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Abstract. The Value-of-Travel-Time (VTT) expresses travel time gains into
monetary benefits. In the field of transport, this measure plays a decisive role in
the Cost-Benefit Analyses of transport policies and infrastructure projects as
well as in travel demand modelling. Traditionally, theory-driven discrete choice
models are used to infer the VTT distribution from choice data. This study
proposes an alternative data—driven method to infer the VTT distribution based
on Artificial Neural Networks (ANNSs). The strength of the proposed method is
that it is possible to uncover the VTT distribution (and its moments) without
making strong assumptions about the shape of the distribution or the error terms,
while being able to incorporate covariates and account for panel effects. We
apply our method to data from the 2009 Norwegian VTT study. Finally, we
cross-validate our method by comparing it with a series of state-of-the-art dis-
crete choice models and other nonparametric methods used in the VTT litera-
ture. Based on the very encouraging results we have obtained, we believe that
there is a place for ANN-based methods in future VTT studies.

Keywords: Artificial Neural Network - Value of Travel Time -
Random Valuation - Nonparametric methods * Discrete choice modelling

1 Introduction

The Value-of-Travel Time (VTT) expresses travel time gains into monetary benefits [1]
and plays a decisive role in the Cost-Benefit Analyses (CBA) of transport policies and
infrastructure projects as well as in travel demand modelling. Not surprisingly in this
regard, the VTT is one of the most researched notions in transport economics [2]. Most
Western societies conduct studies to determine VTTs on a regular basis. But, despite
decades of experience with data collection and VTT inference, the best way to obtain
the VTT is still under debate. Early studies predominantly used Revealed Preference
(RP) data in combination with Multinomial Logit (MNL) models [3]. However, despite
the well-known advantages of RP data over data collected via Stated Choice (SC) ex-
periments, nowadays RP data are seldom used for VTT studies. The main reason is that
while the travellers’ choices are observable (in a real-life setting), their actual trade-offs
across alternatives are not — which hampers estimation of the VIT using RP data. More
recent VTT studies therefore favour using SC data in combination with sophisticated
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discrete choice models that account for (some of the) potential artefacts of SC
experiments (notably so-called size and sign effects) [4—8].

Besides discrete choice models, nowadays nonparametric methods are increasingly
used in VTT studies [9, 10]. These methods are methodologically appealing as they do
not make assumptions regarding the shape of the VTT distribution and the structure of
the error terms. However, despite their methodological elegance they are typically not
used to derive VTTs for appraisal. Rather, they are used as a first, complementary, step
to learn about the shape of the distribution of the VTT, after which parametric discrete
choice models are estimated to derive VITs for appraisal. Borjesson and Eliasson [4]
argue that nonparametric methods are not suitable to compute VTTs for appraisal for
three reasons. First, they (often) cannot incorporate covariates. Second, they (often)
cannot account for panel effects. Third, they do not recover the VTT distribution over
its entire domain. That is, the distribution right of the highest VTT bid is not recovered,
which hinders computation of the mean VTT.

Very recently, Artificial Neural Networks (ANNs) are gaining ground in the travel
behaviour research arena [e.g. 11, 12-20]. A fundamental difference between discrete
choice models and ANNSs is the modelling paradigm to which they belong. Discrete
choice models are theory-driven, while ANNs are data-driven. Theory-driven models
work from the principle that the true Data Generating Process (DGP) is a (stochastic)
function, which can be uncovered. To do so, the analyst imposes structure on the
model. In the context of discrete choice models this is done by prescribing the utility
function, the decision rule, the error term structure, etc. Then, the analyst estimates the
model’s parameters, usually compares competing models, and interprets the results.
A drawback of this approach is that it heavily relies on potentially erroneous
assumptions regarding choice behaviour, i.e. the assumptions may not accurately
describe the true underlying DGP — potentially leading to erroneous inferences. Data-
driven methods work from the principle that the true underlying process is complex and
inherently unknown. In a data-driven modelling paradigm the aim is not to uncover the
DGP, but rather to learn a function that accurately approximates the underlying
DGP. The typical outcome in a data-driven modelling paradigm is a network which has
very good prediction performance [18]. A major drawback of data-driven methods is
that — without further intervention — they provide very limited (behavioural) insights on
the underlying DGP, such as the relative importance of attributes, Willingness-to-Pay,
or VTT. Yet, these behavioural insights are typically most valuable to travel behaviour
researchers and for transport policy-making.

