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Notations 
 
 

Latin 
 
a   Beam Shear Span [mm] 

da   Maximum Aggregate Size [mm] 

/a d  Shear Slenderness 

A   Beam Cross-Section Area [mm2]  
b   Beam Width [mm] 

pb   Loading and Support Plate Member Width [mm] 

nB   Dummy Normal Stiffness for Bond-Slip [N/mm3] 

tB   Dummy Shear Stiffness for Bond-Slip [N/mm3] 

c   Stiffening Factor based on The Type of Reinforcement Bar 

,t uCW   The Ultimate Tensile Crack Width [mm] where the Remaining Fracture Energy of the Element 

is equal to 0; calculated based on the Guidelines for Nonlinear Finite Element Analysis of 
Concrete Structures (Hendriks & Roosen, 2020) and equal to 0.13 mm for specimen A123A1 
and H123A 

d   Beam Depth/Effective Height [mm] 

E   Young’s Modulus [MPa]  

cE   Concrete Young’s Modulus [MPa] 

cmE   Concrete Mean Young's Modulus after 28 days [MPa]  

plE   Loading and Support Plate Member Young’s Modulus [MPa] 

sE   Reinforcement Young’s Modulus [MPa] 

nnE   Young’s Modulus of the n-surface in the n-direction [MPa] 

ttE   Young’s Modulus of the t-surface in the t-direction [MPa] 

ssE   Young’s Modulus of the s-surface in the s-direction [MPa] 

nsE   Young’s Modulus of the n-surface in the s-direction [MPa] 

stE   Young’s Modulus of the s-surface in the t-direction [MPa] 

ntE   Young’s Modulus of the n-surface in the t-direction [MPa] 

Ecw   Width of Crack Opening in the Principal Direction [mm] 

EE   Relative Energy Variation per Step   
Eknn   Crack Strain in The Perpendicular Direction to the Crack Opening 

cf   Concrete Compressive Strength [MPa] 

ckf   Concrete Characteristic Compressive Strength [MPa], if experimental data are available, the 

value of mean compressive strength is used instead 

ctmf   Concrete Mean Tensile Strength [MPa] 

stf   Intrinsic Shear Strength [MPa] 

tf   (uniaxial) Concrete Tensile Strength [MPa] 

tkf   Reinforcement Characteristic Ultimate Strength [MPa]  

/tk ykf f   Ratio of Reinforcement Yield Strength to Ultimate Strength 

,t redf   Reduced Concrete Tensile Strength [MPa] 

ykf   Reinforcement Characteristic Yield Strength [MPa] 

crF   Beam First Cracking Force [kN] 

errF   Force Tolerance/Norms 

FE   Relative Out-Of-Balance Force per Step 
G   (secant) Shear Modulus [MPa] 
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cG   (uncracked) Concrete Shear Modulus [MPa]  

CkG   Concrete Characteristic Compressive Fracture Energy [N/mm] 

errG  Energy Tolerance/Norms 

FG   Concrete Fracture Energy [N/mm] 

FkG   Concrete Characteristic Tensile Fracture Energy [N/mm] 

nsG   Shear Modulus of the n-surface in the s-direction [MPa] 

stG   Shear Modulus of the s-surface in the t-direction [MPa] 

stG   Intrinsic Shear Modulus due to cracks [MPa] 

ntG   Shear Modulus of the n-surface in the t-direction [MPa] 

Gknt   Crack strain in The Parallel Direction to the Crack Opening 

h   Beam Height [mm] 

eleh   Element Size [mm], equal to the square root of the area for non-square elements 

ph   Loading and Support Plate Member Height [mm] 

I   Second Moment of Inertia of The Beam [mm4] 

,dum axk   Dummy Normal Stiffness for Plate-Beam Interface [N/mm3] 

,  dum shk   Dummy Shear Stiffness for Plate-Beam Interface [N/mm3] 

,FEM nrk   Linear Stiffness from Numerical Model Results without Reinforcement [kN/mm] 

,FEM rk   Linear Stiffness from Numerical Model Results with Bottom Reinforcement [kN/mm] 

.initk   Initial Beam Stiffness without The Contribution of The Reinforcement [kN/mm] 

L   Beam Length [mm] 

pL   Loading and Support Plate Member Length [mm] 

LB   Lower-Bound value of an Error Tolerance, Pre-defined value (
errG  or 

errF )  of Error Tolerance 

in Numerical Model 

crM   Beam First Cracking Moment [kNm] 

maxn   Maximum Number of Iterations  

pn   Number of Load Steps  

P   Applied Force on the Specimen/Numerical Model [kN] 

normP   Normalised Peak Load; calculated by dividing the peak load of the numerical models to the 

experimental peak load of the specimen 

uP   Experimental Shear Strength, Maximum Load Capacity of the Beam [kN] 

P   Total Beam Deformation in The Experiment [mm] 

s   Local Slip between Concrete and Reinforcement [mm]  

cs   Stirrup Spacing [mm] 

0s   (assumed) End-Point of Linear Bond-Stress Development [mm] 

1,refs   Yield-Point of Pull-Out Failure [mm]; used as a reference to calculate 
,bu split   

1 2 3,  ,  s s s   Critical Slip Points on Bond-Slip Model [mm] 

ss   Length of Side Span [mm] 

cSW   Concrete Self-Weight [kN/m3]  

sSW   Reinforcement Self-Weight [kN/m3] 

plSW   Loading and Support Plate Member Self-Weight [kN/m3] 

,cr cw    Compression Crack Opening [mm] 

,cr tw    Tensile Crack Opening [mm] 
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Greek 
 
   Exponential Coefficient for Bond-Slip Model 

   Shear Modulus Reduction Factor, Shear Stiffness Reduction, Shear Retention Factor 

,min   Minimum Reduction Factor of Concrete Compressive Strength due to Lateral 

Cracking/Reduction due to Cracks  

   Mean Shear Strain 

ns   Strain of the n-surface in the s-direction 

st   Strain of the s-surface in the t-direction 

nt   Strain of the n-surface in the t-direction 

nt  Total Strain of the n-surface in the t-direction in iterative-incremental analysis 

12   Total Strain of the principal 1-surface in the principal 2-direction in iterative incremental 

analysis 

23   Total Strain of the principal 2-surface in the principal 3-direction in iterative incremental 

analysis 

31   Total Strain of the principal 3-surface in the principal 1-direction in iterative incremental 

analysis 
   Deformation of The Beam in Numerical Model below The Loading Point [mm] 

.ela   Elastic Deformation of The Beam [mm] 

bend   Bending Deformation of The Beam [mm] 

sh   Shear Deformation of The Beam [mm] 

norm   Normalised Displacement; calculated by dividing the displacement of the numerical models to 

the experimental total displacement of the specimen (22.5 mm for A123A1 and 15 mm for 
H123A)  

   Total Strain 

c   Compression Strain 

p   Plastic Tensile Strain 

t   Tensile Strain Normal to The Crack Plane 

0t  Cracking Strain, equal to t

c

f

E
  

tu   Minimum Concrete Tensile Strain to start Crack Formation 

uk   Reinforcement Ultimate Tensile Strain based on /tk ykf f  ratio 

nn   Strain of the n-surface in the n-direction 

ss   Strain of the s-surface in the s-direction 

tt   Strain of the t-surface in the t-direction 

   Simulated Shear Displacement at the Mid-Height of the Flexural Shear Crack Opening of the 
Specimen [mm] 

nn  Total Strain of the n-surface in the n-direction in iterative-incremental 

tt  Total Strain of the t-surface in the t-direction in iterative-incremental analysis 

11   Total Strain of the principal 1-surface in the principal 1-direction in iterative incremental 

analysis 

22   Total Strain of the principal 2-surface in the principal 2-direction in iterative incremental 

analysis 

33   Total Strain of the principal 3-surface in the principal 3-direction in iterative incremental 

analysis 
   Young’s Modulus Reduction Factor 
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l   Longitudinal Reinforcement Ratio [%] 

   Stress [MPa] 

t   Mean Tensile Stress Normal to the Cracks [MPa] 

nn   Stress of the n-surface in the n-direction [MPa] 

tt   Stress of the t-surface in the t-direction (perpendicular to the n-direction) [MPa] 

ss   Stress of the s-surface in the s-direction [MPa] 

ns   Stress of the n-surface in the s-direction [MPa] 

st   Stress of the s-surface in the t-direction [MPa] 

nt   Stress of the n-surface in the t-direction [MPa] 

nn   Total Stress of the n-surface in the n-direction in iterative-incremental analysis [MPa] 

tt   Total Stress of the t-surface in the t-direction in iterative-incremental analysis [MPa] 

nt   Total Stress of the n-surface in the t-direction in iterative-incremental analysis [MPa] 

11   Total Stress of the principal 1-surface in the principal 1-direction in iterative incremental 

analysis [MPa] 

22   Total Stress of the principal 2-surface in the principal 2-direction in iterative incremental 

analysis [MPa] 

33   Total Stress of the principal 3-surface in the principal 3-direction in iterative incremental 

analysis [MPa] 

12  Total Stress of the principal 1-surface in the principal 2-direction in iterative incremental 

analysis [MPa] 

23   Total Stress of the principal 2-surface in the principal 3-direction in iterative incremental 

analysis [MPa] 

31   Total Stress of the principal 3-surface in the principal 1-direction in iterative incremental 

analysis [MPa] 
   Mean Shear Stress [MPa] 

bf   Residual Bond-Stress [MPa] 

,b max   Maximum Bond-Stress of Pull-Out Failure [MPa] 

,bu split   Maximum Bond-Stress of Splitting Failure [MPa] 

   Poisson Ratio  

c   Concrete (initial) Poisson Ratio  

s   Reinforcement Poisson Ratio  

Ø   Diameter of Reinforcement [mm] 

pl   Loading and Support Plate Member Poisson Ratio  
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Abstract 
 
 
In concrete structures, shear failure is one of the failure mechanisms that should be estimated carefully due to its brittle 
nature. As the technology advances, the capacity of shear in concrete structures can be calculated with the analytical 
formulation in codes and standards and simulated with NLFEA. The shear capacity is affected by the size which is a 
phenomenon observed from experiments where the change in the structure size does not have a linear relation to the 
structural strength. This can be referred to as the experimental size effect. When estimating the shear capacity with 
NLFEA, this effect must be included in order to avoid over-estimation of capacity. However, another size effect can be 
found from the result of NLFEA. The change in structural size has an influence on the global response of concrete 
structures with different numerical configurations in a simulation with NLFEA. A numerical configuration consists of 
several numerical parameters. This effect is referred to as the numerical size effect. Therefore, it is necessary to 
incorporate the experimental size effect and reduce the influence of the numerical size effect in a numerical model in 
order to increase the accuracy and precision of the simulation with NLFEA.  
 
The aim of this study is to investigate how the numerical size effect influences the NLFEA results, which will help 
understand how to improve the accuracy of the simulation. The investigation is done by studying numerical models with 
a variation on several numerical parameters, such as load increment, error tolerance, the maximum number of iterations 
and mesh size. The study is focused on identifying the influence of these numerical parameters for cases with different 
structural sizes and comparable shear slenderness. This is done by observing the global behaviour of the structure and 
comparing NLFEA results to their respective experimental results. Any difference in the simulated global response is 
analysed by observing the difference between the experimental and the simulated crack pattern and the convergence 
state of the respective step.  
 
The study is done in three stages. The study is initiated by investigating how the flexural shear failure mode can be 

obtained with NLFEA. Two specimens with comparable shear slenderness ( )/a d , 3.70 and 3.91 for beam A123A1 and 

H123A respectively, are used as a reference for the simulation model. It was found that bad convergence was achieved 
at the later stage of the analysis and by not accepting non-converged steps, the results became dependent on the 
convergence state of the analysis where different peak loads were achieved in different numerical configurations for the 
same case study.  
 
The study continues by identifying the correlation of numerical parameters with the results of NLFEA by creating 
simulation models with different iterative incremental solutions, load increment, error tolerance, and the maximum 
number of iterations. All load steps are accepted in this stage, regardless of their convergence state, and the rotating 
crack model is used in these numerical models. The NLFEA results are post-processed by setting up an upper limit in 
the error tolerance in order to minimize the variation of the peak load and attain a higher consistency of the results.  
 
At the last stage, another study is performed to identify the correlation between mesh sizes with the results of NLFEA 
by simulating several models with different mesh sizes. All load steps are also accepted in this stage, regardless of their 
convergence state, and the rotating crack model is used in these numerical models The NLFEA results are also post-
processed with the same criteria attained in the previous stage.  
 
It is concluded that the results of NLFEA are dependent on the following numerical parameters, the load increment, error 
tolerance, and the maximum number of iterations, due to different initiations and propagation of dowel crack in the non-
converged steps, which influences the convergence condition in the later stage of the NLFEA. The formation and rapid 
propagation of the dowel crack results in the excessive change in the principal strain direction and magnitude, which 
induces high relative energy variation and out-of-balance force. These numerical parameters indirectly contribute to the 
error found in each step in the analysis. An additional study is done by replacing the crack model with a fixed crack 
model with a damage-based shear retention model, but it was found that this did not solve the problem due to the 
excessive change in the shear retention factor on the elements that lead to premature failure of the beam.  
 
The observation related to the numerical size effect reveals that the mesh size controls the propagation rate of the dowel 
crack. The use of a smaller mesh size will reduce the propagation rate of the dowel crack after its initiation due to a 
smaller increment of the crack width between each load step. As a result, the increment of the crack width becomes 
smaller as the mesh size decrease. This becomes more pronounced due to the effect of excessive change of the 
principal stress-strain direction and magnitude.  
 

Full Newton-Raphson method has been proven to give the smallest variation of the peak load ratio ( )normP , ranging from 

0.887 1.140−  for specimen A123A1 and 1.055 1.246−  for specimen H123A, compared to the other iterative-incremental 
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method with the use of load increment ratio (load increment/experimental peak load) within 0.03 0.006−  in combination 

with evaluation of acceptable analysis step with error tolerance, where the predefined error tolerance must be set to 

0.0001errG =  and 0.01errF = , and non-converged steps can still be accepted if the relative energy variation and out-of-

balance force of the corresponding step are below 0.03  and 0.58  respectively.  

 

An additional criterion related to the shear displacement on the major flexural shear crack ( )  should be added to the 

evaluation of the acceptable analysis step in order to prevent an excessive crack opening on the major flexural shear 
crack at the peak load. The analysis step can still be considered valid if the respective step satisfies the criterion of the 
error tolerance and the vertical crack opening on the major flexural crack on the respective step is below the ultimate 

tensile crack width ( ),t uCW , which can be calculated from the Guidelines for Nonlinear Finite Element Analysis of 

Concrete Structures (Hendriks & Roosen, 2020). A mesh size ratio which larger than /15h  is required to have the 

correct simulated failure. 
 
 
Keywords: NLFEA, Numerical Size Effect, Load Increment, Error Tolerance, Maximum Number of Iterations, Mesh Size, 
Convergence State, Dowel Crack Initiation, Dowel Crack Propagation 
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1 Introduction 
 
 
 
Reinforced concrete structures are the most commonly used construction type. Having a better understanding 
of the non-linear behaviour of concrete will help improve the accuracy of the simulation of the non-linear FEM 
on the non-linear behaviour of the concrete structure. The non-linear FEM has been commonly applied in 
designing and assessing concrete structures. As this study typically requires a lot more time, it is often applied 
in important projects that cannot be analysed with hand calculations or the linear FEM. Such structures are 
typically characterised by larger dimensions, complex boundary conditions and vulnerability to brittle failure. 
The vulnerability to brittle failure is considered important because the failure happens suddenly and there is 
no sign of when it will happen. 
 
Despite the fact that the non-linear FEM has been well developed over the past 3 decades, its application in 
such structures is still questionable as most of the non-linear FEM were developed in the period when full-
scale experimental data were not widely available. They were calibrated with typical academic experiments, 
featured by simple boundary conditions and small specimen sizes. Recent experimental and theoretical 
studies have shown that upscaling such experimental observation to large scale structures is not always 
straightforward. The shear failure mode can be taken as an example, as it is one of the basic and common 
failure mechanisms in a structure. A typical effect called the size effect may significantly affect the accuracy 
of both theoretical prediction and numerical prediction. 
 
The size effect is the influence of structural size on the structural strength where the change in the structure 
size does not have a linear relation to the structural strength. Size effect can be categorized into two types, 
experimental and numerical size effect. The experimental size effect is found from observation of the 
experimental results. The numerical size effect is found from observation of results of numerical simulation 
and is typically associated with a numerical parameter such as mesh size.  
 
Several studies from An, Maekawa, & Okamura (1997), Cervenka V., Cervenka, Pukl, & Sajdlova (2016), 
Choi & Kwak (1990), Shayanfar, Kheyroddin, & Mirza (1997), and Tavio (2008) indicate that the shear failure 
has not been able to be simulated correctly due to the influence of numerical size effect. Different numerical 
configurations are used in these studies and different results are obtained in every study. This problem is also 
encountered in the shear test modelling contest in 2019 where teams from different universities and 
consultancies around Europe participated (Yang, Boer, & Uijl, Postdiction of the Flexural Shear Capacity of 
a Deep Beam, 2021). The modelling referred to two reinforced concrete beams without stirrups, with a large 
depth of 1200 mm and The Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks 
& Roosen, 2020) is used as a modelling reference. It was found that most participants were not able to obtain 
good simulation results that are compatible with the experimental results. Therefore, further investigations 
are needed to give insight into which numerical configuration should be chosen. The chosen configuration of 
the NLFEA directly affects the simulation and could cause underestimation or overestimation of the structural 
capacity, which makes the method of modelling in the NLFEA is crucial to be defined and standardized.  
  
There are a lot of things to considered and simplified from the physical conditions of the structure when 
building the numerical models, such as non-linearity applied on the structure, element types, crack model, 
solution procedure, convergence criteria, and type of analysis. The purpose of this research is to study the 
influence of numerical size effect on the numerical results when simulating shear failure by investigating the 
following numerical parameters: load increment, error tolerance, the maximum number of iterations and mesh 
size.  
 
 
  



2 1. Introduction 
 

 
 

1.1. Aim of The Study 
 
The size effect or can be referred to as the experimental size effect, is defined as a phenomenon observed 
from experiments where the change in the structural size does not have a linear relation to the structural 
strength. Shear strength is the resistance of concrete structures under shear force. When resisting this force, 
a certain mode is formed when the structure is unable to resist it anymore. This is known as a failure mode. 
This thesis is focused on one of the shear failure modes, the flexural shear failure mode. Several papers from 
Kani (1967), Bazant, Ozbolt, & Eligehausen (Fracture Size Effect: Review of Evidence for Concrete 
Structures, 1994), Collins & Kuchma (1999), Vecchio & Shim (2004), Bazant & Yu (Universal Size Effect Law 
and Effect of Crack Depth on Quasi-Brittle Structure Strength, 2009), Syroka-Korol & Tejchman (2014), and 
Yang (2014), have indicated that the experimental size effect on concrete structure related to shear strength 
must be considered. These papers also give suggestions on how to account for size effect experimentally. 
However, no paper has been able to give definitive instructions and suggestions on how to account for the 
experimental size effect on simulation with NLFEA.  
 
Furthermore, several studies from An, Maekawa, & Okamura (1997), Bazant & Oh (Crack Band Theory for 
Fracture of Concrete, 1983), Cervenka V., Cervenka, Pukl, & Sajdlova (2016), Choi & Kwak (1990), 
Shayanfar, Kheyroddin, & Mirza (1997), and Tavio (2008) indicated that another form of size effect is found 
on the simulation with NLFEA. This effect is referred to as the numerical size effect. Therefore, the numerical 
size effect can be defined as changes in the global response of concrete structures due to the use of different 
numerical configurations in a simulation with NLFEA. A numerical configuration consists of several numerical 
parameters. In the literature, the numerical size effect is usually correlated to the change in the mesh size in 
the numerical configuration with NLFEA.  
 
The main objective of this thesis is to improve the estimation of reinforced concrete shear strength without 
shear reinforcement on NLFEA by studying the influence of predefined numerical parameters, such as load 
increment, error tolerance, the maximum number of iterations per step, and element size, to give insight on 
how to reduce numerical size effect. The experimental size effect will be included in the numerical model by 
studying literature and summarising how to include this effect. The study will be focused on the 2D FEM with 
the smeared cracking model. The type of structure that will be simulated for the investigation in this thesis is 
a 3-point loaded simply supported beam. The study is done by simulating 2 specimens with different sizes in 

terms of shear span ( )a  and beam depth ( )d  but has comparable shear slenderness ( )/a d . Two types of 

smeared cracking models will be used in this study, fixed and rotating crack models. The rotating crack model 
is used in the reference model and the fixed crack model will be used as a comparison to see the difference 
in their performance. All components, such as material properties and constitutive models, related to the 
simulation of the structure are considered and calculated in accordance with the Guidelines for Nonlinear 
Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020).  
 
 

1.2. Research Questions 
 
In order to reach the aim of this study, the study must be able to answer the research question of this thesis. 
The research question of this thesis is:  
 

“How do different numerical parameters influence the result in the NLFEA?” 
 
Several sub-questions are formulated in order to have a clear line of thought. These questions will be 
answered sequentially, as these questions represent the overall process of answering the research question 
and achieving the aim of this study.  
 

1. What are the main parameters in simulating shear failure in NLFEA?  
 

This question can be answered by first identifying the important aspects of NLFEA and the possible 
failure mode in reinforced concrete without shear reinforcement. Afterwards, a literature review must 
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be done in order to have an insight related to the key features of shear transfer and how does the 
NLFEA model these features.  

 
2. What information is available regarding the key correlations between the size effect and NLFEA?  

 
In this question, the term “size effect” is referred to both experimental and numerical size effect, as 
both components must be understood well in order to have an appropriate numerical model that can 
be analysed. This question can be answered by first defining the definition of the term “size effect” in 
the available literature, as several works of literature use the same terms for different types of size 
effect. Afterwards, another literature review is done to see which parameters are the keys for including 
the experimental size effect and imposing numerical size effect to the numerical model. The literature 
review also includes a list of possible measures on calibrating the experimental size effect and how 
to reduce the effect of numerical size effect. Furthermore, the literature review should also include the 
remaining problems that have not been solved. In the end, the literature review will have the numerical 
configuration that will be used as a reference for further investigation related to the numerical size 
effect which has accounted for the experimental size effect.  

 
3. How do predefined numerical parameters influence the numerical size effect in NLFEA?  

 
The first step to answer this question is identifying the problem related to the numerical size effect in 
the current numerical configuration. A certain numerical configuration is used to model two 
experimental results with comparable shear span to beam depth ratio but has significant differences 
in shear span and beam depth. Afterwards, several parameters are varied in accordance with the 
identified problems to solve these problems. In the end, the problems found in the literature will be 
analysed by studying several variations related to this problem.  

 
At the end of this report, the conclusion will also give some recommendations on how to minimize the 
numerical size effect and what other studies should be performed to help improve these recommendations.   
 
 

1.3. Research Methodologies 
 
The study will be done in a quantitative manner which will focus on the in-depth knowledge of size effect on 
finite element analysis for concrete structures with flexural shear failure. The study starts with an extensive 
literature review for the first and second research sub-questions. All data needed for answering the first and 
second research questions are retrieved from literature studies of scientific papers and books with content 
analysis and search methods. The literature study is done in order to give a clear view of the connection of 
finite element analysis with the shear failure mechanism and some insight regarding how to account for 
experimental size effect and what has been found related to the numerical size effect. 
 
The third main research question will be answered mainly based on observation and measurement results. 
This will be done by modelling two case studies with NLFEA with different numerical configurations to give 
insight into how the numerical size effect influences the results of NLFEA. The chosen structural object to 
study in this thesis is a simply supported beam with a 3-point bending test, which is the simplest case in the 
civil engineering field for investigating shear failure and has a lot of available experimental test data. The case 
studies are based on two experimental results with comparable shear span to beam depth ratio but have 
significant differences in shear span and beam depth. The observations are going to be done for convergence 
norms, crack pattern/damage evolution on structure, and failure mode. Results of NLFEA will be compared 
to its respective experimental data and post-processed in order to minimize the numerical size effect. It is 
expected that the numerical results could give a clear picture of how the shear failure progress. The 
measurements are going to be done for the error tolerance, reaction force, displacement of the structure, and 
crack width on the failure crack. The influence of the numerical size effect can be studied by comparing the 
results of NLFEA. The measurement will help understand what factors are affected by the numerical size 
effect and what can be done to the numerical model in order to increase the accuracy of the estimation of 
shear resistance.  
 



4 1. Introduction 
 

 
 

All analysis will be done based on the result of numerical simulation of finite element analysis. Any software 
package can be used for this research. The non-linear FEM software package DIANA 10.4 is used for this 
thesis. However, the conclusion of this study can be extended to any other non-linear FEM making use of the 
smeared crack approach.  
 
 

1.4. Thesis Outline 
 
This thesis is divided into 7 chapters with the first chapter explaining the research background while the other 
chapters explaining the steps taken to answer the research questions and reach the research objective.  
 
Chapter 2 The Correlation of NLFEA to Shear Failure 
The second chapter gives several points of view on how NLFEA can be used to simulate shear failure and 
what are the key parameters.  
 
Chapter 3 Literature Review of Size Effect Phenomenon on Finite Element Analysis 
The third chapter help gives a summary of what has been done to solve the problem of size effect on shear 
strength of concrete structures and identify the starting point of the study regarding the size effect 
phenomenon.  
 
Chapter 4 Identification of Problem Related to Convergence  
In the fourth chapter, the numerical models are modelled based on two specimens. Several types of 
verification are done in order to ensure the validity of the result of the NLFEA. However, several problems are 
found related to the convergence and the study of simultaneous satisfaction of convergence and inclusion of 
top reinforcement are done in order to determine whether it is necessary to include those components in the 
NLFEA.  
 
Chapter 5 Sensitivity Analysis of Convergence Parameters  
The fifth chapter gives insight related to the influence of three numerical parameters, load increment, error 
tolerance, and the maximum number of iterations, and how do these parameters influence the peak load 
distribution and global behaviour. Furthermore, the results of the finite element analysis are post-processed 
with an upper value of error tolerance in order to minimize the influence of these parameters and obtain a 
reliable numerical configuration that can be used for further evaluation related to the mesh size. 
 
Chapter 6 Sensitivity Analysis of Mesh Size  
The sixth chapter gives insight into the influence of the mesh size and how it affects the peak load and global 
behaviour. Furthermore, the results of the finite element analysis are post-processed with an upper value of 
error tolerance and limitation on the vertical opening at the mid-height of the major flexural shear crack in 
order to minimize the influence of mesh size and obtain a realistic simulated crack opening at the peak load. 
 
Chapter 7 Conclusion and Recommendation 
The last chapter shows the conclusion of the research and what should be done next related to the study of 
numerical size effect on concrete structures.  
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2 The Correlation of Finite Element 

Analysis to Shear Failure 
 
 
 
Simulation of shear failure in NLFEA required a deep understanding of the concept of NLFEA. In this chapter, 
the concept of NLFEA will be explained briefly in subchapter 2.1. Afterwards, the overview of all failure modes 
of the beam will be given in subchapter 2.2, which will be used to investigate the size effect in chapters 5 and 
6. In order to fully understand each parameter on the NLFEA, the targeted failure modes (flexural shear failure 
mode) mechanisms are described in detail in subchapter 2.3 based on data available in the literature. These 
mechanisms are going to be correlated with each parameter available on NLFEA in subchapter 2.4.  
 
 

2.1. Non-Linear Finite Element Analysis 
 
Finite Element Analysis is a tool developed by engineers, in collaboration with mathematicians, to generate 
a numerical solution to a specific problem. The numerical solution is an approximation based on a set of 
algebraic equations. There are two types of numerical solutions of finite element analysis, linear and non-
linear response. The linear response does not include the effect of plasticity and large deflection which could 
affect the overall response of the model. In other words, the response is directly proportional to the applied 
load on the model. On the other hand, a non-linear response could produce a more realistic response that 
incorporated the effect of plasticity and large deflection in the model. This response could be interpreted as 
a representation of real structure behaviour, as long as the correct assumption and simplification are used to 
construct the model. (Cook, Finite Element Modeling for Stress Analysis, 1995) 
 
The NLFEA can be done by creating a model of structures with a set of non-linear equations and use a 
suitable solution procedure to approximate the model response. NLFEA can be used to do several types of 
analysis in the structural application, such as strength analysis, stability analysis, construction stage analysis, 
reserve strength analysis, and progressive failure analysis. These analyses are used to assess a structure 
performance, for example, investigate causes of structural failure, safety and serviceability assessment, 
structure optimization, simulate material processing and manufacturing, and assist the researcher to create 
a simple method of analysis and design of structures by understanding the basic behaviour of the structure 
and validate material models with experimental results. These performances can be assessed by either doing 
only one or several types of analysis based on the level of assessment needed to be done. (Cook, Malkus, 
Plesha, & Witt, 2002) 
 
The model response is often represented in the load-deflection diagram. This diagram shows the overall 
behaviour of the structure according to the numerical solution of NLFEA, which is often referred to as the 
equilibrium path. The equilibrium path is created based on the reference state where it is assumed that the 
model is not subjected to stress dan deformation yet. In NLFEA, the equilibrium path may include several 
critical points, such as limit points (L), bifurcation points (B), turning points (T), and failure points (F). The limit 
points can be identified by looking for a point in the equilibrium path which has a horizontal tangent line. The 
bifurcation points often describe as points where several equilibrium paths cross each other. The turning 
points can be found by looking for a point in the equilibrium path which has a vertical tangent. The failure 
points can be seen where the equilibrium path suddenly stops due to the failure of the model.  
 
NLFEA usually consists of four important components, the physical problem, mechanical model, finite 
element model, and solution, illustrated in Figure 2.1. The physical problem is referred to as the actual 
problem that needed to be solved or a case study of a certain phenomenon. The physical problem is idealized 
with several assumptions to create a mechanical model. The mechanical model usually consists of the 
structure geometry, material law, loading, boundary conditions, and source of nonlinearity. All components of 
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the mechanical model must be created with a sound engineering judgement based on the physical problem 
and the purpose of the analysis.  
 

 

Figure 2.1 General Representation of NLFEA 

Source: Lecture Slides “CIE5148 Computational Modelling of Structures” 

 
In NLFEA, the way of applying load on the structure could affect the solution of NLFEA due to the equilibrium 
path of the structure. Applying load as a prescribed force, which is often called force controlled, would cause 
the equilibrium path to stop at the first limit point or first bifurcation point. On the other hand, applying load as 
a prescribed displacement, which is considered displacement controlled, would usually produce the complete 
equilibrium path until the failure points. However, a complete equilibrium path cannot be achieved even with 
displacement controlled in the case where the equilibrium path contains one or several turning points. This 
case could be solved by applying the arc-length method.  
 
The source of nonlinearity is one of the key factors which greatly affect the results in NLFEA. There are 
several sources of nonlinearity such as material nonlinearity, geometric nonlinearity, and contact nonlinearity. 
The material nonlinearity can be described as the behaviour of the material in its current state which can be 
affected by its loading history and time-dependent factor. The material nonlinearity is expressed as the 
constitutive relationship between stress and strain in NLFEA. The geometric nonlinearity is described as the 
effect of large deformation on the structure where the small displacement assumption is not valid anymore. 
The large deformation could affect the loading direction and the internal action of the structure in resisting 
loads. The geometric nonlinearity is included in the NLFEA by finding the equilibrium on the structure based 
on its deformed shape. The contact nonlinearity can be described as a change in load distribution when two 
or more parts of a structure come in contact. This event is usually considered when there are gaps, contacts, 
and the sliding interface between two or more parts of a structure.   
 
