move in a certain way, and whether it will stay within the bounds of a predefined area:

Table 3.1: Wander input parameters

Parameter Description Valid Range

duration Total duration (in seconds) for which the wander behavior

runs.

[0,∞)

stayInBounds Boolean flag to keep the robot within an enclosed area

with black lines.

{True, False}

wanderSpeed Base speed of the robot while wandering (in % of motor

power).

[25, 100]

wanderSlope Change in speed over the forward-moving segment. [−5, 5]

wanderRoundness Controls how rounded or sharp the turns are. [0, 1]

wanderCycleRate Frequency of switching between moving forward and turn-

ing (in cycles per second, or Hz).

(0,∞)

Continued on the next page
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Table 3.1: Continued from previous page

Parameter Description Valid Range

wanderCycleStandard-
Deviation

Standard deviation of the variability in cycle duration. [0,∞)

wanderSpeedStandard-
Deviation

Standard deviation of the variability in wander speed. [0,∞)

wanderPhase Delay or phase shift before starting the wander behavior

(in seconds).

[0,∞)

Behavior Execution

As mentioned before, the wander base behavior combines structured cyclical movements with dynamic

adjustments to account for input variability. This results in a robot that moves in an exploratory and

somewhat unpredictable path, which matches the metaphorical concept of a wandering robot.

To visualize the execution of the wander base behavior, the logic flow diagram on Figure 3.2 is

presented. This diagram focuses on outlining the decision-making process involved in the wander base

behavior, such as how to react to environmental boundaries, when to move forward or turn, and how

to adapt the behavior over time. A detailed description of the control variables, the logic flow, and the

complete code of the wander base behavior can be found in Appendix Sections F.1 and A.1 respectively.
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Figure 3.2: Logic flow diagram of the wander base behavior

3.2.2. Blink
Similar to the wander base behavior, the blink base behavior is a programmed behavior that allows the

robot to generate repetitive blinking light patterns with various parameters controlling light intensity, timing,

and randomness. It can create a wide range of blink patterns based on the input parameters, and is also

structured into cycles consisting of a lights-on segment and lights-off segment.

Input Parameters

The blink base behavior is influenced by several input parameters that define how the lighting patterns will

look. It can also be noted that most of these input parameters are analogous to the ones of the wander

base behavior. This was an intentional design decision that was made to simplify the execution of the

blink base behavior, and to keep the code as consistent as possible.



18 Chapter 3. Method

Table 3.2: Blink input parameters

Parameter Description Valid Range

duration Total duration (in seconds) for which the blink behavior

runs.

[0,∞)

blinkTemperature Target temperature of the lights during the blink behavior,

controlling the color.

[0, 1]

blinkSlope Determines how the brightness of the lights changes over

time.

[−5, 5]

blinkLightsOnToOff-
Ratio

Ratio of lights-on time to lights-off time in each cycle. [0, 1]

blinkCycleRate Rate at which the blink cycles occur (in Hz). [0,∞)

blinkCycleStandard-
Deviation

Introduces random variation to the cycle duration. [0,∞)

blinkTemperature-
StandardDeviation

Introduces random variation to the target temperature. [0,∞)

blinkPhase Allows delaying the start of the behavior (in seconds). [0,∞)

Behavior Execution

Similar to the wander base behavior, the blink base behavior consists of an alternating pattern of lights

being on and off, controlled by the lights-on-to-off ratio and cycle rate parameters. The brightness during

the lights-on segments can vary based on the slope parameter. Randomness can be introduced to add

unpredictability, and the behavior can adapt over multiple cycles.

To visualize the logic flow of the blink base behavior, the logic flow diagram on Figure 3.3 is presented.

This diagram focuses on outlining the decision-making process involved in the blink base behavior, such

as how to alternate between turning the LED lights on and off while adjusting brightness, temperature, and

cycle durations based on input parameters and random variations. A detailed description of the control

variables, the logic flow, and the complete code of the blink base behavior can be found in Appendix

Sections F.2 and A.2 respectively.
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Figure 3.3: Logic flow diagram of the blink base behavior

3.2.3. Beep
Finally, to generate a base behavior based on the sound modality, the metaphoric concepts associated

to NLUs were used to design the beep base behavior. This programmed behavior allows the robot to
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generate a repetitive beep sound with various parameters controlling pitch, timing, and randomness.

Similar to the wander and blink base behaviors, the beep base behavior is also structured into cycles

consisting of a sound segment and a silence segment. The key difference between these base behaviors

is that the beep base behavior has the added capacity to either play a random sound or stay silent during

the silence segment.

Input Parameters

The beep base behavior takes several input parameters that define how the beeping patterns will sound

like. All of these input parameters are analogous to those of the blink base behavior, with the exception

of the beepRandomSoundProbability. This parameter was added to enable the robot to play a random
semitone of the beepPitch given the probability beepRandomSoundProbability.

Table 3.3: Beep input parameters

Parameter Description Valid Range

duration Total duration (in seconds) for which the beep behavior

runs.

[0,∞)

beepPitch Base pitch (frequency) of the beep sound in Hz. [80, 3000]

beepSlope Determines how the pitch of the beep sound changes over

time.

[−5, 5]

beepSoundToSilence-
Ratio

Ratio of the duration of sound to silence in each cycle. [0, 1]

beepCycleRate Rate at which the beep cycles occur (in Hz). [0,∞)

beepCycleStandard-
Deviation

Introduces random variation to the cycle duration. [0,∞)

beepPitchStandard-
Deviation

Introduces random variation to the pitch. [0,∞)

beepRandomSound-
Probability

Probability of playing a random note during the silence

duration.

[0, 1]

beepPhase Allows delaying the start of the behavior (in seconds). [0,∞)

Behavior Execution

As mentioned before, the blink base behavior combines structured cyclical movements with dynamic

adjustments to account for input variability. This results in a robot that moves in an exploratory and

somewhat unpredictable path, which matches the metaphorical concept of a wandering robot.

To visualize the logic flow of the beep base behavior, the logic flow diagram on Figure 3.4 is presented.

This diagram focuses on outlining the steps involved in generating the beeping pattern based on various

conditions and parameters. Each step is described in sequence, indicating the decision points and actions

taken during the execution of the behavior. A detailed description of the control variables, the logic

flow, and the complete code of the beep base behavior can be found in Appendix Sections F.3 and A.3

respectively.

3.3. Experimental Variables
In this section, we will introduce and discuss the selection of the controlled, independent, and dependent

variables. Additionally, we will detail the methodological considerations and steps taken to ensure the

robustness and reliability of the experimental design, including the sampling methods used and the

rationale behind the chosen parameters.

3.3.1. Controlled Variables
The controlled variables in this study are a subset of the input parameters of the base behaviors that were

set to a constant value to ensure consistency and isolate the effects of the independent variables.

Parameters like wanderCycleStandardDeviation are fixed to control the randomness of the base

behaviors, ensuring that the base behaviors appear natural. We also set the phase for all behaviors to
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Figure 3.4: Logic flow diagram of the beep base behavior

zero, and stayInBounds is set to true. A complete breakdown of the controlled variables and the values

they were set to is provided in Appendix Section F.4.

3.3.2. Independent Variables
In this thesis, the independent variables consist of selected input parameters that define the robot’s base

behaviors as explained in Section 3.2. After careful examination, nine parameters were identified as

having the most significant influence on the variability of these behaviors:

• Wander: wanderSpeed, wanderRoundness, wanderCycleRate

• Blink: blinkTemperature, blinkSlope, blinkCycleRate

• Beep: beepPitch, beepSlope, beepCycleRate

These parameters were identified through observational assessments as having the most significant

impact on the variability of the robot’s behaviors. The decision to limit the study to these nine parameters

was driven by a need to balance the comprehensiveness of behavioral variability with practical constraints

on sampling complexity. A larger set of parameters would increase the variability but also require a

greater number of samples, complicating the experimental design and data analysis.

Since we are looking to manipulate these independent variables, careful consideration must be given

to the selection of values for each variable in the experiment. For this, generating samples of these

variables that ensure each sample point is spaced to minimize correlation is crucial, as this would maintain

the independence among variables.

Moreover, each of these variables is bounded to maximize the variability of the base behaviors without

reaching extremes that could adversely affect the behaviors. By setting these bounds, we ensured that

the robot’s behaviors remained within a range that is both functional and perceivable by human observers.

The bounds were selected based on practical observations and constraints:

Table 3.4: Bounds of the independent variables and their motivation

Parameter Bounds Motivation

wanderSpeed [30%, 100%] Speeds below 30% could result in insufficient motor

power, causing the robot to barely move, which is un-

desirable for the wander behavior.

Continued on the next page
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Table 3.4: Continued from previous page

Parameter Bounds Motivation

beepPitch [100Hz, 1000Hz] Frequencies below 100 Hz were too deep for the robot

to produce, while frequencies above 1000 Hz were too

high-pitched and unpleasant for human listeners.

wanderRoundness,
blinkTemperature

[0, 1] These values are inherently between 0 and 1, as ex-

plained in Section 3.2.

blinkSlope,
beepSlope

{−1, 0, 1} Continuous values led to unexpected intonations or

changes in brightness, and values beyond this range

had similar disruptive effects.

wanderCycleRate,
blinkCycleRate,
beepCycleRate

[0.5 Hz, 6 Hz] Rates below 0.5 Hz resulted in periods longer than the

desired quasi-periodic effect (e.g., a period of 2 seconds

is too long for a 20-second video). Rates above 6 Hz

resulted in periods shorter than 0.16 seconds, making

the behavior too rapid to be perceived as quasi-periodic.

3.3.3. Sampling Method
The sampling of the independent variables was done using Sobol sequences [84]. This method helps

ensure that each sample point is spaced to minimize correlation, thereby maintaining the independence

among variables. This property is crucial when examining the impact of each independent variable without

overlap or undue influence from others.

More details about the implementation of the sampling method and additional proof of non-

mulitcollinearity of the independent variables can be found in Appendix Section F.5. The samples

were generated using the Quasi-Montecarlo sub-module of Python’s scipy library. The complete code
can be find in Appendix Section A.4.

3.3.4. Dependent Variables
The dependent variables were selected to measure the emotional qualities of the robot’s behaviors based

on the perception of a group of human observers. These variables measure emotional perception in three

distinct ways: the intensity of categorical emotions, the PAD dimensions, and an open-ended appraisal of

the robot’s emotional state.

Participants rated the intensity of happiness, sadness, anger, fear, surprise, and disgust as expressed

by the robot’s behavior. Additionally, participants could select another emotion and rate its intensity if

they perceived an emotion not covered by Ekman’s six basic categories. The intensity was measured

using a 5-point Likert scale: Very Low, Low, Average, High, and Very High, with an option to select N/A if

the emotion was not perceived at all. The selection of Ekman’s basic Emotions was motivated by past

work in the field of affective robotics (as described in Section 2.1.1).

Moreover, the participants rated the PAD dimensions using the SAM (Figure 2.3 [16]). The PAD model

is widely recognized for its effectiveness in capturing the core dimensions of emotional experience (see

Section 2.1.2). The SAM is particularly suitable for this study because it bypasses language barriers and

reduces the cognitive load on participants, making it easier for them to more accurately measure their

perception of the emotional qualities of the robot.

Since the emotional intensities are measured on Likert scales and the PAD dimensions are measured

using the SAM, we can treat all the dependent variables as interval variables. For the Likert scale data,

any N/A responses was treated as zero. This allows for more flexibility in the analysis of this thesis, which

ultimately centers on constructing a bottom-up model by manipulating the independent variables and

measuring participants’ emotional perceptions of the robot using these dependent variables.

Finally, the participants provided open-ended responses about their thoughts or analysis regarding the

causes of the robot’s emotional reactions in the video, especially how the situation might affect the robot’s

goals, desires, or overall well-being. Although this was measured in the survey, it is not included in the

scope of this thesis. While appraisals offer valuable qualitative insights into participants’ interpretations of

the robot’s behavior, the focus of this thesis is on quantitative analysis of emotional perception.



22 Chapter 3. Method

3.4. Experimental Setup
In this section, we describe the experimental setup designed to investigate how the features of the

modalities of light, sound, and motion can lead to the perception of emotions in a robot’s behavior. This

experiment involved human participants who observed the robot’s behaviors and provided feedback on

their emotional perceptions. We detail the sampling method, recording setup, data collection process,

and participant recruitment strategy.

3.4.1. Recording Setup
We recorded 512 videos, each corresponding to a unique sample of the independent variables. The

robot’s behaviors were observed and recorded from both a top view and a side view. The robot moved

freely within an area bounded by black lines. The videos were recorded in 1080p resolution at 60 frames

per second (fps), and each video was 20 seconds long. To ensure high-quality recordings, two tripods

were used to ensure that the cameras would stay still and to guarantee the consistency across videos.

Figure 3.5 shows a picture of the recording setup, and Figure 3.6 show screenshots from videos as seen

from the top and side views.

Figure 3.5: Video recording setup

(a) Side-view (b) Top-view

Figure 3.6: Screenshots from the videos

3.4.2. Data Collection
The data collection was conducted through an online survey using Qualtrics. The survey included

an opening statement that provided participants with important information about their rights, the task

description, and the expected duration of the survey, which was estimated to be 25 minutes based on a

pilot study. A copy of the survey is shown in Appendix B.

Following the opening statement, participants were directed to an informed consent form to ensure

they understood the information provided and agreed to participate. The informed consent form included

several yes/no questions, confirming that participants had read the opening statement, understood their

rights, and agreed to participate under the stated conditions.
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To ensure participant engagement and data quality, we included a commitment request in the survey.

This request asked participants to commit to spending enough time to provide thoughtful answers.

Research by Qualtrics indicates that commitment requests are more effective than attention check

questions for ensuring participant engagement [35].

Participants then answered two demographic questions (country of origin and age) and were presented

with an example block of questions to familiarize them with the survey format. This example block included

snippets of example robot behaviors and detailed explanations of the survey questions. The survey

questions were design to measure the perception of the participants on the emotional qualities of the

robot’s behavior (as described in Section 3.3.4).

The instructions in the survey were carefully written to ensure that the language was clear, and that

the emphasis lied on what emotional quality the robot seemed to express through its behavior. The main

goal was to avoid that the participants would be inclined to believe that the robot was actually feeling any

emotions. Instead, the participants were directed to share their interpretation of the emotional qualities of

the robot’s behavior.

Each participant rated a random subset of 10 videos out of the 512 recorded. Qualtrics ensured that

each video was rated uniformly across participants. This randomization process helped in gathering a

representative set of ratings for each video.

3.4.3. Participant Recruitment
Participants were recruited through Prolific, an online platform known for its high-quality participant pool

and transparent compensation practices. Initially, Amazon MTurk was considered, but Prolific was chosen

due to better customer service and higher data quality. The recruitment goal was 312 participants,

calculated to ensure at least six ratings per video. Each participant rated 10 videos, resulting in sufficient

data for each video.

To ensure data quality and to limit the demographics of the study to a Western focus, some screening

filters were applied. As such, the participants had to be 18 years or older. Additionally, they had to have

at least a 98% approval rate on Prolific, with a minimum of 100 completed tasks. Finally, participants

were also required to be fluent in English, further supported by residence in a country where English

is either the official language or has a very high rate of fluency: Ireland, Australia, Canada, Denmark,

Finland, the Netherlands, New Zealand, Norway, Singapore, Sweden, the UK, or the US. Participants

received £3.75 GBP for their participation, based on Prolific’s suggested hourly rate of £9.00 GBP and

the median completion time of 25 minutes.

3.4.4. Ethics Statement
This study was conducted with the approval of the Human Research Ethics Committee (HREC) of the TU

Delft. The letter of approval can be found in Appendix C. Prior to data collection, a comprehensive risk

analysis and a data management plan were developed to ensure the ethical handling and protection of

participant data. These documents detail the measures taken to mitigate potential risks and ensure data

integrity, confidentiality, and compliance with relevant ethical standards. The full risk analysis and data

management plan are included in Appendices D and E respectively.

3.5. Analysis
To effectively address the research questions outlined in Section 1.2.1, a clear specification of the analysis

methodology is necessary. This section details the statistical methods used for statistical analysis,

hypothesis testing, and modeling. The code used for the analysis can be found in Section A.5.

3.5.1. Hypotheses
In this subsection, we formulate specific hypotheses to help us answer the research questions outlined in

Section 1.2.1:

RQ1: How do variations in motion parameters (speed, roundness, cycle rate) influence the

perceived emotional qualities of the robot’s behavior?

RQ2: How do variations in light parameters (light temperature, change in brightness, tempo)

influence the perceived emotional qualities of the robot’s behavior?

RQ3: How do variations in sound parameters (pitch, intonation, tempo) influence the perceived

emotional qualities of the robot’s behavior?
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RQ4: Can regression models, trained with features derived from the input parameters of the

robot’s modal behaviors, effectively predict the perceived emotional qualities of those

behaviors?

To do this, we define hypotheses that can test the relationships between the parameters of the robot’s

base behavior and the participants’ emotional perception. Each hypothesis is directional and tied directly

to the independent and dependent variables. Since we are looking to test for directional associations,

we can formulate each hypothesis in statistical terms as null and alternative hypotheses. This approach

ensures that the study’s outcomes can directly inform the effectiveness and impact of specific robotic

behaviors on perceived emotions.

The definition of these hypotheses is intentionally broad to provide a high-level overview of the

questions we aim to address. To effectively test these hypotheses, we have defined more detailed micro-

hypotheses, which are outlined in Appendix Section F.6. The results of testing these micro-hypotheses

will inform and support our conclusions regarding the broader, high-level hypotheses.

Table 3.6: High-level hypotheses

ID Hypothesis

H1 Variations in motion, parameterized by speed, roundness, and cycle rate, significantly

influence the perception of the emotional qualities of the robot’s behavior, measured by the

intensities of categorical emotions and PAD dimensions.

H2 Variations in light, parameterized by light temperature, change in brightness, and tempo,

significantly influence the perception of the emotional qualities of the robot’s behavior,

measured by the intensities of categorical emotions and PAD dimensions.

H3 Variations in sound, parameterized by pitch, intonation, and tempo, significantly influence

the perception of the emotional qualities of the robot’s behavior, measured by the intensities

of categorical emotions and PAD dimensions.

H4 Regression models can effectively predict the perceived emotional qualities, represented by

the intensities of categorical emotions and PAD dimensions, using features derived from the

input parameters of the robot’s modal behaviors.

3.5.2. Data Preparation
To ensure the integrity and quality of the dataset, a comprehensive data cleaning and preprocessing

phase was necessary. This involved identifying missing values, and detecting and removing outliers

using the interquartile range (IQR) method. This was done because outliers can significantly skew results

and affect the performance of statistical models.

As was mentioned earlier, we treated all dependent variables as interval data. This means that the

values of the dependent variables that were measured in Likert scales were encoded using numeric

values from 1 to 5. Since the participants also had the option to select “N/A,” these values were encoded

as zero. This was considered a valid imputation method, because the instruction for the participant was

to select N/A if they did not see a specific emotion in that video. This practically means that the intensity

of said emotion was equivalent to zero.

3.5.3. Noise Reduction
One of the most significant challenges in the analysis was the inherent noisiness of the dependent

variables. Given that the dependent variables measure the perceived emotional qualities of an inanimate

object, it is not a surprise that these variables are noisy. This noise essentially encodes the variability in

personal opinions and subjectivity inherent to the perception of emotions.

To address this, we decided to group the participants’ ratings by video, and calculate the mean for

each dependent variable across all 512 videos. Aggregating these ratings helped reduce variability and

highlight consistent patterns in the data. This approach aimed to simplify the dependent variables and

mitigate the impact of noise, leading to potentially more accurate predictions.
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Although this step reduced the number of data points to 512 (since we only have 512 videos), it was

done to ensure a clearer signal for the models to learn from. Aggregating the data in this manner was

done with the hope of revealing the underlying trends and relationships between the robot’s behavioral

parameters and the perceived emotional qualities, enhancing the robustness of the analysis.

3.5.4. Model Selection
In order to construct a predictive model of the emotional qualities based on the robot’s behavioral

parameters, we selected two types of regression models. The selection of these models was guided

by their ability to capture different types of relationships within the data, ranging from simple linear

associations to complex non-linear interactions.

Linear regression was chosen as due to its simplicity and interpretability. It assumes a linear relationship

between the independent and dependent variables, making it a straightforward approach to understand

the direct effects of each parameter. Linear regression provides clear insights into how each independent

variable contributes to the prediction of the dependent variables, offering a transparent model that can be

easily interpreted and communicated. However, while the model is simple and interpretable, it may not

capture complex non-linear relationships effectively.

The random forest regressor was selected for its ability to handle non-linear relationships and inter-

actions between variables. As an ensemble learning method, random forests builds multiple decision

trees and merges them to improve prediction accuracy and control overfitting. This model is particularly

robust to noise and outliers, making it suitable for our dataset which may contain complex patterns that

are not easily captured by linear models. Additionally, random forests can provide insights into variable

importance, helping to identify which features are most influential in predicting the emotional qualities.

3.5.5. Feature Engineering
To mitigate the risk that the models would not be able to accurately predict the emotional qualities of

the robot’s modal behaviors based on the wander, blink, and beep parameters alone, we considered

extensive feature engineering. These features were designed to enhance the models’ ability to capture

non-linear relationships and interactions between variables. The training dataset that includes these

features is later referred to as X.

Firstly, we derived interaction terms between the nine input parameters of the three modal base

behaviors. These interaction terms, calculated as the product of each input parameter with every other

input parameter (excluding itself), were designed to capture more complex interactions between the input

parameters. The training dataset that includes these features is later referred to as X_int.

Subsequently, we used a Gaussian Mixture Model (GMM) on the independent variables to calculate

cluster membership probabilities to encode the underlying structures and patterns in the data. This

approach is inspired by studies that utilize unsupervised learning techniques for feature engineering in

training machine learning models [27, 93, 99]. By incorporating these cluster membership probabilities

as features, we want to investigate if it can enhance the predictive accuracy of the regression models.

The optimal number of clusters was determined by minimizing the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) over a range of 2 to 10 clusters. As can be seen in Figure 3.7, the

optimal number of clusters is n = 6. The training dataset that includes these features is later referred to
as X_gmm.
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Figure 3.7: AIC and BIC of the GMM over a range of 2 to 10 clusters
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Finally, we included interaction terms between the original independent variables and the new GMM

cluster membership probabilities. By considering these interactions, we aimed to capture even more

complex patterns in the data, ultimately improving the models’ ability to generalize and make accurate

predictions. The training dataset that includes these features is later referred to as X_gmm_int.

3.5.6. Training Approach
For the linear regression model, we initially planned to use forward selection as the stepwise regression

method to identify the most relevant independent variables. Forward selection is a method that starts

with no variables in the model, adds variables one by one based on a chosen criterion (in our case, the

p-values and F -statistics of the univariate linear regression tests), and stops when no additional variables
significantly improve the model. This process ensures that the linear model is both parsimonious and

effective, capturing the essential relationships between the independent variables and the dependent

variables without including unnecessary predictors.

However, in the course of our analysis, we opted for backward selection instead of forward selection,

because the former proved to be more efficient in our case, converging much faster than the latter. Unlike

forward selection, which starts with an empty model and adds variables, backward selection begins

with all variables in the model and removes them one by one based on the p-values and the chosen
significance level. This approach also aims to construct a parsimonious model while ensuring that only

significant predictors remain.

To ensure robust evaluation of the linear regression models, we used k-fold cross-validation. This
technique involves dividing the dataset into k subsets (folds) and training the model k times, each time
using a different subset as the validation set and the remaining data as the training set. This process

provides a comprehensive assessment of the model’s performance across different splits of the data,

mitigating the risk of overfitting to a single train-test split. The number of folds was set to k = 5 for all
regression models.

Since random forests inherently perform feature selection through the construction of multiple decision

trees, stepwise regression is not necessary for these models. Instead, we conducted hyperparameter

tuning to optimize the performance of the random forest regressors. Table 3.7 provides a summary and

motivation of the selected hyperparameter tuning grid. By exploring these different hyperparameters, the

hyperparameter tuning grid is designed to find the best combination of parameters that balances model

complexity and generalization, thereby helping to train models that do not overfit the data.

Table 3.7: Hyperparameter tuning grid of the random forest regressors

Hyperparameter Chosen Values Motivation

Number of trees in the forest 100, 200, 500 trees Ensures the model’s robustness by

averaging predictions over many

trees.

Maximum depth of each tree 10 to 30 or unlimited Controls the complexity of the trees

and helps prevent overfitting by not

allowing trees to grow too deep.

Criteria for splitting nodes 2, 5, 10, 20 samples Affects how sensitive the model is to

noise and variability in the data.

Minimum number of samples re-

quired to be at a leaf node

1, 2, 4, 10 samples Helps avoid overfitting by ensuring

that each leaf node has a sufficient

number of samples.

Strategy for selecting the number

of features to consider when look-

ing for the best split

All features, square root

of the number of features,

logarithm of the total num-

ber of features

Helps to prevent any single feature

from having too much influence on

the model and introduces random-

ness to make the model more ro-

bust.

We also applied k-fold cross-validation for the random forest models, following the same procedure
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as with the linear regression models. This technique ensures a comprehensive evaluation of the model’s

performance and mitigates the risk of overfitting.

Finally, since we have four training datasets as specified in Section 3.5.5 (X, X_int, X_gmm, and
X_gmm_int), we train each linear and random forest model using these four datasets for each of the nine

dependent variables. This means that in the end we will have 36 linear models and 36 random forest

models.

3.5.7. Model Evaluation
To be able to provide answers for the hypotheses of RQ4 specified in Section 3.5.1, a clear approach for

model evaluation is necessary. We evaluate the performance of our models using the MSE and the R2

metrics [31]. MSE measures the average squared difference between observed and predicted values,

providing an indication of the model’s accuracy. A lower MSE indicates better model performance. R2

indicates the proportion of variance in the dependent variable explained by the independent variables. A

higher R2 value indicates a better fit of the model.

As mentioned above, we use k-fold cross-validation to evaluate model performance. Specifically, we
look at the average MSE and R2 across k-folds to get an approximation of the average performance of
the model. Additionally, we select the best model based on the model from those k-folds which minimizes
the MSE in the training dataset of all k-splits. This approach ensures that we choose the model with the
best performance while mitigating the risk of overfitting to a single train-test split.

Finally, by analyzing both train and test performance, we assess whether the models are overfitting or

underfitting the data. Overfitting occurs when a model performs well on the training data but poorly on

the test data, indicating that it has learned noise rather than the underlying pattern. Underfitting, on the

other hand, occurs when a model performs poorly on both training and test data, indicating that it has not

learned the underlying patterns adequately.

3.5.8. Statistical Testing
To test the micro-hypotheses of H1, H2, and H3, a method for correlation analysis must be defined.

Since all dependent variables can be considered as interval variables (as explained in Section 3.3), we

could consider using Pearson’s correlation coefficient. However, Pearson correlation assumes that the

variables are normally distributed and is sensitive to outliers. If this assumption is not met, the risk of

inflating Type I error rates and reducing power increases [13].

Because we cannot be certain that this assumption is met, the Spearman’s rank correlation coefficient

with associated p-value is considered more suitable for testing these hypotheses. Spearman’s correlation
test is a non-parametric test and does not assume any specific distribution of the variables. It is robust to

outliers and can be used with ordinal or ranked data. It evaluates if there is a (directional) monotonic

relationship between independent variables and dependent variables.

Since we are executing multiple statistical tests, we apply the Bonferroni-correction to the p-values
[79]. This is done to apply a correction to prevent inflating the family-wise error rate. This correction helps

to mitigate the increased risk of Type I errors (false positives) that arises when multiple statistical tests

are conducted simultaneously.

To test the micro-hypotheses of H4, we use the paired t-test because it is suitable for comparing
the mean performance metrics between an optimized regression model with a baseline model. In our

study, each performance metric (MSE and R2) is obtained through k-fold cross-validation, generating
multiple values for each metric across different folds. The paired t-test is designed to compare these
paired observations, making it ideal for determining if the mean performance of our optimized models

significantly deviates from the baseline models across the folds.

By using a directional (one-tailed) version of this test, we can specifically test if the MSE and the R2 of

an optimized model is significantly lower and higher (respectively) compared to a baseline model. The

baseline model is different for each micro-hypothesis, as we are looking to compare the performance of

a given optimized model compared to a more simple baseline model. To clarify what the baseline and

optimized models are in each micro-hypothesis, we present a summary in Table 4.3.
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4.1. Data Collection and Processing
After the data collection process was completed, a total of 325 ratings from participants were collected.

Each video was rated an average of 6.2 times. During the data cleaning process, we rejected 9 ratings

due to poor quality. These rejections were based on clear indications that participants did not put effort

into the survey. For instance, one participant repeatedly copied and pasted the same text in the appraisals

and rated the same value for every single question. After removing these poor-quality ratings, the dataset

was reduced to 3160 ratings (recalling that each participant rated 10 videos).

Next, we performed outlier detection on the dependent variables, which further reduced the dataset

from 3160 to 2775 rows. This step was essential to ensure the reliability and validity of the subsequent

analyses. Post-outlier detection, each video was rated an average of 5.59 times.

4.1.1. Exploratory Data Analysis
To understand the spread and distribution of the measurements of the robot’s emotional qualities, we

present the descriptive statistics of the dependent variables. Furthermore, additional plots generated

during the exploratory data analysis phase, which offer deeper insights into the distribution and variability

of these variables, can be found in Appendix Section Section G.1.

Table 4.1: Descriptive statistics of the dependent variables post-aggregation

Mean Std. Dev. Min. Q1 Median Q3 Max.

Joy Intensity 1.795 0.844 0.000 1.167 1.833 2.333 4.500

Sadness Intensity 1.435 0.777 0.000 0.833 1.333 2.000 4.000

Fear Intensity 1.335 0.705 0.000 0.800 1.250 1.808 3.500

Anger Intensity 0.888 0.581 0.000 0.429 0.833 1.200 3.333

Disgust Intensity 0.525 0.333 0.000 0.333 0.500 0.667 1.667

Surprise Intensity 1.412 0.685 0.000 0.857 1.333 1.833 3.667

Pleasure 4.525 1.229 1.600 3.667 4.600 5.333 8.200

Arousal 5.041 1.195 2.000 4.200 5.000 6.000 7.667

Dominance 4.385 1.035 1.667 3.667 4.333 5.000 7.800

4.2. Correlation Analysis
The statistically significant correlations according to Spearman’s rank-order correlation coefficient with

the Bonferroni correction applied is presented in Table 4.2. The correlation coefficients ρ are sorted by
magnitude from highest to lowest to indicate which dependent variables had the strongest correlation

with each of the independent variables.

