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Abstract: Ensuring safety and preventing accidents in waterway channels are critical
challenges for networked marine surface vessel systems (NMSVs). This study introduces
a regulation-aware decision-making system designed to minimize traffic conflicts and
enhance navigational safety in inland waterway traffic separation schemes. The proposed
framework integrates a hierarchical conditional state machine with chance-constrained
model predictive control, allowing NMSVs to handle complex traffic situations while
complying with safety regulations. The hierarchical conditional state machine effectively
identifies vessel maneuver states, implementing safety constraints that proactively avoid
collisions. Meanwhile, the chance-constrained model predictive control optimizes vessel
trajectories, factoring in uncertainties and potential risks, while simultaneously enhancing
operational efficiency. Simulation and experimental results demonstrate that the proposed
system significantly reduces the likelihood of accidents and improves overall safety by
efficiently managing vessel interactions. Compared to traditional methods, the regulation-
aware approach ensures better collision avoidance, greater regulation compliance, and
superior safety performance. This study confirms that the proposed decision-making
system can be effectively implemented in real time, offering practical benefits for improving
waterway safety and mitigating accident risks.

Keywords: networked marine surface vessel systems (NMSVs); traffic safety; behavior
planning; inland waterway traffic separation schemes

1. Introduction
Maritime transportation plays a crucial role in the global transportation system, with

the shipping industry continuously striving to enhance operational efficiency, vessel intelli-
gence, and navigation safety [1]. Currently, ship navigation heavily depends on onboard
communication and navigation systems, which offer limited capabilities in terms of naviga-
tion information and communication. This constraint hampers the timely, comprehensive,
and effective utilization of available information resources, resulting in a shortage of critical
data and hindering the realization of full interconnectivity. Consequently, this leads to
inadequate security risk mitigation. Additionally, the absence of an efficient ship naviga-
tion system results in low communication efficiency between vessels and ports, further
exacerbating the risk of accidents and incidents, such as delays in departures and arrivals,
ship collisions, and groundings [2].
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To address these challenges within the maritime sector, our research team previously
proposed the Internet of Ships (IoS) conceptual framework. Building upon the IoS frame-
work, this paper introduces a novel behavior planning framework aimed at ensuring both
the safety of ship navigation and the efficient coordination of vessels. Ensuring the safety
of networked marine surface vessel systems (NMSVs) in inland waterway channels is of
paramount importance to preventing maritime accidents and minimizing traffic conflicts.
Collisions between vessels, especially in constrained waterway environments, pose signifi-
cant risks not only to human life but also to the environment and economy [3]. Ensuring
that NMSVs comply with both safety regulations and navigational rules is paramount to
preventing such incidents and ensuring efficient waterway traffic management [4]. NMSVs
are increasingly recognized as vital components of modern maritime navigation, enabling
fully autonomous operations while mitigating the risks associated with human error [5].
Therefore, it is essential to develop intelligent decision-making and motion planning sys-
tems that can mitigate these risks, enhance operational safety, and ensure compliance with
maritime regulations.

Autonomous navigation for NHMSVs typically involves three core components: per-
ception, decision-making/planning, and control. These systems must operate in complex
environments with dynamic traffic conditions, where the behavior of surrounding vessels
can change unpredictably [6]. To ensure safe navigation, it is crucial for NMSVs to not only
detect obstacles but also predict their movements, assess the traffic situation, and make
real-time decisions that reduce the likelihood of accidents.

Navigating through narrow waterway channels, especially in mixed traffic environ-
ments involving both NMSVs and human-operated vessels, presents significant challenges.
The absence of fixed traffic lanes and traffic signals on the water creates an inherently dy-
namic environment that requires careful coordination to avoid collisions. These challenges
are further compounded by the need to adhere to global maritime safety regulations, such
as the International Regulations for Preventing Collisions at Sea (COLREGs), which govern
the movement of vessels in constrained spaces.

When faced with these complex dynamics, automated decision-making systems play
a pivotal role in NMSVs’ ability to navigate safely and efficiently. These systems must
evaluate the surrounding environment in real time and make decisions that reduce the risk
of collisions, account for uncertainties, and ensure adherence to maritime regulations [7].
NMSV behavioral decision-making strategies can generally be classified into rule-based
systems [8] and learning-based approaches [9]. While rule-based systems rely on predefined
conditions and regulations, learning-based methods can adapt to dynamic conditions and
optimize decision-making through continuous feedback.

A decision-making system evaluates the surrounding environment and determines
the vessel’s behaviors [10] based on the available options and resource constraints. Kim
proposed an autonomous intelligent body architecture approach to solve the optimal task
planning problem for vessels [11]. This approach has some advantages owing to its highly
autonomous multi-subject architecture features capable of performing state estimation,
maintaining environment awareness, determining the task goal, planning/re-planning to
achieve the set goal, and allocating resources. Ferris proposed a scalable mission planning
architecture that allows vessels to reach multiple target points with time-optimal mission
plans [12]. The vessel’s route planning is seen as a mass. The vessel is considered a non-
holonomic constrained vessel in trajectory planning, considering kinematic constraints.
Finally, dynamical constraints are introduced to motion planning, fully considering the
behavioral constraints (rules) and the vessel’s dynamic information.

Planning is a multi-scale constraint problem, typically applied to large-scale scenarios,
treating the object of research as a particle with no dynamic properties. Vessel behavior
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planning [13] relates to vessel navigation, consisting of behavior, task, and motion plan-
ning [14]. However, the navigation of waterway channels presents difficulties in terms of
motion planning due to the constrained space available and the presence of other vessels
driven by humans. Collisions between ships are a severe danger to maritime safety, and
particular care should be taken with the ship’s operation in narrow channels to avoid
accidents, substantial economic losses, and environmental destruction [3]. Furthermore, it
is important to note that an accident has the potential to result in insignificant economic
ramifications due to the subsequent disruption of key transportation routes.

The successful navigation of waterways necessitates meticulous preparation and
precise execution to circumvent potential collisions with both stationary and moving
impediments. Furthermore, adherence to interaction regulations [15] in canal channels is
of utmost importance, akin to the collision avoidance laws at sea (COLREGs) [16]. The
adherence to these restrictions is obligatory, and by doing so, the movements of the NMSV
become socially compliant and predictable to other individuals utilizing the canal.

While NMSVs and other autonomous vehicles [17] have been studied in dynamic
environments, motion planning for NMSVs faces unique challenges due to the special envi-
ronment in inland waterway traffic separation schemes. Unlike road-based autonomous
vehicles, NMSVs must navigate without predefined lanes or traffic signals, and their mo-
tion planning must take into account both their own physical dynamics and the potential
behavior of nearby vessels [18]. Furthermore, unlike mobile robots navigating unstructured
environments [19], NMSVs must also comply with maritime-specific traffic regulations
to ensure safe passage [20]. Wang et al. proposed an algorithm for avoiding collisions,
allowing virtual lanes to run parallel to waterways [21]. Tao et al. [4] produced a plan for
channels to be followed by the vessel train model. However, these studies failed to consider
avoidance regulations in the waterway channel, including interaction regulations, which
consider ships’ operation in channels.

Current approaches to collision avoidance in waterway navigation often fail to fully
incorporate the need for regulation-aware decision-making, particularly regarding inter-
action rules, which govern vessel operation in constrained channels [22]. While previous
studies have proposed various strategies for collision avoidance, many have overlooked
the importance of considering waterway-specific regulations, such as the guidelines for
safe operation in narrow channels and the interactions between vessels. These regulations
are crucial for preventing accidents, yet they are often inadequately integrated into existing
motion planning systems. Many studies have explored different methods for autonomous
vessel navigation, focusing primarily on optimizing decision-making processes. Model
predictive control (MPC) has been one of the most widely applied techniques due to its
ability to handle multiple variables and constraints while optimizing vessel trajectories
in real time. For instance, MPC has shown promising results in collision avoidance in
maritime traffic. However, one of the main limitations of traditional MPC approaches lies in
real-time decision-making. The computational complexity involved in solving optimization
problems in high-traffic conditions often prevents these methods from operating effectively
in real time, particularly when high-density traffic or unpredictable environmental factors
are involved.

On the other hand, reinforcement learning methods have emerged as a potential
solution to dynamic decision-making, as they can adapt to the environment over time.
However, these methods face challenges in terms of scalability and the need for large
datasets. Moreover, reinforcement learning does not inherently provide guarantees for
regulatory compliance or safety, which are essential in maritime contexts where collision
avoidance and traffic regulations are crucial.
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Although several advances have been made, these methods still have limitations in
scalability and real-time applicability, especially in inland waterways, where high-traffic
conditions and environmental factors add additional layers of complexity.

To address the existing challenges in maritime safety and navigation efficiency, we
propose a novel approach that integrates hierarchical conditional state machine (HCSM)
and chance-constrained model predictive control (CC-MPC). Our approach specifically
addresses the limitations of traditional methods, offering a solution that is scalable, feasible
in real time, and capable of handling uncertainties in dynamic, high-density environments.
The combination of HCSM and CC-MPC allows for safe and efficient navigation of vessels,
ensuring collision avoidance, compliance with traffic regulations, and adaptability to
unforeseen circumstances, such as changes in traffic patterns or environmental factors.
This combination enables dynamic decision-making while ensuring the system remains
computationally efficient enough for real-time operation.

The proposed framework integrates hierarchical conditional state machines with
chance-constrained model predictive control. This hybrid approach enables vessels to
navigate complex traffic scenarios while adhering to both safety constraints and traffic
regulations. By leveraging the IoS infrastructure, our system allows for more effective
decision-making and coordination. Furthermore, the use of edge computing allows for
localized processing of real-time environmental data, reducing latency and enhancing the
timeliness of decision-making in critical situations.

The key contributions of this paper are as follows:

(1) This paper presents a novel regulation-aware decision-making framework that lever-
ages the Internet of Ships and edge computing to integrate behavioral decision-making
with motion planning, specifically designed to enhance the safety and efficiency of
NMSVs operating in inland waterway channels.

(2) Hierarchical conditional state machine is employed to make decisions about the ves-
sel’s maneuvers based on the current traffic situation, implementing safety constraints
to prevent collisions.

