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ABSTRACT

Modern agile software projects are subject to constant change,
making it essential to re-asses overall delay risk throughout the
project life cycle. Existing e�ort estimationmodels are static and not
able to incorporate changes occurring during project execution. In
this paper, we propose a dynamic model for continuously predicting
overall delay using delay patterns and Bayesian modeling. The
model incorporates the context of the project phase and learns from
changes in team performance over time. We apply the approach to
real-world data from 4,040 epics and 270 teams at ING. An empirical
evaluation of our approach and comparison to the state-of-the-art
demonstrate signi�cant improvements in predictive accuracy. The
dynamic model consistently outperforms static approaches and the
state-of-the-art, even during early project phases.
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1 INTRODUCTION

Schedule delays constitute a major problem in the software industry.
Software projects run, on average, around 30-40% overtime [30, 56].
Ine�ective risk management is one of the main reasons for delays
in software projects [22, 31]. An important activity involved in risk
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Figure 1: Global, global iterative and dynamic approaches to

delay prediction over time

management is delay prediction. Foreseeing delay risks enables
project managers to takemeasures to assess andmanage risks, make
timely adjustments to the planning and reduce delay propagation.
Global e�ort estimationmodels are the state-of-the-art in predicting
overall delay for software projects [2]. Global models are trained
upfront and estimate the entire project using predictor variables
collected at the beginning of the project. These models have a
static character : they capture the overall contribution of predictor
variables to the total development e�ort and are unaware of changes
occurring during project execution.

Global models are reasonable for traditional, waterfall-like set-
tings where common predictors are known at the beginning of
the project and do not change much throughout the project. How-
ever, this is not the case for modern, agile projects. In agile settings,
projects (referred to as “epics") are incrementally developed through
short iterations to respond fast to changing markets and customer
demands [19]. Predictors proposed in previous work [44, 71], such
as user requirements and task dependencies, can vary in value and
relative impact during the execution of agile projects. Global mod-
els are not able to incorporate these changes due to their static
character. An existing alternative is to use global models in an
iterative manner (so-called global iterative) [2]. That is, applying
the global model at di�erent prediction times throughout a project
using updated predictor values. This may lead to an improvement

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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in predictive accuracy. However, the global iterative model is still
not able to adapt to changes occurring during project execution.
Agile projects call for the need of models with a dynamic charac-

ter : models that are able to capture and adapt to changes in team
performance and the impact of predictors during project execution.

In the �eld of transport, prediction of overall delay is an im-
portant requirement for proactive control of tra�c and the feasi-
bility of timetable realisation [20]. Previous research in railway
tra�c (e.g., [8, 34]) and air transport (e.g., [36, 59]) has found that
delays develop or propagate following certain patterns over time.
A similar pattern in historic data can provide an estimation for the
future development of delays. These studies detect patterns on the
�y and use them for improving predictions of overall delay. It is
not yet known whether this concept of delay patterns is applicable
in the context of software development.

In this paper, we propose a dynamic e�ort estimation model for
continuously predicting overall delay in agile projects. As visualized
in Figure 1, the dynamic model extends global approaches by in-
corporating the context of the project phase (referred to as “project
milestone") and modeling delay patterns when making predictions.
The dynamic model is updated after each milestone using the pre-
dictor values collected for that milestone and the development of
delay up until that milestone. The model captures the milestone-
speci�c contributions of predictors to the total development e�ort
and follows changes in team performance over time.

To develop our dynamic model, we use a Bayesian modeling
approach. Bayesian models are able to learn from changes in the
relative impact of predictors by updating their beliefs. We train the
Bayesian model on time series of predictors and intermediate delays
recorded across the milestones of a project’s timeline. Similar to
prior work in transport, we apply time series clustering to identify
recurrent delay patterns. We apply our dynamic approach to real-
world data from 4,040 epics and 270 teams at ING, a large Dutch
internationally operating bank with more than 15,000 developers.
We compare the performance of the dynamic Bayesian model with
global approaches and the state-of-the-art baselines in software
e�ort estimation.

An empirical evaluation of our approach demonstrates signi�-
cant improvements in predictive performance, achieving on average
66–92% Standardized Accuracy and 0.19–0.04 Mean Absolute Er-
ror over time. The dynamic model consistently outperforms global
approaches and the state-of-the-art, even during early milestones
(i.e., 10–30% of project duration). The predictions of the dynamic
model become substantially more certain and accurate over time.

The main contributions of this paper are:

• Anew approach to predict delay using delay patterns and Bayesian
modeling (Section 4)

• An application of the approach at ING identifying four recurrent
delay patterns (Section 5)

• An empirical evaluation of the approach and comparison to the
state-of-the-art, clearly demonstrating a signi�cant improvement
in predictive accuracy (Section 6)

2 RELATED WORK

E�ort estimation models. Prior work has been done in building
models for estimating e�ort of the entire project (e.g., [52, 61, 66]),

a single iteration (e.g., [2, 15, 33]) and a single software task (e.g.,
a user story [16, 46] or issue report [12–14]). Existing models that
estimate the total development e�ort are called global [2] and have
a static character. They make a single prediction using predictors
collected at the start of the development phase. Global models can
be applied in an iterative manner to obtain estimates at di�erent
prediction times throughout development. Choetkiertikul et al. [14]
demonstrated this by applying their model for predicting delay risk
at three di�erent prediction times. They showed that the predictions
become more accurate at later times since more information be-
comes available. Another study [12] identi�ed patterns of abnormal
behaviors causing project delays and used these patterns to predict
the delay risk of issues. The patterns are derived as combinations of
threshold-exceeding risk factors that can lead to schedule overruns.

E�ort drivers. Previous research [70] divided factors a�ecting
the software development e�ort into four categories: personnel (i.e.,
team skills and experience [37, 51, 69, 73]), process (i.e., tools and
methods used [1, 58]), project (i.e., project management [35, 40])
and product characteristics (i.e., design and implementation [4]).
Agile teams rely on documentation [62] and expert judgement of
team- and project-related factors [21, 72] for estimation of software
tasks and iterations. Kula et al. [44] identi�ed the most relevant
factors and their interactions a�ecting the e�ort of epics.

