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Estimation of the Ambient Wind Field From Wind Turbine
Measurements Using Gaussian Process Regression

Daan van der Hoek1, Michael Sinner2,3, Eric Simley3, Lucy Pao2, and Jan-Willem van Wingerden1

Abstract— In the search for a lower levelized cost of wind
energy, one approach is to increase the accuracy of wind
turbine measurements such as wind speed and wind direction.
The sensors available on wind turbines are susceptible to
local turbulence and measurement bias, which can result in
suboptimal turbine performance. As an alternative, recent
research has considered using the sensor measurements in
a coordinated manner. With such a cooperative approach,
the local wind conditions can be estimated more accurately
and reliably without the need for additional measurement
equipment. In this paper, a novel wind field estimation approach
is presented that estimates the local wind conditions based on
turbine measurements using Gaussian processes. We show that
the estimation framework is able to improve the accuracy of the
wind direction estimate both in an offline and online manner,
as well as identify possible biases in the sensors and reduce
unnecessary wind turbine yaw activity.

I. INTRODUCTION
As the drive to produce renewable electricity at lower

and lower cost continues, engineers have expanded from
controlling single wind turbines independently to controlling
the wind farm, or “wind plant”, as a whole. Simulation
studies [1], experiments [2], and, more recently, field cam-
paigns [3, 4, 5], have shown that, by coordinating the efforts
of turbines within a farm, the energy produced across the
farm may be increased compared to the traditional “greedy”
case, in which each turbine aims to maximize its own
power output. Similarly, cooperating turbines may be more
flexible in terms of following power reference signals for
grid balancing purposes [6, 7, 8].

Such coordinated control techniques require more in-depth
information about the state of the wind field impacting the
farm and the interaction between turbine wakes than that
required for individual turbine control [9]. Recent efforts
have been made to model these complex interactions both
at high fidelity [10] and using simplified models that may be
used for real-time control and optimization [11, 12].

In order for these models to be useful for online control,
accurate measurements of the wind field must be made
available. An option is to use extra sensors, such as lidars and
meteorological towers, to sample the wind field throughout
the farm. On the other hand, the wind turbines themselves
are already highly instrumented and capable of providing
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point measurements of the wind speed and wind direction,
among other quantities, at the turbine locations. These signals
have long been used at the turbine locally for independent
turbine-level control. A recent branch of research [13, 14] has
considered reconstructing relevant characteristics of the wind
field from the noisy turbine measurements. Such methods
are particularly useful for estimating the underlying wind
direction from turbine measurements, because the wind di-
rection measurement plays a critical role in turbine yaw
control and may therefore be important for wake steering
control [15]. Annoni et al. used a nonparametric, distributed
optimization technique for estimating the wind directions
at the turbine locations [13], whereas Sinner et al. used a
Kalman filtering approach to estimate the coefficients of a
parametric wind field model [14], and both were tested on
measurement data obtained from an operational wind farm.
Comparing the two works, the implementation of Sinner et
al. was computationally much simpler than that of Annoni et
al., but did not explicitly identify turbines with faulty sensors.
Another key difference between the two techniques was the
use of a parametric model: the parametric model of Sinner
et al. [14] can be easily used to produce wind field estimates
at any location within the farm, whereas producing estimates
away from the turbine locations is not straightforward using
the nonparametric method of Annoni et al. [13].

In this work, we consider applying Gaussian process (GP)
regression [16] for estimation of the wind direction within
a wind farm. This approach strikes a balance between the
qualities of parametric and nonparametric methods described
above: the GP regression model, while not normally consid-
ered a parametric model, can produce an output estimate
for a continuum of input locations. We also demonstrate a
method of using the GP to identify faulty or biased turbines.
To our knowledge, this is the first use of a GP to fully
reconstruct the characteristics of a wind field online based on
wind turbine measurements. Related works have used GPs
to correct the errors in a simplified physics-based model
for power prediction [17] and for short-term forecasting
[18, 19, 20, 21, among others]. The latter techniques are
generally interested in providing a single estimate of the
wind speed or power over the entire farm for the purpose of
forecasting the available farm power, whereas in this study
we are interested in resolving the wind direction down to the
turbine level.