The mechanical model is discretised into a finite element model by choosing the suitable element type, mesh 
density, and solution parameters. The element types can be chosen based on the geometry, boundary 
conditions, and applied load in the mechanical model in combination with available elements on the software 
used. Based on Borst & Nauta (1985) works, the use of reduced integration should be avoided in concrete 
structures, as it could cause huge deviation on the damage progression and produce divergence on the 
results. Full gauss integration is recommended to be used in combination with 8-noded elements with 3x3 
integration points for concrete structures, in order to avoid un-realistic zero-energy modes to occur which 
could cause divergence. This statement is confirmed by Balakrishnan & Murray (1986) where they stated that 
2x2 integration points can only be used in the case where the elements are reinforced in two orthogonal 
directions, while 3x3 integration points can be used for other cases in order to prevent spurious zero-energy 
modes. The mesh density can be chosen based on the degree of element discretization is required, 
availability of time, and the acceptance level of the results. The mesh density is usually chosen based on trial 
and error in combination with checks on the sensitivity of the results.  
 
The solution parameters are determined based on the iterative incremental solution method. Several 
parameters such as solution procedure, convergence method, step size, and the maximum number of 
iterations per step are chosen based on the available options on the software in combination with available 
recommendations made by the government. In the Netherland, this recommendation is referred to as 
Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020). The 
most common solution procedures used for NLFEA are Full Newton-Raphson, Modified Newton-Raphson, 
and Newton’s Method. The details of these methods can be found on the analysis reference of corresponding 
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software used. The convergence method is specified based on the convergence criteria and convergence 
tolerance. The convergence criteria can be chosen between force-based, displacement-based, and energy-
based. The convergence criteria and level of convergence tolerance should be determined based on the level 
of accuracy needed for the results. The convergence criteria are evaluated based on the convergence state 
of NLFEA. The convergence state is defined as the level of relative energy variation and out-of-balance force 
on each step in the NLFEA. In order to reach convergence in the NLFEA, the convergence state of each step 
must be below the prescribed tolerance. The evaluation of the convergence criteria is done by defining the 
norms ratio. All norms are calculated as a part of the iteration process in the incremental procedure. The 
iterative-incremental procedure in the NLFEA is done based on Figure 2.2.  
 

 

Figure 2.2 General Iterative-Incremental Procedure in Non-Linear Finite Element Analysis 

Source: (DIANA FEA, 2020) 

* The out-of-balance force is calculated based on the subtraction between the external load and the previous step internal force.  
** The prediction of change in the displacement is done by multiplying the transpose stiffness matrix to the out-of-balance force vector.  

 
According to (DIANA FEA, 2020), the force norm ratio is the ratio between the out-of-balance force of the 
current iteration (g1) and the internal force after the first prediction (g0). The displacement norm ratio is the 
ratio between the displacement change of the current iteration (δu1) and the first prediction (∆u0). The energy 
norm ratio is the ratio between the energy variation of the current iteration (δE1) and after the first prediction 
(∆E0). The energy variation is calculated based on the internal forces (g0 and g1) and relative displacements 
(∆u0 and δu1). The illustration of these norms can be seen in Figure 2.3. The force and energy norm ratios 
are going to be referred to as relative out-of-balance force and relative energy variation in this document.  
 

 

Figure 2.3 Norms Items 

Source: (DIANA FEA, 2020) 
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The use of a single convergence criterion should be avoided in order to avoid high computational time (Cook, 
Malkus, Plesha, & Witt, 2002). The determination of step size and the maximum number of iterations per step 
must be done with consideration of the available time of the project and through trial and error to find the 
optimal value.  
 
Another method that could be used to obtain the numerical solution is the SLA method (Slobbe, Hendriks, & 
Rots, 2013). SLA is used to simulate brittle failure on structure, specifically on concrete structure. SLA 
replaces the standard iterative-incremental solution procedure with a series of scaled linear analyses. The 
idea used for developing SLA is the numerical solutions are derived based on damage-controlled analysis. 
The non-linearity is captured by using a series of scaled linear elastic analyses until critical events on the 
critical integration points on the model are achieved. In every series of analyses, the critical event is traced 
to define the phenomenon of stiffness and strength reduction on the structure and applied it to its respective 
critical integration point. The critical events are predefined and related to the crack initiation and propagation. 
The SLA avoids the bifurcation phenomenon, which could happen in the standard iterative-incremental 
solution procedure. Furthermore, the use of reduced integration schemes does not cause any deviation due 
to the adopted positive secant stiffness on the SLA method. Furthermore, SLA is recommended by Yang 
(2014) to be used for simulating the shear failure of the reinforced concrete beam without shear reinforcement. 
On the other hand, there are several drawbacks to this method, such as the limitation on the 
unloading/reloading scheme to secant scheme only and a relatively long time for computation.  
 
The finite element model is analysed and calculated on the software and a numerical solution will be 
generated. While using the iterative incremental solution method, the convergence of the solution could pose 
a problem in this stage, as it could be a very slow convergence or failed to reach convergence on a certain 
load step. These problems could be caused by high local stress, the failure of the structure, sudden change 
in stiffness, and various other reasons. The high local stress problem, which causes a lot of iteration to find 
convergence, can be resolved by using the high yield stress element on the region near the concentrated 
loads and point supports. All other reasons can be investigated by plotting the equilibrium path of the model 
and scanning through the log file of the numerical analysis. Any dramatic increase or decrease from one load 
step to another would usually lead to a problem in convergence. All important aspects of NLFEA are 
summarised in Figure 2.4. These give an illustration of how complex the process of determining the numerical 
configuration. Further study from available literature is done in chapter 3 and the numerical configuration that 
is used for the thesis is given in subchapter 4.1, 5.1, and 6.1.  
 
De Putter (2020) indicates that convergence problem happens in a certain stage when analysing reinforced 
concrete beam without shear reinforcement, such as:  

• crack localization – resulted in a small dip in the force-displacement diagram and cause convergence 
problem, which would end after crack open in a stable manner;  

• crack inclination starts;  

• reinforcement yield and concrete crush starts;  

• failure of the beam. 
 
The convergence problem could be solved by increasing the maximum number of iterations per step, 
assigning a smaller step size, re-evaluate the choice of the solution procedure, re-evaluate the choice of 
convergence criteria, or decrease convergence tolerance. However, these solutions will increase the amount 
of computational time and further study needs to be done in order to determine whether these solutions are 
applicable in every case, especially the simulation of the reinforced concrete beam without shear 
reinforcement. Furthermore, the numerical solution will also need to be evaluated by doing verification on the 
finite element model and validation of the mechanical model. In the end, the numerical solution would be 
interpreted based on the project interest or research purpose. 
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Figure 2.4 Mind Map of Important Aspects of NLFEA 

 
 

2.2. Types of Failure in Reinforced Concrete Beam 
 
There are two major types of failure in the reinforced concrete beam without shear reinforcement that could 
be identified, which are bending failure and shear failure, as indicated in Figure 2.5. In this thesis, the focus 
will be put on the shear failure with flexural shear failure mode, as it is more brittle and several sources of 
literature, such as Choi & Kwak (1990), Shayanfar, Kheyroddin, & Mirza (1997), Khalfallah, Charif, & Naimi 
(2004), Cervenka V., Cervenka, Pukl, & Sajdlova (2016) indicate that this failure has not been able to be 
simulated properly.  
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Figure 2.5 General Representation of Types of Failure 

 

2.2.1 Bending Failure  
 
Bending failure is derived from the inability of the cross-section to resist a certain level of bending moment. 
This will result in the formation of flexural cracks on the tension part of the beam. Without longitudinal 
reinforcement, the crack will propagate throughout the cross-section and cause failure. In the case of the 
reinforced concrete beam, the cracks will be stabilized, and the reinforcement starts to yield in one or some 
cracks. The continuation of yielding progression would produce large deformation on the beam while 
sustaining the load and will fail when the compression zone crushes (over-reinforced) or the reinforcement 
fail in tension (under-reinforced). (De Putter, 2020) 
 

2.2.2 Shear Failure 
 
Shear failure is derived from the inability of the cross-section to resist a combination of bending moment and 
shear force. Balakrishnan & Murray (1986) stated that shear failure happens due to the reduction of shear 
modulus above and below the neutral axis where shear strain can be produced on the same order of 
magnitude as normal strain. This statement is in line with Walraven (1980) where he stated that before failure, 
the propagation of crack opening would increase slower compared to shear deformation in the case of plain 
concrete. This indicates that shear failure accelerates the progression of shear deformation in the case of 
reinforced concrete without shear reinforcement.  
 
There are three modes of shear failure, diagonal tension failure mode, flexural shear failure mode, and shear 
compression failure mode. The diagonal tension failure mode is described based on the classic beam theory 
where maximum shear stress is located in the neutral axis of the beam in the linear elastic stage. At the 
neutral axis, the principal stress is rotated in the diagonal direction, which causes the formation of diagonal 
cracks after reaching the concrete tensile strength. This phenomenon is not greatly influenced by bending 
moment and could only occur in a beam with limited flexural cracking where there is a drastic change in the 
width of the cross-section, such as prestressed hollow core slabs and T-beams.   
 
The flexural shear failure mode is described based on the inclined flexural/flexural shear crack. The inclination 
of the flexural crack is caused by the increase of shear force, which resulted in the rotation of the principal 
stress direction. This crack reduces the resistance of the beam and caused a brittle failure. According to Yang 
(2014), the reduction is caused by the formation of secondary horizontal crack on the top which resulted in 
the loss of shear retention in the crack surface. Afterwards, the horizontal crack propagates quickly due to its 
unstable condition and causes failure of the beam. Flexural shear failure can also be interpreted as a 
significant reduction of shear modulus below the neutral axis, according to Balakrishnan & Murray (1986). On 
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the other hand, it was mentioned by Sato, Tadokoro, & Ueda (2004) that the loss of shear retention is the 
result of increasing width of the shear crack, which is caused by the splitting tensile crack along the 
longitudinal reinforcement bars. The splitting crack caused the inability to transfer shear stress on the crack, 
which resulted in rapid propagation of shear crack on the beam. 
 
Shear compression failure mode is described as a continuation of the flexural shear crack phenomenon, 
where the loss of shear retention in the crack surface does not cause immediate failure. This could happen 
due to the formation of arch structure within the beam, in which the arch takes over the load-bearing 
mechanism of the beam. If the arch can take over and achieved stability on the global level, then the beam 
could be imposed to a higher magnitude of loading. The imposed load can be increased until the concrete 
strut crush and failure happens due to the splitting crack of the concrete strut. On the other hand, if the arch 
cannot achieve stability, then it would fail almost immediately as the flexural shear failure mode takes place. 
Balakrishnan & Murray (1986) characterized shear compression failure as a condition where a significant 
reduction of shear modulus happens above the neutral axis when approaching failure. According to Vecchio 
& Shim (2004), the beam’s behaviour with shear compression failure is greatly influenced by the crushing of 
the concrete located beneath and adjacent to the loading plate based on the experimental observation. One 
of the characteristics which differ from shear compression failure to flexural shear failure is that there is no 
splitting crack along with the tension reinforcement.  
 
Based on these definitions, the flexural shear failure mode can be regarded as the lower bound and the shear 
compression failure mode as the upper bound of the load-carrying capacity in the case of shear failure. The 
diagonal tension failure is completely disregarded due to its non-relevance to the studied object on the thesis.  
 
 

2.3. Shear Transfer Mechanism in Concrete Structures 
 
According to Deng, Yi, & Tang (2017), there are five recognized shear transfer mechanisms in concrete 
structures, as illustrated in Figure 2.6: shear stress in the uncracked compression zone, interfacial shear 
transfer by aggregate interlock, dowel action of the longitudinal reinforcement, arch action, and residual 
tensile stress. Residual tensile stress can be transmitted directly across cracks when the crack width is 
sufficiently small. In a specific case such as reinforced concrete beam without shear reinforcement, Huber & 
Kollegger (2014) indicated that the behaviour of the beam is governed by uncracked compression zone, 
aggregate interlock, and dowel action of the longitudinal reinforcement when subjected to shear.  
 

 

Figure 2.6 General Representation of Shear Mechanism 
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2.3.1 Aggregate Interlock 
 
Yang (2014) defined aggregate interlock as a relationship of shear stress and compressive normal stress to 
the normal and tangential displacement along the crack respectively. The significance of aggregate interlock 
is still questionable as there are several different opinions regarding this. According to An, Maekawa, & 
Okamura (1997), aggregate interlocking contributes a non-significant resistance for beams larger than 1 m. 
This opinion is elaborated more by Sato, Tadokoro, & Ueda (2004), where it is clarified that the shear 
resistance from aggregate interlock is negligibly small for reinforced concrete beams without shear 

reinforcement ( )/ 2.69a d = , due to its inability to generate aggregate interlock mechanism after the 

occurrence of the flexural shear crack. However, the aggregate interlock mechanism can be expected to 

happen on deep reinforced concrete beams without shear reinforcement ( )/ 1.76a d = .  

 
However, the experiment performed by Deng, Yi, & Tang (2017) produced different results, where aggregate 
interlock is said to contribute significant shear resistance for reinforced concrete beams ( / 2.2a d =  and 

/ 3a d = ), especially for beams without shear reinforcement. In this experiment, it was also mentioned that 

even though the maximum aggregate size does not affect the concrete tensile strength significantly, but it is 
proven to be able to improve the shear resistance of a reinforced concrete beam without shear reinforcement. 
Yang (2014) also formulates the shear resistance based on the aggregate interlock capacity, which resulted 
in high accuracy on the prediction of shear resistance over a large range of beam size.  
 
The increase of maximum aggregate size up to 40 mm leads to higher shear resistance due to the 
improvement of interlocking action on the crack surface. The maximum aggregate size effect on shear 
resistance can be incorporated into numerical simulation by modifying the fracture energy according to the 

aggregate size 0.7

F d cG a f= . Further increase in the maximum aggregate size would reduce the shear 

resistance.  
 

2.3.2 Dowel Action 
 
Walraven (1980) defined dowel action as the capacity of reinforcement to transfer force perpendicular to the 
bar axis, which would make this effect depends on the construction circumstances. Yang (2014) gives a more 
specific definition for dowel action in reinforced concrete beam, which is a differential tangential displacement 
in the concrete crack plane, resulted from the interaction between reinforcement and concrete.  
 
The phenomenon of dowel action can be described as following: when a bar embedded in concrete is 
subjected to load perpendicular to its axis, the load would induce tensile stress on the concrete below the bar 
along the load axis and perpendicular to the load axis. The load and the dowel force are illustrated in Figure 
2.7. 
 

 

Figure 2.7 Illustration of Vertical Load on Steel Bar 
Source: (Walraven, 1980) 

 ψ is the force axis angle. 
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The load is proportionally divided into 34.4% on the load axis and 63.7% perpendicular to the load axis. When 
the concrete tensile strength is reached on the load axis, a crack will form and cause a change in the load-
carrying system. When this occurs, there is one out of two phenomena that could happen (illustrated in Figure 
2.8):  

• Stress redistribution occurs on the concrete below the bar and cracks propagation continues slowly 
as the load increase, which in turns gradually decrease the stiffness until it reached the ultimate load. 
This phenomenon is indicated as the crushing failure mode of the dowel. 

• No stress redistribution due to insufficient strength and area of the concrete below the bar and crack 
progression continue aggressively, which in turn decrease the load capacity of the structure. This 
phenomenon is indicated as the splitting failure mode of the dowel.  

 

 

Figure 2.8 Failure Modes of Dowel 

Source: (Pruijssers, 1988) 

 
Based on the previous description, it can be said that dowel action can be estimated based on the stress 
around the bar, dowel force and the effect of tensile crack formation. In beams without shear reinforcement, 
the stress redistribution is usually not possible due to the small concrete area below the bars, which is 
insufficient to create an equilibrium with the dowel force and therefore cause the splitting failure to occur. 
 
Sarkhosh, Uijl, Braam, & Walraven (2010) indicated that the contribution of dowel action can be significant if 
other mechanism contributions are relatively small, for example, the case of beams with a small amount of 
web reinforcement or post-peak loading stage. Yang (2014) stated that the effect of dowel action is more 
dominant and can be observed by observing shallow beam in size effect tests on the smallest specimens 
which reported by Kani (1967), Bažant & Kazemi (1991), and Collins & Kuchma (1999).  
 

2.3.3 Contribution of Individual Shear Mechanism to Total Shear Resistance 
 
The contribution of each shear transfer mechanism can be represented based on the response curve of the 
reinforced concrete subjected to shear. According to Tran (2020), the response can be explained in three 
stages as indicated in Figure 2.9. The first stage is the uncracked state, where no aggregate interlock, residual 
tensile stress and dowel action take place and the stress is distributed parabolically.  
 
The second stage is the crack state where shear cracks have not reached the neutral axis. The stress is 
distributed parabolically on the uncracked zone with maximum value on the neutral axis and the stress 
decrease on the crack zone with respect to the crack width. In this stage, residual tensile stress, aggregate 
interlock and a minor dowel action exist. Yang (2014) stated that as the crack width increase, the dowel action 
contribution will reach a plateau while aggregate interlock contribution will decrease. These contributions are 
dependent on the shape of the crack, which correlated with the /a d  ratio. 

 
The third stage is the critical shear crack that develops in the compression zone where arch action, residual 
tensile stresses, aggregate interlock, and dowel action exists and the stress is distributed parabolically only 
on the uncracked zone. Point B and C, which is indicated in Figure 2.9, are often overlap for normal reinforced 
concrete without shear reinforcement and without prestressing.  
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Figure 2.9 General Response Curve of Reinforced Concrete Beam with Shear Failure 

Source: (Tran, 2020) 

 
The response of a reinforced concrete beam with shear failure could be categorized further according to 
Fisker & Hagsten (2016). The response is categorized based on the major shear resistance mechanism, 
which related to the shear slenderness of the beam. There are two categories of shear slenderness, / 2.5a d   

and / 2.5a d  , which illustrated in Figure 2.10. Shear in beams with / 2.5a d   is resisted with the strut and 

tie action within the beam, which resulted in a stable crack formation on the beams.  
 
Shear in beams with / 2.5a d   is majorly resisted with several mechanisms such as aggregate interlock, 

residual tensile stresses in cracks and dowel action. These mechanisms interact with the stress transfer within 
the compression zone, which results in an unstable crack formation on the beams. The sudden propagation 
of existing flexural shear crack into the compressive zone usually triggers the failure of the beams. Beams 
with / 2.5a d   can be referred to as deep/short beams while beams with / 2.5a d   can be referred to as 

slender beams.  
 

 

Figure 2.10 Slenderness Influence on the Shear Strength (Left) and Common Shear Failure Crack Pattern 
on Beams (Right) 

Source: (Fisker & Hagsten, 2016) 
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2.4. Interpretation of Shear Transfer Mechanism in Finite Element Analysis 
 
In the process of creating a mechanical model for concrete structure, material nonlinearity plays a significant 
role in NLFEA. Material properties determine the resistance level of a structure. In concrete structures, there 
are two materials used, concrete for the cross-section of the structure and steel for reinforcement of the 
structure. A plain concrete material exhibits different non-linear behaviour when subjected to compression 
and/or tension. On the other hand, steel has similar behaviour when subjected to compression and/or tension. 
Moreover, combining concrete and steel also means that there would be an interface between them and a 
combined action such as dowel action could occur.  
 
These forms of resistance must be considered when making a model in order to be able to create a realistic 
and reasonable mechanical model in order to get a reliable result. Material properties often represented with 
constitutive relation in structural mechanics. This is also used in the mechanical model of finite element 
analysis where material nonlinearity is incorporated by creating a constitutive model based on experimental 
results. The suitable constitutive model can be known from literature and related papers. This thesis will 
mainly refer to the Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & 
Roosen, 2020).  
 

2.4.1 Concrete Cracks Determination 
 
For concrete material, the damage occurring on it can be seen based on cracks. Cracks are formed due to 
softening process that resulted in geometrical discontinuity (Rots & Blaauwendraad, 1989). According to 
Teshome (2019), the formation and propagation of cracks in reinforced concrete without shear reinforcement 
are crucial when defining the resistance with NLFEA, which makes concrete properties is governing the 
process of shear failure in reinforced concrete without shear reinforcement.  
 
In NLFEA, there are two types of commonly used cracking models, discrete cracking and smeared cracking. 
Discrete cracking model crack as a displacement continuity on the structure by using interface elements to 
separate the element into two (Borst & Nauta, 1985). The discrete model of splitting tensile crack and shear 
crack can be used to model the size effect of flexural shear failure on reinforced concrete beams without 
shear reinforcement (Sato, Tadokoro, & Ueda, 2004). However, this concept is strongly related to the 
prediction accuracy of the crack location on the structure (Rots & Blaauwendraad, 1989).  
 
Smeared cracking model crack as a part of continuum element which happens due to change in stress-strain 
state on the element (Borst & Nauta, 1985). This concept is contradicting with the fact that crack is a 
geometrical discontinuity, which causes no stress relaxation on the surrounding element after the element is 
fully cracked, which called as stress locking phenomenon (Rots & Blaauwendraad, 1989). In this thesis, the 
focus would be on predicting a precise (high accuracy) crack pattern and location on the structure with the 
use of the smeared cracking model. The smeared cracking can be categorized into two types, fixed and 
rotating smeared crack.  
 
Fixed smeared crack is created based on a reference to fixed principal axes on the normal direction (n-dir) of 
the crack (mode 1) and tangential direction (s,t-dir) of the crack (mode 2 and 3). Mode 1 correspond to tension 
stress transfer and mode 2 correspond to debonding and interlock stress. The principal axes are determined 
at the first formation of cracks with reference to the principal stress. After the first formation of the crack, no 
angle change on the principal axes of the element will be imposed. The stress-strain relation for fixed smeared 
crack is expressed mathematically in equations (2.1) and (2.2). (Rots & Blaauwendraad, 1989) 
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When the crack is initiated, both young’s modulus ( )E  and shear modulus ( )G  will be reduced by introducing 

a reduction factor on the modulus. The young’s modulus reduction factor ( )  is calculated from the softening 

behaviour of concrete and the shear modulus reduction factor ( )  is determined as an additional input in 

material nonlinearity, which often called shear stiffness reduction or shear retention factor. The shear 
retention factors are not dependent on the concrete strength according to Walraven (1980). 
 
According to Huber & Kollegger (2014), the shear retention factor for fixed crack can be determined as 
constant and variable. The constant shear retention factor can be calculated based on the crack normal 
stiffness of the tension softening curve. It was mentioned by Khalfallah, Charif, & Naimi (2004) that the use 

of 0 =  should be avoided as it would create an over-stiff behaviour on the load-displacement curve for over-

reinforced concrete. The use of the 1   should produce satisfactory results for under-reinforced concrete. 

Khalfallah, Charif, & Naimi (2004) recommended the use of an average value of 0.4 to be used for the constant 
shear retention factor for all cases.  
 
The variable shear retention factor is calculated based on the change in strain normal to the crack. The 
variable shear retention can be modelled based on several options, such as damage-based and aggregate 
size-based. As explained by de Putter (2020), the fixed crack model with damage-based model the aggregate 
interlock based on the change in strain normal to the crack. The fixed crack model with aggregate size-based 
model aggregate interlock by using linear relation of reduction factor of shear modulus from 1 at the crack 
opening to 0 at crack width equal to half of the mean aggregate size. In the work of Teshome (2019), the fixed 
crack model with damage-based and aggregate size-based shear retention would generally produce 
overestimation on the ultimate load. However, more problems are found with aggregate size-based where it 
could not predict shear and mixed-mode failure. Furthermore, the fixed crack model with aggregate size-
based produces stiffer predictions compared to the experiment in 8 out of 9 cases. This happened because 
a fixed crack model with aggregate size-based overestimates the shear stiffness of the cracked plane, which 
slows down and delays the formation of flexural shear crack. On the other hand, the damage-based showed 
better results compared to aggregate size-based where it could predict the correct failure mode on 7 out of 9 
experiments. The use of the correct shear retention factor would greatly influence the failure load only on 
beams with shear failure / 2.5a d   according to Balakrishnan & Murray (1986). When comparing two types 

of shear retention factors, Huber & Kollegger (2014) found that the variable shear retention factor gives more 
reliable results compared to the constant shear retention factor for a fixed crack model. 
 
The influence of shear retention factor in stress-strain relation can be expressed mathematically for 2D case 
in equation (2.3) (Rots & Blaauwendraad, 1989) 
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The strain vector in the equation (2.3) indicates the total strain on the element, consist of crack strain and 
strain on the material. In order to incorporate particular crack laws which usually start from the definition of 
crack strain, the total strain is decomposed into 2 parts, crack strain and material strain. This concept is called 
fixed single crack or fixed crack. According to Borst & Nauta (1985), the problem with the fixed crack model 
is the possibility of excessive rotation of principal axes due to high shear stress on the crack, which would 
affect the numerical results. It was also mentioned by Rots & Blaauwendraad (1989) that the use of a fixed 
single crack will cause over stiff behaviour and can be eliminated by applying the shear softening function 
explicitly with the crack model. It was suggested to use a reduction factor equal to 0 when ultimate crack 
strain is reached. Little to no shear retention should be used for the fixed crack model to avoid excessive 
stress locking. 
 
Another way to solve the problem is by implementing the decomposition concept even further on the crack 
strain by assuming that the crack strain is a summation of several multi-directional cracks occurring 
simultaneously on a sampling point. This extended concept of fixed single crack is called fixed multi-
directional crack. (Rots & Blaauwendraad, 1989) 
 
The process of initiation of a new crack, closing of an open crack and re-opening a closed crack is called a 
state change. A state change on one of the cracks becomes important in fixed multi-directional cracks 
because it could affect other cracks state change. Multiple state change on one strain increment is handled 
by tracing and handling the most critical state change first and postponed other cracks state change for the 
next strain increment.  
 
This cause inconsistencies because postponing a crack state change would result in negative crack normal 
strain, which is physically meaningless. However, the fixed multi-directional crack is essential to implement 
due to the possibility of biaxial and triaxial tension on the element, in axisymmetric case, and plane-strain 
analysis. The use of different types of stress transfer models between modes 1, 2, and 3 in the fixed smeared 
crack is also possible. Furthermore, in the condition where the element is subjected to tension and shear, 
non-orthogonal cracks could be formed where a new crack will form when the angle of inclination between 
the existing crack(s) and the principal stress exceeds a certain threshold angle. A shear retention factor 
almost equal to 0 is recommended for a fixed smeared crack with a threshold angle of 60°. All formed cracks 
are monitored and recorded separately. The concept of fixed multi-directional crack is used as a base for 
rotating smeared cracks. (Rots & Blaauwendraad, 1989) 
 
Rotating smeared crack is created based on rotating principal axes with reference to principal stress direction. 
It is assumed that the angle of principal stress rotation and principal strain rotation are equal, which called 
coaxiality. The stress-strain relation for rotating smeared crack is expressed mathematically in equation (2.4). 
(Rots & Blaauwendraad, 1989) 
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In this type of crack model, a new crack will be formed every time the angle of principal direction changes. 
Furthermore, a new crack will also trigger the inactivation of the previous cracks which cause every new crack 
is unique to its loading phase. The previous defects will be accounted for in the stress-strain relation and the 
formula of overall shear modulus will ensure coaxiality on the crack model. The rotating cracks can be 
conceived as a collection of several fixed cracks on different angle orientations. Strain decomposition also 
applied to this crack model in order to separate the crack strain and material strain.  
 
The advantage of using the rotating crack model is that no specific shear transfer stress model is needed to 
be included in the model, which simplifies the model. Furthermore, according to Borst & Nauta (1985), the 
smeared crack model can be used to predict the position of dominant shear crack on shear failure with high 
accuracy. In Rots & Blaauwendraad (1989) experiment with the cracks model, it was also found that the over-
stiff behaviour (on the model with fixed single crack) did not occur on the model with rotating crack, which 
makes it more acceptable. This is also found by Teshome (2019), where the use of the crack rotation concept 
is essential to create explicit shear softening and shear-normal coupling of the fixed single crack which could 
correctly display the strength degradation in the lateral direction. The use of a rotating crack model could 
produce a more accurate ultimate load even in combination with embedded reinforcement and less prone to 
stress locking compared to a fixed single crack model. Furthermore, according to de Putter (2020), the rotating 
crack model is the most suitable to model compressive shear and bending failure while the fixed crack model 
is the most suitable to model flexural shear failure. 
 
On the other hand, there are some disadvantages to the model, such as the uniqueness of the crack, crack 
propagation bias, the simplicity of the model itself. The uniqueness of cracks on every loading phase can be 
interpreted as memory loss of damage orientation where old cracks cannot be reactivated in the later loading 
phase. This could pose a problem when non-proportional loading is applied which could cause a sudden shift 
of principal direction. The crack propagation with rotating crack is more influenced by directional bias (a 
phenomenon where crack propagates along the mesh line) compared to fixed single crack. Different types of 
stress transfer models in rotating crack could be used with reference to mode 1, as there are no shear stresses 
in the principal direction. The use of different shear stress transfer models must be done indirectly, such as 
modifying the tension stress transfer model of mode 1, which could cause unexpected incompatibility and 
error on the crack model. Furthermore, Huber & Kollegger (2014) found that even though the use of the fixed 
crack model resulted in great overestimation both in load resistance and midspan deflection, the response of 
FEM still better compared to FEM with rotating crack model. FEM with rotating crack model gives too soft 
response after cracking, which resulted in as lower load resistance and lower midspan deflection. Huber & 
Kollegger (2014) suggested that the overestimation of load resistance can be caused by increased shear 
stiffness due to smaller crack widths in numerical results. No considerations of dowel action and un-cracked 
compression zone are done in the respective numerical experiment. A brief description of the FEM 
configuration is given as follow. The failure criterion used on the FEM is the biaxial failure criterion for the 
concrete failure. The concrete tension softening is modelled with the Hordijk curve and the parabolic curve is 
used to model concrete compressive behaviour. The concrete stress interactions are modelled with the 
Vecchio and Collins model (1982) for the relation of compression-tension beha iour and Kupfer’s model for 
compression-compression and tension-tension behaviour.  
 
Based on the recent works with the rotating crack model, there are some problems found on its use to model 
shear failure on beams without shear reinforcement. Teshome (2019) stated that a rotating crack model with 
embedded reinforcement prone to always produce delamination failure. The use of bond-slip reinforcement 
avoids the delamination problem and resulted in the correct failure mode. However, the use of the fixed crack 
model with damage-based still produces a better prediction of the failure mode due to its compatibility of the 
assumption and nature of the crack where the concrete crack is fixed at the same location and orientation 
and does not vanish or rotate based on the direction of the principal plane.  
 
This problem also found by de Putter (2020) where for shear slenderness of 2.5-4, the failure mode is 
commonly mispredicted in combination with over-prediction of failure load with rotating crack model for beams 
without shear reinforcement due to over-rotation of the crack strain. The use of the rotating-to-fixed model or 
manual interpretation could help solve this problem. 
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Another problem is mentioned by de Putter (2020) where the use of the rotating crack model gives consistent 
over-prediction on the failure load for beams without and with shear reinforcement. It shows a large scatter 
on the result and over-prediction of almost equal to 2 times the experimental failure load. The over-predictions 
can be solved by creating two models for each crack model and using the lowest failure load as the outcome 
for beams without shear reinforcement.  
 