Delay patterns in transport. Previous research in railway
tra�c (e.g., [8, 34]) and air transport (e.g., [36, 59]) has shown that
delays develop or propagate following recurrent patterns over time.
These patterns can provide information on the future development
of delays. Artan and Sahin [8] usedMarkov chains tomodel patterns
of delay deterioration, recovery and state keeping in train running
times. Huang et al. [34] used a clustering technique to identify
four types of delay patterns in train operations: decreasing delays,
unchanged delays, small increasing delays and large increasing
delays. They built a Bayesian Network model that uses the patterns
in previous train stations to predict delay for upcoming stations.
Oreschko et al. [59] detected speci�c delay patterns in �ight arrival
times with respect to the time of day and airport category. Jiang et
al. [36] uses patterns of �ight delay as input for a machine learning-
based approach to delay prediction.

While delay patterns have been proven useful for delay predic-
tion in transport, they remain unexplored in the context of software
development. It is unclear whether and how delay patterns can be
employed in software projects. Our study complements prior work
by modeling delay patterns and using them as input for a dynamic
approach to predict overall delay in software projects.

3 BACKGROUND

Agile software development. In agile settings, user requirements
are expressed based on Le�ngwell’s �ve-level hierarchy [48]. The
strategic themes of a company are divided into epics that represent
high-level product requirements [19]. Epics are large pieces of func-
tionality that can be split into features, which in turn can be split
into user stories. Stories are short requirements written from the
perspective of an end user [18]. Agile teams use a product backlog
to keep track of the status and priority of these work items [67].

Agile teams start with a high-level release plan (typically 2-6
months) that centers on epics [18], which encompassmultiple teams
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across multiple iterations. An iteration is a �xed, short period of
time (typically 1-4 weeks) in which a single development team
delivers a set of user stories. Iteration planning focuses on selecting
and estimating the user stories that need to be delivered in the
next iteration. Agile teams rely on expert judgement to estimate
the e�ort of a user story in story points [19, 72]. They usually do
this in structured group meetings (e.g., using Planning Poker [29]).
At the end of every iteration, teams review which user stories are
completed and which ones need to be delayed to the next iteration.
These progress updates can be leveraged to re�ne release/epic plans
during execution.

Epics at ING. We performed an evaluation of our dynamic
prediction approach at ING TECH, the IT department that is re-
sponsible for the main banking applications used by millions of
customers. The department has signi�cant variety in terms of prod-
ucts, size and application domain. Teams at ING follow Scrum [11]
as agile methodology and work in iterations of 1 to 4 weeks. They
usually deliver epics in a time span of three to 12 months. Devel-
opers use Planning Poker [29] and a �xed Fibonacci sequence of
values for estimating story points. The teams estimate user stories
in working hours and then convert them into story points. The rule
of thumb at ING TECH is that a one-point story should take about
half a day of work (4 hours). A two-point story should be twice
as much e�ort, that is, one day of work (8 hours). This makes the
story points additive and comparable between teams.

Bayesian data analysis. Recent works [26, 27, 68] identi�ed the
potential of Bayesian statistical techniques in software engineering
research. Bayesian models are �exible, easy to interpret and provide
a detailed probability distribution [26]. They are based on a uniform
framework that applies Bayes’ theorem to update prior beliefs about
model parameters based on observed data. Bayesian models consist
of three components [53]:

• Likelihood: A function that represents the probability of observ-
ing the data given a set of model parameters. It re�ects the under-
lying data generation process. In the context of delay prediction,
the likelihood captures the probability of observing a speci�c
delay value or a set of delay values.

• Priors: Probability distributions that represent the initial beliefs
or assumptions about the model parameters before observing the
data. Priors allow incorporating existing knowledge about the
e�ects of predictors.

• Posterior : The updated probability distribution that incorporates
both the prior information and the likelihood of the observed
data. It is obtained by repeatedly sampling values from the priors
and applying Bayes’ theorem using the likelihood. The posterior
is used to make predictions about future observations.

4 APPROACH

Our overall research goal is to extract delay patterns and build a
dynamic model that incorporates the patterns and the context of
the project phase for continuously predicting the overall delay of
an epic. This requires dividing an epic’s timeline into designated
milestones (Section 4.1) and tracking of intermediate delay and
predictors across these milestones. The milestones should match
the work pace of the organization and can be set accordingly at
�xed time intervals or fractions of the planned project duration.

It is a very common practice of agile teams to record the delivery
status of their work items in a backlog management tool. Backlog
data can be used to extract intermediate delay and predictors over
milestones in the form of time series (Section 4.2).

To identify delay patterns, the time series of delay values over
milestones need to be partitioned into groups of similar elements
using clustering (Section 4.3). Hierarchical clustering or K-means
can be used to identify and discriminate di�erent recurrent patterns.
The dynamic prediction model is learned using the time series data
of the clustering output and predictor values (Section 4.4.1). For the
Bayesian model, it is important to select the likelihood and tune
the priors based on the dataset being used (Section 4.4.2). At each
milestone, the updated variables are fed into the model to obtain a
new, re�ned estimate and update the model’s beliefs. This way the
model learns and evolves with the epic over time.

4.1 A Uni�ed Timeline of Project Milestones

To incorporate the context of the project phase, we present the
timeline of an epic delivery as a sequence of regularly-spaced mile-
stones. It is important to use a uni�ed timeline so that delay values
measured at the milestones can be aggregated across epics for
pattern identi�cation. Since teams working on an epic can follow
di�erent iteration lengths, we cannot use iterations or �xed time
intervals. Instead, we de�ne the milestones based on completion
rate to evenly space them out along deliveries. The completion rate
is based on the number of iterations completed compared to the
total number of iterations planned. For example, an epic that con-
sists of 20 iterations will achieve its 10% milestone after completing
the initial two iterations. The total number of milestones used will
determine the granularity of the collected time series and, therefore,
the identi�ed patterns. As progress updates are given at the end
of every iteration, target milestones that cover the iteration length
used (usually 2-4 weeks [11]).

