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Dynamical moderate deviations for the Curie-Weiss

model

Francesca Collet∗ Richard C. Kraaij†

Abstract

We derive moderate deviation principles for the trajectory of the empirical
magnetization of the standard Curie-Weiss model via a general analytic ap-
proach based on convergence of generators and uniqueness of viscosity solu-
tions for associated Hamilton-Jacobi equations. The moderate asymptotics
depend crucially on the phase under consideration.

Keywords: Moderate deviations; Interacting particle systems; Mean-field in-
teraction; Viscosity solutions; Hamilton-Jacobi equation

MSC[2010]: primary 60F10; 60J99

1 Introduction

The study of the normalized sum of random variables and its asymptotic behavior
plays a central role in probability and statistical mechanics. Whenever the variables
are independent and have finite variance, the central limit theorem ensures that the
sum with square-root normalization converges to a Gaussian distribution. The
generalization of this result to dependent variables is particularly interesting in sta-
tistical mechanics where the random variables are correlated through an interaction
Hamiltonian. Ellis and Newman characterized the distribution of the normalized
sum of spins (empirical magnetization) for a wide class of mean-field Hamiltonian
of Curie-Weiss type [8, 9, 10]. They found conditions, in terms of thermodynamic
properties, that lead in the infinite volume limit to a Gaussian behavior and those
which lead to a higher order exponential probability distribution.
A natural further step was the investigation of large and moderate fluctuations for
the magnetization. The large deviation principle is due to Ellis [7]. Moderate devi-
ation properties have been treated by Eichelsbacher and Löwe in [6]. A moderate
deviation principle is technically a large deviation principle and consists in a re-
finement of a (standard or non-standard) central limit theorem, in the sense that
it characterizes the exponential decay of deviations from the average on a smaller
scale. In [6], it was shown that the physical phase transition in Curie-Weiss type
models is reflected by a radical change in the asymptotic behavior of moderate devi-
ations. Indeed, whereas the rate function is quadratic at non-critical temperatures,
it becomes non-quadratic at criticality.
All the results mentioned so far have been derived at equilibrium; on the con-
trary, we are interested in describing the time evolution of fluctuations, obtaining
non-equilibrium properties. Fluctuations for the standard Curie-Weiss model were
studied on the level of a path-space large deviation principle by Comets [2] and
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Kraaij [15] and on the level of a path-space central limit theorem by Collet and Dai
Pra in [1]. The purpose of the present paper is to study dynamical moderate devi-
ations to complete the analysis of fluctuations of the empirical magnetization. We
apply the generator convergence approach to large deviations by Feng-Kurtz [13]
to characterize the most likely behaviour for the trajectories of fluctuations around
the stationary solution(s) in the various regimes. The moderate asymptotics depend
crucially on the phase we are considering. The criticality of the inverse temperature
β = 1 shows up at this level via a sudden change in the speed and rate function of
the moderate deviation principle for the magnetization. In particular, our findings
indicate that fluctuations are Gaussian-like in the sub- and super-critical regimes,
while they are not at the critical point.
Besides, we analyze the deviation behaviour when the temperature is size-dependent
and is increasing to the critical point. In this case, the rate function inherits features
of both the uniqueness and multiple phases: it is the combination of the critical and
non-critical rate functions. To conclude, it is worth to mention that our statements
are in agreement with the results found in [6].

The outline of the paper is as follows: in Section 2 we formally introduce the Curie-
Weiss model and we state our main results. All the proofs, if not immediate, are
postponed to Section 3. Appendix A is devoted to the derivation of a large deviation
principle via solution of Hamilton-Jacobi equation and it is included to make the
paper as much self-contained as possible.

2 Model and main results

2.1 Notation and definitions

Before we give our main results, we introduce some notation. We start with the
definition of good rate-functions and what it means for random variables to satisfy
a large deviation principle.

Definition 2.1. Let X1, X2, . . . be random variables on a Polish space F. Further-
more let I : F→ [0,∞].

1. We say that I is a good rate-function if for every c > 0, the set {x | I(x) 6 c} is
compact.

2. We say that the sequence {Xn}n>1 is exponentially tight if for every a > 0

there is a compact set Ka ⊆ X such that lim supn P[X ∈ Kca] 6 −a.

3. We say that the sequence {Xn}n>1 satisfies the large deviation principle with
rate r(n) and good rate-function I, denoted by

P[Xn ≈ a] ∼ e−r(n)I(a),

if we have for every closed set A ⊆ X

lim sup
n→∞

1

r(n)
logP[Xn ∈ A] 6 − inf

x∈A
I(x),

and for every open set U ⊆ X

lim inf
n→∞ 1

r(n)
logP[Xn ∈ U] > − inf

x∈U
I(x).

Throughout the whole paper AC will denote the set of absolutely continuous curves
in R.
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Definition 2.2. A curve γ : [0, T ] → R is absolutely continuous if there exists a
function g ∈ L1[0, T ] such that for t ∈ [0, T ] we have γ(t) = γ(0) +

∫t
0 g(s)ds. We

write g = γ̇.
A curve γ : R+ → R is absolutely continuous if the restriction to [0, T ] is absolutely
continuous for every T > 0.

2.2 Glauber dynamics for the Curie-Weiss model

Let σ = (σi)
n
i=1 ∈ {−1,+1}n be a configuration of n spins and denote by

mn(σ) = n
−1

n∑
i=1

σi

the empirical magnetization. The stochastic process {σ(t)}t>0 is described as follows.
For σ ∈ {−1,+1}n, let us define σj the configuration obtained from σ by flipping the j-
th spin. The spins will be assumed to evolve with Glauber spin-flip dynamics: at any
time t, the system may experience a transition σ → σj at rate exp{−βσj(t)mn(t)},
where β > 0 represents the inverse temperature and where by abuse of notation
mn(t) := mn(σ(t)). More formally, we can say that {σ(t)}t>0 is a Markov process
on {−1,+1}n, with infinitesimal generator

Gnf(σ) =

n∑
i=1

e−βσimn(σ)
[
f
(
σi
)
− f(σ)

]
. (1)

Let

En := mn ({−1,+1}n) =

{
−1,−1+

2

n
, . . . , 1−

2

n
, 1

}
⊆ [−1,1]

be the set of possible values taken by the magnetization (we will keep using this
notation for the state space of the magnetization). The Glauber dynamics (1) on
the configurations induce Markovian dynamics for the process {mn(t)}t>0 on En,
that in turn evolves with generator

Anf(x) = n
1− x

2
eβx

[
f

(
x+

2

n

)
− f(x)

]
+ n

1+ x

2
e−βx

[
f

(
x−

2

n

)
− f(x)

]
.

This generator can be derived in two ways from (1). First of all, the microscopic
jumps induce a change of size 2

n
on the empirical magnetization. The jump rate

of x to x+ 2
n

corresponds to any −1 spin switching to +1 with rate eβx. The total
number of −1 spins can be computed from the empirical magnetization x and equals
n1−x

2
. A similar computation yields the jump rate of x to x − 2

n
. A second way to

see that An is the generator of the empirical magnetization is via the martingale
problem and the property that Anf(mn(σ)) = Gn(f ◦mn)(σ).
Assume the initial condition mn(0) obeys a large deviation principle, then it can be
shown that {mn(t)}t>0 obeys a large deviation principle on the Skorohod space of
càdlàg functions DR(R+). We refer to [12] for definition and properties of Skorohod
spaces and to [2, 5] for the proof of the large deviation principle. Moreover, see [15,
Theorem 1] for a LDP obtained by using similar techniques as in this paper. This
path space large deviation principle allows to derive the infinite volume dynamics
for our model: if mn(0) converges weakly to the constant m0, then the empirical
magnetization process {mn(t)}t>0 converges weakly, as n→∞, to the solution of

ṁ(t) = −2m(t) cosh(βm(t)) + 2 sinh(βm(t)) (2)

with initial condition m0. It is well known that the dynamical system (2) exhibits
a phase transition at the critical value β = 1. The solution m = 0 is an equilibrium
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of (2) for all values of the parameters. For β 6 1, it is globally stable; whereas, for
β > 1, it loses stability and two new stable fixed point m = ±mβ, mβ > 0, bifurcate.
We refer the reader to [7]. For later convenience, let us introduce the notation

G1,β(x) = cosh(βx) − x sinh(βx) and G2,β(x) = sinh(βx) − x cosh(βx).