In this thesis, both fixed and rotating crack models will be used to investigate the size effect because the fixed 
crack model could give higher precision on the results, while the rotating crack model is widely applied on 
NLFEA of concrete structures.  
 

2.4.2 Concrete Compressive Behaviour 
 
Concrete compressive behaviour is characterized by its compressive strength and the compression softening 
curve. Balakrishnan & Murray (1986) stated that the influence of the compressive stress-strain relationship is 
little to none on beams that fail in shear with / 2.5a d  . However, a subsequent study by Balakrishnan, Elwi, 

& Murray (1988) showed that the inclusion of compression softening is important in reinforced concrete beams 
without shear reinforcement with / 4a d   . This means that the influence of the compressive stress-strain 

relationship is not significant only for beams that fail in shear with shear slenderness between 2.5 and 4.  
 

2.4.3 Concrete Tensile Behaviour 
 
Concrete tensile behaviour is characterized by its tensile strength and tensile softening curve. Balakrishnan 
& Murray (1986) stated that tensile strength would influence the result of NLFEA. However, the influence of 
tensile strength to the failure load decrease as the shear span to depth ratio increase. 
 
According to Khalfallah, Charif, & Naimi (2004), tension softening is an important feature that needs to be 
incorporated in the numerical model for reinforced concrete beams, especially for under-reinforced beams. 
The absence of tension softening behaviour would produce more mesh dependent results. This is proven by 
comparing models with the tension cut-off model against tension linear softening. The use of the tension 
linear softening model is less dependent on mesh size and can be mesh independent if the mesh size is 

smaller than 7 ga  or roughly equal to 178 mm. In the specific case, such as reinforced concrete beam without 

shear reinforcement, Balakrishnan & Murray (1986) stated that the influence of tension softening is significant 
for small beams which fail in shear with / 2.5a d  . 

 
Both statements are verified by Huber & Kollegger (2014), where they indicated that the simulation of shear 
behaviour of slender reinforced concrete beams without shear reinforcement is greatly affected by the tension 
softening behaviour and shear stiffness of cracked concrete assigned on the model. Broujerdian & Kazemi 
(2016) mentioned that the absence of tension strength will result in overestimation of the post-cracking 
deformation of the reinforced concrete, which also verifies Khalfallah, Charif, & Naimi (2004) statement 
regarding tension softening importance in NLFEA models.  
 

2.4.4 Concrete Stress Interaction Behaviour 
 
Concrete biaxial stress interactions such as compression-tension (reduction of compressive strength), 
compression-compression (confinement effect), tension-tension are not discussed in detail in any paper 
related to shear failure of reinforced concrete beams without shear reinforcement. Several papers only 
indicated what models of interaction are used on their NLFEA models, such as the works of Sato, Tadokoro, 
& Ueda (2004), Tavio (2008), Huber & Kollegger (2014), Broujerdian & Kazemi (2016), Ismail, Guadagnini, & 
Pilakoutas (2016), and de Putter (2020). The interaction models used by Sato, Tadokoro, & Ueda (2004) and 
Huber & Kollegger (2014) are described briefly in subchapters 2.4.5 and 2.4.1 respectively. All other 
interaction models can be seen in subchapter 3.3.  
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2.4.5 Reinforcement Behaviour 
 
According to Channakeshava & Iyengar (1988), reinforcement can be modelled with three options. First, the 
reinforcement is modelled with discrete bar/beam element in combination with bond-slip model connected to 
the node of the beam on finite element model. According to de Putter (2020), the use of either truss or beam 
element does not give a significant difference in the ultimate load prediction and variation on average. Second, 
the reinforcement is modelled as a bar which is embedded within the concrete element on the finite element 
model to enforce displacement compatibility by interpolation and transformation. Third, the reinforcement is 
modelled as a composite material consisting of steel and concrete properties, which is useful for structures 
with distributed reinforcement along with the geometry. The second and third options cannot be used to model 
bond-slip behaviour on the interface between reinforcement and concrete. Yang (2014) indicated that in most 
cases with flexural shear failure, the rebars in a concrete beam are in the linear elastic stage. 
 
The modelling of reinforcement as a composite material can be done by using the tension stiffening model 
and shear stiffening model based on An, Maekawa, & Okamura (1997). The models are constructed with 
equation (2.5). The tension stiffening model illustrated in Figure 2.11 (a) is constructed based on tension 
softening of cracked concrete and bond-slip of reinforcement to concrete. The shear stiffening model 
illustrated in Figure 2.11 (b) is constructed based on the contact density idealization and exclude the elastic 
deformation at the contact crack plane. The effective area of the composite material can be assumed as the 
effective embedment zone on the concrete which usually given as a function of reinforcement bar diameter. 
This model is not dependent on the mesh size of the structure.  
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Figure 2.11 (a) Tension Stiffening Model and (b) Shear Stiffening Model for Concrete in Reinforced Zone 

Source: (An, Maekawa, & Okamura, 1997) 

 
Broujerdian & Kazemi (2016) used smeared reinforcement in their paper and for the case of reinforced 
concrete without shear reinforcement, the load-displacement curve of the numerical results fit nicely with the 
experimental results, resulted in a small range of error from -10% to +4% (based on 3 samples). Furthermore, 
the crack pattern of numerical and experimental results is also similar.  
 
However, according to Sato, Tadokoro, & Ueda (2004), using smeared reinforcement model for simulating 
flexural shear failure gives unacceptable results. In Sato, Tadokoro, & Ueda (2004) works, the crack on the 
reinforced concrete beam is modelled with the smeared crack model. The Maekawa model is adopted for the 
stress-strain relationship before cracking because the experimental observation on the stress-strain relation 
fits with this model. Niwa’s model, Kupfer’s model, and Aoyanagi and Yamada’s model are used for the 
relation of compression-tension, compression-compression and tension-tension behaviour respectively. The 
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tension softening curve of Reinhardt (1986) (equivalent to Hordijk tension softening curve) with secant-
stiffness for unloading is used for the tension strength behaviour for unreinforced concrete element and 
tension softening curve of Tamai (1998) is used for reinforced concrete element, which implicitly indicates 
smeared reinforcement model is used.  
 
The numerical model produced results with higher tensile strain compared to experimental results, which in 
return cause higher shear stress transfer on the model. This indicated that the results of NLFEA for flexural 
shear failure would greatly be affected by the shear retention factor for FEM with smeared reinforcement 
model. Furthermore, it is also mentioned that this FEM configuration cannot be used to produce accurate 
results of deformation at shear crack because the crack model does not include local deformation and fracture 
of dowel action. As a result, the FEM is overestimating the shear stiffness. This overestimation also connected 
indirectly to the incompatibility of the used assumption on the crack model, where Mode 1 and Mode 2 
deformation are assumed to happen simultaneously while it is not the case for flexural shear failure. 
 

2.4.6 Concrete-Reinforcement (Bond-Slip) Interaction Behaviour  
 
The use of bond-slip relationship in beams for beams with / 2.5a d   would reduce the failure load due to 

larger crack strains, which in turn cause higher shear stiffness reduction. When simulating reinforced concrete 
beams without shear reinforcement, the use of the bond-slip model is critical for shear slenderness between 
2.5 and 4, according to Balakrishnan, Elwi, & Murray (1988) and Balakrishnan & Murray (1986). The use of 
bond-slip relationship in beams would reduce the failure load due to larger crack strains formation, which in 
turn cause higher shear stiffness reduction. The significance of using the bond-slip model is further explained 
in the work of Teshome (2019) and confirmed by de Putter (2020). The use of embedded reinforcement would 
mean that the relative displacement (slip) between concrete and reinforcement is considered as longitudinal 
strain, thus increasing the crack strain of the concrete. These cause problem when combined with rotating 
crack model where the longitudinal strain cause change in crack orientation to align in the longitudinal 
direction, thus makes the model always creating delamination failure. 
 
Bond-slip behaviour can be modelled based on the Shima curve and FIB Model 2010. The Shima curve is a 
bond-slip model with relation to bar diameter and concrete strength. Shima curve has a higher bond stress 
capacity compared to FIB Model 2010 where a steep drop is given for concrete without confinement. De 
Putter (2020) mentioned that the steep drop is in accordance with the brittle nature of splitting failure but 
numerically more challenging, as would be more prone to convergence problem.  
 
Based on de Putter (2020) works, the use of the FIB MC2010 bond-slip model in combination with the fixed 
(damage based) crack model gives the most consistent results (variation of 12% on the result) for reinforced 
concrete without shear reinforcement compared to embedded and Shima. On the other hand, the use of the 
Shima bond-slip model in combination with the rotating crack model gives the most consistent results 
(variation of 20% on the result) for reinforced concrete without shear reinforcement compared to embedded 
and FIB MC2010.  
 

2.4.7 Relation to Shear Transfer Mechanism  
 
According to Pruijssers (1988), the aggregate interlock is interpreted as tensile fracture of the concrete, where 
the development of small micro-cracks is defined based on the tension softening model. The stiffness of the 
element would greatly reduce as small micro-cracks began to appear. Two parameters are used to define 
this phenomenon: the descending branch stiffness on the tension softening model and the normal retention 
factor. Descending branch stiffness is used to clearly describe the increment on the stress-strain relation of 
a partially cracked element. The normal retention factor (or commonly known as the shear retention factor) is 
used to reduce the elastic modulus of the concrete. This concept is applied to the fixed crack model. The 
descending branch stiffness could also be expressed as a function related to the normal retention factor, 
which is used as a background for the rotating crack model. Both parameters are non-real parameters 
because it is derived based on experimental observation. 
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This interpretation of aggregate interlock also mentioned by Borst & Nauta (1985) and Channakeshava & 
Iyengar (1988) where aggregate interlock can be modelled with a positive shear modulus of cracked concrete 
by employing shear retention factor.  
 
However, Borst & Nauta (1985) mentioned that the shear retention factor is also used to model the dowel 
action. A different opinion is given by Channakeshava & Iyengar (1988) where they stated that dowel action 
is not incorporated in the shear retention factor and modelled separately with normal stiffness of the bond-
slip elements. 
 
Pruijssers (1988) indicated that the dowel action mechanism is based on the response of bars and 
surrounding concrete due to lateral bar displacement. In the case of dowel action in bars perpendicular to the 
crack plane, the dowel action is a combination of resistance based on axial and lateral stiffness of the bars. 
Axial stiffness is based on the bond between steel and concrete. Lateral stiffness is based on the reaction 
stresses from concrete around the bar.  
 
Dowel action can be modelled with the combination of 3 independent elements: steel bar element, bond 
element between bar and concrete, and the plain concrete element where slip between steel and concrete 
could happen. However, the modelling of the dowel action mechanism is strongly related to the bar elements 
described in the numerical program. Furthermore, Sarkhosh, Uijl, Braam, & Walraven (2010) indicated that a 
very fine mesh must be introduced to consider the concrete cover which would result in a huge number of 
elements. 
 
On the other hand, Tavio (2008) indicated that smeared cracks model is unable to model any shear transfer 
mechanism discretely. Smeared cracks model only gives average responses on each element without 
considering the specific contributions of the individual mechanical effects, such as the aggregate interlock 
and dowel action at the crack location.  
 
 

2.5. Summary 
 
The reinforced concrete beams without shear reinforcement will be modelled with both crack models (fixed 
and rotating), as both crack models have different pros and cons, which can be very useful to create an 
acceptable model for a reinforced concrete beam without shear reinforcement. Several key parameters such 
as concrete tension softening, discrete model of reinforcement, and bond-slip interaction model will be 
included in the numerical models. However, further study is done in order to determine which components 
are necessary to be modelled in order to avoid complications on the model and large computational time. The 
use of the composite material model for reinforcement explained in subchapter 2.4.5 is served as an option 
in case the discrete reinforcement model is not suitable for simulating shear failure in NLFEA. The general 
representation of the mechanical model in NLFEA for modelling concrete structures is given in Figure 2.12. 
Its correlation to the shear transfer mechanism is illustrated in Figure 2.13.  
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Figure 2.12 General Representation of Mechanical Model in NLFEA 
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Figure 2.13 Mind Map of Interpretation of Shear Transfer Mechanism in NLFEA 
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3 Literature Review of Size Effect 

Phenomenon in Finite Element 

Analysis 
 
 
 
Size effect on the shear resistance of reinforced concrete beam without shear reinforcement is an old issue 
that engineers have been dealing with for a long time. Bazant, Ozbolt, & Eligehausen (Fracture Size Effect: 
Review of Evidence for Concrete Structures, 1994) provided the collected evidence regarding this problem in 
his paper. The term “size effect” is used in many available pieces of literature with different meanings and 
understanding. Subchapter 3.1 aims to give more insight on what is the meaning of this term and how many 
variations that this term has in the literature. At the end of subchapter 3.1, a brief description is given to clarify 
which meaning of both experimental and numerical size effect is used in this thesis. Afterwards, subchapters 
3.2.1 and 3.2.2 are describing the correlation between experimental size effect with structural geometry and 
material properties and constitutive model. Subchapter 3.2.1 specifically describes which are and are not the 
key parameters related to structural geometry. Subchapter 3.2.2 specifically describes the insights on how to 
calibrate material properties and constitutive model in order to account for experimental size effect on NLFEA. 
The study regarding numerical size effect and other problems of NLFEA are described in subchapter 3.3. 
Several insights related to how to solve these are also included in subchapter 3.3. In the end, subchapter 3.4 
gives information regarding the starting point for modelling in NLFEA that is going to be used in chapters 4, 
5 and 6.  
 
 

3.1. Definition of Size Effect and its Influence in Finite Element Analysis 
 
Tran (2020) indicates that the shear resistance of concrete structures is strongly dependent on the 
experimental size effect phenomenon. More specific dependency of shear resistance is given by Sarkhosh, 
Uijl, Braam, & Walraven (2010) where they indicated that the dominant parameters which influencing shear 
strength in beams without shear reinforcements are concrete strength, experimental size effect, span to depth 
ratio, longitudinal reinforcement ratio, and axial force. According to Syroka-Korol & Tejchman (2014), the 
experimental size effect can be defined as a decrement of both nominal structure resistance and material 
brittleness as the element size in tension increases, in which beams would become ductile on a small scale 
and brittle on a sufficiently large scale. Bazant, Ozbolt, & Eligehausen (Fracture Size Effect: Review of 
Evidence for Concrete Structures, 1994) stated that the experimental size effect on concrete structures must 
be considered for diagonal shear failure and torsional shear failure of longitudinally reinforced beams without 
stirrups, punching shear failure of slabs, pull-out failures of deformed bars and headed anchors, and failure 
of short and slender tied columns. 
 
The experimental size effect consists of two parts, statistical/stochastic size effect and energetic/deterministic 
size effect. The experimental size effect is formulated based on the combination of the statistical and energetic 
size effect and its relevance to the total depth of the concrete members. The statistical size effect can be 
explained by Weibull with the theory of random local material strength according to Bazant & Yu (Universal 
Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength, 2009). The statistical size 
effect can be determined empirically, which denotes the significancy of empirical factors to be incorporated 
in the formulation of the shear resistance model without shear reinforcement for reinforced concrete members.  
 
The energetic size effect, according to Tran (2020), can be defined as the dependency of material strength 
to the structure size, which can also be interpreted as a release of energy in cracks associated with material 
damage to failure. In order to determine the material failure, the decisive mechanism of failure (in this thesis 
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is flexural shear failure mode) and its location must be identified. There are several dominant mechanisms 
for resisting shear force, such as compression zone, tension zone, aggregate interlock, dowel action, and the 
interaction between each mechanism. The energetic size effect would affect the reinforced concrete beams 
without shear reinforcement where diagonal shear and tensile fracture occur as mentioned by (Syroka-Korol 
& Tejchman (2014). 
 
On the other hand, in Bazant & Yu (Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle 
Structure Strength, 2009) works, the categorization of the experimental size effect is slightly different, where 
the experimental size effect is divided into two types, Type I and Type II, as illustrated in Figure 3.1. Type I 
occurs on the structure that fails at the crack initiation from a smooth surface while Type II occurs on structure 
with a deep notch where crack can form stably before reaching failure.  
 
Type I size effect associated with both statistical and energetic size effect (Energetic-Statistical) while type II 
only associated with energetic size effect. The effect of statistical size effect is governing in the case where 
the total depth of the structure is large while the energetic size effect is governing when the total depth is 
small. 
 

 

Figure 3.1 Illustration of The Influence of Numerical Size Effect on Nominal Stress based  
on Fracture Mechanics: Type I (Left) and Type II (Right) 

Source: (Bazant & Yu, Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength, 2009) 

 
Another probable source of the experimental size effect is the aggregate size and its shape. However, the 
shear resistance had been proven to be independent of the maximum aggregate size and its shape by 
Fenwick & Paulay (1968). Furthermore, Fenwick & Paulay (1968) also indicated that the crack response to 
shear load is also independent of the load history and the crack opening path. 
 
In this thesis, the experimental size effect is correlated to the size change on the cross-section and length, 
which strongly correlates with the energetical size effect. Therefore, the statistical size effect is completely 
disregarded in this thesis.  
 
The numerical size effect is never mentioned explicitly in any papers. The numerical size effect is only 
implicitly referred to in An, Maekawa, & Okamura (1997), Cervenka V. , Cervenka, Pukl, & Sajdlova (2016), 
Choi & Kwak (1990), Shayanfar, Kheyroddin, & Mirza (1997), and Tavio (2008) as mesh dependency/mesh 
dependency/element size effect. These papers will be discussed more extensively in subchapter 3.2.1-3.3. 
However, the numerical size effect is also related to the convergence problem and numerical parameters that 
are defined in NLFEA. The problems related to the convergence and numerical parameters are mentioned 
by Choi & Kwak (1990) and Malm & Holmgren (2008). In this thesis, the numerical size effect is correlated to 
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the sensitivity of the numerical parameters, such as load step, error tolerance, the maximum number of 
iterations, and mesh size.  
 
 

3.2. Experimental Size Effect 
 
As mentioned in subchapter 3.1, the source of the experimental size effect is from the difference in the 
geometry, material properties and constitutive models. Several works of literature give some insight regarding 
what is found in the experimental results and their correlation to the experimental size effect. Furthermore, 
several different numerical configurations are also suggested to be used for including the experimental size 
effect in the NLFEA.  
 

3.2.1 Experimental Size Effect – Structure Geometry 
 
Structure geometry is considered as the source of the experimental size effect. As stated by Balakrishnan, 

Elwi, & Murray (1988), the shear failure is dependent on the shear slenderness ( )/a d . For reinforced 

concrete beams without shear reinforcement, flexural shear failure usually occurs for shear slenderness in 
the range of 2-2.5. Beams with / 2a d   will have a significant increase in shear resistance as the ratio 

continue to decrease. This statement is also given by Ismail, Guadagnini, & Pilakoutas (2016), which said 
that the important parameter for estimating shear resistance of reinforced concrete deep beam is shear 
slenderness and concrete strength. 
 
When a beam is loaded, the beam will certainly deform. The deformation consists of bending deformation 
and shear deformation. Based on Huang, et al. (2018), the shear deformation of the shear-critical reinforced 
concrete beam is negligible when the beam does not has shear reinforcement. However, in the case of a 
beam with shear reinforcement, the shear deformation must be considered.  
 
Based on Broujerdian & Kazemi (2016), reinforcement ratio will affect the average stress-strain relation of 
cracked concrete both in tension and compression. The use of bilinear uniaxial stress-strain without strain 
hardening for bare steel reinforcement would result in the overestimation of load resistance in analysing 
reinforced concrete. On the other hand, the reinforcement spacing will not affect the post-cracking behaviour 
of reinforced concrete.  
 

3.2.2 Experimental Size Effect – Material Properties and Constitutive Models 
 
Material properties and constitutive models are considered as a tool for calibrating the experimental size 
effect in NLFEA. Based on the explanation given in subchapter 2.5, the tensile strength could play a significant 
role to reduce the size effect. However, several studies, as mentioned in subchapter 2.4.3, raise doubts of its 
effectivity to include experimental size effect, because its influence on the results decrease as the /a d  ratio 

increase.  
 
On the other hand, according to An, Maekawa, & Okamura (1997), the experimental size effect has been 
included on numerical analysis in the constitutive models of the material: tensile stress transfer on the bond-
slip mechanism of reinforcement and strain softening of concrete tension and shear. The strain-softening of 
concrete tension and shear greatly influence the experimental size effect because these parameters indirectly 
represent the aggregate interlock mechanism and dowel action (in the case where the bond-slip mechanism 
is not included in the model). Both mechanisms greatly influence the inclusion of experimental size effect in 
numerical model.  
 
Several suggestions are given in some papers on how to account for the experimental size effect for 
simulating shear failure. Tavio (2008) suggested that the concrete is modelled with a custom tension softening 
curve, in combination with smeared cracks assumption with fixed crack direction. The reinforcement 
component is modelled with a bilinear strain hardening curve. The concrete stress interactions are modelled 
with Niwa’s model, Kupfer’s model, and Aoyanagi and Yamada’s model for the relation of compression-
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tension, compression-compression and tension-tension behaviour respectively. The custom tension softening 
curve can be constructed based on equation (3.1). The results in terms of stiffness are very similar to the 
experimental results, while the peak load is still over-estimated and the peak displacement is underestimated. 
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Broujerdian & Kazemi (2016) suggested that the use of interactive constitutive laws for concrete and 
reinforcement (or also known as smeared reinforcement) would help improve shear failure simulation results 
from NLFEA. The input for reinforcement behaviour is modelled with a trilinear strain hardening curve. The 
input for concrete compressive behaviour, which is also used for plain concrete, is modelled with a modified 
parabolic curve. The slip between reinforcement and concrete is not considered in the model. The FEM used 
smeared rotating crack approach in combination with secant-stiffness-based NLFEA. The interaction between 
concrete and reinforcement are implicitly modelled by using interactive constitutive laws where the stress-
strain relation is modified based on the concrete material characteristic and the existence of reinforcement. 
For the case of reinforced concrete without shear reinforcement, the load-displacement curve of the numerical 
results fit nicely with the experimental results, resulted in a small range of error from -10% to +4% (based on 
3 samples). Furthermore, the crack pattern of numerical and experimental results is also similar.  
 
According to Huber & Kollegger (2014) and Ismail, Guadagnini, & Pilakoutas (2016), the use of different 
failure criteria for concrete failure would help improve shear failure simulation results. Two options of failure 
criterion are explored by Ismail, Guadagnini, & Pilakoutas (2016), the nonlinear elastic damage-based 
approach SBETA model with biaxial failure criterion based on Kupfer criterion model and the combined 
fracture-plastic model with Rankine criterion for tensile fracture and three-parameter failure surface based on 
Menetrey-William criterion for concrete crushing. In general, the damaged plasticity model used the concept 
of isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity. The main 
failure mechanism of concrete is assumed to be tensile cracking and compression crushing. Huber & 
Kollegger (2014) found that the use of FEM with the combined fracture-plastic model gives better predictions 
compared to the SBETA model when simulating shear failure in terms of load resistance, deformation, crack 
pattern and failure mode. Furthermore, Huber & Kollegger (2014) suggested the use of tensile strength equal 

to 0.33t cf f= , which shows a better prediction of initial crack development with no significant influence on 

the load resistance. Another option to improve the results of NLFEA is using a shear factor of 10 for the 
combined fracture-plastic model, as it gives the most accurate results compared to SBETA models and other 
models with the combined-fracture model with other values of the shear factor. 
 
However, according to Ismail, Guadagnini, & Pilakoutas (2016), in the case of deep beams, the development 
of high shear stress and lateral tensile stress on the shear span of reinforced concrete deep beams are 
producing softer behaviour on the concrete compared to uniaxial stress condition. This effect reduces the 
overall stiffness of the beam and increases shear deformation, which cannot be estimated well by either the 
SBETA model or the combined fracture-plastic model.  
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3.3. Numerical Size Effect  
 
As mentioned in subchapter 3.1, the source of the numerical size effect is commonly known from the mesh 
size. The influence of load step, error tolerance, and iterations are often ignored as only a few works of 
literature mentioned this. Several works of literature have claimed to solve the problem related the mesh size 
dependency, while other sources claim that the solution is not able to solve this problem in other cases.  
 

3.3.1 Numerical Size Effect – Load Step, Error Tolerance and Iterations  
 
The numerical size effect is rarely correlated to the load step, error tolerance, and the maximum number of 
iterations, as it is considered not important. In Choi & Kwak (1990) works, the influence of numerical 
parameters such as load step and integration orders are considered not as significant as the influence of 
mesh size. Another literature that mentions this problem is the works of Malm & Holmgren (2008). It is 
implicitly mentioned that there is a problem related to the convergence where a common problem is found in 
the static analysis, where it is hard to reach convergence during the loading phase.  
 

3.3.2 Numerical Size Effect – Mesh Size 
 
The numerical size effect is closely related to mesh size dependency. When discussing mesh dependencies 
on NLFEA, according to Slobbe, Hendriks, & Rots (2013), it can be categorized into 2 categories, directional 
mesh bias and mesh size sensitivity. Directional mesh bias can be defined as the preference of strain 
localization to follow the mesh lines. Strain localization is a phenomenon of a sudden change from smooth 
strain patterns to a rapid increase in strain distributions on the localized band with a decrement of strain in 
the adjacent parts of the structure. In order to solve this problem, Bazant & Oh (Crack Band Theory for 
Fracture of Concrete, 1983) recommend using uniform square mesh for unknown crack path, because the 
element width is equal and would not introduce any bias due to favourable crack paths on the element. 
Balakrishnan & Murray (1986) gave a more precise range on the element aspect ratio, which should be 
between 1 and 2 to reduce the directional bias on the crack formation. In this thesis, this limitation of element 
aspect ratio will be considered because the problem with directional mesh bias will not be addressed and 
discussed further. 
 
Mesh size sensitivity is related to the sensitivity of the result to the change of used element size in the finite 
element model. Mesh size sensitivity should have been solved with crack band theory. According to Bazant 
& Oh (Crack Band Theory for Fracture of Concrete, 1983), the crack band theory can be applied for crack 
mode 1 in order to solve the problem with mesh dependencies. The use of crack bandwidth on the tension 

softening modulus can only be applied for element size less than 
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However, several papers still indicate problems with mesh size sensitivity. In Choi & Kwak (1990) works, the 
mesh size influences the load-displacement curve, especially post-cracking stage behaviour. In order to solve 
this problem, a modification is added to either the stress-strain curve of the reinforcement or adding a linear 
descending branch to the stress-strain curve of the concrete. This proves to solve the problem when 
combined with fixed crack with constant shear retention of 0.4 on beams with 900a =  mm; 300h =  mm; 

/ 3a d =  and 1800a =  mm; 500h =  mm; / 3.6a d = .  

 
This problem also came up in Shayanfar, Kheyroddin, & Mirza (1997) works where it was mentioned that 
mesh size influence not only the load-displacement curve, but also load-strain characteristic, crack pattern 
and the failure load. 2 specimens are studied in this paper: under-reinforced Beam A ( 900a =  mm; 270d =  

mm; / 3.33a d =  ; 300h =  mm) and over-reinforced Beam B ( 900a =  mm; 260d =  mm; / 3.46a d = ; 300h =  

mm). Variation on the mesh size in terms of element is employed to study this problem: 4 (450 x 300 mm) 
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 h , 20 (150 mm)  / 2h , 30 (125 mm)  / 3h , 80 (75 mm)  / 4h , 120 (60 mm)  / 5h , 320 (35 mm)  / 9h  

elements. As a result, a smaller mesh model produces a lower failure load in under-reinforced concrete with 
the overall response is influenced by mesh size. The change in overall response is caused by the rate of 
crack progression where it would decrease when the mesh size increase and in turns makes the structure 
has more energy dissipation capacity compared to smaller mesh size. In over-reinforced concrete, the failure 
loads are not significantly influenced by the mesh size due to its high ratio of tensile reinforcement. This 
reduces the influence of cracking on the material non-linearity of the concrete to the overall response. The 
problem can either be solved by changing the tensile strength or the ultimate strain. The results in the paper 
indicated that the influence of change in tensile strength is not as significant as the influence of change in 
ultimate strain. The ultimate strain can be modified based on the following expression to get a better result 

with linear strain-softening: 0.2
0.004 eleh

tu cre −
=  . 

 
Khalfallah, Charif, & Naimi (2004) also found a problem regarding mesh size sensitivity and recommend the 
use of a tension linear softening model in order to completely avoid mesh dependency. Khalfallah, Charif, & 
Naimi (2004) suggested that the use of the tension linear softening model would be mesh independent if the 

mesh size is smaller than 7 ga  (≈ 178 mm).  

 
Cervenka V., Cervenka, Pukl, & Sajdlova (2016) suggested another way to solve the mesh dependency 
problem, where the tension softening is modelled with the use of exponential function according to the Hordijk 
model. This still creates a problem regarding mesh size sensitivity. This is observed from comparison study 
of one specimen ( 250b =  mm; 4000h =  mm; 12000a =  mm; / 3.12a d = ) which is modelled with a variation 

on the mesh size of / 80h , / 40h , / 20h , and /10h . The mesh refinement cause increase in stiffness on the 

load-displacement curve due to the difference in cracked concrete contribution to the reinforcement stiffness, 
which strongly relates to concrete tension stiffening, where bigger mesh size has smaller reinforcement 
stiffness due to larger volume of cracked concrete. The influence of mesh size sensitivity is dependent on the 
crack path from strain localization of different mesh sizes and element types. The recommendation on optimal 

mesh size for strength prediction is 100 mm  / 40h  for linear square element and 200 mm  / 20h  for 

quadratic element. This is further proven by de Putter (2020) where the model uncertainty increases as the 
element size decrease on reinforced beams without shear reinforcement with rotating and fixed (damage 
based) crack model. The recommended mesh size is / 20h  with quadratic element, which is in line with the 

recommendation given by Cervenka V., Cervenka, Pukl, & Sajdlova (2016). It was also mentioned that the 
element size of 60 mm is too large to objectively model beams without shear reinforcement, which also 
indicates that minimum element size might be required to be specified. 
 
Another insight regarding this problem is also given by Cervenka & Laserna (2018), where the magnitude of 
the crack band in tension should also consider the spacing of reinforcement and element size. The use of a 
mechanical model of strain-softening to represent non-linear behaviour would have severe mesh dependency 
and a tendency of going to zero energy dissipation as the element size reduce. In order to reduce the mesh 
dependencies, limitations based on aggregate size and reinforcement spacing on the crack bandwidth could 
be applied to the model. In the element with tension stress, the crack bandwidth should be limited below the 

stirrup spacing cs (the typical range of 150-300 mm) and above 1.5 ga  (the typical range of 10-50 mm). 

 
Another suggestion regarding NLFEA in terms of computation time is given by Teshome (2019). In order to 
reduce computation time in NLFEA, Teshome (2019) suggested the use of a combination of big mesh with 
mesh refinement along the shear span, as it has been proven to give better prediction in terms of load-
displacement curve and failure mode compared to uniform big mesh.  
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3.4. Modelling Strategies for Size Dependencies Observation 
 
Several modelling strategies have been given in subchapter 3.2.2. However, the input of numerical 
parameters used in combination with the material and constitutive models are not defined clearly in these 
works of literature. Therefore, those modelling strategies are not used and remain an option in case the 
chosen modelling strategies encountered a problem where the failure mode cannot be simulated properly.  
 