The rest of this paper is organized as follows. The GP
method is presented in Section II, which also provides an
overview of the simulation technique used. Section III then
describes the use of the methods of Section II and evaluates
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estimation performance. Finally, conclusions are given in
Section IV.

II. METHODOLOGY

This section presents the methodology that is required for
the simulation and subsequent estimation of the wind field.
A brief introduction to GP regression is given, including the
application to wind turbine measurement data. A simple wind
field model is introduced that will be used to generate data
for the estimation framework. Lastly, a standard yaw control
procedure is described. This will be used to evaluate the
performance of the estimation framework.

A. Gaussian process regression

A Gaussian process [16] is a nonparametric model con-
sisting of a mean and covariance function. It assumes that a
set of noisy function observations y =

[
y1 y2 · · · yn

]
,

along with function evaluations y∗, belong to a zero-mean
multivariate Gaussian distribution:[

y
y∗

]
∼ N

(
0,

[
K(x,x) + σ2

nI K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
, (1)

where x =
[
x1 x2 · · · xn

]
is a matrix containing

the measurement locations, x∗ is a matrix containing test
locations, and the kernel matrix K and parameter σn are
described below. In this case, we want to construct a spatio-
temporal model of the wind field, which results in a vector
xi consisting of the turbine coordinates and timestamp be-
longing to a turbine measurement yi.

The correlation between function values is determined by
a covariance function based on the respective inputs and a set
of hyperparameters. To ensure a certain level of smoothness
between the function estimates, the squared exponential
covariance function is used to quantify the similarity between
two input vectors x and x∗, i.e.:

K(x,x∗) = λ2f · exp
(
−1

2
(x− x∗)TΛ−1

x (x− x∗)

)
. (2)

The covariance matrix is constructed using a set of hy-
perparameters λ2f , Λx =

{
λx2

1
, . . . , λx2

n

}
, and σ2

n, which
denote the signal variance, characteristic length-scales and
noise variance, respectively. The hyperparameters can be
determined by optimizing the marginal likelihood of the data.

After conditioning the hyperparameters on the measure-
ment data, we are able to infer the function value of the
Gaussian process for any trial location x∗ with the following
equation:

µ∗ = K(x∗,x)
(
K(x,x) + σ2

nI
)−1

y, (3a)

Σ∗ = K(x∗,x∗)−K(x∗,x)
(
K(x,x) + σ2

nI
)−1

K(x,x∗),
(3b)

where µ∗ and Σ∗ are the mean and variance of the cost
function at trial locations x∗, respectively. This not only
allows for estimation of the wind field at turbine locations,
but at any location inside the farm, specified by x∗.

B. Wind field model

To test the effectiveness of the GP regressor in estimating
the true wind directions within a wind farm, we require
a representative wind field model. We follow a similar
procedure to that presented by Simley et al. [15], and let
the point wind direction, as measured by the wind vane on
turbine T at time t, be broken down as

φ(T )(t) = φ
(T )
l (t) + φ

(T )
t (t) , (4)

where φt is the turbulent high-frequency component and φl
is the low-frequency component, with spectra defined by (3b)
& (3c) from Simley et al. [15], respectively. We assume that
the high-frequency component is uncorrelated between the
turbines, and randomly generate φ

(T )
t for each turbine by

assigning a uniformly random phase to the Fourier coeffi-
cients of the high-frequency component before computing
the inverse Fourier transform.