Observe that the equilibria of (2) are solutions to G2,β(x) = 0.

2.3 Main results

We want to discuss the moderate deviations behavior of the magnetization around
its limiting stationary points in the various regimes. We have the following three
results that can be obtained as particular cases of the more general Theorem 3.7
stated and proven in Section 3.2. The first of our statements is mainly of interest
for sub-critical inverse temperatures β < 1, but is indeed valid for all β > 0. The
results for the critical and super-critical regimes follow afterwards.

Theorem 2.3 (Moderate deviations around 0). Let {bn}n>1 be a sequence of posi-
tive real numbers such that bn →∞ and b2nn

−1 → 0. Suppose that bnmn(0) satisfies
the large deviation principle with speed nb−2n on R with rate function I0. Then the
trajectories {bnmn(t)}t>0 satisfy the large deviation principle on DR(R+):

P
[
{bnmn(t)}t>0 ≈ {γ(t)}t>0

]
∼ e−nb

−2
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

(3)

with

L(x, v) =
1

8
|v+ 2x(1− β)|2 .

Theorem 2.4 (Moderate deviations: critical temperature β = 1). Let {bn}n>1 be a
sequence of positive real numbers such that bn →∞ and b4nn

−1 → 0. Suppose that
bnmn(0) satisfies the large deviation principle with speed nb−4n on R with rate func-
tion I0. Then the trajectories

{
bnmn(b

2
nt)
}
t>0 satisfy the large deviation principle

on DR(R+):

P
[{
bnmn(b

2
nt)
}
t>0 ≈ {γ(t)}t>0

]
∼ e−nb

−4
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

(4)

with

L(x, v) =
1

8

∣∣∣∣v+ 2

3
x3
∣∣∣∣2 .

Theorem 2.5 (Moderate deviations: super-critical temperatures β > 1). Let
m ∈ {−mβ,+mβ} be a non-zero solution of G2,β(x) = 0. Moreover, let {bn}n>1
be a sequence of positive real numbers such that bn → ∞ and b2nn

−1 → 0. Sup-
pose that bn(mn(0) −m) satisfies the large deviation principle with speed nb−2n on
R with rate function I0. Then the trajectories {bn(mn(t) −m)}t>0 satisfy the large
deviation principle on DR(R+):

P
[
{bn(mn(t) −m)}t>0 ≈ {γ(t)}t>0

]
∼ e−nb

−2
n I(γ),
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where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

(5)

with

L(x, v) =
(v− 2xG ′2,β(m))2

8G1,β(m)
.

The rate functions (3) and (5) have a similar structure. Indeed, whenever β < 1,
m = 0 is the unique solution of G2,β(x) = 0; moreover, it yields G1,β(0) = 1 and
G ′2,β(0) = β− 1.
By choosing the sequence bn = nα, with α > 0, we can rephrase Theorems 2.3,
2.4 and 2.5 in terms of more familiar “moderate” scalings involving powers of the
volume. We therefore get estimates for the probability of a typical trajectory on a
scale that is between a law of large numbers and a central limit theorem. We give
a schematic summary of these special results in Table 1 below.

For any of the three cases above, we define the Hamiltonian H : R × R → R by
taking the Legendre transform of L: H(x, p) = supv pv − L(x, v). It is well known
that the rate function S of the stationary measures of the Markov processes, also
known as the quasi-potential, solves the equation H(x, S ′(x)) = 0, cf. Theorem
5.4.3 in [14]. We use this property to show that our results are consistent with the
moderate deviation principles obtained for the stationary measures in [6]. We give
the Hamiltonian of the three cases above

(a) sub-critical temperatures, Theorem 2.3 H(x, p) = 2x(β− 1)p+ 2p2,

(b) critical temperature, Theorem 2.4 H(x, p) = −2
3
x3p+ 2p2,

(c) super-critical temperatures, Theorem 2.5 H(x, p) = 2xG ′2(m)p+ 2G1(m)p2.

The stationary rate function S in each of these three cases obtained in [6, Theorem
1.18] is given by

(a) sub-critical temperatures, S(x) = 1
2
(1− β)x2,

(b) critical temperature, S(x) = 1
12
x4,

(c) super-critical temperatures, S(x) = 1
2
cx2, where c := (φ ′′(βm))−1 − β, and m is

a solution of G2,β(x) = 0 and φ(x) = log (cosh(x)).

For (a) and (b), it is clear that H(x, S ′(x)) = 0 for all x. For (c), since m = tanh(βm),
by inverse function theorem we obtain φ ′′(βm) = 1−m2. Therefore, we have

c = (φ ′′(βm))−1 − β = (1−m tanh(βm))−1 − β

= −

[
βG1,β(m) − cosh(βm)

G1,β(m)

]
= −

G ′2,β(m)

G1,β(m)
,

which implies that also in this case H(x, S ′(x)) = 0 for all x.

The next theorem complements the results in [1, Proposition 2.2] for the subcriti-
cal regime and shows that also in the supercritical case the fluctuations around a
ferromagnetic stationary point converge to a diffusion process. As previously, the
statement is a direct consequence of a more general central limit theorem given in
Theorem 3.8 below.
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Theorem 2.6 (Central limit theorem: super-critical temperatures β > 1). Let
m ∈ {−mβ,+mβ} be a non-zero solution of G2,β(x) = 0. Suppose that n1/2(mn(0)−
m) converges in law to ν. Then the process n1/2(mn(t) −m) converges weakly in
law on DR(R+) to the unique solution of:{

dY(t) = 2Y(t)G ′2,β(m)dt+ 2
√
G1,β(m)dW(t)

Y(0) ∼ ν,
(6)

where W(t) is a standard Brownian motion on R.

We want to conclude the analysis by considering moderate deviations and non-
standard central limit theorem for volume-dependent temperatures decreasing to
the critical point. In the sequel let {mβn(t)}t>0 denote the process evolving at tem-
perature β.

Theorem 2.7 (Moderate deviations: critical temperature β = 1, temperature
rescaling). Let κ > 0 and let {bn}n>1 be a sequence of positive real numbers such

that bn → ∞ and b4nn
−1 → 0. Suppose that bnm

1+κb−2
n

n (0) satisfies the large devi-
ation principle with speed nb−4n on R with rate function I0. Then the trajectories{
bnm

1+κb−2
n

n (b2nt)
}
t>0

satisfy the large deviation principle on DR(R+):

P
[{
bnm

1+κb−2
n

n (b2nt)
}
t>0
≈ {γ(t)}t>0

]
∼ e−nb

−4
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

(7)

with

L(x, v) =
1

8

∣∣∣∣v− 2(κx− 1

3
x3
)∣∣∣∣2 .

Notice that in this borderline case the moderate deviations rate function (7) is a
sort of mixture of the one at the criticality (4) and the Gaussian rate function (3).

Theorem 2.8 (Critical fluctuations: critical temperature β = 1, temperature
rescaling). Let κ > 0 and suppose that n1/4m1+κn

−1/2

n (0) converges in law to ν.
Then the process n1/4m1+κn

−1/2

n (n1/2t) converges weakly in law on DR(R+) to the
unique solution of: {

dY(t) = 2
[
κY(t) − 1

3
Y(t)3

]
dt+ 2dW(t)

Y(0) ∼ ν,
(8)

where W(t) is a standard Brownian motion on R.

The proof of Theorem 2.8 is a simple adaptation of the proofs of Theorems 3.8 and
2.7 and therefore is omitted.
The results in the present section, together with the large deviation principle in
[15, Theorem 1] and the study of fluctuations at β = 1 in [1, Theorem 2.10], give a
complete picture of the behaviour of fluctuations for the Curie-Weiss model. Indeed
all the possible scales are covered. We summarize our findings in Table 1. For
completeness, we give also the Hamiltonian of the large deviation principle for the
dynamics of mn(t) around its limiting trajectory (2):

H(x, p) =
1− x

2
eβx

[
e2p − 1

]
+
1+ x

2
e−βx

[
e−2p − 1

]
= [cosh(2p) − 1]G1,β(x) + sinh(2p)G2,β(x).

(9)
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The displayed conclusions are drawn under the assumption that in each case either
the initial condition satisfies a large deviation principle at the correct speed or the
initial measure converges weakly.