The modelling strategies used as a starting point of this study is based on de Putter (2020) works. The 
recommended modelling strategies for beams without shear reinforcement (limited to 600h =  mm) are to use 

the mesh size of / 20h , a maximum of 100 iterations per step, include the FIB unconfined bond-slip model, 

and use convergence tolerance of 0.0001errG =  and 0.01errF =  which must be satisfied simultaneously. In de 

Putter (2020) works, the highest retained load in a converged load step can be assumed as the failure load. 
This strategy is chosen because all concrete properties and reinforcement are also modelled based on the 
Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020). These 
recommendations give results with a small error range from -18% to +2% for fixed crack and -13% to +5% 
for rotating crack (based on 101 samples). 
 
 

3.5. Summary 
 
The experimental size effect has been recognized as a constant phenomenon that always influences the 
beam shear strength. Several works of literature provide insight on how to account for and calibrate this effect 
on NLFEA, but no papers have been able to prove that their solution could work on a bigger variation of 
geometries. Furthermore, some papers results contradict each other, such as the use of other forms of tension 
softening curve and the use of smeared reinforcement. As there is no clear explanation can be found 
regarding how each component on NLFEA works and influence the results, an explicit numerical model will 
be used where all components will be modelled separately with details that are in line with the Guidelines for 
Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020). Furthermore, as this 
study focuses on observing the numerical size effect, the classification defined by Bazant & Yu (Universal 
Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength, 2009) regarding two types of 
experimental size effect will not be discussed further.  
 
As there is little information related to the problem of convergence and analysis configuration in NLFEA, this 
thesis will focus on investigating this problem. The investigation will be done for several factors that have not 
been specified in the Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & 
Roosen, 2020) will also be evaluated, such as load steps, error tolerance, and non-converged steps. This is 
also done to clarify the opinion given by Choi & Kwak (1990) regarding its non-significance influence on the 
results and help gives some insights to solve the problem implicitly mentioned by Malm & Holmgren (2008).  
 
The mesh size dependency problem has claimed to be solved by Bazant & Oh (Crack Band Theory for 
Fracture of Concrete, 1983). However, several papers still found the same problem even after applying the 
offered solution by Bazant & Oh (Crack Band Theory for Fracture of Concrete, 1983). Some papers give 
insights on how to minimize this effect, such as modifying fracture energy with ultimate tensile strain and 
defining limits on the mesh size. The limit of mesh size will be re-evaluated in order to see whether the current 
limit can be used to simulate shear failure in NLFEA. The modification of fracture energy will not be done as 
this could change the failure mechanism.  
 
In order to study all these problems, the modelling strategies of de Putter (2020) in subchapter 3.4 will be 
used as a starting point in this thesis, as it provides a small error range for both crack models based on a 
large range of samples. 
 
 
 



 
 

 
 

 



 
 

33 
 

4 Identification of Problem Related 

to Convergence 
 
 
 
The investigation of the numerical size effect begins with identifying the problem related to convergence. The 
problem related to the convergence is identified in this chapter. All details regarding the simulation in the 
NLFEA is specified in subchapter 4.1. In order to be able to evaluate the result of NLFEA and avoid a mistake 
in the modelling process, several types of verifications must be done. There are three components that are 
going to be verified in the result of NLFEA, the simulated elastic stiffness, the simulated first crack occurrence, 
and the convergence state of the steps in NLFEA. The verification of the first two components is done by 
comparing the simulated value to the analytical value. These verifications are done in subchapter 4.3. The 
verification of the convergence state is done by checking the status of convergencies in each step of the 
analysis and the simulated global behaviour in the load-displacement curve. The detail of this verification is 
given in subchapter 4.4. The verification of the convergence state has a problem that will be investigated 
further in chapter 5. In order to reduce the computational time, the number of elements and components 
should be reduced. The numerical model can be simplified by investigating the effect of simultaneous 
satisfaction of the convergence norms and the inclusion of top reinforcement, which are done in subchapters 
4.6 and 4.7. Subchapter 4.5 will gives an explanation regarding the simulated process of crack propagation 
in the reinforced concrete beam without shear reinforcement with flexural shear failure mode. This subchapter 
will be used as an aid for the study in subchapters 4.6 and 4.7 and chapters 5 and 6. It must be noted that 
any figure with a crack pattern, such as Figure 4.14, is only used to be studied qualitatively. The value of Ecw  

always indicates a range from uncracked element ( )0Ecw =  to fully cracked element ( ),t uEcw CW= . A fully 

cracked element is defined as an element which has lost all its fracture energy. The value of Ecw  should not 

be used as a reference for any study related to the experimental crack width because it does not consider 
the effect of localised reinforcement, which should have decreased the crack opening around the 
reinforcement.  
 
 

4.1. Experimental Set-Up for Convergence Problem Identification 
 
In order to be able to observe the influence of numerical size effect in NLFEA, the case study must be 
modelled with finite element analysis with a certain configuration and analyse with a certain procedure. Two 
beams are chosen for the study of numerical size effect, where both beams have comparable shear 

slenderness with a large difference in both shear span ( )a  and beam depth ( )d . Furthermore, both beams 

also have a significant difference in shear strength, which can be seen in Table 4.1. The configuration of the 
beams is illustrated in Figure 4.1. The red line in Figure 4.1 indicated the position of the reinforcement. All 
components of the beam are modelled explicitly, where the concrete, reinforcement, loading plate, support 
plate, and the interaction of each component are modelled separately. The geometries of the beams, 
reinforcement and loading and support plate are presented in detail in Table 4.2 and Table 4.3 respectively.  

Table 4.1 Beam Experimental Shear Strength 

Test Specimen uP   P  

A123A1 136.5 25 

H123A 445 17 

Dimension [kN] [mm] 

Source: (Koekkoek & Yang, 2016) and (Yang, Shear Behaviour of Deep RC Slab Strips (Beams) with Low 
Reinforcement Ratio, 2020) 
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Figure 4.1 Beam Configuration and the Boundary Conditions 
 

Table 4.2 Beam Geometry 

Test Specimen b   h   a   L   d   ( )/  /M Vd a d   ss   

A123A1 300 300 1000 5000 270 3.70 500 

H123A 300 1200 4500 9000 1150 3.91 500 

Dimension [mm] [mm] [mm] [mm] [mm] - [mm] 

Source: (Koekkoek & Yang, 2016) and (Yang, Shear Behaviour of Deep RC Slab Strips (Beams) with Low 
Reinforcement Ratio, 2020) 

 

Table 4.3 Reinforcement and Plate Geometry 

Test 
Specimen 

Top Rebar 
Config. 

Btm Rebar 
Config. l   pb   pL   ph   

A123A1 3 20Ø   3 20Ø   1.16 300 100 10 

H123A 2 20Ø   ( )8 *25 2Ø L   1.14 300 100 10 

Dimension - - [%] [mm] [mm] [mm] 

Source: (Koekkoek & Yang, 2016) and (Yang, Shear Behaviour of Deep RC Slab Strips (Beams) with Low 
Reinforcement Ratio, 2020) 

* ( )2L : 2 layer of reinforcement 

All models would only consider physical non-linear effects. The material properties are derived based on 
Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020). All non-
linear material properties for concrete are calculated based on available experimental data of mean concrete 
compressive strength. For the case of reinforcement, the experimental data of yield strength and ultimate 
strength are used. These experimental data are referred to as primary material properties and all derived 
properties are referred to as secondary material properties. The primary material properties are shown in 
Table 4.4. The secondary material properties for concrete and reinforcement are shown in Table 4.5 and 
Table 4.6 respectively. These properties are used for constructing the constitutive model in the numerical 
model. All constitutive models are chosen based on the recommendation given in Guidelines for Nonlinear 
Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020) in combination with the modelling 
strategies of de Putter (2020). Figure 4.2 and Figure 4.3 gives an illustration of the constitutive model for 
concrete and reinforcement respectively.  

Table 4.4 Primary Material Properties 

Test Specimen ckf   ykf   
tkf   

cSW   
sSW   plSW   

A123A1 56.94 550 613 23.9 78.5 0 

H123A 60.05 550 613 23.9 78.5 0 

Dimension [MPa] [MPa] [MPa] [kN/m3] [kN/m3] [kN/m3] 

Source: (Koekkoek & Yang, 2016) and (Yang, Shear Behaviour of Deep RC Slab Strips (Beams) with Low 
Reinforcement Ratio, 2020) 
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Table 4.5 Concrete Secondary Material Properties 

Test Specimen cmE   
c   

ctmf   
FkG   

CkG   ,min   

A123A1 38564.21 0.2 4.270011 0.11 33.92 0.4 

H123A 39108.81 0.2 4.35615 0.11 34.42 0.4 

Dimension [MPa] - [MPa] [N/mm] [N/mm] - 
 

 

Figure 4.2 Constitutive Models for Concrete Element in the Numerical Model 

The non-linear behaviour of the concrete is presented with reference to ,cr tw  and 
,cr cw  as it can give a general illustration which is independent 

from the mesh size. ,cr tw  and 
,cr cw  are calculated from the multiplication of crack strain to the mesh size.  

Table 4.6 Reinforcement Secondary Material Properties 

Test Specimen sE   
s   /tk ykf f   Class* uk   

A123A1 200000 0.3 1.11 B 5 

H123A 200000 0.3 1.11 B 5 

Dimension [MPa] - - - [%] 

* Class = the hardening class of reinforcement based on /tk ykf f  ratio 

 

Figure 4.3 Constitutive Models for Reinforcement Element in the Numerical Model 
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The loading and support plates are modelled only to avoid singularities phenomena on the beam. Therefore, 
the non-linear behaviour of the beam is not necessary to be modelled. The material properties of the plates 
are given in Table 4.7.  

Table 4.7 Loading and Support Plate Member Material Properties 

Test Specimen plE   pl   

A123A1 200000 0.3 

H123A 200000 0.3 

Dimension [MPa] - 

 
In this thesis, it is assumed that the concrete and the reinforcement is perfectly bonded for top reinforcement 
and not perfectly bonded for bottom reinforcement, where some slip could occur between these components. 
This assumption is recommended to be used by de Putter (2020), where the assumption of a perfect bond 
between concrete and reinforcement would cause over-rotation on the direction of the principal stress near 
the reinforcement that would always create de-lamination failure on most of the finite element model for three-
point loaded beam. The bond-slip behaviour is modelled with FIB Model Code 2010 local bond-slip model for 
ribbed bars. The first part of the bond-slip model is constructed from exponential equations, which would 

cause a numerical problem when there is no slip ( )0s = . In order to avoid this problem, the software package 

DIANA assumed that up until a certain magnitude of slip ( )0s , linear relation of bond stress and slip is used. 

A dummy stiffness also needs to be assigned to the bond-slip model based on the software package DIANA 
requirement. The dummy stiffness can be calculated with equations (4.1) and (4.2). All parameters value 
used for the bond-slip model is given in Table 4.8. The illustration of the constitutive model of FIB Model Code 
2010 local bond-slip model is given in Figure 4.4. The assumption of the linear bond-slip in DIANA must be 

checked with the reference in FIB Model Code 2010 to see whether the value of 
0s  is sufficiently small, as 

given in Figure 4.4 where the difference in the bond-slip is very small.  
 

100 cm
n

ele

E
B

h
=   (4.1) 

0.1t nB B=   (4.2) 

 

Table 4.8 Parameters for Local Bond-Slip Model for Ribbed Bars 

Test Specimen ,b max   ,bu split   
bf   

0s   1,refs   
1s   

2s   
3s      

nB   
tB   

A123A1 20.15 8.89 0.001 0.01 1 0.13 0.13 0.16 0.4 257095 25709.5 

H123A 20.62 8.99 0.001 0.01 1 0.13 0.13 0.15 0.4 65181.3 6518.13 

Dimension [N/mm2] [N/mm2] [N/mm2] mm mm mm mm mm - [N/mm3] [N/mm3] 

 

 

Figure 4.4 Constitutive Models for Local Bond-Slip of the Bottom Reinforcement in the Numerical Model 
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In order to diminish plate contributions to the beam stiffness and prevent any localized tensile stress to build 
up on the corner of the plate where it connects to the beam, an interface with the properties of ‘no-tension 
with shear stiffness reduction’ is assigned on the connection between the beam and the plate. A dummy 
stiffness needs to be assigned to the interface for the linear behaviour. The dummy stiffness can be calculated 
with equations (4.3) and (4.4), according to (Teshome, 2019). The value of the parameters of the interface is 
given in Table 4.9.  
 

,
cm

dum ax

ele

E
k

h
=   (4.3) 

, ,0.01dum sh dum axk k=   (4.4) 

 

Table 4.9 Parameters for Plate-Beam Interface 

Test 
Specimen ,dum axk   

,dum shk   
critical interface 
opening for a 

reduction in tension 

critical interface 
opening for a 

reduction in shear 

normal 
stiffness 
reduction 

factor 

shear 
stiffness 
reduction 

factor 

A123A1 2570.95 25.71 0.001 0.001 0 0 

H123A 651.81 6.52 0.001 0.001 0 0 

Dimension [N/mm3] [N/mm3] mm mm - - 

 
The beams are modelled with quadratic (8-noded) plane stress elements. The reinforcement is modelled with 
equivalent axial stiffness, where the total area of the bars is converted into 1 bar, and the element have the 
same behaviour as a beam element. All models would be subjected to an external load. The external load is 
applied as a prescribed displacement equal to the total beam deformation in the experiment in Table 4.1.  
 
The solution procedure used for the analysis is the iterative-incremental procedure, as indicated in subchapter 
2.1 Non-Linear Finite Element Analysis. The load would be applied progressively (displacement-controlled 
analysis) with a certain number of load steps as indicated in Table 4.10. The error tolerance/convergence 
norms must be defined in order to use the selected solution procedure. Guidelines for Nonlinear Finite 
Element Analysis of Concrete Structures (Hendriks & Roosen, 2020) gives the recommendation to use both 
energy norms and force norms. All parameters related to the solution procedures are given in Table 4.10.  

Table 4.10 Load Step and Convergence Norms 

Test Specimen pn   
maxn   

errF   
errG   

Satisfy All 
Norms 

A123A1 100 100 0.01 0.0001 Yes 

H123A 100 100 0.01 0.0001 Yes 

 
Several variations are made for this study in order to identify the source of problems in NLFEA, which are 
cracking models, simultaneous satisfaction of all norms, the inclusion of top reinforcement, and different type 
of iterative-incremental procedures. Two different cracking models are explored in this subchapter in order to 
see their impact on the global behaviour of the beam. The effect of satisfying all norms at the same time is 
also investigated to see its importance on the numerical models. The necessity to model top reinforcement 
also investigated at the global level in order to see its importance on the numerical models.  
 
Three different iterative-incremental procedures are explored in this subchapter, the Quasi-Newton – Crisfield 
type method and Full Newton-Raphson. Teshome (2019) indicated that the Quasi-Newton method is more 
suitable to be used for the analysis of concrete structures. Full Newton-Raphson is the solution procedure 
used by de Putter (2020). The overview of the model variations is given in Table 4.11.  
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Table 4.11 Model Variations 1 

Variation  
Cracking 

Model 
Satisfy All 

Norms 
Top Reinf. 
Inclusion 

Iterative-Incremental 
Procedure 

R Rotating Yes No Quasi-Newton 

F Fixed Yes No Quasi-Newton 

R_NO SIMULT Rotating No No Quasi-Newton 

F_ NO SIMULT Fixed No No Quasi-Newton 

R_TR Rotating Yes Yes Quasi-Newton 

F_TR Fixed Yes Yes Quasi-Newton 

R_NR Rotating Yes No Full Newton-Raphson 

F_NR Fixed Yes No Full Newton-Raphson 

 
 

4.2. Verification Method for Results of Finite Element Analysis 
 
The results of NLFEA are verified with the initial stiffness of the beam, the first crack occurrence on the beam, 
and the convergence state of each step. The initial stiffness can be calculated analytically based on the 
formulation of the Timoshenko Beam with equation (4.5), which accounts for both bending and shear 
deflection of the beam. The first crack occurrence can be calculated based on the maximum tensile strength 
of the concrete with equation (4.6). The magnitude of the initial stiffness and the first crack occurrence on the 
beam are given in Table 4.12. The convergence state that would be accepted as a valid result is the steps 
that either satisfy both norms, only one of the norms or non-converged only on one step and followed with 
converged steps afterwards.  
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Table 4.12 Analytical Initial Stiffness and First Crack Occurrence of the Beam 

Test Specimen .ela   .initk   
crM   

crF   

A123A1 5.67 24.08 19.22 24.02 

H123A 4.17 106.69 219.55 97.58 

Dimension [mm] [kN/mm] [kNm] [kN] 

 
 

4.3. Stiffness and First Crack Verification 
 
The results of NLFEA that are used for verification of initial stiffness and first crack occurrence are results 
with linear analysis, as this verification confirms whether the input is correct or not. The results of the NLFEA 
for the verification of initial stiffness can be seen in Table 4.13.  
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Table 4.13 Elastic Stiffness Verification 

Test Specimen .initk   ,FEM nrk   
,FEM rk   

, ./  FEM nr initk k   
, ./  FEM nr initk k   

A123A1 24.08 23.86 26.07 0.99 1.09 

H123A 106.69 104.82 116.28 0.98 1.11 

Dimension [kN/mm] [kN/mm] [kN/mm] - - 

 
When the stiffness from the NLFEA results without reinforcement is compared to the initial stiffness, the 
stiffness value is very similar, as indicated by the relative value of the stiffness that almost equal to 1 for both 
specimens. This indicates that all inputs are correct. Furthermore, the inclusion of reinforcement would slightly 
increase the overall stiffness of the beam.  
 
The results of the NLFEA for the verification of the first crack occurrence can be seen in Table 4.14. The 
difference in the first cracking forces of the NLFEA and the analytical cracking force is caused by the size of 
the load step and the lack of initial imperfection on the model. The use of smaller load steps would be able to 
decrease the first cracking force on the beam. The use of different cracking models does not show any 
significant difference in any variations, which indicates that the first crack occurrence in the simulation is 
independent of the concrete cracking models. The difference between the first cracking forces on each 
variation of the model shows a similar pattern on both specimens, where the difference becomes larger when 
top reinforcement is included in the model. Furthermore, a higher difference can also be seen when the norms 
are not simultaneously satisfied, and the Full Newton-Raphson method is used.  

Table 4.14 First Crack Occurrence Verification 

Test Specimen A123A1 H123A Dimension 

crF   24.02 97.58 [kN] 

R 29.19 160.26 [kN] 

R_NO SIMULT 32.65 189.03 [kN] 

R_TR 31.58 149.46 [kN] 

R_NR 32.65 189.04 [kN] 

F 29.47 160.01 [kN] 

F_NO SIMULT 32.65 189.03 [kN] 

F_TR 31.27 149.44 [kN] 

F_NR 32.65 189.04 [kN] 

 
The inclusion of top reinforcement on the beam would increase the overall stiffness of the beam, where a 
similar effect can be observed in Table 4.13 with numerical models with and without bottom reinforcement. 
The increase of stiffness would indicate that the magnitude of the load resistance would be higher when the 
magnitude of the beam displacement is the same for these variants. However, a higher force due to change 
in norms satisfaction condition and the use of another iterative-incremental method indicate that the solution 
procedure configuration has a certain influence on the simulation of non-linear behaviour.  
 
 

4.4. Convergence State Verification 
 
The convergence state of all steps in the analysis must be verified. It is common to accept only the steps that 
are converging. However, it is hard to achieve fully converged analysis when simulating the failure of both 
specimens. This problem has been addressed by de Putter (2020) and a solution is given where the steps 
should be still considered valid up to the point where continuous non-convergence is spotted in the analysis. 
Figure 4.5 illustrates the difference in the load-displacement curve with and without the consideration of the 
convergence state in the analysis.  
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Analysis stops after Continuous  
Non-Converged Steps 

No Convergence  
State Consideration  

  

  

  

Figure 4.5 Load-displacement Curve with and without the Consideration of Convergence State 

 
In Figure 4.5, a significant difference in the peak load can be seen in the numerical model with the rotating 
crack model while a small difference can be seen in the numerical model with the fixed crack model. 
Furthermore, the change in the non-linear stiffness cannot be observed in the numerical model with the 
rotating crack model and the peak load will be dependent on the convergence state of the analysis. The 
dependency on the convergence state of the step in the analysis should be avoided, as it will create a variety 
of peak loads with different numerical configurations. This problem can be solved by accepting all steps in 
the analysis regardless of its convergence state and investigate what is the cause of the non-convergencies 
of the steps at the later stage of the analysis. 
  
Based on the results of the analysis, the convergence state of each variation is different compared to each 
other, where the continuous non-convergence starts at different load levels with different numerical 
configurations for one specimen. No model can achieve 100% convergence in all steps. As this thesis focuses 
on the estimation of the peak load and does not analyse the post-peak behaviour, the simulated behaviour 
up to the peak load is considered important and a comparison of the convergence state is done up to this 
point in order to have an insight of the overall pattern of the convergence state. There are 3 aspects that 
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would be observed, the total number of steps, the total number of non-convergence steps, and the 
convergence level. The convergence level is defined as the percentage of converged steps based on the 
total number of steps up to the simulated peak load. The convergence level is calculated in order to see 
whether there is a consistent pattern between different numerical configurations and see the effect of change 
in the numerical configuration. These aspects can be observed in Figure 4.6. The load-displacement curve is 
also given in Figure 4.7 for specimen A123A1 and Figure 4.8 for specimen H123A to help understand the 
difference in the simulated global behaviour and whether it has a relation to the convergence state of the 
analysis.  
 

 
 (a)   (b) 

Figure 4.6 (a) Rotating and (b) Fixed crack model Convergence State 

 

 

Figure 4.7 Load-displacement Curve Model A123A1 with Rotating and Fixed crack model 
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Figure 4.8 Load-displacement Curve Model H123A with Rotating and Fixed crack model 

 
Figure 4.6 (a) shows that the overall model for specimen A123A1 need a smaller number of steps to reach 
its peak load compared to the overall model for specimen H123A1. The percentage of converged steps shows 
a similar pattern for both specimens, where the variation of R_NO SIMULT has a higher level of 
convergencies compared to other models. Furthermore, overall models of specimen A123A1 has a lower 
percentage of converged steps compared to specimen H123A. The variation of R_TR does not affect the 
convergence level of the model, as it has a comparable convergence level to variation R. The variation of 
R_NR also has a comparable level of convergence to variation R, which indicates that the use of both Quasi-
Newton and Full Newton-Raphson method for rotating crack model would give comparable convergence 
level.  
 
Figure 4.6 (b) shows a different pattern in terms of the number of steps required to achieve peak load and 
the influence of the iterative-incremental method on the convergence level. Overall results show that the 
number of steps required to reach its peak load is comparable in both specimens. The variation of F_NR 
shows that the level of convergence for both specimens is comparable. On the other hand, the variation of F 
for both specimens shows a huge difference in the convergence level.  
 
On the other hand, it can be seen that Figure 4.6 (a) and (b) have a significant difference in the convergence 
level. This indirectly caused by a fewer number of steps in the numerical model with the fixed crack model, 
where fewer steps also mean less probability of the step becoming non-converged. Furthermore, the low total 
number of steps also indicate that the numerical model with a fixed crack model reached its peak faster 
compared to the numerical model with a rotating crack model. This is proven in Figure 4.7 and Figure 4.8 
where the numerical model with the rotating crack model has a significantly higher peak load compared to 
the numerical model with the fixed crack model. Furthermore, the overestimation seems to be increasing from 
model for specimen A123A1 to specimen H123A in Figure 4.7 and Figure 4.8 for both types of cracking 
model.  
 
In order to understand the difference in the convergence level between each variant, the convergence state 
of the analysis of each variant is plotted. An example of this plot can be seen in Figure 4.9. This figure 
illustrates the convergence state of each step in the analysis, whether a step reach convergence (this is when 
the relative energy variation and out-of-balance force are below its respective tolerance) or not. The 
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determination of the convergence in a step is independent of its previous step and the connecting line is only 
used to show how the convergence change during the analysis.  
 
The significant difference in convergence level of variation R and F to variation R_NO SIMULT and F_SIMULT 
can be explained by observing Figure 4.9 and Figure 4.10. These figures show that several load steps have 
already reach convergency after several iterations if the condition of simultaneous satisfaction of norms is not 
applied. This indicates that the convergence state on several steps change when a higher number of iterations 
is used on the steps. Another phenomenon that can be observed is that most of the steps only reach 
convergence in terms of energy variation. The dependency of the results to the number of iterations, force 
tolerance/norms and energy tolerance/norms would be investigated further in the next subchapter.  
 

 

 

Figure 4.9 Convergence Behaviour of Variation R and R_NO SIMULT 

 

 

 

Figure 4.10 Convergence Behaviour of Variation F and F_NO SIMULT 

 
The significant difference of convergence behaviour between different iterative-incremental method can be 
explained by observing Figure 4.11 and Figure 4.12. In any cracking model, the variation of R and F almost 
have all its converged steps at the beginning of the analysis. After exceeding load factor 0.5, almost little to 
none of the steps are converging anymore. On the other hand, the variation of R_NR and F_NR shows that 
the converged steps are distributed arbitrarily during the analysis. This phenomenon could be caused by the 
way these iterative-incremental methods form its stiffness matrix, where the Full Newton-Raphson method 
form a new stiffness matrix on every iteration in every step while the Quasi-Newton method derived the 
stiffness matrix based on the previous step stiffness matrix. This implicitly implies that the Quasi-Newton 
method would reach convergence more easily due to the small relative difference in terms of energy and 
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force compared to the Full Newton-Raphson method. This phenomenon can be observed in H123A R and 
H123A F in Figure 4.11 and Figure 4.12 respectively. Furthermore, the relative difference in terms of energy 
and force would indirectly be carried as the load increase, thus reducing the chance of the steps to converge 
after a non-converged step with a relatively high difference in terms of energy and force, which can be 
observed in Figure 4.12. 
 

 

 

Figure 4.11 Convergence Behaviour of Variation R and R_NR 

 

 

 

Figure 4.12 Convergence Behaviour of Variation F and F_NR 

 
The problem of non-converged steps can be solved by refining the load increment and/or increase the 
maximum number of iterations per step. However, this would cause the proposed solution method to be time-
consuming and impractical to be applied. In order to avoid this, further study regarding the effect of load 
increment would be studied further in the next subchapter. Increasing the maximum number of iterations 
would only be done if there is a significant difference when a small load increment is applied to the models. 
 
In order to continue the analysis of the results of the NLFEA, it can be assumed that all steps give valid results 
regardless of its convergence state, as the difference between converged and non-converged steps in the 
results of the NLFEA can be assumed to be small, as indicated by de Putter (2020). In order to verify this 
assumption, sensitivity analysis will be done for the load increment, convergence norms (both energy and 
force norms), and the number of iterations for three methods of the iterative-incremental method, Quasi-
Newton (Crisfield), Full Newton-Raphson, and Modified Newton-Raphson. Modified Newton-Raphson is also 
investigated as it is one of the popular choices for the iterative-incremental method. All numerical models will 
be using a rotating crack model in order to avoid severe underestimation from the use of a fixed crack model. 
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Some observations on the results of NLFEA for several models are presented in the next subchapter in order 
to see whether any simplification can be made on the models.  
 
 

4.5. Correlation of Crack Propagation to the Beam Global Response 
 
In order to be able to have a better understanding of the results of the NLFEA, the global response of the 
beam is observed through the load-displacement curve of the specimen. Another global response that would 
strongly be connected to the beam global response is the crack propagation process. In order to have a better 
understanding of the cracking progression and its effect on the load-displacement curve, the results of NLFEA 
for model A123A1 R is used to describe several phenomena on the cracking progression. The global 
response would be observed up to the peak capacity of the beam and no observation would be done for the 
post-peak behaviour of the beam. The load-displacement curve of model A123A1 R is illustrated in Figure 
4.13. These observations focus on giving aid to the process of model simplification in subchapter 4.6 Effect 
of Simultaneous Satisfaction of the Convergence Norms and 4.7 Effect of the Inclusion of Top Reinforcement 
and help the analysis in chapter 5 Sensitivity Analysis of Convergence Parameters and 6 Sensitivity Analysis 
of Mesh Size.  

 

Figure 4.13 Load-displacement Curve of Model A123A1 R 

 

 

Figure 4.14 The Crack Pattern at Critical Point 1 of Model A123A1 R 
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At the first critical point, cracks start to form on the models. The first crack that forms on critical point 1 is 
flexural crack. The crack opening is mostly in the longitudinal direction. This marks the change in the overall 
stiffness of the beam, which causes a shift in the load-displacement curve in Figure 4.13. The illustration of 
the crack formation is given in Figure 4.14.  
 
At the second critical point, one of the major cracks starts to turn into an inclined crack. As a result, the 
principal direction of the cracks on the inclined crack shift into diagonal, which indicates that the crack is 
opening in the longitudinal and vertical direction. At the low end of the inclined crack, small dowel cracks start 
to form. The crack inclination process does not affect the load-displacement curve in Figure 4.13.  
 

 

Figure 4.15 The Crack Pattern at Critical Point 2 of Model A123A1 R 

 
At the third critical point, the major inclined crack has been formed. The dowel crack has formed halfway up 
to the support plate. The horizontal branch of the inclined crack starts developing at the top end of the inclined 
crack. These phenomena can be seen in Figure 4.16. At this cracking stage, the load-displacement curve is 
heavily influenced, as the overall stiffness of the model change and cause a shift on the curve, which can be 
seen in Figure 4.13.  
 

 

Figure 4.16 The Crack Pattern at Critical Point 3 of Model A123A1 R 

 
At the fourth critical point, the major inclined crack has been fully formed. Furthermore, another major flexural 
crack formed another inclined crack. The dowel crack on the low end of the major inclined crack has formed 
up to the support plate. The horizontal branch of the inclined crack has developed halfway to the loading 
plate. These phenomena can be observed in Figure 4.17 (a). However, even with the formation of a new 
inclined crack, there is no significant change on the load-displacement curve, as the overall stiffness of the 
model does not change and no big shift on the curve can be spotted in Figure 4.13. At the peak load, the 
horizontal branch of the major inclined crack has propagated up to the loading point, as indicated in Figure 
4.17 (b). An overview of these critical points is given in Table 4.15.  
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  (a) (b) 

Figure 4.17 The Crack Pattern at (a) Critical Point 4 and (b) the Peak Load of Model A123A1 R 

 

Table 4.15 Overview of each Critical Points of Figure 4.13 

Critical 
Point 

Events Effects Reference 

1 Formation of flexural crack 
Change in the simulated 
beam stiffness 

Figure 4.14 

2 Formation of inclined crack and dowel crack - Figure 4.15 

3 

Propagation of inclined crack, dowel crack 
halfway to support plate, and formation of 
horizontal crack at the top end of the 
inclined crack 

Change in the simulated 
beam stiffness 

Figure 4.16 

4 
Propagation of horizontal crack at the top 
end of the inclined crack 

- Figure 4.17 (a) 

Peak 
Load 

Fully formed flexural shear crack 
Failure of the simulated 
beam  

Figure 4.17 (b) 
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4.6. Effect of Simultaneous Satisfaction of the Convergence Norms 
 
The effect of simultaneous satisfaction of the convergence norms is quite significant in terms of the load steps 
convergence state, as explained in 4.4 Convergence State Verification. However, when comparing the global 
response of the beam, the difference in the results is not very significant for either the rotating or fixed crack 
model. These results can be seen in Figure 4.18 and Figure 4.28 for the rotating and fixed crack model 
respectively. There are some small differences that can be spotted in both Figure 4.18 and Figure 4.28. These 
differences will be discussed further in this subchapter.  
 