(3) The chance-constrained model predictive Control is then used to optimize the vessel’s
trajectory, factoring in both the vessel’s own dynamic constraints and the uncertainty
in the surrounding traffic environment. This integrated approach not only enhances
collision avoidance but also ensures that NMSVs adhere to traffic regulations, improv-
ing overall safety and reducing the potential for accidents.

The subsequent sections of this paper are structured in the following manner: Section 2
of this paper provides an overview of the theoretical background. Section 3 of the document
focuses on the decision-making framework that governs the behavior of autonomous
surface vehicles in waterway channels and the optimal planning approach utilizing a
chance-constrained model prediction framework. Section 4 discusses case study. Section 5
summarizes the discussion and conclusions.

2. Problem Formulation
In the autonomous navigation phase, vessels must rely on the integrated system’s

perception, decision-making, and execution capabilities to achieve autonomous control
without the need for human intervention [23]. At this stage, the system must exhibit robust
data processing, real-time decision-making, and incident response capabilities [24,25]. The
above scenarios are the basis of the algorithm studied in this paper and are mentioned in
our previous research [26].
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2.1. Vessel Behavior Modeling

Understanding traffic separation schemes, as regulated by the International Maritime
Organization (IMO), is crucial for preventing accidents and enhancing the safety of vessel
operations in waterway channels. These schemes are designed to organize vessel move-
ment, helping to mitigate the risk of collisions and improve traffic flow in congested or
narrow waterways. Historically, traffic separation schemes typically involve dual-lane
systems to guide vessels in distinct directions, but in inland waterways, the restricted width
often necessitates single-lane configurations.

In dynamic environments, vessels frequently interact with other ships, and these
interactions can range from benign to hazardous, directly influencing both the safety of
the vessel in question and the overall traffic dynamics. The key to reducing accidents lies
in understanding and modeling these interactions. Preliminary studies [13] indicate that
the nature of ship-to-ship interactions—shaped by factors such as proximity, speed, and
maneuvers—significantly impacts overall vessel behavior and collision risks.

In the context of waterway navigation, vessel behavior can be broken down into three
critical stages: situational awareness, decision-making, and execution of maneuvers. Vessels
must continuously assess the surrounding traffic conditions, gathering data from other
vessels and evaluating potential risks to avoid accidents. These ongoing assessments help
vessels to make real-time adjustments to their operations, including changes in heading or
speed, based on the movement of other ships. These adjustments, however, often trigger
ripple effects that can alter the overall traffic situation, potentially introducing new safety
risks that must be mitigated.

The navigation status of a vessel includes serval-dimensional state sets composed of
position information (east x and north y), vessel velocity v, heading angel c, vessel decision
state d, vessel control input τ, and other dynamic attributes. The expression of a vessel’s
navigation state in maritime traffic is as follows:

Sbehavior = {Sbehaviori | Si, i = 1, 2, · · · , n}
Sbehaviori =

{
Sk

i | Sk
i =

(
tk, xk

i , yk
i , vk

i , ck
i , dk

i , τk
i

)
, k = 1, 2, · · · , m

} (1)

where k is the timestamp, Si is the vessel behavior of vessel i, n is the number of the vessel,
and Sk

i is the navigation status of the vessel i at time k.
Vessels must continuously adapt to changes in the navigation status of surrounding

vessels. Significant variations in navigation status can lead to safety incidents, necessitating
appropriate behavioral adjustments. This process entails perceiving environmental changes,
deciding on navigational alterations, and executing actions to maintain safety. Recent
advancements in traffic separation schemes, akin to highway lanes, have been implemented
to enhance safety and prevent collisions. The interaction process of vessel behavior is
classified into three stages: perceiving the traffic environment, assessing movement trends,
and, if required, altering navigation states to avoid collisions. This tripartite approach
ensures safe and efficient navigation, with vessels constantly evaluating traffic conditions
and adjusting behaviors according to established rules and emerging safety threats.

Sailing routes are determined by ship captains over thousands of years of sailing
practice. Then, waterways, known as the traffic separation scheme, gradually appeared
like “lanes” on highways to prevent ships from colliding. The traffic separation scheme,
regulated by the International Maritime Organization, is a route-management system for
traffic management. Historically, a single traffic separation scheme consists of two lanes. A
vessel sailing in a traffic lane should follow the approximate direction of that lane. Each
vessel in the traffic separation scheme is assigned to one of three statuses. Once the vessel
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has entered the traffic separation scheme, it is able to navigate along its intended course
and at the chosen velocity without any restrictions.

Nevertheless, if a target vessel travels at a slower velocity and is positioned ahead, it
is possible for the vessel in question to utilize an adjacent lane to surpass the vessel, if there
is minimal vehicular congestion in the opposing direction. The procedure is commonly
referred to as vessel overtaking. Due to environmental indications or human factors, the
vessel may encounter head-on situations in narrow channels during the sailing process. The
vessel may observe transitioning between phases based on the current maritime conditions.

This study redefines vessel sailing behavior within the traffic separation scheme into
two primary states: normal sailing and collision avoidance (as shown in Table 1). Collision
avoidance is further subdivided into chasing and encountering scenarios, depending on
the specific environmental and traffic conditions within the waterway. Normal sailing is
the baseline state of the vessel, where it is cruising along its planned route under typical
conditions, without any immediate threat from other vessels or obstacles. In this state, the
vessel is moving at a constant speed and heading. The vessel is in clear water without
encountering any obstacles or other vessels. The traffic in the waterway is minimal, and
there are no immediate risks of collision or navigational interference. The vessel remains in
the “normal sailing” state unless it detects potential obstacles, such as approaching vessels,
or changes in the environment that could pose a threat. If another vessel comes too close or
the environment becomes congested, the system transitions to “collision avoidance.” For
example, an autonomous vessel is cruising in a broad waterway with little to no traffic. It
is maintaining its course and speed. The system continuously monitors the surrounding
area to ensure that no vessels are on a collision path. As long as the path remains clear, the
vessel continues in the “normal sailing” state. The collision avoidance state is activated
when the vessel detects a potential collision with another vessel or obstacle. The vessel will
take evasive actions to prevent accidents, such as adjusting its speed or changing its course.
Other vessels or objects that are on a collision course within a predefined safe distance are
detected. Real-time calculation of a collision risk that exceeds the safety threshold, such as
when another vessel suddenly changes course into the vessel’s path, is calculated. Once
the collision risk is mitigated (e.g., the vessel has adjusted its course to avoid the other
vessel), the system transitions back to “normal sailing.” For example, the autonomous
vessel detects an approaching vessel from the side. To avoid a collision, it adjusts its speed
and changes its course, allowing enough space to pass safely. Once the collision risk is
eliminated, the vessel resumes “normal sailing.” Overtaking and head-on processes are
the processes of collision avoidance. Figure 1 shows the transition from normal sailing to
overtaking to normal sailing in the physical layer.

Table 1. Individual vessel behavior types.

Number Vessel Individual Behavior

1-1-1 Normal sailing
2 Collision avoidance

2-1 Overtaking
2-2 Head on

2-1-1 Moving to overtaking path
2-1-2 Overtaking passing
2-1-3 Returning to original target path
2-2-1 Moving to head-on path
2-2-2 Head-on passing
2-2-3 Returning to original target path
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Figure 1. Traffic separation schemes and individual vessel behavior in the waterway.

By focusing on these core behavioral types, we aim to develop a comprehensive model
for understanding and predicting vessel behavior under varying maritime conditions,
ultimately reducing the likelihood of collisions and improving overall safety in waterway
traffic. Understanding these behavior patterns is essential for designing systems that can
dynamically adjust to the constantly changing traffic environment, thus mitigating the risk
of accidents and ensuring smoother, safer navigation in inland waterways.

2.2. Vessel Description and Dynamics

The motion of the vessel is modeled using a 3-DoF hydrodynamic model, as shown in
Figure 2, with the kinematics and kinetics formulations represented as:

.
η = R(ψ)V
M

.
V + C(V)V + D(V)V = τ

(2)

where η = [x, y, ψ]T represents the position and orientation of the vessel, R(ψ) is the
rotation matrix, and V = [u, v, r]T . The variables denoted by V correspond to the velocities
in the surge, sway, and yaw directions. The symbol M represents the inertia matrix, C(v)
represents the Coriolis and the centripetal matrices, and D(v) represents the damping
matrix. Furthermore, τ denotes the vector of control inputs.
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In the field of navigation practice, the control input often involves the manipulation of
the rudder angle. Consequently, to effectively tackle the issue at hand, namely, trajectory
tracking with multi-obstacle avoidance, the following transformation is implemented in a
direct manner: .

x = u cos(ψ)−
(
λ1r + λ2r3) sin ψ

.
y = u sin(ψ) +

(
λ1r + λ2r3) cos ψ

.
ψ = r
.
r = −ar − br3 + cτr
.
u = −du − Wr2 + τu

(3)

where τr represents the rudder angle, τu represents the propeller thrust, and λ1, λ2, a, b, c,
d, and W are model parameters. The relationship between sway velocity and rate of turn,
denoted by v = λ1r + λ2r3, can be established by both full-scale and laboratory tests. The
parameters a, b, and c are associated with a simplified Nomoto model.

Let ξ = [x, y, ψ, r, u]T be a vector, without loss of generality. Equation (3) can be
converted into the subsequent nonlinear control system.

.
ξ = λ(ξ, τ) = f(ξ) + g1τin (4)

where τin = [τr , τu ], g1 =

[
0 0 0 c 0
0 0 0 0 1

]T

, and f (ξ) =


u cos(ψ)−

(
λ1r + λ2r3) sin ψ

u sin(ψ) +
(
λ1r + λ2r3) cos ψ

r
−ar − br3

−du − Wr2

.

If two vessels risk colliding, international or local maritime norms dictate that action
must be initiated immediately. Nevertheless, establishing a secure separation distance
between the two watercrafts can present a complex task. This article proposes a technique
for estimating the geometry of the target vessel domain and suggests the shortest passing
distance. This study employs dynamic ship domain models that consider many factors,
such as navigable canal conditions, ship behaviors, ship types, and ship sizes.