29
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Table 4.2: Summary of significant correlations between the independent and dependent variables

Dependent Variable Independent Variable Spearman ρ Corrected p-value

Joy Intensity

Blink Temperature -0.152 0.000

Beep Cycle Rate 0.149 0.000

Beep Slope 0.14 0.000

Wander Speed 0.121 0.000

Wander Cycle Rate -0.079 0.003

Blink Cycle Rate 0.069 0.024

Sadness Intensity

Wander Speed -0.264 0.000

Beep Slope -0.174 0.000

Beep Cycle Rate -0.096 0.000

Fear Intensity

Beep Pitch 0.206 0.000

Wander Roundness -0.19 0.000

Wander Cycle Rate 0.188 0.000

Wander Speed 0.119 0.000

Anger Intensity

Wander Speed 0.176 0.000

Blink Temperature 0.156 0.000

Wander Roundness -0.104 0.000

Disgust Intensity Beep Pitch -0.079 0.002

Surprise Intensity

Wander Speed 0.297 0.000

Beep Pitch 0.232 0.000

Wander Roundness -0.224 0.000

Beep Slope 0.216 0.000

Blink Cycle Rate 0.068 0.030

Pleasure

Wander Speed 0.147 0.000

Wander Cycle Rate -0.14 0.000

Beep Slope 0.106 0.000

Blink Temperature -0.099 0.000

Beep Cycle Rate 0.092 0.000

Arousal

Wander Speed 0.556 0.000

Beep Pitch 0.202 0.000

Wander Roundness -0.171 0.000

Beep Slope 0.127 0.000

Beep Cycle Rate 0.111 0.000

Dominance

Wander Speed 0.257 0.000

Wander Cycle Rate -0.165 0.000

Beep Slope 0.101 0.000

Beep Cycle Rate 0.092 0.000

Blink Temperature 0.086 0.000

4.3. Regression Models
As outlined in Section 3.5.8, we used the paired t-test to compare the mean performance metrics between
and optimized regression model and a baseline. For each of the dependent variables, we will present a

table to report the results that yielded significant differences in performance scores between the optimized

and baseline models. The reported scores in these tables are the average performance metrics of the k
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models on unseen data (i.e., the testing data set). In Table 4.3, we present an overview of the definition

of the optimized model and its corresponding baseline model for reference.

Table 4.3: Baseline and optimized models of each micro-hypothesis of H4

ID Optimized Model Baseline Model

H4.1 Linear model trained with X Mean predictor of the dependent variable

H4.2 Linear model trained with X_int Linear model trained with X
H4.3 Linear model trained with X_gmm Linear model trained with X
H4.4 Linear model trained with X_gmm_int Linear model trained with X_gmm
H4.5 Random forest model trained with X Mean predictor of the dependent variable

H4.6 Random forest model trained with X_int Random forest model trained with X
H4.7 Random forest model trained with X_gmm Random forest model trained with X
H4.8 Random forest model trained with X_gmm_int Random forest model trained with X_gmm

To assess if the regression models are overfitting, we calculate the overfitting ratio, which ap-

proximates the extent of overfitting by calculating the ratio of the training error to the testing error

(OR = MSE train /MSE test). An OR ≈ 1 indicates similar performance on both training and testing data,
suggesting minimal overfitting. We will use t-tests to determine if the OR is significantly different from 1.

This analysis is crucial because an overfitting ratio equal to 1 implies that the model performs equally well

on both datasets, indicating no overfitting. Additionally, we will include scatterplots of the actual versus

predicted values in the training and testing datasets for all models in Appendix Section G.3, offering a

visual assessment method to further evaluate potential overfitting.

Finally, we will report the (at most ten) most important features of the the model that achieved the

lowest MSE score in the training dataset. For simplicity, we will refer to this model as the “best” model.

This could be any of the linear or random forest models trained in any of the four training datasets (X,
X_int, X_gmm or X_gmm_int). Depending on whether the best model is a linear or random forest model,

the importance of the features will be ranked by the absolute value of the estimated linear coefficients or

the Gini importance. This will be done to highlight the features that are most significant in terms of how

they contribute to predicting the dependent variables.

4.3.1. Joy Intensity Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for joy intensity are reported in Table 4.4.

Table 4.4: Performance scores between the optimized and baseline models for joy intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear

X
MSE 0.667 0.711 -2.955 0.021

R2 0.056 -0.005 2.996 0.020

X_gmm
MSE 0.645 0.667 -3.432 0.013

R2 0.087 0.056 3.339 0.014

Random Forest X
MSE 0.624 0.711 -6.879 0.001

R2 0.118 -0.005 6.367 0.002

These results indicate that both the linear and random forest model trained with the nine modal

parameters only (X) significantly outperformed a mean predictor of the perceived average joy intensity on
unseen data. Moreover, the linear model trained with X_gmm exhibited better performance than the one
trained with X. The highest predictive accuracy on unseen data was achieved by the random forest model

trained with X.
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However, the tests to determine if the OR of the joy regression models is significantly different from 1

reveal that only the linear models trained with the datasets X, X_int or X_gmm did not significantly overfit

the data:

Table 4.5: Results of the overfitting ratio tests for the regression models of joy intensity

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 0.654 0.924 -2.144 0.099

X_int 0.614 0.925 -1.797 0.147

X_gmm 0.628 0.946 -1.287 0.268

The ten most important features of the best joy intensity model (i.e., the model that achieved the

highest predictive accuracy on unseen data) are illustrated in Figure 4.1. As is visible, the most important

feature of this model was the blinkTemperature, which coincides with the results of the Spearman ρ
correlation analysis reported in Table 4.2.
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Figure 4.1: Most important features of the best regression model for joy intensity

4.3.2. Sadness Intensity Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for sadness intensity are reported in Table 4.6.

Table 4.6: Performance scores between the optimized and baseline models for sadness intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear

X
MSE 0.538 0.602 -5.662 0.002

R2 0.105 -0.006 4.841 0.004

X_gmm
MSE 0.464 0.538 -6.299 0.002

R2 0.229 0.105 6.771 0.001

Random Forest X
MSE 0.476 0.602 -6.13 0.002

R2 0.210 -0.006 5.813 0.002

Continued on the next page
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Table 4.6: Continued from previous page

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Random Forest X_gmm
MSE 0.463 0.476 -3.269 0.015

R2 0.231 0.210 3.493 0.013

Similar to the results reported in Table 4.4, these results indicate that both the linear and random

forest model trained with the nine modal parameters only (X) significantly outperformed a mean predictor
of the perceived average sadness intensity on unseen data. Moreover, both the linear and the random

forest model trained with X_gmm exhibited better performance than the one trained with X. The highest
predictive accuracy on unseen data was achieved by the random forest model trained with X_gmm.

However, the tests to determine if the OR of the sadness regression models also show that only the

linear models trained with any of the datasets did not significantly overfit the data:

Table 4.7: Results of the overfitting ratio tests for the regression models of sadness intensity

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 0.533 0.901 -1.383 0.239

X_int 0.508 0.976 -0.224 0.834

X_gmm 0.454 0.873 -1.395 0.236

X_gmm_int 0.387 0.872 -1.263 0.275

The ten most important features of the best sadness intensity model are illustrated in Figure 4.2. As is

visible, the most important feature of this model was the wanderSpeed, which coincides with the results of
the Spearman ρ correlation analysis reported in Table 4.2.
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Figure 4.2: Most important features of the best regression model for sadness intensity

4.3.3. Fear Intensity Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for fear intensity are reported in Table 4.8.
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Table 4.8: Performance scores between the optimized and baseline models for fear intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear

X
MSE 0.448 0.497 -3.151 0.017

R2 0.083 -0.012 3.459 0.013

X_gmm
MSE 0.438 0.448 -2.186 0.047

R2 0.104 0.083 2.209 0.046

Random Forest

X
MSE 0.447 0.497 -3.82 0.009

R2 0.087 -0.012 4.012 0.008

X_gmm
MSE 0.421 0.447 -7.566 0.001

R2 0.139 0.087 10.873 0.000

Exactly as in the sadness intensity models, these results indicate that both the linear and random

forest model trained with the nine modal parameters only (X) significantly outperformed a mean predictor
of the perceived average fear intensity on unseen data. Moreover, both the linear and the random forest

model trained with X_gmm exhibited better performance than the one trained with X. The highest predictive
accuracy on unseen data was achieved by the random forest model trained with X_gmm.

The tests to determine if the OR of the fear regression models also show that only the linear models

trained with any of the datasets did not significantly overfit the data:

Table 4.9: Results of the overfitting ratio tests for the regression models of fear intensity

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 0.432 0.907 -0.943 0.399

X_int 0.41 0.948 -0.542 0.617

X_gmm 0.415 0.96 -0.396 0.712

X_gmm_int 0.349 0.826 -2.035 0.112
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Figure 4.3: Most important features of the best regression model for fear intensity
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The ten most important features of the best fear intensity model are illustrated in Figure 4.3. As is

visible, the most important feature of this model was the wanderRoundness, which appears as the second
strongest Spearman ρ for fear intensity.

4.3.4. Anger Intensity Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for anger intensity are reported in Table 4.10.

Table 4.10: Performance scores between the optimized and baseline models for anger intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear X
MSE 0.318 0.337 -3.185 0.017

R2 0.055 -0.005 2.908 0.022

Random Forest

X
MSE 0.296 0.337 -7.768 0.001

R2 0.122 -0.005 5.533 0.003

X_gmm
MSE 0.288 0.296 -2.325 0.04

R2 0.144 0.122 2.456 0.035

These results indicate that both the linear and random forest model trained with the nine modal

parameters only (X) significantly outperformed a mean predictor of the perceived average anger intensity
on unseen data. Additionally, the random forest model trained with X_gmm exhibited better performance

than the one trained with X. The highest predictive accuracy on unseen data was also achieved by the
random forest model trained with X_gmm.

However, the tests to determine if the OR of the anger regression models show that only the linear

models trained with any of the datasets did not significantly overfit the data:

Table 4.11: Results of the overfitting ratio tests for the regression models of anger intensity

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 0.307 0.928 -1.026 0.363

X_int 0.299 0.969 -0.342 0.749

X_gmm 0.3 0.97 -0.341 0.751

X_gmm_int 0.255 0.83 -2.032 0.112

The ten most important features of the best anger intensity model are illustrated in Figure 4.4. As is

visible, the most important feature of this model was the blinkTemperature, which also coincides with
the second strongest Spearman ρ for anger intensity.

4.3.5. Disgust Intensity Models
For disgust intensity, there were no models that significantly outperformed the mean predictor on unseen

data. The only model that achieved marginally significant performance metrics is reported in Table 4.12.

Table 4.12: Performance scores between the optimized and baseline models for disgust intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Random Forest X_gmm
MSE 0.109 0.110 -2.005 0.058

R2 0.003 -0.005 1.962 0.061

Since none of the models achieved significant results, it may be concluded that it is not possible to

accurately predict the perceived disgust intensity with any of the engineered features. For that reason,
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Figure 4.4: Most important features of the best regression model for anger intensity

we do not report which models did not significantly overfit the data, nor the most important features of the

disgust intensity model that achieved the highest predictive accuracy on unseen data.

4.3.6. Surprise Intensity Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for surprise intensity are reported in Table 4.13.

Table 4.13: Performance scores between the optimized and baseline models for surprise intensity

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear X
MSE 0.372 0.468 -3.443 0.013

R2 0.195 -0.01 3.356 0.014

Random Forest X
MSE 0.367 0.468 -5.012 0.004

R2 0.206 -0.010 5.036 0.004

These results indicate that both the linear and random forest model trained with the nine modal

parameters only (X) significantly outperformed a mean predictor of the perceived average surprise

intensity on unseen data. Additionally, training the linear or random forest models with any of the other

engineered features did not yield significantly better results. The highest predictive accuracy on unseen

data was therefore achieved by the random forest model trained with X.

However, the tests to determine if the OR of the surprise regression models is significantly different

from 1 reveal that only the linear models trained with the datasets X_int, X_gmm or X_gmm_int did not

significantly overfit the data:

Table 4.14: Results of the overfitting ratio tests for the regression models of surprise intensity

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X_int 0.349 0.968 -0.339 0.752

X_gmm 0.342 0.948 -0.574 0.597

X_gmm_int 0.303 0.875 -1.705 0.163
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The ten most important features of the best surprise intensity model are illustrated in Figure 4.5. As

is visible, the most important feature of this model was the wanderRoundness, which surprisingly only
coincides with the third strongest Spearman ρ for surprise intensity.
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Figure 4.5: Most important features of the best regression model for surprise intensity

4.3.7. Pleasure Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for pleasure are reported in Table 4.15.

Table 4.15: Performance scores between the optimized and baseline models for pleasure

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear

X_gmm
MSE 1.38 1.456 -2.219 0.045

R2 0.076 0.029 2.281 0.042

X_int
MSE 1.39 1.456 -3.113 0.018

R2 0.072 0.029 3.459 0.013

Random Forest

X
MSE 1.327 1.507 -4.614 0.005

R2 0.114 -0.006 4.451 0.006

X_int
MSE 1.308 1.327 -4.842 0.004

R2 0.127 0.114 4.184 0.007

These results indicate that only the random forest model trained with the nine modal parameters (X)
significantly outperformed a mean predictor of the perceived average pleasure on unseen data. However,

the linear model trained with X_gmm outperformed the mean predictor. Additionally, training both the linear

and random forest models with the nine modal parameters and their interaction terms X_int yielded

significantly better results. The highest predictive accuracy on unseen data was achieved by the random

forest model trained with X_int.

However, the tests to determine if the OR of the pleasure regression models show that only the linear

models trained with any of the datasets did not significantly overfit the data:
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Table 4.16: Results of the overfitting ratio tests for the regression models of pleasure

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 1.397 0.938 -1.031 0.361

X_int 1.322 0.924 -1.048 0.354

X_gmm 1.308 0.915 -1.157 0.312

X_gmm_int 1.137 0.837 -2.463 0.07

The ten most important features of the best pleasure model are illustrated in Figure 4.6. As is visible,

the most important feature of this model was the blinkTemperature, which coincides with the fourth

strongest Spearman ρ for pleasure.
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Figure 4.6: Most important features of the best regression model for pleasure

4.3.8. Arousal Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for arousal are reported in Table 4.17.

Table 4.17: Performance scores between the optimized and baseline models for arousal

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear

X
MSE 0.902 1.425 -4.321 0.006

R2 0.344 -0.018 4.263 0.007

X_gmm
MSE 0.785 0.902 -8.605 0.001

R2 0.429 0.344 6.873 0.001

Random Forest X
MSE 0.901 1.425 -4.481 0.005

R2 0.345 -0.018 4.462 0.006

These results indicate that both the linear and the random forest models trained with the nine modal

parameters (X) significantly outperformed a mean predictor of the perceived average arousal on unseen
data. Additionally, the linear model trained with the nine modal parameters and the six GMM cluster

membership probabilities (X_gmm) yielded the highest predictive accuracy on unseen data.

Additionally, the tests to determine if the OR of the arousal regression models show that this model

did not significantly overfit the data:
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Table 4.18: Results of the overfitting ratio tests for the regression models of arousal

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X_int 0.817 0.955 -0.386 0.719

X_gmm 0.736 0.863 -1.253 0.278

X_gmm_int 0.657 0.895 -0.869 0.434

Since the best model for arousal, is a linear model, instead of reporting the feature importance, we will

present the most significant coefficients in Table 4.19. As is visible, the most significant feature of this

model was the wanderSpeed, which coincides with the results of the strongest Spearman ρ correlation
analysis in Table 4.2.

Table 4.19: Most significant features of the best regression model for arousal

Feature Coefficient p-value

Wander Speed 0.652 0.000

Membership Probability of Cluster 4 0.503 0.000

Beep Slope -0.375 0.005

Beep Pitch 0.252 0.000

Wander Roundness -0.195 0.001

Membership Probability of Cluster 1 -0.165 0.001

Membership Probability of Cluster 3 -0.151 0.006

Membership Probability of Cluster 2 -0.044 0.000

4.3.9. Dominance Models
The significant results of the comparison of the performance scores between the baseline and optimized

regression models for dominance are reported in Table 4.20.

Table 4.20: Performance scores between the optimized and baseline models for dominance

Model Type Dataset Score Type Optimized Baseline t-statistic p-value

Linear X
MSE 0.998 1.069 -3.651 0.011

R2 0.058 -0.008 3.710 0.010

Random Forest X
MSE 0.960 1.069 -3.217 0.016

R2 0.088 -0.008 3.150 0.017

These results indicate that both the linear and the random forest models trained with the nine modal

parameters (X) significantly outperformed a mean predictor of the perceived average dominance on

unseen data. Additionally, training the linear or random forest models with any of the other engineered

features did not yield significantly better results. The highest predictive accuracy on unseen data was

therefore achieved by the random forest model trained with X.

However, the tests to determine if the OR of the dominance regression models show that only the

linear models trained with any of the datasets did not significantly overfit the data:
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Table 4.21: Results of the overfitting ratio tests for the regression models of dominance

Model Type Dataset Average Training MSE Average OR t-statistic p-value

Linear

X 0.948 0.906 -1.288 0.267

X_int 0.91 0.93 -1.043 0.356

X_gmm 0.899 0.919 -1.21 0.293

X_gmm_int 0.805 0.865 -2.761 0.051

The ten most important features of the best dominance model are illustrated in Figure 4.7. As is visible,

the most important feature of this model was the wanderSpeed, which coincides with the results of the
strongest Spearman ρ correlation analysis in Table 4.2.
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Figure 4.7: Most important features of the best regression model for dominance
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Discussion

The primary objective of this study was to explore the relationship between specific parameters within

the modalities of motion, light, and sound, and the emotional perceptions attributed to a non-humanoid,

faceless robot. A key aspect of this research was to determine whether it is possible to predict the

emotional qualities perceived in the robot’s behaviors based on variations in these parameters.

By manipulating factors such as speed, light intensity, and sound pitch across the robot’s three primary

behavior modalities (motion, light, and sound), we aimed to establish a quantitative link between these

input parameters and the emotional qualities they convey.

5.1. Research Questions
This study seeks to address the main research question (MRQ): Can variations in motion, light, and sound

parameters of the behaviors of a non-humanoid, faceless robot influence the perceived emotional qualities

of those behaviors? To comprehensively answer this MRQ, we formulated four specific sub-questions to

guide our investigation:

1. RQ1: How do variations in motion parameters (speed, roundness, cycle rate) influence the perceived

emotional qualities of the robot’s behavior?

2. RQ2: How do variations in light parameters (light temperature, change in brightness, tempo)

influence the perceived emotional qualities of the robot’s behavior?

3. RQ3: How do variations in sound parameters (pitch, intonation, tempo) influence the perceived

emotional qualities of the robot’s behavior?

4. RQ4: Can regression models, trained with features derived from the input parameters of the robot’s

modal behaviors, effectively predict the perceived emotional qualities of those behaviors?

To answer these sub-questions, we formulated hypotheses and conducted tests to gather evidence

to provide answers. In the following sections, we will critically discuss the findings in relation to each

research question and compare them with the work of others introduced in Chapter 2.

5.1.1. RQ1: Motion Parameters and Emotional Perception
The analysis of the correlations between motion parameters and perceived emotional qualities revealed

several significant relationships that align with theoretical predictions. Higher wander speeds are strongly

associated with increased arousal (ρ = 0.556, p ≈ 0), confirming that faster movements are perceived as
more arousing. Additionally, there are positive correlations between higher speeds and perceived surprise

(ρ = 0.297, p ≈ 0), dominance (ρ = 0.257, p ≈ 0), and pleasure (ρ = 0.147, p ≈ 0), suggesting that

faster speeds contribute to higher arousal, surprise, dominance, and positive pleasure. These findings

support the notion that high speed is perceived as more positive and arousing, consistent with theoretical

expectations.

Furthermore, rounded movement patterns are associated with positive pleasure, as indicated by

a weak but significant positive correlation with mean pleasure (ρ = 0.062, p = 0.093). The negative

correlation between wander roundness and arousal (ρ = −0.171, p ≈ 0) also aligns with the theory that
sharp and angular movements convey high arousal. Although the effect on pleasure is less pronounced,

the relationship between rounded movements and positive pleasure is evident.

The analysis also confirms that faster movements can be associated with joy, as evidenced by the

weak positive correlation between wander speed and joy intensity (ρ = 0.121, p ≈ 0). Additionally, higher

41
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speeds are linked with increased perceptions of anger (ρ = 0.176, p ≈ 0), supporting the idea that fast,
jerky movements can convey anger.

Lastly, the prediction that small and slow movements are attributed to sadness and fear is partially

supported. While there is a negative correlation between speed and sadness (ρ = −0.264, p ≈ 0),
indicating slower movements are associated with sadness, the correlation for fear is weakly positive

(ρ = 0.119, p ≈ 0), which does not strongly confirm this prediction.

5.1.2. RQ2: Light Parameters and Emotional Perception
The analysis of the correlations between light parameters and perceived emotional qualities also revealed

several significant relationships. The blink temperature shows a weak positive correlation with anger

intensity (ρ = 0.156, p ≈ 0), indicating that warmer colors might convey negative emotions such as anger.
Conversely, blink temperature is negatively correlated with joy intensity (ρ = −0.152, p ≈ 0) and pleasure
(ρ = −0.099, p ≈ 0), suggesting that warmer colors are associated with lower perceived joy and pleasure,
which aligns with the theory that warm colors convey negative pleasure. There is also a weak positive

correlation between blink temperature and dominance (ρ = 0.086, p ≈ 0), indicating that warmer colors
might be perceived as more dominant. However, the correlation between blink temperature and arousal

is not significant (ρ = 0.063,p=0.08), nor are the correlations with surprise, fear, sadness, and disgust.

For blink slope, no significant correlations were found with any of the emotional qualities, indicating

that changes in brightness do not significantly influence the perceived emotions in the context of this

study.

Blink cycle rate, however, shows a weak positive correlation with joy intensity (ρ = 0.069, p = 0.024)
and surprise intensity (ρ = 0.068, p = 0.03), suggesting that higher blinking frequency might slightly

increase the perceptions of joy and surprise. This partially confirms the theoretical prediction that there is

a positive correlation between arousal and blinking frequency, although the direct correlation with arousal

itself is not significant (ρ = 0.027, p = 1.0).

5.1.3. RQ3: Sound Parameters and Emotional Perception
The analysis of the correlations between sound parameters and perceived emotional also revealed

some interesting findings. The beep pitch shows a moderate positive correlation with surprise intensity

(ρ = 0.232, p ≈ 0) and fear intensity (ρ = 0.206, p ≈ 0), indicating that higher pitches are associated with
increased perceptions of surprise and fear. Additionally, there is a positive correlation between beep pitch

and arousal (ρ = 0.202, p ≈ 0), suggesting that higher pitches increase perceived arousal. Interestingly,
beep pitch is negatively correlated with disgust intensity (ρ = −0.079, p = 0.002), meaning higher pitches
might slightly reduce perceived disgust. Other correlations with beep pitch, including joy, dominance,

pleasure, sadness, and anger, were not significant.

The beep slope, which represents the intonation change over time, shows significant correlations with

several emotional qualities. There is a positive correlation between beep slope and surprise intensity

(ρ = 0.216, p ≈ 0), joy intensity (ρ = 0.140, p ≈ 0), arousal (ρ = 0.127, p ≈ 0), pleasure (ρ = 0.106, p ≈ 0),
and dominance (ρ = 0.101, p ≈ 0). These findings suggest that rising intonation is perceived as more
surprising, joyful, arousing, pleasurable, and dominant. Conversely, beep slope is negatively correlated

with sadness intensity (ρ = −0.174, p ≈ 0), supporting the theory that falling intonation is associated with
sadness. No significant correlations were found between beep slope and anger, fear, or disgust.

The beep cycle rate shows a significant positive correlation with joy intensity (ρ = 0.149, p ≈ 0)
and arousal (ρ = 0.111, p ≈ 0), indicating that faster beep cycles are perceived as more joyful and

arousing. Additionally, beep cycle rate is positively correlated with pleasure (ρ = 0.092, p ≈ 0) and
dominance (ρ = 0.092, p ≈ 0), suggesting that higher frequencies can increase perceptions of pleasure
and dominance. However, no significant correlation was found between beep cycle rate and surprise,

disgust, anger, or fear.

These results suggest that sounds are good at conveying certain negative emotions, such as fear and

sadness, as indicated by the correlations with the beep pitch and slope. However, the associations with

positive emotions, particularly through beep slope and cycle rate, suggest that sounds can also convey

positive emotions effectively.

5.1.4. RQ4: Predictive Modeling of Emotional Perception
To evaluate the potential of machine learning models in predicting emotional qualities based on the robot’s

behavioral parameters, we trained and tested linear regression models and random forest regressors.
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Additionally, we engineered additional features derived from these behavioral parameters such as

interaction terms and GMM clustering probabilities to investigate if this could potentially improve the

models’ predictive accuracy. Indeed, the hypotheses for RQ4 aims to compare the MSE and R2 between

the baseline and optimized models on unseen data to assess model generalizability and performance.

Categorical Emotions

The results for joy intensity indicate that both linear and random forest models trained with the nine modal

parameters (X) significantly outperformed a mean predictor on unseen data, suggesting that these these
parameters are somewhat effective predictors. Incorporating GMM cluster probabilities further improved

the linear model’s performance. The random forest model with X achieved the highest accuracy but had

a limited R2 of 0.118, indicating it explained little variance. Overfitting ratio analysis showed that only

the linear models trained with X, X_gmm_int, and X_gmm did not significantly overfit, suggesting better

generalization compared to the random forest model, which likely overfitted. Feature importance analysis

highlights the blink temperature, beep cycle rate, wander cycle rate, and wander speed as key predictors

of joy intensity, which align with the findings of the correlation analysis.

Additionally, the regression model results for sadness intensity show that both linear and random

forest models trained with the nine modal parameters (X) also significantly outperformed a mean predictor
on unseen data. The linear model trained with X_gmm further improved performance. The random forest

model with X_gmm achieved the best predictive accuracy with an MSE of 0.463, but the OR analysis

suggests this model might be overfitting. Feature importance analysis identified wander speed, beep

cycle rate, blink temperature, and wander roundness as key predictors. All of these features align with our

findings from the correlation analysis as well, which support the bottom-up approach and show how these

parameters influence perceived sadness intensity. Additionally, the cluster membership probabilities of

clusters 1, 3 and 5 fell within the ten most important features, which demonstrates the added value of

engineering the features using the GMM.

The results for fear intensity, similarly to the ones of sadness intensity, indicate that both linear and

random forest models trained with the nine modal parameters (X) significantly outperformed a mean

predictor on unseen data. Incorporating GMM cluster probabilities further enhanced the linear model’s

performance. The random forest model with X_gmm achieved the best predictive accuracy with an MSE of

0.421. However, the R2 values indicate that these models explain only a modest portion of the variance in

fear intensity, with the highestR2 being 0.139 for the random forest model, reflecting its limited explanatory

power. Furthermore, overfitting analysis revealed that while linear models did not significantly overfit,

the random forest model exhibited signs of overfitting. Feature importance analysis identified wander

roundness, beep pitch, wander cycle rate, and beep cycle rate as key predictors. Additionally, the cluster

membership probabilities of clusters 1, 3 and 5 also fell within the ten most important features.

Similarly to the other categorical emotion intensities, the regression results for anger intensity show that

both linear and random forest models trained with the nine modal parameters (X) significantly outperformed
a mean predictor on unseen data. The random forest model with X achieved the highest accuracy with
an MSE of 0.296 and an R2 of 0.122, while incorporating GMM cluster probabilities further improved

the performance to an MSE of 0.288 and R2 of 0.144. However, the R2 values reveal a limitation in

explaining the variance of anger intensity, suggesting that the models capture only part of the complexity.

Additionally, the overfitting ratio analysis indicate that the random forest model with X_gmm might overfit the
data. The feature importance analysis identified blink temperature, beep pitch, wander speed, and beep

cycle rate as key predictors, which closely aligns with our results of the Spearman correlation analysis.

The results for disgust intensity reveal a significant anomaly, as none of the models significantly

outperformed the mean predictor on unseen data. The only model that showed marginally significant

performance was the random forest trained with the X_gmm dataset, achieving an MSE of 0.109 and an

R2 of 0.003, but these results are still far from satisfactory. It is not surprising that disgust intensity was

poorly predicted, given that disgust was scarcely identified in the robot’s behavior, as it is not a typical

emotion for a non-humanoid, faceless robot to convey. The descriptive statistics underscore this, with a

mean disgust intensity of 0.525 and a high standard deviation of 0.333, indicating inconsistent perception

among participants. The poor performance of the models suggests that the engineered features were

insufficient to capture the nuances of disgust intensity. Consequently, it is concluded that predicting

perceived disgust intensity with the given features is not feasible, and therefore, we do not report on

overfitting for non-significant models or identify the most important features for the marginally significant

model.
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The results for surprise intensity, however, indicate that both linear and random forest models trained

with the nine modal parameters (X) significantly outperformed a mean predictor on unseen data, demon-
strating the predictive utility of these parameters. The linear model achieved an MSE of 0.372 and an

R2 of 0.195, while the random forest model slightly improved on this with an MSE of 0.367 and an R2

of 0.206. Despite these improvements, the R2 values suggest that a substantial portion of the variance

in surprise intensity remains unexplained, highlighting a limitation in the models’ explanatory power.

Overfitting analysis indicates that while the random forest model performed well, the linear models did not

significantly overfit. Feature importance analysis identified wander roundness, wander speed, beep pitch,

and beep slope as key predictors, which also closely aligns with the Spearman correlation analysis.

Emotional Dimensions

For the dimensional emotional qualities, the results were similar. The results for pleasure intensity indicate

modest improvements in predictive performance, with both linear models trained with X_gmm and X_int
showing significant improvements over their baselines. The random forest model with X_int achieved
the best accuracy, with an MSE of 1.308 and an R2 of 0.127, suggesting some explanatory power but

leaving much variance unexplained. The modest R2 values highlight a limitation in the models’ ability

to capture the full complexity of pleasure intensity. Overfitting analysis reveals that the linear models

did not significantly overfit, while the random forest models, despite better performance, may still exhibit

overfitting. Feature importance analysis for the best model identified blink temperature, wander speed,

and beep cycle rate, along with several interaction terms, as key predictors.

The results for arousal indicate that the linear model trained with X_gmm achieved the best performance
on unseen data, with an MSE of 0.785 and an R2 of 0.429, significantly outperforming the baseline mean

predictor. The most important of all predictors was the wander speed, with a high coefficient of 0.652.

This demonstrates that increasing speed will lead to stronger predicted values of arousal. Moreover, the

OR analysis confirms that this model does not significantly overfit, demonstrating good generalization.

Despite this, the relatively low R2 value indicates that a significant portion of the variance in arousal

remains unexplained, suggesting the need for additional features or further refinement to fully capture

arousal intensity’s complexity.

Finally, the results for dominance indicate that both linear and random forest models trained with the

nine modal parameters (X) significantly outperformed a mean predictor on unseen data. The random
forest model achieved an MSE of 0.96 and an R2 of 0.088, while the linear model had an MSE of 0.998

and an R2 of 0.058. Despite these improvements, the R2 values are relatively low, indicating that a

substantial portion of the variance in dominance remains unexplained. Overfitting analysis revealed that

the linear models did not significantly overfit, with OR values not significantly different from 1. Feature

importance analysis for the random forest model identified wander speed, beep cycle rate, and blink

temperature as the most influential predictors, with wander speed having the highest importance. These

findings suggest that while the models can predict dominance to some extent, their explanatory power is

limited.

Overall, the X_gmm or X datasets led to better results in the regression models of the categorical

intensities, while the X_int dataset performed better in predicting the dimensional qualities (PAD). This
indicates that feature engineering was useful, yet the models demonstrated the benefits of parsimony, as

none achieved better performance with the X_gmm_int dataset. A recommendation for future work could

be to focus on engineering features that capture data patterns more effectively to maximize performance

while minimizing overfitting.