 

Figure 4.18 Comparison of the Global Behaviour of Model Variant R and R_NO SIMULT 

 
In Figure 4.18, there are some deviations on critical points 1, 3 and 4 for specimen A123A1. Critical point 2 
of specimen A123A1 is observed in order to clarify whether the cracking pattern is similar for both models 
when the load-displacement curves show a similar pattern. On the other hand, for specimen H123A in Figure 
4.18, no significant difference can be seen in the load-displacement curve. Critical point 1 of specimen H123A 
is used to indicate the first cracking phenomenon. Critical points 2 and 3 are chosen to represent the change 
in stiffness on the load-displacement curve. Critical point 4 is chosen where the peak load from the 
experimental result coincide with the load-displacement curve of the numerical models.  
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R R_NO SIMULT 
  

 

 

 

 

 

Figure 4.19 Critical Point 1 of Model A123A1 R and R_ NO SIMULT 

 
The first set of models to be observed are model A123A1 R and A123A1 R_NO SIMULT. Figure 4.19 
indicated that on critical point 1, a different crack formation is produced in model A123A1. A localized single 
crack formed on the model A123A1 R while several small cracks formed on the model A123A1 R_NO 
SIMULT. The formation of localized single crack from the first crack occurrence causes a sudden jump in the 
load capacity. However, this phenomenon does not affect the non-linear response from critical point 1 to 
critical point 3, as can be seen in Figure 4.18.  
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R R_NO SIMULT 
  

  

Figure 4.20 Critical Point 2 of Model A123A1 R and R_ NO SIMULT 

 
Figure 4.20 indicates that there is no significant difference in the cracking pattern in critical point 2 between 
model A123A1 R and model A123A1 R_NO SIMULT. This also implies that a similar pattern of cracking can 
be expected when the load-displacement curves show a similar pattern.  
 

R R_NO SIMULT 
  

  

  

  

Figure 4.21 Critical Point 3 of Model A123A1 R and R_ NO SIMULT 
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In critical point 3, the cracking pattern of both A123A1 models started with 2 inclined critical cracks, which 
can be seen in Figure 4.21 for load step 58. However, on load step 59 in Figure 4.21, the crack pattern in 
these models change where the crack progression is less stable in model A123A1 R compared to model 
A123A1 R_NO SIMULT. The stability is determined based on the magnitude of the crack width and the crack 
pattern. Model A123A1 R shows a significant increase in the crack width, from 0.50 mm to 0.57 mm. 
Furthermore, one of the inclined cracks becomes more dominant and generate bigger crack width. On the 
other hand, the crack width in model A123A1 R_NO SIMULT only shows a small increase, from 0.50 mm to 
0.51 mm and both inclined critical cracks are still propagating at the same time.  
 
The difference in both crack width and crack pattern can be attributed to the consumption of fracture energy 
of the element on the model. In model A123A1 R, it can be seen that on one of the inclined cracks, the crack 
width has exceeded 0.13 mm, the ultimate tensile crack width of the concrete element. On the other hand, 
this is not the case for model A123A1 R_NO SIMULT, where on both inclined cracks, the crack width on the 
upper part of the inclined crack has not exceeded the ultimate crack width. This resulted in a smaller area of 
uncracked concrete in model A123A1 R compared to model A123A1 R_NO SIMULT, which makes it harder 
for model A123A1 R to reach an equilibrium state on the beam. This leads to higher crack width propagation 
and a different crack pattern is formed. Furthermore, this phenomenon also indirectly contributes to the load-
displacement curve behaviour, where an increase of capacity from critical point 3 to critical point 4 can be 
seen in Figure 4.18.  
 

R R_NO SIMULT 
  

  

  

  

Figure 4.22 Critical Point 4 of Model A123A1 R and R_NO SIMULT 
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Figure 4.23 Crack Pattern at the Peak Load of Model A123A1 R and R_NO SIMULT 

 
After reaching critical point 4, another shift happens on the load-displacement curve of model A123A1 R_NO 
SIMULT in Figure 4.18. The cracking pattern in Figure 4.22 shows that the major inclined crack in model 
A123A1 R is propagating at the top end of the inclined crack in the horizontal direction and it reached its peak 
when the top horizontal crack meets another inclined crack that connects it to the support plate, forming a 
complete flexural shear crack in Figure 4.23. However, model A123A1 R_NO SIMULT developed another 
inclined crack adjacent to the major inclined crack. This can be spotted in Figure 4.22 where another 
horizontal crack has formed on the adjacent inclined crack.  
 
Furthermore, no significant crack propagation can be observed in the major inclined crack, while the adjacent 
inclined crack continues to propagate in the horizontal direction. This indicates that the model is able to 
maintain its equilibrium state with the existence of the major inclined cracks and continue the crack 
propagation phase of the adjacent inclined crack. This gives an explanation of why the load capacity keeps 
increase in model A123A1 R_NO SIMULT in Figure 4.18. At the peak load of model A123A1 R_NO SIMULT 
in Figure 4.23, the crack pattern shows that approximately 3 fully formed flexural shear cracks can be 
produced on one beam. This result is very contradictive to the test results, where only one flexural shear 
crack exists after beam failure.  
 

R R_NO SIMULT 
  

  

Figure 4.24 Critical Point 2 of Model H123A R and R_NO SIMULT 

 
The next set of models to be observed are H123A R and H123A R_NO SIMULT. No further analysis is given 
for critical point 1, as it shows a similar phenomenon between model A123A1 R and A123A1 R_NO SIMULT 
in Figure 4.19. In critical point 2, which is shown in Figure 4.24, the dowel crack propagation rate is higher in 
H123A R and the crack width is larger in model H123A R compared to model H123A R_NO SIMULT. This 
phenomenon has been observed in 4.5 Correlation of Crack Propagation to the Beam Global Response, 
where the formation of a certain amount of the dowel crack causes a change in the beam overall stiffness. 
The stiffness change can be observed in the load-displacement curve in Figure 4.18.  
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Figure 4.25 Critical Point 3 of Model H123A R and R_NO SIMULT 

 
In critical point 3, the major crack formed on the model is the dowel crack, which can be seen in Figure 4.25. 
There are two inclined cracks on each model, but no significant difference can be seen in the crack pattern. 
The magnitude of the crack width is also similar for both models. This corresponds to the load-displacement 
curve in Figure 4.18 where no significant shift happens on the curve as well.  
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Figure 4.26 Critical Point 4 of Model H123A R and R_NO SIMULT 

 
R R_NO SIMULT 

  

  

Figure 4.27 Crack Pattern at the Peak Load of Model H123A R and R_NO SIMULT 

 
In critical point 4, the flexural shear crack has almost completely formed in both models. These crack patterns 
can be seen in Figure 4.26. No significant difference can be seen in either Figure 4.26 or Figure 4.27. All 
observations for model H123A R and R_NO SIMULT show that there is no significant difference in the results 
of NLFEA when the norms are simultaneously satisfied or not for specimen H123A.  
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Figure 4.28 Comparison of the Global Behaviour of Model Variant F and F_NO SIMULT 

 
When observing Figure 4.18 and Figure 4.28 together, a similar pattern can be observed between the models 
using a fixed crack model and rotating crack models, where the effect of simultaneous satisfactions of norms 
in specimen A123A1 is greater compared to specimen H123A. Critical point 1 in Figure 4.28 represents the 
first cracking occurrence, where this phenomenon has been explained in Figure 4.19. Critical point 2 in Figure 
4.28 gives an indication of when the curve starts to deviate for specimen A123A1 and observation on the 
crack pattern before peak load is reached for specimen H123A. 
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F F_NO SIMULT 
  

  

Figure 4.29 Critical Point 2 of Model A123A1 F and F_NO SIMULT 

 
The third observation is done for models A123A1 F and F_NO SIMULT. At critical point 2 in Figure 4.31, the 
difference in the crack pattern can be observed in both models. Model A123A1 F has formed an inclined 
flexural crack with dowel crack at the low-end propagating to the support plate, while model A123A1 F_NO 
SIMULT has formed several flexural cracks without inclination. This difference implies that model A123A1 
F_NO SIMULT will have a higher load capacity, as the formation of the inclined crack and dowel crack 
propagation would exist on a higher load level. This effect can also be seen in Figure 4.28, where the load-
displacement curve of model A123A1 F starts to have a change in stiffness while the load-displacement curve 
of model A123A1 F_NO SIMULT still has a similar stiffness to the previous load step.  
 

F F_NO SIMULT 
  

  

Figure 4.30 Crack Pattern at Peak Load of Model A123A1 F and F_NO SIMULT 

 
At the peak load, Figure 4.30 shows a relatively same crack pattern as Figure 4.23, where model A123A1 F 
only formed one flexural shear crack while model A123A1 F_NO SIMULT formed two flexural shear cracks. 
This also indicates that one beam can have more than one flexural shear crack, which is contradictory to the 
experimental result.  
 
The fourth observation is done for models H123A F and H123A F_NO SIMULT. Figure 4.31 describes the 
crack pattern on critical point 2, where no significant difference can be seen on the crack pattern and the 
magnitude of the crack width. This phenomenon can also be observed in the load-displacement curve in 
Figure 4.28. At the peak load, there are some differences that can be observed in the magnitude of the crack 
width, according to Figure 4.32. The magnitude of the crack width is higher in model H123A F_NO SIMULT 
compared to H123A F. However, the crack pattern is similar in both models. As explained in subchapter 4.5 
Correlation of Crack Propagation to the Beam Global Response, the crack formation has a significant 
influence on the load-displacement curve. This gives an explanation of why the load-displacement curve in 
Figure 4.28 has a very similar peak load for these models. No significant influence can be observed when 
specimen H123A1 is simulated with or without simultaneous satisfaction of the norms.  
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F F_NO SIMULT 
  

  

Figure 4.31 Critical Point 2 of Model H123A F and F_NO SIMULT 

 
F F_NO SIMULT 

  

  

Figure 4.32 Crack Pattern at Peak Load of Model H123A F and F_NO SIMULT 

 
All observations show that the use of the rotating and fixed crack model does not influence the effect of 
simultaneous satisfaction of the norms on numerical models. Two phenomena can be highlighted in these 
observations. The first is that the simultaneous satisfaction of norms has a significant impact on the simulated 
global behaviour of the beam. This can be observed clearly in the results of numerical model for specimen 
A123A1, where the load capacity has a significant difference due to late critical cracking formation and 
multiple formations of flexural shear cracks. The second is that the effect of simultaneous satisfaction of 
norms become less pronounced as the specimen size increase. This can be observed clearly by comparing 
the simulated global results of numerical models for specimens A123A1 and H123A, where H123A has a 
larger size in terms of height and shear span. In order to have a general configuration that can be used for all 
beam sizes, the simultaneous satisfaction of norms must be used for the numerical models.  
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4.7. Effect of the Inclusion of Top Reinforcement 
 
The inclusion of the top reinforcement on the numerical model would increase the number of elements and 
nodes. An increase in the number of elements and nodes will result in higher computational time. In order to 
see whether this addition is necessary or not, the effect of the inclusion of top reinforcement is studied for 
both rotating and fixed crack models on two specimens, A123A1 and H123A. 
 

  

Figure 4.33 Comparison of the Global Behaviour of Model Variant R and R_TR 

 
According to Figure 4.33, the inclusion of top reinforcement would cause a significant increase for specimen 
A123A1 and a decrease for H123A in load capacity with a rotating crack model. These phenomena are a 
contradiction between specimen A123A1 and H123A. These phenomena are studied by observing the 
cracking pattern on the simulated non-linear behaviour, which represented by critical point 2, and the cracking 
pattern and stress distribution on the peak load of each model. Critical point 1 indicates the first cracking 
phenomenon, which has been explained in subchapter 4.3 Stiffness and First Crack Verification.  
 

R R_TR 
  

  

Figure 4.34 Critical Point 2 of Model A123A1 R and R_TR 

 
The cracking pattern on critical point 2 can be observed in Figure 4.34. It can be seen that there is a difference 
in the cracking pattern of model A123A1 R and A123A1 R_TR, where there are less inclined cracks in model 
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A123A1 R compared to model A123A1 R_TR. However, this difference does not affect the load-displacement 
curve in Figure 4.33, which indicates that the number of inclined cracks on the model will not affect the 
simulated global behaviour.  
 

R R_TR 
  

  

  

Figure 4.35 Crack Pattern (Top) and Stress Distribution (Bottom) at the Peak Load of Model A123A1 R 
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Figure 4.36 Crack Pattern (Top) and Stress Distribution (Bottom) at the Peak Load of Model A123A1 R and 
R_TR 
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At the peak load of the model A123A1 R, a different crack pattern can be seen forming on model A123A1 R 
and A123A1 R_TR, according to Figure 4.35. Model A123A1 R formed a flexural shear crack with top and 
bottom horizontal cracks, while model A123A1 R_TR formed a flexural shear crack with bottom horizontal 
cracks. If the stress distribution is observed in Figure 4.35, it can be seen that the compression strut forming 
on the side of the flexural shear crack is smaller in model A123A1 R compared to model A123A1 R_TR. A 
larger compression strut would indirectly imply higher load capacity. 
 
Since model A123A1 R_TR has a larger compression strut, this causes the simulated beam not to fail 
immediately after a fully flexural shear crack has formed. The crack pattern and the stress distribution at the 
peak load of both models can be seen in Figure 4.36. A relatively larger crack width on the dowel crack can 
be seen in model A123A1 R_TR. This phenomenon changes the failure mode of model A123A1 R_TR from 
flexural shear failure to shear compression failure, which causes the difference in load capacity that is shown 
in Figure 4.33.  
 

R R_TR 
  

  

Figure 4.37 Critical Point 2 of Model H123A R and R_TR 

 
The next observation is done for models H123A R and H123A R_TR. On critical point 2, there is no significant 
difference that can be spotted in Figure 4.37. However, it should be noted that the inclined crack on model 
H123A R is less developed compared to model H123A R_TR.  

R R_TR 
  

  

Figure 4.38 Crack Pattern at the Peak Load of Model H123A R and R_TR 

 
The difference in the peak load of both models H123A R and H123A R_TR are caused by a different cracking 
pattern on the model, which can be seen in Figure 4.38. The crack pattern in model H123A R indicated that 
the peak load is reached when the flexural shear crack has been formed and the model cannot maintain its 
equilibrium state any further. On the other hand, the crack pattern in model H123A R_TR indicated that the 
model has been shattered into two parts due to cracks and can only maintain its equilibrium state with the top 
and bottom reinforcement. These represent 2 different failure modes, where model H123A R produce the 
same failure mode as the experimental results while model H123A R_TR produce a completely different 
failure mode from the experimental results.  
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Figure 4.39 Comparison of the Global Behaviour of Model Variant F and F_TR 

 
When observing Figure 4.39 and Figure 4.33, a similar pattern can be observed between the models using 
the fixed crack model and rotating crack models, where the effect of the inclusion of top reinforcement is 
inconsistent between specimen A123A1 and H123A. Critical point 1 in Figure 4.39 represents the first 
cracking occurrence, where this phenomenon has been explained with Figure 4.19. Critical point 2 in Figure 
4.39 used for observation on the crack pattern before peak load is reached for specimen A123A1 and gives 
an indication of when the curve starts to deviate for specimen H123A. 
 

F F_TR 
  

  

Figure 4.40 Critical Point 2 of Model A123A1 F and F_TR 

 
The third observation is done for models A123A1 F and A123A1 F_TR. Figure 4.43 illustrates the cracking 
pattern on both models. It can be seen that no significant difference can be seen on critical point 2, which 
corresponds to the load-displacement curve in Figure 4.42, which is also similar for both models.  
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F F_TR 
  

  

Figure 4.41 Crack Pattern at the Peak Load of Model A123A1 F 

 
The same phenomenon also happens in Figure 4.41 where at the same load step where model A123A1 F 
reached its peak load, the cracking pattern is very similar as well. However, this contradicted the observation 
in Figure 4.39 where the load-displacement starts to change its trend for both models. This problem can be 
answered by observing Figure 4.42.  
 

F F_TR 
  

  

Figure 4.42 Crack Pattern at the Peak Load of Model A123A1 F and F_TR 

 
In Figure 4.42, it can be seen that the crack on model A123A1 F_TR has propagated through the beam where 
the beam is shattered into two parts. This phenomenon only happens in model A123A1 F_TR because of the 
existence of top reinforcement, which allows for stress to be transferred via reinforcement even if the beam 
is shattered into two parts. This allows for an increase in the load capacity of the beam in model A123A1 
F_TR, which can be observed in Figure 4.39.  
 

F F_TR 
  

  

Figure 4.43 Critical Point 2 of Model H123A F and F_TR 
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The last observation is done for models H123A F and H123A F_TR. The cracking pattern on critical point 2 
can be observed in Figure 4.43, where it can be seen that model H123A has not developed an inclined crack, 
while model H123A F_TR has developed an inclined crack and dowel crack. This difference is quite significant 
because the formation of the inclined crack would affect the load-displacement curve, as explained in 
subchapter 4.5 Correlation of Crack Propagation to the Beam Global Response. This phenomenon causes a 
change in the load-displacement curve that can be observed in Figure 4.39. 
 

F F_TR 
  

  

Figure 4.44 Crack Pattern at the Peak Load of Model H123A F and F_TR 

 
At the peak load of both models, according to Figure 4.44, it can be seen that similar behaviour occurs on 
both models where the peak load is reached before the flexural shear crack is fully formed. In terms of crack 
width magnitude, the crack width is smaller in model H123A F compared to model H123A F_TR which 
indicates that the crack opening process in model H123A F is more stable compared to model H123A F_TR.  
 
All observations show that even though a similar behaviour can be seen in rotating and fixed crack models 
for both specimen A123A1 and H123A, the reason for its behaviour is different for each case. However, it can 
be concluded that there are two phenomena that constantly influence the results of the numerical models, 
which are crack over-propagation that leads to beam shattered into two parts and induce different failure 
mode and early cracking progression. In order to avoid these problems, the top reinforcement should not be 
included in the numerical models.  
 
 

4.8. Summary 
 
The problem identification related to the convergence is done by studying 16 variations of the numerical 

configurations. The numerical models are modelled based on two specimens with different shear span ( )a   

and beam depth ( )d . However, both specimens have a comparable shear slenderness ( )/a d . Two types of 

cracking models are used, the rotating and fixed crack models. Furthermore, the numerical model is varied 
with different criteria of convergence, reinforcement configuration and iterative-incremental analysis.  
 
Three verifications are done for the result of the numerical model, elastic stiffness, first cracking moment and 
convergence state. The simulated elastic stiffness is similar to the analytical value, which means that all inputs 
are correct. The simulated first cracking moment happens on a higher load level compared to the analytical 
value due to the load step size and lack of initial imperfection on the numerical model, which indicates that 
this should be studied further in order to see its influence on the simulated non-linear behaviour. The study 
of the first crack occurrence in subchapter 4.6 has proven that this does not cause a change in the simulated 
non-linear behaviour. In the NLFEA, the numerical models are not able to achieve 100% convergence on all 
load steps. Furthermore, if the common method of evaluation is used, where the analysis is stopped when 
continuous non-convergence in the analysis steps is spotted, then it will result in peak load dependency to 
the convergence state where different peak loads can be achieved with different numerical configurations. In 
order to avoid this problem, all load steps will be accepted regardless of their convergence state and 
sensitivity analysis will be performed on the numerical parameters, such as load increment, error tolerance 
and the maximum number of iterations.  
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In order to study the change in the global behaviour of the simulated beam, the simulated process of flexural 
shear crack formation is investigated. There are four critical steps in the formation of the flexural shear crack. 
The flexural shear crack starts from the formation of flexural crack. The flexural crack starts to change into an 
inclined crack due to a change in the principal direction of the crack propagation. After the inclined crack has 
been formed, a small dowel crack starts forming at the low-end of the inclined crack and propagating along 
with the bottom reinforcement. The dowel crack propagation causes a change in the simulated non-linear 
behaviour of the beam. After the dowel crack propagates to the support, a horizontal crack starts to form at 
the top-end of the inclined crack and propagate to the loading point. As this process is completed, the beam 
has reached its peak load and fails afterwards.  
 
As there will be a lot of variations to simulate and in order to reduce the computational time, the effect of 
simultaneous satisfaction of convergence norms and inclusion of top reinforcement are studied in order to 
decide whether these are necessary to be included in the numerical model. The study has proven that the 
simultaneous satisfaction of convergence norms is necessary for the numerical model, as it affects the critical 
cracking formation in the numerical model. The inclusion of top reinforcement is considered to be 
unnecessary, as it will change the crack over-propagation and induce different failure modes.  
 
 
 
 



 
 

 
 

 



 
 

65 
 

5 Sensitivity Analysis of 

Convergence Parameters 
 
 
 
The investigation of the numerical size effect continues with solving the problem related to convergence. The 
identified problem related to convergence is studied by analysing the sensitivity of the numerical parameters, 
such as load increment (subchapter 5.3), error tolerance (subchapter 5.4), and the maximum number of 
iterations (subchapter 5.5). The details regarding the sensitivity analysis are specified in subchapter 5.1. 
Based on the observation and analysis in subchapters 5.3, 5.4 and 5.5, the main source of the problem related 
to the convergence is the formation of the dowel crack. The correlation and the causal relationship between 
the formation of the dowel crack and the convergence state are studied in subchapter 5.6. The sensitivity 
analysis is concluded by deriving the convergence criteria for the simulation of shear failure in the reinforced 
concrete beam without shear reinforcement in subchapter 5.7. Additional study is done in subchapter 5.8 to 
see whether the fixed crack model has a better performance compared to the rotating crack model when used 
to simulate shear failure in the reinforced concrete beam without shear reinforcement. It must be noted that 
any figure with a crack pattern, such as Figure 5.12, is only used to be studied qualitatively. The value of Ecw  

always indicates a range from uncracked element ( )0Ecw =  to fully cracked element ( ),t uEcw CW= . A fully 

cracked element is defined as an element which has lost all its fracture energy. The value of Ecw  should not 

be used as a reference for any study related to the experimental crack width because it does not consider 
the effect of localised reinforcement, which should have decreased the crack opening around the 
reinforcement. 
 
 

5.1. Case Study Details for Convergence State Study 
 
As mentioned in subchapter 4.4 Convergence State Verification, the convergence state would be analysed 
further by performing sensitivity analysis on the models. This analysis would be done for the rotating crack 
model, as it is a more common cracking model used on numerical models. The sensitivity analysis will be 
done based on the relative energy variation and out-of-balance force, which are controlled as the convergence 
norms in the models. The purpose of the sensitivity analysis is to find relatively constant results for the peak 
load of specimens A123A1 and H123A.  
 
The sensitivity analysis is done by varying the load increment, convergence tolerance/norms, and the number 
of iterations. The specimens used for the study are the same as specimens defined in chapter 4 Identification 
of Problem Related to Convergence. All material properties and beam geometry would also be the same as 
defined in subchapter 4.1 Experimental Set-Up for Convergence Problem Identification, except for the top 
reinforcement, which is excluded from the model. 11 variations of load increment are created for analysing 
the dependency of load increment to the results of numerical models, ranging from 0.1 to 0.004. The variation 
details are given in Table 5.1. 6 variations of error tolerance are created for analysing the dependency of error 
tolerance to the results of numerical models, which are detailed in Table 5.2. 5 variations of the maximum 
number of iterations are created to analyse the dependency of the maximum number of iterations to the 
results of numerical models, which are detailed in Table 5.3. Several sub-variations are also created for the 
variation of error tolerance and number of iterations in order to see the consistency of the results of numerical 
models. The sub-variations are detailed in Table 5.4. 
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Table 5.1 Model Variation 2 

Code 
Imp. Disp. per Step 

pn   
maxn   

errG   errF   Cracking 
Model 

Iterative-
Incremental 

Method A123A1 H123A 

LI0.1 2.5 mm 1.7 mm 10 100 0.0001 0.01 Rotating 

(1) Quasi-
Newton 

 
(2) Full 

Newton-
Raphson 

 
(3) Modified 

Newton-
Raphson  

LI0.08 2 mm 1.36 mm 13 100 0.0001 0.01 Rotating 

LI0.06 1.5 mm 1.02 mm 17 100 0.0001 0.01 Rotating 

LI0.04 1 mm 0.68 mm 25 100 0.0001 0.01 Rotating 

LI0.03 0.75 mm 0.51 mm 34 100 0.0001 0.01 Rotating 

LI0.02 0.5 mm 0.34 mm 50 100 0.0001 0.01 Rotating 

LI0.016 0.4 mm 0.272 mm 63 100 0.0001 0.01 Rotating 

LI0.01 0.25 mm 0.17 mm 100 100 0.0001 0.01 Rotating 

LI0.008 0.2 mm 0.136 mm 125 100 0.0001 0.01 Rotating 

LI0.006 0.15 mm 0.102 mm 167 100 0.0001 0.01 Rotating 

LI0.004 0.1 mm 0.068 mm 250 100 0.0001 0.01 Rotating 

 

Table 5.2 Model Variation 3 

Code errG   
errF   

ET1 0.005 0.01 

ET2 0.001 0.01 

ET3 0.0005 0.01 

ET4/FT3 0.0001 0.01 

FT1 0.0001 0.1 

FT2 0.0001 0.05 

 

Table 5.3 Model Variation 4 

Code maxn   
errG   

errF   

NI10 10 0.0001 0.01 

NI25 25 0.0001 0.01 

NI50 50 0.0001 0.01 

NI75 75 0.0001 0.01 

NI100 100 0.0001 0.01 

 

Table 5.4 Sub-Variation of Model Variation 3 and 4 

Code 
Iterative-

Incremental 
Method 

Specimen 
Load 

Increment 

R11 Quasi-Newton A123A1 0.08 

R12 Quasi-Newton A123A1 0.04 

R13 Quasi-Newton A123A1 0.02 

R21 Quasi-Newton H123A 0.06 

R22 Quasi-Newton H123A 0.04 

R23 Quasi-Newton H123A 0.03 

R31 Full NR A123A1 0.02 

R32 Full NR A123A1 0.016 

R33 Full NR A123A1 0.01 
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Code 
Iterative-

Incremental 
Method 

Specimen 
Load 

Increment 

R41 Full NR H123A 0.03 

R42 Full NR H123A 0.02 

R43 Full NR H123A 0.016 

R51 Modified NR A123A1 0.03 

R52 Modified NR A123A1 0.02 

R53 Modified NR A123A1 0.016 

R61 Modified NR H123A 0.02 

R62 Modified NR H123A 0.016 

R63 Modified NR H123A 0.01 

 
 

5.2. Analysis Method for Studying the Convergence Parameters 
 
The sensitivity analysis will be done in three stages. The first stage is reducing the distribution of the peak 
load from the results of NLFEA. This will be done by doing a statistical analysis on the distribution of the peak 
load. The chosen method of the statistical analysis for this study is the study with box plot (or commonly 
known as box-and-whisker plot). The box plot is used as a tool that can be used for displaying a data 
distribution. This plot is constructed based on 5 values, the minimum, maximum, first and third quartile, and 
median value. The minimum and maximum values are evaluated based on the minimum and maximum values 
found on the data and the boundary defined by the interquartile range. The data beyond this boundary is 
considered as an outlier. The illustration of the box plot can be seen in Figure 5.1. The box plot is suitable to 
be used for comparing the data distribution before and after a certain modification, which is in line with the 
current objective where a new criterion will be applied in order to reduce the distribution of the peak load. 
(DeCoursey, 2003) 
 

 

Figure 5.1 Illustration of Box Plot and its Components 

Source: https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51 

 
However, as the plot only shows the overall distribution of the result, it cannot shows the individual change of 
the data before and after a certain modification. In order to compensate for this drawback, a scatter plot is 
also used in order to see the individual change of the data. Figure 5.2 gives an example of how the data will 
be represented during the study of convergence parameters.  
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Figure 5.2 Example of Box and Scatter Plots 

 
In Figure 5.2, the left graph consists of several box plots which give an illustration of how the distribution of 
the data change after a certain criterion is applied and what happens if the criterion is changed. The value of 
the distribution of the data can be seen on the vertical axis of the graph. In the right graph, the data from 
different models are represented with several dots with different colours. The change in the result of a 
particular numerical model can be seen as the criterion is applied and changed. This graph helps to give 
insight on the trend of the change in a particular numerical model and whether there is a common trend that 
can be seen from all results of numerical models.  
 
The first stage is only going to be done for the study of load increment, as it will help clarify the dependency 
of peak load to this numerical parameter. The study of error tolerance and the maximum number of iterations 
will not be included in the first stage due to two reasons. The first reason is that in order to do this stage of 
analysis, it will need more than three sub-variation of load step per variation in order to have a more 
representative data distribution, which consumed more than the available time. The second reason is that the 
necessity of studying the distribution of the data for both variations (error tolerance and the maximum number 
of iterations) has not been identified yet. Therefore, the study of both variations will focus more on identifying 
the influence of the change on global behaviour. 
 
The second stage is to observe the global behaviour of the simulated beam and the convergence state of the 
analysis. The purpose of this stage is to find whether there is a connection between change in the global 
behaviour to the change in the convergence state of the analysis. Two types of global behaviour are going to 
be observed in this stage, the load-displacement curve and the crack propagation process. The process of 
flexural shear crack formation has been studied and clarified into 4 steps in subchapter 4.5 Correlation of 
Crack Propagation to the Beam Global Response. Understanding the process of flexural shear crack 
formation will help identify the source of the problem with the convergence. The second stage is done for all 
variations and at the end, the correlation and causal relationship of the convergence state to the change in 
the global behaviour will be analysed in order to have an insight of what is the root of the problem.  
 
The last stage is to derive new convergence criteria that should be satisfied in order to have a smaller 
distribution of data with the correct failure mode. This stage evaluates all results from the first and second 
stages of the analysis and tries to derive a set of criteria that can be used in any case. An additional study 
will also be done in order to see whether the use of a different crack model will be able to increase the 
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performance of the simulation and reduce the dependency of the global behaviour to the numerical 
parameters (load increment, error tolerance, and the maximum number of iterations).  
 
 

5.3. Effect of Load Increment Variation 
 
The influence of load increment can be observed in the peak load of the numerical models and the global 
behaviour of the beam. Furthermore, its influence on different types of iterative-incremental methods would 
also be observed. An additional criterion is needed in order to define a limit of acceptance of non-converged 
steps. The upper bound value for the convergence norms is needed to be defined for each iterative-
incremental method. The use of the upper bound value of convergence norms is expected to cause a change 
in the peak load distribution over the variation of load increment.  
 

5.3.1 Effect of Load Increment Variation in Quasi-Newton Method 
 
The first observation is done for numerical models with the Quasi-Newton method. The change in peak load 
distribution due to different values of upper bound for energy tolerance can be observed in Figure 5.3 and 
Figure 5.4 for specimens A123A1 and H123A respectively.  
 

 

Figure 5.3 Peak Load Distribution for Model A123A1 – Quasi-Newton with Upper Bound Energy Tolerance  

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right. 
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Figure 5.4 Peak Load Distribution for Model H123A – Quasi-Newton with Upper Bound Energy Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right.  