Based on the above ship domain research, vessels transiting the channel must maintain
a minimum safe distance from other vessels traveling in the same longitudinal direction
when navigating a channel. This process establishes the vessel’s primary axis navigation
domain. Furthermore, it is imperative for vessels to uphold a prescribed minimum safe
distance from other vessels in adjacent lanes within a multi-lane waterway to establish the
minor axis of the vessel’s domain.

Stopping visual range may be used to detect the principal axis of the vessel domain
for vessels traversing the channel. In the field of traffic engineering, the concept of stopping
visual range pertains to the minimum distance at which a vehicle must come to a stop when
the driver hits impediments or when the preceding vehicle halts. This calculation takes
into consideration factors such as response time, stopping distance, and the appropriate
safe distance.

S = S0 + S1 + S2

S1 = vt
S2 = v2/2adomain

(5)

where variable S represents the stopping visual range for a vessel, whereas S0 denotes the
safe distance, which is approximately equivalent to one-fourth of the vessel’s length [20]. In
this context, S1 represents the distance required for a vessel to react, S2 denotes the distance
needed for the vessel to brake if there is no vessel behind, the value of S2 is 0, t signifies the
initial speed of the vessel, adomain is the vessel operator’s response time, and adomain is the
braking rate of the vessel behind.
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Suppose the channel navigation standard establishes a safe distance from vessels
ahead or behind. This specified safe distance may be used as the principal axis of the
vessel domain for vessels sailing along the channel. The vessel’s domain minor axis may
be calculated following the Guidelines for the Design of Approach Channels, the Code for
Design of General Layout of Sea Ports, the European Code for Inland Waterways, or any
other applicable design guidelines for limited water channels.

Anav = S0 + S1 + S2

Wnav = A + c
(6)

The main axis is Anav, the minor axis is wnav, the track width is A, and the safe reach
width is c.

3. Vessel Behavior Decision-Making System for ASV in Waterway Channels
This section presents an advanced decision-making and planning algorithm for au-

tonomous surface vessels, designed to enhance safety and reduce accident risks in water-
way navigation.

3.1. Overview of the Decision and Planning System for Vessel Behavior

Figure 3 illustrates the architecture of the proposed vessel behavior decision-making
system, which integrates real-time decision-making with optimal trajectory planning. This
system is essential for autonomous vessels navigating waterway channels, with a primary
goal of collision avoidance and enhanced safety throughout the vessel’s journey from origin
to destination. The system’s design emphasizes continuous monitoring of both the vessel’s
own movement and the surrounding traffic dynamics, addressing the critical need for a
robust decision-making process that adjusts to real-time conditions and minimizes the risk
of accidents.
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A fundamental aspect of the proposed system is the continuous safety assessment,
which ensures the vessel’s behavior remains responsive to dynamic environmental factors,
thereby maximizing onboard safety. At the core of this system is a conditional state machine
that performs high-level decision-making, categorizing vessel behavior into three main
operational states: normal sailing, overtaking, and head-on encounters. These states are
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designed to ensure that the vessel can safely navigate through different traffic situations,
minimizing the likelihood of collision.

The decision-making process begins with an evaluation of the vessel’s current safety
environment, which includes assessing the proximity and relative movement of nearby
vessels. Based on this evaluation, the system then determines the appropriate collision
avoidance strategy, which is implemented using chance-constrained model predictive con-
trol. MPC ensures that the vessel’s maneuvers remain both safe and efficient by predicting
future states of the vessel and surrounding vessels, and then adjusting the trajectory to
avoid potential collisions.

For collision avoidance scenarios, the system utilizes a chance-constrained model
predictive control approach. The proposed controller optimizes the vessel’s trajectory
by minimizing a cost function, while adhering to safety constraints and environmental
considerations. These constraints are derived from both the vessel behavior model and real-
time risk assessments, which consider the positions, velocities, and potential movements of
other vessels in the waterway.

The cost function embedded in chance-constrained model predictive control evaluates
various factors, such as sailing efficiency, collision risk, and maneuver feasibility, ensuring
that the resulting path is not only secure but also minimizes the time spent navigating
hazardous areas. The system’s design prioritizes safety by adjusting the vessel’s speed,
trajectory, and behavior according to the risk levels identified during the decision-making
process. This dynamic response allows the NMSV to adapt to fluctuating traffic conditions
and avoid conflicts with other vessels.

3.2. Regulation-Aware Conditional State of Vessel Behavior

Traffic safety and collision avoidance are paramount in autonomous vessel navigation,
especially in dynamic and congested waterways. The hierarchical conditional state ma-
chine is critical in determining the vessel’s navigation state and executing safe maneuvers,
particularly under hazardous conditions. The hierarchical conditional state machine di-
vides the vessel’s navigation behavior into two primary states: normal sailing and collision
avoidance, adjusting in real time based on environmental changes and traffic conditions.

A core element of this system is the hierarchical conditional state machine model,
which operates across three key decision layers: mission decision, scenario analysis, and
execution action. This hierarchical approach allows for adaptive decision-making by
continuously evaluating real-time traffic data, vessel status, and environmental factors. The
primary objective is to reduce the risk of traffic conflicts and ensure safe navigation, aligning
with the overarching goal of preventing maritime accidents and enhancing waterway safety.
Each layer collaboratively processes real-time traffic data and the vessel’s status, as shown
in Figure 4, ensuring informed and adaptive decision-making.
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3.2.1. Scenario-Based Planning for Traffic Safety

This study integrates an advanced planning model, inspired by the approach of Wang
et al. [27], tailored to autonomous surface vessels navigating in narrow and busy waterways.
The planner is particularly effective in structured environments, such as urban canals, where
vessels face significant traffic congestion and obstacles. By ensuring robust navigation in
such challenging environments, the planner contributes directly to minimizing collision
risks and enhancing waterway safety.

The planning system consists of a multi-layer architecture, comprising a global planner
and a local planner. The global planner utilizes vector maps to generate an initial route,
maintaining a right-side alignment in the waterway to avoid collision risks with oncoming
vessels and obstacles. The local planner, on the other hand, assesses real-time traffic
conditions and dynamically adjusts the vessel’s trajectory by considering potential obstacles,
ensuring a collision-free path while also optimizing travel efficiency.

This hierarchical planning approach shifts between four key navigational states—
normal sailing, overtaking, avoidance, and lane return—depending on the environmental
context and traffic conditions. By continuously updating the vessel’s behavior according
to these states, the system ensures that the vessel avoids conflicts and follows the safest
route to its destination. The system’s adaptability allows it to prioritize collision avoidance,
making safety the primary concern, especially in critical scenarios.

The global planner optimizes route efficiency using dynamic programming and vector
maps. This approach significantly reduces the risk of collision with stationary or moving
obstacles while maintaining an optimal travel path. The vector map approach is designed to
simplify the planning process by focusing on key waypoints and boundaries, which makes
it well suited for narrow waterway navigation where avoiding obstructions is a priority.

In contrast, the local planner dynamically recalculates the best trajectory by consid-
ering real-time obstacle data. This process uses the nonlinear iterative conjugate gradient
method to smooth trajectories and avoid any detected obstacles, ensuring that the vessel
navigates safely and efficiently through the waterway. The local planner’s ability to adjust
for obstacles in real time makes it a key element in accident prevention by minimizing the
likelihood of collisions.

To evaluate potential paths, the system applies an additive cost function for each
candidate trajectory, considering several factors such as deviation from the centerline,
potential for collision, and overall efficiency. The cost function is defined as:

wi = gc(i) + gt(i) + gs(i) + gd(i) (7)

where wi is the ith candidate trajectory’s cost function. The cost of moving away from the
center point is denoted by gc(i). For each possible trajectory, there is a corresponding cost,
denoted by gt(i). The cost of a collision with a static obstacle is denoted by gs(i), while
the cost of a collision with a moving obstacle is denoted by gd(i). The most cost-effective
candidate is selected as the optimal path without obstructions. By minimizing this cost
function, the planner selects the safest and most efficient trajectory, thereby reducing the
likelihood of accidents.

3.2.2. Encounter-Type Classification for Traffic Safety Enhancement

In autonomous navigation, understanding and responding to various traffic scenarios
is crucial for effective collision prevention. This section focuses on classifying the type of
encounters between vessels to ensure that the decision-making system can execute the
appropriate collision avoidance strategy in different traffic situations. This encounter-type
classification is based on a finite state machine (FSM), which helps the system adapt to
changes in traffic conditions and prevent accidents by always selecting the safest behavior.
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In this context, the traffic environment is categorized into normal sailing and collision
avoidance states. These states are further subdivided into sub-scenarios, depending on
the relative positions and velocities of other vessels in the area. The classification of these
sub-scenarios is based on the Kooij model [28], which allows the system to dynamically
adjust to the traffic context and execute the necessary maneuvers to prevent accidents.

The graphic above depicts the top-level state machine splitting choices in response to
a typical scenario involving a vessel traveling between ports A and B.

Distance Definition for Collision Risk Assessment

One critical factor in collision avoidance is accurately assessing the potential collision
risk based on the distance between the vessel and surrounding traffic. This distance,
typically represented as the nearest point of approach (NPA), is calculated using curved
coordinates in Cartesian space to reflect the actual waterway geometry and vessel positions.
The distance function can be expressed as:

Di =
∫ s

s0 Ti
√

dx2 + dy2 =
∫ s

s0 Ti

√(
dx
ds

)2
+

(
dy
ds

)2
ds

=
∫ s

s0 Ti

√
(1 − nκ)2 +

(
dn
ds

)2
ds

(8)

where Di is the projected distance for the ith vessel in traffic. The Gauss–Legendre quadra-
ture, which may be stated as follows, is used for the numerical integration to improve
computation efficiency.

Dw,i =
sT,j−sO

2 ×∫ 1
−1

√
(1−(as′′+b)κ(s′′ ))2

w2
s

+ a2

w2
n

ds′

= ∑n
i=1 wi f

(
s′i
) (9)

s′′ =
sT,j − sO

2
s′ +

sT,j + sO

2
(10)

Here, Dw,i denotes the ith vessel’s weighted distance in the waterway traffic. The
relative weights for the along-track and cross-track directions are denoted by ws and wn,
respectively. As the vessel’s weight increases, it must avoid more available places in that
direction. The symbol s′ is used to denote the roots of the nth Legendre polynomial, whereas
wi denotes the quadrature weights.