On the other hand, we assume that the low-frequency
component moves downstream at the mean wind speed U
without changing. To do so, we assume a spatially and tem-
porally constant underlying mean wind direction φ̄, which
governs the advection of the flow field, for the duration of
the simulation. The low-frequency component at turbine T
is then

φ
(T )
l (t) = φ

(0)
l

(
t+ d(T )

/U
)

(5)

where φ(0)l is the low-frequency wind direction component at
some reference point in or near the farm, and d(T ) is turbine
T ’s distance downstream (using wind direction φ̄) from the
reference point. For turbines upstream of the reference point,
d(T ) < 0. We therefore generate a single low-frequency wind
direction signal φ(0)l according to Simley et al. [15, (3c)], and
use (5) to compute the low-frequency wind direction at the
turbine locations. Note that this method of simulation means
that the low-frequency wind direction components are com-
pletely correlated between turbines, which is a simplification.
However, the combination of the correlated low-frequency
component and uncorrelated high-frequency component (4)
ensures that the coherence between the wind direction signals
at different turbines is decreasing as a function of frequency.

C. Turbine yaw control

Wind direction measurements are used predominantly for
turbine yaw control. If the wind vane, located on the turbine
nacelle, detects a significant and persistent nonzero value,
the turbine is considered “misaligned”, and the yaw motor
engages to turn the turbine into the wind and drive the
misalignment to zero.

Letting γ(T ) denote the yaw angle of turbine T and the
low-frequency wind direction component φ(T )

l be the “true”
wind direction that we would like the yaw controller to track,
we denote by

γ̃(T ) := φ
(T )
l − γ(T ) (6)

the turbine misalignment. Note that we are using a
clockwise-positive coordinate system. The power lost due to
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Fig. 1. Layout of a generic 12-turbine wind farm used for the case study.
The turbines are spaced with a distance of 800 m in the horizontal direction
and 600 m in the vertical direction.

yaw misalignment is modelled using a cosine-squared loss
for simplicity [22].

The yaw controller we implement for this study can be
described by a state machine with three modes of opera-
tion: yawing counterclockwise at a fixed yaw rate of γ̇ =
0.3 deg/s; yawing clockwise at the same rate; and off (turbine
not currently yawing). Based on an estimate of the wind
direction φ̂(T )

l , when the absolute yaw misalignment reaches
a threshold value γ̃threshold = 8 deg, the turbine begins
yawing to drive the misalignment to zero and stops yawing
once zero is crossed. Typically, φ̂(T )

l is taken to be a filtered
version of the wind direction measured by the wind vane,
which is presented as the baseline estimate in Section III-
A. In Section III-B, the estimate will be replaced with the
output of the GP model. The choice of yaw rate γ̇ and
threshold value γ̃threshold are based on the work of Bossanyi
and Simley et al. [23, 15].

III. CASE STUDY

In order to evaluate the performance of the GP wind field
estimation framework, a case study is performed on the wind
farm model shown in Fig. 1. The conditions in the wind
farm are simulated using the wind field model presented in
Section II-B for a constant wind speed of U = 8 m/s. A
distinction is made between online and offline estimation of
the wind direction. This is due to the effect of adding new
measurements to the data set used for GP regression, which
results in less smooth function approximation over time.

Although we use a constant wind speed in this work to
simplify the simulation procedure, the GP does not use wind
speed information explicitly and is not limited to constant
wind speeds. However, the GP hyperparameters will likely
need to be relearned in situations where the wind speed,
as well as other atmospheric conditions such as turbulence
intensity, wind direction variability, and shear, change.

Fig. 2. Comparison of wind direction signals for a historical set of
wind direction measurements of a single turbine (T5). The shaded area
surrounding the GP estimate signifies the 95% confidence bounds of the
function estimate.

A. Offline estimation

The GP estimation framework is initially applied to a
historical set of noisy wind direction measurements for
comparison with the low-frequency wind direction signals
and the turbine measurements. Furthermore, a first-order
low-pass filter is applied to the individual wind turbine
measurements to serve as a baseline wind direction estimate
over time. A time constant of τ = 35 s is used to construct
the wind direction filter. This is consistent with the tuning
used by Simley et al. to emulate the behavior of operational
turbines [15].