 
Both Figure 5.3 and Figure 5.4 indicate that the use of a single value of energy tolerance would cause a large 
underestimation of relative load capacity, ranging from 0-0.462 for specimen A123A1 and 0-0.444 for 
specimen H123A. Accepting several non-converged steps by imposing an upper bound value on the energy 
tolerance is able to improve the overall distribution of the peak load. Figure 5.3 shows that the upper limit of 
0.015 is sufficient to prevent any significant change in the peak load distribution and give the smallest 
distribution of peak load for specimen A123A1. However, if the same upper limit value is used for specimen 
H123A, Figure 5.4 shows a relatively high distribution on the peak load. A higher value of the upper limit is 
needed to achieve the same behaviour as specimen A123A1 for specimen H123A. The upper limit of 0.04 is 
required to achieve this target. This indicates that the upper limit value for energy tolerance might be 
dependent on the specimen size, where a small specimen size requires a smaller upper limit compared to 
large specimen size.  
 
Furthermore, it can be seen that a different range is attained for both cases, where the relative peak value of 
numerical models for specimen A123A1 is ranging from 0.958-1.237 while for specimen H123A is ranging 
from 1.106-1.479. The difference is not only on the minimum and maximum value but also on the total range 
of the peak load. These differences make it not possible to combine the results of specimen A123A1 and 
H123A and observe the peak load distribution together. Figure 5.3 and Figure 5.4 also show that no pattern 
can be seen in the distribution of the peak load, which means that the use of smaller load increment does not 
immediately produce a higher/smaller peak load.  
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Figure 5.5 Peak Load Distribution for Model A123A1 – Quasi-Newton with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right. 

 

  

Figure 5.6 Peak Load Distribution for Model H123A – Quasi-Newton with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right.  

 
A different distribution result is attained when an upper bound value is imposed on the force tolerance, which 
can be seen in Figure 5.5 and Figure 5.6. A smaller range of peak load distribution, compared to the single 
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value of energy tolerance, is achieved when a single value of force tolerance is used, ranging from 0-0.211 
for specimen A123A1 and 0-0.403 for specimen H123A. Accepting several non-converged steps by imposing 
upper bound value on the force tolerance also improve the overall distribution of the peak load. The optimum 
upper bound for specimen A123A1 for force tolerance is 0.68 while for specimen H123A is 0.84. This also 
indicates that the upper limit value for force tolerance might be dependent on the specimen size, where a 
small specimen size requires a smaller upper limit compared to large specimen size.  
 

 

Figure 5.7 Peak Load Distribution for Quasi-Newton Method with Combined Upper Bound 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for error tolerance is given on the bottom. 
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Furthermore, a different range is also attained for both cases, where the relative peak value of numerical 
models of specimen A123A1 is from 0.946 to 1.214 while for specimen H123A is from 1.106 to 1.479. No 
pattern can be seen on the distribution of the peak load with load increment variation. The relative peak value 
range of numerical models for each specimen is similar in both cases. A single upper bound value is not 
recommended to be used, because the numerical models rarely have a single step that would exceed the 
upper bound value of energy and force tolerance at the same time. An example can be seen by comparing 
Figure 5.3 and Figure 5.5 for model A123A1 LI0.08. Model A123A1 LI 0.08 has a relative peak load of 1.237 
when the optimal upper bound of energy tolerance is used, while a relative peak load of 1.147 is achieved 
when the optimal upper bound of force tolerance is used. In order to find a general upper bound for numerical 
models and reduce variation of the results, the upper bound limit is applied to both energy and force tolerance. 
 
Figure 5.7 shows the combination of upper bound values from the optimal value of specimen A123A1 and 
H123A where a single upper bound type is applied. For specimen A123A1, Figure 5.7 indicates that the use 
of 0.015-0.04 and 0.68-0.84 for upper bound of energy and force tolerance respectively do not change the 
peak load distribution, which is in accordance with the results in Figure 5.3 and Figure 5.5. Figure 5.3 and 
Figure 5.5 show a similar distribution of peak load results, which means that the use of combined tolerance 
would not significantly change the peak load distribution for specimen A123A1. On the other hand, specimen 
H123A does not produce the same result as specimen A123A1. Slight variation can be seen between the 
upper bound of 0.015 and 0.04 for energy tolerance. This also can be explained by observing Figure 5.4 and 
Figure 5.6 where a significant difference in range can be seen between the upper bound of 0.015 and 0.04 
for energy tolerance and an almost constant range between the upper bound of 0.68 and 0.84 for force 
tolerance. The most optimal combined tolerance is 0.04 and 0.84 for energy and force tolerance respectively. 
The optimal combination for the upper bound value of the tolerance gives a range of 0.958-1.214 for specimen 
A123A1 and 1.106-1.479 for specimen H123A.  
 
A better result can be attained by specifying a specific range of load increment where the peak load has less 
variation compared to the current range of load increment. Figure 5.8 gives an improved peak load distribution 
where the range of load increment is reduced from 0.1-0.004 to 0.1-0.02. The change in the range of load 
increment causes a change in the optimally combined tolerance, from 0.04 and 0.84 to 0.04 and 0.68 for 
energy and force tolerance respectively. The change in the range of load increment improves the peak load 
distribution from 0.958-1.214 and 1.106-1.479 to 1.096-1.214 and 1.283-1.420 for specimen A123A1 and 
H123A respectively.  
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Figure 5.8 Peak Load Distribution for Quasi-Newton Method with Combined Upper Bound and LI 0.1-0.02 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the bottom. 

 
The simulated global behaviour of the beam with the Quasi-Newton method is observed based on the results 
of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined upper 
bound for both energy and force tolerance. Figure 5.9 gives an illustration of the simulated global behaviour 
of the beam with the Quasi-Newton method based on the load-displacement curve.  
 

  

Figure 5.9 Load-displacement Curve for Load Increment Variance – Quasi-Newton Method 

 
In the load-displacement curve in Figure 5.9, there are 2 critical points that show some deviation due to 
change in load increment. The first critical point is considered not important because the deviation in critical 
point 1 does not affect the overall simulated behaviour of the beam in the non-linear region. This can be seen 
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by observing the load-displacement curve between critical point 1 and critical point 2, where the simulated 
non-linear behaviour is similar for all models with specimen A123A1 and H123A. On critical point 2, a 
significant deviation can be seen between the results on both specimens. The deviation on the curve is 
considered significant due to its effect on the simulated non-linear behaviour and the peak load of the model. 
Three models, LI0.06, LI0.03, and LI0.02 are chosen as the representative of all results for specimen A123A1 
and two models, LI0.06 and LI0.04, for specimen H123A. The load-displacement curve for these models is 
given in Figure 5.10.  
 

   

Figure 5.10 Load-displacement Curve with the Convergence State for Quasi-Newton Method 

 
Figure 5.10 indicates that most of the steps are converging in relative energy variation. Furthermore, higher 
relative energy variation and out-of-balance force can be seen by comparing convergence state at δ = 15-25 
mm to δ = 5-15 mm for specimen A123A1 and δ = 10-30 mm to δ = 5-10 mm for specimen H123A, where the 
curve is near its peak.  
 
The first critical point 2 that would be analysed is for specimen A123A1. Detailed illustration for critical point 
2 of specimen A123A1 is given in Figure 5.11. 4 load steps are going to be observed in Figure 5.11. These 
load steps indicate the shift in the load-displacement curve and will be called shifting points A, B, C and D for 
displacement at 13.48 mm, 14.98 mm, 16.48 mm and 17.98 mm respectively. 
 

 

Figure 5.11 Load-displacement Curve on Critical Point 2 of Specimen A123A1 for Quasi-Newton Method  
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Figure 5.12 Crack Pattern Specimen A123A1 with Quasi-Newton Method at δ = 13.48 mm (Shifting Point A) 
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Figure 5.13 Crack Pattern Specimen A123A1 with Quasi-Newton Method at δ = 14.98 mm (Shifting Point B) 
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Figure 5.14 Crack Pattern Specimen A123A1 with Quasi-Newton Method at δ = 16.48 mm (Shifting Point C) 
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Figure 5.15 Crack Pattern Specimen A123A1 with Quasi-Newton Method at δ = 17.98 mm (Shifting Point D) 
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Figure 5.16 Crack Pattern Specimen A123A1 with Quasi-Newton Method at Peak Load 

 
The relative energy variation in Figure 5.11 is relatively constant for model A123A1 LI0.06 and LI0.03, and 
constantly increasing in model A123A1 LI0.02 from shifting point A to shifting point C. The relative out-of-
balance force in model A123A1 LI0.06 and LI0.03 is relatively constant through all shifting points. However, 
in model A123A1 LI0.02, the relative out-of-balance force is constantly increasing from shifting point A to 
shifting point C. The convergence state for model A123A1 LI0.03 starts to change from shifting point C to D, 
where an increase in relative energy variation and out-of-balance force can be seen, which does not happen 
in model A123A1 LI0.06.  
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In terms of crack pattern, the model A123A1 LI0.06 and LI0.03 show similar crack progression in Figure 5.12, 
Figure 5.13, and Figure 5.14, where several inclined cracks with dowel crack are propagating. On the other 
hand, model A123A1 LI0.02 shows a different crack pattern where several inclined cracks are transformed 
into major inclined cracks, which the dowel crack in shifting point C in Figure 5.14 has almost reached the 
support. This transformation also happens to model A123A1 LI0.03 on a later stage in shifting point D in 
Figure 5.15. However, the cracking pattern at the peak load is similar between model A123A1 LI0.06, LI0.03, 
and LI0.02, according to Figure 5.16. The change in convergence state seems to follow the crack progression 
on the concrete where the constant level of relative energy variation and out-of-balance force indicates stable 
crack propagation on the model and increased level of relative energy variation and out-of-balance force 
indicates the model is approaching its peak capacity.  
 
The next critical point 2 in Figure 5.10 that would be analysed is for specimen H123A. Detailed illustration for 
critical point 2 of specimen H123A is given in Figure 5.17. 4 load steps are going to be observed in Figure 
5.17. These load steps indicate the shift in the load-displacement curve and will be called shifting points A, 
B, C and D for displacement at 12.07 mm, 13.08 mm, 14.09 mm and 16.13 mm respectively. 
 

 

Figure 5.17 Load-displacement Curve on Critical Point 2 of Specimen H123A for Quasi-Newton Method 

 
LI0.06 LI0.04 

  

  

Figure 5.18 Crack Pattern Specimen H123A with Quasi-Newton Method at δ = 12.07 mm (Shifting Point A) 
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Figure 5.19 Crack Pattern Specimen H123A with Quasi-Newton Method at δ = 13.08 mm (Shifting Point B) 
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Figure 5.20 Crack Pattern Specimen H123A with Quasi-Newton Method at δ = 14.09 mm (Shifting Point C) 
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Figure 5.21 Crack Pattern Specimen H123A with Quasi-Newton Method at δ = 16.13 mm (Shifting Point D) 

 



80 5. Sensitivity Analysis of Convergence Parameters 
 

 
 

LI0.06 LI0.04 
  

  

Figure 5.22 Crack Pattern Specimen H123A with Quasi-Newton Method at Peak Load 

 
The relative energy variation in Figure 5.17 shows a similar pattern between model H123A LI0.06 and LI0.04, 
and relatively constant through all shifting points. However, a significant difference in relative energy variation 
in model H123A1 LI0.06 can be seen from shifting point B to C. The relative out-of-balance force in model 
H123A1 LI0.06 and LI0.04 is relatively constant through all shifting points.  
 
In terms of crack pattern, models H123A LI0.06 and LI0.04 show similar crack progression with small 
differences in maximum crack width in shifting point A in Figure 5.18. The similarity of the crack progression 
can also be seen in other shifting points in Figure 5.19, Figure 5.20, and Figure 5.21. However, the difference 
in maximum crack width becomes larger from shifting point B to C in model H123A LI0.04. The crack 
propagation in model H123A LI0.04 is less stable compared to model H123A LI0.06. This phenomenon can 
be observed by comparing the maximum crack width in both models in Figure 5.18, Figure 5.19, and Figure 
5.20. The maximum crack width in model H123A LI0.06 is larger in shifting point A compared to model H123A 
LI0.04 in Figure 5.18, while model H123A LI0.06 has smaller maximum crack width in shifting point B 
compared to model H123A LI0.04 in shifting point C in Figure 5.20. The shifting point of this phenomenon 
happens between shifting points B and C, where the maximum crack width is increased by 0.15 mm in model 
H123A LI0.06, while in model H123A LI0.04 is increased by 0.25 mm. This indirectly implied that model 
H123A LI0.04 has more concrete elements that reached its ultimate tensile strain, which cause higher relative 
energy variation between the current step and the previous step. This phenomenon is captured in the relative 
energy variation in Figure 5.17. The similarity of the cracking pattern between each shifting point can also be 
seen in the relative energy variation and out-of-balance force. Furthermore, the crack pattern at the peak load 
also similar for both models in Figure 5.22, which is also consistent with the similarity of the convergence 
state of both models in Figure 5.10.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Quasi-Newton method and different load increment is caused by the different 
rates of crack propagation on the models. This can be observed in the change of the convergence state of 
the models where the shift from constant to linear growth of both relative energy variation and out-of-balance 
force indicates that the model is approaching its peak capacity. The shifting point of this phenomenon is 
considered important because the shifting point controls when the numerical models would reach their peak 
capacity.  
 

5.3.2 Effect of Load Increment Variation in Full Newton-Raphson Method 
 
The second observation is done for numerical models with the Full Newton-Raphson method. The change in 
peak load distribution due to different values of upper bound values for energy tolerance can be observed in 
Figure 5.23 and Figure 5.24 for specimens A123A1 and H123A respectively.  
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Figure 5.23 Peak Load Distribution for Model A123A1 – Full NR with Upper Bound Energy Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right. 

 

 

Figure 5.24 Peak Load Distribution for Model H123A – Full NR with Upper Bound Energy Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right.  

 
Both Figure 5.23 and Figure 5.24 indicate that the use of a single value of energy tolerance would cause a 
large underestimation of relative load capacity, ranging from 0-0.282 for specimen A123A1 and 0-0.408 for 
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specimen H123A. Accepting several non-converged steps by imposing an upper bound value on the energy 
tolerance is able to improve the overall distribution of the peak load. Figure 5.23 shows that the upper limit of 
0.015 is sufficient to prevent any significant change in the peak load distribution and give the smallest 
distribution of peak load for specimen A123A1. However, if the same upper limit value is used for specimen 
H123A, Figure 5.24 shows a relatively high distribution on the peak load. A higher value of the upper limit is 
needed to achieve the same behaviour as specimen A123A1 for specimen H123A. The upper limit of 0.03 is 
required to achieve this target. This indicates that the upper limit value for energy tolerance might be 
dependent on the specimen size, where a small specimen size requires a smaller upper limit compared to 
large specimen size.  
 
Furthermore, it can be seen that a different range is attained for both cases, where the relative peak value of 
numerical models for specimen A123A1 is ranging from 0.817-1.135 while for specimen H123A is ranging 
from 1.055-1.449. The difference is not only on the minimum and maximum value but also on the total range 
of the peak load. These differences make it not possible to combine the results of specimen A123A1 and 
H123A and observe the peak load distribution together. Figure 5.23 and Figure 5.24 also show that no pattern 
can be seen in the distribution of the peak load, which means that the use of smaller load increment does not 
immediately produce a higher/smaller peak load.  
 

 

Figure 5.25 Peak Load Distribution for Model A123A1 – Full NR with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right.  
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Figure 5.26 Peak Load Distribution for Model H123A – Full NR with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right.  

 
A different distribution result is attained when an upper bound value is imposed on the force tolerance, which 
can be seen in Figure 5.25 and Figure 5.26. The same range of peak load distribution, compared to the single 
value of energy tolerance, is achieved when a single value of force tolerance is used, ranging from 0-0.282 
for specimen A123A1 and 0-0.408 for specimen H123A. Accepting several non-converged steps by imposing 
upper bound value on the force tolerance also improve the overall distribution of the peak load. However, in 
comparison to Figure 5.23 and Figure 5.24, Figure 5.25 and Figure 5.26 do not exhibit the same behaviour 
where a higher value of upper bound means less variation on the peak load distribution. The upper bound 
value is needed to be within a certain range of values in order to have the most optimum peak load distribution, 
where the minimum value of the range is used for the upper bound value. The optimum upper bound for 
specimen A123A1 for force tolerance is ranged between 0.58-0.6 while for specimen H123A is 0.4-0.45. This 
still indicates that the upper limit value for force tolerance might be dependent on the specimen size, where 
a small specimen size requires a smaller upper limit compared to a large specimen size.  
 
Furthermore, a different range is also attained for both cases, where the relative peak value of numerical 
models of specimen A123A1 is from 0.817 to 0.978 while for specimen H123A is from 0.962 to 1.246. No 
pattern can be seen on the distribution of the peak load with load increment variation and both results have 
an outlier. The relative peak value range of numerical models for each specimen is similar in both cases. A 
single upper bound value is not recommended to be used, because the numerical models rarely have a single 
step that would exceed the upper bound value of energy and force tolerance at the same time. An example 
can be seen by comparing Figure 5.3 and Figure 5.5 for model A123A1 LI0.03. Model A123A1 LI 0.03 has a 
relative peak load of 1.103 when the optimal upper bound of energy tolerance is used, while a relative peak 
load of 0.940 is achieved when the optimal upper bound of force tolerance is used. In order to find a general 
upper bound for numerical models, reduce variation of the results, and eliminate the outliers, the upper bound 
limit is applied to both energy and force tolerance.  
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Figure 5.27 Peak Load Distribution for Full NR Method with Combined Upper Bound 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for error tolerance is given on the bottom. 

 
Figure 5.27 shows the combination of upper bound values from the optimal value of specimen A123A1 and 
H123A where a single upper bound type is applied. For specimen A123A1, Figure 5.27 indicates that the use 
of 0.015 and 0.03 for the upper bound of energy tolerance in combination with the upper bound of 0.58 for 
force tolerance respectively do not change the peak load distribution, which is in accordance with the results 
in Figure 5.23. Figure 5.23 shows a similar distribution of peak load results for both upper bound values of 
energy tolerance, which means that the use of combined tolerance would not significantly change the peak 
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load distribution for specimen A123A1. On the other hand, specimen H123A does not produce the same 
result as specimen A123A1. A large variation can be seen between the upper bound of 0.015 and 0.03 for 
energy tolerance in combination with the upper bound of 0.58 for force tolerance. This also can be explained 
by observing Figure 5.24 where a significant difference in range can be seen between the upper bound of 
0.015 and 0.03 for energy tolerance. The most optimal combined tolerance is 0.03 and 0.58 for energy and 
force tolerance respectively. The optimal combination for the upper bound value of the tolerance gives a 
range of 0.817-0.978 for specimen A123A1 and 1.055-1.449 for specimen H123A.  
 

 

 

Figure 5.28 Peak Load Distribution for Full NR Method with Combined Upper Bound and LI 0.03-0.006 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for error tolerance is given on the bottom. 
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A better result can be attained by specifying a specific range of load increment where the peak load has less 
variation compared to the current range of load increment. Figure 5.28 gives an improved peak load 
distribution where the range of load increment is reduced from 0.1-0.004 to 0.03-0.006. The change in the 
range of load increment improves the peak load distribution for the optimally combined tolerance of 0.03 and 
0.58 for energy and force tolerance, from 0.817-0.978 and 1.055-1.449 to 0.887-1.140 and 1.055-1.246 for 
specimen A123A1 and H123A respectively.  
 
The simulated global behaviour of the beam with the Full Newton-Raphson method is observed based on the 
results of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined 
upper bound for both energy and force tolerance. Figure 5.29 gives an illustration of the simulated global 
behaviour of the beam with the Full Newton-Raphson method based on the load-displacement curve.  
 

  

Figure 5.29 Load-displacement Curve for Load Increment Variance – Full NR Method 

 

 

Figure 5.30 Load-displacement Curve with the Convergence State for Full Newton-Raphson Method 

 
In the load-displacement curve in Figure 5.29, there are 2 critical points that show some deviation due to 
change in load increment. The first critical point is considered not important because the deviation in critical 
point 1 does not affect the overall simulated behaviour of the beam in the non-linear region. This can be seen 
by observing the load-displacement curve between critical point 1 and critical point 2, where the simulated 
non-linear behaviour is similar for all models with specimen A123A1 and H123A. On critical point 2, a 
significant deviation can be seen between the results on both specimens. The deviation on the curve is 
considered significant due to its effect on the simulated non-linear behaviour and the peak load of the model. 
Two models, LI0.016 and LI0.006, are chosen as the representative of all results for specimen A123A1 and 
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three models, LI0.03, LI0.016, and LI0.006, for specimen H123A. The load-displacement curve for these 
models is given in Figure 5.30. 
 
Figure 5.30 indicates that most of the steps are converging in both relative energy variation and out-of-balance 
force for model simulating specimen A123A1 and only in energy variation for model simulating specimen 
H123A. Furthermore, higher relative energy variation and out-of-balance force can be seen by comparing 
convergence state at δ = 10-20 mm to δ = 5-10 mm for specimen A123A1 and δ = 10-20 mm to δ = 5-10 mm, 
where the curve is near its peak for specimen A123A1 and during non-linear stiffness change in specimen 
H123A. The overall relative energy variation is reducing at δ = 20-30 mm for specimen H123A while the 
overall out-of-balance force is similar at δ = 20-30 mm to δ =10-20 mm.  
 
The first critical point 2 that would be analysed is for specimen A123A1. Detailed illustration for critical point 
2 of specimen A123A1 is given in Figure 5.31. 3 load steps are going to be observed in Figure 5.31. These 
load steps indicate the shift in the load-displacement curve and will be called shifting points A, B, and C for 
displacement at 11.19 mm, 11.59 mm, and 11.99 mm respectively. 
 

 

Figure 5.31 Load-displacement Curve on Critical Point 2 of Specimen A123A1 for Full NR Method 
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Figure 5.32 Crack Pattern Specimen A123A1 with Full NR Method at δ = 11.19 mm (Shifting Point A) 
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LI0.016 LI0.006 
  

  

Figure 5.33 Crack Pattern Specimen A123A1 with Full NR Method at δ = 11.59 mm (Shifting Point B) 

 
 

LI0.016 LI0.006 
  

  

Figure 5.34 Crack Pattern Specimen A123A1 with Full NR Method at δ = 11.59 mm (Shifting Point C) 
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Figure 5.35 Crack Pattern Specimen A123A1 with Full NR Method at Peak Load 

 
The relative energy variation in Figure 5.31 is relatively constant for model A123A1 LI0.016 and constantly 
increasing in model A123A1 LI0.006 from shifting point A to shifting point C. The relative out-of-balance force 
in model A123A1 LI0.06 and LI0.03 is constantly increasing through all shifting points. A significant difference 
of both relative energy variation and out-of-balance force can be seen between model A123A1 LI0.016 and 
LI0.006, where higher energy variation and out-of-balance force can be seen in model A123A1 LI0.016 
compared to LI0.006.  
 
In terms of crack pattern, models A123A1 LI0.016 and LI0.006 show a similar crack progression on shifting 
point A in Figure 5.32. However, the rate of crack progression in model A123A1 LI0.016 is slower compared 
to model A123A1 LI0.006. This can be seen in Figure 5.33 and Figure 5.34 where the trend of the maximum 
crack width changes where the maximum crack width is larger in model A123A1 LI0.016 compared to model 
A123A1 LI0.006 in Figure 5.32 to the maximum crack width is smaller in model A123A1 LI0.016 compared to 
model A123A1 LI0.006 in Figure 5.33 and Figure 5.34. Furthermore, it can be seen that the location of the 
maximum crack width is different between model A123A1 LI0.016 and LI0.006 in Figure 5.33 and Figure 5.34 
compared to Figure 5.32, where the maximum crack width is located in the flexural crack opening in Figure 
5.32 for both models, while in Figure 5.33 and Figure 5.34, the maximum crack width is located in flexural 
crack opening for model A123A1 LI0.016 and dowel crack opening for model A123A1 LI0.006. The change 
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in the rate of crack width propagation in model A123A1 LI0.006 is due to the absence of vertical reinforcement, 
causing the crack width increment in the vertical direction (dowel crack) is higher compared to the crack width 
increment in the horizontal direction (flexural crack). These phenomena can be correlated to the observation 
results of Figure 5.31. The relative energy variation is smaller in model A123A1 LI0.016 is due to the lower 
rate of crack propagation and cause fewer elements to lose their tensile fracture energy. Higher crack 
propagation rate in model A123A1 LI0.006 cause more elements to lost their tensile fracture energy, which 
in turn increase the relative energy variation of the step as well. The significant difference in the relative out-
of-balance force is correlated to different types of crack propagation. This correlation can be verified by the 
observation results of critical point 2 for numerical models with the Quasi-Newton method, where in Figure 
5.11 (specimen A123A1) and Figure 5.17 (specimen H123A), a similar magnitude of the relative out-of-
balance force is reflected in the similarity of the cracking progression on the numerical models in Figure 5.12, 
Figure 5.13, Figure 5.14 and Figure 5.15 for specimen A123A1 and Figure 5.18, Figure 5.19, Figure 5.20 and 
Figure 5.21 for specimen H123A. Even with all differences in the cracking progression, both models still 
produce similar cracking patterns at the peak load in Figure 5.35.  
 
The next critical point 2 in Figure 5.30 that would be analysed is for specimen H123A. Detailed illustration for 
critical point 2 of specimen H123A is given in Figure 5.36. 4 load steps are going to be observed in Figure 
5.36. These load steps indicate the shift in the load-displacement curve and will be called shifting points A, 
B, C, and D for displacement at 5.99 mm, 6.49 mm, 7.00 mm, and 7.51 mm respectively. 
 

 

Figure 5.36 Load-displacement Curve on Critical Point 2 of Specimen H123A for Full NR Method 
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LI0.006 
 

 

Figure 5.37 Crack Pattern Specimen H123A with Full NR Method at δ = 5.99 mm (Shifting Point A) 
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Figure 5.38 Crack Pattern Specimen H123A with Full NR Method at δ = 6.49 mm (Shifting Point B) 
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Figure 5.39 Crack Pattern Specimen H123A with Full NR Method at δ = 7.00 mm (Shifting Point C) 
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Figure 5.40 Crack Pattern Specimen H123A with Full NR Method at δ = 7.51 mm (Shifting Point D) 
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Figure 5.41 Crack Pattern Specimen H123A with Full NR Method at Peak Load 

 



92 5. Sensitivity Analysis of Convergence Parameters 
 

 
 

The relative energy variation and the relative out-of-balance force in Figure 5.36 show a similar pattern 
between all models, where models H123A LI0.03, LI0.016 and LI0.006 show a constant trend through all 
shifting points. However, in shifting points B and C where model H123A LI0.006 and LI0.03 load-displacement 
curve deviate, both relative energy variation and out-of-balance force for the correspondent model are highest 
compared to other models.  
 
In terms of crack pattern, models H123A LI0.03, LI0.016 and LI0.006 show similar crack progression with 
small differences in maximum crack width in shifting point A in Figure 5.37. The crack pattern of model H123A 
LI0.006 starts to change from shifting point B in Figure 5.38 where dowel crack has propagated in the model, 
where other models have not had dowel crack at this stage. Model H123A LI0.03 starts to change from shifting 
point C in Figure 5.39 where dowel crack also has propagated in this model, similar to model H123A LI0.006. 
In Figure 5.40, the major crack propagation in both model H123A LI0.03 and H123A LI0.006 is dowel crack, 
while in model H123A LI0.016 is flexural crack. Model H123A LI0.016 does not experience any changes 
through all shifting points. The formation of the dowel crack can be correlated to the value of the relative 
energy variation and out-of-balance force. The formation of the dowel crack is reflected by higher relative 
energy variation and out-of-balance force compared to the model without dowel crack. This phenomenon can 
be seen in shifting points B and C where model H123A LI0.006 has higher relative energy variation and out-
of-balance force compared to model H123A LI0.03 and LI0.016 and model H123A LI0.03 has higher relative 
energy variation and out-of-balance force compared to model H123A LI0.016. However, this phenomenon 
does not change the crack pattern at the peak load for all models, where all models have a similar crack 
pattern in Figure 5.41.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that variation on the 
peak load of models with the Full Newton-Raphson method and different load increment is caused by the 
initiation of dowel crack formation. This can be observed by comparing the relative energy variation and out-
of-balance force of each model, where the steps on the model with the formation of dowel crack typically have 
higher relative energy variation and out-of-balance force compared to the model with only flexural cracks. The 
difference in the relative energy variation and out-of-balance force is increasing as the dowel crack 
propagation becomes more dominant in the model. This can be seen in Figure 5.35 and Figure 5.41 where 
the dowel crack propagation is more dominant in the model with specimen A123A1 compared to the model 
with specimen H123A. The shifting point of this phenomenon is considered important because the shifting 
point controls when the numerical models would reach their peak capacity. 
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5.3.3 Effect of Load Increment Variation in Modified Newton-Raphson Method 
 
The last observation is done for numerical models with the Modified Newton-Raphson method. The change 
in peak load distribution due to different values of upper bound value for energy tolerance can be observed 
in Figure 5.42 and Figure 5.43 for specimen A123A1 and H123A respectively. 
 

 

Figure 5.42 Peak Load Distribution for Model A123A1 – Modified NR with Upper Bound Energy Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right. 

 

 

Figure 5.43 Peak Load Distribution for Model H123A – Modified NR with Upper Bound Energy Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for energy tolerance is given on the right. 
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Both Figure 5.42 and Figure 5.43 indicate that the use of a single value of energy tolerance would cause a 
large underestimation of relative load capacity, ranging from 0.192-0.297 for specimen A123A1 and 0-0.408 
for specimen H123A. Accepting several non-converged steps by imposing an upper bound value on the 
energy tolerance is able to improve the overall distribution of the peak load. Figure 5.42 shows that the upper 
limit of 0.026 is sufficient to prevent any significant change in the peak load distribution and give the smallest 
distribution of peak load for specimen A123A1. However, a lower value of the upper limit can be applied for 
specimen H123A to achieve the same behaviour as specimen A123A1. The upper limit of 0.012 for specimen 
H123A is sufficient to achieve this target. This indicates that the upper limit value for energy tolerance might 
be dependent on the specimen size, where a small specimen size requires a higher upper limit compared to 
large specimen size.  
 
Furthermore, it can be seen that a different range is attained for both cases, where the relative peak value of 
numerical models for specimen A123A1 is ranging from 0.929-1.214 while for specimen H123A is ranging 
from 0.717-1.532. The difference is not only on the minimum and maximum value but also on the total range 
of the peak load. These differences make it not possible to combine the results of specimen A123A1 and 
H123A and observe the peak load distribution together. Figure 5.42 and Figure 5.43 also show that no pattern 
can be seen in the distribution of the peak load, which means that the use of smaller load increment does not 
immediately produce a higher/smaller peak load. 
 

 

Figure 5.44 Peak Load Distribution for Model A123A1 – Modified NR with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right. 
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Figure 5.45 Peak Load Distribution for Model H123A – Modified NR with Upper Bound Force Tolerance 

The peak load distribution in terms of statistics is given on the left and how does the peak load  
value change with different value of upper bound for force tolerance is given on the right. 