Encounter Analysis Based on Along-Track Distance

The analysis of a traffic vessel’s encounter scenario is based on the along-track distance,
which represents the distance between the vessel and another vessel along the path of
travel. This is crucial for assessing the relative positions of vessels in busy waterways,
where accurate distance measurements are necessary to evaluate potential risks. The
method for determining the along-track distance is as follows:

Da,i =
sgn

(
sT,j − sO

)∫ sTT
sO

(1 − nOK)

wsds
(11)

where Da,i is the distance along the track for the ith traffic vessel. The function sgn yields
the sign of the variable provided as an argument.

To ascertain the presence of a traffic vessel, a variable E{s,i} is generated for the ith
traffic vessel, utilizing Da,i in the following manner:

Es,i =

{
true, avoidance collision if γb < Da,i < γ f

false, normal sailing otherwise
(12)
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The variables γb and γ f are the threshold values used to make the encounter choice.
By calculating the along-track distance in real time, the system can continuously monitor
the traffic situation and adapt the vessel’s behavior to ensure safe separation.

Rule-Based Encounter-Type Classification for Safety

Once the relevant traffic vessels are identified, the encounter scenario must be classified
according to established rules to guide the decision-making process. These rules, drawn
from the International Maritime Organization (IMO) regulations, specifically the COLREGs
(International Regulations for Preventing Collisions at Sea), provide a framework for safe
navigation in narrow or congested waterways.

For example, rule 9 of the COLREGs requires vessels navigating narrow channels to
keep as close as possible to the right-hand side of the waterway to avoid obstruction. In the
case of a head-on encounter or when overtaking another vessel, the system uses these rules
to classify the encounter type Ri:

Ri =

{
head-on, if vT,n,j > 0
overtaking, if vT,n,j < 0

(13)

where vT,n,j is along-track speed. According to the International Maritime Organization
(IMO), rules 9(b) and (c) establish restrictions on vessels that prevent them from obstructing
the passage of another vessel that is capable of safely navigating only within a restricted
channel. In situations where obstruction is unavoidable, rule 9(d) prohibits vessels from
crossing the channel.

Hence, the way of categorizing encounter types based on rules considers solely head-on
and overtaking scenarios, while disregarding crossing instances. These encounter classifica-
tions help determine the appropriate maneuver, such as overtaking or heading for a safer
trajectory, to prevent collision risks and ensure smooth traffic flow in narrow waterways.

3.2.3. Behavior Decision for Traffic Safety

The behavior decision layer plays a crucial role in determining the autonomous
vessel’s responses to varying navigational conditions, ensuring safety through effective
decision-making. The system continuously monitors the surrounding environment and
adjusts the vessel’s path to avoid potential collisions. When a dangerous situation arises,
the vessel must execute a timely and efficient collision avoidance maneuver to ensure its
safe navigation. This decision-making process is divided into three distinct phases: route
evaluation, trajectory planning, and maneuver execution. Throughout each phase, the
system continuously reassesses the situation, ensuring the vessel’s safety as its operational
state evolves.

The hierarchical conditional state machine depicted in Figure 5 is responsible for these
decision-making transitions. It generates appropriate control states based on environmental
conditions, such as vessel proximity and safety distances, using mathematical constraints.
The system employs a chance-constrained model predictive control (CC-MPC) algorithm
to generate optimal trajectories, ensuring that safety constraints are met while minimizing
the risk of accidents. The following sections provide a detailed discussion of the decision-
making process, particularly focusing on how the system responds to traffic conditions,
adjusts safety margins, and avoids collisions.
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State 1: Normal Sailing

During normal sailing, the autonomous vessel maintains its course while adhering
to predefined safety standards. One key aspect is the longitudinal safety distance from
the vessel ahead. The vessel’s speed is adjusted to maintain this distance while tracking
the preceding vessel’s trajectory. This ensures a safe buffer zone that minimizes the risk
of rear-end collisions. This distance should be maintained with a consistent time gap, as
depicted in Figure 6.
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Mathematically, the required longitudinal safety distance is defined by:

Loa, gap ≤ Di

Loa, gap = vγhp + l +

γ f if Ri = overtaking

γb if Ri = head on

(14)

The symbol LDoa , gap represents the longitudinal safety distance for the preceding
vessel, where l represents the length of the vessel, hp represents the headway time of the
preceding vessel, and vγ represents the speed of the current autonomous vessel.

The primary objective of route maintenance is to ensure the preservation of the central
location of the designated goal route. The autonomous vessel is required to maintain
an appropriate longitudinal safety distance from the preceding vessel while accurately
tracking the initial goal of the preceding vessel speed.

The reference values for these requirements may be observed in Figure 7 by Equation (15).
.
xref ,0:Ip = v̂x,oa,0:Hp
.
yref , 0:Ip = v̂y,op,0:Hp

yref , 0:Ip = Yop(
xref, Hp , yref ,Hp

)
=

(
x̂oa, Hp − Loa, gap , ŷoa, Hp − WDo,s ,Da,p

) (15)

where v̂x,oa,0:Hp represents the planning speed of the preceding vessel, with the symbol
x̂oa, Hp signifying the anticipated longitudinal state of the preceding vessel at the final
step of the prediction horizon, denoted as Hp. Additionally, the autonomous vessel must
ensure the maintenance of both longitudinal and lateral safety distances (referred to as
L{oa,ob,oc}gap and WDo,s ,D{a,b,c},p

) simultaneously.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 17 of 41 
 

 

In normal sailing practices, the process of state transition is managed by the utiliza-
tion of state evaluation processes. Each step in the sample involves an evaluation of the 
route, with the initial goal route being referred to as the current route, and the subsequent 
route being referred to as the assessed route. When the evaluation cost of the subsequent 
route is lower than the cost of the initial target route, the status is transitioned to State 1, 
as depicted in Figure 7. If the cost function of the adjacent route is more favorable, it is not 
advisable to alter the current route of the autonomous vessel if certain requirements are 
met. These conditions include the obstruction of the autonomous vessel’s path and the 
proximity of a surrounding vessel within a specified distance 𝐿side . Therefore, in the pre-
sent scenario described by Equation (16), the conditional state is moved to State 1. 

 
(a) 

 
(b) 

Figure 7. Desired conditions of normal sailing. (a) Desired constraint on the horizontal axis, (b) 
Vessel domain. 

To address the limitations associated with using only TD-error, such as the lack of 
diversity and the bias issue, two methods are introduced, including the stochastic sam-
pling method and the importance sampling method. The stochastic sampling method en-
sures that all samples in the replay memory buffer have a non-zero probability of being 
sampled while guaranteeing the diversity of training data. |𝑥௔ − 𝑥௢| > 𝐿side , 𝑖 ∈ 𝑎𝑏𝑐, at 𝐿side = 𝑐side 𝑙  (16)

The constant 𝑐side  is multiplied by the length of the vessel to obtain the side block 
distance. 

State 2: Moving to Overtaking Path 

Overtaking requires careful consideration of the relative motion between vessels. The 
vessel must assess multiple potential obstacles, including preceding and trailing vessels. 
The primary concern during overtaking is to maintain a safe distance from these vessels 
while preventing suction effects that could disrupt navigational stability. As seen in Fig-
ure 8, the transverse spacing between vessels should prevent suction from compromising 
navigational safety. 

Figure 7. Desired conditions of normal sailing. (a) Desired constraint on the horizontal axis,
(b) Vessel domain.

In normal sailing practices, the process of state transition is managed by the utilization
of state evaluation processes. Each step in the sample involves an evaluation of the route,
with the initial goal route being referred to as the current route, and the subsequent route
being referred to as the assessed route. When the evaluation cost of the subsequent route is
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lower than the cost of the initial target route, the status is transitioned to State 1, as depicted
in Figure 7. If the cost function of the adjacent route is more favorable, it is not advisable
to alter the current route of the autonomous vessel if certain requirements are met. These
conditions include the obstruction of the autonomous vessel’s path and the proximity of
a surrounding vessel within a specified distance Lside . Therefore, in the present scenario
described by Equation (16), the conditional state is moved to State 1.

To address the limitations associated with using only TD-error, such as the lack of
diversity and the bias issue, two methods are introduced, including the stochastic sampling
method and the importance sampling method. The stochastic sampling method ensures
that all samples in the replay memory buffer have a non-zero probability of being sampled
while guaranteeing the diversity of training data.

|xa − xo| > Lside , i ∈ abc, at
Lside = cside l

(16)

The constant cside is multiplied by the length of the vessel to obtain the side block distance.

State 2: Moving to Overtaking Path

Overtaking requires careful consideration of the relative motion between vessels.
The vessel must assess multiple potential obstacles, including preceding and trailing
vessels. The primary concern during overtaking is to maintain a safe distance from these
vessels while preventing suction effects that could disrupt navigational stability. As seen in
Figure 8, the transverse spacing between vessels should prevent suction from compromising
navigational safety.
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The safety constraint for avoiding obstacles can be defined by Equation (17). These
constraints are linear inequalities that are derived from the assumption of linear movement
of nearby vessels and are incorporated into quadratic programming.
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1 ≤ xa,k−x̂o,,k
Loa.gap

+
yo,k−ŷoc,,k
WDo,s ,Da,p

1 ≤ xa,k−x̂oc,k
Loc,gap

− yo,k−ŷoc,k
WDo,s ,Dc,p

xa,k−x̂ob,k
Lat,gap

+
yo,k−ŷob,k
WDo,s ,Da,p

≤ −1

WDo,s ,D{a,b,c},p
= Wd

2 + w
Loa.gap = LDo , f + LDa ,a + (vx,o − vx,a)ht

Loc.gap = LDo , f + LDc ,a + (vx,o − vx,c)ht

Lob,gap = LDo ,a + LDb , f + (vx,0 − vx,b)ht

(17)

where L{oa,ob,oc}gap represents the longitudinal safety distances between the original target
preceding, adjacent preceding, and adjacent tailing vessels. The variable WDo,s ,D{a,b,c},p

represents the secure lateral separation between vessels, while ht signifies the duration of
time between the trailing vessel and the preceding vessel. The variable vx,at denotes the
present velocity of the following vessel in proximity. Additionally, Wd and w represent the
widths of the waterway and the vessel, respectively.