Table 1: Fluctuations for the empirical magnetization of the Curie-Weiss spin-flip dynamics

Scaling
Exponent

Temperature Rescaled Process Limiting Theorem

α = 0 all β mn(t)
LDP at speed n with
Hamiltonian as in (9)

(see [2, 15])

NON-CRITICAL CASES

α ∈
(
0, 1
2

) all β nαmn(t)
LDP at speed n1−2α with rate

function (3)

β > 1 nα(mn(t)±mβ) LDP at speed n1−2α with rate
function (5)

α = 1
2

all β n1/2mn(t)

CLT
weak convergence to the

unique solution of

dY(t) = 2(β−1)Y(t)dt+2dW(t)

(see [1])

β > 1 n1/2(mn(t)±mβ)
CLT

weak convergence to the
unique solution of (6)

CRITICAL CASES

α ∈
(
0, 1
4

) β = 1 nαmn
(
n2αt

) LDP at speed n1−4α with rate
function (4)

β = 1+ κn−2α

(with κ > 0)
nαmn

(
n2αt

) LDP at speed n1−4α with rate
function (7)

α = 1
4

β = 1 n1/4mn
(
n1/2t

) weak convergence to the
unique solution of

dY(t) = −
2

3
Y(t)3dt+ 2dW(t)

(see [1])

β = 1+ κn−1/2

(with κ > 0)
n1/4mn

(
n1/2t

) weak convergence to the
unique solution of (8)
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3 Proofs

3.1 Strategy of the proof

We will analyze large/moderate deviations behaviour following the Feng-Kurtz ap-
proach to large deviations [13]. This method is based on three observations:

1. If the processes are exponentially tight, it suffices to establish the large devi-
ation principle for finite dimensional distributions.

2. The large deviation principle for finite dimensional distributions can be estab-
lished by proving that the semigroup of log Laplace-transforms of the condi-
tional probabilities converges to a limiting semigroup.

3. One can often rewrite the limiting semigroup as a variational semigroup, which
allows to rewrite the rate-function on the Skorohod space in Lagrangian form.

The strategy to prove a large deviation principle with speed r(n) for a sequence of
Markov processes {Xn}n>1, having generators {An}n>1, formally works as follows:

1. Identification of a limiting Hamiltonian H. The semigroups of log-Laplace
transforms of the conditional probabilities

Vn(t)f(x) =
1

r(n)
logE

[
er(n)f(Xn(t))

∣∣∣Xn(0) = x]
formally have generators Hnf = r(n)−1e−r(n)fAner(n)f. Then one verifies that
the sequence {Hn}n>1 converges to a limiting operator H; i.e. one shows that,
for any f ∈ D(H), there exists fn ∈ D(Hn) such that fn → f and Hnfn → Hf,
as n→∞.

2. Exponential tightness. Provided one can verify the exponential compact con-
tainment condition, the convergence of the sequence {Hn}n>1 gives exponential
tightness.

3. Verification of a comparison principle. The theory of viscosity solutions gives
applicable conditions for proving that the limiting Hamiltonian generates a
semigroup. If for all λ > 0 and bounded continuous functions h, the Hamilton-
Jacobi equation f − λHf = h admits a unique solution, one can extend the
generator H so that the extension satisfies the conditions of Crandall-Liggett
theorem and thus generates a semigroup V(t). Additionally, it follows that
the semigroups Vn(t) converge to V(t), giving the large deviation principle.
Uniqueness of the solution of the Hamilton-Jacobi equation can be established
via comparison principle for sub- and super-solutions.

4. Variational representation of the limiting semigroup. By Legendre transform-
ing the limiting Hamiltonian H, one can define a “Lagrangian” which can
be used to define a variational semigroup and a variational resolvent. It can
be shown that the variational resolvent provides a solution of the Hamilton-
Jacobi equation and therefore, by uniqueness of the solution, identifies the
resolvent of H. As a consequence, an approximation procedure yields that
the variational semigroup and the limiting semigroup V(t) agree. A standard
argument is then sufficient to give a Lagrangian form of the path-space rate
function.

We refer to Appendix A for an overview of the derivation of a large deviation
principle via solution of Hamilton-Jacobi equation.
We proceed with the verification of the model-specific conditions needed to apply
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the results from the appendix. The treatment is carried out in a more abstract
way than strictly necessary to single out important arguments that might get lost if
all the objects are explicit. The appendix and the following definitions are written
to prove a path-space large deviation principle on DE(R+), the Skorohod space of
paths taking values in the closed set E ⊆ Rd which is contained in the Rd-closure
of its Rd-interior. Two types of functions are of importance to this purpose: good
penalization and good containment functions.

Definition 3.1. We say that {Ψα}α>0, with Ψα : E2 → R, are good penalization
functions if there are extensions of Ψα to an open neighbourhood of E2 in Rd ×Rd
(also denoted by Ψα) so that

(Ψa) For all α > 0, we have Ψα > 0 and Ψα(x, y) = 0 if and only if x = y. Addition-
ally, α 7→ Ψα is increasing and

lim
α→∞Ψα(x, y) =

{
0 if x = y∞ if x 6= y.

(Ψb) Ψα is twice continuously differentiable in both coordinates for all α > 0,

(Ψc) (∇Ψα(·, y))(x) = −(∇Ψα(x, ·))(y) for all α > 0.

Definition 3.2. We say that Υ : E → R is a good containment function (for H) if
there is an extension of Υ to an open neighbourhood of E in Rd (also denoted by
Υ) so that

(Υa) Υ > 0 and there exists a point x0 ∈ E such that Υ(x0) = 0,

(Υb) Υ is twice continuously differentiable,

(Υc) for every c > 0, the set {x ∈ E |Υ(x) 6 c} is compact,

(Υd) we have supz∈EH(z,∇Υ(z)) <∞.

In the rest of the paper, we will denote by C2c(E)the set of functions that are constant
outside some compact set in E and twice continuously differentiable on a neighbour-
hood of E in Rd.

Let us denote by En, closed subset of E ⊆ Rd, the set where the finite n process
takes values. Our large or moderate deviation principles will all follow from the
application of Theorem A.17 after having checked the following conditions:

(a) For all f ∈ C2c(E) and compact sets K ⊆ E, we have

lim
n→∞ sup

x∈K∩En

|Hnf(x) −Hf(x)| = 0.

(b) There exists a good containment function Υ for H.

(c) For all λ > 0 and h ∈ Cb(E), the comparison principle holds for f− λHf = h.

Rigorous definitions of Hamilton-Jacobi equation, viscosity solutions and compari-
son principle will be given in Appendix A.

The limiting Hamiltonians we will encounter are all of quadratic type and the space
E will always equal R. The following two known results establish (b) and (c) for
Hamiltonians of this type, and are given for completeness. We postpone the verifi-
cation of condition (a) for our various cases to Subsections 3.2 and 3.3.
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Definition 3.3. Let E ⊆ Rd be a closed set. We say that a vector field F : E→ Rd
is one-sided Lipschitz if there exists a constant M > 0 such that, for all x, y ∈ E, it
holds

〈x− y,F(x) − F(y)〉 6M|x− y|2.

Lemma 3.4. Let F : Rd → Rd be one-sided Lipschitz, A a positive-definite matrix
and c > 0. Assume F(0) = 0. Consider the Hamiltonian H with domain C2c(Rd) and
of the form Hf(x) = H(x,∇f(x)), where

H(x, p) = 〈p,F(x)〉+ c 〈Ap, p〉.

Then Υ(x) = log(1+ 1
2
|x|2) is a good containment function for H.

Proof. The proof is based on a simplification of Example 4.23 in [13]. Since the i-th
component of the gradient of Υ is given by

(∇Υ(x))i =
xi

1+ 1
2
|x|2

,

we obtain

H(x,∇Υ(x)) = 〈x,F(x)〉
1+ 1

2
|x|2

+
c〈Ax, x〉

(1+ 1
2
|x|2)2

.