Milestones at ING. The average iteration length in our dataset
at ING is 16 days. We performed our analysis with 10 milestones,
which breaks most epics at ING down into intervals of two to three
weeks with an average duration of 17 days. In total, 17% of the epics
at ING consist of less than 10 iterations; we excluded those from
our dataset to keep only the epics that have at least one iteration
update available at every milestone (see Section 4.2.2). Each epic is
divided into 10 milestones: every milestone is scored as 10% of the
planned duration, so when a team reaches the third milestone of
a task, their completion rate is equal to 30% and so on. When an
epic’s total number of iterations is not divisible by 10, we round the
milestones o� to the last completed iteration of their time frame. For
example, when an epic consists of 18 iterations, its sixth milestone
( 6
10

× 18 = 10.8) will be measured at the end of the 10Cℎ iteration.
The milestones are connected by the corresponding iterations and
occur in a �xed sequence 9 → : , where : = 9 + 1, 9 = 1, 2, ..., 10.

4.2 Data Collection

4.2.1 Backlog Data. To track changes in the intermediate delay
and predictors over time, we need a backlog dataset that contains
the history of epics. For each epic, this dataset has to include the
identi�cation number, creation date, planned start date, actual start
date, planned delivery date and actual delivery date. At ING, we
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extracted log data from the backlog management tool ServiceNow.
This dataset contained 7,463 epics delivered by 418 teams between
January 01, 2017 and January 01, 2022.

4.2.2 Data Cleaning. To eliminate noise and missing values, epics
with a status other than ‘Completed’ need to be removed. Epics
that are not assigned to any team or have empty Planned Delivery

Date and Actual Delivery Date �elds also need to be �ltered out.
At ING, we chose to exclude the epics that consist of less than 10
sprints to keep only the epics that have at least one sprint update
available at every milestone. In addition, we removed epics that
exceed two standard deviations from the mean overall schedule
delay of all epics. After linking and cleaning the data, the �nal ING
dataset was reduced to 4,040 epics from 270 teams.

4.2.3 Delay Factors. The predictor variables can be obtained over
milestones by extracting their values at the end of the last iteration
that corresponds to a milestone. We extracted 13 predictor vari-
ables that represent factors a�ecting delays in epic deliveries. We
identi�ed these factors in previous work [44]. We used the same
procedure to extract the predictor variables. Table 1 provides an
overview of the predictors we collected and the in�uential factors
they correspond to. For example, we model the delay factor team
familiarity using the predictor variable team-existence that mea-
sures the amount of time team members have worked together in
their current composition.

4.2.4 Measuring Schedule Deviation. Wemeasure the overall sched-
ule delay at the end of an epic using Balanced Relative Error (BRE) [55]
as error measure. BRE has been recommended as an unbiased alter-
native to the commonly used Mean of Magnitude of Relative Error
and Prediction at level l [25, 42, 63]. BRE is de�ned as:

If Act - Est ≥ 0, then BRE =

Act - Est

Planned duration

If Act - Est < 0, then BRE =

Act - Est

Actual duration

where �2C is the actual delivery date and �BC is the planned
delivery date of an epic. �2C − �BC calculates the schedule deviation
in days: a positive di�erence corresponds to a delay (�2C is later
than �BC ) and a negative value corresponds to on-time delivery (�2C
is before �BC ). Actual duration is the di�erence (in days) between
the actual delivery date and start date of an epic. Planned duration
is the di�erence (in days) between the planned delivery date and
start date of an epic.

To measure the intermediate delay of an epic at a given mile-
stone, we select the last iteration corresponding to that milestone
and calculate the total number of story points that are delayed to
the next iteration/milestone. The total number of delayed story
points represents the workload of user stories a team was unable
to complete or resolve.

4.3 Clustering for Delay Pattern Discovery

To identify delay patterns, the time series of intermediate delay
values recorded across milestones need to be clustered into groups
of similar elements. In agile settings, intermediate delay can be

Figure 2: Elbow method and WSS curve for selecting the

optimal number of clusters

measured based on the number of delayed user stories or story
points. We measure the number of Delayed Story Points (DSP) as it
is a more speci�c measure of the delayed workload.We calculate the
delayed story points at a given milestone 8 as the number of story
points that are delayed to the next milestone 8 + 1. DSP represents
the delayed workload at a particular milestone and is thus not
cumulative. We normalize the DSP values per epic to make sure
that the range of story point values cannot in�uence the clustering
results. We divide the DSP values by the maximum number of story
points that are delayed along the timeline of an epic.

To partition the time series data, we use hierarchical clustering
with Dynamic Time Warping (DTW) as distance measure [57]. This
approach has been shown to be appropriate for short time series [3].
DTW is a shape-based distance measure that �nds optimal align-
ment between two time series that do not necessarily match in time
or length. This makes DTW particularly suitable for epics that can
di�er in duration and sprint length, which is the case at ING. We
use the Elbow method to select the optimal number of clusters k.
This method calculates the total Within Cluster Sum of Squares
(WSS) [32] for each k. The point of in�ection on the WSS curve
indicates the optimal number of clusters. Figure 2 presents the WSS
curve for ING data and shows that a : value of 4 is optimal.

The application of our clustering approach to ING data resulted
in four patterns that are discussed in Section 5. To characterize the
clusters in terms of risk factors, we applied the Wilcoxon Signed
Rank Test [7] for pairwise comparisons. This is a non-parametric
test that makes no assumptions about underlying data distributions.

4.4 Bayesian Model Development

The main goal of our prediction model is to infer a probability
distribution of BRE values across milestones. We use Bayesian
statistical analysis to infer the probabilities and build the model in
global and dynamic modes for comparison.

4.4.1 Di�erent Modes of Model Development. We build and com-
pare the Bayesian model using global, global iterative and dynamic
modes of development. The di�erences between the models are
visualized in Figure 1 and can be explained as follows:

• The global model solely uses the predictor variables as input
and does not have a sense of time. It makes a single prediction
of the overall delay based on predictors collected at the start of
the project and does not update its BRE estimate throughout the
project.
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Table 1: The 13 extracted predictor variables representing factors from [44] that a�ect delays in epic deliveries. The Description

column provides a description of each variable.