When a lane change is performed, the lateral location shifts from the lane that was
initially targeted to the lane that is adjacent. The autonomous vessel is responsible for
keeping enough longitudinal safety distance between itself and the vessel that is traveling
in the adjacent lane. It is foolish to change lanes without first assessing the flow of traffic in
the lane that will be adjacent to the one you are leaving.

.
xref , 0: Hp = v̂x,a,0:Hp

yref ,0:Hp−1 = ycp
(18)

yref ,Hp =

{
ycp, Lb,gap + Loc,gap ≤ dla

ŷb − Wgap +
Wgap
Lob,gap

(
Xg − x̂b,Hp

)
, otherwise

(19)

xre f ,Hp =

{
x̂c,Hp − Loc,gap, Lob,gap + Loc,gap ≤ dla

Loc,gap Lob,gap
Loc,gap+Lob,gap

( x̂b,Hp
Lob,gap

+
x̂c,Hp

Loc,gap
+

ŷc,Hp−ŷc
Wgap

)
, otherwise

(20)

where ycp represents the lateral reference position of the last time step, and dla is the
width of the waterway lane. As can be seen in Figure 8b, a typical traffic gap exists after
the total of the preceding vessel. When changing lanes, the goal is to maintain constant
awareness of the center location of the lane to which you are shifting. The autonomous
vessel is responsible for monitoring the speed of the vessel in front of it and keeping the
appropriate spacing between itself and the preceding vessel along both the longitudinal
and the lateral axes; the reference values for a normal traffic gap are defined in Equations
(18)–(20). However, when there is a high volume of traffic, there is insufficient space for a
safety gap. As a result, the autonomous vessel needs to perform a nudge motion, which
creates an intersection of the safety boundary. It first demonstrates the autonomous vessel’s
intention to change lanes, and then it begins the process of negotiating with the adjacent
tailing vessel by demonstrating its intention and observing the reaction it receives from
the autonomous vessel. It is possible that this technique will increase safety by inducing
a yield in the tailing vessel. This will happen throughout this operation. Because of this,
engaging in this conduct is something that ensures one’s safety. The reference values for
the dense gap are defined as in Equations (18)–(20), and the autonomous vessel must be
situated at the cross point of the linear safety restriction for preceding and trailing vessels
in the adjacent lane. When the vessel that is trailing you slows down, the distance between
the two of you will grow if the trailing vessel has a cooperative inclination. After that, the
self-navigating ship can switch lanes. If the vessel that is trailing you tends to be aggressive,
the space will become smaller as the vessel that is trailing you increases its speed. After
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that, the autonomous vessel needs to head back in the direction of the primary target lane.
Because the target point is in a position that is assured to be secure, it is possible to make a
nudging motion that Is risk-free.

State 3: Overtaking Passing

When overtaking, the autonomous vessel must follow the preceding vessel closely
while ensuring that the gap remains within the calculated safety margins. The reference
values for this maneuver are derived from the current position of the preceding vessel and
its relative velocity.

The safety constraints during passing are formulated as:

Loc, gap ≤ x̂c,k − xo,k

Loc, gap = LDo , f + LDc ,a + (vx,o − vx,c)ht
(21)

The neighboring lane-driving reference values are defined by Equation (22):

.
xref,,0:Hp = v̂x,c,0:Hp

yre f ,0:Hp = ycp

xref,Hp = x̂c,Hp − Loc,gap

(22)

In the present condition, the primary lane of interest is evaluated, while the adjacent
lane serves as the focal point for lane analysis. State 3 is activated when the evaluation cost
of the original target lane is lower than the cost of the nearby lane.

State 4: Overtaking Passing

After successfully overtaking, the autonomous vessel must return to its original lane.
This transition is managed by ensuring that the vessel maintains safe distances from both
the preceding and the trailing vessels. The lateral position is adjusted, and the vessel
realigns with its intended trajectory.

The constraints governing this maneuver are mathematically defined by:

1 ≤ xo,k−x̂a,k
Loa.gap

+
yo,k−ŷa,k

WDo,s ,Da,p

1 ≤ xo,k−x̂c,k
Loc,gap

− ya,k−ŷc,k
WDo,s ,Dc,p

xo,k−x̂b,k
Lob,gap

+
ŷ0,k−yb,k

WDo,s ,Db,p
≤ −1

Loa,gap = LDo , f + LDa ,a + (vx,o − vx,a)ht

(23)

where Loa,gap represents the longitudinal safety distance for the initial target vessel being
followed. Equation (24) establishes the reference values for returning to the original goal path:

.
xref ,0: Hpp = v̂x,oa,0:Hp

yref ,0:Hp = ycp

xref,Hp = x̂a,Hp − Loc,gap

(24)

State 5: Moving to Head-on Path

When encountering an obstacle head on, the autonomous vessel must move towards
a safer path, avoiding direct collisions by adjusting its heading. During this phase, the
system continuously evaluates the relative positions and velocities of surrounding vessels
to ensure safety.

As depicted in Figure 9, the safety constraint for obstacle avoidance can be defined by
Equation (25). These constraints are linear inequalities that are derived from the assumption
of linear motion of nearby vessels and are incorporated into quadratic programming.
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1 ≤ xa,k−x̂o,,k
Loa.gap

+
yo,k−ŷoc,,k
WDo,s,Da,p

xa,k−x̂ab,k
Lat,gap

+
yo,k−ŷob,k
WDo,s ,Da,p

≤ −1

Loa.gap = LDo , f + LDa , f + (vx,o + vx,a)ht

Lob,gap = LDo ,a + LDb ,a + (vx,ob + vx,ob)ht

ynew path =

xo,k − WDo,s,Da,p if xa,k < xo,k

xo,k + WDo,p,Da,s else

(25)
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State 6: Head-on Passing

During head-on passing, similar to overtaking, the autonomous vessel must maintain a
safe distance from both the preceding and the trailing vessels. The reference values for the
maneuver ensure the vessel does not deviate from its intended path while avoiding collisions.

The lateral separation is managed by:

Loc, gap ≤ x̂oc,k − xa,k

Loc, zap = (vx,ob + vx,oc)hp + 1
(26)

The neighboring lane-driving reference values are defined by Equation (27).

.
xref,,0:Hp = v̂x,oc,0:Hp

yre f ,0:Hp = ycp

xref,Hp = x̂oc − Loc,gap

(27)

The reference values ensure that the autonomous vessel passes the other vessel safely
without compromising the safety of surrounding traffic.

State 7: Returning to Original Target Lane After Head On

After a successful head-on avoidance maneuver, the vessel returns to its original
lane. The safety constraints governing this transition are similar to those for returning
after overtaking. The system ensures the vessel maintains proper safety margins while
navigating back to the designated path.

The constraints for returning are mathematically expressed by:

1 ≤ xa,k−x̂o,,k
Loa.gap

+
yo,k−ŷoa,,k
WDo,s ,Da,p

1 ≤ xa,k−x̂ap,k
Loc,gap

− yo,k−ŷoc,k
Wgap

xa,k−X̂α,k
Lot,gΦ

+
ŷet,,−yo,k

Wgap
≤ −1

Loa,gap = (vx,ob + vx,oc)ht + l

(28)
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The variable Loa,gap represents the longitudinal safety distance pertaining to the target
vessel that is being first pursued. Equation (29) establishes the reference values for returning
to the original goal path.

.
xref,0:Hpp = v̂x,oa,0:Hp

yref,0:Hp = ycp

xref.Hp = x̂c,Hp − Loc,gap

(29)

Once the vessel is safely aligned with its original trajectory, the system allows for the
transition back to normal sailing conditions.

3.3. Chance-Constrained MPC

The architecture of optimal sailing motion planning utilizing chance-constrained
model predictive control is depicted in Figure 10. The planning algorithm must conform to
certain constraints to determine the safest path by utilizing the cost function, incorporating
planning and control goals based on reference and weighted variables. The vessel dynamics
guarantee that the produced trajectory is acceptable for vessel movement, while the physical
restrictions ensure that the generated trajectory considers the actuator’s physical limitations.
Constraints play a vital role in improving the trajectory’s quality by considering predefined
limitations such as the maximum speed allowed by traffic rules. Furthermore, the prediction
uncertainty may be addressed when the MPC is limited. The safety limits guarantee that
the vessel follows a safe trajectory that avoids colliding with other vessels. The subsequent
section will provide a comprehensive analysis of the specific cost functions and constraints
of the model.
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ξ(k + 1 | k) = f (ξ(k)) + g1τin (k)
ξ(k + 2 | k) = f (ξ(k + 1 | k)) + g1τin (k + 1)

...
ξ(k + i | k) = f (ξ(k + i − 1 | k)) + g1τin (k + i − 1)

...
ξ(k + Nc | k) = f (ξ(k + Nc − 1 | k)) + g1τin (k + Nc − 1)
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ξ
(
k + Np | k

)
= f

(
ξ
(
k + Np − 1 | k

))
+ g1τin (k + Nc − 1)

(30)
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where ξ(k + 1 | k) is the vector of the predicted state at k + 1 using the state information
ξ(k) = [x(k), y(k), ψ(k), r(k), u(k)]T at k. τin (k) = [τr(k), τu(k)]

T represents the control in-
put vector. Note that Nc >= Np. Assume that when i >= Nc, τin (k + i) = τin (k + Nc − 1).
This assumption is prevalent and justifiable in model predictive control applications, as it
is customary to apply only the initial control action from the control sequence to the plant.

Thus, chance-constrained model predictive control solves an optimization problem
to discover the actions that maximize performance across the prediction horizon at each
time step.