There is a general sense that ANNs (and other data-driven models), could com-
plement existing (predominantly) theory-driven research efforts. In light of that spirit,
this paper develops an ANN-based method to investigate the VTT distribution.
Specifically, we develop a novel pattern recognition ANN which is able to estimate
travellers’ individual underlying VTTs. Our method capitalises on the strong prediction
performance of ANNSs (see [21] for a comprehensive review of articles that involve a
comparative study of ANNs and statistical techniques). The strength of this method is
that it is possible to uncover the VTT distribution (and its moments) without making
strong assumptions on the underlying behaviour. For instance, it does not prescribe the
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utility function, the shape of the VTT distribution, or the structure of the error terms.
Moreover, the method can incorporate covariates, account for panel effects and does
yield a distribution right of the maximum VTT bid. Thereby, it overcomes important
limitations associated with other nonparametric methods. As such, this method can be
used to derive VTTs for appraisal. Finally, the method does not require extensive
software coding on the side of the analyst as the method is built on a standard Mul-
tiLayer Perceptron (MLP) architecture. Hence, the method can be applied using off-the-
shelf (open-source) software.

The remainder of this paper is organised as follows. Section 2 develops the ANN-
based method for uncovering the VTT distribution. Section 3 applies the method to an
empirical VTT data set from a recent VTT study. Section 4 cross-validates the method
by comparing its results with those obtained using a series of state-of-the-art discrete
choice models and other nonparametric methods. Finally, Sect. 5 draws conclusions
and provides a discussion.

2 Methodology

2.1 Preliminary

Panel Data Format (time series)

Throughout this paper we suppose that we deal with data from a classic binary SC
experiment, consisting of 7 + 1 choice tasks per individual, in which within-mode
trade-offs between travel cost TC and travel time 7T are embedded. This data format is
in line with standard VTT practice in many Western European countries, including the
UK [22], The Netherlands [7, 23], Denmark [8], Norway [5] and Sweden [4]. Figure 1
shows a choice task from such a SC experiment. Choice tasks are pivoted around the
respondents current travel time and travel cost, which are typically elicited prior to the
SC experiment. In the SC experiment respondents are confronted with 7+ 1 choice
tasks consisting of two alternatives, in each choice task one trip being their current one
and the other one being either a faster and more expensive, or a slower and cheaper
trip. In each choice task there is an implicit price of time which is commonly referred to
as the Boundary VIT (BVTT). The BVTT is defined as:

ATC  —(TC, — TC)
ATT — (TT, — TT))

BVIT = — (1)

where alternative 1 denotes the fast and expensive alternative and the alternative 2
denotes the slow and cheap alternative. The BVTT can be perceived as a valuation
threshold as a respondent choosing the fast and expensive alternative signals a VIT
which is (most likely) above the BVTT, while a respondent choosing the slow and
cheap alternative signals a VIT which is (most likely) below the BVTT.
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Trip A Trip B
Travel time: TT Travel time: TT - ATT
Travel cost: TC Travel cost: TC + ATC

Which trip do you prefer?
o Trip A o Trip B

Fig. 1. Example choice task

Covariates in VIT Studies

It is important to incorporate covariates in models that aim to infer the VTT. Borjesson
and Eliasson [4] provide four reasons for this. Firstly, accounting for covariates in VTT
models allows better extrapolating the VTT to new situations. Secondly, accounting for
covariates in VI'T models allows better understanding what trip characteristics influ-
ence the VTT. Thirdly, accounting for covariates in VI'T models allows the analyst to
remove the influence of undesirable factors, such as income or urbanisation level from
the VTT used for appraisal. Fourthly, accounting for covariates in VTT models allows
accounting for so-called size and sign effect stemming from the experimental design
[24]. Size effects are due to the behavioural notion that the VTT is dependent on the
size of the difference in travel time and travel cost across alternatives in the choice task
[25]. Sign effects are due to the behavioural notion that losses (e.g. higher travel cost
and longer travel time) loom larger than equivalently sized gains (e.g. lower travel cost
and shorter travel time) [24, 26].