Notice that, by the one-sided Lipschitz property of F, there exists a constant M such
that 〈x,F(x)〉 = 〈x−0,F(x)−F(0)〉 6M|x|2. Moreover, by Cauchy-Schwarz inequality,
we have 〈Ax, x〉 6 |Ax||x| 6 ‖A‖|x|2, where ‖A‖ := sup|x|=1 |Ax|. Therefore, we get
the estimate

H(x,∇Υ(x)) 6 M|x|2

1+ 1
2
|x|2

+
c‖A‖|x|2(
1+ 1

2
|x|2
)2 6 4(M+ c‖A‖),

which gives supxH(x,∇Υ(x)) <∞, implying that Υ is a good containment function.
�

Proposition 3.5. Let F : Rd → Rd be one-sided Lipschitz, A a positive-definite
matrix and c ∈ R. Assume F(0) = 0. Consider the Hamiltonian H with domain
C2c(Rd) and of the form Hf(x) = H(x,∇f(x)), where

H(x, p) = 〈p,F(x)〉+ c 〈Ap, p〉.

Then, for every λ > 0 and h ∈ Cb(Rd), the comparison principle is satisfied for
f− λHf = h.

Proof. We apply Proposition A.11. We have to check (22). We use the good con-
tainment function introduced in Lemma 3.4 and the collection of good penalization
functions {Ψα}α>0, with Ψα(x, y) =

α
2
|x− y|2. We fix ε > 0 and write xα, yα instead

of xα,ε, yα,ε to lighten the notation. As the term 〈Ap, p〉 does not depend on x or
y, we have

H(xα, α(xα − yα)) −H(yα, α(xα − yα))

= 〈α(xα − yα),F(xα)〉− 〈α(xα − yα),F(yα)〉 6MΨα(xα, yα).

By Lemma A.10, we obtain limα→∞ Ψα(xα, yα) = 0 and the conclusion follows.
�

Remark 3.6. Lemma 3.4 and Proposition 3.5 can be suitably adapted (by center-
ing Υ) to deal with the case when F(xs) = 0 at some xs 6= 0.
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3.2 Proof of Theorems 2.3, 2.4, 2.5 and 2.6

We introduce a general version of dynamics à la Curie-Weiss where the evolution
of the magnetization is driven by a sufficiently smooth arbitrary potential. We
characterize moderate deviations and central limit theorem for this generalization
getting then as corollaries the statements of Theorems 2.3–2.6.

Let U be a continuously differentiable potential and consider the dynamics such that
the empirical magnetization {mn(t)}t>0 is a Markov process on En, with generator

Anf(x) =
n(1− x)

2
eU

′(x)

[
f

(
x+

2

n

)
− f(x)

]
+
n(1+ x)

2
e−U

′(x)

[
f

(
x−

2

n

)
− f(x)

]
. (10)

The infinite volume dynamics corresponding to the Markov process (10) may be
derived from the large deviation principle in [15, Theorem 1]. In particular, the
stationary points for the limiting dynamics are the solutions of G2(x) = 0, where

G2(x) := sinh(U ′(x)) − x cosh(U ′(x)).

For later convenience we define also G1(x) := cosh(U ′(x)) − x sinh(U ′(x)). In this
setting, we have a moderate deviation principle and a weak convergence result.

Theorem 3.7 (Moderate deviations, arbitrary potential and stationary point). Let
m be a solution of G2(x) = 0. Let k ∈ N ∪ {0} and suppose that U ′ is 2k + 1 times
continuously differentiable. Additionally, suppose that

(a) G(l)
2 (m) = 0 for l 6 2k,

(b) if k > 0, then G(2k+1)
2 (m) 6 0.

Let {bn}n>1 be a sequence of positive real numbers such that

bn →∞, b
2(k+1)
n

n
→ 0.

Suppose that bn(mn(0)−m) satisfies the large deviation principle with speed nb−2(k+1)n

on R with rate function I0. Then the trajectories
{
bn(mn(b

2k
n t) −m)

}
t>0 satisfy

the large deviation principle on DR(R+):

P
[{
bn(mn(b

2k
n t) −m)

}
t>0 ≈ {γ(t)}t>0

]
∼ e−nb

−2(k+1)
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

and

L(x, v) =

(
v− 2x2k+1

(2k+1)!G
(2k+1)
2 (m)

)2
8G1(m)

.

Proof. The generator An of the process bn(mn(b2kn t) − m) can be deduced from
(10) and is given by

Anf(x) = b
2k
n n

1−m− xb−1n
2

eU
′(m+xb−1

n )
[
f
(
x+ 2bnn

−1
)
− f(x)

]
+ b2kn n

1+m+ xb−1n
2

e−U
′(m+xb−1

n )
[
f
(
x− 2bnn

−1
)
− f(x)

]
.

11



Therefore the Hamiltonian

Hnf = b
2(k+1)
n n−1e−nb

−2(k+1)
n fAne

nb
−2(k+1)
n f,

results in

Hnf(x) = b
4k+2
n

1−m− xb−1n
2

eU
′(m+xb−1

n )
[
enb

−2(k+1)
n (f(x+2bnn

−1)−f(x)) − 1
]

+ b4k+2n

1+m+ xb−1n
2

e−U
′(m+xb−1

n )
[
enb

−2(k+1)
n (f(x−2bnn

−1)−f(x)) − 1
]
.

We now prove the convergence of the sequence Hnf for f ∈ C2c(R). To compensate
for the b4k+2n up front, we Taylor expand the exponential containing f up terms of
O(b−4k−2n ):

exp
{
nb−2(k+1)n

(
f(x± 2bnn−1) − f(x)

)}
− 1

= ±2b−2k−1n f ′(x) + 2b−4k−2n (f ′(x))2 + o(b−4k−2n ).

Observe that the above expansion holds since b−2kn n−1 = o(b−4k−2n ) by hypothesis.
Thus, combining the terms with f ′ and the terms with (f ′)2, we find that

Hnf(x) = 2b
2k+1
n G2(m+ xb−1n )f ′(x) + 2G1(m+ xb−1n )(f ′(x))2 + o(1).

Next, we Taylor expand G1, G2 around m. For G1 it is clear that only the zero’th
order term remains. For G2, we use that the first 2k terms disappear. This gives

Hnf(x) =
2x2k+1

(2k+ 1)!
G

(2k+1)
2 (m)f ′(x) + 2G1(m)(f ′(x))2 + o(1),

where the o(1) is uniform on compact sets. Thus, for f ∈ C2c(R), Hnf converges
uniformly to Hf(x) = H(x, f ′(x)) where

H(x, p) =
2x2k+1

(2k+ 1)!
G

(2k+1)
2 (m)p+ 2G1(m)p2.

The large deviation result follows by Theorem A.17, Lemma 3.4 and Proposition 3.5.
Note that condition (b) in the statement guarantees that the vector field is one-sided
Lipschitz. The Lagrangian is found by taking a Legendre transform of H. �

Theorem 3.8 (Central limit theorem, general potential, arbitrary stable stationary
point). Let m be a solution of G2(x) = 0. Let k ∈ N ∪ {0} and suppose that U ′ is
2k+ 1 times continuously differentiable. Additionally, suppose that

(a) G(l)
2 (m) = 0 for l 6 2k,

(b) if k > 0, then G(2k+1)
2 (m) 6 0.

Suppose that n
1

2k+2 (mn(0) −m) converges in law to ν. Then the process

n
1

2k+2

(
mn

(
n

k
k+1 t

)
−m

)
converges weakly in law on DR(R+) to the unique solution of:{

dY(t) = 2
(2k+1)! Y(t)

2k+1G
(2k+1)
2 (m)dt+ 2

√
G1(m)dW(t)

Y(0) ∼ ν,
(11)

where W(t) is a standard Brownian motion on R.

12



The limiting diffusion (11) admits a unique invariant measure with density pro-

portional to exp
{
−cy2k+2/(2k+ 2)!

}
, with c = 4|G

(2k+1)
2 (m)|. Observe that it is

precisely the limiting distribution prescribed by the analysis of equilibrium fluctu-
ations performed in [9].

The proof of the theorem given below is in the spirit of the proofs of the moderate
deviation principles and based on a combination of proving the compact contain-
ment condition and the convergence of the generators.
We first prove the compact containment condition. Let

Xn(t) := n
1

2k+2

(
mn

(
n

k
k+1 t

)
−m

)
be the space-time rescaled fluctuation process. We introduce the family {τCn}n>1 of
stopping times, defined by

τCn := inf
t>0

{|Xn(t)| > C} .

We start by studying the asymptotic behavior of the sequence {τCn}n>1.