5.2. Limitations
Our study has several limitations that need to be acknowledged. First, the final dataset included 3160

ratings, which, after outlier removal, was reduced to 2775 ratings. While this sample size can be considered

as sufficient for analysis, a larger sample size could provide even more robust results and enhance the

generalizability of the findings. Second, the study focused on a specific appearance-constrained robot,

and the findings may not generalize to other appearance-constrained robots. Although the behaviors and

emotional perceptions studied may have broader applicability, extensive research would be needed to

confirm this across different robotic designs and contexts.

Moreover, let us recall that emotional perception is inherently subjective, and individual differences in

emotional interpretation could significantly influence the results. Factors such as age, gender, cultural

background, and personal experiences can all affect how emotions are perceived, adding variability to the
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data that may not be fully captured in this study. For this reason, the aggregation of dependent variables

by video to reduce noise may have oversimplified the data, potentially obscuring subtle variations in

emotional perception. While this step aimed to enhance the robustness of our findings, it may have

inadvertently masked finer nuances in the emotional responses of participants.

The descriptive statistics of the aggregated dependent variables provide key insights into the limitations

of this study, particularly regarding the perception of emotional qualities conveyed by the robot’s behaviors.

The emotional intensities tended to be right-skewed, indicating that participants generally perceived these

emotions as weaker. For example, joy has a mean intensity of 1.795 (std = 0.844) with a maximum of

4.5, and sadness has a mean intensity of 1.435 (std = 0.777) with a maximum of 4.0. Anger and fear

show low mean intensities of 0.888 (std = 0.581) and 1.335 (std = 0.705), respectively, while disgust

has a very low mean intensity of 0.525 (std = 0.333). These low means suggest that the robot’s design

and behaviors were not very effective at eliciting strong categorical emotional qualities, likely due to its

non-humanoid, faceless design, which may limit its ability to convey these emotions convincingly. This

bias towards lower perception of emotional intensities may also affect the predictive models, making it

harder for them to accurately learn and predict these weak signals.

In contrast, the PAD dimensions do not show the same right-skewed pattern. The means for these

dimensions are closer to the center of the scale, with pleasure at 4.525 (std = 1.229), arousal at 5.041

(std = 1.195), and dominance at 4.385 (std = 1.035). The higher mean for arousal suggests that certain

behaviors, such as high wander speed, consistently elicited higher arousal responses. The substantial

variability among participant responses for the PAD dimensions indicates that the robot’s varied behaviors

successfully elicited a wide range of responses, which is a positive outcome. This variability shows that

while the emotional intensities were generally perceived as weak, the robot was still able to generate

diverse emotional experiences in terms of PAD. This higher variability in the PAD dimensions provides

the models with more data to learn from, potentially leading to better predictive accuracy.

These findings suggest that while the robot’s behaviors could elicit a range of emotional responses,

the strength of these responses for the basic emotions was generally weak. This implies that the base

behaviors of the robot, as manipulated in this study, may not be inherently effective at conveying strong

categorical emotional qualities. This consideration is crucial when interpreting the predictive models’

performance, as they are based on data reflecting these relatively weak and varied emotional responses.

Furthermore, the stronger variability and more centered responses in the PAD dimensions suggest better

learning potential for predictive models in these areas.

Additionally, it is important to recognize that categorical emotions, which correspond to “universal”

facial expressions, may not be abstract enough for a non-humanoid, faceless robot to effectively express.

The robot’s design inherently limits its ability to convey these discrete emotional states convincingly.

PAD dimensions, being more abstract, might be inherently easier for participants to perceive in a robot

that does not have a human-like appearance. This abstraction aligns better with the robot’s capabilities.

For instance, arousal is relatively straightforward to observe through behaviors such as high speed or

intense movements. However, interpreting pleasure and dominance is more challenging. The concept of

a robot being “dominant” is ambiguous and context-dependent, making it harder for participants to gauge

accurately. This distinction suggests that while the robot can successfully convey levels of arousal, it

struggles with more nuanced emotional cues like pleasure and dominance, reflecting a need for more

intuitive design strategies to communicate these abstract qualities.

Moreover, the consistent overfitting observed in all random forest models and the underfitting seen in

linear models for most dependent variables highlight a significant limitation of this study. This pattern is

not unexpected given the nature of the data sampling method. The input parameters for the 512 videos

were sampled using Sobol sequences, designed to uniformly cover the range of possible values for

each parameter while minimizing correlation between samples. Consequently, dividing these points into

training and testing datasets leaves a significant portion of the feature space unrepresented in each set,

making it challenging for regression models to learn and predict the emotional qualities of the entire

sample space effectively.

Consequently, when analyzing the predictive performance of these models, it’s evident that the random

forest models, despite their high performance on training data, tend to overfit, showing significantly better

results on training data compared to testing data. This overfitting highlights their inability to generalize well

to unseen data. On the other hand, linear models, which did not overfit, often underperformed on testing

data, indicating that they lacked the complexity needed to capture the nuanced relationships between

input parameters and emotional qualities.
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For example, the results for pleasure intensity indicated modest improvements in predictive perfor-

mance, with both linear models trained with X_gmm and X_int showing significant improvements over their
baselines. However, the random forest model with X_int achieved the best accuracy, with an MSE of

1.308 and an R2 of 0.127, suggesting some explanatory power but leaving much variance unexplained.

Similarly, for arousal, the linear model trained with X_gmm achieved the best performance on unseen data,

with an MSE of 0.785 and an R2 of 0.429. However, the relatively low R2 value indicates significant

unexplained variance, suggesting a need for additional features or further refinement.

Ultimately, these findings emphasize the need for a more comprehensive evaluation method. To truly

assess how well these models generalize, training them using the complete dataset of 512 points and

testing their performance on new, unseen data collected through a new survey is essential. This approach

would provide a more accurate assessment of the models’ generalization capabilities, highlighting the

limitations of the current dataset split and the need for extensive data collection to fully understand the

predictive power and generalization ability of the regression models in capturing the emotional qualities

elicited by the robot’s behaviors.

5.3. Recommendations
Our study offers valuable insights into the connection between robotic behavioral parameters and perceived

emotional qualities. However, the limitations we encountered emphasize the need for further research.

Based on our findings, we suggest several directions for future research to deepen the understanding of

emotion perception in human-robot interactions and enhance the robustness of predictive models.

Firstly, it is essential to test the generalizability of the models to new data. Collecting new data with

different input parameters and participant groups would help validate the models’ performance. This

approach ensures that the models are not overfitting the current dataset and can reliably predict the

emotional qualities of the robot’s behaviors based on perceptions from a new group of participants.

Additionally, a longitudinal study investigating how the emotional perception of the robot’s behaviors

evolves over time with repeated interactions between humans and the robot could provide deeper insights

into the perception of emotions in appearance-constrained robots.

Secondly, examining whether our findings apply to other appearance-constrained robots is another

crucial direction. While our study provides valuable insights into a specific appearance-constrained robot,

testing these concepts across different robotic designs and interaction scenarios could help determine if

the observed patterns are broadly applicable. For example, experimenting with different base behaviors

for a robotic arm manipulator using modalities such as motion, light, and sound could yield new insights

into designing emotional behaviors for appearance-constrained robots.

Lastly, expanding the sample size of both participants and videos would be beneficial to increase the

feature and label spaces used for the training of regression models. A larger and more diverse participant

pool could offer a more representative perspective on how various demographics perceive emotional

qualities in robotic behaviors, thereby improving generalizability. Additionally, increasing the number of

videos in the study would provide a broader data range, resulting in more nuanced and varied data in the

dependent variables, which could ultimately enhance the robustness of the models.

5.4. Conclusion
In conclusion, this study demonstrates that variations in motion, light, and sound parameters significantly

influence the perceived emotional qualities of an appearance-constrained robot’s behaviors. Although

the intensity of these emotional perceptions, particularly for basic emotion intensities, is relatively low,

our findings indicate that manipulating factors such as speed, light temperature, and sound pitch results

in discernible changes in emotional perception. For instance, higher speeds and pitches correlate with

increased arousal, while warmer light colors affect both arousal and pleasure.

The regression modeling revealed notable limitations. Despite advanced feature engineering and

modeling techniques yielding significant results in predicting emotional qualities, it is crucial to evaluate the

generalizability of these models with new data. Our findings underscore the necessity for a comprehensive

evaluation method. To accurately assess the models’ generalization capabilities, they should be trained

using the entire dataset of 512 points and tested on new, unseen data collected through a subsequent

survey. This approach would provide a more precise evaluation of the models’ ability to generalize and

highlight areas for potential improvement.
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Future research should examine whether these findings are applicable to other appearance-constrained

robots. While this study offers valuable insights into a specific robot design, testing these concepts across

various robotic designs and interaction scenarios could help determine if the observed patterns are broadly

applicable. This could significantly contribute to the development of emotionally expressive robots in

diverse contexts.

Moreover, the study’s limitations include a relatively small feature space, resulting from the aggregation

of data from 3160 points to 512 to mitigate the inherent noise in measuring emotional perception. Future

research should focus on increasing the number of videos to generate a more representative sample of

the feature space and recruiting more participants to ensure that the models can learn from a broader

range of emotional perceptions, considering demographic diversity. Enhancing the dataset and participant

pool would strengthen the robustness and applicability of the models developed in this study.

Despite these challenges, the study provides valuable insights into the different ways that motion,

light, and sound parameters can influence the perception of the emotional qualities of an appearance-

constrained robot. The findings highlight the potential for designing emotionally expressive behaviors

for appearance-constrained robots. By building on this research, future work can focus on developing

more effective and emotionally engaging robotic interactions, thereby enhancing user experiences and

fostering more natural and intuitive human-robot relationships.
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A
Code

A.1. Wander Base Behavior� �
#include <Arduino.h> // Include the main Arduino library for basic functions and macros
#include <MeMCore.h> // Include the Makeblock library for controlling Makeblock components
#include <SoftwareSerial.h> // Include the library for serial communication on digital

pins
#include <Wire.h> // Include the library for I2C communication
#include <stdlib.h> // Include standard library for general purpose functions
#include <math.h> // Include math library for mathematical operations

// Timer control variables for managing time-based actions
double currentTime = 0; // Stores the current time in seconds
double lastTime = 0; // Stores the last time an action was taken in seconds

// Initialize components attached to the robot
MeLineFollower linefollower_2(2); // Line follower module on port 2
MeDCMotor motor_9(9); // DC motor connected to port 9
MeDCMotor motor_10(10); // DC motor connected to port 10

// Variables to control the wander behavior
double turnDuration; // Duration of the turning action in seconds
double forwardDuration; // Duration of the forward movement in seconds
double lineTurnDuration; // Duration of the turn when a line is detected
double targetForwardSpeed; // Desired speed for forward movement
double targetTurnSpeed; // Desired speed for turning
int acceleration; // Factor to increase/decrease speed gradually
int wanderCycle; // Counter for the number of wander cycles completed

// Flag to determine if the inputs for wander behavior are valid
boolean doWander;

// General input parameters for the wander behavior
double duration = 10; // Total duration of the wander behavior in seconds
boolean stayInBounds = true; // Flag to stay within a bounded area

// Specific input parameters for configuring the wander behavior
double wanderSpeed = 100; // Base speed for wandering
double wanderSlope = 0; // Slope for changing speed dynamically
double wanderRoundness = 0.5; // Factor for adjusting the sharpness of turns
double wanderTurnToForwardRatio = 0.9; // Ratio of turn duration to forward duration

within a cycle
double wanderCycleRate = 2; // Number of cycles per second
double wanderCycleStandardDeviation = 0.5; // Variability in the cycle rate
double wanderSpeedStandardDeviation = 0.5; // Variability in the speed
double wanderPhase = 0; // Initial phase delay before starting to wander

// Function to calculate the elapsed time since the last reset
double getLastTime()
{

// Update currentTime, calculate and return the elapsed time since last reset
return currentTime = millis() / 1000.0 - lastTime;

}

// Custom delay function to pause execution for a given number of seconds

57
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void _delay(double seconds)
{

long endTime = millis() + seconds * 1000; // Calculate end time in milliseconds
while (millis() < endTime) _loop(); // Loop until the end time is reached

}

// Function to control the robot's movement in a specified direction at a specified speed
void move(int direction, int speed)
{

int leftSpeed = 0; // Speed of the left motor
int rightSpeed = 0; // Speed of the right motor

// Determine the speed of each motor based on the desired direction of movement
if (direction == 1) {

// Forward
leftSpeed = speed;
rightSpeed = speed;

} else if (direction == 2) {
// Backward
leftSpeed = -speed;
rightSpeed = -speed;

} else if (direction == 3) {
// Left
leftSpeed = -speed;
rightSpeed = speed;

} else if (direction == 4) {
// Right
leftSpeed = speed;
rightSpeed = -speed;

}

// Apply the calculated speeds to the motors
motor_9.run(9 == M1 ? -leftSpeed : leftSpeed); // Adjust direction based on motor

configuration
motor_10.run(10 == M1 ? -rightSpeed : rightSpeed);

}

// Generates a random number with a Gaussian distribution around a mean of 0
double GenerateGaussian(double standardDeviation)
{

double u1 = rand() / (RAND_MAX + 1.0);
double u2 = rand() / (RAND_MAX + 1.0);
double z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2);
return z0 * standardDeviation;

}

// Generates a random number within a specified range [min, max]
double GetRandomNumber(double min, double max)
{

double randomNumber = (double)rand() / RAND_MAX; // Generate a random value between 0
and 1
return (randomNumber * (max - min)) + min; // Scale and shift to the specified range

}

// Caps a number within a specified range [lowerLimit, upperLimit]
void CapNumber(double* number, double lowerLimit, double upperLimit)
{

if (*number < lowerLimit) {
*number = lowerLimit; // Cap to lower limit

}
if (*number > upperLimit) {

*number = upperLimit; // Cap to upper limit
}

}

// Checks whether the input parameters for wander behavior are within valid ranges
void CheckValidWanderInput(double speed, double slope, double roundness, double

turnToForwardRatio, double cycleRate, double cycleStandardDeviation , double
speedStandardDeviation , double phase)

{
// Validate each input parameter against its acceptable range
boolean isValidSpeed = speed >= 25 && speed <= 100;
boolean isValidSlope = slope >= -5 && slope <= 5;
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boolean isValidRoundness = roundness >= 0 && roundness <= 1;
boolean isValidTurnToForwardRatio = turnToForwardRatio <= 1 && turnToForwardRatio > 0;
boolean isCycleRatePositive = cycleRate > 0;
boolean isValidStandardDeviation = cycleStandardDeviation >= 0 && speedStandardDeviation

>= 0;
boolean isValidPhase = phase >= 0;

// Set doWander to true only if all parameters are valid
doWander = isValidSpeed && isValidSlope && isValidRoundness && isValidTurnToForwardRatio

&& isCycleRatePositive && isValidStandardDeviation && isValidPhase;
}

// Sets the durations for forward movement, turning, and line avoidance turning
void SetWanderDurations(double speed, double turnToForwardRatio, double cycleRate, double

cycleStandardDeviation)
{

forwardDuration = (1 - turnToForwardRatio) / cycleRate; // Calculate base forward
duration

forwardDuration += GenerateGaussian(cycleStandardDeviation); // Add variability
CapNumber(&forwardDuration, 0, 1 / cycleRate); // Ensure duration is within bounds

turnDuration = 1 / cycleRate - forwardDuration; // Calculate turn duration based on
remaining time in the cycle

// Calculate line turn duration based on speed
if (speed <= 100 && speed >= 50) {

lineTurnDuration = 0.5;
} else {

lineTurnDuration = 0.0008 * pow(speed, 2) - 0.11 * speed + 4;
}

}

// Sets the target speeds for forward movement and turning
void SetTargetSpeeds(double speed, double roundness, double speedStandardDeviation)
{

targetForwardSpeed = speed + GenerateGaussian(speedStandardDeviation); // Add
variability to forward speed

CapNumber(&targetForwardSpeed, 25, 100); // Ensure speed is within bounds

// Calculate target turn speed based on forward speed and roundness
targetTurnSpeed = -targetForwardSpeed / 2 + 4 * targetForwardSpeed * roundness - 4 *

targetForwardSpeed * pow(roundness, 2);
}

// Method to execute the wander base behavior
void Wander(double duration, boolean stayInBounds,

double wanderSpeed, double wanderSlope, double wanderRoundness, double
wanderTurnToForwardRatio , double wanderCycleRate, double wanderCycleStandardDeviation ,
double wanderSpeedStandardDeviation , double wanderPhase)

{
// Validates the input parameters for the wander behavior.
CheckValidWanderInput(wanderSpeed, wanderSlope, wanderRoundness,

wanderTurnToForwardRatio , wanderCycleRate, wanderCycleStandardDeviation ,
wanderSpeedStandardDeviation , wanderPhase);

// Proceeds with the wander behavior if the inputs are validated successfully.
if (doWander) {

// Calculates and sets target speeds for both forward movement and turning based on
inputs and variability.
SetTargetSpeeds(wanderSpeed, wanderRoundness, wanderSpeedStandardDeviation);

// Determines durations for forward movement, turning, and line-avoidance based on
inputs and variability.
SetWanderDurations(wanderSpeed, wanderTurnToForwardRatio , wanderCycleRate,
wanderCycleStandardDeviation);

// Initializes the counter to keep track of completed wander cycles.
wanderCycle = 0;

// Sets the initial acceleration for speed adjustment during forward movement, used
when slope != 0.
acceleration = 1;

}
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// Records the start time of the wander behavior.
lastTime = millis() / 1000.0;

// Continues executing the wander behavior for the specified duration.
while (!(getLastTime() > duration)) {

_loop();

boolean isTurning = false;

// If valid wander input is given
if (doWander) {

// Start executing after the given phase
if (getLastTime() - wanderPhase >= 0) {

// Turn around if a black line is detected
if (stayInBounds) {

// Get sensor reading
int sensorReading = linefollower_2.readSensors();

// Turn left if right sensor detects a white line
if (!isTurning && (0 ? (1 == 0 ? sensorReading == 0 : (sensorReading & 1) == 1)

: (1 == 0 ? sensorReading == 3 : (sensorReading & 1) == 0))) {
isTurning = true;
move(3, targetForwardSpeed / 100.0 * 255);
_delay(lineTurnDuration);
move(3, 0);

}

// Turn right if left sensor detects a white line
if (!isTurning && (0 ? (2 == 0 ? sensorReading == 0 : (sensorReading & 2) == 2)

: (2 == 0 ? sensorReading == 3 : (sensorReading & 2) == 0))) {
isTurning = true;
move(4, targetForwardSpeed / 100.0 * 255);
_delay(lineTurnDuration);
move(4, 0);

}
}

}

// Determines if it's time to move forward based on the current phase and cycle rate
.

if (wanderSlope == 0) {
// Moves forward at a constant speed if there's no slope.
if (getLastTime() - wanderPhase < wanderCycle / wanderCycleRate + forwardDuration)

{
move(1, targetForwardSpeed / 100.0 * 255);

}
} else if (wanderSlope > 0) {

// Gradually increases speed if the slope is positive.
if (getLastTime() - wanderPhase < wanderCycle / wanderCycleRate + acceleration *

forwardDuration / 100) {
move(1, wanderSlope * acceleration * targetForwardSpeed / 100 / 100.0 * 255);
if (acceleration < 100) {

acceleration += 1; // Increment acceleration until it reaches 100.
}

}
} else if (wanderSlope < 0) {

// Gradually decreases speed if the slope is negative.
if (getLastTime() - wanderPhase < wanderCycle / wanderCycleRate + acceleration *

forwardDuration / 100) {
move(1, wanderSlope * (acceleration - 100) * targetForwardSpeed / 100 / 100.0 *

255);
if (acceleration < 100) {

acceleration += 1; // Increment acceleration until it reaches 100, for
decreasing speed.

}
}

}

// Initiates a turn after the forward movement phase is complete.
if (getLastTime() - wanderPhase > wanderCycle / wanderCycleRate + forwardDuration &&

getLastTime() - wanderPhase < (wanderCycle + 1) / wanderCycleRate) {
// Alternates turning direction with each cycle.
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if (fmod(wanderCycle, 2) == 0) {
// Executes a right turn on even cycles.
motor_9.run(-targetForwardSpeed / 100.0 * 255);
motor_10.run(targetTurnSpeed / 100.0 * 255);

} else {
// Executes a left turn on odd cycles.
motor_9.run(-targetTurnSpeed / 100.0 * 255);
motor_10.run(targetForwardSpeed / 100.0 * 255);

}
}

// Prepares for the next cycle after completing both forward movement and turning.
if (getLastTime() - wanderPhase > (wanderCycle + 1) / wanderCycleRate) {

wanderCycle += 1; // Increments the cycle counter.
acceleration = 1; // Resets acceleration for the next cycle.

// Recalculates speeds and durations for the next cycle, incorporating variability
.

SetTargetSpeeds(wanderSpeed, wanderRoundness, wanderSpeedStandardDeviation);
SetWanderDurations(wanderSpeed, wanderTurnToForwardRatio , wanderCycleRate,

wanderCycleStandardDeviation);
}

}
}

// Stops the motors to halt the robot's movement at the end of the wander behavior.
motor_9.run(0);
motor_10.run(0);

}

// Setup function to initialize the robot and start the wander behavior
void setup()
{

randomSeed(0); // Initialize the random number generator seed.

// Start the wandering behavior with the specified parameters.
Wander(duration, stayInBounds, wanderSpeed, wanderSlope, wanderRoundness,

wanderTurnToForwardRatio , wanderCycleRate, wanderCycleStandardDeviation ,
wanderSpeedStandardDeviation , wanderPhase); // Start wandering

}

// Placeholder loop function, required for Arduino structure but not used
void _loop()
{

}

// Main loop function, continuously called by Arduino framework
void loop()
{

_loop(); // Call the placeholder loop function
}� �

A.2. Blink Base Behavior� �
#include <Arduino.h> // Core Arduino library for basic functions and macros
#include <MeMCore.h> // Library for Makeblock electronic modules like motors and sensors
#include <SoftwareSerial.h> // Library for serial communication on digital pins
#include <Wire.h> // Library for I2C communication
#include <stdlib.h> // Standard library for general operations like random numbers
#include <math.h> // Math library for advanced mathematical operations

// Timer control variables to track the current and last time measurements
double currentTime = 0;
double lastTime = 0;

// Initialize an RGB LED module connected to port 7 on the main board
MeRGBLed rgbled_7(7, 2);

// Variables for controlling the blinking behavior of the LED
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double lightsOnDuration; // How long the lights stay on during a cycle
double lightsOffDuration; // How long the lights stay off during a cycle
double targetRedIntensity; // Target intensity for the red component
double targetGreenIntensity; // Target intensity for the green component
double targetBlueIntensity; // Target intensity for the blue component
int brightness; // Current brightness level
int blinkCycle; // Counter for the number of blink cycles

// Boolean flag to check if the input parameters for blinking are valid
boolean doBlink;

// General input parameters for controlling the overall behavior duration
double duration = 10; // Duration for the blink behavior

// Input parameters specifically for the blinking behavior
double blinkTemperature = 0.9; // Determines the color temperature for the LED
double blinkSlope = 1; // Determines how the intensity changes over time
double blinkLightsOnToOffRatio = 0.9; // Ratio of on-time to off-time
double blinkCycleRate = 2; // How many cycles per second
double blinkCycleStandardDeviation = 0.5; // Variability in the cycle rate
double blinkTemperatureStandardDeviation = 0.1; // Variability in the color temperature
double blinkPhase = 0; // Initial phase delay before starting to blink

// Function to calculate elapsed time since the last reset
double getLastTime()
{

return currentTime = millis() / 1000.0 - lastTime;
}

// Generates a Gaussian-distributed random number based on standard deviation
double GenerateGaussian(double standardDeviation)
{

double u1 = rand() / (RAND_MAX + 1.0);
double u2 = rand() / (RAND_MAX + 1.0);
double z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2);
return z0 * standardDeviation;

}

// Generates a random number within a specified range
double GetRandomNumber(double min, double max)
{

double randomNumber = (double)rand() / RAND_MAX;
return (randomNumber * (max - min)) + min;

}

// Caps a number to be within a specified range
void CapNumber(double* number, double lowerLimit, double upperLimit)
{

if (*number < lowerLimit) {
*number = lowerLimit;

}
if (*number > upperLimit) {

*number = upperLimit;
}

}

// Checks if the input parameters for the blinking behavior are within valid ranges
void CheckValidBlinkInput(double temperature, double slope, double lightsOnToOffRatio,

double cycleRate, double cycleStandardDeviation , double temperatureStandardDeviation ,
double phase)

{
boolean isValidTemperature = temperature >= 0 && temperature <= 1;
boolean isValidSlope = slope >= -5 && slope <= 5;
boolean isValidLightsOnToOffRatio = lightsOnToOffRatio <= 1 && lightsOnToOffRatio > 0;
boolean isCycleRatePositive = cycleRate > 0;
boolean isValidStandardDeviation = cycleStandardDeviation >= 0 &&

temperatureStandardDeviation >= 0;
boolean isValidPhase = phase >= 0;

// If all conditions are met, the input is considered valid
doBlink = isValidTemperature && isValidSlope && isValidLightsOnToOffRatio &&

isCycleRatePositive && isValidStandardDeviation && isValidPhase;
}
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// Sets the durations for the lights being on and off based on the input parameters
void SetBlinkDurations(double lightsOnToOffRatio, double cycleRate, double

cycleStandardDeviation)
{

lightsOffDuration = (1 - lightsOnToOffRatio) / cycleRate;
lightsOffDuration += GenerateGaussian(cycleStandardDeviation);
CapNumber(&lightsOffDuration, 0, 1 / cycleRate);
lightsOnDuration = 1 / cycleRate - lightsOffDuration;

}

// Determines the target intensities for the RGB components of the LED based on
temperature

void SetTargetIntensities(double temperature, double temperatureStandardDeviation)
{

double targetTemperature = temperature + GenerateGaussian(temperatureStandardDeviation);
CapNumber(&targetTemperature, 0, 1);

// Adjust the RGB intensities based on the calculated target temperature
if (targetTemperature == 0.5) {

targetRedIntensity = 200;
targetGreenIntensity = 255;
targetBlueIntensity = 0;

} else if (targetTemperature > 0.5) {
targetRedIntensity = round(110 * targetTemperature + 145);
targetGreenIntensity = round(-510 * targetTemperature + 510);
targetBlueIntensity = 0;

} else if (targetTemperature < 0.5) {
targetRedIntensity = round(100 * targetTemperature);
targetGreenIntensity = round(510 * targetTemperature);
targetBlueIntensity = round(-510 * targetTemperature + 255);

}
}

// Method to execute the blink base behavior
void Blink(double duration,

double blinkTemperature, double blinkSlope, double blinkLightsOnToOffRatio ,
double blinkCycleRate, double blinkCycleStandardDeviation , double
blinkTemperatureStandardDeviation , double blinkPhase)

{
// INPUT CHECKS AND VARIABLE INITIALIZATION

// Validates the input parameters to ensure they are within acceptable ranges for the
blink behavior.

CheckValidBlinkInput(blinkTemperature, blinkSlope, blinkLightsOnToOffRatio ,
blinkCycleRate, blinkCycleStandardDeviation , blinkTemperatureStandardDeviation ,
blinkPhase);

// Proceeds only if the input parameters are validated successfully.
if (doBlink) {

// Sets the color intensities for the RGB LED based on the calculated temperature,
including randomness.
SetTargetIntensities(blinkTemperature, blinkTemperatureStandardDeviation);

// Determines the durations for which the LED will stay on and off during each blink
cycle, including randomness.
SetBlinkDurations(blinkLightsOnToOffRatio , blinkCycleRate, blinkCycleStandardDeviation
);

// Initializes the counter that keeps track of the number of completed blink cycles.
blinkCycle = 0;

// Initializes the brightness adjustment factor; used when blinkSlope != 0 to vary
intensity.
brightness = 1;

}

// MAIN LOOP

// Resets the timer to keep track of the blink behavior's duration.
lastTime = millis() / 1000.0;

// Continues blinking for the specified duration.
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while (!(getLastTime() > duration)) {
// Placeholder for tasks that need continuous execution within the loop.

// Checks again if blink behavior should continue based on the doBlink flag.
if (doBlink) {

// Delays the start of blinking until after the specified phase delay.
if (getLastTime() - blinkPhase >= 0) {

// Handles constant intensity blinking without any slope for intensity change.
if (blinkSlope == 0) {

// Checks if it's time to turn the lights on within the current blink cycle.
if (getLastTime() - blinkPhase < blinkCycle / blinkCycleRate + lightsOnDuration)

{
// Sets the LED color using the target intensity values.
rgbled_7.setColor(0, targetRedIntensity, targetGreenIntensity ,

targetBlueIntensity);
rgbled_7.show();

}
}
// Handles increasing intensity blinking when blinkSlope is positive.
else if (blinkSlope > 0) {

// Gradually increases brightness until it reaches the maximum value.
if (getLastTime() - blinkPhase < blinkCycle / blinkCycleRate + brightness *

lightsOnDuration / 100) {
// Adjusts the LED color intensity based on the current brightness.
rgbled_7.setColor(0, round(blinkSlope * brightness * targetRedIntensity / 100)

,
round(blinkSlope * brightness * targetGreenIntensity /

100),
round(blinkSlope * brightness * targetBlueIntensity /

100));
rgbled_7.show();

} else {
// Increases the brightness for the next iteration, if it has not reached the

maximum.
if (brightness < 100) {

brightness += 1;
}

}
}
// Handles decreasing intensity blinking when blinkSlope is negative.
else if (blinkSlope < 0) {

// Gradually decreases brightness until it reaches the minimum value.
if (getLastTime() - blinkPhase < blinkCycle / blinkCycleRate + brightness *

lightsOnDuration / 100) {
// Adjusts the LED color intensity based on the current brightness.
rgbled_7.setColor(0, round(blinkSlope * (brightness - 100) *

targetRedIntensity / 100),
round(blinkSlope * (brightness - 100) *

targetGreenIntensity / 100),
round(blinkSlope * (brightness - 100) *

targetBlueIntensity / 100));
rgbled_7.show();

} else {
// Increases the brightness for the next iteration, if it has not reached the

maximum.
if (brightness < 100) {

brightness += 1;
}

}
}

// Turns the lights off after the on-duration within the current cycle.
if (getLastTime() - blinkPhase > blinkCycle / blinkCycleRate + lightsOnDuration &&

getLastTime() - blinkPhase < (blinkCycle + 1) / blinkCycleRate) {
rgbled_7.setColor(0, 0, 0, 0);
rgbled_7.show();

}

// Prepares for the next blink cycle once the current cycle completes.
if (getLastTime() - blinkPhase > (blinkCycle + 1) / blinkCycleRate) {

// Increments the blink cycle counter to track the number of completed cycles.
blinkCycle += 1;
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// Resets the brightness to its initial value for the next cycle.
brightness = 1;

// Re-calculates the target color intensities for the next cycle to include
variability.

SetTargetIntensities(blinkTemperature, blinkTemperatureStandardDeviation);

// Re-calculates the durations for lights on and off for the next cycle to
include variability.

SetBlinkDurations(blinkLightsOnToOffRatio , blinkCycleRate,
blinkCycleStandardDeviation);

}
}

}
}

// Turns off the LED at the end of the blinking behavior to ensure it does not stay on.
rgbled_7.setColor(0, 0, 0, 0);
rgbled_7.show();

}

void setup()
{

// Initial setup for the RGB LED.
rgbled_7.fillPixelsBak(0, 2, 1); // Pre-configure the LED with a base color or pattern.
randomSeed(0); // Initialize the random number generator seed.