Risk factor Predictor variable Description

Task dependencies 1. out-degree Number of outgoing dependencies of an epic on other epics

Organizational stability 2. changed-leads Number of changed tribe leads during the current and previous epic

Team stability 3. stability-ratio Median of the ratio of team members that did not change during the current and
previous epic

Skills and knowledge 4. dev-age-ing Median of the number of years the developers working on the epic have been
working at ING

Team familiarity 5. team-existence Median of the number of years teams have existed in their current composition
of team members

Team commitment 6. hist-performance Median of the ratio of on-time delivered epics over all teams working on the epic

Work in progress 7. dev-workload Median of the number of story points assigned to a developer per sprint

Bugs or incidents 8. nr-incidents Number of incidents that occurred during the development phase of the epic

9. unplanned-stories Number of unplanned stories (related to bug �xes or incidents) that have been
added to the epic

Project size 10. nr-stories Number of planned stories assigned to the epic

11. nr-sprints Number of sprints assigned to the epic

12. team-size Median team size in the epic

Project security 13. security-level The ratio of user stories in the epic that need to pass a security testing process

• The global iterative model is the global model used in an iter-
ative manner (i.e., over milestones). We apply the global model
at each milestone to obtain a new estimate of the overall delay
based on the predictor values of that milestone. The model itself
is not updated.

• The dynamic model is learned using the time series data of the
clustering output and predictor values collected over milestones.
This model incorporates the context of the milestone and thus
has a sense of time. At each milestone 8 , the clustering model
classi�es the set of delay values across previous milestones 1 to
8 − 1 into one of the four identi�ed groups of patterns (producing
a pattern label). To mimic a real prediction scenario, we set the
values for future milestones 8 + 1 to = to zero (unknown) in the
input data for the clusteringmodel. At eachmilestone, the pattern
label and updated predictor variables are fed into the dynamic
model to obtain a new estimate of the overall delay and update
the model’s posterior distribution.

4.4.2 Bayesian Modeling. We use Bayesian regression analysis
to infer the probabilities that quantify delay risk and propagate
uncertainty over time. We implemented our models in the statistical
framework Stan

1. We designed the models following the steps
and guidelines for Bayesian data analysis in software engineering
research [26, 27, 68]:

Step 1. Selecting a likelihood. The choice of a likelihood function
depends on the type of data. The BRE values are proportional num-
bers between 0 and 1. In total, 42% of the BRE values in the ING
dataset are zero (corresponding to on-time delivered epics). The
data does not contain BRE values of one; the maximum BRE in
our dataset is 0.83. A common choice for modeling proportional
data is the Beta distribution likelihood [24]. Beta models are highly
�exible and can take on all sorts of di�erent shapes. To account for
the zero values in the ING dataset, we selected the Zero-In�ated
Beta distribution [60], relating predictors to outcome, as shown in
Eq. 1. The Zero-In�ated Beta distribution depends on a mean ` and

1https://mc-stan.org/

precision q , like in a regular Beta, but it may produce a BRE of zero
with probability U in each draw from the distribution. We used a
logit function for ` and U to translate them back to the log-odds
scale of the (0,1) scale. We assume that all predictor variables may
a�ect the parameters of the model (Eq. 2–4).

Step 2. Setting priors. To apply Bayes’ theorem, we need to de�ne
priors for the model’s parameters. A common approach, which
works well in most cases, is a weakly informative prior [49], such
as a normal distribution with zero mean and moderate standard
deviation, as shown in Eq. 5 and 7. Such a prior does not bias the
e�ect that the predictors may have towards positive or negative
values, and it still allows for a wide range of parameter values. We
set a Cauchy distribution (Eq. 6) for the Vq parameters, which is a
common choice for dispersion parameters [28]. To check what the
combination of priors implies on our outcome, we sample from the
priors only. This is called prior predictive checks (see Figure 3a).

The overall de�nition of the dynamic model is given in Eq. 1–7.

BRE8 ∼ Zero-In�ated Beta(`8 , q8 , U8 ) (1)

logit(`8 ) = V`1 · out-degree + . . . + V`13 · security-level

+V`14 ·milestone + V`15 · DSP + V`16 · pattern
(2)

log(q8 ) = Vq1
· out-degree + . . . + Vq13

· security-level

+Vq14
·milestone + Vq15

· DSP + Vq16
· pattern

(3)

logit(U8 ) = VU1
· outdegree + . . . + VU13

· security-level

+VU14
·milestone + VU15

· DSP + VU16
· pattern

(4)

V`1 , . . . , V`16 ∼ Normal(0, 1) (5)

Vq1
, . . . , Vq16

∼ Cauchy(0, 1) (6)

VU1
, . . . , VU16

∼ Normal(0, 1) (7)

The ‘pattern’ predictor in Eq. 2–4 stands for the delay pattern
label as classi�ed by the clustering model. The global and global
iterative models follow the same design, except that they do not
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(a) Prior predictive check (b) Posterior predictive check

Figure 3: Density overlays of predictive prior and posterior

draws (visualized as light blue lines) versus the real data

(shown as the dark blue line). The combination of our priors

(left plot) shows that we assign more probability mass to low

and high BRE values. After making use of the data (right

plot) we see a good model �t: the light blue lines are covering

the dark blue line.

include the milestone and pattern label as predictors.

Step 3. Sampling. For sampling, we used the Hamiltonian Monte
Carlo implementation that Stan provides. To improve the e�ciency
of sampling, we centered and scaled all predictor variables. Once
the model has been sampled, we check diagnostics to ensure that
we have reached a stationary posterior distribution. No warnings
regarding divergent transitions and low E-BFMI values were re-
ported [9]. Moreover, the '̂ diagnostic was consistently less than
1.01 and the ESS value was higher than 0.2. This indicates that the
Markov chains mixed well [75]. To check if the model �ts the data,
we sample from the priors with data. This is called posterior predic-

tive checks (see Figure 3b). A summary of the model can be found
in the supplemental material [43]. On the 95% level, all predictors
have a signi�cant e�ect.