2.2 Uncovering Individual VTTs Using ANNs

The ANN-based method is based on three observations. The first observation is that
ANNSs are very good at making predictions [21]. Their good prediction performance
stems from the versatile structure of ANNs, which allow them to capture non-linearity,
interactions between variables, and other peculiarities in the DGP, for instance in this
context relating to the set-up of the experimental design. The second observation is that
we can use the ANN to find the BVTT where it is maximally uncertain on the choice of
the decision maker. The third observation is that we can give a behavioural interpre-
tation to this BVTT and recover the individual’s VTT from it. That is, we can interpret
the BVTT where the ANN is maximally uncertain as the point where the individual is
indifferent between choosing the fast and expensive alternative and the slow and cheap
alternative. From this behavioural perspective, this BVTT reflects the VTT of the
individual. Taking these three observations together, we can develop an ANN-based
method that recovers individual level VTTs and can be used to derive VITs for
appraisal.
To do so, we take the following 5 steps:

(1) Data preparation and training

The aim of this step is to train an ANN to (probabilistically) predict, for decision
maker n the choice in the hold-out choice task T + 1, based on the BVTTs (BVTT") and
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the choices made (Y") in choice tasks 1 to 7, the probed BVTT in choice task T + 1
(bvtty 1), experimental covariates in choice task T + 1 (s7 ), and a set of generic and
experimental covariates, denoted D" and §", respectively. In other words, we train the
ANN to learn the relationships f, see (2, where P7_ | denotes the probability of
observing a choice for the fast and expensive alternative in choice task 7 + 1 for
decision maker n.

Py =f(BVIT",Y", bvit} . ,s5 ., D", S8") (2)

where BVTT" ={bvit}, bvity, ..., bvit} }
" :{yrllayga .. ,y;l"}

N z{s'l’,s'zl, .. .,s’;}

Figure 2 shows the proposed architecture of the ANN. At the input layer, the
independent variables enter the network. At the top, there are the generic covariates
(green). Typical generic covariates encountered in VTT studies are mode, purpose, age,
income, distance, etc. Below the generic covariates are the variables associated with
choice tasks 1 to T (red). These include the BVTTs, the choices y and experimental
covariates s (e.g. sizes and signs). Below the variables for choice tasks 1 to T is an extra
set of input nodes for choice task R (blue). Choice task R is a replication of one choice
task, randomly picked from the set choice tasks 1 to 7. These input nodes come in
handy later when the ANN is used for simulation (they make it possible to use all 7' + 1
observations instead of only T observations in the simulation). Finally, at the bottom
are the variables associated with hold-out choice task 7+ 1 (yellow). These are
essentially the ‘knobs’ of the model that can be used for simulation. The output layer
consists of the dependent variable, which is the probability for choosing the fast and
expensive alternative in choice task T + 1. One or multiple hidden layers can be used.
In our analyses we find two layers to work well. However, the optimal number of
hidden layer and the number of nodes depends on the complexity of the DGP that
needs to be learned from the data, and hence may vary across applications.

To train the network in Fig. 2, we need to prepare the data. To do so, for each
decision maker in the data we randomly draw T explanatory choice tasks from the
T + 1 choice tasks that are available in the data for each decision maker. These
T choice tasks are used as independent variables to predict the remaining choice. To
avoid that the network undesirably learns a particular structure in the data, rather than
the explanatory power of the variables it is crucial that the order in the set of T ex-
planatory choice tasks is randomised." We randomise the order in the set of explanatory
choice tasks K times, each time creating a ‘new’ observation. The idea behind this is
that the weights associated with the choice tasks attain (roughly) similar sizes. By
doing so, we create a network that produces stable predictions, which is insensitive to
the order of the explanatory choice tasks. In each manifestation of the

! Unless the order of the choice tasks is randomised during the data collection. Note that by doing so
the network becomes blind to potential learning effects on the side of the respondent when
conducting the survey. We come back to this point in the discussion.
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Fig. 2. ANN architecture (Color figure online)
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K randomisations, choice task R is a randomly selected replication of one of the
T explanatory choice tasks. By selecting a random choice task, we make sure that no
single choice task weights more heavily in the training and ensure that the weights of
the network are generic across all choice tasks.