// Start the blinking behavior with the specified parameters.
Blink(duration, blinkTemperature, blinkSlope, blinkLightsOnToOffRatio , blinkCycleRate,

blinkCycleStandardDeviation , blinkTemperatureStandardDeviation , blinkPhase);
}

// Placeholder loop function, required for Arduino structure but not used
void _loop()
{

}

void loop()
{

_loop(); // Invoke the placeholder loop function within the main loop.
}� �

A.3. Beep Base Behavior� �
#include <Arduino.h> // Core Arduino library for basic input/output functions, types, and

constants.
#include <MeMCore.h> // Library for Makeblock electronic modules, including the buzzer.
#include <SoftwareSerial.h> // Library for serial communication on digital pins.
#include <Wire.h> // Library for I2C communication.
#include <stdlib.h> // Standard library for general utility functions.
#include <math.h> // Library for mathematical functions.

// Timer control variables to measure elapsed time.
double currentTime = 0; // Current time in seconds since the start.
double lastTime = 0; // Time at the last significant event to calculate elapsed time.

// Arduino component for sound generation.
MeBuzzer buzzer; // Buzzer object for emitting sounds.

// Beep control variables for managing beep pattern.
double soundDuration; // Duration of the sound in each beep cycle.
double silenceDuration; // Duration of silence in each beep cycle.
double targetPitch; // Desired pitch of the beep in Hertz.
double currentPitch; // Current pitch of the beep in Hertz, used during execution.
double semitone; // Incremental change in pitch between beeps, related to musical

semitones.
int beepCycle; // Counter for the number of completed beep cycles.

// Flag to determine if the beep input parameters are valid.
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boolean doBeep;

// General input parameter for the behavior's duration.
double duration = 10; // Duration for the beep behavior in seconds.

// Specific input parameters for beep behavior customization.
double beepPitch = 400; // Base pitch of the beep in Hertz.
double beepSlope = 1; // Determines how the pitch changes over time.
double beepSoundToSilenceRatio = 0.9; // Ratio of sound duration to silence duration in

each cycle.
double beepCycleRate = 2; // Number of beep cycles per second.
double beepCycleStandardDeviation = 0.5; // Variability in the cycle rate to introduce

randomness.
double beepPitchStandardDeviation = 100; // Variability in the beep pitch to introduce

randomness.
double beepRandomSoundProbability = 0.3; // Probability of playing a random sound instead

of the target pitch.
double beepPhase = 0; // Initial phase delay before starting the beep behavior.

// Function to calculate elapsed time since the program started in seconds.
double getLastTime()
{

return currentTime = millis() / 1000.0 - lastTime;
}

// Custom delay function to pause execution for a specified number of seconds.
void _delay(double seconds)
{

long endTime = millis() + seconds * 1000; // Calculate end time in milliseconds.
while (millis() < endTime) _loop(); // Wait until the end time is reached.

}

// Generates a Gaussian-distributed random number based on standard deviation.
double GenerateGaussian(double standardDeviation)
{

double u1 = rand() / (RAND_MAX + 1.0); // Generate uniform random number u1.
double u2 = rand() / (RAND_MAX + 1.0); // Generate uniform random number u2.
double z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2); // Box-Muller transform for
Gaussian distribution.
return z0 * standardDeviation;

}

// Generates a random number within the specified range [min, max].
double GetRandomNumber(double min, double max)
{

double randomNumber = (double)rand() / RAND_MAX; // Generate a uniform random number
between 0 and 1.
return (randomNumber * (max - min)) + min; // Scale and shift the number to the
specified range.

}

// Caps a number to be within the specified lower and upper limits.
void CapNumber(double* number, double lowerLimit, double upperLimit)
{

if (*number < lowerLimit) {
*number = lowerLimit; // Set to lower limit if below it.

}
if (*number > upperLimit) {

*number = upperLimit; // Set to upper limit if above it.
}

}

// Validates the input parameters for the beep behavior.
void CheckValidBeepInput(double pitch, double slope, double soundToSilenceRatio , double

cycleRate, double cycleStandardDeviation , double pitchStandardDeviation , double
randomSoundProbability , double phase)

{
// Check each parameter against its valid range.
boolean isValidPitch = pitch >= 80 && pitch <= 3000; // Valid pitch range.
boolean isValidSlope = (slope < 0 && slope >= log(40 / pitch) / log(2)) || (slope > 0 &&

slope <= log(6000 / pitch) / log(2)) || slope == 0; // Valid slope conditions.
boolean isValidSoundToSilenceRatio = soundToSilenceRatio <= 1 && soundToSilenceRatio >=

0; // Valid ratio range.
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boolean isCycleRatePositive = cycleRate > 0; // Cycle rate must be positive.
boolean isValidStandardDeviation = cycleStandardDeviation >= 0 && pitchStandardDeviation

>= 0; // Standard deviations must be non-negative.
boolean isValidRandomSoundProbability = randomSoundProbability <= 1 &&

randomSoundProbability >= 0; // Valid probability range.
boolean isValidPhase = phase >= 0; // Phase must be non-negative.

// If all conditions are met, the input is considered valid.
doBeep = isValidPitch && isValidSlope && isValidSoundToSilenceRatio &&

isCycleRatePositive && isValidStandardDeviation && isValidRandomSoundProbability &&
isValidPhase;

}

// Sets the durations for sound and silence based on the ratio and cycle rate.
void SetBeepDurations(double soundToSilenceRatio , double cycleRate, double

cycleStandardDeviation)
{

silenceDuration = (1 - soundToSilenceRatio) / cycleRate; // Calculate base silence
duration.

silenceDuration += GenerateGaussian(cycleStandardDeviation); // Add Gaussian randomness.
CapNumber(&silenceDuration, 0, 1 / cycleRate); // Ensure the duration is within valid

bounds.

soundDuration = 1 / cycleRate - silenceDuration; // Calculate sound duration based on
the remaining time.

}

// Sets the target pitch for the beep, including randomness.
void SetTargetPitch(double pitch, double pitchStandardDeviation)
{

targetPitch = pitch + GenerateGaussian(pitchStandardDeviation); // Add randomness to the
pitch.

CapNumber(&targetPitch, 80, 3000); // Ensure pitch is within a valid range.

currentPitch = targetPitch; // Initialize current pitch to target pitch for the start of
behavior.

}

// Plays a sound or silence based on a given probability.
void PlayRandomSoundWithProbability(double slope, double randomSoundProbability , double

pitchStandardDeviation)
{

double randomNumber = GetRandomNumber(0, 1); // Generate a random number to compare
against probability.

double randomPitch; // Variable for the pitch of the random sound.
if (slope == 0) {

randomPitch = targetPitch + GenerateGaussian(pitchStandardDeviation); // Generate
random pitch variation.

} else {
int randomSemitone = (int)GetRandomNumber(1, 12); // Random semitone for pitch
variation.
randomPitch = exp(log(targetPitch) + slope * randomSemitone / 12 * log(2)); //
Calculate pitch based on semitone change.

}

if (randomNumber < randomSoundProbability) {
buzzer.tone(randomPitch, silenceDuration * 1000); // Play the random sound if within
probability.

} else {
_delay(silenceDuration); // Otherwise, maintain silence for the duration.

}
}

// Method to execute the beep base behavior
void Beep(double duration,

double beepPitch, double beepSlope, double beepSoundToSilenceRatio , double
beepCycleRate, double beepCycleStandardDeviation , double beepPitchStandardDeviation ,
double beepRandomSoundProbability , double beepPhase)

{
// INPUT CHECKS AND VARIABLE INITIALIZATION

// Check if beep input is valid



68 Appendix A. Code

CheckValidBeepInput(beepPitch, beepSlope, beepSoundToSilenceRatio , beepCycleRate,
beepCycleStandardDeviation , beepPitchStandardDeviation , beepRandomSoundProbability ,
beepPhase);

if (doBeep) {
// Set the target pitch based on given input
SetTargetPitch(beepPitch, beepPitchStandardDeviation);

// Set sound and silence durations based on given input
SetBeepDurations(beepSoundToSilenceRatio , beepCycleRate, beepCycleStandardDeviation);

// Variable used to control the beep cycles
beepCycle = 0;

// Variable used to compute the pitch of each note
semitone = 1;

}

// MAIN LOOP

// Initialize timer
lastTime = millis() / 1000.0;

// Loop during given duration
while (!(getLastTime() > duration)) {

_loop();

// If valid beep input is given
if (doBeep) {

// Start executing after the given phase
if (getLastTime() - beepPhase >= 0) {

// Check if the beep slope is zero (constant pitch)
if (beepSlope == 0) {

if (getLastTime() - beepPhase < beepCycle / beepCycleRate + soundDuration) {
// Play the sound at the current pitch for the given duration
buzzer.tone(currentPitch, soundDuration * 1000);

}
}

// Check if the beep slope is positive (rising pitch)
if (beepSlope > 0) {

if(getLastTime() - beepPhase < beepCycle / beepCycleRate + semitone *
soundDuration / 12) {

// Play the sound at the current pitch for the given duration
buzzer.tone(currentPitch, soundDuration / 12 * 1000);

} else {
// Change current pitch to the next rising semitone
currentPitch = exp(log(targetPitch) + beepSlope * semitone / 12 * log(2));

// Increase semitone by one
if (semitone < 12) {

semitone += 1;
}

}

}

// Check if the beep slope is negative (falling pitch)
if (beepSlope < 0) {

if (getLastTime() - beepPhase < beepCycle / beepCycleRate + semitone *
soundDuration / 12) {

// Play the sound at the current pitch for the given duration
buzzer.tone(currentPitch, soundDuration / 12 * 1000);

} else {
// Change current pitch to the next falling semitone
currentPitch = exp(log(targetPitch) + beepSlope * semitone / 12 * log(2));

// Increase semitone by one
if (semitone < 12) {

semitone += 1;
}

}
}
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// Play either a random note or silence based on the given probability for the
silence duration

if (getLastTime() - beepPhase > beepCycle / beepCycleRate + soundDuration &&
getLastTime() - beepPhase < (beepCycle + 1) / beepCycleRate) {

PlayRandomSoundWithProbability(beepSlope, beepRandomSoundProbability ,
beepPitchStandardDeviation);

}

// Check if the beep cycle has finished
if (getLastTime() - beepPhase > (beepCycle + 1) / beepCycleRate) {

// Increase the count of cycles by one
beepCycle += 1;

// Reset semitone to one
semitone = 1;

// Change the target pitch
SetTargetPitch(beepPitch, beepPitchStandardDeviation);

// Change sound and silence durations
SetBeepDurations(beepSoundToSilenceRatio , beepCycleRate,

beepCycleStandardDeviation);
}

}
}

}
}

// Setup function to initialize the robot and start the wander behavior
void setup()
{

randomSeed(0); // Initialize the random number generator seed.

// Start the beeping behavior with the specified parameters.
Beep(duration, beepPitch, beepSlope, beepSoundToSilenceRatio , beepCycleRate,

beepCycleStandardDeviation , beepPitchStandardDeviation , beepRandomSoundProbability ,
beepPhase);

}

// Placeholder loop function, required for Arduino structure but not used
void _loop()
{

}

// Main loop function, continuously called by Arduino framework
void loop()
{

_loop(); // Call the placeholder loop function
}� �

A.4. Sobol Sequences Sampling� �
import pandas as pd
from scipy.stats import qmc

# Define the number of variables and samples
n_vars = 9
n_samples = 2 ** 9

# Initialize the Sobol sequence generator
sobol_sampler = qmc.Sobol(d=n_vars, scramble=True)

# Generate samples
sobol_samples = sobol_sampler.random(n=n_samples)

# Define the lower bounds of the samples
l_bounds = [

30, # wanderSpeed
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0, # wanderRoundness
0.5, # wanderCycleRate
0, # blinkTemperature
-1, # blinkSlope
0.5, # blinkCycleRate
100, # beepPitch
-1, # beepSlope
0.5 # beepCycleRate

]

# Define the upper bounds of the samples
u_bounds = [

100, # wanderSpeed
1, # wanderRoundness
6, # wanderCycleRate
1, # blinkTemperature
1, # blinkSlope
6, # blinkCycleRate
1000, # beepPitch
1, # beepSlope
6 # beepCycleRate

]

# Scale samples to the given range
sobol_samples_scaled = qmc.scale(sobol_samples, l_bounds, u_bounds)

# Define the column names of the dataframe
column_names = ["wanderSpeed", "wanderRoundness", "wanderCycleRate",

"blinkTemperature", "blinkSlope", "blinkCycleRate",
"beepPitch", "beepSlope", "beepCycleRate"]

# Convert the generated scaled sobol samples into a dataframe
df_sobol = pd.DataFrame(data=sobol_samples_scaled , columns=column_names)

# Round values of "beepSlope" and "blinkSlope" columns to the nearest integer
df_sobol.beepSlope = round(df_sobol.beepSlope)
df_sobol.blinkSlope = round(df_sobol.blinkSlope)

# Save samples to CSV
df_sobol.to_csv("samples.csv", sep=',', header=False, index=False)� �

A.5. Analysis� �
#!/usr/bin/env python
# coding: utf-8

# In[ ]:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
import pickle
from itertools import combinations
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette_score
from sklearn.feature_selection import f_regression
from sklearn.model_selection import KFold, GridSearchCV
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from statsmodels.stats.multitest import multipletests
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# In[ ]:

custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", rc=custom_params)

# In[ ]:

# Define the emotion intensities columns
intensity_columns = [

'joy_intensity', 'sadness_intensity', 'anger_intensity',
'fear_intensity', 'disgust_intensity', 'surprise_intensity'

]

# Define the SAM columns
sam_columns = ['pleasure', 'arousal', 'dominance']

# Define the dependent variables
dependent_vars = intensity_columns + sam_columns

# Define the index of each dependent variables in the y dataset
dependent_var_index = {dependent_var: i for i, dependent_var in enumerate(dependent_vars)}

# Define the independent variables continuous independent variables
independent_vars = [

'wander_speed', 'wander_roundness', 'wander_cycle_rate',
'blink_temperature', 'blink_slope', 'blink_cycle_rate',
'beep_pitch', 'beep_slope', 'beep_cycle_rate'

]

# Specify which of the independent variables are continuous
independent_continuous_vars = [

'wander_speed', 'wander_roundness', 'wander_cycle_rate',
'blink_temperature', 'blink_cycle_rate',
'beep_pitch', 'beep_cycle_rate'

]

# In[ ]:

titles = {'wander_speed': 'Wander Speed', 'wander_roundness': 'Wander Roundness', '
wander_cycle_rate': 'Wander Cycle Rate',

'blink_temperature': 'Blink Temperature', 'blink_slope': 'Blink Slope', '
blink_cycle_rate': 'Blink Cycle Rate',

'beep_pitch': 'Beep Pitch', 'beep_slope': 'Beep Slope', 'beep_cycle_rate': 'Beep
Cycle Rate',

'joy_intensity': 'Joy Intensity', 'sadness_intensity': 'Sadness Intensity', '
anger_intensity': 'Anger Intensity',

'fear_intensity': 'Fear Intensity', 'disgust_intensity': 'Disgust Intensity', '
surprise_intensity': 'Surprise Intensity',

'pleasure': 'Pleasure', 'arousal': 'Arousal', 'dominance': 'Dominance',
'cluster_prob_0': 'Membership Probability of Cluster 1', 'cluster_prob_1': '

Membership Probability of Cluster 2',
'cluster_prob_2': 'Membership Probability of Cluster 3', 'cluster_prob_3': '

Membership Probability of Cluster 4',
'cluster_prob_4': 'Membership Probability of Cluster 5', 'cluster_prob_5': '

Membership Probability of Cluster 6',
'cluster_prob_6': 'Membership Probability of Cluster 7', 'cluster_prob_7': '

Membership Probability of Cluster 8',
'cluster_prob_8': 'Membership Probability of Cluster 9',
'lin_model': 'Linear trained with X', 'lin_int_model': 'Linear trained with

X_int',
'lin_gmm_model': 'Linear trained with X_gmm', 'lin_gmm_int_model': 'Linear

trained with X_gmm_int',
'rf_model': 'Random forest trained with X', 'rf_int_model': 'Random forest

trained with X_int',
'rf_gmm_model': 'Random forest trained with X_gmm', 'rf_gmm_int_model': 'Random

forest trained with X_gmm_int',
'mse_scores': 'MSE', 'r2_scores': '$R^2$'}
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# In[ ]:

# Create the interaction term names in the titles dictionary
keys = np.array(list(titles.keys()))
mask = ['wander' in key or 'blink' in key or 'beep'in key or 'cluster' in key for key in

titles.keys()]

# Get all combinations of 2 variables
variable_combinations = list(combinations(keys[mask], 2))

# Create new titles for interaction terms
for var1, var2 in variable_combinations:

if f"{var1} {var2}" not in titles and f"{var2} {var1}" not in titles:
new_title = '{} × {}'.format(titles[var1], titles[var2])
titles['{} {}'.format(var1, var2)] = new_title

# In[ ]:

score_types = ['mse_scores', 'r2_scores']
model_types = ['lin_model', 'lin_int_model', 'lin_gmm_model', 'lin_gmm_int_model', '

rf_model', 'rf_int_model', 'rf_gmm_model', 'rf_gmm_int_model']

# ## Modelling

# ### Hypotheses Testing

# In[ ]:

def spearman_test(df, independent_vars, dependent_vars, alpha=0.05):
data = []
p_values_non_zero = []
p_values_positive = []
p_values_negative = []

for independent_var in independent_vars:
for dependent_var in dependent_vars:

# Calculate Spearman correlation for two-sided test
rho, p_non_zero = stats.spearmanr(df[independent_var], df[dependent_var],

alternative='two-sided')

# Calculate Spearman correlation for one-sided tests
_, p_negative = stats.spearmanr(df[independent_var], df[dependent_var],

alternative='less')
_, p_positive = stats.spearmanr(df[independent_var], df[dependent_var],

alternative='greater')

# Collect p-values for later adjustment
p_values_non_zero.append(p_non_zero)
p_values_positive.append(p_positive)
p_values_negative.append(p_negative)

# Store the initial results
row = {'independent_variable': independent_var, 'dependent_variable':

dependent_var, 'correlation': rho,
'p_non_zero': p_non_zero, 'is_non_zero': p_non_zero < alpha,
'p_positive': p_positive, 'is_positive': p_positive < alpha / 2,
'p_negative': p_negative, 'is_negative': p_negative < alpha / 2}

data.append(row)

# Convert the list of dictionaries to a DataFrame
spearman_test_results_df = pd.DataFrame(data)

spearman_test_results_df.set_index(['independent_variable', 'dependent_variable'],
inplace=True)

return spearman_test_results_df
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# In[ ]:

def get_correlation_annots(spearman_test_results_df):
correlations = spearman_test_results_df.correlation.to_numpy()
annot = correlations.astype(str)
indexed_spearman_test_results_df = spearman_test_results_df.reset_index()
significance_mask = indexed_spearman_test_results_df[indexed_spearman_test_results_df[
'is_non_zero'] & (indexed_spearman_test_results_df['is_positive'] |
indexed_spearman_test_results_df['is_negative'])].index

# Apply asterisks to significant correlations
for i in range(len(correlations)):

if i in significance_mask:
annot[i] = f'{correlations[i]:.3f}*'

else:
annot[i] = f'{correlations[i]:.3f}'

annot = annot.reshape(9, 9).T

return annot

# In[ ]:

def t_test(df, score_types, model_types, dependent_vars, names, alpha=0.05):
data = []
p_values_unequal = []
p_values_positive = []
p_values_negative = []

for score_type in score_types:
for model_type in model_types:

for dependent_var in dependent_vars:
# Get the score and baseline score
score = df.loc[score_type, dependent_var, model_type][names[0]]
baseline_score = df.loc[score_type, dependent_var, model_type][names[1]]

# Calculate one-sample t-test for two-sided hypothesis
t_stat, p_unequal = stats.ttest_rel(score, baseline_score)

# Calculate one-sample t-test for one-sided hypotheses
t_stat, p_positive = stats.ttest_rel(score, baseline_score, alternative='

greater')
t_stat, p_negative = stats.ttest_rel(score, baseline_score, alternative='

less')

# Collect p-values for later adjustment
p_values_unequal.append(p_unequal)
p_values_positive.append(p_positive)
p_values_negative.append(p_negative)

# Store the initial results
row = {'model_type': model_type, 'score_type': score_type, '

dependent_variable': dependent_var,
'baseline_scores': baseline_score, 'scores': score, 't_statistic':

t_stat,
'p_unequal': p_unequal, 'is_unequal_significant': p_unequal < alpha

,
'p_positive': p_positive, 'is_positive_significant': p_positive <

alpha / 2,
'p_negative': p_negative, 'is_negative_significant': p_negative <

alpha / 2}

data.append(row)

# Convert the list of dictionaries to a DataFrame
t_test_results_df = pd.DataFrame(data)
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t_test_results_df.set_index(['score_type', 'dependent_variable', 'model_type'],
inplace=True)

return t_test_results_df

# In[ ]:

def bonferrroni_correction(df, alpha=0.05, apply_correction=True):
# Apply multiple testing correction
statistics = df['statistic'].to_numpy()
p_values = df['p_value'].to_numpy()
if apply_correction:

test_results = multipletests(p_values, alpha=alpha, method='bonferroni')
data = {}
data['statistic'] = statistics
data['p_value'] = p_values
if apply_correction:

data['p_value_corrected'] = test_results[1]
data['reject_h0'] = test_results[0]

else:
data['reject_h0'] = data['p_value'] < alpha

test_results_df = pd.DataFrame(data)
test_results_df.index = df.index
return test_results_df

# ### Model Training

# In[ ]:

def backward_selection(X, y, significance_level=0.05):
included = list(X.columns)
p_values_dict = {}

# Calculate initial p-values for all features
all_p_values = f_regression(X, y)[1]
for I, column in enumerate(X.columns):

p_values_dict[column] = all_p_values[I]

while True:
changed = False

# Fit the model with the currently included features
model = LinearRegression().fit(X[included], y)
p_values = pd.Series(f_regression(X[included], y)[1], index=included)

# Find the feature with the worst p-value
worst_pval = p_values.max()

if worst_pval > significance_level:
worst_feature = p_values.idxmax()
included.remove(worst_feature)
changed = True

if not changed or not included:
break

# Convert the p-values dictionary to a DataFrame
p_values_df = pd.DataFrame.from_dict(p_values_dict, orient='index', columns=['p_value'
])

return included, p_values_df

# In[ ]:

def forward_selection(X, y, significance_level=0.05):
included = []
p_values_dict = {}
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# Calculate p-values for all features
all_p_values = f_regression(X, y)[1]
for i, column in enumerate(X.columns):

p_values_dict[column] = all_p_values[i]

while True:
changed = False
excluded = list(set(X.columns) - set(included))

if not excluded:
break

new_pval = pd.Series(index=excluded, dtype=float)

for new_column in excluded:
model = LinearRegression().fit(X[included + [new_column]], y)
p_values = f_regression(X[included + [new_column]], y)[1]
new_pval[new_column] = p_values[-1] # p-value of the new column

best_pval = new_pval.min()

if best_pval < significance_level:
best_feature = new_pval.idxmin()
included.append(best_feature)
changed = True

if not changed:
break

# Convert the p-values dictionary to a DataFrame
p_values_df = pd.DataFrame.from_dict(p_values_dict, orient='index', columns=['p_value'
])

return included, p_values_df

# In[ ]:

def k_fold_training_linear_model(X, y, n_splits=5, significance_level=0.05, random_state
=42):
kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
average_mse_scores = []
average_r2_scores = []

best_model = None
best_selected_features = None
best_score = float('inf')
best_train_index = None
best_test_index = None

for train_index, test_index in kf.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

selected_features, p_values = backward_selection(X_train, y_train,
significance_level)

if len(selected_features) == 0:
selected_features = X_train.columns

model = LinearRegression().fit(X_train[selected_features], y_train)

y_train_pred = model.predict(X_train[selected_features])
y_test_pred = model.predict(X_test[selected_features])
y_baseline_pred = np.array([y.mean()] * y_test.shape[0])

train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
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train_r2 = r2_score(y_train, y_train_pred)
test_r2 = r2_score(y_test, y_test_pred)
average_mse = mean_squared_error(y_test, y_baseline_pred)
average_r2 = r2_score(y_test, y_baseline_pred)

train_mse_scores.append(train_mse)
test_mse_scores.append(test_mse)
train_r2_scores.append(train_r2)
test_r2_scores.append(test_r2)
average_mse_scores.append(average_mse)
average_r2_scores.append(average_r2)

# Update the best model based on the performance on the train set
if train_mse < best_score:

best_score = train_mse
best_model = model
best_selected_features = selected_features
best_p_values = p_values
best_train_index = train_index
best_test_index = test_index

train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
average_mse_scores = np.array(average_mse_scores)
average_r2_scores = np.array(average_r2_scores)

return best_model, best_selected_features , best_p_values, best_train_index,
best_test_index, train_mse_scores, test_mse_scores, train_r2_scores, test_r2_scores,
average_mse_scores, average_r2_scores

# In[ ]:

def k_fold_training_random_forest_model(X, y, param_grid, n_splits=5, random_state=42):
kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
average_mse_scores = []
average_r2_scores = []

best_model = None
best_score = float('inf')
best_train_index = None
best_test_index = None

for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Use GridSearchCV for hyperparameter tuning
model = RandomForestRegressor(random_state=random_state)
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='

neg_mean_squared_error', n_jobs=-1)
grid_search.fit(X_train, y_train)

best_fold_model = grid_search.best_estimator_

y_train_pred = best_fold_model.predict(X_train)
y_test_pred = best_fold_model.predict(X_test)
y_baseline_pred = np.array([y.mean()] * y_test.shape[0])

train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
train_r2 = r2_score(y_train, y_train_pred)
test_r2 = r2_score(y_test, y_test_pred)
average_mse = mean_squared_error(y_test, y_baseline_pred)
average_r2 = r2_score(y_test, y_baseline_pred)
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train_mse_scores.append(train_mse)
test_mse_scores.append(test_mse)
train_r2_scores.append(train_r2)
test_r2_scores.append(test_r2)
average_mse_scores.append(average_mse)
average_r2_scores.append(average_r2)

# Update the best model based on the performance on the train set
if train_mse < best_score:

best_score = train_mse
best_model = best_fold_model
best_train_index = train_index
best_test_index = test_index

train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
average_mse_scores = np.array(average_mse_scores)
average_r2_scores = np.array(average_r2_scores)

return best_model, best_train_index, best_test_index, train_mse_scores,
test_mse_scores, train_r2_scores, test_r2_scores, average_mse_scores,
average_r2_scores

# In[ ]:

def print_scores(train_mse_scores, test_mse_scores, train_r2_scores, test_r2_scores):
print(f"\nAverage Training Mean Squared Error: {train_mse_scores.mean().round(3)}")
print(f"Average Testing Mean Squared Error: {test_mse_scores.mean().round(3)}")

print(f"\nAverage Training R² Score: {train_r2_scores.mean().round(3)}")
print(f"Average Testing R² Score: {test_r2_scores.mean().round(3)}")

best_model_index = np.argmin(train_mse_scores)

print(f"\n\nTraining Mean Squared Error of the Best Model: {train_mse_scores[
best_model_index].round(3)}")
print(f"Testing Mean Squared Error of the Best Model: {test_mse_scores[
best_model_index].round(3)}")

print(f"\nTraining R² Score of the Best Model: {train_r2_scores[best_model_index].
round(3)}")
print(f"Testing R² Score of the Best Model: {test_r2_scores[best_model_index].round(3)
}")

# In[ ]:

def plot_performance(dependent_var, model, model_name, X_train, y_train, X_test, y_test):
# Define the range of the dependent variable
if '_intensity' in dependent_var:

var_range = [0, 5]
else:

var_range = [1, 9]

# Predict on training and test data
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

# Plot actual vs predicted values
plt.figure(figsize=(12, 4))

# Plot train data
plt.subplot(1, 2, 1)
plt.scatter(y_train, y_train_pred, color='royalblue', alpha=0.5, label='Train data')
plt.plot(var_range, var_range, 'k--', lw=2)
plt.xlabel(f'Actual {titles[dependent_var]}')
plt.xlim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.ylabel(f'Predicted {titles[dependent_var]}')
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plt.ylim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.text(var_range[0], var_range[1] - 0.5, "MSE = {:.3f}".format(mean_squared_error(
y_train, y_train_pred)))
plt.text(var_range[0], var_range[1] - 1, "$R^2$ = {:.3f}".format(r2_score(y_train,
y_train_pred)))
plt.legend(loc="lower right")

# Plot test data
plt.subplot(1, 2, 2)
plt.scatter(y_test, y_test_pred, color='lightskyblue', alpha=0.5, label='Test data')
plt.plot(var_range, var_range, 'k--', lw=2)
plt.xlabel(f'Actual {titles[dependent_var]}')
plt.xlim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.ylabel(f'Predicted {titles[dependent_var]}')
plt.ylim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.text(var_range[0], var_range[1] - 0.5, "MSE = {:.3f}".format(mean_squared_error(
y_test, y_test_pred)))
plt.text(var_range[0], var_range[1] - 1, "$R^2$ = {:.3f}".format(r2_score(y_test,
y_test_pred)))
plt.legend(loc="lower right")

plt.savefig(f'../Data/Figures/{model_name}_performance.pdf', bbox_inches='tight')

plt.show()

# In[ ]:

def plot_residuals(dependent_var, model, model_name, X_train, y_train, X_test, y_test):
# Define the range of the dependent variable
if '_intensity' in dependent_var:

var_range = [0, 5]
else:

var_range = [1, 9]

# Predict on training and test data
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

# Plot actual vs predicted values
plt.figure(figsize=(12, 4))

# Calculate residuals
train_residuals = y_train - y_train_pred
test_residuals = y_test - y_test_pred

# Plot train residuals
plt.subplot(1, 2, 1)
plt.scatter(y_train_pred, train_residuals, color='royalblue', alpha=0.5, label='Train
data')
plt.axhline(y=0, color='black', linestyle='--')
plt.xlim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.xticks(range(var_range[0], var_range[1] + 1))
plt.ylim(-var_range[1] - 1, var_range[1] + 1)
plt.yticks(range(-var_range[1], var_range[1] + 1))
plt.xlabel(f'Predicted {titles[dependent_var]}')
plt.ylabel('Residuals')
plt.legend(loc="lower right")

# Plot test residuals
plt.subplot(1, 2, 2)
plt.scatter(y_test_pred, test_residuals, color='lightskyblue', alpha=0.5, label='Test
data')
plt.axhline(y=0, color='black', linestyle='--')
plt.xlim(var_range[0] - 0.5, var_range[1] + 0.5)
plt.xticks(range(var_range[0], var_range[1] + 1))
plt.ylim(-var_range[1] - 0.5, var_range[1] + 0.5)
plt.yticks(range(-var_range[1], var_range[1] + 1))
plt.xlabel(f'Predicted {titles[dependent_var]}')
plt.ylabel('Residuals')
plt.legend(loc="lower right")
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plt.savefig(f'../Data/Figures/{model_name}_residuals.pdf', bbox_inches='tight')

plt.tight_layout()
plt.show()

# In[ ]:

def plot_importances(rf_importances_df, plot_name):
rf_importances_df.index = rf_importances_df.index.map(lambda feature: titles.get(
feature, feature))
plt.figure(figsize=(6, 4))
sns.barplot(x='Importance', y='Feature', data=rf_importances_df.sort_values(by='
Importance', ascending=False).head(10), color='lightskyblue')
plt.xlabel('Importance')
plt.ylabel('')
plt.savefig(f'../Data/Figures/{plot_name}.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

def save_model(model, model_name):
# Save the model to a file using pickle
with open(f'../Data/Models/{model_name}.pkl', 'wb') as file:

pickle.dump(model, file)

print(f"Model {model_name} saved successfully.")