Step 4. Model checking. To check for over�tting, we test whether
any model making simpler assumptions about the data performs
comparably or better than our model with the Zero-In�ated Beta
distribution ("/�� ). We compare "/�� with simpler models in
terms of expected log predictive density (ELPD) using leave-future-
out cross-validation [10, 74]. The models are conditioned on two
years of historical data (covering the epics from 2017 to 2019) using
the recommended threshold of 0.7 for the Pareto : estimates [74].
The results of our analysis can be found in the supplemental mate-
rial [43]. The results show that"/�� performs signi�cantly better
than other, simpler models and thus �ts the data better while avoid-
ing over�tting.

5 DELAY PATTERNS AT ING

Using the Elbow method, we determined : = 4 as the optimal num-
ber of clusters (see Fig. 2). Therefore, we obtained four clusters
representing delay patterns in epics at ING. Figure 4 visualizes the
centroids and the 25th and 75th percentiles of the cluster delay dis-
tributions. The epics are grouped together with low mean variance
(Var) around the cluster centroids (Var �1 = 0.07, Var �2 = 0.11,
Var �3 = 0.08, Var �4 = 0.12), highlighting recurrent patterns.

Figure 4: Four clusters of delay pro�les representing recur-

rent delay patterns across milestones in epic deliveries at

ING: 25th percentile: dotted; centroid: solid; and 75th per-

centile: dashed.

Table 2: Characteristics of delay pro�le clusters: Cluster 1

(C1), Cluster 2 (C2), Cluster 3 (C3), Cluster 4 (C4). ∗ indicates

that a cluster is signi�cantly di�erent from all other clusters

for the corresponding predictor variable (pairwise Wilcoxon

tests with Bonferroni correction).

Predictor

Median Signi�cance

C1 C2 C3 C4 C1 C2 C3 C4

nr-sprints 13 15 14 11 ∗

out-degree 7 3 4 4 ∗

hist-performance 0.69 0.67 0.74 0.61

dev-age-ing 2.49 2.61 2.92 2.84

team-existence 1.30 1.53 1.29 1.42

team-size 8 7 6 7 ∗

security-level 0.56 0.77 0.53 0.36 ∗ ∗

unplanned-stories 0.11 0.16 0.10 0.08 ∗

changed-leads 3 2 3 2 ∗

stability-ratio 0.73 0.81 0.64 0.72 ∗

nr-stories 52 43 39 45 ∗

nr-incidents 8 12 8 6 ∗

dev-workload 15 12 10 8 ∗ ∗

BRE 0.23 0.17 0.11 0.09 ∗ ∗ ∗ ∗

Characteristics of clusters. Table 2 summarizes the statistics
of the predictor variables for each cluster’s epics. The con�dence
intervals are included in the supplemental material [43]. We used
the Wilcoxon test for pairwise comparisons (Bonferroni corrected)
to identify the factors for which clusters are signi�cantly di�erent
from the other three clusters (highlighted with an ∗ in Table 2).
These factors characterize the epics exhibiting one of the four re-
current patterns. Even though we cannot reason about causal links
between the factors and patterns, the results of the analysis en-
able us to form hypotheses on the causes of delays. Testing such
hypotheses could lead to actionable insights and suggest delay
mitigation measures. The clusters can be described as follows:
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• Cluster 1 (C1) consists of 1388 (36%) epics. These deliveries start
out with a delay peak, followed by multi-phase recovery, and
end with delay that continues beyond the planned delivery
date. The epics of C1 have a signi�cantly higher number of
outgoing dependencies and developer workload, likely causing
issues at the start of the delivery.

• Cluster 2 (C2) makes up the largest group, containing 1706 (44%)
epics that are punctual up until the last few milestones. The
epics of C2 have a signi�cantly higher security level and team
stability, possibly explaining the consistent start. They also run
into more incidents and unplanned work, likely causing the
delay at the end of the delivery.

• Cluster 3 (C3) contains 540 (14%) epics that exhibit an upward
trend (i.e., delay increase) in the �rst section of the delivery
followed by resilient recovery. The epics of C3 involve sig-
ni�cantly smaller teams, suggesting that teams with fewer
members may need some buildup time to respond to delay.

• Cluster 4 (C4) contains 232 (6%) epics that exhibit a �uctuating
pattern of delay increase and recovery over the course of the
delivery. The epics of C4 have a signi�cantly higher stability
and lower security level, developer workload and number of
sprints. These characteristics might possibly explain the con-
sistent recovery of delay over time.

Patterns are indicative of overall delay. The bottom row of
Table 2 provides the descriptive statistics of the overall delay, mea-
sured in terms of BRE values, for each cluster. The epics assigned
to Cluster 1 su�er the largest overall delay with a median BRE of
0.23. The epics in Cluster 2 are associated with the second largest
overall delay (median BRE of 0.17). Clusters 3 and 4 consist of epics
that end up with small overall delays with a median BRE of 0.11
and 0.09, respectively. Using the the Wilcoxon test for pairwise
comparisons, we found that the di�erences in the BRE values of
the clusters are statistically signi�cant at a con�dence level of 95%.
This means that the patterns are indicative of the overall epic delay.

6 EVALUATION

6.1 Research Questions

The empirical evaluation of the dynamic model aimed to answer
the following research questions:

– RQ1. Bene�ts of dynamic prediction: Does the dynamic

model provide more accurate estimates than its global and global

iterative modes? To study the bene�ts of the proposed dynamic
model, we evaluate the performance of the Bayesian model in
global, global iterative and dynamic settings.

– RQ2. Bene�ts of delay patterns:Does the use of delay patterns

have a positive impact on the predictive performance? We com-
pare the performance of the dynamic Bayesian model learned
with and without the delay patterns.

– RQ3. Comparison with SoTA baselines: How does our dy-

namic Bayesian model compare to the state-of-the-art baselines?