The GP model for the entire wind farm is constructed by
providing it with a set of noisy wind direction measurements
φ(T )(t) from each turbine, along with the respective turbine
coordinates and timestamps. After optimizing the hyperpa-
rameters for the given set of measurements, the GP model
is able to provide the wind direction at any desired location
and time according to (3). In order to adequately capture
the low-frequency content of the wind direction in the GP
model, ten minutes worth of wind turbine measurements
with a time interval of ∆t = 10 s were used as input
data. A visual comparison of the different wind direction
signals is provided in Fig. 2 for a single turbine. It can
be observed that in this instance the original low-frequency
signal is closely approximated by the GP model mean and
falls completely within the 95% confidence bounds of the
function estimate. In contrast, the filtered signal is affected
more by the turbulence on the raw measurement signal,
resulting in a larger error with the low-frequency signal.

The previous comparison alone does not offer sufficient
evidence that the GP model is always able to provide a
better estimate of the true conditions for any turbine at all
times. In order to test if this is the case, we performed a set
of Monte Carlo simulations over the whole wind rose and
using different realizations of the generated wind direction
profile. The accuracy of the different wind direction signals
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Fig. 3. Root-mean-square error between the different wind direction
estimates and the simulated low-frequency signal for all 12 turbines based
on a Monte Carlo simulation with 500 different realizations.

is expressed in terms of the root-mean-square error (RMSE)
of the respective signals and the low-frequency signal. The
results of the Monte Carlo simulation are presented in Fig. 3,
and clearly show that the GP model outperforms standard
first-order filtering of the raw measurements.

Until now, we have assumed that the turbine measurement
signals are only influenced by local turbulence. In reality,
these signals can also be affected by additional noise or bias
due to a mechanical failure or inaccurate calibration. Because
the Gaussian process model can estimate the wind direction
at any location inside the wind farm, a simple leave-one-out
cross-validation can be performed to determine whether a
turbine measurement is biased.

The cross-validation for a single turbine is performed
by removing the measurements from that particular turbine
from the training data set and then estimating the wind
direction at the turbine location using the measurements from
surrounding turbines. This process is repeated for each of the
turbines in the wind farm, after which the RMSE between
the estimated wind direction signals and the filtered turbine
measurements are evaluated. Based on the results from
Fig. 2, a small error is expected between the estimated and
filtered wind direction in the unbiased case. However, when
a bias is present in one of the turbines, this should result in a
clear distinction in the RMSE values of the different turbines.
Ideally, the cross-validation procedure should be redone once
a measurement bias has been identified, in order to prevent
contamination of the other turbine results.

Fig. 4 shows the cross-validation results after a bias
of φbias = 7 deg has been added to the measurements
of turbine T8. A clear peak is visible for this turbine,
indicating a possible bias in the measurement data. When
a potential bias has been identified, the measurement data of
the corresponding turbine is removed from the GP model
and the wind direction is estimated from nearby turbine
measurements. An example of this is given in Fig. 5, where

Fig. 4. Results of the leave-one-out cross-validation expressed in the RMSE
between the GP model estimate and the first-order filtered wind direction
measurement.

the GP model is compared to the true low-frequency signal
and the contaminated measurement signal. Notice that the
confidence bounds of the GP model have increased compared
to the estimate from Fig. 2, as a result from removing the
measurements of that particular turbine from the GP model.
Based on this figure we can conclude that it is possible to
obtain a reasonable estimate of the local wind conditions,
even when a turbine is affected by additional sensor noise or
bias, if the biased turbine is identified and its measurements
are excluded from the GP model.