# In[ ]:

def load_model(model_name):
# Load the model from the file using pickle
with open(f'../Data/Models/{model_name}.pkl', 'rb') as file:

loaded_model = pickle.load(file)

return loaded_model

# ## Data Preparation

# In[ ]:

file_path = '../Data/Processed/rating_numeric.csv'

# In[ ]:

# Load data
data = pd.read_csv(file_path, header=0, index_col=[0, 1])

# Convert start_time and end_time to datetime format
data['start_time'] = pd.to_datetime(data['start_time'])
data['end_time'] = pd.to_datetime(data['end_time'])

# Drop the 'appraisal' column as it is non-numeric
data = data.drop(columns=['appraisal'])

# In[ ]:

# Display basic information about the dataset
data.info()

# In[ ]:
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data.describe(include=np.number)

# In[ ]:

data

# ## Exploratory Data Analysis

# In[ ]:

fig, axes = plt.subplots(3, 3, figsize=(12, 6))

for ax, independent_var in zip(axes.flatten(), independent_vars):
# Create the histplot in the specified subplot
sns.histplot(data=data, x=independent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[independent_var])
ax.set_xlabel('')
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/independent_vars_hists.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

fig, axes = plt.subplots(2, 3, figsize=(12, 6))

for ax, dependent_var in zip(axes.flatten(), intensity_columns):
# Create the catplot in the specified subplot
sns.countplot(data=data, x=dependent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xlim(-0.5, 5.5)
ax.set_xticks(range(6))
ax.set_xticklabels(['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/intensity_vars_hists.pdf', bbox_inches='tight')
plt.show()

# Next, we create a grid of count plots to visualize the distributions of the Self-
Assessment Manikin columns:

# In[ ]:

fig, axes = plt.subplots(1, 3, figsize=(12, 3))

for ax, dependent_var in zip(axes.flatten(), sam_columns):
# Create the catplot in the specified subplot
sns.countplot(data=data, x=dependent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xticks(range(9))
ax.set_xticklabels(range(1,10))
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/sam_vars_hists.pdf', bbox_inches='tight')
plt.show()

# #### Correlation Matrix of the Independent Variables
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# In[ ]:

corr_matrix = data[independent_vars + dependent_vars].corr(method='spearman')

# In[ ]:

spearman_test_results_df = spearman_test(data, independent_vars, independent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in independent_vars]
sns.heatmap(corr_matrix.iloc[:9, :9], mask=np.triu(np.ones_like(corr_matrix.iloc[:9, :9],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_independent_vars.pdf', bbox_inches='tight')
plt.show()

# #### Correlation Matrix of the Dependent Variables

# In[ ]:

spearman_test_results_df = spearman_test(data, dependent_vars, dependent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, 9:], mask=np.triu(np.ones_like(corr_matrix.iloc[9:, 9:],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_dependent_vars.pdf', bbox_inches='tight')
plt.show()

# #### Correlation Matrix of the Independent and the Dependent Variables

# In[ ]:

spearman_test_results_df = spearman_test(data, independent_vars, dependent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
xticklabels = [titles[var] for var in independent_vars]
yticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, :9], annot=annot, xticklabels=xticklabels, yticklabels=

yticklabels, cmap='coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)
plt.savefig('../Data/Figures/correlation_independent_dependent_vars.pdf', bbox_inches='

tight')
plt.show()

# ## Outlier Removal

# In[ ]:

# Function to detect and remove outliers using IQR
def remove_outliers(df, columns):

for col in columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

return df
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# Remove outliers from the dependent variables
cleaned_data = remove_outliers(data, dependent_vars)

# In[ ]:

cleaned_data

# In[ ]:

cleaned_data.groupby("video_id").transform("size").mean()

# ## Exploratory Data Analysis Post Outlier Removal

# In[ ]:

ffig, axes = plt.subplots(3, 3, figsize=(12, 6))

for ax, independent_var in zip(axes.flatten(), independent_vars):
# Create the histplot in the specified subplot
sns.histplot(data=cleaned_data, x=independent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[independent_var])
ax.set_xlabel('')
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/independent_vars_hists_no_outliers.pdf', bbox_inches='tight')
plt.show()

# ### Visualize Distributions of Dependent Variables
#
# Next, we create a grid of count plots to visualize the distributions of the emotion

intensity variables. This helps us understand the distribution of the intensities for
each emotion:

# In[ ]:

fig, axes = plt.subplots(2, 3, figsize=(12, 6))

for ax, dependent_var in zip(axes.flatten(), intensity_columns):
# Create the catplot in the specified subplot
sns.countplot(data=cleaned_data, x=dependent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xlim(-0.5, 5.5)
ax.set_xticks(range(6))
ax.set_xticklabels(['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/intensity_vars_hists_no_outliers.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

fig, axes = plt.subplots(1, 3, figsize=(12, 3))

for ax, dependent_var in zip(axes.flatten(), sam_columns):
# Create the catplot in the specified subplot
sns.countplot(data=cleaned_data, x=dependent_var, ax=ax, color='lightskyblue')
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xticks(range(9))
ax.set_xticklabels(range(1,10))
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ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/sam_vars_hists_no_outliers.pdf', bbox_inches='tight')
plt.show()

# #### Correlation Matrix of the Independent Variables Post Outlier Removal

# In[ ]:

corr_matrix = cleaned_data[independent_vars + dependent_vars].corr(method='spearman')

# In[ ]:

spearman_test_results_df = spearman_test(cleaned_data, independent_vars, independent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in independent_vars]
sns.heatmap(corr_matrix.iloc[:9, :9], mask=np.triu(np.ones_like(corr_matrix.iloc[:9, :9],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_independent_vars_no_outliers.pdf', bbox_inches='
tight')

plt.show()

# #### Correlation Matrix of the Dependent Variables Post Outlier Removal

# In[ ]:

spearman_test_results_df = spearman_test(cleaned_data, dependent_vars, dependent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, 9:], mask=np.triu(np.ones_like(corr_matrix.iloc[9:, 9:],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_dependent_vars_no_outliers.pdf', bbox_inches='
tight')

plt.show()

# #### Correlation Matrix of the Independent and the Dependent Variables Post Outlier
Removal

# In[ ]:

spearman_test_results_df = spearman_test(cleaned_data, independent_vars, dependent_vars)
annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
xticklabels = [titles[var] for var in independent_vars]
yticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, :9], annot=annot, xticklabels=xticklabels, yticklabels=

yticklabels, cmap='coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)
plt.savefig('../Data/Figures/correlation_independent_dependent_vars_no_outliers.pdf',

bbox_inches='tight')
plt.show()

# ## Reducing Noise in the Dependent Variables by Aggregation

# In[ ]:
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# Aggregate the dependent variables by video_id (mean, median, and mode)
dependent_aggregated_mean = cleaned_data.groupby('video_id')[dependent_vars].mean().

add_suffix('_mean')
dependent_aggregated_median = cleaned_data.groupby('video_id')[dependent_vars].median().

add_suffix('_median')
dependent_aggregated_mode = cleaned_data.groupby('video_id')[dependent_vars].agg(lambda x:

x.mode().iloc[0]).add_suffix('_mode')

# Add the titles of the aggregated variables
for dependent_var in dependent_vars:

for aggregation in ['mean', 'median', 'mode']:
dependent_aggregated_var = dependent_var + '_' + aggregation
titles[dependent_aggregated_var] = aggregation.title() + ' ' + titles[

dependent_var]

# Merge the aggregated dependent variables with the original independent variables
aggregated_dependent_vars = pd.concat([dependent_aggregated_mean ,

dependent_aggregated_median , dependent_aggregated_mode], axis=1)
cleaned_data = cleaned_data.merge(aggregated_dependent_vars , on='video_id')
cleaned_aggregated_data = cleaned_data.reset_index().drop_duplicates('video_id').set_index

('video_id')
cleaned_aggregated_data = cleaned_aggregated_data.drop(['start_time', 'end_time'], axis=1)

# In[ ]:

cleaned_aggregated_data.sort_index()

# In[ ]:

descriptive_statistics = cleaned_aggregated_data[dependent_vars].describe().round(3)
descriptive_statistics.columns = [titles[var] for var in dependent_vars]
descriptive_statistics.loc['mean':, :].T.to_csv('../Data/Tables/dependent_vars_statistics.

csv')

# In[ ]:

descriptive_statistics

# In[ ]:

descriptive_statistics_aggregated = dependent_aggregated_mean.describe().round(3)
descriptive_statistics_aggregated.columns = [titles[var] for var in dependent_vars]
descriptive_statistics_aggregated.loc['mean':, :].T.to_csv('../Data/Tables/

dependent_aggregated_vars_statistics.csv')

# In[ ]:

descriptive_statistics_aggregated

# In[ ]:

# Select mean because it's the one that reduces noise the most
target_aggregation = 'mean'

# Select target aggregated variable
mask = [target_aggregation in column for column in cleaned_aggregated_data.columns]
dependent_aggregated_vars = list(cleaned_aggregated_data.columns[mask])

# ## Exploratory Data Analysis Post Aggregation
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# In[ ]:

plt.figure(figsize=(12, 6))
g = sns.pairplot(cleaned_aggregated_data[independent_continuous_vars], diag_kind="hist",

plot_kws={'color': 'lightskyblue'}, diag_kws={'color': 'lightskyblue'})
for ax in g.axes.flatten():

try:
xlabel = ax.get_xlabel()
ylabel = ax.get_ylabel()
if xlabel in titles:

ax.set_xlabel(titles[xlabel])
if ylabel in titles:

ax.set_ylabel(titles[ylabel])
except:

continue
plt.savefig('../Data/Figures/independent_vars_pairplot.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

plt.figure(figsize=(10, 6))
g = sns.pairplot(cleaned_aggregated_data[dependent_aggregated_vars], diag_kind="hist",

plot_kws={'color': 'lightskyblue'}, diag_kws={'color': 'lightskyblue'})
for ax in g.axes.flatten():

try:
xlabel = ax.get_xlabel()
ylabel = ax.get_ylabel()
if xlabel in titles:

ax.set_xlabel(titles[xlabel])
if ylabel in titles:

ax.set_ylabel(titles[ylabel])
except:

continue
plt.savefig('../Data/Figures/dependent_vars_pairplot.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

fig, axes = plt.subplots(3, 3, figsize=(12, 6))

for ax, independent_var in zip(axes.flatten(), independent_vars):
# Create the histplot in the specified subplot
sns.histplot(data=cleaned_aggregated_data , x=independent_var, ax=ax, color='
lightskyblue')
ax.set_title(titles[independent_var])
ax.set_xlabel('')
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/independent_vars_hists_aggregated.pdf', bbox_inches='tight')
plt.show()

# ### Visualize Distributions of Dependent Variables Post Aggregation

# In[ ]:

fig, axes = plt.subplots(2, 3, figsize=(12, 6))

intensity_columns_aggregated = [column + '_' + target_aggregation for column in
intensity_columns]

for ax, dependent_var in zip(axes.flatten(), intensity_columns_aggregated):
# Create the catplot in the specified subplot
if 'disgust' in dependent_var:

sns.histplot(data=cleaned_aggregated_data , x=dependent_var, ax=ax, color='
lightskyblue', bins=5)
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else:
sns.histplot(data=cleaned_aggregated_data , x=dependent_var, ax=ax, color='

lightskyblue', bins=10)
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xlim(-0.5, 5.5)
ax.set_xticks(range(6))
ax.set_xticklabels(['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/intensity_vars_hists_aggregated.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

fig, axes = plt.subplots(1, 3, figsize=(12, 3))

sam_columns_aggregated = [column + '_' + target_aggregation for column in sam_columns]

for ax, dependent_var in zip(axes.flatten(), sam_columns_aggregated):
# Create the catplot in the specified subplot
sns.histplot(data=cleaned_aggregated_data , x=dependent_var, ax=ax, color='lightskyblue
', bins=10)
ax.set_title(titles[dependent_var])
ax.set_xlabel('')
ax.set_xticks(range(9))
ax.set_xticklabels(range(1,10))
ax.set_ylabel('Count')

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig('../Data/Figures/sam_vars_hists_aggregated.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

plt.figure(figsize=(13,3))
sns.boxplot(cleaned_aggregated_data[intensity_columns_aggregated], color='lightskyblue')
plt.xticks(ticks=range(len(intensity_columns_aggregated)),

labels=[titles[var] for var in intensity_columns_aggregated])
# plt.yticks(ticks=range(6),
# labels=['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])
plt.yticks(ticks=range(6))
plt.savefig('../Data/Figures/boxplot_intensity_cols.pdf', bbox_inches='tight')
plt.show()

# In[ ]:

plt.figure(figsize=(13,3))
sns.boxplot(cleaned_aggregated_data[sam_columns_aggregated], color='lightskyblue')
plt.xticks(ticks=range(len(sam_columns_aggregated)),

labels=[titles[var] for var in sam_columns_aggregated])
plt.yticks(ticks=range(1,10))
plt.savefig('../Data/Figures/boxplot_sam_cols.pdf', bbox_inches='tight')
plt.show()

# #### Correlation Matrix of the Independent Variables Post Aggregation

# In[ ]:

corr_matrix = cleaned_aggregated_data[independent_vars + dependent_aggregated_vars].corr(
method='spearman')

# In[ ]:
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spearman_test_results_df = spearman_test(cleaned_aggregated_data , independent_vars,
independent_vars)

annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in independent_vars]
sns.heatmap(corr_matrix.iloc[:9, :9], mask=np.triu(np.ones_like(corr_matrix.iloc[:9, :9],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_independent_vars_aggregated.pdf', bbox_inches='
tight')

plt.show()

# #### Correlation Matrix of the Dependent Variables Post Aggregation

# In[ ]:

spearman_test_results_df = spearman_test(cleaned_aggregated_data ,
dependent_aggregated_vars , dependent_aggregated_vars)

annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
ticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, 9:], mask=np.triu(np.ones_like(corr_matrix.iloc[9:, 9:],

dtype=bool), k=1), annot=annot, xticklabels=ticklabels, yticklabels=ticklabels, cmap='
coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)

plt.savefig('../Data/Figures/correlation_dependent_vars_aggregated.pdf', bbox_inches='
tight')

plt.show()

# #### Correlation Matrix of the Independent and the Dependent Variables Aggregation

# In[ ]:

spearman_test_results_df = spearman_test(cleaned_data, independent_vars,
dependent_aggregated_vars)

annot = get_correlation_annots(spearman_test_results_df)

plt.figure(figsize=(12, 6))
xticklabels = [titles[var] for var in independent_vars]
yticklabels = [titles[var] for var in dependent_vars]
sns.heatmap(corr_matrix.iloc[9:, :9], annot=annot, xticklabels=xticklabels, yticklabels=

yticklabels, cmap='coolwarm', fmt='', center=0, vmin=-1, vmax=1, cbar=False)
plt.savefig('../Data/Figures/correlation_independent_dependent_vars_aggregated.pdf',

bbox_inches='tight')
plt.show()

# In[ ]:

# Set up the matplotlib figure
plt.figure(figsize=(16, 4))

# Scatter plot for Wander Speed vs Arousal
plt.subplot(1, 3, 1)
sns.scatterplot(data=cleaned_aggregated_data , x='wander_speed', y='_'.join(('arousal',

target_aggregation)), color='lightskyblue')
plt.xlabel('Wander Speed')
plt.ylabel('Mean Arousal')
plt.ylim(1, 9)

# Scatter plot for Blink Temperature vs Anger Intensity
plt.subplot(1, 3, 2)
sns.scatterplot(data=cleaned_aggregated_data , x='blink_temperature', y='_'.join(('

anger_intensity', target_aggregation)), color='lightskyblue')
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plt.xlabel('Blink Temperature')
plt.ylabel('Mean Anger Intensity')
plt.ylim(0, 5)
plt.yticks(range(0, 6), ['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])

# Scatter plot for Beep Pitch vs Surprise Intensity
plt.subplot(1, 3, 3)
sns.scatterplot(data=cleaned_aggregated_data , x='beep_pitch', y='_'.join(('

surprise_intensity', target_aggregation)), color='lightskyblue')
plt.xlabel('Beep Pitch')
plt.ylabel('Mean Surprise Intensity')
plt.ylim(0, 5)
plt.yticks(range(0, 6), ['N/A', 'Very Low', 'Low', 'Average', 'High', 'Very High'])

# Display the plots
plt.tight_layout()
plt.show()

# ## Hypotheses Testing RQ1, RQ2 and RQ3

# In[ ]:

selected = []

# In[ ]:

selected.append(spearman_test_results_df[['correlation', 'p_non_zero']].rename(columns={'
correlation': 'statistic', 'p_non_zero': 'p_value'}))

# In[ ]:

h1_h2_h3_df = pd.concat(selected, axis=0)

# In[ ]:

h1_h2_h3_df

# In[ ]:

h1_h2_h3_df = bonferrroni_correction(h1_h2_h3_df)

# In[ ]:

h1_h2_h3_df

# In[ ]:

h1_h2_h3_df.reset_index(inplace=True)
h1_h2_h3_df['reject_h0'] = h1_h2_h3_df['reject_h0'].astype("string")
h1_h2_h3_df['p_value'] = h1_h2_h3_df['p_value'] / 2
h1_h2_h3_df.drop(columns=['p_value'], inplace=True)
h1_h2_h3_df.loc[h1_h2_h3_df['reject_h0'] == 'True', 'reject_h0'] = 'Reject $H_0$'
h1_h2_h3_df.loc[h1_h2_h3_df['reject_h0'] == 'False', 'reject_h0']= 'Fail to reject $H_0$'
h1_h2_h3_df.independent_variable = h1_h2_h3_df.independent_variable.map(lambda feature:

titles.get(feature, feature))
h1_h2_h3_df.dependent_variable = h1_h2_h3_df.dependent_variable.map(lambda feature: titles

.get(feature, feature))
h1_h2_h3_df.columns = ['Independent Variable', 'Dependent Variable', 'Spearman $\rho$', '

$p$-value', 'Decision']
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h1_h2_h3_df = h1_h2_h3_df.round(3)
h1_h2_h3_df['absolute_rho'] = np.abs(h1_h2_h3_df['Spearman $\rho$'])
h1_h2_h3_df.sort_values(by=['Dependent Variable', 'absolute_rho', 'Independent Variable'],

ascending=False, inplace=True)
h1_h2_h3_df.set_index(['Dependent Variable', 'Independent Variable'], inplace=True)
h1_h2_h3_df.drop(columns='absolute_rho', inplace=True)

# In[ ]:

h1_h2_h3_df[h1_h2_h3_df['Decision'] == 'Reject $H_0$'][['Spearman $\rho$', '$p$-value']]

# In[ ]:

h1_h2_h3_df[h1_h2_h3_df['Decision'] == 'Reject $H_0$'][['Spearman $\rho$', '$p$-value']].
to_csv('../Data/Tables/correlation_results.csv')

h1_h2_h3_df[h1_h2_h3_df['Decision'] == 'Reject $H_0$'][['Spearman $\rho$', '$p$-value']]

# ## Model Training

# In[ ]:

param_grid = {
'n_estimators': [100, 200, 500],
'max_depth': [10, 20, 30, None],
'min_samples_split': [2, 5, 10, 20],
'min_samples_leaf': [1, 2, 4, 10],
'max_features': [1, 'sqrt', 'log2']

}

# In[ ]:

scores = []

# ### Gaussian Mixture Model Clustering

# In[ ]:

def evaluate_gmm(data, max_clusters=10):
bics = []
aics = []
silhouette_scores = []

# Scale the data
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

for n in range(2, max_clusters + 1):
gmm = GaussianMixture(n_components=n, random_state=42)
gmm.fit(data_scaled)

# Calculate BIC and AIC
bics.append(gmm.bic(data_scaled))
aics.append(gmm.aic(data_scaled))

# Calculate Silhouette Score
labels = gmm.predict(data_scaled)
silhouette_scores.append(silhouette_score(data_scaled, labels))

# Plot the results
plt.figure(figsize=(12, 3))

plt.plot(range(2, max_clusters + 1), bics, 'o-', label='BIC', color='lightskyblue')
plt.plot(range(2, max_clusters + 1), aics, 'o-', label='AIC', color='royalblue')
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plt.xlabel('Number of Clusters')
plt.ylabel('Information Criterion')
plt.legend()

plt.savefig('../Data/Figures/gmm_clusters.pdf', bbox_inches='tight')

plt.show()

# Determine the optimal number of clusters based on the minimum BIC and maximum
Silhouette Score
optimal_clusters_bic = np.argmin(bics) + 2 # +2 because range starts at 2

print(f"Optimal number of clusters based on BIC: {optimal_clusters_bic}")

return optimal_clusters_bic

data = cleaned_aggregated_data[independent_vars] # Replace with your actual data
optimal_clusters_bic = evaluate_gmm(data)

# In[ ]:

# Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(cleaned_aggregated_data[independent_vars])

gmm = GaussianMixture(n_components=6, random_state=42)
gmm.fit(X_scaled)
probabilities = gmm.predict_proba(X_scaled)

# Add cluster probabilities as new columns
probabilities_df = pd.DataFrame(probabilities, columns=[f'cluster_prob_{i}' for i in range

(probabilities.shape[1])], index=cleaned_aggregated_data.index)

cleaned_aggregated_data = pd.concat([cleaned_aggregated_data , probabilities_df], axis=1)

cluster_cols = list(probabilities_df.columns)

cleaned_aggregated_data['cluster_id'] = np.argmax(cleaned_aggregated_data[cluster_cols],
axis=1)

cluster_cols_with_id = cluster_cols + ['cluster_id']

# In[ ]:

cleaned_aggregated_data

# ### Data Preparation for Regression

# In[ ]:

def prepare_training_dataset(X, include_interactions=True):
original_index = X.index
if include_interactions:

# Include the interaction effect features
poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
X_poly = poly.fit_transform(X)

# Get the feature names
feature_names = poly.get_feature_names_out(X.columns)

# Standardize the features
scaler = StandardScaler()
X = scaler.fit_transform(X_poly)

else:
feature_names = X.columns

# Standardize the features
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scaler = StandardScaler()
X = scaler.fit_transform(X)

# Convert X_scaled to a DataFrame with the correct column names
X = pd.DataFrame(X, columns=feature_names, index=original_index)

return X, feature_names

# In[ ]:

# Select only the 9 independent variables for training
X, feature_names = prepare_training_dataset(cleaned_aggregated_data[independent_vars],

False)

# Select the 9 independent variables and the GMM cluster probabilities for training
X_gmm, gmm_feature_names = prepare_training_dataset(cleaned_aggregated_data[

independent_vars + cluster_cols], False)

# Select the 9 independent variables, the GMM cluster probabilities, and the interaction
terms for training

X_int, int_feature_names = prepare_training_dataset(cleaned_aggregated_data[
independent_vars], True)

# Select the 9 independent variables, the GMM cluster probabilities, and the interaction
terms for training

X_gmm_int, gmm_int_feature_names = prepare_training_dataset(cleaned_aggregated_data[
independent_vars + cluster_cols], True)

# In[ ]:

# Select the target dependent variable
target_dependent_var = 'dominance'
target_aggregated_dependent_var = target_dependent_var + '_' + target_aggregation
y = cleaned_aggregated_data[target_aggregated_dependent_var]

# ## Linear model

# #### Simple linear regression model

# In[ ]:

lin_model, selected_features, p_values, train_index, test_index, train_mse_scores,
test_mse_scores, train_r2_scores, test_r2_scores, average_mse_scores,
average_r2_scores = k_fold_training_linear_model(X, y)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X.iloc[train_index], X.iloc[test_index], y.iloc[

train_index], y.iloc[test_index]

# In[ ]:

lin_model_df = pd.DataFrame({'Feature': lin_model.feature_names_in_, 'Coefficient':
lin_model.coef_, '$p$-value': p_values.loc[selected_features].to_numpy().flatten()})

lin_model_df['Absolute Coefficient'] = np.abs(lin_model_df['Coefficient'])
lin_model_df.sort_values(by='Absolute Coefficient', ascending=False, inplace=True)
lin_model_df.set_index('Feature', inplace=True)
lin_model_df.index = lin_model_df.index.map(lambda feature: titles.get(feature, feature))
lin_model_df.drop(columns='Absolute Coefficient', inplace=True)
lin_model_df.head(10).round(3).to_csv(f'../Data/Tables/lin_model_{target_dependent_var}

_coefficients.csv')



92 Appendix A. Code

# In[ ]:

lin_model_df.head(10).round(3)

# In[ ]:

print_scores(train_mse_scores, test_mse_scores, train_r2_scores, test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , lin_model, f'lin_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , lin_model, f'lin_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

scores.append({'model_type': 'lin_model', 'score_type': 'mse_scores', 'dependent_variable'
: target_dependent_var , 'baseline_scores': average_mse_scores, 'scores':
test_mse_scores, 'train_scores': train_mse_scores})

scores.append({'model_type': 'lin_model', 'score_type': 'r2_scores', 'dependent_variable':
target_dependent_var, 'baseline_scores': average_r2_scores, 'scores': test_r2_scores,
'train_scores': train_r2_scores})

# In[ ]:

save_model(lin_model, f'lin_model_{target_dependent_var}')

# #### Linear regression model with interactions

# In[ ]:

lin_int_model, selected_features, p_values, train_index, test_index, train_mse_scores,
int_test_mse_scores , train_r2_scores, int_test_r2_scores, average_mse_scores,
average_r2_scores = k_fold_training_linear_model(X_int, y)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X_int.iloc[train_index], X_int.iloc[test_index], y.iloc

[train_index], y.iloc[test_index]

# In[ ]:

lin_int_model_df = pd.DataFrame({'Feature': lin_int_model.feature_names_in_, 'Coefficient'
: lin_int_model.coef_, '$p$-value': p_values.loc[selected_features].to_numpy().flatten
()})

lin_int_model_df['Absolute Coefficient'] = np.abs(lin_int_model_df['Coefficient'])
lin_int_model_df.sort_values(by='Absolute Coefficient', ascending=False, inplace=True)
lin_int_model_df.set_index('Feature', inplace=True)
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lin_int_model_df.index = lin_int_model_df.index.map(lambda feature: titles.get(feature,
feature))

lin_int_model_df.drop(columns='Absolute Coefficient', inplace=True)
lin_int_model_df.head(10).round(3).to_csv(f'../Data/Tables/lin_int_model_{

target_dependent_var}_coefficients.csv')

# In[ ]:

lin_int_model_df.head(10).round(3)

# In[ ]:

print_scores(train_mse_scores, int_test_mse_scores , train_r2_scores, int_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , lin_int_model, f'lin_int_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , lin_int_model, f'lin_int_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

scores.append({'model_type': 'lin_int_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_mse_scores, 'scores
': int_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'lin_int_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_r2_scores, 'scores'
: int_test_r2_scores, 'train_scores': train_r2_scores})

# In[ ]:

save_model(lin_int_model, f'lin_int_model_{target_dependent_var}')

# #### Linear regression model with GMM cluster probabilities

# In[ ]:

lin_gmm_model, selected_features, p_values, train_index, test_index, train_mse_scores,
gmm_test_mse_scores , train_r2_scores, gmm_test_r2_scores, average_mse_scores,
average_r2_scores = k_fold_training_linear_model(X_gmm, y)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X_gmm.iloc[train_index], X_gmm.iloc[test_index], y.iloc

[train_index], y.iloc[test_index]

# In[ ]:
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lin_gmm_model_df = pd.DataFrame({'Feature': lin_gmm_model.feature_names_in_, 'Coefficient'
: lin_gmm_model.coef_, '$p$-value': p_values.loc[selected_features].to_numpy().flatten
()})

lin_gmm_model_df['Absolute Coefficient'] = np.abs(lin_gmm_model_df['Coefficient'])
lin_gmm_model_df.sort_values(by='Absolute Coefficient', ascending=False, inplace=True)
lin_gmm_model_df.set_index('Feature', inplace=True)
lin_gmm_model_df.index = lin_gmm_model_df.index.map(lambda feature: titles.get(feature,

feature))
lin_gmm_model_df.drop(columns='Absolute Coefficient', inplace=True)
lin_gmm_model_df.head(10).round(3).to_csv(f'../Data/Tables/lin_gmm_model_{

target_dependent_var}_coefficients.csv')

# In[ ]:

lin_gmm_model_df.head(10).round(3)

# In[ ]:

print_scores(train_mse_scores, gmm_test_mse_scores , train_r2_scores, gmm_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , lin_gmm_model, f'lin_gmm_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , lin_gmm_model, f'lin_gmm_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

scores.append({'model_type': 'lin_gmm_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_mse_scores, 'scores
': gmm_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'lin_gmm_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_r2_scores, 'scores'
: gmm_test_r2_scores, 'train_scores': train_r2_scores})

# In[ ]:

save_model(lin_gmm_model, f'lin_gmm_model_{target_dependent_var}')

# #### Linear regression model with GMM cluster probabilities and interactions

# In[ ]:

lin_gmm_int_model, selected_features, p_values, train_index, test_index, train_mse_scores,
gmm_int_test_mse_scores , train_r2_scores, gmm_int_test_r2_scores , average_mse_scores,
average_r2_scores = k_fold_training_linear_model(X_gmm_int, y)

# In[ ]:

# Split the data
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X_train, X_test, y_train, y_test = X_gmm_int.iloc[train_index], X_gmm_int.iloc[test_index
], y.iloc[train_index], y.iloc[test_index]

# In[ ]:

lin_gmm_int_model_df = pd.DataFrame({'Feature': lin_gmm_int_model.feature_names_in_, '
Coefficient': lin_gmm_int_model.coef_, '$p$-value': p_values.loc[selected_features].
to_numpy().flatten()})

lin_gmm_int_model_df['Absolute Coefficient'] = np.abs(lin_gmm_int_model_df['Coefficient'])
lin_gmm_int_model_df.sort_values(by='Absolute Coefficient', ascending=False, inplace=True)
lin_gmm_int_model_df.set_index('Feature', inplace=True)
lin_gmm_int_model_df.index = lin_gmm_int_model_df.index.map(lambda feature: titles.get(

feature, feature))
lin_gmm_int_model_df.drop(columns='Absolute Coefficient', inplace=True)
lin_gmm_int_model_df.head(10).round(3).to_csv(f'../Data/Tables/lin_gmm_int_model_{

target_dependent_var}_coefficients.csv')

# In[ ]:

lin_gmm_int_model_df.head(10).round(3)

# In[ ]:

print_scores(train_mse_scores, gmm_int_test_mse_scores , train_r2_scores,
gmm_int_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , lin_gmm_int_model, f'lin_gmm_int_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , lin_gmm_int_model, f'lin_gmm_int_model_{
target_dependent_var}', X_train[selected_features], y_train, X_test[selected_features
], y_test)