Lemma 3.9. For any T > 0 and ε > 0, there exist nε > 1 and Cε > 0 such that

sup
n>nε

P
(
τCε
n 6 T

)
6 ε .

Proof. Let C be a strictly positive constant. First observe that

P
(
τCn 6 T

)
6 P

(
sup

06t6T∧τCn

|Xn(t)| > C

)
. (12)

We will obtain bounds for (12) and show that it can be made arbitrarily small when-
ever n is large enough. The idea is to get the estimate by considering a martingale
decomposition for f̃(Xn), where f̃ ∈ C3(R) has bounded partial derivatives and is
such that f̃(x) = f̃(−x) and limx→∞ f̃(x) =∞.
For any n > 1 and j ∈ {−1,+1}, let Nn(j,dt) be the Poisson process counting the

number of flips of spins with value j up to time n
k

k+1 t. The intensity of Nn(j,dt) is
Rn(j, t)dt with

Rn(j, t) =
n

2k+1
2k+2

2

[
1+ j

(
m+ xn− 1

2k+2

)]
e
−jU′

(
m+xn

− 1
2k+2

)
.

Moreover, we define

Ñn(j,dt) := Nn(j,dt) − Rn(j, t)dt. (13)

Let f̃(x) = log
√
1+ x2 and consider the semi-martingale decomposition

f̃(Xn(t)) = f̃(Xn(0)) +

∫t
0

Anf̃(Xn(s))ds+M(1)
n (t),

where M(1)
n is the local martingale given by

M(1)
n (t) :=

∫t
0

∑
j=±1

(
∇j f̃(Xn(s))

)2
Ñn(j,ds)

and

∇jf̃(Xn(t)) := log
√
1+

(
Xn(t) − 2jn

− 2k+1
2k+2

)2
− log

√
1+ X2n(t).

13



We have

P

(
sup

06t6T∧τCn

|Xn(t)| > C

)
6 P

(
sup

06t6T∧τCn

f̃(Xn(t)) > f̃(C)

)

6 P

(
sup

06t6T∧τCn

f̃(Xn(0)) >
f̃(C)

3

)
+ P

(
sup

06t6T∧τCn

Anf̃(Xn(t)) >
f̃(C)

3T

)

+ P

(
sup

06t6T∧τCn

M(1)
n (t) >

f̃(C)

3

)
.

We estimate the three terms in the right hand-side of previous inequality. All the
constants appearing in the bounds below are independent of n.

• Convergence in law of the initial condition implies P
(
f̃(Xn(0)) > c0(ε)

)
6 ε

3

for a sufficiently large c0(ε) and for all n.

• Since we are stopping the process Xn(t) whenever it leaves the compact set
[−C,C], we find that f̃(Xn(t)) is bounded on the set of interest. Therefore, we
can apply (19) proven below to obtain

Anf̃(x) =
2G

(2k+1)
2 (m)

(2k+ 1)!
x2k+2

1+ x2
+ 4G1(m)

1− x2

(1+ x2)2
+ o(1), (14)

that, for t 6 τCn , implies

Anf̃(Xn(t)) 6 c1, (15)

for a sufficiently large c1 > 0, independent of C. Note that the first term in
the right hand-side of (14) is bounded if k = 0 and negative if k > 0.

• Since

|Rn(j, t)| 6 n
2k+1
2k+2 e

−jU′
(
m+xn

− 1
2k+2

)

6 n
2k+1
2k+2

(
eU

′(m) +O
(
n− 1

2k+2

))
(16)

and

(
∇j f̃(Xn(t))

)2
=

∫Xn(t)−2jn
− 2k+1

2k+2

Xn(t)

y

1+ y2
dy

2 6 c2 n− 4k+2
2k+2 , (17)

we obtain

E
[(
M(1)
n

(
T ∧ τCn

))2]
= E

∫T∧τCn
0

∑
j=±1

(
∇j f̃(Xn(s))

)2
Rn(j, s)ds

 6 c3 T (18)

for sufficiently large n and suitable c2, c3 > 0, independent of C. By Doob’s
maximal inequality, we can conclude

P

(
sup

0<t<T∧τCn

M(1)
n (t) >

f̃(C)

3

)
6
9Tc3

f̃(C)2
.

Therefore, for any ε > 0 and for sufficiently large n, by choosing the constant Cε >
max

{
c0(ε),

√
3c1, f̃

−1
(
27Tc3
ε

)}
, we obtain supn>nε

P
(
τCε
n 6 T

)
6 ε as wanted. �
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Proof of Theorem 3.8. As introduced above, let Xn(t) := n
1

2k+2

(
mn

(
n

k
k+1 t

)
−m

)
be the space-time rescaled process. The infinitesimal generator of the process Xn(t)
can be easily deduced from (10). It yields

Anf(x) = n
2k+1
k+1

1−m− xn− 1
2k+2

2
eU

′
(
m+xn

− 1
2k+2

) [
f
(
x+ 2n− 2k+1

2k+2

)
− f(x)

]
+ n

2k+1
k+1

1+m+ xn− 1
2k+2

2
e−U

′
(
m+xn

− 1
2k+2

) [
f
(
x− 2n− 2k+1

2k+2

)
− f(x)

]
.

We want to characterize the limit of the sequence Anf for f ∈ C3c(R), the set of three
times continuously differentiable functions that are constant outside of a compact
set. We first Taylor expand f up to the second order

f
(
x± 2n− 2k+1

2k+2

)
− f(x) = ±2n− 2k+1

2k+2 f ′(x) + 2n− 2k+1
k+1 f ′′(x) + o

(
n− 2k+1

k+1

)
and then, by combining the terms with f ′ and the terms with f ′′, we obtain

Anf(x) = 2n
2k+1
2k+2 G2

(
m+ xn− 1

2k+2

)
f ′(x) + 2G1

(
m+ xn− 1

2k+2

)
f ′′(x) + o(1).

Now we Taylor expand G1 and G2 around m. For G2 we use that the first 2k
terms in the expansion vanish. As far as G1, only the zero-th order term matters.
Therefore it yields

Anf(x) =
2

(2k+ 1)!
G

(2k+1)
2 (m) x2k+1f ′(x) + 2G1(m)f ′′(x) + o(1). (19)

In other words, we conclude that for f ∈ C3c(R) we have limn ||Anf−Af|| = 0.

To prove the weak convergence result, we verify the conditions for Corollary 4.8.16
in [12]. The martingale problem for the operator (A,C3c(R)) has a unique solution
by Theorem 8.2.6 in [12]. Additionally, the set C3c(R) is an algebra that separates
points. Finally, by Lemma 3.9 the sequence {Xn}n>1 satisfies the compact contain-
ment condition. Thus the result follows by an application of Corollary 4.8.16 in
[12].

�

The results in Section 2 are recovered by setting U(x) = βx2

2
, with β > 0. Note that

simply by choosing U(x) = βx2

2
+Bx, with β,B > 0, we get the corresponding results

for the Curie-Weiss with magnetic field.

3.3 Proof of Theorem 2.7

The infinitesimal generator An of the process bnm
1+κb−2

n
n (b2nt) can be easily deduced

from (10) by using U(x) = (1+κb−2
n )x2

2
. The Hamiltonian

Hnf = b
4
nn

−1e−nb
−4
n fAne

nb−4
n f,

is given by

Hnf(x) = b
6
n

1− xb−1n
2

e(1+κb
−2
n )xb−1

n

[
enb

−4
n (f(x+2bnn

−1)−f(x)) − 1
]

+ b6n
1+ xb−1n

2
e−(1+κb−2

n )xb−1
n

[
enb

−4
n (f(x−2bnn

−1)−f(x)) − 1
]
.

We start by studying the limiting behaviour of the sequence Hnf for f ∈ C2c(R).
Let An be the generator of the process that has been speeded up by a factor b2n,
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i.e. Anf = b2nAnf. To compensate for the b6n up front, we Taylor expand the
exponential containing f up terms of O(b−6n ):

exp
{
nb−4n

(
f(x± 2bnn−1) − f(x)

)}
− 1 = ±2b−3n f ′(x) + 2b−6n (f ′(x))2 + o(b−6n ).

Thus, combining the terms with f ′ and the terms with (f ′)2, we find that

Hnf(x) = 2
[
b3n sinh

(
xb−1n + xκb−3n

)
− xb2n cosh

(
xb−1n + xκb−3n

)]
f ′(x)

+ 2(f ′(x))2 + o(1).