To determine whether our dynamic Bayesian model improves
the state-of-the-art (SoTA) baselines in e�ort estimation, we

compare it with the Decision Tree model of Choetkiertikul et
al. [12] and the Random Forests model of Choetkiertikul et
al. [14]. We perform the comparison with the models in their
original, global mode using features from Choetkiertikul et al.
and in dynamic mode using our set of features.

– RQ4. Impact of prediction time: How does the moment of

prediction a�ect the informativeness of the predictions of the

dynamic model? Previous work [38, 39] has shown that statisti-
cal models should be evaluated in terms of both accuracy and
informativeness (i.e., width of the prediction interval). We ana-
lyze how the informativeness of the predictions of the dynamic
model evolves with the time of prediction (early versus late in
the epic).

6.2 SoTA Baselines

We implemented two models representing the SoTA baselines in
their original, global mode and dynamic mode for comparison with
our dynamic Bayesian model. For comparison in global mode, we
implemented the global Decision Tree model of Choetkiertikul
et al. [12] using the �ve issue-level features presented in the pa-
per. We mapped the features to the epic-level and extracted them
from ING data. An overview of all variables and their mapping
to the epic-level can be found in the supplemental material [43].
We also implemented the global iterative Random Forests model
of Choetkiertikul et al. [14] using 16 out of 19 features from the
paper. We were not able to extract the variables ‘number of �x
versions’, ‘changing of �x versions’ and ‘number of a�ect versions’
as they are speci�c to the context of issue reports. We converted the
features to the epic-level, as described in the supplemental material.
For comparison in dynamic mode, we implemented both models
of Choetkiertikul et al. following the dynamic setup described in
Section 4.4.1. The models were learned using our features from
Table 1 and the delay patterns.

6.3 Experimental Setup

We performed experiments on the 4,040 epics in the ING dataset. To
mimic a real prediction scenario, in which observed epics are used
to inform predictions for future epics, we sorted the epics and their
milestones based on their start date. For training and evaluation, we
used time-based 10-fold cross-validation. The time-based variant
of cross-validation ensures that in the k-th split, the epics in the
�rst k folds (training set) are created before the epics in the (k+1)th
fold (test set). The successive training sets are thus supersets of
previous ones. This allows for the sequential updating of models
based on past knowledge.

The Bayesian model estimates a probability distribution of BRE
values. For evaluation, we selected the median of the posterior dis-
tribution as the predicted BRE value. This is a common approach
when the goal of the model is to minimize the absolute or relative es-
timation error [38]. For the SoTA baselines, we applied the Decision
Tree and Random Forests regressors to obtain a BRE estimate.

6.4 Performance Measures

We used the Mean Absolute Error (MAE) and the Standardized Ac-
curacy (SA) as error measures; both have been recommended to
compare the performance of e�ort estimation models [47, 66]. MAE
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(a) Standardized Accuracy over time (b) Mean Absolute Error over time

Figure 5: Evaluation results obtained by the global, global iterative and dynamic Bayesian models over milestones (RQ1);

dynamic with and without delay patterns (RQ2).

is de�ned as:

"�� =

1

#

#
∑

8=1

| �2CD0; �'�8 − �BC8<0C43 �'�8 |

where # is the number of epics used for evaluation,�2CD0; �'�8
is the actual delay measured in BRE, and �BC8<0C43 �'�8 is the
predicted BRE value, for an epic 8 . SA is based onMAE and compares
an e�ort estimation model against random guessing:

(� =

(

1 −
"��

"��A6

)

× 100

where "�� is de�ned as the MAE of the model that is being
evaluated and "��A6 is the MAE of a large number of random
guesses. SA represents how much better the model performs than
random guessing. We used the unbiased exact calculation of"��A6
as proposed by Langdon et al. [47]. A lower "�� and higher (�
imply better predictive performance.

To evaluate informativeness of the predictions of the Bayesian
model (RQ4), we measured the relative width (',83Cℎ90) of the 90%
credible intervals [39]. A narrower interval (i.e. lower ',83Cℎ90)
is more informative.

To compare model performance, we tested the statistical signif-
icance of the evaluation results using the Wilcoxon Signed Rank
Test [7]. We applied the non-parametric Vargha and Delaney’s �̂12

statistic [7], which is commonly used as e�ect size measure in e�ort
estimation [66].

6.5 Results

RQ1: Bene�ts of dynamic prediction. Figure 5 presents the eval-
uation results of the global, global iterative and dynamic modes of
the Bayesian model for predicting the overall delay (in BRE) over
milestones. Averaging across epics, the dynamic mode achieves 66–
92% SA and 0.19–0.04 MAE over milestones. Over time, the dynamic
mode consistently outperforms the global mode by 12–57% (SA) and
16–81% (MAE), and the global iterative mode by 12–44% (SA) and
16–78% (MAE). The Wilcoxon test shows that the improvements
achieved by the dynamic mode are signi�cant (? < 0.001) with
medium to large e�ect sizes (�̂12 = [0.65, 0.81]). This indicates that
the dynamic mode signi�cantly improves global and global iterative

modes right from the �rst milestone on.

RQ2: Bene�ts of delay patterns. The dashed lines in Fig-
ure 5 present the evaluation results of the dynamic Bayesian model
learned with and without delay patterns as input feature. At the
�rst two milestones, the dynamic model learned using patterns pro-
vides the same estimations as the dynamic model learned without
patterns. This is caused by the fact that the pattern clustering label
becomes available from the third milestone on (i.e., when there
is a series of two or more previous milestones to classify). Then,
from the third milestone on, the dynamic model learned using pat-
terns consistently improves the dynamic model without patterns
by 9–20% (SA) and 19–66% (MAE). The improvements achieved
by using delay patterns are signi�cant with medium e�ect size
(�̂12 = [0.64, 0.69]). This indicates that the use of delay patterns leads
to signi�cant improvements in predictive performance, from the third

milestone on.