# In[ ]:

scores.append({'model_type': 'lin_gmm_int_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': gmm_test_mse_scores , '
scores': gmm_int_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'lin_gmm_int_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': gmm_test_r2_scores, '
scores': gmm_int_test_r2_scores , 'train_scores': train_r2_scores})

# In[ ]:

save_model(lin_gmm_int_model, f'lin_gmm_int_model_{target_dependent_var}')

# ## Random forest model

# #### Simple random forest regression model

# In[ ]:
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rf_model, train_index, test_index, train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores, average_mse_scores, average_r2_scores =
k_fold_training_random_forest_model(X.to_numpy(), y, param_grid)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X.iloc[train_index], X.iloc[test_index], y.iloc[

train_index], y.iloc[test_index]

# In[ ]:

rf_model.get_params()

# In[ ]:

rf_model_df = pd.DataFrame({'Feature': feature_names, 'Importance': rf_model.
feature_importances_})

rf_model_df.set_index('Feature', inplace=True)

# In[ ]:

plot_importances(rf_model_df, f'rf_model_{target_dependent_var}_importances')

# In[ ]:

print_scores(train_mse_scores, test_mse_scores, train_r2_scores, test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , rf_model, f'rf_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , rf_model, f'rf_model_{target_dependent_var
}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

scores.append({'model_type': 'rf_model', 'score_type': 'mse_scores', 'dependent_variable':
target_dependent_var, 'baseline_scores': average_mse_scores, 'scores':

test_mse_scores, 'train_scores': train_mse_scores})
scores.append({'model_type': 'rf_model', 'score_type': 'r2_scores', 'dependent_variable':

target_dependent_var, 'baseline_scores': average_r2_scores, 'scores': test_r2_scores,
'train_scores': train_r2_scores})

# In[ ]:

save_model(rf_model, f'rf_model_{target_dependent_var}')

# #### Random forest regression model with interactions

# In[ ]:
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rf_int_model, train_index, test_index, train_mse_scores, int_test_mse_scores,
train_r2_scores, int_test_r2_scores, average_mse_scores, average_r2_scores =
k_fold_training_random_forest_model(X_int.to_numpy(), y, param_grid)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X_int.iloc[train_index], X_int.iloc[test_index], y.iloc

[train_index], y.iloc[test_index]

# In[ ]:

rf_int_model.get_params()

# In[ ]:

rf_int_model_df = pd.DataFrame({'Feature': int_feature_names, 'Importance': rf_int_model.
feature_importances_})

rf_int_model_df.set_index('Feature', inplace=True)

# In[ ]:

plot_importances(rf_int_model_df, f'rf_int_model_{target_dependent_var}_importances')

# In[ ]:

print_scores(train_mse_scores, int_test_mse_scores , train_r2_scores, int_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , rf_int_model, f'rf_int_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , rf_int_model, f'rf_int_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

scores.append({'model_type': 'rf_int_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_mse_scores, 'scores
': int_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'rf_int_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_r2_scores, 'scores'
: int_test_r2_scores, 'train_scores': train_r2_scores})

# In[ ]:

save_model(rf_int_model, f'rf_int_model_{target_dependent_var}')

# #### Random forest regression model with GMM cluster probabilities
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# In[ ]:

rf_gmm_model, train_index, test_index, train_mse_scores, gmm_test_mse_scores,
train_r2_scores, gmm_test_r2_scores, average_mse_scores, average_r2_scores =
k_fold_training_random_forest_model(X_gmm.to_numpy(), y, param_grid)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X_gmm.iloc[train_index], X_gmm.iloc[test_index], y.iloc

[train_index], y.iloc[test_index]

# In[ ]:

rf_gmm_model.get_params()

# In[ ]:

rf_gmm_model_df = pd.DataFrame({'Feature': gmm_feature_names, 'Importance': rf_gmm_model.
feature_importances_})

rf_gmm_model_df.set_index('Feature', inplace=True)

# In[ ]:

plot_importances(rf_gmm_model_df, f'rf_gmm_model_{target_dependent_var}_importances')

# In[ ]:

print_scores(train_mse_scores, gmm_test_mse_scores , train_r2_scores, gmm_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , rf_gmm_model, f'rf_gmm_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , rf_gmm_model, f'rf_gmm_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

scores.append({'model_type': 'rf_gmm_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_mse_scores, 'scores
': gmm_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'rf_gmm_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': test_r2_scores, 'scores'
: gmm_test_r2_scores, 'train_scores': train_r2_scores})

# In[ ]:

save_model(rf_gmm_model, f'rf_gmm_model_{target_dependent_var}')
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# #### Random forest regression model with GMM cluster probabilities and interactions

# In[ ]:

rf_gmm_int_model, train_index, test_index, train_mse_scores, gmm_int_test_mse_scores ,
train_r2_scores, gmm_int_test_r2_scores , average_mse_scores, average_r2_scores =
k_fold_training_random_forest_model(X_gmm_int.to_numpy(), y, param_grid)

# In[ ]:

# Split the data
X_train, X_test, y_train, y_test = X_gmm_int.iloc[train_index], X_gmm_int.iloc[test_index

], y.iloc[train_index], y.iloc[test_index]

# In[ ]:

rf_gmm_int_model.get_params()

# In[ ]:

rf_gmm_int_model_df = pd.DataFrame({'Feature': gmm_int_feature_names , 'Importance':
rf_gmm_int_model.feature_importances_})

rf_gmm_int_model_df.set_index('Feature', inplace=True)

# In[ ]:

plot_importances(rf_gmm_int_model_df, f'rf_gmm_int_model_{target_dependent_var}
_importances')

# In[ ]:

print_scores(train_mse_scores, gmm_int_test_mse_scores , train_r2_scores,
gmm_int_test_r2_scores)

# In[ ]:

plot_performance(target_aggregated_dependent_var , rf_gmm_int_model, f'rf_gmm_int_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

plot_residuals(target_aggregated_dependent_var , rf_gmm_int_model, f'rf_gmm_int_model_{
target_dependent_var}', X_train.to_numpy(), y_train, X_test.to_numpy(), y_test)

# In[ ]:

scores.append({'model_type': 'rf_gmm_int_model', 'score_type': 'mse_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': gmm_test_mse_scores , '
scores': gmm_int_test_mse_scores , 'train_scores': train_mse_scores})

scores.append({'model_type': 'rf_gmm_int_model', 'score_type': 'r2_scores', '
dependent_variable': target_dependent_var , 'baseline_scores': gmm_test_r2_scores, '
scores': gmm_int_test_r2_scores , 'train_scores': train_r2_scores})

# In[ ]:
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save_model(rf_gmm_int_model, f'rf_gmm_int_model_{target_dependent_var}')

# ## Hypotheses Testing RQ4

# In[ ]:

scores_df = pd.DataFrame(scores)
scores_df.set_index(['score_type', 'dependent_variable', 'model_type'], inplace=True)
scores_df['overfit_ratio'] = scores_df['train_scores'] / scores_df['baseline_scores']

# In[ ]:

scores_df.to_csv(f'../Data/Tables/scores.csv')
scores_df

# In[ ]:

t_test_results_df = t_test(scores_df, score_types, model_types, dependent_vars, names=['
scores', 'baseline_scores'])

# In[ ]:

t_test_results_df.to_csv(f'../Data/Tables/t_test_results.csv')
t_test_results_df

# In[ ]:

selected = []

# In[ ]:

selected.append(t_test_results_df.loc['mse_scores', :][['baseline_scores', 'scores', '
t_statistic', 'p_negative',]].rename(columns={'t_statistic': 'statistic', 'p_negative'
: 'p_value'}))

selected.append(t_test_results_df.loc['r2_scores', :][['baseline_scores', 'scores', '
t_statistic', 'p_positive',]].rename(columns={'t_statistic': 'statistic', 'p_positive'
: 'p_value'}))

# In[ ]:

h4_df = pd.concat(selected, axis=0)
h4_df.index = t_test_results_df.index
h4_df['train_scores'] = scores_df['train_scores']
h4_df[['baseline_scores', 'scores', 'train_scores']]

# In[ ]:

h4_df = pd.concat([h4_df[['train_scores', 'scores', 'baseline_scores']],
bonferrroni_correction(h4_df, alpha=0.05, apply_correction=False)], axis=1)

h4_df['baseline_scores'] = h4_df.baseline_scores.apply(np.mean)
h4_df['scores'] = h4_df.scores.apply(np.mean)
h4_df['train_scores'] = h4_df.train_scores.apply(np.mean)
h4_df.reset_index(inplace=True)
h4_df.sort_values(by=['model_type', 'score_type', 'dependent_variable'], inplace=True)
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h4_df.dependent_variable = h4_df.dependent_variable.map(lambda feature: titles.get(feature
, feature))

h4_df.model_type = h4_df.model_type.map(lambda feature: titles.get(feature, feature))
h4_df.score_type = h4_df.score_type.map(lambda feature: titles.get(feature, feature))
h4_df.set_index(['model_type', 'score_type', 'dependent_variable'], inplace=True)
h4_df

# In[ ]:

h4_df = h4_df.round(3)
h4_df['reject_h0'] = h4_df['reject_h0'].astype("string")
h4_df.loc[h4_df['reject_h0'] == 'True', 'reject_h0'] = 'Reject $H_0$'
h4_df.loc[h4_df['reject_h0'] == 'False', 'reject_h0']= 'Fail to reject $H_0$'
h4_df.reset_index(inplace=True)
h4_df.columns = ['Model Type', 'Score Type', 'Dependent Variable', "Training", 'Optimized'

, 'Baseline','$t$-statistic', '$p$-value', 'Decision']

# In[ ]:

h4_df['Dataset'] = None
h4_df.loc[h4_df['Model Type'].str.contains('X'), 'Dataset'] = 'X'
h4_df.loc[h4_df['Model Type'].str.contains('X_int'), 'Dataset'] = 'X_int'
h4_df.loc[h4_df['Model Type'].str.contains('X_gmm'), 'Dataset'] = 'X_gmm'
h4_df.loc[h4_df['Model Type'].str.contains('X_gmm_int'), 'Dataset'] = 'X_gmm_int'
h4_df.loc[h4_df['Model Type'].str.contains('Linear'), 'Model Type'] = 'Linear'
h4_df.loc[h4_df['Model Type'].str.contains('Random forest'), 'Model Type'] = 'Random

Forest'
h4_df.sort_values(by=['Dependent Variable', 'Model Type', 'Dataset'], inplace=True)
h4_df.set_index(['Dependent Variable', 'Model Type', 'Dataset', 'Score Type'], inplace=

True)
h4_df.to_csv(f'../Data/Tables/h4_results.csv')

# In[ ]:

h4_df[h4_df.Decision == 'Reject $H_0$'].loc['Arousal', :, :, :][['Training', 'Optimized',
'Baseline', '$t$-statistic', '$p$-value']].to_csv(f'../Data/Tables/h4_results_arousal.
csv')

h4_df[h4_df.Decision == 'Reject $H_0$'].loc['Arousal', :, :, :][['Training', 'Optimized',
'Baseline', '$t$-statistic', '$p$-value']]

# In[ ]:

overfit_df = scores_df[['baseline_scores', 'scores', 'train_scores', 'overfit_ratio']].
copy()

overfit_df['ones'] = overfit_df.apply(lambda x: np.ones(5), axis=1)

# In[ ]:

t_test_overfitting_results_df = t_test(overfit_df, ['mse_scores'], model_types,
dependent_vars, names=['overfit_ratio', 'ones'])

t_test_overfitting_results_df.to_csv(f'../Data/Tables/t_test_overfitting_results.csv')
t_test_overfitting_results_df

# In[ ]:

selected = []
selected.append(t_test_overfitting_results_df[['baseline_scores', 'scores', 't_statistic',

'p_unequal',]].rename(columns={'t_statistic': 'statistic', 'p_unequal': 'p_value'}))

# In[ ]:
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overfitting_df = pd.concat(selected, axis=0)
overfitting_df.index = t_test_overfitting_results_df.index
overfitting_df['train_scores'] = scores_df['train_scores']

# In[ ]:

overfitting_df

# In[ ]:

overfitting_df = pd.concat([overfitting_df[['scores', 'baseline_scores', 'train_scores']],
bonferrroni_correction(overfitting_df, alpha=0.05, apply_correction=False)], axis=1)

overfitting_df['scores'] = overfitting_df.scores.apply(np.mean)
overfitting_df['train_scores'] = overfitting_df.train_scores.apply(np.mean)
overfitting_df.reset_index(inplace=True)
overfitting_df.drop(columns=['score_type', 'baseline_scores'], inplace=True)
overfitting_df.sort_values(by=['dependent_variable', 'model_type'], inplace=True)
overfitting_df.dependent_variable = overfitting_df.dependent_variable.map(lambda feature:

titles.get(feature, feature))
overfitting_df.model_type = overfitting_df.model_type.map(lambda feature: titles.get(

feature, feature))
overfitting_df.set_index(['dependent_variable', 'model_type'], inplace=True)
overfitting_df = overfitting_df.round(3)
overfitting_df['reject_h0'] = overfitting_df['reject_h0'].astype("string")
overfitting_df.loc[overfitting_df['reject_h0'] == 'True', 'reject_h0'] = 'Reject $H_0$'
overfitting_df.loc[overfitting_df['reject_h0'] == 'False', 'reject_h0']= 'Fail to reject

$H_0$'
overfitting_df.reset_index(inplace=True)
overfitting_df

# In[ ]:

overfitting_df.columns = ['Dependent Variable', 'Model Type', '$OR$', 'Training MSE', '$t$
-statistic', '$p$-value', 'Decision']

overfitting_df['Dataset'] = None
overfitting_df.loc[overfitting_df['Model Type'].str.contains('X'), 'Dataset'] = 'X'
overfitting_df.loc[overfitting_df['Model Type'].str.contains('X_int'), 'Dataset'] = 'X_int

'
overfitting_df.loc[overfitting_df['Model Type'].str.contains('X_gmm'), 'Dataset'] = 'X_gmm

'
overfitting_df.loc[overfitting_df['Model Type'].str.contains('X_gmm_int'), 'Dataset'] = '

X_gmm_int'
overfitting_df.loc[overfitting_df['Model Type'].str.contains('Linear'), 'Model Type'] = '

Linear'
overfitting_df.loc[overfitting_df['Model Type'].str.contains('Random forest'), 'Model Type

'] = 'Random Forest'
overfitting_df.sort_values(by=['Dependent Variable', 'Model Type', 'Dataset'], inplace=

True)
overfitting_df.set_index(['Dependent Variable', 'Model Type', 'Dataset'], inplace=True)
overfitting_df.to_csv(f'../Data/Tables/overfitting_results.csv')
overfitting_df

# In[ ]:

overfitting_df[overfitting_df.Decision == 'Fail to reject $H_0$'].loc['Dominance', :, :,
:][['Training MSE', '$OR$', '$t$-statistic', '$p$-value']].to_csv(f'../Data/Tables/
overfitting_results_dominance.csv')

overfitting_df[overfitting_df.Decision == 'Fail to reject $H_0$'].loc['Dominance', :, :,
:][['Training MSE', '$OR$', '$t$-statistic', '$p$-value']]� �
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Designing Emotionally Expressive 
Behaviors for an Appearance-
Constrained Robot 
 

 

Start of Block: Captcha 

Please verify that you are a human. 

 

 

 

What is your Prolific ID? 

  

 Please note that this response should auto-fill with the correct ID. 

________________________________________________________________ 
 

End of Block: Captcha 
 

Start of Block: Opening Statement and Informed Consent Form 

 

Opening Statement   

 

Dear Participant, 

  

Welcome and thank you for choosing to be part of our research study. 

 

Our objective is to understand how light, sound, and motion can make a faceless robot 

appear emotional. By watching videos of the robot and providing your feedback, you'll help 

us understand emotional communication by robots. Your contributions may be published in a 

scientific journal. This survey is expected to take about 25 minutes. 
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As a participant, you will:  

• Watch videos of the robot in various situations.

• Evaluate the emotional expressions you perceive.

• Receive compensation upon survey completion.

Participant's Rights 

• Your participation is voluntary, and you have the right to withdraw at any point.
• Even if you withdraw from the study, you will have 7 days to complete the survey in case 

that you change your mind (provided that there are still spots left in the survey quota).
• Compensation will be provided through Prolific.
• If you have any questions, please contact

Data Management  

• No personally identifiable information will be collected to ensure your anonymity.

You can only participate in this survey once to maintain data integrity. 

• Data will be securely and anonymously stored by Delft University of Technology,

Leiden University, and 4TU.ResearchData, in the Netherlands.

• You will be asked to fill out an Informed Consent Form on the following page.

This study is led by: 

• Fernando Corte Vargas, M.Sc. student at TU Delft, supervised by:

• Dr.-Ir. Jens Kober, Associate Professor at TU Delft

• Dr.-Ir. Joost Broekens, Associate Professor at Leiden University

• M.Sc. Bernhard Hilpert, PhD candidate at Leiden University

  © 2024 Fernando Corte Vargas. All rights reserved. 

Page Break 
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Informed Consent Form 

 

 

I have read and understood the opening statement of this study. 

o Yes  

o No  

 

 

I voluntarily consent to participate in this study and understand that I can withdraw at any 

time without giving a reason.  

 

o Yes  

o No  

 

 

If I don't consent to participate in this study or decide to withdraw, I understand that I have 

up to 7 days to change my mind and re-enter the study, provided that there are still spots 

available in the survey quota. 

o Yes  

o No  

 

 

I understand that I will be compensated through Prolific within 3 business days after I 

complete the survey satisfactorily.  

 

o Yes  

o No  
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I understand that completing the survey satisfactorily means that I will take enough time to 

carefully answer all questions in this survey. 

 

o Yes  

o No  

 

 

I understand that the study will conclude on July 1, 2024. 

o Yes  

o No  

 

 

I understand that all collected data is non-personal and anonymous. 

o Yes  

o No  

 

 

I understand that collected data will be used for publication of a research paper after the 

study concludes. 

 

o Yes  

o No  

 

 

I agree that my anonymous responses, views, or other input can be anonymously quoted in 

a research paper. 

o Yes  

o No  
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I give permission for the anonymous data I provide to be archived in the institutional 

repositories of Delft University of Technology, Leiden University, and 4TU.ResearchData for 

future research and learning. 

o Yes  

o No  

 

 

I understand that access to these repositories is limited to non-commercial, research 

purposes only. 

o Yes  

o No  

 

End of Block: Opening Statement and Informed Consent Form 
 

Start of Block: Commitment Request 

We care about the quality of our data, which is why it's important that you spend enough 

time to think about your answers to the questions of this survey.  

 

To make sure of this, we have set up a minimum time requirement for some questions in the 

survey. This means that in some questions of the survey, you won't be able to proceed to 

the next question until a certain amount of time has passed. 

 

Do you commit to spending enough time to provide thoughtful answers to the questions in 

this survey? 

 

o No, I will not  

o Yes, I will  

 

End of Block: Commitment Request 
 

Start of Block: Demographics 

 

What country are you from? 

 

▼ Afghanistan ... Zimbabwe 
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What is your age? 

________________________________________________________________ 
 

End of Block: Demographics 
 

Start of Block: Example Questions Block 

Video Snippets 

 

Before you start the survey, we'd like to show you a few snippets of the videos that you 

might see in the survey. The purpose is to help you get an idea of how much the behaviors 

of the robot can vary across videos. 

 

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 

  

 Feel free to replay the video as needed. 

  

 After you finish watching the video, you can continue to the next part of the survey.  

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Page Break  

 

 

Example   

    

To help you understand the questions in the survey, we provide an example with detailed 

explanations. Please read carefully to familiarize yourself with the questions we will ask.    

    

The upcoming survey questions will be identical to this one (without the detailed 
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explanations), so please spend enough time to make sure you understand the 

questions before proceeding. 

 

 

Video   

    

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 

  

 Feel free to replay the video as needed.   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Questions   

    

The following questions will measure your perception of the emotions displayed by the robot 

you just watched. Please read the instructions and answer the questions carefully. 

 

 

 

Emotion Intensity Rating 

 

 

Please rate the intensity of the emotion(s) as shown in the behavior of the robot.  

 

Remember to give a rating for each emotion. If you didn't see a specific emotion, select 

"N/A". Please make sure you answer each row, otherwise, you won't be able to move 

forward in the survey. 

 

If you saw an emotion not mentioned, please mention it in the "Other" section and rate its 

intensity. 
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 N/A Very Low Low Average High Very High 

Joy  o  o  o  o  o  o  
Sadness  o  o  o  o  o  o  

Fear  o  o  o  o  o  o  
Anger  o  o  o  o  o  o  

Disgust  o  o  o  o  o  o  
Surprise  o  o  o  o  o  o  

Other  o  o  o  o  o  o  
 

 

 

 

Dimensional Rating 

 

 

Next, you'll rate Pleasure, which refers to the unpleasantness or pleasantness the robot 

seems to express through its behavior.  
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Look at the row of images below, which range from very negative to very positive.  

 

Use these images to choose a number to indicate how unpleased or pleased the robot 

seemed to you. 

 

 

 

 

 

 

 

 

 

 

 

 

Next, you'll rate Arousal, which indicates the alertness, awakeness, and engagement the 

robot seems to express through its behavior.  

  

Look at the images below, which range from very calm to very aroused. 

  

 Use these images to select a number to indicate how calm or aroused the robot seemed to 

you.  

  

  

    

 

 

 

 

 

 

 

 

 

Finally, you'll rate Dominance, which indicates how much control the robot seems to 

express through its behavior. 

  

 Look at the images below, which range from very submissive to very dominant. 

  

 Use them to choose a number indicating how submissive or dominant the robot seemed to 

you.  
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Appraisal Rating 

 

 

Next, you will be asked to share your thoughts or analysis about what might cause the 

robot's emotional reactions in the video. 

 

Please consider how the situation might affect (or has affected) its goals, desires, or overall 

well-being.   

 

Below we provide a few examples:   

 

• The robot looks like it's confused, maybe because it is figuring out what to do next. 

That is why it is moving slowly with dim lights. 

• Maybe something unexpected happened to the robot, which leaves it seeming 

frustrated or afraid, moving fast and beeping loudly. 

• The robot seems like it is maybe enjoying a peaceful moment, which leaves it 

relaxed and content, swaying gently and making calming sounds.     

 

 

Please write an appraisal of the robot's emotions in the video. 

________________________________________________________________ 
 

 

Page Break  
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You've completed the example questions. By clicking "Next," you'll proceed to the survey 

where we'll start collecting your answers. 

  

 Please make sure you've read and understood the instructions provided in the example. 

That way, you will be more familiarized with the upcoming questions. 

  

 Please be aware that once you move forward, you won't be able to return to this 

section. 

 

End of Block: Example Questions Block 
 

Start of Block: Video 1 

 

Video   

    

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 

  

 Feel free to replay the video as needed. 

  

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

How intense were the emotions shown by the robot in the video? If you didn't see a specific 

emotion, select "N/A". Remember to give a rating for each emotion. 
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 N/A Very Low Low Average High Very High 

Joy  o  o  o  o  o  o  
Sadness  o  o  o  o  o  o  

Fear  o  o  o  o  o  o  
Anger  o  o  o  o  o  o  

Disgust  o  o  o  o  o  o  
Surprise  o  o  o  o  o  o  

Other  o  o  o  o  o  o  
 

 

 

Please rate the pleasure of the robot (the unpleasantness or pleasantness the robot seems 

to express through its behavior).  

 

Pleasure   

 

 

 

 

 

 

 

 

 

 

 

 

Please rate the arousal of the robot (the alertness, awakeness, and engagement the robot 

seems to express through its behavior). 
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Arousal   

 

 

 

 

 

 

 

 

 

 

 

Please rate the dominance of the robot (how much control the robot seems to express 

through its behavior).  

 

 

Dominance   

 

 

 

 

 

 

 

 

 

 

 

 

Please write your thoughts or analysis about what might cause the robot's emotional 

reactions in the video. Please consider how the situation might affect (or has affected) its 

goals, desires, or overall well-being. 

 

________________________________________________________________ 
 

End of Block: Video 1 
 

Start of Block: Video 2 

Video   

    

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 
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 Feel free to replay the video as needed. 

  

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

How intense were the emotions shown by the robot in the video? If you didn't see a specific 

emotion, select "N/A". Remember to give a rating for each emotion. 

 

 

 N/A Very Low Low Average High Very High 

Joy  o  o  o  o  o  o  
Sadness  o  o  o  o  o  o  

Fear  o  o  o  o  o  o  
Anger  o  o  o  o  o  o  

Disgust  o  o  o  o  o  o  
Surprise  o  o  o  o  o  o  

Other  o  o  o  o  o  o  
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Please rate the pleasure of the robot (the unpleasantness or pleasantness the robot seems 

to express through its behavior).  

 

Pleasure   

 

 

 

 

 

 

 

 

 

 

 

 

Please rate the arousal of the robot (the alertness, awakeness, and engagement the robot 

seems to express through its behavior). 

 

 

Arousal   

 

 

 

 

 

 

 

 

 

 

 

Please rate the dominance of the robot (how much control the robot seems to express 

through its behavior).  

 

 

Dominance   
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Please write your thoughts or analysis about what might cause the robot's emotional 

reactions in the video. Please consider how the situation might affect (or has affected) its 

goals, desires, or overall well-being. 

 

________________________________________________________________ 
 

End of Block: Video 2 
 

Start of Block: Video 3 

Video   

    

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 

  

 Feel free to replay the video as needed. 

  

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

How intense were the emotions shown by the robot in the video? If you didn't see a specific 

emotion, select "N/A". Remember to give a rating for each emotion. 
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 N/A Very Low Low Average High Very High 

Joy  o  o  o  o  o  o  
Sadness  o  o  o  o  o  o  

Fear  o  o  o  o  o  o  
Anger  o  o  o  o  o  o  

Disgust  o  o  o  o  o  o  
Surprise  o  o  o  o  o  o  

Other  o  o  o  o  o  o  
 

 

 

Please rate the pleasure of the robot (the unpleasantness or pleasantness the robot seems 

to express through its behavior).  

 

Pleasure   

 

 

 

 

 

 

 

 

 

 

 

 

Please rate the arousal of the robot (the alertness, awakeness, and engagement the robot 

seems to express through its behavior). 
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Arousal   

 

 

 

 

 

 

 

 

 

 

 

Please rate the dominance of the robot (how much control the robot seems to express 

through its behavior).  

 

 

Dominance   

 

 

 

 

 

 

 

 

 

 

 

 

Please write your thoughts or analysis about what might cause the robot's emotional 

reactions in the video. Please consider how the situation might affect (or has affected) its 

goals, desires, or overall well-being. 

 

________________________________________________________________ 
 

End of Block: Video 3 
 

Start of Block: Video 4 

Video   

    

Please watch the video provided below. Click on the video to play it, and make sure you are 

using headphones or your computer's speakers to hear the audio. You cannot continue until 

the video finishes playing. 
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 Feel free to replay the video as needed. 

  

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

How intense were the emotions shown by the robot in the video? If you didn't see a specific 

emotion, select "N/A". Remember to give a rating for each emotion. 

 

 

 N/A Very Low Low Average High Very High 

Joy  o  o  o  o  o  o  
Sadness  o  o  o  o  o  o  

Fear  o  o  o  o  o  o  
Anger  o  o  o  o  o  o  

Disgust  o  o  o  o  o  o  
Surprise  o  o  o  o  o  o  

Other  o  o  o  o  o  o  
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Please rate the pleasure of the robot (the unpleasantness or pleasantness the robot seems 

to express through its behavior).  

 

Pleasure   

 

 

 

 

 

 

 

 

 

 

 

 

Please rate the arousal of the robot (the alertness, awakeness, and engagement the robot 

seems to express through its behavior). 

 

 

Arousal   

 

 

 

 

 

 

 

 

 

 

 

Please rate the dominance of the robot (how much control the robot seems to express 

through its behavior).  

 

 

Dominance   
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Please write your thoughts or analysis about what might cause the robot's emotional 

reactions in the video. Please consider how the situation might affect (or has affected) its 

goals, desires, or overall well-being. 

 

________________________________________________________________ 
 

End of Block: Video 4 
 

Start of Block: End Of Survey 

 

Congratulations!  

 

Thank you for your participation! You have reached the end of the survey. Please click on 

"Next" to submit your answers. 

   

Thank you for your interest in our study! 

 

End of Block: End Of Survey 
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Human Research Ethics Approval Letter

 

 
Human Research Ethics
Committee TU Delft
(http://hrec.tudelft.nl)

Visiting address

Jaffalaan 5 (building 31)
2628 BX Delft

Postal address

P.O. Box 5015 2600 GA Delft
The Netherlands

Date 30-May-2024
Correspondence hrec@tudelft.nl

Ethics Approval Application: Designing Emotionally Expressive Behaviors for an Appearance-
Constrained Robot
Applicant: Corte Vargas, Fernando 

Dear Fernando Corte Vargas,

It is a pleasure to inform you that your application mentioned above has been approved.

Thanks very much for your submission to the HREC which has been approved.

In addition to any specific conditions or notes, the HREC provides the following standard advice to all
applicants:
• In light of recent tax changes, we advise that you confirm any proposed remuneration of research subjects
with your faculty contract manager before going ahead.
• Please make sure when you carry out your research that you confirm contemporary covid protocols with
your faculty HSE advisor, and that ongoing covid risks and precautions are flagged in the informed consent
- with particular attention to this where there are physically vulnerable (eg: elderly or with underlying
conditions) participants involved.
• Our default advice is not to publish transcripts or transcript summaries, but to retain these privately for
specific purposes/checking; and if they are to be made public then only if fully anonymised and the
transcript/summary itself approved by participants for specific purpose.
• Where there are collaborating (including funding) partners, appropriate formal agreements including clarity
on responsibilities, including data ownership, responsibilities and access, should be in place and that
relevant aspects of such agreements (such as access to raw or other data) are clear in the Informed
Consent.
 

Good luck with your research!

Sincerely,
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Dr. Ir. U. Pesch
Chair HREC
Faculty of Technology, Policy and Management





D
Risk Assessment

Delft University of Technology 
HUMAN RESEARCH ETHICS 

CHECKLIST FOR HUMAN RESEARCH 
(Version January 2022)  

 

IMPORTANT NOTES ON PREPARING THIS CHECKLIST 

1. An HREC application should be submitted for every research study that involves human 
participants (as Research Subjects) carried out by TU Delft researchers 

2. Your HREC application should be submitted and approved before potential participants 
are approached to take part in your study 

3. All submissions from Master’s Students for their research thesis need approval from the 
relevant Responsible Researcher 

4. The Responsible Researcher must indicate their approval of the completeness and quality 
of the submission by signing and dating this form OR by providing approval to the 
corresponding researcher via email (included as a PDF with the full HREC submission)  

5. There are various aspects of human research compliance which fall outside of the remit of 
the HREC, but which must be in place to obtain HREC approval. These often require input 
from internal or external experts such as Faculty Data Stewards, Faculty HSE advisors, the 
TU Delft Privacy Team or external Medical research partners. 