3.3.2. Optimization Problem for Chance-Constrained Model Predictive Control

The optimal trajectory is computed at discrete time intervals T by the solution of a
finite-time optimal control problem. The optimization issue represented by Equation (32)
can be classified as a quadratic programming problem. The optimal value is determined
through the utilization of convex optimization programming in this approach.

min
τ0:Hp−1

Hp−1

∑
k=0

(
∥ F

(
xk − xre f ,k

)
∥

2

2
+ ∥ Eτk(τ k − ζi(k)) ∥2

2+

+∥ Ed∆τk ∥2
2

)
+ ∥ FHp

(
xHp − xre f

)
∥

2

2
+ Wca Jca

+wgd Jgd + wrl Jrl

s.t.
xk+1 = Fxk + Eτk

x0 = x(t)
CXk + Duk ≤ 0

(31)

The equation labeled as Equation (32) represents a cost function, whereas Hp denotes
the prediction horizon step, which is specifically specified as a value of 35. The matrices F
and FHp are diagonal matrices that reflect the weight factors for tracking performance in
the prediction state and the final horizon step state, respectively. The variables Jca and Jgd

correspond to the costs associated with collision avoidance and grounding, respectively.
The matrices E and Ed are diagonal matrices that reflect the weight factors for the tracking
performance of the control input and control input rate, respectively. The symbol ∆τk

denotes the rate at which the control input changes.
The motion plan is technically defined as a cost function, represented by the mathe-

matical expression in Equation (31). The prediction state xref,k is determined by the vector
of reference values, whereas the final horizon step xref,Hp is defined according to Equation
(33). These definitions are outlined in the decision-making module, which is further de-
tailed in Section 3. Furthermore, it is imperative that the velocity, yaw rate, and yaw angle
remain within reasonable limits. Subsequently, Equation (33) establishes the definition of
reference values.

xref,k = [xref,kyref,kψref]
T

xref,Hp =
⌈

xref,Hpyref,Hpψref
]T

.
yref =

.
ψref = ψref = 0

(32)

The following equation determines the rate of control input:

∆τk+1 =
(τk+1 − τk)

Tp,s
(33)

The grounding penalty is computed as follows:

Jgd =

{
|nO − Drw|, if|nO| < Drw

0, otherwise
(34)
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where Drw indicates the threshold of each channel’s side, serving as one approach.
This regulation pertains to the navigation of vessels inside narrow waterways, taking

into consideration the adherence to right-hand traffic principles. The cost associated with
adhering to rule compliance, denoted as Jrl , is determined by evaluating the cross-track
locations required to conform to right-hand traffic regulations, as illustrated below:

Jrl =

{
1, if n0 > 0
0, otherwise

(35)

The estimation of collision cost can be determined by calculating the closest pairwise
distance between the path and traffic vessels at each point along the channel.

Jca = max
i

Qca,j (36)

Jca,j =


1, if Dw,i < 1
(Rc − Dw,i)/(Rc − 1), if 1 ≤ Dw,i < Rc

0, otherwise
(37)

where Rc is the conflict radius used to smooth out the cost’s discontinuity [29]. Figure 11
displays the expenses associated with adhering to regulations (represented by the orange
line) and the costs of grounding (shown by the blue line) within the vertical segment of the
channel. The collision cost is estimated in our framework using a function that quantifies
the risk of collision between the autonomous vessel and nearby ground. The approach used
to estimate the collision cost and the function is based on methods that have been widely
used in maritime navigation and collision avoidance systems. Specifically, Cho et al. [30]
introduced a similar approach for COLREG-compliant ship collision avoidance in narrow
channels using curvilinear coordinates. Their method also emphasizes the importance of
functions for collision risk estimation in dynamic environments.
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the terrestrial areas located on each side of the waterway.

3.3.3. Constraints for Chance-Constrained Model Predictive Control

To ensure safe and efficient vessel operation in dynamic maritime environments, it is
essential to account for the physical limitations of the vessel’s actuators and the inherent un-
certainty in surrounding traffic conditions. The control input and its rate are constrained to
avoid overloading the vessel’s actuators. These constraints are mathematically represented
as follows:

τmin ≤ τk ≤ τmax

∆τmin ≤ ∆τk ≤ ∆τmax
(38)
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where τmin and τmax represent the upper and lower bounds of the control input. Addition-
ally, let ∆τmin and ∆τmax represent the upper and lower limits on the rate of change of the
control input, respectively.

In addition to the actuator constraints, the trajectory planner must also account for
maritime traffic regulations and vessel speed restrictions. The maximum speed restriction
of the vessel, denoted as vx,max, is crucial for maintaining safe operation, particularly when
navigating congested or high-traffic areas. The speed limitations and the corresponding
trajectory adjustment are governed by:

0 ≤ v ≤ vx,max (39)

A key challenge in this dynamic environment is the uncertainty in predicting the
behavior of surrounding vessels. This uncertainty introduces noise into the motion planning
process, which can lead to suboptimal or unsafe trajectory choices. To address this issue, the
chance constraint is incorporated into the model predictive control (MPC) framework. This
constraint ensures that the vessel remains within a probabilistic safety envelope, thereby
enhancing the robustness of the decision-making process under uncertain conditions. The
chance constraint is formulated as:

P
(

MMzk + Nẑs
i,k ≤ 0

)
≥ 1 − εk (40)

where εk is the chance constraint parameter and M is the autonomous vessel state, and
N is surrounding vessel state safety constraint matrixes. Section 3.3 details the design of
these limitations. However, due to its stochastic nature, this constraint cannot be applied in
convex optimization. Its computation is depicted in Equation (41).

Mzk + Nẑs
i,k + γi,k ≤ 0

γi,k =
√

2NT∑s
i,k Nerf−1(1 − 2εk)

(41)

where ∑s
i,k denotes the covariance of the Gaussian distribution of the process noise.

The parameter for the chance constraint εk is proportional to the prediction uncertainty.
This adjustable parameter controls the planning algorithm’s properties. For example, if εk

is a huge value, the algorithm creates a route that prioritizes travel efficiency. On the one
hand, when the value of εk is minimal, the method produces a result that enhances safety
by including the uncertainty linked to the forecast of the environment.

By incorporating these constraints into the trajectory planning process, the au-
tonomous vessel can make informed decisions that balance operational efficiency with the
imperative of minimizing collision risks. This method aligns with the goal of improving
maritime safety, particularly in high-traffic environments, where decision-making precision
is essential to avoiding accidents and enhancing navigational safety.

4. Case Study
4.1. Experimental Settings

This section presents the evaluation of the proposed autonomous vessel navigation
and collision avoidance system, with a focus on preventing traffic accidents and enhancing
navigational safety in maritime environments. Three distinct scenarios are examined: the
first test demonstrates the robustness and real-world applicability of the system on an
actual USV, as shown in Figure 12, the second examines the path planning and avoidance
performance in head-on and overtaking situations, and the third evaluates the vessel’s
ability to navigate safely in a complex, dynamic waterway environment. These case studies
aim to assess how the proposed framework can effectively reduce traffic conflicts and
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improve safety by preventing accidents through proactive decision-making and optimized
path planning.
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Figure 12. The unmanned surface vessel used in the tests.

To ensure replicability, the experiments were conducted using publicly available
software (MATLAB2023a and FORCES PRO 4.2). The experiments can be replicated by
adjusting the key parameters, such as the control horizon Hp, the number of vessels, and
the density of obstacles. The model was tested for various traffic densities, ranging from
sparse to congested conditions. The hardware configuration for these simulations includes
an Intel i7-12700 CPU, an Nvidia GeForce RTX A2000 8 GB GPU, and 32 GB of RAM,
ensuring efficient and reliable computational performance.

The non-convex model predictive control MPC problem, as defined in Equation (32),
is solved using a 7 s planning horizon and 35 planning steps, with optimization performed
through the FORCES PRO tools. This methodology enables effective management of
complex, real-time maritime scenarios, ensuring that the vessel’s decision-making and
trajectory planning are optimized for both safety and operational efficiency. The model
parameters are given as α = 1.084, b = 0.62, c = 3.2453, d = 0.86, W = 0.067, Rδ = 0.5,
λ1 = 0.0375, and λ2 = 0. The propeller thrust is constrained in 0 <= τu <= 0.235.

4.2. Real-World Experimental Study

To assess the performance of the proposed system in real-world conditions, a simulated
waterway channel was created with a width of 200 m and a length of 900 m, representing a
typical narrow and congested waterway. The goal of the experiment was to demonstrate
how the proposed system could mitigate the risks associated with traffic conflicts and
improve safety, especially under challenging environmental conditions, such as wind,
waves, and sensor uncertainty.

The experimental environment includes three static obstacles placed within the water-
way channel: two circular obstacles and one rectangular obstacle. These obstacles were
simulated as virtual physical entities, representing common hazards that could impede the
safe navigation of vessels in busy waterways. The radius of the first circular obstacle is set
to 26 m, the second is set to 13 m, and the rectangular obstacle measures 95 m in length and
21 m in width. These obstacles serve as realistic representations of the types of hazards that
could lead to traffic conflicts or accidents in congested waterway environments.

The real-world experiment evaluates the vessel’s ability to navigate through the
waterway channel at a target speed of 4 m/s while avoiding static obstacles. The vessel
autonomously adjusts its path in real time to avoid collisions, as shown in Figure 13. The
key events are as follows:
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At Time A, the vessel detects the first obstacle in its path.
At Time B, the vessel alters its course to avoid the obstruction.
At Time C, a similar maneuver is performed to circumvent a second static obstacle.
At Time D, the vessel continues its original trajectory, preparing for the next obstacle.
At Time E, the vessel detects another obstruction and evaluates its safety margin.
At Time F, the vessel adjusts its course to avoid the newly identified hazard and

continues toward its destination.
Throughout the test, the vessel successfully avoids all obstacles, demonstrating the

system’s capability to prevent accidents by maintaining a safe distance from potential colli-
sions. The ability to adapt to dynamic obstacles in real time underscores the effectiveness of
the decision-making and planning algorithms in preventing traffic conflicts and ensuring
safe navigation.

Figure 14 presents the surge velocity and yaw rate results for the vessel in Scenario
1. These measurements show how the vessel adjusts its speed and heading to maintain a
safe path while avoiding obstacles. The real-time adjustments are critical for preventing
accidents, as the vessel is able to respond dynamically to the detected obstacles and avoid
unsafe trajectories. These data further confirm the ability of the proposed system to not
only navigate safely but also optimize efficiency, a key factor in accident prevention.
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4.3. Simulation Evaluation in Typical Scenarios

Simulation case study 1 simulates a dynamic maritime environment featuring four
moving vessels. The scenario includes two overtaking situations and one head-on en-
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counter, all of which adhere to maritime traffic regulations. These simulated conditions are
crucial for testing the effectiveness of our proposed collision avoidance strategies and their
ability to enhance navigational safety.