By Taylor expanding the hyperbolic functions

sinh
(
xb−1n + xκb−3n

)
= xb−1n + xκb−3n +

1

6
(xb−1n + xκb−3n )3 + o

(
b−3n

)
cosh

(
xb−1n + xκb−3n

)
= 1+

1

2
(xb−1n + xκb−3n )2 + o

(
b−2n

)
,

we get

Hnf(x) = 2

[
κx−

1

3
x3
]
f ′(x) + 2(f ′(x))2 + o(1),

where the o(1) is uniform on compact sets. Thus, for f ∈ C2c(R), Hnf converges
uniformly to Hf(x) = H(x, f ′(x)) where

H(x, p) = 2

[
κx−

1

3
x3
]
p+ 2p2

The large deviation result follows by Theorem A.17, Lemma 3.4 and Proposition 3.5.
The Lagrangian is found by taking a Legendre transform of H.

A Appendix: Large deviation principle via the
Hamilton-Jacobi equation

In the Appendix, we will explain the basic steps to prove the path-space large
deviation principle via uniqueness of solutions to the Hamilton-Jacobi equation.
These steps follow the proofs in [3, 13, 4] and have also been used in the proof of
the large deviation principle for the dynamics of variants of the Curie-Weiss model
via well-posedness of the Hamilton-Jacobi equation in [15].
First, we prove an abstract result on how to obtain uniqueness of viscosity solution
of the Hamilton-Jacobi equation via the comparison principle. Then, we will state
a result on how uniqueness, together with a exponential compact containment con-
dition, yields the large deviation principle. The verification of the conditions for
this result have already been carried out in Section 3.1.
We make the remark that the requirements on our space E in Section A.3 and are
more stringent than the ones in Sections A.1 and A.2. The definitions of good
penalization functions and of a good containment function are unchanged for the
next two sections.

A.1 Viscosity solutions for the Hamilton-Jacobi equation

Fix some d > 1. In this section, and in Section A.2, let E be a subset of Rd that
is contained in the Rd-closure of its Rd-interior. Additionally, assume that E is a
Polish space when equipped with its subspace-topology.

Remark A.1. The assumption that E is contained in the Rd-closure of its Rd-
interior is needed to ensure that the gradient ∇f(x) of a function f ∈ C1b(Rd) for
x ∈ E is determined by its values in E.

16



Remark A.2. We say that A ⊆ Rd is a Gδ set if it is the countable intersection of
open sets in Rd. By Theorems 4.3.23 and 4.3.24 in [11], we find that E is Polish if
and only if it is a Gδ set in Rd.

Let H : E × Rd → R be a continuous map. For λ > 0 and h ∈ Cb(E), we will solve
the Hamilton-Jacobi equation

f(x) − λH(x,∇f(x)) = h(x) x ∈ E, (20)

in the viscosity sense.

Definition A.3. We say that u is a (viscosity) subsolution of equation (20) if u is
bounded, upper semi-continuous and if, for every f ∈ D(H) such that supx u(x) −
f(x) <∞ and every sequence xn ∈ E such that

lim
n→∞u(xn) − f(xn) = sup

x
u(x) − f(x),

we have
lim
n→∞u(xn) − λHf(xn) − h(xn) 6 0.

We say that v is a (viscosity) supersolution of equation (20) if v is bounded, lower
semi-continuous and if, for every f ∈ D(H) such that infx v(x)−f(x) > −∞ and every
sequence xn ∈ E such that

lim
n→∞ v(xn) − f(xn) = inf

x
v(x) − f(x),

we have
lim
n→∞ v(xn) − λHf(xn) − h(xn) > 0.

At various points, we will refer to [13]. The notion of viscosity solution used here
corresponds to the notion of strong viscosity solution in [13]. For operators of the
form Hf(x) = H(x,∇f(x)) these two notions are equivalent. See also Lemma 9.9 in
[13].

Definition A.4. We say that equation (20) satisfies the comparison principle if for
a subsolution u and supersolution v we have u 6 v.

Note that if the comparison principle is satisfied, then a viscosity solution is unique.
To prove the comparison principle, we extend our scope by considering viscosity sub-
and supersolutions to the Hamilton-Jacobi equation with two different operators
that extend the original Hamiltonian in a suitable way.
Let M(E,R) be the set of measurable functions from E to R := R ∪ {∞}.

Definition A.5. We say that H† ⊆M(E,R)×M(E,R) is a viscosity sub-extension
of H if H ⊆ H† and if for every λ > 0 and h ∈ Cb(E) a viscosity subsolution to
f − λHf = h is also a viscosity subsolution to f − λH†f = h. Similarly, we define a
viscosity super-extension.

Definition A.6. Consider two operators H†, H‡ ⊆ M(E,R) × M(E,R) and pick
h ∈ Cb(E) and λ > 0. We say that the equations

f− λH†f = h, f− λH‡f = h

satisfy the comparison principle if any subsolution u to the first and any superso-
lution v to the second equation satisfy u 6 v.

We have the following straightforward result.
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Lemma A.7. Suppose that H† and H‡ are a sub- and superextension of H respec-
tively. Fix λ > 0 and h ∈ Cb(E). If the comparison principle is satisfied for the
equations

f− λH†f = h, f− λH‡f = h,

then the comparison principle is satisfied for

f− λHf = h.

A.2 Abstract proof of the comparison principle

We introduce two convenient viscosity extensions of a particular Hamiltonian H in
terms of good penalization functions {Ψα}α>0 and containment function Υ.

D(H†) := C
1
b(E) ∪ {x 7→ (1− ε)Ψα(x, y) + εΥ(x) + c |α, ε > 0, c ∈ R} ,

D(H‡) := C
1
b(E) ∪ {y 7→ −(1+ ε)Ψα(x, y) − εΥ(y) + c |α, ε > 0, c ∈ R} .

For f ∈ D(H†), set H†f(x) = H(x,∇f(x)) and for f ∈ D(H‡), set H‡f(x) = H(x,∇f(x)).

Lemma A.8. The operator (H†,D(H†)) is a viscosity sub-extension of H and (H‡,D(H‡))

is a viscosity super-extension of H.

In the proof we need Lemma 7.7 from [13]. We recall it here for the sake of read-
ability. Let M∞(E,R) denote the set of measurable functions f : E → R ∪ {∞} that
are bounded from below.

Lemma A.9 (Lemma 7.7 in [13]). Let H and H† ⊆ M∞(E,R) ×M(E,R) be two
operators. Suppose that for all (f, g) ∈ H† there exist {(fn, gn)} ⊆ H† that satisfy the
following conditions:

(a) For all n, the function fn is lower semi-continuous.

(b) For all n, we have fn 6 fn+1 and fn → f point-wise.

(c) Suppose xn ∈ E is a sequence such that supn fn(xn) <∞ and infn gn(xn) > −∞,
then {xn}n>1 is relatively compact and if a subsequence xn(k) converges to x ∈ E,
then

lim sup
k→∞ gn(k)(xn(k)) 6 g(x).

Then H† is a viscosity sub-extension of H.
An analogous result holds for super-extensions H‡ by taking fn a decreasing sequence
of upper semi-continuous functions and by replacing requirement (c) with

(c′) Suppose xn ∈ E is a sequence such that infn fn(xn) > −∞ and supn gn(xn) <∞, then {xn}n>1 is relatively compact and if a subsequence xn(k) converges to
x ∈ E, then

lim inf
k→∞ gn(k)(xn(k)) > g(x).

Proof of Lemma A.8. We only prove the sub-extension part.
Consider a collection of smooth functions φn : R→ R defined as φn(x) = x if x 6 n
and φn(x) = n+ 1 for x > n+ 1. Note that φn+1 > φn for all n.