(2) Simulate

After having trained the ANN, we can use the network to simulate choice proba-
bilities in order to find the point where the ANN is maximally uncertain, and hence the
decision maker is indifferent between choosing the fast alternative and the cheap
alternative. Specifically, we simulate P7, while letting bvvty | tun from O to a
maximum BVTT value set by the analyst using a finite step size.” For simulation, we
can use all T + 1 choice observations of a decision maker as explanatory choice tasks.
This is possible because we created the extra choice task R in the network (see step 1).
Thus, this ‘trick’ allows using all available information on a decision maker’s pref-
erence for predicting his or her response to a given probed BVTT in the simulation in
an elegant way. Moreover, it circumvents the need to randomly draw T explanatory
choice tasks from the 7 + 1 available choice tasks — which would lead to increased
variance in the predictions for Py ;.

(3) Recovery of individual VTTs

Figure 3 illustrates how the simulated choice probabilities (y-axis) for an individual
decision maker could look like as a function of byvry (x-axis).3 The next step is to
infer from these simulated probabilities for each decision maker his or her VTT. To do
so, we need to find the BVTT which makes the ANN maximally uncertain, which from
a behavioural perspective we interpret as the point where the decision maker is
indifferent between the fast and expensive and the slow and cheap alternative. In our
binary choice context, technically this is where the choice probabilities are equal to 0.5.
Since the learned function f cannot easily be solved analytically, we have to determine
this point numerically. Several options are available to do so. A simple and effective
approach is to first determine the last bvvt} | above P = 0.5 and the first bvvey |,
below P = 0.5, and then make a linear interpolation between those two points and to
solve for the BVTT which makes the individual indifferent.

(4) Repeat steps 2 and 3

We repeat steps 2 and 3 numerous times. In each repetition we shuffle the order of
the T + 1 explanatory choice tasks. This step is not strictly obligatory, but it helps to
improve the stability of the outcomes. In particular, it is helpful to take out the effect of
the order in which the explanatory choice tasks are presented to the network. Hence, for
each decision maker his/her VTT is computed numerous times. After that, we compute
each decision maker’s VTT by taking the mean across all repetitions.

2 Note that technically it is not necessary to simulate any further than the point where P < 0.5.

3 Note that the plot is deliberately made a bit quivering to highlight the notion that very little structure
is imposed by the ANN on the functional form.
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Fig. 3. Simulated choice probabilities

(5) Construct the VIT distribution

Having an estimate of the VIT for each decision maker, we can construct an
empirical distribution of the VTT. Also, from the constructed empirical distribution we
can readily compute the mean and standard deviation of the VTT.

2.3 ANN Development

In Sect. 2.2 we presented the ANN without going into much detail on its architecture or
on underlying design choices. In this subsection we discuss these in more detail. To
develop an ANN capable of learning function (2), we have tested numerous different
architectures, including fully and semi-connected networks, different numbers of hid-
den layers, the presence or absence of bias nodes, and we have tried several different
activation functions. The two-hidden layer architecture presented in Fig. 2 with ten
nodes at each hidden layer is found to work particularly well for our data.* The
proposed architecture is a so-called Multilayer Perceptron (MLP). This is one of the
most widely used ANNs architectures and is implemented in virtually all off-the-shelf
machine learning software packages. For the activation functions in the network we
find good results using a softmax function both at the nodes of the hidden layers as well
as at the nodes of the output layer. Using a softmax function at the output layer ensures
that the sum of the predicted choice probabilities across the two alternatives add up to
1. Finally, note that while no bias nodes are depicted in Fig. 2 bias nodes are present as
they are found to improve the classification performance.