6. You can find detailed guidance on completing your HREC application here 
7. Please note that incomplete submissions (whether in terms of documentation or the 

information provided therein) will be returned for completion prior to any assessment 
8. If you have any feedback on any aspect of the HREC approval tools and/or process you 

can leave your comments here 
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I. Applicant Information

PROJECT TITLE: Designing Emotionally Expressive Behaviors for 
an Appearance-Constrained Robot 

Research period: 
Over what period of time will this specific part of the 
research take place 

[TBD] 

Faculty: Mechanical Engineering 
Department: Cognitive Robotics 
Type of the research project: 
(Bachelor’s, Master’s, DreamTeam, PhD, PostDoc, Senior 
Researcher, Organisational etc.) 

Master’s thesis 

Funder of research: 
(EU, NWO, TUD, other – in which case please elaborate) 

Leiden University 

Name of Corresponding Researcher: 
(If different from the Responsible Researcher) 

Joost Broekens 

E-mail Corresponding Researcher:
(If different from the Responsible Researcher) 

Associate Professor 

Position of Corresponding Researcher: 
(Masters, DreamTeam, PhD, PostDoc, Assistant/ 
Associate/ Full Professor) 

d.j.broekens@liacs.leidenuniv.nl
joost.broekens@gmail.com 

Name of Responsible Researcher: 
Note: all student work must have a named Responsible 
Researcher to approve, sign and submit this application 

Jens Kober 

E-mail of Responsible Researcher:
Please ensure that an institutional email address (no 
Gmail, Yahoo, etc.) is used for all project 
documentation/ communications including Informed 
Consent materials 

j.kober@tudelft.nl

Position of Responsible Researcher : 
(PhD, PostDoc, Associate/ Assistant/ Full Professor) 

Associate Professor 

II. Research Overview
NOTE: You can find more guidance on completing this checklist here 

a) Please summarise your research very briefly (100-200 words)
What are you looking into, who is involved,  how many participants there will be, how they will
be recruited and what are they expected to do?

Add your text here – (please avoid jargon and abbrevations) 
The goal of this research is to investigate what features of motion, light, and sound in the 
behaviors of a non-humanoid, faceless robot may be perceived as emotional. To do this, a 
group of about 500 people will be recruited through Amazon’s Mechanical Turk to respond 
to an online survey in which they will watch a series of videos of a robot executing certain 
behaviors, and will then rate any emotion qualities of the robot’s behavior that may be 
perceived. 

b) If your application is an additional project related to an existing approved HREC submission,
please provide a brief explanation including the existing relevant HREC submission
number/s.

Add your text here – (please avoid jargon and abbrevations) 
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c) If your application is a simple extension of, or amendment to, an existing approved HREC 
submission, you can simply submit an HREC Amendment Form as a submission through 
LabServant. 
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III.
Risk Assessm

ent and M
itigation Plan

N
O

TE: You can find m
ore guidance on com

pleting this checklist here 

Please com
plete the follow

ing table in full for all points to w
hich your answ

er is “yes”. Bear in m
ind that the vast m

ajority of projects involving hum
an

participants as Research Subjects also involve the collection of Personally Identifiable Inform
ation (PII) and/or Personally Identifiable Research Data (PIRD)

w
hich m

ay pose potential risks to participants as detailed in Section G: Data Processing and Privacy below
.

To ensure alighm
ent betw

een your risk assessm
ent, data m

anagem
ent and w

hat you agree w
ith your Research Subjects you can use the last tw

o colum
ns in

the table below
 to refer to specific points in your Data M

anagem
ent Plan (DM

P) and Inform
ed Consent Form

 (ICF) – but this is not com
pulsory.

It’s w
orth noting that you’re m

uch m
ore likely to need to resubm

it your application if you neglect to identify potential risks, than if you identify a potential
risk and dem

onstrate how
 you w

ill m
itigate it. If necessary, the HREC w

ill alw
ays w

ork w
ith you and colleagues in the Privacy Team

 and Data M
anagem

ent
Services to see how

, if at all possible, your research can be conducted.

If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

A: Partners and collaboration 
 

1. W
ill the research be carried out in collaboration w

ith additional
organisational partners such as: 

•
O

ne or m
ore collaborating research and/or com

m
ercial

organisations 
•

Either a research, or a w
ork experience internship provider 1 

1 If yes, please include the graduation agreem
ent in this application 

✔
1.

Leiden U
niversity and TU

 D
elft m

ay have 
different ethical standards and processes for 
approving research involving hum

an subjects,
leading to potential conflicts or 
m

isunderstandings about the ethical conduct 
of the research. 

2.
The sharing of sensitive or personal data 
betw

een institutions can lead to risks related 
to data privacy and security. 

3.
D

isagreem
ents or m

isunderstandings about 
intellectual property rights, authorship, and
publication rights m

ight arise, potentially 
leading to conflicts. 

4.
Collaborative projects can suffer from

 poor 
coordination and com

m
unication, leading to 

1.
N

o personal data is collected. There is no risk of 
personal data being published. Furtherm

ore, the
approval process is sim

ilar betw
een Leiden 

U
niversity and TU

 D
elft. 

2.
N

o personal data is collected. Additionally,  w
e 

w
ill obtain inform

ed consent from
 participants 

that clearly explains how
 their data w

ill be used, 
stored, and shared betw

een institutions. 
3.

Intellectual property is shared betw
een TU

 D
elft

and Leiden 
4.

A robust project m
anagem

ent fram
ew

ork has 
been im

plem
ented, including regular m

eetings, 
shared project m

anagem
ent tools, and clear 

com
m

unication channels. 
5.

W
e agree that there is no financial burden 

across the tw
o universities, there is no m

oney 

VI.33
O

S, 
ICF 
Q

6, 
Q

7, 
Q

8, 
Q

9, 
Q

10, 
Q

10 
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

delays, inefficiencies, or inconsistencies in 
research execution. 

5.
M

isunderstandings or conflicts m
ay arise 

regarding the allocation of funds and 
resources betw

een the collaborating 
universities, affecting the project's progress
and outcom

es. 

involved in the supervision of the m
aster 

project.  

2.Is this research dependent on a Data Transfer or Processing Agreem
ent w

ith
a collaborating partner or third party supplier?  
If yes please provide a copy of the signed DTA/DPA 

✔

3.
Has this research been approved by another (external) research ethics

com
m

ittee (e.g.: HREC and/or M
REC/M

ETC)?   
If yes, please provide a copy of the approval (if possible) and sum

m
arise any key 

points in your Risk M
anagem

ent section below
 

✔

B: Location 

4. W
ill the research take place in a country or countries, other than the

N
etherlands, w

ithin the EU
? 

✔

5. W
ill the research take place in a country or countries outside the EU

?
✔

6. W
ill the research take place in a place/region or of higher risk – including

know
n dangerous locations (in any country) or locations w

ith non-dem
ocratic 

regim
es? 

✔

C: Participants 

7. W
ill the study involve participants w

ho m
ay be vulnerable and  possibly

(legally) unable to give inform
ed consent? (e.g., children below

 the legal age 
for giving consent, people w

ith learning difficulties, people living in care or 
nursing hom

es,). 

✔

8. W
ill the study involve participants w

ho m
ay be vulnerable under specific

circum
stances and in specific contexts, such as victim

s and w
itnesses of 

violence, including dom
estic violence; sex w

orkers; m
em

bers of m
inority 

groups, refugees, irregular m
igrants or dissidents? 

✔

9. Are the participants, outside the context of the research, in a dependent or
subordinate position to the investigator (such as ow

n children, ow
n students or 

em
ployees of either TU

 Delft and/or a collaborating partner organisation)? 

✔
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

It is essential that you safeguard against possible adverse consequences of this 
situation (such as allow

ing a student’s failure to participate to your satisfaction 
to affect your evaluation of their coursew

ork). 

10. Is there a high possibility of re-identification for your participants? (e.g., do 
they have a very specialist job of w

hich there are only a sm
all num

ber in a 
given country, are they m

em
bers of a sm

all com
m

unity, or em
ployees from

 a 
partner com

pany collaborating in the research? O
r are they one of only a 

handful of (expert) participants in the study? 

✔

D
: Recruiting Participants 

11. W
ill your participants be recruited through your ow

n, professional, 
channels such as conference attendance lists, or through specific netw

ork/s 
such as self-help groups 

✔

12. W
ill the participants be recruited or accessed in the longer term

 by a (legal 
or custom

ary) gatekeeper? (e.g., an adult professional w
orking w

ith children; a 
com

m
unity leader or fam

ily m
em

ber w
ho has this custom

ary role – w
ithin or 

outside the EU
; the data producer of a long-term

 cohort study) 

✔

13. W
ill you be recruiting your participants through a crow

d-sourcing service  
and/or involve a third party data-gathering service, such as a survey platform

?
✔

1.
There's a risk of receiving responses from

 bots 
or participants m

isrepresenting them
selves to 

qualify for the study, w
hich can com

prom
ise 

the authenticity and representativeness of the
sam

ple. 
2.

D
ata collected via M

Turk can vary in quality, 
w

ith issues like rushed responses or 
participants not taking the study seriously, 
affecting the reliability of your results. 

3.
U

sing third-party platform
s for data collection 

and recruitm
ent can lead to privacy concerns 

and potential data breaches, com
prom

ising 
participant data security. 

4.
Ensuring that participants recruited through 
M

Turk fully understand the study and provide 
inform

ed consent can be challenging, 
especially w

hen not interacting face-to-face. 
5.

Relying on third-party platform
s for critical 

aspects of your research m
akes the study 

1.
W

e w
ill m

ake use of Am
azon M

echanical Turk’s
(M

Turk) participant screening filters (called 
M

Turk M
asters) to verify the authenticity and 

quality of participants. This ensures that clearly 
eligibility criteria are defined and enforced. 

2.
W

e w
ill recruit M

Turk M
asters to ensure quality 

data. Additionally, w
e can include attention 

check questions throughout the survey to 
identify and exclude participants not paying 
attention. W

e w
ill offer fair com

pensation to 
encourage serious participation. 

3.
Q

ualtrics com
plies w

ith relevant data protection 
regulations and offers adequate data encryption 
and anonym

ization capabilites. W
e w

ill collect 
only the data necessary, and ensure participant 
data anonym

ization is turned on to protect their 
identity. 

4.
A clear and concise inform

ed consent form
 is 

included that participants m
ust agree to before 

participating in the study. This form
 includes 

 
O

S, 
ICF 
Q

6, 
Q

7, 
Q

8, 
Q

9, 
Q

10, 
Q

10 
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

vulnerable to changes in their policies, 
outages, or discontinuation of service. 

details about the study's purpose, procedures, 
risks, benefits, confidentiality m

easures, 
com

pensation, and contact inform
ation for 

questions. U
se com

prehension checks to ensure 
participants understand the consent 
inform

ation. 
5.

W
e w

ill stay inform
ed about any changes in 

term
s and conditions of the platform

s w
e use, 

and have contingency plans in place for data 
collection and storage, considering alternative 
platform

s or data backup strategies. W
e w

ill 
regularly export and secure our data to protect
against sudden platform

 changes or data loss.
14.

W
ill you be offering any financial, or other, rem

uneration to participants, 
and m

ight this induce or bias participation? 
✔

1.
Financial incentives m

ight attract participants
w

ho are m
ore interested in the com

pensation
than the study itself, leading to a sam

ple that 
does not accurately represent your target 
population. 

2.
Participants m

ay rush through the survey to 
com

plete as m
any tasks as possible in a short

tim
e, com

prom
ising the quality of your data. 

3.
Participants m

ay attem
pt to participate 

m
ultiple tim

es under different accounts to
receive additional com

pensation. 
4.

The prom
ise of financial rem

uneration m
ight 

be seen as coercive, particularly if participants 
w

ant to participate in the study to receive 
needed funds because of a possible precarious
econom

ic situation. 
5.

Financially m
otivated participation m

ight lead 
to a sam

ple that is not representative of the 
broader population, affecting the 
generalizability of our findings. 

1.
W

e w
ill set com

pensation at a level that is fair
and reflects the tim

e and effort required but is 
not so high as to be the prim

ary m
otivation for 

participation. This balance can help ensure that
participants are m

otivated by interest in the 
study as w

ell as financial com
pensation. 

2.
W

e w
ill im

plem
ent attention checks and 

m
inim

um
 tim

e requirem
ents for com

pleting the
survey to discourage rushed responses. 
Additionally, w

e w
ill use pilot testing to 

establish a reasonable com
pletion tim

e and set 
m

inim
um

 tim
e requirem

ent based on these 
findings. 

3.
W

e w
ill use Q

ualtrics’s native capabilities to 
lim

it participation to one per individual, w
hich 

consists of tracking unique identifiers (w
hile 

m
aintaining privacy and com

pliance w
ith data 

protection law
s). It is m

ade clear in the consent 
form

 that m
ultiple subm

issions by the sam
e 

person are not allow
ed and m

ay result in 
disqualification from

 the study and forfeiture of
com

pensation. 
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

4.
W

e w
ill assess the appropriateness of the 

com
pensation based on the expected 

dem
ographics of the participants and the nature 

of the tasks involved. Ensure that the 
com

pensation is neither too low
 (w

hich could be 
exploitative) nor too high (w

hich could be 
coercive). W

e provide clear inform
ation in the 

consent form
 that participation is voluntary and 

that declining to participate w
ill not penalize the 

participant in any w
ay. 

5.
W

e w
ill use M

Turk’s native stratified sam
pling 

techniques to ensure the sam
ple is 

representative of the population of interest. The
target dem

ographic m
ust be clearly defined and 

w
e w

ill use M
Turk’s screening to select 

participants w
ho m

eet our criteria. 
E: Subject M

atter Research related to m
edical questions/health m

ay require 
special attention. See also the w

ebsite of the CCM
O

 before contacting the 
HREC. 
15. W

ill your research involve any of the follow
ing: 

•
M

edical research and/or clinical trials
•

Invasive sam
pling and/or m

edical im
aging

•
M

edical and In Vitro Diagnostic M
edical Devices Research

✔

16. W
ill drugs, placebos, or other substances (e.g., drinks, foods, food or drink 

constituents, dietary supplem
ents) be adm

inistered to the study participants? 
If yes see here to determ

ine w
hether m

edical ethical approval is required 

✔

17. W
ill blood or tissue sam

ples be obtained from
 participants? 

If yes see here to determ
ine w

hether m
edical ethical approval is required 

✔

18. Does the study risk causing psychological stress or anxiety beyond that 
norm

ally encountered by the participants in their life outside research? 
✔

19.W
ill the study involve discussion of personal sensitive data w

hich could put 
participants at increased legal, financial, reputational, security or other risk? 
(e.g., financial data, location data, data relating to children or other vulnerable 
groups)  
Definitions of sensitive personal data, and special cases are provided on the 
TU

D Privacy Team
 w

ebsite. 

✔
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
 – w

hat m
itigating steps w

ill you 
take? 
Please ensure that you sum

m
arise w

hat actual 
m

itigation m
easures you w

ill take for each potential 
risk identified – do not sim

ply state that you w
ill e.g. 

com
ply w

ith regulations. 

D
M

P 
ICF 

20. W
ill the study involve disclosing com

m
ercially or professionally sensitive, or

confidential inform
ation? (e.g., relating to decision-m

aking processes or 
business strategies w

hich m
ight, for exam

ple, be of interest to com
petitors) 

✔

21. Has your study been identified by the TU
 Delft Privacy Team

 as requiring a 
Data Processing Im

pact Assessm
ent (DPIA)?  If yes please attach the advice/ 

approval from
 the Privacy Team

 to this application 

✔

22. Does your research investigate causes or areas of conflict?
If yes please confirm

 that your fieldw
ork has been discussed w

ith the 
appropriate safety/security advisors and approved by your 
Departm

ent/Faculty. 

✔

23. Does your research involve observing illegal activities or data processed or
provided by authorities responsible for preventing, investigating, detecting or 
prosecuting crim

inal offences 
If so please confirm

 that your w
ork has been discussed w

ith the appropriate 
legal advisors and approved by your Departm

ent/Faculty. 

✔

F: Research M
ethods 

24.W
ill it be necessary for participants to take part in the study w

ithout their
know

ledge and consent at the tim
e? (e.g., covert observation of people in non-

public places). 

✔

25.W
ill the study involve actively deceiving the participants?  (For exam

ple,
w

ill participants be deliberately falsely inform
ed, w

ill inform
ation be w

ithheld 
from

 them
 or w

ill they be m
isled in such a w

ay that they are likely to object or 
show

 unease w
hen debriefed about the study). 

✔

26. Is pain or m
ore than m

ild discom
fort likely to result from

 the study? And/or 
could your research activity cause an accident involving (non-) participants? 

✔

27.
W

ill the experim
ent involve the use of devices that are not ‘CE’ certified?

 O
nly, if ‘yes’: continue w

ith the follow
ing questions:  

✔

•
W

as the device built in-house?
•

W
as it inspected by a safety expert at TU

 Delft?
If yes, please provide a signed device report 

•
If it w

as not built in-house and not CE-certified, w
as it inspected by 

som
e other, qualified authority in safety and approved? 

If yes, please provide records of the inspection 
28. W

ill your research involve face-to-face encounters w
ith your participants

and if so how
 w

ill you assess and address Covid considerations? 
✔
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If YES please com
plete the Risk Assessm

ent and M
itigation Plan colum

ns below
. 

Please provide 
the relevant 
reference #  

ISSU
E 

Yes 
N

o 
RISK ASSESSM

EN
T – w

hat risks could arise? 
Please ensure that you list ALL of the actual risks 
that could potentially arise – do not sim

ply state 
w

hether you consider any such risks are im
portant!

M
ITIG

ATIO
N

 PLAN
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ill your research involve either:

a) “big data”, com
bined datasets, new

 data-gathering or new
 data-m

erging
techniques w

hich m
ight lead to re-identification of your participants and/or  

b) artificial intelligence or algorithm
 training w

here, for exam
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datasets could lead to biased outcom
es?

✔
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ata Processing and Privacy 
30.W

ill the research involve collecting, processing and/or storing any directly 
identifiable PII (Personally Identifiable Inform

ation) including nam
e or em

ail 
address that w

ill be used for adm
inistrative purposes only? (eg: obtaining 
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ed Consent or disbursing rem
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✔
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ill the research involve collecting, processing and/or storing any directly

or indirectly identifiable PIRD (Personally Identifiable Research Data) including 
videos, pictures, IP address, gender, age etc and w

hat other Personal Research 
D

ata (including personal or professional view
s) w

ill you be collecting? 

✔

32. W
ill this research involve collecting data from

 the internet, social m
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and/or publicly available datasets w
hich have been originally contributed by 
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an participants 

✔

33. W
ill your research findings be published in one or m

ore form
s in the public

dom
ain, as e.g., M

asters thesis, journal publication, conference presentation or 
w

ider public dissem
ination?  

✔
1.

Publishing data could inadvertently reveal 
identifiable inform
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leading to a breach of confidentiality. 
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Readers m
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3.

Publishing the research could expose the 
researchers to intellectual property theft, 
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here others use the findings w
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unauthorized individuals, leading to privacy 
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access controls to ensure that data can only be 
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H: More on  Informed Consent and Data Management 
NOTE: You can find guidance and templates for preparing your Informed Consent materials) here 

 
Your research involves human participants as Research Subjects if you are recruiting them or actively 
involving or influencing, manipulating or directing them in any way in your research activities. This means 
you must seek informed consent and agree/ implement appropriate safeguards regardless of whether you 
are collecting any PIRD.  
 
Where you are also collecting PIRD, and using Informed Consent as the legal basis for your research, you 
need to also make sure that your IC materials are clear on any related risks and the mitigating measures you 
will take – including through responsible data management. 
 
Got a comment on this checklist or the HREC process? You can leave your comments here 
 
 

IV. Signature/s 
 

 
Please note that by signing this checklist list as the sole, or Responsible, researcher you are 
providing approval of the completeness and quality of the submission, as well as confirming 
alignment between GDPR, Data Management and Informed Consent requirements. 
 

 
 

Name of Corresponding Researcher (if different from the Responsible Researcher) (print) 
 
 
Signature of Corresponding Researcher: 
 
Date: 
 

 
Name of Responsible Researcher (print)         
 
 
Signature (or upload consent by mail) Responsible Researcher:   
 
Date: 
 

 
 

V. Completing your HREC application 
Please use the following list to check that you have provided all relevant documentation 
 
Required:  
o Always: This completed HREC checklist 
o Always: A data management plan (reviewed, where necessary, by a data-steward) 
o Usually: A complete Informed Consent form (including Participant Information) and/or 

Opening Statement (for online consent)  
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Please also attach any of the following, if relevant to your research: 
 

Document or approval Contact/s 
Full Research Ethics Application After the assessment of your initial application HREC will let you 

know if and when you need to submit additional information 
Signed, valid Device Report Your Faculty HSE advisor 
Ethics approval from an external Medical 
Committee 

TU Delft Policy Advisor, Medical (Devices) Research 

Ethics approval from an external Research 
Ethics Committee 

Please append, if possible, with your submission 

Approved Data Transfer or Data Processing 
Agreement  

Your Faculty Data Steward and/or TU Delft Privacy Team  

Approved Graduation Agreement Your Master’s thesis supervisor 
Data Processing Impact Assessment (DPIA) TU Delft Privacy Team 
Other specific requirement Please reference/explain in your checklist and append with your 

submission 
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perceived.
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142 Appendix E. Data Management Plan

Master's Thesis: Designing Emotionally Expressive Behaviors
for an Appearance-Constrained Robot

0. Administrative questions

1. Name of data management support staff consulted during the preparation of this plan.

My faculty data steward, Sara Shoghi, has reviewed this DMP on 03-04-2024

2. Date of consultation with support staff.

2024-03-11 

I. Data description and collection or re-use of existing data

3. Provide a general description of the type of data you will be working with, including any re-used data:

Data

Type of data File
format(s)

How will data be
collected (for
re-used data:
source and
terms of use)?

Purpose of processing Storage
location

Who will
have
access to
the data

Anonymized data on ratings of
emotional perception from human
participants of an appearance-
constrained robot

.csv files Online survey on
Qualtrics

To understand any possible patterns in
the recognition of emotional qualities of
the behaviors of an appearance-
constrained robot based on the modalities
of light, motion and sound

TU Delft
Project
Data
Storage
(U:)

All three
supervisors
and and
myself

Informed consent form data .csv files Online survey on
Qualtrics

This data will be collected prior to the
beginning of the research survey. In order
to be able to participate, each participant
must give consent according to this form

TU Delft
Project
Data
Storage
(U:)

All three
supervisors
and and
myself

Videos of the appearance constrained
robot that will be used for the online
survey

.mp4 files Video recordings
These videos will be used for the online
survey, and will be stored for future
research as well.

TU Delft
Project
Data
Storage
(U:)

All three
supervisors
and and
myself

Data with the input parameters that
were used to generate each of the
videos of the appearance constrained
robot that will be used for the online
survey

.csv files Python script
This data is generated using a script that
generates Sobol numerical sequences that
are translated into the input parameters
for the videos.

TU Delft
Project
Data
Storage
(U:)

All three
supervisors
and and
myself

      

4. How much data storage will you require during the project lifetime?

250 GB - 5 TB

Since the data will consist of a single .csv file, and no more than 1024 20-second long videos, the required data storage is not
expected to surmount more than 500 GB.

Created using DMPonline. Last modified 10 April 2024 2 of 7
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II. Documentation and data quality

5. What documentation will accompany data?

Data dictionary explaining the variables used
Data will be deposited in a data repository at the end of the project (see section V) and data discoverability and re-usability will
be ensured by adhering to the repository’s metadata standards
Methodology of data collection
README file or other documentation explaining how data is organised

A README file will be created to make sure that the structure of the data is explained, as well as to clarify how the data can be used.
Access to the dataset will be granted to researchers who want to use it, upon inspection and approval by one of the principal
researchers.
Additionally, a data dictionary will be created for both the anonymized ratings from the participants (survey data), as well as for the
data describing the input parameters of the videos of the robot.

III. Storage and backup during research process

6. Where will the data (and code, if applicable) be stored and backed-up during the project lifetime?

Project Storage at TU Delft

IV. Legal and ethical requirements, codes of conduct

7. Does your research involve human subjects or 3rd party datasets collected from human participants?

Yes

8A. Will you work with personal data?  (information about an identified or identifiable natural person)

If you are not sure which option to select, first ask your Faculty Data Steward for advice. You can also check with the
privacy website . If you would like to contact the privacy team: privacy-tud@tudelft.nl, please bring your DMP. 

No

8B. Will you work with any other types of confidential or classified data or code as listed below? (tick all that apply)

If you are not sure which option to select, ask your Faculty Data Steward for advice.

No, I will not work with any confidential or classified data/code

9. How will ownership of the data and intellectual property rights to the data be managed?

For projects involving commercially-sensitive research or research involving third parties, seek advice of your Faculty
Contract Manager when answering this question. If this is not the case, you can use the example below.

The ownership of the datasets and intellectual property rights underlying this research will be transferred to Joost Broekens,

Created using DMPonline. Last modified 10 April 2024 3 of 7
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associate professor at Leiden University and at TU Delft. He is also a principal investigator of this study.

10. Which personal data will you process? Tick all that apply

As a manager of a survey on Amazon Mechanical Turk, the only data I can see from the participants is their Worker ID which consists
of a unique number that cannot be traced back to them (so, it cannot be used for re-identification). I do not have access to their
names, emails or any other personal data. IP addresses are not stored by either MTurk or Qualtrics. 
Amazon MTurk collects their workers' email address and bank account information. However, this personal data is managed by
Amazon Web Services, and I will not have access to it at any point. 
To approve payment of the participants, I will be able to see which participant (identified by their Worker ID) gave consent to
participate in the study and which did not. Upon successful completion of the survey, the participants will get a unique code
generated by Qualtrics, which they will submit on MTurk. After I review their submission, and if the code they submitted is valid, I will
approve payment. The payment is then processed by Amazon Web Services.

11. Please list the categories of data subjects

Adults

12. Will you be sharing personal data with individuals/organisations outside of the EEA (European Economic Area)?

No

15. What is the legal ground for personal data processing?

Informed consent

16. Please describe the informed consent procedure you will follow:

All study participants will be asked for their consent for taking part in the study and for data processing before the start of the
survey. We will not collect the participant's written signatures since it is an online survey. The informed consent form is digital.

17. Where will you store the signed consent forms?

Same storage solutions as explained in question 6

The answers of the digital consent forms is part of the data from the survey. Therefore, they will also be stored in the same .csv file.

18. Does the processing of the personal data result in a high risk to the data subjects? 

If the processing of the personal data results in a high risk to the data subjects, it is required to perform a Data
Protection Impact Assessment (DPIA). In order to determine if there is a high risk for the data subjects, please check if
any of the options below that are applicable to the processing of the personal data during your research (check all
that apply).
If two or more of the options listed below apply, you will have to complete the DPIA. Please get in touch with the
privacy team: privacy-tud@tudelft.nl to receive support with DPIA. 
If only one of the options listed below applies, your project might need a DPIA. Please get in touch with the privacy
team: privacy-tud@tudelft.nl to get advice as to whether DPIA is necessary.
If you have any additional comments, please add them in the box below.

None of the above applies

Created using DMPonline. Last modified 10 April 2024 4 of 7
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19. Did the privacy team advise you to perform a DPIA?

No

22. What will happen with personal research data after the end of the research project?

Other - please explain below

All data that will be collected is anonymous by default, since no personal research data will be collected.

23. How long will (pseudonymised) personal data be stored for?

Other - please state the duration and explain the rationale below

The answers to the digital consent forms will be stored for at least two years. 

24. What is the purpose of sharing personal data?

Other - please explain below

No personal data will be shared.

25. Will your study participants be asked for their consent for data sharing?

Yes, in consent form - please explain below what you will do with data from participants who did not consent to data sharing

If a participant does not consent, they are automatically redirected to the end of the survey and therefore cannot participate in the
experiment.

V. Data sharing and long-term preservation

26. What data will be publicly shared?

All data (and code) produced in the project

All data and will be made available to any researcher who requests it to the principal investigators.

27. Apart from personal data mentioned in question 22, will any other data be publicly shared?

All other non-personal data (and code) produced in the project

28. How will you share your research data (and code)?

All data will be uploaded to 4TU.ResearchData

Created using DMPonline. Last modified 10 April 2024 5 of 7
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29. How will you share research data (and code), including the one mentioned in question 22?

All anonymised or aggregated data, and/or all other non-personal data will be uploaded to 4TU.ResearchData with public
access

30. How much of your data will be shared in a research data repository?

100 GB - 1 TB

31. When will the data (or code) be shared?

At the end of the research project

32. Under what licence will be the data/code released?

CC BY-NC-SA

VI. Data management responsibilities and resources

33. Is TU Delft the lead institution for this project?

Yes, leading the collaboration - please provide details of the type of collaboration and the involved parties below

TU Delft is leading the collaboration between all parties involve, which are Leiden University and TU Delft itself.

34. If you leave TU Delft (or are unavailable), who is going to be responsible for the data resulting from this project?

The principal investigators Jens Kober (J.Kober@tudelft.nl) and Joost Broekens (Joost.Broekens@gmail.com,
D.J.Broekens@liacs.leidenuniv.nl and D.J.Broekens@tudelft.nl).

35. What resources (for example financial and time) will be dedicated to data management and ensuring that data will
be FAIR (Findable, Accessible, Interoperable, Re-usable)?

4TU.ResearchData is able to archive 1TB of data per researcher per year free of charge for all TU Delft researchers. We do not expect
to exceed this and therefore there are no additional costs of long term preservation.

Created using DMPonline. Last modified 10 April 2024 6 of 7
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Planned Research Outputs
Dataset - "Emotional rating"
Dataset containing the ratings of the research videos in terms of their categorical, dimensional and appraisal-based affective
qualities. 

Audiovisual - "Research videos"
Videos of the appearance-constrained robot executing emotional behaviors based on the modalities of motion, light and sound.

Planned research output details

Title Type
Anticipated

release
date

Initial
access
level

Intended
repository(ies)

Anticipated
file size License Metadata

standard(s)

May
contain

sensitive
data?

May
contain

PII?

Emotional
rating Dataset 2024-09-01 Restricted None specified 100 MB

Creative Commons
Attribution Share
Alike 4.0 International

None
specified No No

Research
videos Audiovisual 2024-09-01 Restricted None specified 500 GB

Creative Commons
Attribution Share
Alike 4.0 International

None
specified No No

Created using DMPonline. Last modified 10 April 2024 7 of 7





F
Method Details

F.1. Wander Base Behavior
These variables are used to control the dynamics of the wander behavior, determining how long and fast

the robot moves forward and turns, as well as how these actions change over time and across cycles.

Table F.1: Wander Control Variables

Parameter Description

doWander This boolean checks if the wander behavior should be executed.

turnToForwardRatio Ratio defining the proportion of time spent turning versus moving forward.