Fix a function f ∈ D(H†) of the type f(x) = (1 − ε)Ψα(x, y) + εΥ(x) + c and write
g = H†f.
Because Ψα and Υ are good penalization and good containment functions, f has a
twice continuously differentiable extensions to a neighbourhood of E in Rd. We will
denote this extension also by f. Set fn = φn ◦ f. Since f is bounded from below
and Υ has compact level sets, we find that fn is constant outside a compact set
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in E. Furthermore, f and φn are twice continuously differentiable, so that we find
fn ∈ C2c(E). We obtain fn ∈ D(H) and write gn = Hfn.
We verify conditions (a)-(c) of Lemma A.9. (a) has been verified above. (b) is a
consequence of the fact that n 7→ φn is increasing. For (c), let {xn}n>1 be a sequence
such that supn fn(xn) =M < ∞. It follows by the compactness of the level sets of
Υ and the positivity of Ψα that the set

K := {z ∈ E | f(z) 6M}

is compact. Thus the sequence {xn} is relatively compact, and in particular, there
exist converging subsequences xn(k) with limits x ∈ K. For any such subsequence,
we show that lim supk gn(k)(xn(k)) 6 g(x).
As Ψα and Υ, and thus f, are twice continuously differentiable up to a neighbourhood
U of E in Rd, we find that the set

V := {z ∈ U | f(z) < M+ 1}

is open in Rd and contains K. For two arbitrary continuously differentiable functions
h1, h2 on U, if h1(z) = h2(z) for all z ∈ V, then ∇h1(z) = ∇h2(z) for all z ∈ V.

Now suppose xn(k) is a subsequence in K converging to some point x ∈ K. As f is
bounded on V, there exists a sufficiently large N such that for all n > N and y ∈ V,
we have fn(y) = f(y). We conclude ∇fn(y) = ∇f(y) for y ∈ K ⊆ V and hence

gn(y) = H(y,∇fn(y)) = H(y,∇f(y)) = g(y).

In particular, we find lim supk gn(k)(xn(k)) 6 g(x). �

We have the following variants of Lemma 9.2 in [13] and Proposition 3.7 in [3]. Note
that the presence of the containment function Υ makes sure that the suprema are
attained. This motivates the name containment function: Υ forces the maxima to
be in some compact set.

Lemma A.10. Let u be bounded and upper semi-continuous, let v be bounded and
lower semi-continuous, let Ψα : E2 → R+ be good penalization functions and let Υ
be a good containment function.

Fix ε > 0. For every α > 0 there exist points xα,ε, yα,ε ∈ E, such that

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
− Ψα(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
.

Additionally, for every ε > 0 we have that

(a) The set {xα,ε, yα,ε |α > 0} is relatively compact in E.

(b) All limit points of {(xα,ε, yα,ε)}α>0 are of the form (z, z) and for these limit
points we have u(z) − v(z) = supx∈E {u(x) − v(x)}.

(c) Suppose Ψα can be written as Ψα = αΨ, where Ψ > 0. Then we have

lim
α→∞αΨ(xα,ε, yα,ε) = 0.

Proof. The proof essentially follows the one of Proposition 3.7 in [3]. Fix ε > 0.
As Υ is a good containment function, its level sets are compact. This property,
combined with the boundedness of u and v and the non-negativity of Ψα, implies
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that the supremum can be restricted to a compact set Kε ⊆ E×E that is independent
of α > 0. As u is upper semi-continuous, and v, Ψα and Υ are lower semi-continuous,
the supremum is attained for some pair (xα,ε, yα,ε) ∈ Kε. This proves (a).

We proceed with the proof of (b). Let (x0, y0) be a limit point of {(xα,ε, yα,ε)}α>0
such that x0 6= y0. Without loss of generality, assume that (xα,ε, yα,ε) → (x0, y0).
By property (Ψa), the map α 7→ Ψα is increasing. Thus, for all α0 we have that

lim inf
α→∞ Ψα(xα,ε, yα,ε) > lim inf

α→∞ Ψα0
(xα,ε, yα,ε) > Ψα0

(x0, y0)

by the lower semi-continuity of Ψα0
. Thus, we conclude that

lim inf
α→∞ Ψα(xα,ε, yα,ε) =∞

as limα→∞ Ψα(x, y) =∞ for all x 6= y. This contradicts the boundedness of u and v.

We now prove (c). Let us define the constants

Mα :=
u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
− Ψα(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
.

Observe that the sequence Mα is decreasing as α 7→ Ψα is increasing point-wise.
Moreover, the limit limα→∞Mα exists, since functions u and v are bounded from
below. For any α > 0, we obtain

Mα/2 >
u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα/2(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

>Mα + Ψα (xα,ε, yα,ε) − Ψα/2 (xα,ε, yα,ε)

>Mα +
α

2
Ψ (xα,ε, yα,ε)

>Mα,

that implies α
2
Ψ (xα,ε, yα,ε)→ 0, as Mα/2 and Mα converge to the same limit. �

Proposition A.11. Fix λ > 0, h ∈ Cb(E) and consider u and v sub- and super-
solution to f− λHf = h.

Let {Ψα}α>0 be a family of good penalization functions and Υ be a good containment
function. Moreover, for every α, ε > 0 let xα,ε, yα,ε ∈ E be such that

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
− Ψα(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
. (21)

Suppose that

lim inf
ε→0

lim inf
α→∞ H (xα,ε,∇Ψα(·, yα,ε)(xα,ε)) −H (yα,ε,∇Ψα(·, yα,ε)(xα,ε)) 6 0, (22)

then u 6 v. In other words: f− λHf = h satisfies the comparison principle.

Proof. By Lemma A.8 we get immediately that u is a sub-solution to f− λH†f = h
and v is a super-solution to f−λH‡f = h . Thus, it suffices to verify the comparison
principle for the equations involving the extensions H† and H‡.
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Let xα,ε, yα,ε ∈ E such that (21) is satisfied. Then, for all α we obtain that

sup
x
u(x) − v(x)

= lim
ε→0

sup
x

u(x)

1− ε
−
v(x)

1+ ε

6 lim inf
ε→0

sup
x,y

u(x)

1− ε
−
v(y)

1+ ε
− Ψα(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

= lim inf
ε→0

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

6 lim inf
ε→0

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
, (23)

as Υ and Ψα are non-negative functions. Since u is a sub-solution to f − λH†f = h

and v is a super-solution to f − λH‡f = h, we find by our particular choice of xα,ε
and yα,ε that

u(xα,ε) − λH (xα,ε, (1− ε)∇Ψα(·, yα,ε)(xα,ε) + ε∇Υ(xα,ε)) 6 h(xα,ε), (24)

v(yα,ε) − λH (yα,ε,−(1+ ε)∇Ψα(xα,ε, ·)(yα,ε) − ε∇Υ(yα,ε)) > h(yα,ε). (25)

For all z ∈ E, the map p 7→ H(z, p) is convex. Thus, (24) implies that

u(xα,ε) 6 h(xα,ε) + (1− ε)λH(xα,ε,∇Ψα(·, yα,ε)(xα,ε))
+ ελH(xα,ε,∇Υ(xα,ε)). (26)

For the second inequality, first note that because Ψα are good penalization func-
tions, we have −(∇Ψα(xα,ε, ·))(yα,ε) = ∇Ψα(·, yα,ε)(xα,ε). Next, we need a more
sophisticated bound using the convexity of H:

H(yα,ε,∇Ψα(·, yα,ε)(xα,ε))

6
1

1+ ε
H(yα,ε, (1+ ε)∇Ψα(·, yα,ε)(xα,ε) − ε∇Υ(yα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε)).

Thus, (25) gives us

v(yα,ε) > h(yα,ε) + λ(1+ ε)H(yα,ε,∇Ψα(·, yα,ε)(xα,ε)) − ελH(yα,ε,∇Υ(yα,ε)). (27)

By combining (23) with (26) and (27), we find

sup
x
u(x) − v(x)

6 lim inf
ε→0

lim inf
α→∞

{
h(xα,ε)

1− ε
−
h(yα,ε)

1+ ε
(28)

+
ε

1− ε
H(xα,ε,∇Υ(xα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε)) (29)

+λ [H(xα,ε,∇Ψα(·, yα,ε)(xα,ε)) −H(yα,ε,∇Ψα(·, yα,ε)(xα,ε))]
}
. (30)

The term (30) vanishes by assumption. Now observe that, for fixed ε and varying
α, the sequence (xα,ε, yα,ε) takes its values in a compact set and, hence, admits
converging subsequences. All these subsequences converge to points of the form
(z, z). Therefore, as α→∞, we find

lim inf
ε→0

lim inf
α→∞ h(xα,ε)

1− ε
−
h(yα,ε)

1+ ε
6 lim inf

ε→0
||h||

2ε

1− ε2
= 0,

giving that also the term in (28) converges to zero. The term in (29) vanishes as
well, due to the uniform bounds on H(z,∇Υ(z)) by property (Υd).