 
A different distribution result is attained when an upper bound value is imposed on the force tolerance, which 
can be seen in Figure 5.44 and Figure 5.45. A different range of peak load distribution, compared to the single 
value of energy tolerance, is achieved when a single value of force tolerance is used, ranging from 0-0.282 
for specimen A123A1 and 0-0.408 for specimen H123A. Accepting several non-converged steps by imposing 
upper bound value on the force tolerance also improve the overall distribution of the peak load. However, in 
comparison to Figure 5.42, Figure 5.43 and Figure 5.45, Figure 5.44 do not exhibit the same behaviour where 
a higher value of upper bound means less variation on the peak load distribution. The upper bound value is 
needed to be within a certain range of values in order to have the most optimum peak load distribution for 
specimen A123A1, where the minimum value of the range is used for the upper bound value. The optimum 
upper bound for specimen A123A1 for force tolerance is ranged between 0.58-0.62 while for specimen H123A 
is 0.52. This still indicates that the upper limit value for force tolerance might be dependent on the specimen 
size, where a small specimen size requires a smaller upper limit compared to a large specimen size.  
 
Furthermore, a different range is also attained for both cases, where the relative peak value of numerical 
models of specimen A123A1 is from 0.929 to 1.145 while for specimen H123A is from 0.717 to 1.532. No 
pattern can be seen on the distribution of the peak load with load increment variation and the results for 
specimen A123A1 contains an outlier. The relative peak value range of numerical models for each specimen 
is similar in both cases. A single upper bound value is not recommended to be used, because the numerical 
models rarely have a single step that would exceed the upper bound value of energy and force tolerance at 
the same time. An example can be seen by comparing Figure 5.42 and Figure 5.44 for model A123A1 LI0.04. 
Model A123A1 LI0.04 has a relative peak load of 1.214 when the optimal upper bound of energy tolerance is 
used, while a relative peak load of 0.442 is achieved when the optimal upper bound of force tolerance is used. 
In order to find a general upper bound for numerical models, reduce variation of the results, and eliminate the 
outliers, the upper bound limit is applied to both energy and force tolerance.  
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Figure 5.46 Peak Load Distribution for Modified NR Method with Combined Upper Bound 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for error tolerance is given on the bottom. 

 
Figure 5.46 shows the combination of upper bound values from the optimal value of specimen A123A1 and 
H123A where a single upper bound type is applied. For specimen A123A1, the peak load distribution is 
reduced when the upper bound of force tolerance is increased from 0.52 to 0.58 and combined with the upper 
bound of energy tolerance of either 0.012 or 0.026. This can be explained by observing Figure 5.42 and 
Figure 5.44, where Figure 5.42 has no significant difference in peak load distribution with the upper bound of 
0.012 and 0.026 for energy tolerance, while Figure 5.44 shows that the range peak load distribution is 
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becoming smaller as the upper bound for force tolerance increase, from 0.52 to 0.57. On the other hand, 
specimen H123A does not produce the same result as specimen A123A1. Specimen H123A1 produce 
constant results for the upper bound of 0.012 and 0.026 for energy tolerance, in combination with the upper 
bound of 0.52-0.58 for force tolerance. However, the peak load distribution is different when the results with 
an upper bound of 0.012 are compared to the upper bound of 0.026 for energy tolerance. This also can be 
explained by observing Figure 5.43 where a significant difference in range can be seen between the upper 
bound of 0.012 and 0.026 for energy tolerance. The most optimal combined tolerance is 0.026 and 0.58 for 
energy and force tolerance respectively. The optimal combination for the upper bound value of the tolerance 
gives a range of 0.929-1.145 for specimen A123A1 and 0.717-1.532 for specimen H123A.  
 

  

  

Figure 5.47 Peak Load Distribution for Modified NR Method with Combined Upper Bound and LI 0.03-0.006 

The peak load distribution in terms of statistics is given on the top and how does the peak load  
value change with different value of upper bound for error tolerance is given on the bottom. 
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A better result can be attained by specifying a specific range of load increment where the peak load has less 
variation compared to the current range of load increment. Figure 5.47 gives an improved peak load 
distribution where the range of load increment is reduced from 0.1-0.004 to 0.03-0.006. The change in the 
range of load increment causes a change in the optimally combined tolerance in terms of energy tolerance, 
from 0.026 and 0.58 to 0.012 and 0.54 for energy and force tolerance respectively. The change in the range 
of load increment improves the peak load distribution from 0.929-1.145 and 0.717-1.532 to 0.791-1.121 and 
0.809-1.231 for specimen A123A1 and H123A respectively.  
 
The simulated global behaviour of the beam with the Modified Newton-Raphson method is observed based 
on the results of NLFEA which has lower relative energy variation and relative out-of-balance force than the 
defined upper bound for both energy and force tolerance. Figure 5.48 gives an illustration of the simulated 
global behaviour of the beam with the Modified Newton-Raphson method based on the load-displacement 
curve.  
 

  

Figure 5.48 Load-displacement Curve for Load Increment Variance – Modified NR Method 

 
In the load-displacement curve in Figure 5.48, there are 2 critical points that show some deviation due to 
change in load increment. The first critical point is considered not important because the deviation in critical 
point 1 does not affect the overall simulated behaviour of the beam in the non-linear region. This can be seen 
by observing the load-displacement curve between critical point 1 and critical point 2, where the simulated 
non-linear behaviour is similar for all models with specimen A123A1 and H123A. On critical point 2, a 
significant deviation can be seen between the results on both specimens. The deviation on the curve is 
considered significant due to its effect on the simulated non-linear behaviour and the peak load of the model. 
Two models, LI0.016 and LI0.006, and LI0.008 and LI0.006 are chosen as the representative of all results for 
specimen A123A1 and H123A respectively. The load-displacement curve for these models is given in Figure 
5.49. 
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Figure 5.49 Load-displacement Curve with the Convergence State for Modified Newton-Raphson Method 

 
Figure 5.49 indicates that most of the steps are converging in relative energy variation. Furthermore, the 
relative energy variation and out-of-balance force are significantly higher compared to the tolerance in both 
specimens.  
 
The first critical point 2 that would be analysed is for specimen A123A1. Detailed illustration for critical point 
2 of specimen A123A1 is given in Figure 5.50. 3 load steps are going to be observed in Figure 5.50. These 
load steps indicate the shift in the load-displacement curve and will be called shifting points A, B, and C for 
displacement at 11.59 mm, 11.99 mm, and 12.39 mm respectively. 
 

 

Figure 5.50 Load-displacement Curve on Critical Point 2 of Specimen A123A1 for Modified NR Method 

 
LI0.016 LI0.006 

  

  

Figure 5.51 Crack Pattern Specimen A123A1 with Modified NR Method at δ = 11.59 mm (Shifting Point A) 
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LI0.016 LI0.006 
  

  

Figure 5.52 Crack Pattern Specimen A123A1 with Modified NR Method at δ = 11.99 mm (Shifting Point B) 
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Figure 5.53 Crack Pattern Specimen A123A1 with Modified NR Method at δ = 12.39 mm (Shifting Point C) 
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Figure 5.54 Crack Pattern Specimen A123A1 with Modified NR Method at Peak Load 

 
The relative energy variation in Figure 5.50 is linearly increasing for both models A123A1 LI0.016 and LI0.006 
from shifting point A to shifting point C. The relative out-of-balance force in model A123A1 LI0.016 and LI0.006 
is constant through all shifting points. A significant increase in relative energy variation for model A123A1 
LI0.006 can be seen from shifting point B to C.  
 
In terms of crack pattern, models A123A1 LI0.016 and LI0.006 show a similar crack progression on shifting 
point A in Figure 5.51. It can be seen that the maximum crack width of model A123A1 LI0.016 is slightly 
higher than model A123A1 LI0.006 in Figure 5.51 and Figure 5.52. This trend continues through all shifting 
points and its difference is becoming larger from shifting point A to C. Although the difference in maximum 
crack width in Figure 5.52 is small, the crack pattern is slightly different where the overall dowel crack in model 
A123A1 LI0.016 is smaller compared to model A123A1 LI0.006. The shifting point B is followed by shifting 
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point C in Figure 5.53 where the largest differences can be spotted through all shifting points where the crack 
propagation is governed by dowel crack. This phenomenon can be seen in the changes of the convergence 
state in terms of relative energy variation. At shifting point B, the overall dowel crack opening is smaller in 
model A123A1 LI0.016 compared to A123A1 LI0.006, thus resulting in a smaller number of cracked elements 
in the model A123A1 LI0.016 and reduce the relative energy variation of the step at the shifting point. A123A1 
LI0.006 has more cracked elements that resulted in higher relative energy variation on the shifting point. 
However, this phenomenon does not affect the cracking pattern at the peak load in Figure 5.54. A similar 
crack pattern and maximum crack width can be seen on both models.  
 
The next critical point 2 in Figure 5.49 that would be analysed is for specimen H123A. Detailed illustration for 
critical point 2 of specimen H123A is given in Figure 5.55. 4 load steps are going to be observed in Figure 
5.55. These load steps indicate the shift in the load-displacement curve and will be called shifting points A, 
B, C and D for displacement at 6.66 mm, 7.06 mm, 7.33 mm and 8.41 mm respectively. 
 

  

Figure 5.55 Load-displacement Curve on Critical Point 2 of Specimen H123A for Modified NR Method 
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Figure 5.56 Crack Pattern Specimen H123A with Modified NR Method at δ = 6.66 mm (Shifting Point A) 
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LI0.008 LI0.006 
  

  

Figure 5.57 Crack Pattern Specimen H123A with Modified NR Method at δ = 7.06 mm (Shifting Point B) 

 
LI0.008 LI0.006 

  

  

Figure 5.58 Crack Pattern Specimen H123A with Modified NR Method at δ = 7.33 mm (Shifting Point C) 
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Figure 5.59 Crack Pattern Specimen H123A with Modified NR Method at δ = 8.41 mm (Shifting Point D) 

 
LI0.008 LI0.006 

  

  

Figure 5.60 Crack Pattern Specimen H123A with Modified NR Method at Peak Load 

 
In Figure 5.55, the relative energy variation of model H123A LI0.008 has an upward trend through all shifting 
points, while model H123A LI0.006 does not have a trend through all shifting points. The relative out-of-
balance force of model H123A LI0.008 is constant through all shifting points. On the other hand, the relative 
out-of-balance force of model H123A LI0.006 does not have a trend through all shifting points.  
 
In terms of crack pattern, model H123A LI0.008 and LI0.006 show a slight difference at shifting point A in 
Figure 5.56 where model H123A LI0.008 has developed a small dowel crack while model H123A LI0.006 
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does not have dowel crack yet. The dowel crack opening in model H123A LI0.008 is similar to the flexural 
crack opening at shifting point B in Figure 5.57. The dowel crack in model H123A LI0.008 starts to dominate 
the crack propagation in Figure 5.58 at shifting point C. On the other hand, model H123A LI0.006 does not 
develop any dowel crack up to shifting point D in Figure 5.59. This phenomenon can be correlated to the 
observation results for Figure 5.55 where the convergence state of model H123A LI0.006 does not have any 
trend because no dowel crack has been formed in the model. The relative energy variation increase through 
shifting point A to D in model H123A LI0.008 is correlated to the dowel crack propagation which resulted in 
more elements are cracked, thus increasing the relative energy variation on the respective steps on the 
shifting points. The starting point of the dowel crack propagation affected the crack pattern at the peak load 
in Figure 5.60, where the dowel crack has almost propagated to the support in model H123A LI0.008 
compared to model H123A LI0.006.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that variation on the 
peak load of models with the Modified Newton-Raphson method and different load increment is caused by 
the initiation of dowel crack formation. The formation of dowel crack can be identified by looking at the trend 
of the relative energy variation where the relative energy variation would be increasing as the dowel crack 
propagate and dominate the crack propagation process on the numerical model. The major types of 
propagating crack at certain steps can also be determined by observing the trend of the convergence state 
where no clear trend indicates flexural cracks are dominating the crack propagation process and a certain 
trend (constant/increasing) indicates that dowel crack starts to dominate the crack propagation process. The 
starting point of dowel crack propagation is considered important because it controls when the numerical 
models would reach their peak capacity and affect the crack pattern at the peak load. However, the degree 
of the influence of dowel crack propagation starting point is affected by the size of the specimen, where it has 
almost no influence in Figure 5.54 for the numerical model with specimen A123A1 while it has a significant 
influence in Figure 5.60 for the numerical model with specimen H123A.  
 
 

5.4. Effect of Error Tolerance Variation 
 
The influence of error tolerance can be observed in the peak load of the numerical models and the global 
behaviour of the beam. Furthermore, its influence on different types of iterative-incremental methods would 
also be observed. The observation would be done for results that have been post-processed with the 
additional criterion defined for each iterative-incremental method in 5.3 Effect of Load Increment Variation 
where an upper bound value for the convergence norms is used as a limit for accepting non-converged steps. 
The variation described in this subchapter is done for the error tolerance defined as an input to the numerical 
models, which separated converged and non-converged steps in the NLFEA. In this subchapter, this 
tolerance will be defined as lower bound tolerance. The analysis of the results is not going to be able to cover 
all variations of convergence level, because the focus of this subchapter is to give an insight on how error 
tolerance would be influencing the global behaviour of the beam, regardless of the convergence level of the 
NLFEA.  
 

5.4.1 Effect of Error Tolerance Variation in Quasi-Newton Method 
 
The first observation is done for numerical models with the Quasi-Newton method. The change in peak load 
distribution due to different values of lower bound value for energy tolerance can be observed in Figure 5.61 
for specimens A123A1 and H123A. 
 
The change in lower bound energy tolerance affects the peak load distribution significantly for both 
specimens. Less strict energy tolerance mostly causes larger peak load distribution. Figure 5.61 shows that 
the change in lower bound energy tolerance gives less impact to specimen A123A1 compared to specimen 
H123A. However, no trend can be observed in both specimen results.  
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Figure 5.61 Peak Load Distribution for Quasi-Newton Method with Different Lower Bound Energy Tolerance 

 

  

Figure 5.62 Peak Load Distribution for Quasi-Newton Method with Different Lower Bound Force Tolerance 

 
When the level of strictness on the lower bound force tolerance is decreased, a significant change in the peak 
load distribution can also be observed in Figure 5.62. Figure 5.62 also shows that in most of the results, the 
size and the mean value of the peak load distribution does not change a lot. However, it can still be observed 
that the peak load distribution is larger when less strict lower bound force tolerance is applied on the numerical 
models.  No trend can be observed in both specimen results.  
 
The simulated global behaviour of the beam with the Quasi-Newton method is observed based on the results 
of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined upper 
bound for both energy and force tolerance in subchapter 5.3.1 Effect of Load Increment Variation in Quasi-
Newton Method. The observation of the simulated global behaviour of the beam will be done separately for 
different specimens. Figure 5.63 gives an illustration of the simulated global behaviour of the beam with the 
Quasi-Newton method based on the load-displacement curve for specimen A123A1.  
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Figure 5.63 Load-displacement Curve for Error Tolerance Variance – A123A1 Quasi-Newton Method 

 
Based on Figure 5.63, it can be said that the load-displacement curve for all variations of lower bound error 
tolerance for specimen A123A1 is independent of the prescribed lower bound error tolerance. The difference 
in the peak load estimation is caused by the pre-defined upper bound error tolerance. However, there are 2 
phenomena that can be observed in Figure 5.63. The first phenomenon is non-linear behaviour cannot be 
simulated properly with high lower bound error tolerance for relative out-of-balance force. This can be seen 
in models A123A1 R11_FT1 and A123A1 R12_FT1 where one of the convergence norms has exceeded its 
upper bound tolerance at the first cracking occurrence. This phenomenon enlarges the peak load distribution, 
which can be seen in Figure 5.62. The second phenomenon is the first cracking occurrence does not influence 
the simulated non-linear behaviour of the model, which can be seen in Figure 5.63 where no significant 
deviation can be seen in the load-displacement curve. Overall, the effect of variation on the lower bound of 
error tolerance is insignificant to the simulated global behaviour of specimen A123A1.  
 

 

Figure 5.64 Load-displacement Curve for Error Tolerance Variance – H123A Quasi-Newton Method 

 
Figure 5.64 gives an illustration of the simulated global behaviour of the beam with the Quasi-Newton method 
based on the load-displacement curve for specimen H123A. Based on Figure 5.64, it can be said that the 
load-displacement curve for all variations of lower bound error tolerance is dependent on the prescribed lower 
bound error tolerance. In the load-displacement curve in Figure 5.64, there are 2 critical points that show 
some deviation due to change in lower bound error tolerance. The first critical point is considered not 
important because the deviation in critical point 1 does not affect the overall simulated behaviour of the beam 
in the non-linear region. This can be seen by observing the load-displacement curve between critical point 1 
and critical point 2, where the simulated non-linear behaviour is similar for all models with specimen H123A. 
On critical point 2, a significant deviation can be seen between the results of model H123A R23. The deviation 
on the curve is considered significant due to its effect on the simulated non-linear behaviour and the peak 
load of the model. Two models, ET3 and ET4/FT3 are chosen as the representative of all results of model 
H123A R23. The load-displacement curve for these models is given in Figure 5.65. 
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Figure 5.65 Load-displacement Curve Model H123A with the Convergence State for QN Method  

 
In Figure 5.65, the lower bound of the convergence norms are based on the model code ET4/FT3. Based on 
Figure 5.65, most of the steps are converging in both relative energy variation and out-of-balance force. 
Furthermore, higher relative energy variation and out-of-balance force can be seen by comparing 
convergence state at δ = 10-20 mm to δ = 5-10 mm for model H123A R23 ET3 and δ = 10-30 mm to δ = 5-
10 mm for model H123A R23_ET4/FT3, where the curve is near its peak.  
 
In order to observe the simulated global behaviour on critical point 2, a detailed illustration for critical point 2 
of model H123A R23 is given in Figure 5.66. 3 load steps are going to be observed in Figure 5.66. These 
load steps indicate the shift in the load-displacement curve and will be called shifting points A, B, and C for 
displacement at 11.03 mm, 11.54 mm, and 12.05 mm respectively. 
 

 

Figure 5.66 Load-displacement Curve on Critical Point 2 of Model H123A R23 for Quasi-Newton Method 
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ET3 ET4/FT3 
  

  

Figure 5.67 Crack Pattern Model H123A R23 for Err. Tol. Variation at δ = 11.03 mm (Shifting Point A) 

 
ET3 ET4/FT3 

  

  

Figure 5.68 Crack Pattern Model H123A R23 for Err. Tol. Variation at δ = 11.54 mm (Shifting Point B) 
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Figure 5.69 Crack Pattern Model H123A R23 for Err. Tol. Variation at δ = 12.05 mm (Shifting Point C) 
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Figure 5.70 Crack Pattern Model H123A R23 for Err. Tol. Variation at Peak Load 
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Figure 5.71 Crack Pattern of Model H123A R23 ET3 at Peak Load 

 
The relative energy variation in model H123A R23 ET3 in Figure 5.66 is increasing through all shifting points. 
On the other hand, the relative energy variation is decreasing from shifting point A to shifting point C in model 
H123A R23 ET4/FT3. The relative out-of-balance force in Figure 5.66 is relatively constant for both models 
from shifting point A to shifting point C.  
 
In terms of crack pattern, model H123A R23 ET3 and ET4/FT3 show similar crack progression in Figure 5.67, 
where both models have 2 inclined cracks with dowel crack. However, different crack progression can be 
seen from shifting point A to B, where the dowel cracks in model H123A R23 ET4/FT3 are connected and 
forming one major dowel crack, which can be seen in Figure 5.68. Furthermore, a significant difference in the 
maximum crack width can be seen as well on all shifting points. This difference still exists in Figure 5.69 in 
shifting point C for both models. Both models have a similar crack pattern at the peak load, as indicated in 
Figure 5.70. Model H123A R23 ET3 reached its peak sooner than model H123A R23 ET4/FT3 due to different 
locations of dowel crack, which can be seen in Figure 5.69, where one of the inclined cracks is formed in the 
middle of the span in model H123A R23 ET3. Its dowel crack has propagated up to three-quarters of the 
shear span, which indicates that model H123A R23 ET3 would reach its peak sooner than model H123A R23 
ET4/FT3. This is proven by Figure 5.71 where model H123A R23 ET3 has been shattered into two parts while 
model H123A R23 ET4/FT3 is still intact. These differences cannot be seen in the convergence state of the 
model because of different lower bound error tolerance. Different lower bound error tolerance imposed 
different criteria for the NLFEA to consider a step as a converged step. At the early stage of analysis, the 
model enters the first cracking occurrence and the formation of flexural cracks. This means that the relative 
energy variation is directly correlated to tensile fracture energy, as the energy loss on the model is only caused 
by concrete tensile cracking. Higher relative energy variation at the early stages of the analysis causes 
different loss of tensile fracture energy, which resulted in different crack patterns and propagation.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Quasi-Newton method and different error tolerance is caused by different 
crack propagation on the models. Different crack propagation is caused by different lower bound energy 
tolerance prescribed on the model. This directly affected the number of cracked elements on the model, which 
controls the crack formation on the model. This effect cannot be observed in the trend of the convergence 
state of the models. However, this effect is size-dependent as this can only be observed in the numerical 
model for specimen H123A.  
 

5.4.2 Effect of Error Tolerance Variation in Full Newton-Raphson Method 
 
The second observation is done for numerical models with the Full Newton-Raphson method. The change in 
peak load distribution due to different values of lower bound value for energy tolerance can be observed in 
Figure 5.72 for specimens A123A1 and H123A. 
 
The change in lower bound energy tolerance affects the peak load distribution significantly for specimen 
H123A, while the result for specimen A123A1 is less affected due to this change. Less strict energy tolerance 
causes larger peak load distribution for specimen A123A1 and smaller peak load distribution for specimen 
H123A, which can be seen in Figure 5.72. Furthermore, in the results of specimen H123A, a significant shift 
in the mean peak load distribution can also be seen, but the shift does not have a consistent trend. Figure 
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5.72 shows that the change in lower bound energy tolerance gives less impact to specimen A123A1 
compared to specimen H123A. However, no trend can be observed in both specimen results. 
 

 

Figure 5.72 Peak Load Distribution for Full NR Method with Different Lower Bound Energy Tolerance 

 

 

Figure 5.73 Peak Load Distribution for Full NR Method with Different Lower Bound Force Tolerance 

 
When the level of strictness on the lower bound force tolerance is decreased, a significant change in the peak 
load distribution can also be observed in Figure 5.73. Figure 5.73 also shows that the size and the mean 
value of the peak load distribution do not change a lot for specimen A123A1, while significant change can be 
seen in the results for specimen H123A, especially at the peak load distribution. However, it can still be 
observed that the peak load distribution is larger when less strict lower bound force tolerance is applied on 
the numerical models for most of the results. No trend can be observed in both specimen results.  
 
The simulated global behaviour of the beam with the Full Newton-Raphson method is observed based on the 
results of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined 
upper bound for both energy and force tolerance in subchapter 5.3.2 Effect of Load Increment Variation in 
Full Newton-Raphson Method. The observation of the simulated global behaviour of the beam will be done 
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separately for different specimens. Figure 5.74 gives an illustration of the simulated global behaviour of the 
beam with the Full Newton-Raphson method based on the load-displacement curve for specimen A123A1. 
 

   

Figure 5.74 Load-displacement Curve for Error Tolerance Variance – A123A1 Full NR Method 

 
Based on Figure 5.74, it can be said that the load-displacement curve for all variations of lower bound error 
tolerance for specimen A123A1 is independent of the prescribed lower bound error tolerance. The difference 
in the peak load estimation is caused by the pre-defined upper bound error tolerance. However, there is a 
phenomenon that can be observed in Figure 5.74. It can be said that the first cracking occurrence does not 
influence the simulated non-linear behaviour of the model, which can be seen in Figure 5.74 where no 
significant deviation can be seen in the load-displacement curve. Overall, the effect of variation on the lower 
bound of error tolerance is insignificant to the simulated global behaviour of specimen A123A1.  
 

 

Figure 5.75 Load-displacement Curve for Error Tolerance Variance – H123A Full NR Method 

 
Figure 5.75 gives an illustration of the simulated global behaviour of the beam with the Full Newton-Raphson 
method based on the load-displacement curve for specimen H123A. Based on Figure 5.75, it can be said that 
the load-displacement curve for all variations of lower bound error tolerance is dependent on the prescribed 
lower bound error tolerance. In the load-displacement curve in Figure 5.75, there are 2 critical points that 
show some deviation due to change in lower bound error tolerance. The first critical point is considered not 
important because the deviation in critical point 1 does not affect the overall simulated behaviour of the beam 
in the non-linear region. This can be seen by observing the load-displacement curve between critical point 1 
and critical point 2, where the simulated non-linear behaviour is similar for all models with specimen H123A. 
On critical point 2, a significant deviation can be seen between the results of model H123A R23. The deviation 
on the curve is considered significant due to its effect on the simulated non-linear behaviour and the peak 
load of the model. Two sets of models, FT2 and ET4/FT3, and ET3 and ET4/FT3, are chosen as the 
representative of all results of model H123A R41 and R43 respectively. The load-displacement curve for 
these models is given in Figure 5.65. 
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Figure 5.76 Load-displacement Curve Model H123A with the Convergence State for Full NR Method 

 
In Figure 5.76, the lower bound of the convergence norms are based on the model H123A R41 and R43. 
Based on Figure 5.76, most of the steps are converging in the relative energy variation. Furthermore, higher 
relative energy variation and out-of-balance force can be seen by comparing convergence state at δ = 10-30 
mm to δ = 5-10 mm for model H123A R41 and δ = 10-30 mm to δ = 5-10 mm for model H123A R43, where 
the curve is near its peak. 
 
In order to observe the simulated global behaviour on critical point 2, a detailed illustration for critical point 2 
is made for Figure 5.76. The first critical point 2 that is going to be observed is on model H123A R41, which 
is illustrated in Figure 5.77. 3 load steps are going to be observed in Figure 5.77. These load steps indicate 
the shift in the load-displacement curve and will be called shifting points A, B, and C for displacement at 6.49 
mm, 7.00 mm, and 8.01 mm respectively. 
 

 

Figure 5.77 Load-displacement Curve on Critical Point 2 of Model H123A R41 for Full NR Method 

 

1.0E 06

1.0E 05

1.0E 04

1.0E 03

1.0E 02

1.0E 01

1.0E 00

0

110

220

330

440

550

660

0 5 10 15 20 25 30 35

R
e
la
ti
 e
 E
rr
o
r

F
o
rc
e
 (
k
N
)

 (mm)

H            

R41 FT2 P

R41 ET4/FT3 P

R41 FT2 EE

R41 ET4/FT3 EE

LB Energy
Tolerance

R41 FT2 FE

R41 ET4/FT3 FE

LB Force
Tolerance

 

1.0E 06

1.0E 05

1.0E 04

1.0E 03

1.0E 02

1.0E 01

1.0E 00

0

110

220

330

440

550

660

0 5 10 15 20 25 30

R
e
la
ti
 e
 E
rr
o
r

F
o
rc
e
 (
k
N
)

 (mm)

H            

R43 ET3 P

R43 ET4/FT3 P

R43 ET3 EE

R43 ET4/FT3 EE

LB Energy
Tolerance

R43 ET3 FE

R43 ET4/FT3 FE

LB Force
Tolerance

 

1.0E 06

1.0E 05

1.0E 04

1.0E 03

1.0E 02

1.0E 01

1.0E 00

200

250

300

350

400

450

500

5 6 7 8 9 10

R
e
la
ti
 e
 E
rr
o
r

F
o
rc
e
 (
k
N
)

 (mm)

H            

R41 FT2 P

R41 ET4/FT3 P

R41 FT2 EE

R41 ET4/FT3 EE

LB Energy
Tolerance

R41 FT2 FE

R41 ET4/FT3 FE

LB Force
Tolerance



112 5. Sensitivity Analysis of Convergence Parameters 
 

 
 

FT2 ET4/FT3 
  

  

Figure 5.78 Crack Pattern Model H123A R41 for Err. Tol. Variation at δ = 6.49 mm (Shifting Point A) 

 
FT2 ET4/FT3 

  

  

Figure 5.79 Crack Pattern Model H123A R41 for Err. Tol. Variation at δ = 7.00 mm (Shifting Point B) 
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Figure 5.80 Crack Pattern Model H123A R41 for Err. Tol. Variation at δ = 8.01 mm (Shifting Point C) 
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Figure 5.81 Crack Pattern Model H123A R41 for Err. Tol. Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R41 FT2 and ET4/FT3 in Figure 5.77 
is constant through all shifting points. A significant difference in relative energy variation and out-of-balance 
force can be seen in shifting point C in Figure 5.77.  
 
In terms of crack pattern, model H123A R41 FT2 and ET4/FT3 have a similar crack pattern in Figure 5.78 
where the models only have flexural cracks in shifting point A. In shifting point B, no significant difference can 
be seen between both models in Figure 5.79, where model H123A R41 FT2 and ET4/FT3 has developed 
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dowel crack. The formation of dowel crack in model H123A R41 ET4/FT3 in shifting point B led to dowel crack 
propagation in shifting point C in Figure 5.80 where the dowel crack starts to dominate the crack propagation 
process in model H123A R41 ET4/FT3, while this phenomenon does not happen in shifting point C of model 
H123A R41 FT2. This phenomenon can be correlated to the convergence state of the models. The significant 
difference in both relative energy variation and out-of-balance force is affecting the crack propagation 
direction. The difference in both relative energy variation and out-of-balance force is caused by different 
prescribed lower bound error tolerance, where the norms in model H123A R41 FT2 are converged to 0.0001 
for energy tolerance and 0.05 for force tolerance. The difference in the prescribed lower bound error tolerance 
causes the model to find a different equilibrium state on model H123A FT2. However, this does not affect the 
crack pattern at the peak load of both models significantly in Figure 5.81.  
 
The next critical point 2 that is going to be observed is on model H123A R43, which is illustrated in Figure 
5.82. 3 load steps are going to be observed in Figure 5.82. These load steps indicate the shift in the load-
displacement curve and will be called shifting points A, B, and C for displacement at 12.06 mm, 12.60 mm, 
and 13.96 mm respectively. 
 

 

Figure 5.82 Load-displacement Curve on Critical Point 2 of Model H123A R43 for Full NR Method 
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Figure 5.83 Crack Pattern Model H123A R43 for Err. Tol. Variation at δ = 12.06 mm (Shifting Point A) 
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Figure 5.84 Crack Pattern Model H123A R43 for Err. Tol. Variation at δ = 12.60 mm (Shifting Point B) 
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Figure 5.85 Crack Pattern Model H123A R43 for Err. Tol. Variation at δ = 13.96 mm (Shifting Point C) 
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Figure 5.86 Crack Pattern Model H123A R43 for Err. Tol. Variation at Peak Load 

 
The relative energy variation in model H123A R43 ET3 in Figure 5.82 is constant through all shifting points. 
On the other hand, the relative energy variation in model H123A R43 ET4/FT3 is increasing through all shifting 
points. The difference in relative energy variation is increasing between model H123A R43 ET3 and ET4/FT3 
in Figure 5.82 from shifting point B to C. The relative out-of-balance force in both models is constant through 
all shifting points.  
 