The fact that off-the-shelf software can be used is a desirable feature of this method,
as it makes the method accessible for a wide research community. Admittedly, from a
methodological perspective our network consumes more weights than is strictly

* The network consumes 491 weights in total.
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needed, in the sense that in the input layer there are T + 1 weights for bvez, y and s,
while just one set of weights to be used across all the T + 1 choice tasks would suffice
and hence would yield a more parsimonious network. However, while it is possible to
create an architecture with shared weights across inputs variables, this would sub-
stantially hinder other researchers from using this method as most off-the-shelf software
does not allow weight sharing, meaning that the analyst needs to write customised
codes.

3 Application to Real VIT Data

3.1 Training and Simulation

In this study we use the Norwegian 2009 VTT data set, see [S] for details on the
experimental design and the data collection. After cleaning, this data set consists of
5832 valid respondents. For each respondent, 9 binary choices are observed. While the
currency in the SC experiment was Norwegian Kronor, for reasons of communication
we converted all costs into euros. To train the network on these empirical data, 70% of
the data were used for training, 15% for validation and 15% for testing. The obser-
vations were randomly allocated to these subsets. We use K = 20 randomisations (see
Sect. 2.2). The trained ANN acquires a cross-entropy of 0.36. Table 1 shows the
confusion plot. It shows that overall about 85% of the choices are correctly predicted
(based on highest probability). To obtain the VTT distribution, we use the network to
simulate choice probabilities and search for the BVTTs where the ANN is maximally
uncertain. We do this 20 times® for each respondent (i.e., steps 2 to 4, see Sect. 2.2).

Table 1. Confusion plot (based on validation and test data)

Target 1 (fast and Target 2 (slow z

expensive) and cheap)
Output class 1 (fast 26.7 % 6.9% 79.4% (Positive
and expensive) predictive value)
Output class 2 (slow 8.3% 58.1% 87.5% (Negative
and cheap) predictive value)
z 76.3% (Sensitivity) 89.4% 84.8% (Overall

(Specificity) accuracy)

3.2 Results

Figure 4 shows the recovered distribution of the VTT (step 5). For eight respondents, it
has not been possible to obtain a VTT estimate. For these respondents, the ANN
predicts choice probabilities below 0.5, even for very small BVTTs, suggesting a zero
or even a negative VIT. While this seems behaviourally unrealistic, from a data-driven

5 We find that after 20 times the results are stable.



Using Artificial Neural Networks for Recovering the Value-of-Travel-Time Distribution 97

modelling perspective it can be well understood why it is not possible to obtain a VIT
for each and every respondent, especially considering that over 13% of the respondents
in the data always choose the slow and cheap alternative. The ANN may have learned
that some respondents just never choose the fast and expensive alternative, even if it is
just a fraction more expensive than the slow and cheap alternative. Close inspection of
the eight respondents for which we have not been able to obtain a VIT estimate, shows
that indeed these respondents never chose the expensive and fast alternative and that
they all had low income levels. In the remainder of our analyses these eight respondents
are given a VIT of zero. About 2% of the respondents always chose the fast and
expensive alternative in each choice task. For all these respondents a VIT has been
recovered, in between €20 and €123 per hour, with a median VTT of €85 per hour.

Figure 4 shows that the shape of the VTT distribution is positively skewed. The
lognormal-like shape is behaviourally intuitive and has occasionally been found in
previous VTT studies. However, when fitting the lognormal distribution onto these data
(not shown), we find that it does not fit the data very well: in particular, it cannot
accommodate for the spike at around VIT = €2/h and the drop at VTT = €16/h. Close
inspection of the bins around VTT = €2/h reveal that they are predominantly populated
with those respondents that always choose the slow and cheap alternative (for clarity,
non-traders are depicted in red in the right-hand side plot). The bimodal shape of this
distribution essentially emphasises the need for flexible methods to uncover the dis-
tribution of the VTT.