B. Online estimation

The previous section showed that the Gaussian process
model is able to improve the accuracy of the wind direction

Fig. 5. Comparison of wind direction signals of a single turbine (T8)
for a historical set of wind direction measurements, when the turbine
measurements are affected by a bias. The GP model estimates the wind
direction based on measurement data from surrounding turbines, and the
shaded area surrounding the GP estimate signifies the 95% confidence
bounds of the function estimate.
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Fig. 6. Comparison of the original wind direction profile with the filtered
measurement signal and the online GP model estimate. The resulting yaw
orientations based on the latter two signals are shown using dashed lines.

measurement based on historical measurements. When the
GP estimate is used as input to the yaw controller from
Section II-C, some minor modifications to the framework
are required. The initial procedure still consists of condi-
tioning the hyperparameters to the last 10 minutes’ worth
of measurements. After this, the wind direction is inferred
at time t for all wind turbine locations. At time t + ∆t,
with ∆t = 10s, newly obtained measurements are added to
the measurement set y from (1), and the measurements of
the oldest time instance are omitted. Once the data set has
been updated, the mean and variance of the wind direction
at time t+∆t are computed using (3). The online GP model
is found to be particularly sensitive to new measurements at
the edge of the input data, i.e., the current time step. This
often results in a wind direction estimate that is less smooth
over time when compared to the offline model. Additional
care should be taken when the mean wind direction, as well
as other atmospheric conditions, have changed significantly
from the time of the original training data set. When this
is the case, the hyperparameters should be optimized once
more based on the current dataset.

An example of the online estimation procedure is given
in Fig. 6. Here, the online GP estimate for a single turbine
is shown next to the original low-frequency signal and the
filtered wind direction measurement. Furthermore, both the
GP model and the filtered measurement have been applied
to the yaw controller described in Section II-C, resulting
in two realizations of the yaw orientation over time. In
this particular instance, it can be observed that the yaw
orientation following from the GP model follows the original
wind direction signal more closely than the yaw orientation
from the filtered signal.

In order to find out whether the GP model is able to sys-
tematically improve the performance of the yaw controller,
multiple realizations of the generated wind field along with
different mean wind directions are applied to the online
estimation framework. Figure 7 presents the average power

Fig. 7. Average power loss due to yaw misalignments for each of the
turbines based on the first-order-filtered wind direction measurement and
the GP model. The results are obtained from 1000 realizations of the wind
direction model.

loss due to yaw misalignments as computed by the cosine-
squared rule [22]. This figure shows that the GP model is
able to reduce yaw misalignments, thereby decreasing the
power that is lost due to misalignment with the incoming
wind field. Additionally, the effect of the GP model on the
yaw activity relative to the filtered measurement signal is
shown in Fig. 8. From this we can conclude that, using the
online GP model estimate in place of the raw wind direction
measurement for turbine yaw control, we may be able to
achieve a slight increase in power due to a smaller yaw
misalignment while achieving a significant decrease in the
amount of yaw activity.

IV. CONCLUSION

A Gaussian process (GP) regression model was introduced
to model the ambient wind conditions inside a wind farm

Fig. 8. The average decrease in distance traveled by yawing with the GP
model compared to when the filtered measurement signal is used as input
for the yaw controller. The results are obtained from 1000 realizations of
the wind direction model.
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based on wind turbine measurements. By conditioning the
GP model on a historical set of noisy wind direction mea-
surements, an accurate estimate of the wind direction over
time at each turbine can be obtained. Using such an offline
model of the wind direction, potential biases or sources of
additional noise on a turbine level can be identified.

Estimating the wind direction in an online fashion leads
to a slight deterioration in the accuracy of the estimate;
however, the GP model is still able to achieve a smaller
yaw misalignment compared to the baseline yaw controller.
The performance is expected to increase even further when a
bias in the wind direction measurements has been identified
prior to the online estimation. A positive side effect of using
the GP model as input to the yaw controller is a significant
decrease in the amount of yaw activity.

In this work, only the wind direction was estimated with
the GP model, but the current framework can easily be
expanded to model wind speed as well. Furthermore, when
additional measurements inside a wind farm are available
from a meteorological mast or lidar, for example, these can
be added to the input data of the GP model while taking
into account the possibly higher accuracy of the additional
measurement devices. Another possible application of the
presented framework can be found when coupling it to
dynamic wake models in the form of an observer. The
observed wake model may subsequently be used to optimize
the power of a wind farm using control methods such as
wake steering.
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