We conclude that the comparison principle holds for f− λHf = h. �
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A.3 Compact containment and the large deviation principle

To connect the Hamilton-Jacobi equation to the large deviation principle, we intro-
duce some additional concepts. Fix some d > 1. In this section, we assume that E
is a closed subset of Rd that is contained in the Rd-closure of its Rd-interior. Addi-
tionally, we have closed subspaces En ⊆ E for all n and assume that E = limn→∞ En,
i.e. for every x ∈ E there exist xn ∈ En such that xn → x. We consider the following
notion of operator convergence.

Definition A.12. Suppose that for each n we have an operator (Bn,D(Bn)), Bn :

D(Bn) ⊆ Cb(En) → Cb(En). The extended limit ex − limn Bn is defined by the
collection (f, g) ∈ Cb(E)× Cb(E) such that there exist fn ∈ D(Bn) satisfying

lim
n→∞ sup

x∈K∩En

|fn(x) − f(x)|+ |Bnfn(x) − g(x)| = 0. (31)

For an operator (B,D(B)), we write B ⊆ ex− limn Bn if the graph {(f, Bf) | f ∈ D(B)}

of B is a subset of ex− limn Bn.

Remark A.13. The notion of extended limit can be generalized further, e.g. for
limiting spaces like in the previous two sections. Such abstract generalizations are
carried out in Definition 2.5 and Condition 7.11 of [13]. Our definition for a closed
limiting space E is the simplest version of this abstract machinery.

Assumption A.14. Fix some d > 1. Let E be a closed subset of Rd that is
contained in the Rd-closure of its Rd-interior and let En be closed subsets of E such
that E = limn→∞ En.
Assume that for each n > 1, we have An ⊆ Cb(En) × Cb(En) and existence and
uniqueness holds for the DEn

(R+) martingale problem for (An, µ) for each initial
distribution µ ∈ P(En). Letting Pny ∈ P(DEn

(R+)) be the solution to (An, δy), the
mapping y 7→ Pny is measurable for the weak topology on P(DEn

(R+)). Let Xn be
the solution to the martingale problem for An and set

Hnf =
1

r(n)
e−r(n)fAne

r(n)f er(n)f ∈ D(An),

for some sequence of speeds {r(n)}n>1, with limn→∞ r(n) =∞.
Suppose that we have an operator H : D(H) ⊆ Cb(E) → Cb(E) with D(H) = C2c(E)

of the form Hf(x) = H(x,∇f(x)) which satisfies H ⊆ ex− limHn.

Proposition A.15. Suppose Assumption A.14 is satisfied and assume that Υ is a
good containment function. Suppose that the sequence {Xn(0)}n>1 is exponentially
tight with speed {r(n)}n>1.
Then the sequence {Xn}n>1 satisfies the exponential compact containment condition
with speed {r(n)}n>1: for every T > 0 and a > 0, there exists a compact set Ka,T ⊆ E
such that

lim sup
n→∞

1

r(n)
logP [Xn(t) /∈ Ka,T for some t 6 T ] 6 −a.

In the proof of this proposition, we apply Lemma 4.22 from [13]. We recall it here
for the sake of readability.

Lemma A.16 (Lemma 4.22 in [13]). Let Xn be solutions of the martingale problem
for An and suppose that {Xn(0)}n>1 is exponentially tight with speed {r(n)}n>1. Let
K be compact and let G ⊇ K be open. For each n, suppose we have (fn, gn) ∈ Hn.
Define

β(K,G) := lim inf
n→∞

(
inf
x∈Gc

fn(x) − sup
x∈K

fn(x)

)
and γ(G) := lim sup

n→∞ sup
x∈G

gn(x).
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Then

lim sup
n→∞

1

r(n)
logP [Xn(t) /∈ G for some t 6 T ]

6 max
{
−β(K,G) + Tγ(G), lim sup

n→∞ P [Xn(0) /∈ K]
}
. (32)

Note that in the case the closure of G is compact, this result is suitable for proving
the compact containment condition. This is what we will use below.

Proof of Proposition A.15. Fix a > 0 and T > 0. We will construct a compact set
K ′ such that

lim sup
n→∞

1

r(n)
logP [Xn(t) /∈ K ′ for some t 6 T ] 6 −a.

As Xn(0) is exponentially tight with speed {r(n)}n>1, we can find a sufficiently large
R > 0 so that

lim sup
n→∞

1

r(n)
logP

[
Xn(0) /∈ B(x0, R)

]
6 −a,

where x0 is a point such that Υ(x0) = 0 and B(x0, R) is the closed ball with radius
R and center x0. Thus, by Lemma A.16 it suffices to find (fn, gn) ∈ Hn, a compact
K and an open set G such that −β(K,G) + Tγ(G) 6 −a.

Set γ := supzH(z,∇Υ(z)) and c1 := supz∈B(x0,R) Υ(z). Observe that γ < ∞ by

assumption (Υd) and c1 <∞ by compactness. Now choose c2 such that

−[c2 − c1] + Tγ = −a (33)

and take K = {z ∈ E |Υ(z) 6 c1} and G = {z ∈ E |Υ(z) < c2}.
Let θ : [0,∞)→ [0,∞) be a compactly supported smooth function with the property
that θ(z) = z for z 6 c2. For each n, define fn := θ ◦ Υ and gn := Hnfn. By
Assumption A.14, gn → Hf in the sense of (31) and moreover, by construction
β(K,G) = c2 − c1 and γ(G) = γ. Thus by (33) and Lemma A.16 we obtain

lim sup
n→∞

1

r(n)
logP [Xn(t) /∈ G for some t 6 T ] 6 −a

and the compact containment condition holds with Ka,T = G. �

Theorem A.17 (Large deviation principle). Suppose Assumption A.14 is satisfied
and assume that Υ is a good containment function for H. Then we have the following
result.
Suppose that for all λ > 0 and h ∈ Cb(E) the comparison principle holds for f−λHf =
h. And suppose that the sequence {Xn(0)}n>1 satisfies the large deviation principle
with speed {r(n)}n>1 on E with good rate function I0.
Then the large deviation principle with speed {r(n)}n>1 holds for {Xn}n>1 on DE(R+)

with good rate function I. Additionally, suppose that the map p 7→ H(x, p) is convex
and differentiable for every x and that the map (x, p) 7→ d

dpH(x, p) is continuous.
Then the rate function I is given by

I(γ) =

{
I0(γ(0)) +

∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,∞ otherwise,

where L : E× Rd → R is defined by L(x, v) = supp〈p, v〉−H(x, p).
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Proof. The large deviation result follows from Theorem 7.18 in [13]. Referring to
the notation therein, we are using H† = H‡ = H.

The representation of the rate function in terms of the Lagrangian can be carried out
by using Theorem 8.27 and Corollary 8.28 in [13]. See for example the Section 10.3 in
[13] for this representation in the setting of Freidlin-Wentzell theory. Alternatively,
an application of this result in a compact setting has been carried out also in [15].
The only extra condition compared to Theorem 6 in [15] due to the non-compactness
is the verification of Condition 8.9.(4) in [13]:

For each compact K ⊆ E, T > 0 and 0 6 M < ∞, there exists a compact set
K̂ = K̂(K, T,M) ⊆ E such that if γ ∈ AC with γ(0) ∈ K and∫T

0

L(γ(s), γ̇(s))ds 6M, (34)

then γ(t) ∈ K̂ for all t 6 T .

This condition can be verified as follows. Recall that the level sets of Υ are compact.
Thus, we control the growth of Υ. Let γ ∈ AC satisfy the conditions given above.
Then

Υ(γ(t)) = Υ(γ(0)) +

∫t
0

〈∇Υ(γ(s)), γ̇(s)〉ds

6 Υ(γ(0)) +
∫t
0

L(γ(s), γ̇(s)) +H(γ(s),∇Υ(γ(s)))ds

6 sup
y∈K

Υ(y) +M+

∫T
0

sup
z
H(z,∇Υ(z))ds

=: C <∞.
Thus, we can take K̂ = {z ∈ E |Υ(z) 6 C}. �
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