Simulation case study 2 simulates a more complex waterway scenario involving
four vessels, with their initial positions randomly generated within a predefined area of
an inland traffic separation scheme at Rotterdam Port. This simulation helps evaluate
the system’s ability to manage multiple vessels navigating simultaneously, ensuring safe
interactions and minimizing collision risks in busy waterway environments.

(1) Case study 1: Sailing in a dynamic vessel environment

In this case study, we simulate an overtaking scenario involving several vessels navi-
gating through an inland waterway. The presence of multiple moving vessels introduces
unpredictability, allowing us to assess the resilience of our decision-making model in real
time. The simulation also includes vessels that deviate from established navigation laws to
test the algorithm’s robustness under more chaotic conditions.

Figure 15 illustrates a comprehensive traffic scenario comprising three consecutive
sub-scenes, showcasing how the research vessel interacts dynamically with surrounding
vessels. In this simulation, one of the vessels in the scenario violates maritime navigation
regulations, introducing unpredictability into the system, which is designed to test how
well the decision-making model handles more complex, less predictable traffic conditions.
This approach simulates a more realistic environment, allowing the decision model to better
manage unpredictable vessel movements and enhance its collision prevention capability.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 29 of 41 
 

 

 

Figure 15. The performance of multi-vessel sailing in the waterway (Scenario 1, the lines of differ-
ent colors represent the navigation trajectories of different ships). 

The proposed chance-constrained model predictive control controller governs the 
movement of the vessels in the simulation. While the environmental vessels follow a 
straight path, the autonomous vessel adjusts its trajectory based on surrounding dynamic 
changes. This ability to react to real-time environmental shifts is crucial for mitigating 
potential traffic conflicts and improving safety in busy waterway environments. 

The simulation reveals that the autonomous vessel adheres to prescribed reference 
paths but adapts when it encounters the boundary conditions for state switching. At this 
point, the state machine evaluates multiple states and dynamically adjusts the predictive 
control constraints to prevent accidents, rerouting the vessel to avoid collision risks and 
navigating safely. 

Figure 16 illustrates the simulation of an overtaking maneuver. Initially, the orange 
vessel is overtaking a slower-moving blue vessel. The safety gap is maintained, ensuring 
no collisions occur during the overtaking process. As shown in Figure 16b, the autono-
mous vessel adjusts its path in real time to safely overtake, while the red line marks the 
safety limit. The vessel initiates a nudge maneuver (Figure 16d) and successfully moves 
into the opposite lane to complete the overtaking action. After the maneuver, the vessel 
returns to its designated path, as shown in Figure 16e. 

  

Figure 15. The performance of multi-vessel sailing in the waterway (Scenario 1, the lines of different
colors represent the navigation trajectories of different ships).

The proposed chance-constrained model predictive control controller governs the
movement of the vessels in the simulation. While the environmental vessels follow a
straight path, the autonomous vessel adjusts its trajectory based on surrounding dynamic
changes. This ability to react to real-time environmental shifts is crucial for mitigating
potential traffic conflicts and improving safety in busy waterway environments.

The simulation reveals that the autonomous vessel adheres to prescribed reference
paths but adapts when it encounters the boundary conditions for state switching. At this
point, the state machine evaluates multiple states and dynamically adjusts the predictive
control constraints to prevent accidents, rerouting the vessel to avoid collision risks and
navigating safely.

Figure 16 illustrates the simulation of an overtaking maneuver. Initially, the orange
vessel is overtaking a slower-moving blue vessel. The safety gap is maintained, ensuring
no collisions occur during the overtaking process. As shown in Figure 16b, the autonomous
vessel adjusts its path in real time to safely overtake, while the red line marks the safety
limit. The vessel initiates a nudge maneuver (Figure 16d) and successfully moves into the
opposite lane to complete the overtaking action. After the maneuver, the vessel returns to
its designated path, as shown in Figure 16e.
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Figure 16. Overtaking process in the case study of Scenario 1 (the red dashed line is the planning
boundary), (a–e) displays the traffic status of ships at different times during the overtaking process,
the polygons of different colors in the figure represent the corresponding ships.

During the simulation, velocity and angular velocity data (Figure 17a) show that the
autonomous vessel increases speed to overtake the slower vessel, then returns to its original
trajectory at the optimal speed for efficient navigation. Safety considerations are priori-
tized throughout, ensuring that energy consumption is minimized without compromising
collision avoidance.
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Figure 17. Simulation results of vessels in Scenario 1. (a) Surge velocity and yaw rate results of vessel
in Scenario 2 (the red dashed line is the statement’s boundary); (b) force of vessel in Scenario 2 (the
red dashed line is the physical boundary).

Figure 17b depicts the forces acting on the vessel during the overtaking process.
The results indicate that while energy is expended during lane changes, the maneuver is
completed successfully with minimal vibrations and disruptions to the vessel’s stability.

(2) Case study 2: Sailing in a waterway environment

This case study addresses the challenges of navigating multiple vessels in an inner
canal system, simulating a complex scenario involving unpredictable movements and
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diverse traffic patterns. The primary objective is to evaluate the effectiveness of the chance-
constrained model predictive control controller in ensuring safe vessel separation and
preventing collisions within confined waterway spaces. By considering dynamic environ-
mental factors, we aim to improve waterway safety through proactive collision avoidance
and safe navigation strategies.

Figure 18 depicts the trajectories of four vessels in an overtaking situation. All vessels
are programmed to follow the designated navigation paths, but when one vessel reaches
the boundary conditions of the state-switching mechanism, the system adapts by adjusting
the model predictive control (MPC) restrictions. The state machine dynamically evaluates
the vessel’s position and environmental context, adjusting the control strategy accordingly
to ensure safe maneuvering. As a result, the autonomous vessel adjusts its path to mitigate
collision risks and avert mishaps in real time.
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Figure 18. The performance of multi-vessel sailing in the complex waterway (Scenario 3). The black
dashed line is the initial planned path; the red dashed line is the reference path for re-planning during
the collision avoidance phase.

Figure 19 shows the behavior of the vessels during normal sailing. The error in the
vessel’s position and heading, controlled by the hierarchical conditional state machine
and chance-constrained model predictive control algorithms, approaches zero, indicating
that the vessel maintains a high degree of precision and stability in its navigation. This
ensures that the autonomous vessel stays within the designated route while adjusting to
the surrounding vessels and environmental conditions. The control system’s ability to
minimize navigation errors is vital for collision prevention, particularly in high-density
traffic scenarios.

Despite the successful overtaking, minor oscillations in the vessel’s velocity and head-
ing are observed. These oscillations occur due to the need for the vessel to expend energy
when transitioning to the adjacent lane, which is typically denser with traffic and requires
a wider time gap for a safe maneuver. This highlights the inherent trade-off between safety
and energy efficiency, which must be carefully balanced in real-time decision-making to
ensure safe navigation while minimizing unnecessary energy consumption.

Safety considerations play a critical role in this scenario, as the vessel adjusts its
trajectory to avoid collision with the preceding vessel, demonstrating the algorithm’s
ability to adapt to changing traffic conditions and ensure safe vessel operations in confined
and high-risk environments.
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represents Ship 2, and yellow line represents Ship 3.

Figure 20 illustrates the position, velocity, and heading of Vessel 4 during the overtak-
ing maneuver. In this scenario, the autonomous vessel encounters a slower-moving vessel
and, to avoid potential collision, navigates to an adjacent canal to safely overtake. After
the maneuver, the autonomous vessel returns to its original course while maintaining an
optimal speed, demonstrating the system’s capacity to make timely overtaking decisions.
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Figure 20. Simulation results of the vessel in Scenario 3. (a) Position results of Vessel 4 (b); surge
velocity and heading results of Vessel 4.

(3) Comparative Analysis: Methodologies and Baseline Approaches

To further evaluate the effectiveness of our proposed hierarchical conditional state
machine and chance-constrained model predictive control methodologies, we compare
their performance against two baseline methods: RA-MPCC [30] and Breadth First Search
(BFS) local planner with NMPC [21]. The results, summarized in Table 2, demonstrate
that our approach outperforms the baseline methods in terms of collision frequency and
navigation safety.
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Table 2. Results for three different random scenarios, each run twenty times. These test cases include
head-on and overtaking. Out of all violations (Inland Waterway Regulations), the percentage is
calculated for each run. The percentage shows the mean overall runs.

Scenario Method Encounter Inland Waterway Regulation
Violations (\%) Collisions (\%)

Scenario 1
BFS and NMPC 60 0.00 0.00

RA-MPCC 60 0.00 0.00
HCSM and CCMPC 60 0.00 0.00

Scenario 2
BFS and NMPC 71 28.04 24.15

RA-MPCC 71 14.68 0.00
HCSM and CCMPC 71 4.32 0.00

The use of hierarchical conditional state machine and chance-constrained model pre-
dictive control enables vessels to anticipate potential collisions and adjust their trajectories
proactively. This allows for the initiation of avoidance maneuvers at an earlier stage, par-
ticularly in head-on encounters or overtaking situations, leading to safer navigation in
congested waterways. In contrast, the BFS-NMPC approach tends to adhere too rigidly to
the initial trajectory, failing to account for future obstacles, and as a result, it experiences a
higher frequency of collisions and does not fully comply with inland waterway regulations.

4.4. Computational Complexity and Real-Time Performance
4.4.1. Theoretical Complexity

The worst-case complexity of the proposed framework is governed by the SQP itera-
tions and multistage QP structure O(K·Hp·(nx + nu)3), where K = 10 (average iterations),
Hp = 35, nx = 5, and nu = 2. Total FLOPs = 10·35·(5 + 2)3 = 120,050 FLOPs.

4.4.2. Measured Computation Time

Table 3 summarizes the actual computation time across three scenarios, and the results
are shown in the table.

Table 3. Computation times across three different scenarios.

Scenario Control Horizon Hp Avg. Time per Solve (ms) Max Time (ms) Real-Time Feasibility
(Control Cycle = 100 ms)

Nominal case 35 8.2 14.5 yes (14.5 ms < 100 ms)
Short horizon (Hp = 20) 20 3.7 6.2 yes

Even in the worst case (Hp = 35), the maximum solve time (14.5 ms) is 85.5% faster
than the 100 ms control cycle, leaving ample margin for sensor data processing and actuator
communication. GPU acceleration reduces computation time by 22% compared to CPU-
only execution (tested via solver profiling).