011

. Csin
0.09 r ["Inon-traders (low end)

0 10 20 30 40 50 60
VTT [euro/h]

Fig. 4. VTT distribution
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4 Cross-validation

To cross-validate the shape and mean of the recovered VTT distribution by the ANN-
based method, we compare with state-of-the-art (parametric) choice models as well as
with three (semi) nonparametric methods that have been used in recent VIT studies.
The parametric models that we use in this cross-validation study are Random Valuation
(RV) models [27, 28], with two types of distributions, namely the lognormal and the
log-uniform distributions. The log-normal distribution has been used in the most recent
Swedish VTT study; the log-uniform has been used in the most recent UK VTT study.
Note that we also have estimated more conventional Random Utility Maximisation
(RUM) models [29], but the RV models are found to outperform their random utility
counterparts [30]. Therefore, we report only on the RV models. Regarding the non-
parametric methods, the first nonparametric method that we consider is called local-
logit. This method is developed by Fan, Heckman and Wand [31], pioneered in the
VTT research literature by Fosgerau [10] and further extended by [32]. The local-logit
method essentially involves estimation of logit models at ‘each’ value of the BVTT
using a kernel with some shape and bandwidth. In our application we use a triangular
shaped kernel with a bandwidth of 10 euro. The second nonparametric method is
developed by Rouwendal, de Blaeij, Rietveld and Verhoef [33]. Henceforth, we refer
this method as ‘The Rouwendal method’. This method assumes that everybody has a
unique VTT and makes consistent choices accordingly. But, at each choice there is a
fixed probability that the decision maker makes a mistake and hence chooses the
alternative that is inconsistent with his/her VTT. The third nonparametric method is put
forward by Fosgerau and Bierlaire [34]. This is actually a semi-nonparametric method
which approximates the VTT distribution using series approximations. We apply the
method — which we henceforth refer to as ‘SNP’ — to the RV model that we also used in
the parametric case.

The left-hand side plot in Fig. 5 shows the Cumulative Density Function (CDF) of
the VTT recovered using the ANN-based method (blue) and the parametric RV models.
The right-hand side plot in Fig. 5 shows, besides the CDF of the ANN VTT (blue), the
CDFs created using the local-logit (orange), the Rouwendal method (green) and the
SNP method (turquoise). A number of findings emerge from Fig. 5. A first general
observation is that all methods roughly recover the same shape of the VTT distribution,
except for the local-logit. But, there are non-trivial differences between the shapes too.
Looking at the parametric methods, we see that between VTT = €3/h and VTT =

€10/h, the VTT distribution recovered by the ANN is shifted by about 2 euros to the
left. Furthermore, we see that in the tail the CDFs of the ANN and of the lognormal
neatly coincide (but they do not before). The tail of the log-uniform seems to be
substantially underestimated, at least as compared to the CDFs recovered using the
other methods. Looking at the nonparametric methods, we see that the CDF of the
Rouwendal method coincides with that of the ANN very well, especially up until
VTT = €14/h and in the tail above €55/h. The CDF of the SNP method coincides well
with that of the ANN for VTTs of €5/h and higher. The local-logit CDF deviates most
from the other CDFs, in particular below VTT = €30/h. Possibly, this is caused by its
inability to account for the panel nature of the data and its inability to disentangle
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unobserved heterogeneity from irreducible noise in the data. After all, the local-logit
method only considers choices from several respondents around the same BVTT,
without considering the other choices made by these (or other) respondents.

ANN vs. parametric models ANN vs. nonparametric models

1r
09 09r
081 0.8
207F Z0o7y F
3 3 /
Josr oo/ TI= N
g ANN 5 F - A N PR i
Local-logit
o 05 RV Lognormal o 05 4
2> " > 4 == Rouwendal method
B RV Loguniform B f SNP Fosgerau
S 04r S o04r (!
E E 4
S 3 i
O o03f Oo3rl:
i
gi
0.2 024
l';
0.1 0.1 i
"
0 ol
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
VTT [euro /h] VTT [euro /h]

Fig. 5. Cross-validation of shape (Color figure online)