A higher ratio means more time turning and less time moving forward. This

variable is not an input parameter but depends on the roundness and cycle

rate to ensure round movements look round.

turnDuration Specifies the duration for which the robot will be in the turning segment of its

wander cycle. Set by SetWanderDurations based on wanderCycleRate and
turnToForwardRatio, adjusted by cycleStandardDeviation to introduce

variability.

forwardDuration Determines how long the robot will move forward in each wander cy-

cle. Set in SetWanderDurations and is a function of wanderCycleRate,
turnToForwardRatio, and cycleStandardDeviation.

lineTurnDuration Duration of the turn when the robot detects a boundary (black line). Set in

SetWanderDurations based on the robot’s speed (wanderSpeed) to ensure
the robot has sufficient time to turn away from the boundary.

targetForwardSpeed Intended speed for the robot during the forward movement segment of

the wander cycle. Set in SetTargetSpeeds, depends on wanderSpeed and
speedStandardDeviation to add randomness.

targetTurnSpeed Speed at which the robot turns during the turning segment of the wander

cycle. Set by SetTargetSpeeds, depends on targetForwardSpeed and

wanderRoundness, ensuring that the speed of each wheel corresponds to
the associated input roundness.

acceleration Used to gradually increase or decrease the speed during the forward seg-

ment when wanderSlope is non-zero. Incremented or decremented during

the forward movement segment to create a gradual change in speed.

wanderCycle Tracks the number of complete forward-turn cycles the robot has performed

during its wander behavior. Incremented after each complete cycle and

influences the direction of the turn (right or left) and potentially other aspects

of the next cycle.

149
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Based on the flow diagram of the wander base behavior presented in Figure 3.2, we present a

step-by-step description of the execution of wander base behavior below:

1. Validating Wander Input: The wander behavior executes only if doWander is true, indicating valid

input parameters for wandering. This is determined in the CheckValidWanderInput method which

takes all input parameters and sets the variable doWander to either true or false, based on whether

the input parameters fall within the valid range.

2. Control Variables Initialization: If doWander is true, the wander control variables described

above are initialized based on the input parameters. This is done in the SetTargetSpeeds and

SetWanderDurations methods.

3. Phase-Based Start: The behavior starts after a delay (wanderPhase). This is managed by comparing
the current time minus wanderPhase against zero.

4. Boundary Detection Response: If stayInBounds is true, the robot uses line-following sensors to

stay within a defined area. To do this, the robot reads sensor values (linefollower_2.readSensors())
and makes decisions to turn left or right based on these readings, preventing it from crossing the

edges of an area.

5. Forward Movement: The robot moves forward based on the value of wanderSlope:

• Zero Slope: Moves forward at a constant targetForwardSpeed for forwardDuration.

• Positive Slope (Rising): The speed increases gradually. The acceleration variable is incre-
mented up to a maximum value, modifying the speed.

• Negative Slope (Falling): The speed decreases gradually, similar to the rising slope but

reducing speed over time.

6. Turning Movement: After the forward segment, the robot turns. The direction (right or left) is

determined by the wanderCycle count (even number for right, odd for left). The turning speed is
influenced by targetForwardSpeed and targetTurnSpeed.

7. Cycle Control and Timing: The wanderCycle variable tracks the number of completed forward-turn
cycles. After completing a forward and turn sequence, wanderCycle is incremented, signifying the

start of a new cycle.

8. Dynamic Speed and Duration Adjustment: At the end of each cycle, SetTargetSpeeds and

SetWanderDurations are called to potentially update the speeds and durations for the next cycle,
adding variability to the behavior.

F.2. Blink Base Behavior
The following control variables are initialized and updated within the code to create dynamic and cus-

tomizable LED blinking patterns for the blink base behavior. The specific values of these variables are

influenced by the input parameters provided to the blink behavior and may change over time as the

behavior progresses through its main loop:

Table F.2: Blink Control Variables

Parameter Description

lightsOnDuration Duration for which the LED lights remain turned on during each blink

cycle. Set in SetBlinkDurations based on blinkLightsOnToOffRatio,
blinkCycleRate, and blinkCycleStandardDeviation.

lightsOffDuration Duration for which the LED lights remain turned off during each blink

cycle. Complements lightsOnDuration to complete the cycle. Set in

SetBlinkDurations method.

targetRedIntensity,
targetGreenIntensity,
targetBlueIntensity

Target intensities for the red, green, and blue components of the LED

during the lights-on segment. Set based on blinkTemperature and

blinkTemperatureStandardDeviation in SetTargetIntensitiesmethod.

Continued on the next page
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Table F.2: Continued from previous page

Parameter Description

brightness Controls the brightness level of the LED during the lights-on segment. De-

pends on blinkSlope; brightness gradually changes if blinkSlope is non-
zero, otherwise remains constant.

blinkCycle Counter that tracks the number of completed blink cycles. Used to control

adjustments such as changing target intensities or cycle durations. Incre-

mented after each complete cycle.

Based on the flow diagram of the blink base behavior presented in Figure 3.3, we present a step-by-step

description of the execution of blink base behavior below:

1. Validating Blink Input: Just as in the wander behavior, the blink behavior executes only if doBlink
is true. This is determined in the CheckValidBlinkInput method which takes all input parameters

and sets the variable doBlink to either true or false, based on whether the input parameters fall

within the valid range.

2. Control Variables Initialization: If the input parameters are valid, the control variables are initialized.

3. Phase-Based Start: Within the main loop, the behavior takes into account the specified phase

parameter. It ensures that the execution of the blink behavior starts after the given phase duration

has passed. This allows for synchronization with other processes or behaviors.

4. Alternating Lights: The core of the blink base behavior is the alternation between lights being on

and lights being off. This alternation is controlled by the parameters blinkLightsOnToOffRatio
and blinkCycleRate.

5. Brightness Control: Depending on the blinkSlope parameter, which can be positive, negative, or

zero, the behavior controls the brightness of the lights during the lights-on segments. This creates

varying light intensities over time. If blinkSlope is:

• Zero: The brightness remains constant during the lights-on segment.

• Positive: The brightness gradually increases during the lights-on segment.

• Negative: The brightness gradually decreases during the lights-on segment.

6. Cycle Control and Timing: The behavior keeps track of the blink cycles, counting how many

cycles have occurred. For each cycle, it may adjust the target temperature and duration. This

allows for variations in color and cycle duration over time. The behavior continues to execute until

the specified duration is reached. After the duration has passed, the lights are turned off, and the

behavior ends.

7. Dynamic Temperature and Duration Adjustment: The behavior can introduce randomness in the

target temperature and cycle duration based on the provided standard deviations.

F.3. Beep Base Behavior
The quasi-periodic nature of the beep behavior and added variability allow for a wide range of sounds

that can result in natural, non-linguistic utterances that are reminiscent to the sounds generated by the

robots mentioned in Section 2.3.3. To control the execution of this base behavior, the following control

variables are used:

Table F.3: Beep Control Variables

Parameter Description

soundDuration Duration of the sound (active beep) in each beep cycle. Depends on

soundToSilenceRatio, cycleRate, and cycleStandardDeviation. Set

within the SetBeepDurations method.

Continued on the next page
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Table F.3: Continued from previous page

Parameter Description

silenceDuration Duration of silence (no sound) in each beep cycle. Calculated by sub-

tracting soundDuration from the inverse of the cycle rate. Influenced

by soundToSilenceRatio, cycleRate, and cycleStandardDeviation. Set
within the SetBeepDurations method.

targetPitch Desired fundamental frequency (pitch) of the beep. Influenced by the initial

pitch value and pitchStandardDeviation. Set using the SetTargetPitch
method.

currentPitch Actual pitch of the beep during execution. Depends on targetPitch and

may change based on the slope and semitone. Reflects the pitch variation

within a beep cycle.

semitone Integer value ranging from 1 to 12, used to calculate the pitch of the next

note within the corresponding octave. Determined by beepSlope and con-
trols pitch changes. Follows the equal temperament 12-notes-to-an-octave

principle.

beepCycle Counter incremented each time a complete beep cycle is executed. Helps

manage the progression of the beep behavior, enabling detection of com-

pleted cycles and adjustment of parameters for subsequent cycles.

Based on the flow diagram of the beep base behavior presented in Figure 3.4, we present a step-by-

step description of the execution of beep base behavior below:

1. Validating Beep Input: The beep behavior executes only if doBeep is true. This is determined in
the CheckValidBeepInput method which takes all input parameters and sets the variable doBeep
to either true or false, based on whether the input parameters fall within the valid range.

2. Control Variables Initialization: If the input parameters are valid, the control variables are initialized.

3. Phase-Based Start: Within the main loop, the behavior takes into account the specified phase

parameter. It ensures that the execution of the beep behavior starts after the given phase duration

has passed.

4. Beep Generation Based on Beep Slope: The behavior differentiates between three cases based

on the beepSlope parameter:

• If beepSlope is 0 (constant pitch), it plays the sound at the currentPitch for the duration

specified by soundDuration.

• If beepSlope is positive (rising intonation), it plays the sound at the currentPitch for a du-

ration corresponding to a twelfth of the soundDuration. After this duration, it increases the
currentPitch to the next rising semitone within the octave using the following formula:

• If beepSlope is negative (falling intonation), it plays the sound at the currentPitch for a

duration corresponding to a twelfth of the soundDuration. After this duration, it decreases the
currentPitch to the next falling semitone within the octave.

5. Random Sound Generation: The behavior checks if it should play either a random note or maintain

silence based on the given beepRandomSoundProbability. If the probability condition is met, it

plays a random sound with pitch variation based on beepPitchStandardDeviation.

6. Cycle Control and Timing: The behavior checks if the current beep cycle is completed based on

timing. If so, it proceeds to the next cycle, increments beepCycle by one, and resets semitone to 1.

7. Dynamic Pitch and Duration Adjustment: The behavior can introduce randomness in the target

pitch based on beepPitch by adding Gaussian variability with beepPitchStandardDeviation, and
adjusts sound and silence durations in the SetBeepDurations.



F.4. Controlled Variables 153

F.4. Controlled Variables
In the table below, the chosen values for the controlled variables are shown:

Table F.4: Controlled Variables

Parameter Value

duration 20

stayInBounds True
wanderSlope 0

wanderCycleStandardDeviation 0.4

wanderSpeedStandardDeviation 0

wanderPhase 0

blinkLightsOnToOffRatio 0.85

blinkCycleStandardDeviation 0.325

blinkTemperatureStandardDeviation 0.025

blinkPhase 0

beepCycleStandardDeviation 0.2

beepSoundToSilenceRatio 0.625

beepPitchStandardDeviation 67.5

beepRandomSoundProbability 0

beepPhase 0

F.5. Sobol Sequence Sampling
The Sobol sequence, specifically, generates values for each parameter such that the distribution of points

is evenly spread across the multidimensional space. Mathematically, a Sobol sequence is designed to fill

the space more uniformly than unstructured random numbers. The formula for generating a new sample

in a Sobol sequence is:

xi =
xi−1 ⊕ an

2n
(F.1)

Where xi is the new sample, xi−1 is the previous sample, ⊕ denotes a bitwise exclusive or operation,

an is a direction number, and n refers to the dimension.

This method helps ensure that each sample point is spaced to minimize correlation, thereby main-

taining the independence among variables. This property is crucial when examining the impact of each

independent variable without overlap or undue influence from others.

Another important consideration of Sobol sequences, is that they are a quadrature rule and thus

lose their balance properties if one uses a sample size that is not a power of 2 [62]. Having this into

consideration, it was discovered by inspection that for a 9-dimensional independent variable space, we

would need at least 29 = 512 samples to ensure the balance properties of the samples.

The steps taken to generate and scale Sobol sequences to fit the desired range of each independent

variable are as follows:

• Initialization: Setting up the Sobol sequence generator with the specified number of variables and

enabling scrambling.

• Sample Generation: Generating 512 samples using the Sobol sequence.

• Scaling: Scaling the samples to specific lower and upper bounds for each variable, ensuring that

the generated values are within practical and meaningful ranges.

• Data Creation: Creating a data structure (DataFrame) to hold the scaled samples with appropriate

column names.
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• Rounding: Adjusting the beepSlope and blinkSlope values to be integers, as these parameters
need to be represented as discrete levels.

• Saving: Storing the final dataset in a CSV file for further analysis.

To illustrate the effectiveness of this sampling method, in Figure F.1 we show the histograms of each

independent variable to demonstrate that the variables are uniformly sampled.
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Figure F.1: Distribution of the independent variables

In Figure F.2, a heatmap of the correlation matrix of the independent variables is plotted. Only the lower

half is show as the matrix is symmetric. As is visible in the heatmap, the diagonal entries are 1, and the

non-diagonal entries are very small and negligible (rounded to zero), indicating minimal correlation among

the variables. This is an important observation, as it ensures that we do not introduce any multicollinearity

among the independent variables which could affect the results of our analysis.
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Figure F.2: Correlation matrix of the independent variables
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F.6. Detailed Micro-Hypotheses
To be able to test if there exists significant correlations between the input parameters of the wander base

behavior (wanderSpeed, wanderRoundness and wanderCycleRate) with the nine dependent variables, we
define the following null hypotheses:

Table F.5: Detailed micro-hypotheses for RQ1

ID Null Hypothesis

H1.1.1 There is no significant correlation between wanderSpeed and joy intensity.

H1.1.2 There is no significant correlation between wanderSpeed and sadness intensity.

H1.1.3 There is no significant correlation between wanderSpeed and fear intensity.

H1.1.4 There is no significant correlation between wanderSpeed and anger intensity.

H1.1.5 There is no significant correlation between wanderSpeed and disgust intensity.

H1.1.6 There is no significant correlation between wanderSpeed and surprise intensity.

H1.1.7 There is no significant correlation between wanderSpeed and pleasure.

H1.1.8 There is no significant correlation between wanderSpeed and arousal.

H1.1.9 There is no significant correlation between wanderSpeed and dominance.

H1.2.1 There is no significant correlation between wanderRoundness and joy intensity.

H1.2.2 There is no significant correlation between wanderRoundness and sadness intensity.

H1.2.3 There is no significant correlation between wanderRoundness and fear intensity.

H1.2.4 There is no significant correlation between wanderRoundness and anger intensity.

H1.2.5 There is no significant correlation between wanderRoundness and disgust intensity.

H1.2.6 There is no significant correlation between wanderRoundness and surprise intensity.

H1.2.7 There is no significant correlation between wanderRoundness and pleasure.

H1.2.8 There is no significant correlation between wanderRoundness and arousal.

H1.2.9 There is no significant correlation between wanderRoundness and dominance.

H1.3.1 There is no significant correlation between wanderCycleRate and joy intensity.

H1.3.2 There is no significant correlation between wanderCycleRate and sadness intensity.

H1.3.3 There is no significant correlation between wanderCycleRate and fear intensity.

H1.3.4 There is no significant correlation between wanderCycleRate and anger intensity.

H1.3.5 There is no significant correlation between wanderCycleRate and disgust intensity.

H1.3.6 There is no significant correlation between wanderCycleRate and surprise intensity.

H1.3.7 There is no significant correlation between wanderCycleRate and pleasure.

H1.3.8 There is no significant correlation between wanderCycleRate and arousal.

H1.3.9 There is no significant correlation between wanderCycleRate and dominance.

We do the same for the the input parameters of the blink base behavior (blinkTemperature,
blinkSlope and blinkCycleRate):

Table F.6: Detailed micro-hypotheses for RQ2

ID Null Hypothesis

H2.1.1 There is no significant correlation between blinkTemperature and joy intensity.

H2.1.2 There is no significant correlation between blinkTemperature and sadness intensity.

H2.1.3 There is no significant correlation between blinkTemperature and fear intensity.

H2.1.4 There is no significant correlation between blinkTemperature and anger intensity.

H2.1.5 There is no significant correlation between blinkTemperature and disgust intensity.

Continued on the next page
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Table F.6: Continued from previous page

ID Null Hypothesis

H2.1.6 There is no significant correlation between blinkTemperature and surprise intensity.

H2.1.7 There is no significant correlation between blinkTemperature and pleasure.

H2.1.8 There is no significant correlation between blinkTemperature and arousal.

H2.1.9 There is no significant correlation between blinkTemperature and dominance.

H2.2.1 There is no significant correlation between blinkSlope and joy intensity.

H2.2.2 There is no significant correlation between blinkSlope and sadness intensity.

H2.2.3 There is no significant correlation between blinkSlope and fear intensity.

H2.2.4 There is no significant correlation between blinkSlope and anger intensity.

H2.2.5 There is no significant correlation between blinkSlope and disgust intensity.

H2.2.6 There is no significant correlation between blinkSlope and surprise intensity.

H2.2.7 There is no significant correlation between blinkSlope and pleasure.

H2.2.8 There is no significant correlation between blinkSlope and arousal.

H2.2.9 There is no significant correlation between blinkSlope and dominance.

H2.3.1 There is no significant correlation between blinkCycleRate and joy intensity.

H2.3.2 There is no significant correlation between blinkCycleRate and sadness intensity.

H2.3.3 There is no significant correlation between blinkCycleRate and fear intensity.

H2.3.4 There is no significant correlation between blinkCycleRate and anger intensity.

H2.3.5 There is no significant correlation between blinkCycleRate and disgust intensity.

H2.3.6 There is no significant correlation between blinkCycleRate and surprise intensity.

H2.3.7 There is no significant correlation between blinkCycleRate and pleasure.

H2.3.8 There is no significant correlation between blinkCycleRate and arousal.

H2.3.9 There is no significant correlation between blinkCycleRate and dominance.

And finally, we define the null hypotheses to test if there exist significant correlations between the input

parameters of the beep base behavior (beepPitch, beepSlope and beepCycleRate) and the dependent
variables:

Table F.7: Detailed micro-hypotheses for RQ3

ID Null Hypothesis

H3.1.1 There is no significant correlation between beepPitch and joy intensity.

H3.1.2 There is no significant correlation between beepPitch and sadness intensity.

H3.1.3 There is no significant correlation between beepPitch and fear intensity.

H3.1.4 There is no significant correlation between beepPitch and anger intensity.

H3.1.5 There is no significant correlation between beepPitch and disgust intensity.

H3.1.6 There is no significant correlation between beepPitch and surprise intensity.

H3.1.7 There is no significant correlation between beepPitch and pleasure.

H3.1.8 There is no significant correlation between beepPitch and arousal.

H3.1.9 There is no significant correlation between beepPitch and dominance.

H3.2.1 There is no significant correlation between beepSlope and joy intensity.

H3.2.2 There is no significant correlation between beepSlope and sadness intensity.

H3.2.3 There is no significant correlation between beepSlope and fear intensity.

H3.2.4 There is no significant correlation between beepSlope and anger intensity.

H3.2.5 There is no significant correlation between beepSlope and disgust intensity.

Continued on the next page
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Table F.7: Continued from previous page

ID Null Hypothesis

H3.2.6 There is no significant correlation between beepSlope and surprise intensity.

H3.2.7 There is no significant correlation between beepSlope and pleasure.

H3.2.8 There is no significant correlation between beepSlope and arousal.

H3.2.9 There is no significant correlation between beepSlope and dominance.

H3.3.1 There is no significant correlation between beepCycleRate and joy intensity.

H3.3.2 There is no significant correlation between beepCycleRate and sadness intensity.

H3.3.3 There is no significant correlation between beepCycleRate and fear intensity.

H3.3.4 There is no significant correlation between beepCycleRate and anger intensity.

H3.3.5 There is no significant correlation between beepCycleRate and disgust intensity.

H3.3.6 There is no significant correlation between beepCycleRate and surprise intensity.

H3.3.7 There is no significant correlation between beepCycleRate and pleasure.

H3.3.8 There is no significant correlation between beepCycleRate and arousal.

H3.3.9 There is no significant correlation between beepCycleRate and dominance.

To test the significance of the difference in performance between pairs of baseline and optimized

models, we define the micro-hypothesis of H4:

Table F.8: Detailed micro-hypotheses of H4

ID Null Hypothesis

H4.1.1 The linear regression models of the six basic emotions trained with X do not achieve

significantly lower MSE and higher R2 than the mean predictor of the six basic emotions.

H4.1.2 The linear regression models of the PAD dimensions trained with X do not achieve signifi-

cantly lower MSE and higher R2 than the mean predictor of the PAD dimensions.

H4.2.1 The linear regression models of the six basic emotions trained with X_int do not achieve

significantly lower MSE and higher R2 than the linear regression models of the six basic

emotions trained with X.
H4.2.2 The linear regression models of the PAD dimensions trained with X_int do not achieve

significantly lower MSE and higher R2 than the linear regression models of the PAD

dimensions trained with X.

H4.3.1 The linear regression models of the six basic emotions trained with X_gmm do not achieve

significantly lower MSE and higher R2 than the linear regression models of the six basic

emotions trained with X.
H4.3.2 The linear regression models of the PAD dimensions trained with X_gmm do not achieve

significantly lower MSE and higher R2 than the linear regression models of the PAD

dimensions trained with X.

H4.4.1 The linear regression models of the six basic emotions trained with X_gmm_int do not

achieve significantly lower MSE and higher R2 than the linear regression models of the six

basic emotions trained with X_gmm.
H4.4.2 The linear regression models of the PAD dimensions trained with X_gmm_int do not achieve

significantly lower MSE and higher R2 than the linear regression models of the PAD

dimensions trained with X_gmm.

H4.5.1 The random forest regression models of the six basic emotions trained with X do not achieve
significantly lower MSE and higher R2 than the linear regression models of the six basic

emotions trained with X
Continued on the next page
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Table F.8: Continued from previous page

ID Null Hypothesis

H4.5.2 The random forest regression models of the PAD dimensions trained with X do not achieve

significantly lower MSE and higher R2 than the linear regression models of the PAD

dimensions trained with X

H4.6.1 The random forest regression models of the six basic emotions trained with X_int do not

achieve significantly lower MSE and higher R2 than the random forest regression models

of the six basic emotions trained with X.
H4.6.2 The random forest regression models of the PAD dimensions trained with X_int do not

achieve significantly lower MSE and higher R2 than the random forest regression models

of the PAD dimensions trained with X.

H4.7.1 The random forest regression models of the six basic emotions trained with X_gmm do not

achieve significantly lower MSE and higher R2 than the random forest regression models

of the six basic emotions trained with X.
H4.7.2 The random forest regression models of the PAD dimensions trained with X_gmm do not

achieve significantly lower MSE and higher R2 than the random forest regression models

of the PAD dimensions trained with X.

H4.8.1 The random forest regression models of the six basic emotions trained with X_gmm_int
do not achieve significantly lower MSE and higher R2 than the random forest regression

models of the six basic emotions trained with X_gmm.
H4.8.2 The random forest regression models of the PAD dimensions trained with X_gmm_int do not

achieve significantly lower MSE and higher R2 than the random forest regression models

of the PAD dimensions trained with X_gmm.
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G.1. Exploratory Data Analysis
To illustrate the effect of the aggregation in terms of noise reduction of the dependent variables, Table G.1

presents descriptive statistics of the 9 dependent variables pre-aggregation. This can be compared to the

descriptive statistics of the 9 dependent variables post-aggregation in Table 4.1.

Table G.1: Descriptive statistics of the dependent variables pre-aggregation

Mean Std. Dev. Min. Q1 Median Q3 Max.

Joy Intensity 1.727 1.624 0.000 0.000 1.000 3.000 5.000

Sadness Intensity 1.439 1.479 0.000 0.000 1.000 3.000 5.000

Anger Intensity 0.828 1.153 0.000 0.000 0.000 1.000 5.000

Fear Intensity 1.305 1.502 0.000 0.000 1.000 2.000 5.000

Disgust Intensity 0.459 0.670 0.000 0.000 0.000 1.000 2.000

Surprise Intensity 1.416 1.473 0.000 0.000 1.000 3.000 5.000

Pleasure 4.459 2.314 1.000 3.000 4.000 6.000 9.000

Arousal 5.139 2.063 1.000 4.000 5.000 7.000 9.000

Dominance 4.355 2.105 1.000 3.000 4.000 6.000 9.000

To understand the distribution of our data, we present the histograms of the aggregated dependent

variables in Figure G.1 and Figure G.2.
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Figure G.1: Distribution of the PAD dimensions variables based on the aggregated dataset
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Figure G.2: Distribution of the emotional intensity variables based on the aggregated dataset

To further illustrate the spread of the aggregated dependent variables, we present the box plots for

each variable in Figures G.3 and G.4.
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Figure G.4: Box plots of the PAD dimensions variables based on the aggregated dataset

G.2. Correlation Analysis
To understand the relationships among the dependent variables themselves, we provide the self-correlation

matrices for the dependent variables. The self-correlation matrix of the aggregated dependent variables

is shown in Figure G.5:

To illustrate the strength of the monotic relationships between the independent and the dependent

variables, the correlation matrix is displayed in a heatmap in Figure G.6. The significant correlations
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Figure G.5: Self-correlation matrix of the dependent variables based on the aggregated dataset

according to Spearman’s rank-order correlation coefficient test (without any multiple testing correction)

are annotated with an asterisk.
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Figure G.6: Correlation matrix of the independent and the aggregated dependent variables

G.3. Regression Analysis Performance Plots
In this section we will include the scatter plots for all 36 regression models. To keep this section structured,

we will divide it by subsections, each corresponding to a target dependent variable.
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G.3.1. Joy Intensity Performance Scatter Plots
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Figure G.7: Scatterplots of the linear model trained with X for joy intensity
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Figure G.8: Scatterplots of the linear model trained with X_int for joy intensity
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Figure G.9: Scatterplots of the linear model trained with X_gmm for joy intensity
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Figure G.10: Scatterplots of the linear model trained with X_gmm_int for joy intensity
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Figure G.11: Scatterplots of the random forest model trained with X for joy intensity
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Figure G.12: Scatterplots of the random forest model trained with X_int for joy intensity
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Figure G.13: Scatterplots of the random forest model trained with X_gmm for joy intensity
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Figure G.14: Scatterplots of the random forest model trained with X_gmm_int for joy intensity
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G.3.2. Sadness Intensity Performance Scatter Plots
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Figure G.15: Scatterplots of the linear model trained with X for sadness intensity
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Figure G.16: Scatterplots of the linear model trained with X_int for sadness intensity
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Figure G.17: Scatterplots of the linear model trained with X_gmm for sadness intensity
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Figure G.18: Scatterplots of the linear model trained with X_gmm_int for sadness intensity
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Figure G.19: Scatterplots of the random forest model trained with X for sadness intensity
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Figure G.20: Scatterplots of the random forest model trained with X_int for sadness intensity
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Figure G.21: Scatterplots of the random forest model trained with X_gmm for sadness intensity
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Figure G.22: Scatterplots of the random forest model trained with X_gmm_int for sadness intensity
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G.3.3. Fear Intensity Performance Scatter Plots
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Figure G.23: Scatterplots of the linear model trained with X for fear intensity
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Figure G.24: Scatterplots of the linear model trained with X_int for fear intensity
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Figure G.25: Scatterplots of the linear model trained with X_gmm for fear intensity
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Figure G.26: Scatterplots of the linear model trained with X_gmm_int for fear intensity
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Figure G.27: Scatterplots of the random forest model trained with X for fear intensity
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Figure G.28: Scatterplots of the random forest model trained with X_int for fear intensity
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Figure G.29: Scatterplots of the random forest model trained with X_gmm for fear intensity
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Figure G.30: Scatterplots of the random forest model trained with X_gmm_int for fear intensity
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G.3.4. Anger Intensity Performance Scatter Plots
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Figure G.31: Scatterplots of the linear model trained with X for anger intensity
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Figure G.32: Scatterplots of the linear model trained with X_int for anger intensity
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Figure G.33: Scatterplots of the linear model trained with X_gmm for anger intensity
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Figure G.34: Scatterplots of the linear model trained with X_gmm_int for anger intensity
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Figure G.35: Scatterplots of the random forest model trained with X for anger intensity
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Figure G.36: Scatterplots of the random forest model trained with X_int for anger intensity
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Figure G.37: Scatterplots of the random forest model trained with X_gmm for anger intensity
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Figure G.38: Scatterplots of the random forest model trained with X_gmm_int for anger intensity
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G.3.5. Disgust Intensity Performance Scatter Plots
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Figure G.39: Scatterplots of the linear model trained with X for disgust intensity
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Figure G.40: Scatterplots of the linear model trained with X_int for disgust intensity
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Figure G.41: Scatterplots of the linear model trained with X_gmm for disgust intensity
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Figure G.42: Scatterplots of the linear model trained with X_gmm_int for disgust intensity
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Figure G.43: Scatterplots of the random forest model trained with X for disgust intensity
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Figure G.44: Scatterplots of the random forest model trained with X_int for disgust intensity
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Figure G.45: Scatterplots of the random forest model trained with X_gmm for disgust intensity
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Figure G.46: Scatterplots of the random forest model trained with X_gmm_int for disgust intensity
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G.3.6. Surprise Intensity Performance Scatter Plots
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Figure G.47: Scatterplots of the linear model trained with X for surprise intensity
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Figure G.48: Scatterplots of the linear model trained with X_int for surprise intensity
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Figure G.49: Scatterplots of the linear model trained with X_gmm for surprise intensity
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Figure G.50: Scatterplots of the linear model trained with X_gmm_int for surprise intensity
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Figure G.51: Scatterplots of the random forest model trained with X for surprise intensity
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Figure G.52: Scatterplots of the random forest model trained with X_int for surprise intensity
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Figure G.53: Scatterplots of the random forest model trained with X_gmm for surprise intensity

0 1 2 3 4 5
Actual Mean Surprise Intensity

0

1

2

3

4

5

P
re

di
ct

ed
 M

ea
n 

S
ur

pr
is

e 
In

te
ns

ity MSE = 0.091
R2 = 0.798

Train data

0 1 2 3 4 5
Actual Mean Surprise Intensity

0

1

2

3

4

5

P
re

di
ct

ed
 M

ea
n 

S
ur

pr
is

e 
In

te
ns

ity MSE = 0.453
R2 = 0.150

Test data

Figure G.54: Scatterplots of the random forest model trained with X_gmm_int for surprise intensity
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G.3.7. Pleasure Performance Scatter Plots
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Figure G.55: Scatterplots of the linear model trained with X for pleasure
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Figure G.56: Scatterplots of the linear model trained with X_int for pleasure
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Figure G.57: Scatterplots of the linear model trained with X_gmm for pleasure
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Figure G.58: Scatterplots of the linear model trained with X_gmm_int for pleasure
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Figure G.59: Scatterplots of the random forest model trained with X for pleasure
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Figure G.60: Scatterplots of the random forest model trained with X_int for pleasure
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Figure G.61: Scatterplots of the random forest model trained with X_gmm for pleasure
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Figure G.62: Scatterplots of the random forest model trained with X_gmm_int for pleasure
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G.3.8. Arousal Performance Scatter Plots
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Figure G.63: Scatterplots of the linear model trained with X for arousal
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Figure G.64: Scatterplots of the linear model trained with X_int for arousal
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Figure G.65: Scatterplots of the linear model trained with X_gmm for arousal
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Figure G.66: Scatterplots of the linear model trained with X_gmm_int for arousal
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Figure G.67: Scatterplots of the random forest model trained with X for arousal
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Figure G.68: Scatterplots of the random forest model trained with X_int for arousal
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Figure G.69: Scatterplots of the random forest model trained with X_gmm for arousal
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Figure G.70: Scatterplots of the random forest model trained with X_gmm_int for arousal
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G.3.9. Dominance Performance Scatter Plots
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Figure G.71: Scatterplots of the linear model trained with X for dominance
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Figure G.72: Scatterplots of the linear model trained with X_int for dominance
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Figure G.73: Scatterplots of the linear model trained with X_gmm for dominance
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Figure G.74: Scatterplots of the linear model trained with X_gmm_int for dominance
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Figure G.75: Scatterplots of the random forest model trained with X for dominance
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Figure G.76: Scatterplots of the random forest model trained with X_int for dominance
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Figure G.77: Scatterplots of the random forest model trained with X_gmm for dominance
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Figure G.78: Scatterplots of the random forest model trained with X_gmm_int for dominance
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