The RTX A2000 GPU significantly accelerates dense linear algebra operations in
FORCES PRO. GPU-accelerated LU decomposition reduces per-iteration time by 35%.
Collision avoidance constraints (Equations (37) and (38)) were batched and evaluated on
the GPU, achieving a 1.8× speedup over CPU.

4.4.3. Comparison with Baseline Solvers

A comparative analysis with general-purpose solvers highlights FORCES PRO’s effi-
ciency, and the results are shown in Table 4.
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Table 4. Comparison with baseline solvers.

Solver Platform Avg. Time (ms) Max Time (ms) Real-Time Feasibility

FORCES PRO CPU + GPU 8.2 14.5 Yes
IPOPT CPU-only 47.6 92.1 No (marginally feasible)

fmincon CPU-only 63.8 121.3 No

FORCES PRO’s structure exploitation and GPU acceleration enable 5.8× faster solves
than IPOPT. The proposed framework achieves real-time trajectory planning (5–20 ms per
solve) on commercially available hardware (Intel i7-12700 + RTX A2000). By leveraging
FORCES PRO’s code generation, multicore CPU/GPU parallelism, and sparsity exploita-
tion, the method scales efficiently to complex maritime scenarios with dynamic obstacles
and stochastic uncertainties. These results confirm that the computational complexity is
fully compatible with real-world deployment, even under resource constraints.

4.5. Robustness Analysis

In this section, we present the results of the sensitivity analysis conducted to evaluate
the impact of key parameters on the performance of the proposed decision-making frame-
work. Sensitivity analysis helps in understanding how variations in system parameters
affect the overall performance, and it allows for assessing the robustness of the system to
different conditions.

The control horizon refers to the number of steps over which the model predictive
control (MPC) makes predictions for the system’s behavior.

We varied the control horizon Hp to assess its effect on both computational perfor-
mance and safety. A longer horizon increases the accuracy of predictions but also increases
the computational complexity, as the number of optimization variables grows.

With a shorter horizon (Hp = 20), the optimization problem becomes less complex,
leading to faster computation times. However, it sometimes results in reduced safety
margins, particularly in dynamic environments where unexpected changes can occur.

A longer horizon (Hp = 35 H) improves the accuracy of predictions and ensures better
safety, but it also increases the computational load. The system was able to maintain
real-time feasibility with a horizon of 35 steps, although the average computation time
increased slightly.

The system shows robust performance across a range of horizons, ensuring safety
without compromising real-time feasibility, especially with the use of GPU acceleration.

4.6. Discussion

In the first real-world experiment, we evaluated the system’s performance in a simu-
lated waterway channel with three static obstacles (two circular and one rectangular). The
system demonstrated effective real-time obstacle avoidance, adapting the vessel’s path
and maintaining safe distances. The autonomous vessel navigated at 4 m/s, dynamically
adjusting its course to avoid obstacles. These maneuvers highlight the system’s ability to
respond to environmental changes, minimizing collision risk and optimizing efficiency.
However, the study did not address dynamic factors such as moving vessels or fluctuating
environmental conditions (e.g., wind and waves), which require further refinement in the
control algorithms to enhance performance in more variable scenarios.

In the second case study, we simulated overtaking scenarios in a multi-vessel environ-
ment to test the robustness of the chance-constrained model predictive control (CC-MPC).
The system successfully adjusted its trajectory for overtaking slower vessels, maintaining
safety distances and ensuring compliance with regulations. Real-time adjustments, as
indicated by velocity and angular velocity measurements, balanced speed with safety
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during overtaking. However, unpredictable movements of other vessels, especially those
violating maritime regulations, posed challenges. The system must improve its ability to
anticipate complex interactions and quickly adjust to sudden changes in vessel speed.

The third case study simulated a multi-vessel scenario in a confined waterway. The
CC-MPC effectively managed vessel movements by adjusting the path to avoid collisions,
ensuring safe maneuvering in high-density traffic. This was especially critical when envi-
ronmental constraints necessitated path adjustments. The system maintained high precision
in navigation, minimizing errors in position and heading. However, oscillations in velocity
and heading during maneuvers suggest a trade-off between safety and energy efficiency,
highlighting the need for optimization.

A comparative analysis showed that the proposed HCSM and CC-MPC method signif-
icantly outperformed baseline methods in collision avoidance and regulatory compliance.
The system demonstrated superior computational efficiency and real-time decision-making
capabilities, outperforming traditional solvers such as IPOPT and fmincon, which struggled
with real-time feasibility due to their higher computational demands.

In the future, the integration of Internet of Ships (IoS) will enhance the system by
enabling real-time communication and data exchange between vessels and shore systems,
facilitating dynamic decision-making and improving system reliability. These technologies
ensure that the system can adapt to real-time traffic changes and environmental distur-
bances, which are critical in busy waterways where vessel behavior and environmental
factors are constantly changing.

While the experiments conducted in this study focused on a specific waterway con-
figuration and obstacle layout, the proposed framework is designed with flexibility and
adaptability in mind, making it applicable to a broad range of maritime environments.
The ability to dynamically adjust vessel trajectories based on traffic conditions and envi-
ronmental factors ensures that the system is not confined to a single type of waterway
or scenario.

The core principles of the HCSM and CC-MPC method can be easily adapted to
various waterway types, including narrow channels, wide channels, rivers, and open
seas. In narrow channels, where space is limited and the risk of collisions is higher, the
system can prioritize safety by increasing safety margins and adopting more conservative
maneuvers. For wider water bodies or open seas, where vessel interactions are less frequent,
the framework can optimize vessel speeds and trajectories for greater efficiency while
maintaining safe distances.

In conclusion, the generalizability of the proposed framework extends far beyond the
specific waterway configuration tested in this study. Its flexibility allows it to be applied to
a diverse set of maritime scenarios, ensuring that it can be effectively deployed in different
waterway types, traffic densities and regulatory contexts. Future work will focus on further
enhancing its adaptability and extending its applicability to even more complex real-world
maritime environments.

4.7. Limitations of the Study

Despite the promising results, this study has several limitations. First, the experimental
evaluations were conducted in simulated environments under controlled conditions, which
did not fully capture dynamic factors such as moving vessels, fluctuating environmental
conditions (e.g., wind and waves), sensor noise, and model inaccuracies. The limited
obstacle configuration and specific waterway scenarios may restrict the generalizability of
the findings to more diverse maritime settings. Furthermore, the observed oscillations in
velocity and heading during high-density traffic indicate a trade-off between safety and
energy efficiency that warrants further optimization. Future research should focus on inte-
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grating robust optimization techniques, incorporating additional dynamic environmental
factors, and validating the framework under a broader range of realistic conditions.

5. Conclusions
This study investigates the application of hierarchical conditional state machine and

chance-constrained model predictive control algorithms for enhancing the safety of au-
tonomous vessels in dynamic waterway environments. The construction of the hierarchical
system involves the utilization of both a hierarchical conditional state machine and a
chance-constrained model predictive control technique. The implementation of a hierar-
chical design in this context serves to guarantee both the safety and efficiency of sailing
operations, considering the necessary compliance with avoidance restrictions pertaining
to the waterway as well as the prevailing environmental circumstances. The hierarchi-
cal conditional state machine establishes appropriate reference and safety thresholds for
navigation by employing avoidance sub-maneuvers and adhering to the appropriate tran-
sition condition. Given the presence of forecast uncertainty, the chance-constrained model
predictive controller offers an optimal, effective, and secure trajectory. The sailing propen-
sity in the hierarchical conditional state machine stage can be altered by adjusting the
weighting parameter, whereas in the chance-constrained model predictive control stage,
it can be influenced by manipulating the chance constraint parameter. The experimental
results demonstrate that these algorithms can effectively mitigate traffic conflicts and re-
duce the risk of collisions, particularly in congested and high-risk waterway conditions.
By incorporating real-time decision-making and trajectory planning, the system proac-
tively avoids accidents and optimizes vessel navigation, thereby contributing to traffic
accident prevention.

The experimental results clearly indicate that the proposed framework achieves en-
hanced computational efficiency and safety performance under dynamic and high-density
traffic conditions. However, the current framework does not fully account for uncertainties
such as sensor noise, model inaccuracies, and unexpected vessel maneuvers, which are
critical in real-world applications. Moreover, the experimental validation was performed
within a specific simulation environment, limiting the generalizability of the findings. In fu-
ture research, we plan to extend our model by incorporating robust optimization techniques
to explicitly handle these uncertainties, validating the framework under more diverse and
realistic scenarios, and exploring strategies to further improve energy efficiency.

Looking forward, the integration of environmental factors into the decision-making
process, coupled with the optimization of energy usage, will enhance the system’s ro-
bustness. Additionally, improving real-time adaptability in complex, unpredictable traffic
situations will be critical in ensuring that autonomous vessels can navigate safely in real-
world conditions. Overall, we believe that these enhancements will pave the way for more
adaptive and resilient autonomous maritime navigation systems, ultimately contributing
to safer and more efficient waterway operations.
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Nomenclature
Symbol Definition/Description
Sbehaviori navigation status of vessel i at time k
v vessel velocity
c heading angel
d vessel decision state
τ vessel control input
η position and orientation of vessel
R(ψ) rotation matrix
V velocities in the surge, sway, and yaw directions
M inertia matrix
C(v) Coriolis and centripetal matrices
D(v) damping matrix
S stopping visual range for a vessel
wi the ith candidate trajectory’s cost function
Di projected distance for the ith vessel in traffic
Dw,i the ith vessel’s weighted distance in the waterway traffic
Da,i distance along the track for the ith traffic vessel
Es,i values used to make the encounter choice
Ri encounter type
L{oa,ob,oc}gap longitudinal safety distances between the original target preceding, adjacent

preceding, and adjacent tailing vessels
WDo,s ,D{a,b,c},p

lateral safety distances between the original target preceding, adjacent preceding,

and adjacent tailing vessels
v̂x,oa,0:Hp planning speed of the preceding vessel
x̂oa, Hp anticipated longitudinal state of the preceding vessel at the final step of the

prediction horizon
ht duration of time between the trailing vessel and the preceding vessel
vx,at present velocity of the following vessel in proximity.
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