RQ3: Comparison with SoTA baselines. Figure 6 presents the
results of our dynamic Bayesian model compared to the SoTA base-
lines, represented by theDecision Tree [12] and RandomForests [14]

Figure 6: Comparison of our dynamic Bayesian model with

SoTA baselines in global and dynamic modes (RQ3). ‘Global

DT’ and ‘Global Iterative RF’ are the global Decision Tree [12]

and global iterative Random Forests [14] learned using fea-

tures from related work. ‘Dynamic DT’ and ‘Dynamic RF’

are the dynamic Decision Tree and dynamic Random Forests

learned using our features from Table 1.
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models, in global and dynamic modes. The solid lines show the re-
sults of the Decision Tree and Random Forests models in their orig-
inal, global mode using features from Choetkiertikul et al. [12, 14].
The dashed lines show the results of the models in dynamic mode
using our features from Table 1.

The dynamic Bayesian model consistently outperforms the SoTA
baselines in both global and dynamic modes. Over time, dynamic
Bayesian improves the global Decision Tree by 74–144% (SA) and
44–87% (MAE), and the global iterative Random Forests by 56–71%
(SA) and 34–84% (MAE). The Wilcoxon test shows that the im-
provements achieved by dynamic Bayesian over the global SoTA
baselines are signi�cant with large e�ect size (�̂12 > 0.84). Dy-
namic Bayesian also outperforms the dynamic Decision Tree by
22-48% (SA) and 26–80% (MAE), and the dynamic Random Forests
by 4–20% (SA) and 7–68% (MAE) over milestones. The improve-
ments of dynamic Bayesian over the dynamic Decision Tree and
Random Forests are signi�cant with e�ect sizes greater than 0.58.
This indicates that the dynamic Bayesian model achieves signi�cant

improvements over the SoTA baselines.

Overall, the models in dynamic mode substantially outperform
their counterparts in global mode. This highlights the bene�ts of
dynamic predictions across models. Bayesian achieves the highest

predictive accuracy and the largest overall increase in performance

compared to the SoTA baselines.

RQ4: Impact of prediction time. Figure 7 shows how the
estimated BRE distributions of the dynamic Bayesian model evolve
over milestones 2, 5, 7 and 10. The prediction intervals become
more narrow and sharp over time. The average ',83Cℎ90 of the
prediction intervals decreases from 1.14 at milestone 2 to 1.01 at
milestone 5, 0.94 at milestone 7, and 0.89 at milestone 10. The
Wilcoxon test shows that the changes in ',83Cℎ90 over time are
signi�cant (? < 0.001) and the e�ect sizes are small to medium
(�̂12 = [0.59, 0.68]). This indicates that the dynamic Bayesian model

is convergent, i.e. the predictions of the model become more certain

and informative over time.

7 DISCUSSION

7.1 Main Findings

Delay patterns as input feature.We found that the patterns iden-
ti�ed at the case company are indicative of the overall project delay.
This means that a similar pattern in historical data can provide
an estimation for the future development of delay in an ongoing
project. The patterns have shown their value in transport, and now
in software development as well. They can be useful as input feature
for delay prediction and rescheduling decisions. Our results demon-
strate that the use of patterns leads to signi�cant improvements
of 9–20% (SA) and 19–66% (MAE) in the predictions of delay. The
patterns in other organizations might di�er from the four patterns
identi�ed at the case company. We expect that the number and
shape of patterns will depend on the dataset being used. The pat-
terns are essentially a re�ection of recurring problems or abnormal
behaviors that lead to delay in organizations.

Relationshipswith risk factors.We characterized the patterns
in terms of risk factors, as shown in Table 2. Our statistical analysis
reveals that the patterns show signi�cant di�erences in various risk

Figure 7: The estimated BRE distributions as updated by the

dynamic Bayesian model across milestones (RQ4)

factors. Even though we cannot reason about causal links between
the factors and patterns, the results of our factor analysis enable
us to form hypotheses on the causes of delays. For example, the
epics in Cluster 1 have a signi�cantly higher number of outgoing
dependencies, larger delivery scope and higher developer workload.
We therefore hypothesize that large epics with many dependencies
and overloaded developers are likely to exhibit a pattern similar
to that of Cluster 1 and lead to major overall delay. Testing such
hypotheses could lead to actionable insights and suggest delay
mitigation measures. For a comprehensive view, we recommend
the use of both epic- and story-level risk factors to characterize
the patterns. Epic-level risks can provide high-level insights into
problems related to the environment that the delivery takes place
in. Story-level risks can give lower-level insights into problematic
software tasks and collaboration challenges (e.g., user stories that
have an abnormal waiting time are an indication of lack of team
cooperation [12]).

Bene�ts of dynamic prediction. Our results show that dy-
namic models signi�cantly outperform their global and global it-
erative counterparts. The dynamic Bayesian model achieves im-
provements of at least 12–44% (SA) and 16–78% (MAE) right from
the �rst milestone on. It also substantially outperforms the SoTA
baselines. This highlights the bene�ts of dynamic prediction meth-
ods and indicates that existing, static methods are less suited to
predict long-term delay. Existing models are not able to adequately
incorporate changes occurring during project execution. Dynamic
methods can e�ectively incorporate dynamic phenomena, resulting
in increasingly more accurate and reliable schedule estimates over
time. Dynamic prediction can therefore help teams detect risks
throughout the project life cycle and react to delays in a more pru-
dent fashion. This is especially valuable in development settings
that are subject to constant change and where schedule overruns
are a critical factor.
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Trade-o�betweenprediction time and accuracy.Our evalua-
tion results show that the predictions of the dynamic model become
more accurate and informative over time. We acknowledge that
predicting at later times (at 70—100% of the planned duration) may
be less useful as it might be too late to change the outcome. How-
ever, the increased certainty may justify mitigation actions focused
on handling a certain delay (e.g., postpone product launch, move
features to other epic) instead of trying to catch up (by adding more
resources). Furthermore, the dynamic approach achieves meaning-
ful improvements right from the start of the project on. It improves
the global and global iterative approaches by 12% (SA) and 16%
(MAE) at 10% duration, 19% (SA) and 27% (MAE) at 20% duration
and 29% (SA) and 41% (MAE) at 30% duration. The improvements
add up to 34% (SA) and 37% (MAE) at 50% duration. The improve-
ments obtained during the �rst half of the project are notable and
can enable teams to take early measures against delay.