Table 2 summarises key statistics of the recovered VTT distributions for the
methods that we have used. Since the nonparametric methods do not recover the VTT
distribution beyond the maximum VTT bid, the presented statistics for these methods
can be considered as lower bounds. However, in these data the maximum VTT is set
very high (see [5]) and only 2% of the respondents in these data always choose for the
fast and expensive alternative, many of whom did not receive a very high VTT bid. As
such, the unrecovered tail for the Rouwendal method is very small, representing less
than 0.05% of the density. But, the unrecovered tail for the local-logit still represents
about 5% of the density (rendering computation of its moments unreliable). The statics
for the SNP method are computed from the CDF. In line with previous practice using
this method, we censored the right-hand side tail above VIT = €200/h. Not doing so,
would substantially inflate the recovered standard deviation of this distribution. The
overview shows that the mean recovered by the ANN-based method is close to those of
all other methods, except the RV-log-uniform. The median VTT recovered by the ANN
is higher than those of the parametric methods. This is presumably due to the limited
flexibility of the latter methods to account for the substantial number of respondents
having a very low VTT (13% of the respondents always choose the slow and cheap
alternative), while still covering the VTT distribution over a large range. Altogether, it
can be concluded that the shape, mean and median recovered by the ANN seem very

plausible.
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Table 2. Mean, median and standard deviations of recovered VTT distributions

ANN |RV RV Rouwendal Local- SNP*
Lognormal Log-uniform method logit
Mean 11.75 12.13 9.34 12.45 12.16 12.34
Median 8.09 6.30 5.01 7.74 7.33 7.40
Std 13.68 |17.57 11.41 15.54 15.24 15.64
deviation

“Censored at VIT =€200/h

5 Conclusions and Discussion

This study proposes a novel ANN-based method to study the VTT. The method is
highly flexible, in the sense that it does not impose strong assumptions regarding the
specification of the utility function, the VTT distribution, or the structure of the error
terms. Moreover, the method can incorporate covariates, account for panel effects and
does yield a distribution right of the maximum VTT. Thereby, it overcomes important
limitations associated with nonparametric methods that are put forward in the VIT
literature. In this study we have cross-validated the proposed method by comparing it
with a series of state-of-the-art discrete choice models and nonparametric methods.
Based on the encouraging results of this study, we believe that there is a place for
ANN-based methods in future VTT studies.

The method proposed in this study provides ample scope for further research.
A first direction for further research involves acquiring a good understanding regarding
the data requirements for this method to work well. For instance, how many respon-
dents are at least needed for this method? A commonly used rule-of-thumb in the
Machine Learning field is that the number of observations needs to be at least ten times
more than the number of estimable weights. However, a recent study on this topic in
the context of choice data suggest a more conservative factor of 50 times more
observations than weights [35]. Likewise, what is the ‘minimum’ number of choice
tasks per respondents that is needed? In our study we found good results with nine
choice tasks per respondents. But, will the method also work with just five choice tasks
per respondent, or will it work even better with fifteen choice tasks? A second, related,
direction for further research concerns the design of the SC experiment. Current SC
experiments are optimised for estimation of discrete choice models. However, data
from these experiments may actually be suboptimal for the ANN-based method.
A question that remains to be answered therefore is how to design experiments opti-
mised for this method? A third direction for further research concerns the generalisation
of the method to work with choice tasks having three or more attributes. While it is
clear that it becomes more difficult to recover a VIT from a choice task consisting of
three or more alternatives using this method, there are — as far as we can see tell — no
fundamental reasons why the method would be confined to data from two-attribute
experiments only. A fourth interesting direction is investigating whether it is possible to
also capture and incorporate learning and ordering effects. Some empirical studies
suggest that respondents are subject to learning effects and ordering anomalies [36].
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A fifth research direction for further research is application of this method to other VTIT
data sets, as well as applying the method to other areas of application, such as inference
of the distribution of the value of reliability. Finally, a drawback of the ANN-based
method relates to the opaque nature of ANNS: they cannot easily be diagnosed, e.g. by
looking at its weights. Future research may be directed to illuminate the black boxes of
ANNS, especially in contexts where they are used for behavioural analysis [37].
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