Bene�ts of Bayesian methods. In our comparison of the SoTA
baselines in dynamic mode, Bayesian performs better than the
Decision Tree and Random Forests models. Bayesian also achieves
the largest overall increase in accuracy over time. This suggests
that Bayesian is more e�ective in quantifying and updating the
uncertainty of predictions over time. The results of RQ4 con�rm
this observation: the predictions of the Bayesian model become
substantially more certain and informative over time. Unlike the
other models, Bayesian provides detailed information about the
uncertainty of an estimate in the form of a probability distribution.
This can help organizations raise con�dence in project plans.

7.2 Future Work

Causal inference. To improve the implementation of delay coun-
termeasures, there is a need to better understand the causes of
delays and delay patterns. An interesting direction for future re-
search is to investigate why risk factors and delay patterns are
related. This could be assessed by causal inference on individual
patterns. Causal discovery (e.g., [65]) could be used to learn a causal
graph from the time series and identify the underlying causes of
trends or �uctuations in the patterns. This can help software or-
ganizations to identify the causes of speci�c delays and estimate
the e�ects of corrective actions beforehand. Another opportunity
for future work is to map recurring peak moments in patterns onto
development activities to identify key drivers of delay. Initial work
in this direction has been carried out by Kerzazi and Khomh [41]
and Kula et al. [45]. Both studies found that testing is one of the
most time consuming activities and likely to result in delay.

Systematic patterns. The identi�ed delay patterns might be af-
fected by systematic e�ects that are calendar-related. Previous work
(e.g., [17, 50]) has shown the existence of such e�ects in software
development work. An interesting opportunity for future research
is to test for seasonality and model the time dependency of delay
patterns using pattern matching. This would allow generalization
over delay patterns and support the identi�cation of systematic
e�ects at di�erent levels of time granularity. For instance, within-
week dynamics due to day-of-the-week e�ects, and within-year
dynamics a�ected by seasonal e�ects.

Event-driven prediction. Previous studies (e.g., [23, 44]) have
found that software deliveries can be delayed by disruptive events,

such as bugs and live incidents, that occur during project execution.
Existing e�ort estimation models are static and therefore not able
to incorporate such events into their predictions. Our dynamic
model provides future research an opportunity to process incoming
incidents as they occur. This would require updating of the model
every time an incident or other notable event occurs. Previous
studies [5, 6] have recognized the potential of event-driven models
for improving re-planning strategies in software projects.

Delay propagation. Currently, our dynamic model considers
each software delivery independently and does not capture the in-
teractions between dependent deliveries. However, a single delayed
software delivery may cause a domino e�ect of secondary delays
over dependent teams and projects. Future work should model the
(dynamic) interrelation and propagation of delays across software
deliveries. This could lead to more accurate estimates and a better
understanding of the e�ects of delay propagation on delay patterns.
Initial work in this direction has been carried out by Choetkiertikul
et al. [13]. They have shown that the use of networked data and
collective classi�cation leads to signi�cant accuracy improvements.

8 THREATS TO VALIDITY

Construct validity. The data variables we consider may not cap-
ture the intended meaning of (concepts a�ecting) delay. This intro-
duces possible threats to construct validity [64]. The delay measure-
ments are derived from delivery dates and reported story points
in the backlog management data. However, it might happen that
teams do not take their delivery deadlines seriously and close their
deliveries too early or too late. It is also possible that some teams do
not follow the guidelines or principles for estimating story points.
We tried to mitigate these threats by collecting real-world data from
many epics and teams over a �ve year span.

Another potential threat to our study is related to the milestone
division of epics. We split the epics into regularly-spaced milestones
based on completion rate. However, the milestones may not be a
good match with the work pace of some teams. This might have led
to a mixture of project phases within milestones and across epics,
which would a�ect the results for the patterns in some deliveries.
In practice, it would be more appropriate to split the epics based
on iterations.

Internal validity. The delay patterns that we condition our
Bayesian model on may not re�ect the situation in the test data.
To mitigate this problem, we used time-based cross-validation to
mimic a real prediction scenario. To compare models and verify our
�ndings, we selected unbiased error measures and applied statistical
tests [7, 54].

External validity. External threats are concerned with our abil-
ity to generalize our results. We have analyzed 4,040 epics from
270 teams, which di�er signi�cantly in size, composition and prod-
uct domains. However, we acknowledge that our data may not
be representative of software projects in other organizations and
open source settings. In other contexts, software deliveries might
have a di�erent setup following di�erent collaboration practices.
Replication of our work is needed to validate the �ndings in other
settings and reach more general conclusions.
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9 CONCLUSIONS

Modern agile software projects are volatile due to their iterative
and team-oriented nature. Changes in risk factors and team perfor-
mance trigger the need to re-assess overall delay risk throughout
the project life cycle. Existing e�ort estimation models are static
and not able to capture changes occurring during project execu-
tion. In this paper, we have proposed a dynamic e�ort estimation
model for continuously predicting overall delay using delay pat-
terns and Bayesian modeling. The model incorporates the context
of the project phase and is �netuned based on changes in delivery
performance over time. We apply our approach to real-world data
from thousands of epics, identifying four intuitive delay patterns
at ING. The evaluation results demonstrate that:

(1) Delay patterns are indicative of the overall delay and useful as
input feature for dynamic prediction.

(2) The dynamic model consistently outperforms global and global
iterative approaches, and the SoTA baselines, even during early
milestones (10–30% of project duration).

(3) The predictions of the dynamic Bayesian model become sub-
stantially more certain and accurate over time.

Overall, our results highlight the bene�ts of dynamic prediction
methods that are able to learn from the time-dependent characteris-
tics of software project delays. We identi�ed several research areas
calling for further attention, including causal inference, systematic
e�ects, and delay propagation. Progress in these areas is crucial to
better understand and manage delays in software projects.

10 DATA AVAILABILITY

The empirical data and source code used for this paper cannot be
made publicly available due to an NDA. To encourage replication,
we have described our model design step-by-step, and made our
model summary and evaluation available in a replication pack-
age [43].
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