In terms of crack pattern, model H123A R23 ET3 and ET4/FT3 have similar crack propagation in shifting 
points A and B in Figure 5.83 and Figure 5.84. However, in shifting point C in Figure 5.85, the crack 
propagation changes in model H123A R23 ET4/FT3 where the second branch of the top horizontal crack 
formed below the first branch of the top horizontal crack. On the other hand, the crack propagation in model 
H123A R23 ET3 does not change from shifting point B to C. If this phenomenon is linked to the convergence 
state of the model, this indicates that a certain magnitude of relative energy variation caused different crack 
propagation directions. Based on Figure 5.82, as the relative energy variation of model H123A R23 ET3 is 
constant, the crack propagation direction is influenced in model H123A R23 ET4/FT3 when the step has a 
relative energy variation of more than 0.01, which is equal to 100 times the lower bound energy tolerance. 
Fortunately, this difference does not significantly influence the crack pattern at the peak load, which can be 
seen in Figure 5.86.  
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Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Full Newton-Raphson method and different error tolerance is caused by 
different crack propagation on the models. Different crack propagation is caused by a difference in the relative 
energy variation of the model. This directly affected the number of cracked elements on the model, which 
controls the crack formation on the model. However, the current data is not enough to define the boundary of 
the relative energy variation to prevent the change in crack propagation direction in the model. Moreover, the 
influence in the crack propagation direction is size-dependent as this can only be observed in the numerical 
model for specimen H123A.  
 

5.4.3 Effect of Error Tolerance Variation in Modified Newton-Raphson Method 
 
The last observation is done for numerical models with the Modified Newton-Raphson method. The change 
in peak load distribution due to different values of lower bound value for energy tolerance can be observed in 
Figure 5.87 for specimens A123A1 and H123A. 
 

  

Figure 5.87 Peak Load Distribution for Modified NR Method with Different Lower Bound Energy Tolerance 

 

  

Figure 5.88 Peak Load Distribution for Modified NR Method with Different Lower Bound Force Tolerance 
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The change in lower bound energy tolerance affects the peak load distribution significantly for both 
specimens, which can be seen in Figure 5.87. The distribution of the peak load distribution is becoming 
smaller when the lower bound energy tolerance is increased up to 0.001. However, this trend changes when 
the lower bound energy tolerance is increased further to 0.005. A significant shift in the mean peak load 
distribution can also be seen for both specimens, but the shift does not have a consistent trend. Figure 5.87 
shows that the change in lower bound energy tolerance gives less impact to specimen A123A1 compared to 
specimen H123A.  
 
When the level of strictness on the lower bound force tolerance is decreased, a significant change in the peak 
load distribution can also be observed in Figure 5.88. The distribution of the peak load becomes larger after 
less strict lower bound force tolerance is used on the model for specimen A123A1. However, this is not the 
case for specimen H123A, where the peak load distribution is smaller when a lower bound of 0.05 is applied 
for force tolerance. An increase in the lower bound value for force tolerance results in larger peak load 
distribution.  
 
The simulated global behaviour of the beam with the Modified Newton-Raphson method is observed based 
on the results of NLFEA which has lower relative energy variation and relative out-of-balance force than the 
defined upper bound for both energy and force tolerance in subchapter 5.3.3 Effect of Load Increment 
Variation in Modified Newton-Raphson Method. The observation of the simulated global behaviour of the 
beam will be done separately for different specimens. Figure 5.89 gives an illustration of the simulated global 
behaviour of the beam with the Modified Newton-Raphson method based on the load-displacement curve for 
specimen A123A1. 
 

 

Figure 5.89 Load-displacement Curve for Error Tolerance Variance – A123A1 Modified NR Method 

 
Based on Figure 5.89, it can be said that the load-displacement curve for all variations of lower bound error 
tolerance for specimen A123A1 is independent of the prescribed lower bound error tolerance. The difference 
in the peak load estimation is caused by the pre-defined upper bound error tolerance. Overall, the effect of 
variation on the lower bound of error tolerance is insignificant to the simulated global behaviour of specimen 
A123A1. 
 
Figure 5.90 gives an illustration of the simulated global behaviour of the beam with the Modified Newton-
Raphson method based on the load-displacement curve for specimen H123A. Based on Figure 5.90, it can 
be said that the load-displacement curve for all variations of lower bound error tolerance for specimen H123A 
is independent of the prescribed lower bound error tolerance. The difference in the peak load estimation is 
caused by the pre-defined upper bound error tolerance. However, there is a phenomenon that can be 
observed in Figure 5.90. It can be said that the first cracking occurrence does not influence the simulated 
non-linear behaviour of the model, which can be seen in Figure 5.90 where no significant deviation can be 
seen in the load-displacement curve. Overall, the effect of variation on the lower bound of error tolerance is 
insignificant to the simulated global behaviour of specimen H123A.  
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Figure 5.90 Load-displacement Curve for Error Tolerance Variance – H123A Modified NR Method 

 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the numerical 
models with the Modified Newton-Raphson method are independent of the variation of the lower bound error 
tolerance. Furthermore, the independent behaviour towards the variation of the lower bound error tolerance 
is not size-dependent, where both models show similar behaviour when the numerical models are varied in 
the lower bound error tolerance. 
 
 

5.5. Effect of Maximum Number of Iterations Variation 
 
As there are a lot of steps that do not reach convergence and non-converged steps used the last output of 
the iterations, the maximum number of iterations is suspected to be influencing the peak load of the numerical 
models and the global behaviour of the beam. Furthermore, its influence is expected to be different for 
different types of iterative-incremental methods. Therefore, the effect on different iterative-incremental 
methods would also be observed. The observation would be done for results that have been post-processed 
with the additional criterion defined for each iterative-incremental method in 5.3 Effect of Load Increment 
Variation where an upper bound value for the convergence norms is used as a limit for accepting non-
converged steps. The analysis of the results is not going to be able to cover all variations of convergence 
level, because the focus of this subchapter is to give an insight on how the maximum number of iterations 
would be influencing the global behaviour of the beam, regardless of the convergence level of the NLFEA.  
 

5.5.1 Effect of Maximum Number of Iterations Variation in Quasi-Newton Method 
 

 

Figure 5.91 Peak Load Distribution for Quasi-Newton Method with Different Maximum Number of Iterations 
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The first observation is done for numerical models with the Quasi-Newton method. The change in peak load 
distribution due to different maximum numbers of iterations can be observed in Figure 5.91 for specimens 
A123A1 and H123A. 
 
The peak load distribution for both specimens is significantly influenced by the variation of the maximum 
number of iterations. A significant change in peak load distribution can be seen in Figure 5.91 for specimen 
A123A1 starting from 75 iterations to 50 iterations and for H123A starting from 50 iterations to 25 iterations. 
No trend can be observed in the results of both specimens.  
 
The simulated global behaviour of the beam with the Quasi-Newton method is observed based on the results 
of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined upper 
bound for both energy and force tolerance in subchapter 5.3.1 Effect of Load Increment Variation in Quasi-
Newton Method. The observation of the simulated global behaviour of the beam will be done separately for 
different specimens. Figure 5.92 gives an illustration of the simulated global behaviour of the beam with the 
Quasi-Newton method based on the load-displacement curve for specimen A123A1. 
 

 

Figure 5.92 Load-displacement Curve for Maximum Iterations Variance – A123A1 Quasi-Newton Method 

 
Based on Figure 5.92, it can be said that the load-displacement curve for all variations of the maximum 
number of iterations for specimen A123A1 is dependent on the prescribed maximum number of iterations. 
The difference in the peak load estimation is mostly caused by the pre-defined upper bound error tolerance. 
There are 2 phenomena that can be observed in Figure 5.92. The first phenomenon is non-linear behaviour 
cannot be simulated properly with a small maximum number of iterations. This can be seen in model A123A1 
R11 NI25, R12 NI10, R12 NI25, R13 NI10, and R13 NI25 where one of the convergence norms has exceeded 
its upper bound tolerance at the first cracking occurrence. This phenomenon enlarges the peak load 
distribution, which can be seen in Figure 5.91. The second phenomenon is the first cracking occurrence does 
not influence the simulated non-linear behaviour of the model, except on model A123A1 R11 NI10, which can 
be seen in Figure 5.92 where no significant deviation can be seen in the load-displacement curve. Model 
A123A1 R11 NI10 is considered as an anomaly in this variation, as it is the only model that produces different 
results compared to other models. Model A123A1 R11 NI10 is considered an anomaly due to its significant 
difference in the simulated non-linear behaviour and the peak load of the model. In order to observe this 
model further, a comparison of two models, A123A1 R11 NI10 and NI100, is made based on the load-
displacement curve in Figure 5.93.    
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Figure 5.93 Load-displacement Curve Model A123A1 NI with the Convergence State for QN Method 

 
Based on Figure 5.93, the relative energy variation and out-of-balance force are relatively constant for both 
models. However, no step is converging in model A123A1 R11 NI10 while there are some steps converging 
in model A123A1 R11 NI100.  
 
In order to observe the deviation in the simulated global behaviour, a detailed illustration of model H123A 
R23 is given in Figure 5.94. The observation would be done for 3 load steps. These load steps indicate the 
shift in the load-displacement curve and will be called shifting points A, B, and C for displacement at 1.99 
mm, 3.99 mm, and 7.99 mm respectively. 
 

 

Figure 5.94 Load-displacement Curve on Critical Point 2 of Model H123A R11 NI for QN Method 
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NI10 NI100 
  

  

Figure 5.95 Crack Pattern Model A123A1 R11 for NI Variation at δ = 1.99 mm (Shifting Point A) 

 
NI10 NI100 

  

  

Figure 5.96 Crack Pattern Model A123A1 R11 for NI Variation at δ = 3.99 mm (Shifting Point B) 

 
NI10 NI100 

  

  

Figure 5.97 Crack Pattern Model A123A1 R11 for NI Variation at δ = 7.99 mm (Shifting Point C) 

 
NI10 NI100 

  

  

Figure 5.98 Crack Pattern Model A123A1 R11 for NI Variation at Peak Load 

 
The relative energy variation in model A123A1 R11 NI10 in Figure 5.94 is significantly larger in all shifting 
points compared to model A123A1 R11 NI100. The relative out-of-balance force is also significantly larger in 
model A123A1 R11 NI10 compared to model A123A1 R11 NI100, but the differences are not as large as 
differences in relative energy variation.  
 
In terms of crack pattern, model A123A1 R11 NI10 and NI100 have a significant difference in the crack 
propagation where model A123A1 R11 NI10 has distributed small flexural cracks while model A123A1 R11 
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NI100 has 3 single flexural cracks, which can be seen in shifting point A in Figure 5.95. Shifting point B and 
C in Figure 5.96 and Figure 5.97 also shows that the crack propagation of both models is different, where 
model A123A1 R11 NI10 continue to create distributed small flexural cracks while model A123A1 R11 NI100 
is propagating single flexural cracks. This resulted in a significant difference in the maximum crack width in 
all shifting points between both models. The crack pattern at the peak load is also different, where model 
A123A1 R11 NI10 fails due to flexural cracks while model A123A1 R11 NI100 fails due to flexural shear 
cracks. This phenomenon can be correlated to the convergence state of the models. The significant difference 
in relative energy variation in model A123A1 R11 NI10 is caused by multiple openings of small cracks. The 
significant difference in relative out-of-balance force can be related to a different type of crack propagation. 
This correlation can be verified by the observation results of critical point 2 for numerical models with the 
Quasi-Newton method, where in Figure 5.11 (specimen A123A1) and Figure 5.17 (specimen H123A), a 
similar magnitude of the relative out-of-balance force is reflected in the similarity of the cracking progression 
on the numerical models in Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15 for specimen A123A1 and 
Figure 5.18, Figure 5.19, Figure 5.20 and Figure 5.21 for specimen H123A. As there is no other shifting point 
in model A123A1 R11 NI10 where the crack propagation behaviour change, this phenomenon affected the 
simulated crack pattern at the peak load in Figure 5.98.  
 

   

Figure 5.99 Load-displacement Curve for Maximum Iterations Variance – H123A Quasi-Newton Method 

 
The next observation is done for numerical models for specimen H123A. Figure 5.99 gives an illustration of 
the simulated global behaviour of the beam with the Quasi-Newton method based on the load-displacement 
curve for specimen H123A. Based on Figure 5.99, it can be said that the load-displacement curve for all 
variations of the maximum number of iterations is dependent on the prescribed maximum number of 
iterations. The first observation that can be derived from Figure 5.99 is non-linear behaviour cannot be 
simulated properly with a small maximum number of iterations. This can be seen in model H123A R21 NI10, 
R21 NI25, R22 NI10, and R23 NI10 where one of the convergence norms has exceeded its upper bound 
tolerance at the first cracking occurrence. Another observation can be done based on the defined critical 
points in Figure 5.99. There are 2 critical points that show some deviation due to changes in the maximum 
number of iterations. The first critical point is considered not important because the deviation in critical point 
1 does not affect the overall simulated behaviour of the beam in the non-linear region. This can be seen by 
observing the load-displacement curve between critical point 1 and critical point 2, where the simulated non-
linear behaviour is similar for all models with specimen H123A. On critical point 2, a significant deviation can 
be seen between the results of model H123A R22 and R23. The deviation on the curve is considered 
significant due to its effect on the simulated non-linear behaviour and the peak load of the model. Three sets 
of models, NI25, NI75 and NI100, are chosen as the representative of all results of models H123A R22 and 
R23. The load-displacement curve for these models is given in Figure 5.100. 
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Figure 5.100 Load-displacement Curve Model H123A NI with the Convergence State for QN Method 

 
Based on Figure 5.100, most of the steps are converging in both relative energy variation and out-of-balance 
force. Furthermore, higher relative energy variation and out-of-balance force can be seen by comparing 
convergence state at δ = 10-30 mm to δ = 5-10 mm for model H123A R22 and R23, where the curve is near 
its peak. 
 
In order to observe the simulated global behaviour on critical point 2, a detailed illustration for critical point 2 
is made for Figure 5.100. The first critical point 2 that is going to be observed is on model H123A R22, which 
is illustrated in Figure 5.101. 3 load steps are going to be observed in Figure 5.101. These load steps indicate 
the shift in the load-displacement curve and will be called shifting points A, B, and C for displacement at 7.34 
mm, 8.02 mm, and 9.36 mm respectively.  
 

 

Figure 5.101 Load-displacement Curve on Critical Point 2 of Model H123A R22 NI for QN Method 
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Figure 5.102 Crack Pattern Model H123A R22 for NI Variation at δ = 7.34 mm (Shifting Point A) 
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Figure 5.103 Crack Pattern Model H123A R22 for NI Variation at δ = 8.02 mm (Shifting Point B) 
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Figure 5.104 Crack Pattern Model H123A R22 for NI Variation at δ = 9.36 mm (Shifting Point C) 
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Figure 5.105 Crack Pattern Model H123A R22 for NI Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R22 NI25 and NI75 in Figure 5.101 
are relatively constant through all shifting points. On the other hand, the relative energy variation and out-of-
balance force are increasing from shifting point A to shifting point C in model H123A R22 NI100. In all shifting 
points, the relative energy variation and out-of-balance force of model H123A R22 NI25 is higher compared 
to model H123A R22 NI75.  
 
In terms of crack pattern, models H123A R22 NI25, NI75 and NI100 show no significant difference in the 
crack pattern on shifting point A in Figure 5.102. The crack pattern starts to change for model H123A R22 
NI75 and NI100 on shifting point B in Figure 5.103 where dowel crack starts to form while dowel crack has 
not formed in model H123A R22 NI25. On shifting point C in Figure 5.104, the type of propagating crack 
changes from flexural crack to dowel crack for model H123A R22 NI100, while the flexural crack propagation 
continues in model H123A R22 NI25 and NI75. These phenomena can be correlated to the convergence 
state of the models. The absence of dowel crack in model H123A R22 NI25 is related to the difference in 
relative energy variation and out-of-balance force where model H123A R22 NI25 is not converged while other 
models converged on this shifting point, resulting in a slightly different crack pattern. The domination of dowel 
crack can be seen on the trend of the convergence state of model H123A R22 NI100 where a significant 
increase in both relative energy variation and out-of-balance force signifies the change in the type of 
propagating crack. The difference in the relative energy variation and out-of-balance force between model 
H123A R22 NI25 and NI75 are also seen in the slight difference in the crack pattern, which implies that the 
difference in the relative energy variation and out-of-balance force is insignificant to the models. However, 
the formation of the dowel crack is influencing the crack pattern at the peak load in Figure 5.105 where both 
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model H123A R22 NI25 and NI75 have an incomplete flexural shear crack while model H123A R22 NI100 
has a fully formed flexural shear crack.  
 
The next critical point 2 that is going to be observed is on model H123A R23, which is illustrated in Figure 
5.106. 3 load steps are going to be observed in Figure 5.106. These load steps indicate the shift in the load-
displacement curve and will be called shifting points A, B, and C for displacement at 8.51 mm, 9.02 mm, and 
10.03 mm respectively. 
 

 

Figure 5.106 Load-displacement Curve on Critical Point 2 of Model H123A R23 NI for QN Method 
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Figure 5.107 Crack Pattern Model H123A R23 for NI Variation at δ = 8.51 mm (Shifting Point A) 
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Figure 5.108 Crack Pattern Model H123A R23 for NI Variation at δ = 9.02 mm (Shifting Point B) 
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Figure 5.109 Crack Pattern Model H123A R23 for NI Variation at δ = 10.03 mm (Shifting Point C) 
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Figure 5.110 Crack Pattern Model H123A R23 for NI Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R23 NI25 and NI75 in Figure 5.106 
are relatively constant through all shifting points. On the other hand, the relative energy variation and out-of-
balance force are increasing from shifting point A to shifting point C in model H123A R22 NI100. A slight 
difference in the relative energy variation and out-of-balance force between model H123A R22 NI25 and NI75 
can only be observed in shifting point B.  
 
In terms of crack pattern, models H123A R23 NI25 and N100 show a similar crack pattern, several single 
flexural cracks with small dowel crack on shifting point A in Figure 5.107. On the other hand, model H123A 
R23 NI75 shows a slightly different crack pattern where several single flexural cracks with major dowel cracks 
can be observed in shifting point A in Figure 5.107. In shifting point B, the type of propagating crack starts to 
change in model H123A R23 NI100 where dowel crack becomes more dominant, which is similar to the crack 
propagation process in model H123A R23 NI75 in Figure 5.108. In shifting point C, the rate of dowel crack 
propagation in model H123A R23 NI75 is higher compared to model H123A R23 NI100, which can be known 
by observing the crack pattern and the maximum crack width in Figure 5.109. On the other hand, the dowel 
crack in model H123A R23 NI25 has not become the dominant crack propagation in shifting points B and C. 
This phenomenon can be correlated to the convergence state of the models. The increase of both relative 
energy variation and out-of-balance force indirectly implied the change in the type of propagating crack in 
model H123A R23 NI75, which is also found in the observation of Figure 5.101 for model H123A R22 NI25, 
NI75 and NI100. The change in the type of propagating crack in model H123A R23 NI100 is not as major as 
model H123A R23 NI75, resulted in the constant trend of both relative energy variation and out-of-balance 
force. However, the different types of propagating crack between model H123A R23 NI100 and NI25 can be 
noticed in the relative energy variation and out-of-balance force at shifting point B, where the relative energy 
variation and out-of-balance force is lower in model H123A R23 NI100 compared to model H123A R23 NI25. 
It can be said that a certain level of relative energy variation and out-of-balance force could affect the crack 
pattern, where in this case is influencing the type of propagating crack. The change in the type of propagating 
crack in the model is influencing the crack pattern at the peak load in Figure 5.110 where model H123A R23 
NI25 has an incomplete flexural shear crack while both model H123A R23 NI75 and NI100 have fully formed 
flexural shear crack.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Quasi-Newton method and different maximum number of iterations is caused 
by the change in both relative energy variation and out-of-balance force. If the change in both relative energy 
variation and out-of-balance force reached a certain magnitude, then it would influence the type of 
propagating crack that would be affecting the crack pattern at the peak load and the magnitude of the peak 
load. However, the current data is not enough to define the boundary of the relative energy variation and out-
of-balance force to prevent the change in the dominating type of propagating crack in the model. The influence 
of the maximum number of iterations is size-dependent as this phenomenon mainly observed in the numerical 
model for specimen H123A. The influence of the maximum number of iterations in the numerical model for 
specimen A123A can be eliminated by prescribing a minimum value of 50 for the maximum number of 
iterations.  
 

  



128 5. Sensitivity Analysis of Convergence Parameters 
 

 
 

5.5.2 Effect of Maximum Number of Iterations Variation in Full Newton-Raphson Method 
 
The second observation is done for numerical models with the Full Newton-Raphson method. The change in 
peak load distribution due to different maximum numbers of iterations can be observed in Figure 5.111 for 
specimens A123A1 and H123A. 
 

 

Figure 5.111 Peak Load Distribution for Full NR Method with Different Maximum Number of Iterations 

 
The peak load distribution for both specimens is significantly influenced by the variation of the maximum 
number of iterations. A significant change in peak load distribution can be seen in Figure 5.111 for specimen 
A123A1 starting from 100 iterations to 75 iterations and for H123A starting from 75 iterations to 50 iterations. 
No trend can be observed in the results of both specimens. 
 
The simulated global behaviour of the beam with the Full Newton-Raphson method is observed based on the 
results of NLFEA which has lower relative energy variation and relative out-of-balance force than the defined 
upper bound for both energy and force tolerance in subchapter 5.3.2 Effect of Load Increment Variation in 
Full Newton-Raphson Method. The observation of the simulated global behaviour of the beam will be done 
separately for different specimens. Figure 5.112 gives an illustration of the simulated global behaviour of the 
beam with the Full Newton-Raphson method based on the load-displacement curve for specimen A123A1. 
 

   

Figure 5.112 Load-displacement Curve for Maximum Iterations Variance – A123A1 Full NR Method 
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Based on Figure 5.112, it can be said that the load-displacement curve for all variations of the maximum 
number of iterations for specimen A123A1 is independent of the prescribed maximum number of iterations. 
The difference in the peak load estimation is caused by the pre-defined upper bound error tolerance. 
However, there are two phenomena that can be observed in Figure 5.112. The first phenomenon is non-linear 
behaviour cannot be simulated properly with a small maximum number of iterations. This can be seen in 
model A123A1 R31 NI10, R31 NI75, R32 NI10, R32 NI25, R33 NI10, and R33 NI25 where one of the 
convergence norms has exceeded its upper bound tolerance at the first cracking occurrence. This 
phenomenon enlarges the peak load distribution, which can be seen in Figure 5.111. The second 
phenomenon is the first cracking occurrence does not influence the simulated non-linear behaviour of the 
model, which can be seen in Figure 5.112 where no significant deviation can be seen in the load-displacement 
curve. Overall, the effect of variation on the maximum number of iterations is insignificant to the simulated 
global behaviour of specimen A123A1.  
 

 

Figure 5.113 Load-displacement Curve for Maximum Iterations Variance – H123A Full NR Method 

 
Figure 5.113 gives an illustration of the simulated global behaviour of the beam with the Full Newton-Raphson 
method based on the load-displacement curve for specimen H123A. Based on Figure 5.113, it can be said 
that the load-displacement curve for all variations of the maximum number of iterations is dependent on the 
prescribed maximum number of iterations. In the load-displacement curve in Figure 5.113, there are 2 critical 
points that show some deviation due to change in the maximum number of iterations. The first critical point is 
considered not important because the deviation in critical point 1 does not affect the overall simulated 
behaviour of the beam in the non-linear region. This can be seen by observing the load-displacement curve 
between critical point 1 and critical point 2, where the simulated non-linear behaviour is similar for all models 
with specimen H123A. On critical point 2, a significant deviation can be seen between the results of models 
H123A R41 and R43. The deviation on the curve is considered significant due to its effect on the simulated 
non-linear behaviour and the peak load of the model. Two sets of models, NI25 and NI100, are chosen as 
the representative of all results of model H123A R41 and R43 respectively. The load-displacement curve for 
these models is given in Figure 5.114. 
 

 

Figure 5.114 Load-displacement Curve Model H123A NI with the Convergence State for Full NR Method 
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Based on Figure 5.114, most of the steps are converging in the relative energy variation. Furthermore, higher 
relative energy variation and out-of-balance force can be seen by comparing convergence state at δ = 10-20 
mm to δ = 5-10 mm for model H123A R41 and δ = 10-30 mm to δ = 5-10 mm for model H123A R43, where 
the curve is near its peak. 
 
To observe the simulated global behaviour on critical point 2, a detailed illustration for critical point 2 is made 
for Figure 5.114. The first critical point 2 that is going to be observed is on model H123A R41, which is 
illustrated in Figure 5.115. 3 load steps are going to be observed in Figure 5.115. These load steps indicate 
the shift in the load-displacement curve and will be called shifting points A, B, and C for displacement at 6.49 
mm, 7.00 mm, and 7.50 mm respectively. 
 

 

Figure 5.115 Load-displacement Curve on Critical Point 2 of Model H123A R41 NI for Full NR Method 

 
NI25 NI100 

  

  

Figure 5.116 Crack Pattern Model H123A R41 for NI Variation at δ = 6.49 mm (Shifting Point A) 
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Figure 5.117 Crack Pattern Model H123A R41 for NI Variation at δ = 7.00 mm (Shifting Point B) 

 

1.0E 06

1.0E 05

1.0E 04

1.0E 03

1.0E 02

1.0E 01

1.0E 00

240

280

320

360

400

440

480

5 6 7 8 9 10

R
e
la
ti
 e
 E
rr
o
r

F
o
rc
e
 (
k
N
)

 (mm)

H            

R41 NI25 P

R41 NI100 P

R41 NI25 EE

R41 NI100 EE

LB Energy
Tolerance

R41 NI25 FE

R41 NI100 FE

LB Force
Tolerance



5.5. Effect of Maximum Number of Iterations Variation 131 
 

 
 

NI25 NI100 
  

  

Figure 5.118 Crack Pattern Model H123A R41 for NI Variation at δ = 7.50 mm (Shifting Point C) 
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Figure 5.119 Crack Pattern Model H123A R41 for NI Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R41 NI25 in Figure 5.115 is relatively 
constant through all shifting points. On the other hand, the relative energy variation and out-of-balance force 
in model H123A R41 NI100 are increasing through all shifting points. A significant difference in relative energy 
variation and out-of-balance force can be seen in shifting point A and a slight difference in shifting point C.  
 
In terms of crack pattern, model H123A R41 NI25 and NI100 have a similar crack pattern in shifting points A 
and B, as indicated in Figure 5.116 and Figure 5.117. The only noticeable difference in shifting point B is the 
formation of the dowel crack in model H123A R41 NI100. In shifting point C, the dowel crack propagation is 
becoming more dominant in model H123A R41 NI100, while model H123A R41 NI25 has not formed any 
dowel crack, which can be seen in Figure 5.118. This phenomenon can be observed in the trend of the 
convergence state of the model, where the increasing trend of both relative energy variation and out-of-
balance force resulted in the formation of dowel crack while the constant trend means the flexural crack is 
still propagating. This phenomenon is also affecting the crack pattern at the peak load in Figure 5.119 where 
model H123A R41 NI25 has an incomplete flexural shear crack while model H123A R41 NI100 has a fully 
formed flexural shear crack.  
 
The next critical point 2 that is going to be observed is on model H123A R43, which is illustrated in Figure 
5.120. 3 load steps are going to be observed in Figure 5.120. These load steps indicate the shift in the load-
displacement curve and will be called shifting points A, B, C, and D for displacement at 6.65 mm, 7.19 mm, 
7.73 mm, and 9.08 mm respectively. 
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Figure 5.120 Load-displacement Curve on Critical Point 2 of Model H123A R43 NI for Full NR Method 
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Figure 5.121 Crack Pattern Model H123A R43 for NI Variation at δ = 6.65 mm (Shifting Point A) 
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Figure 5.122 Crack Pattern Model H123A R43 for NI Variation at δ = 7.19 mm (Shifting Point B) 
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Figure 5.123 Crack Pattern Model H123A R43 for NI Variation at δ = 7.73 mm (Shifting Point C) 
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Figure 5.124 Crack Pattern Model H123A R43 for NI Variation at δ = 9.08 mm (Shifting Point D) 

 
NI25 NI100 

  

  

Figure 5.125 Crack Pattern Model H123A R43 for NI Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R43 NI25 in Figure 5.120 is 
significantly changing through all shifting points where no trend can be observed. On the other hand, the 
relative energy variation and out-of-balance force in model H123A R43 NI100 are relatively constant from 
shifting point A to shifting point C and then followed by an increase from shifting point C to D.  
 
In terms of crack pattern, model H123A R43 NI25 and NI100 have a similar crack pattern at shifting points A 
and B in Figure 5.121 and Figure 5.122 respectively. Model H123A R43 NI100 starts to develop dowel crack 
at shifting point C in Figure 5.123 and the dowel crack propagation is becoming more dominant in shifting 
point D in Figure 5.124. However, the dowel crack has not developed in shifting point C in Figure 5.123 for 
model H123A R43 NI25 and just starts to propagate in shifting point D in Figure 5.124. This phenomenon can 
be correlated to the convergence state of the model, where the increase in the relative energy variation and 
out-of-balance force resulted in the formation of dowel crack in model H123A R43 NI100. This correlation can 
be validated by observing the convergence behaviour in model H123A R43 NI25 where no trend can be 
observed in all shifting points because there is no formation of the dowel crack yet. Furthermore, the formation 
of the dowel crack also causes an increase in the relative energy variation and out-of-balance force in model 
H123A R43 NI25 after shifting point D, which can be observed in Figure 5.115. The formation of dowel crack 
affected the crack pattern at the peak load in Figure 5.125 where model H123A R23 NI25 has an incomplete 
flexural shear crack formation due to late dowel crack propagation, while model H123A R23 NI100 has a fully 
formed flexural shear crack.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Full Newton-Raphson method and different maximum number of iterations 
is caused by different load level that initiates the formation of dowel crack on the models. Different dowel 
crack initiation is caused by a different moment of trend changing in the convergence state, where a certain 
level of increment on the relative energy variation and out-of-balance force resulted in the formation of the 
dowel crack. This directly affected the crack formation process on the model, and as a result affecting the 
crack formation at the peak load. However, this effect is size-dependent as this can only be observed in the 
numerical model for specimen H123A.  
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5.5.3 Effect of Maximum Number of Iterations Variation in Modified Newton-Raphson 
Method 

 
The last observation is done for numerical models with the Modified Newton-Raphson method. The change 
in peak load distribution due to different maximum numbers of iterations can be observed in Figure 5.126 for 
specimens A123A1 and H123A. 
 

 

Figure 5.126 Peak Load Distribution for Modified NR Method with Different Maximum Number of Iterations 

 
The peak load distribution for both specimens is significantly influenced by the variation of the maximum 
number of iterations. A significant change in peak load distribution can be seen in Figure 5.111 for specimen 
A123A1 starting from 100 iterations to 75 iterations and for H123A starting from 50 iterations to 25 iterations. 
No trend can be observed in the results of both specimens. 
 
The simulated global behaviour of the beam with the Modified Newton-Raphson method is observed based 
on the results of NLFEA which has lower relative energy variation and relative out-of-balance force than the 
defined upper bound for both energy and force tolerance in subchapter 5.3.3 Effect of Load Increment 
Variation in Modified Newton-Raphson Method. The observation of the simulated global behaviour of the 
beam will be done separately for different specimens. Figure 5.127 gives an illustration of the simulated global 
behaviour of the beam with the Modified Newton-Raphson method based on the load-displacement curve for 
specimen A123A1. 
 

 

Figure 5.127 Load-displacement Curve for Maximum Iterations Variance – A123A1 Modified NR Method 
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Based on Figure 5.127, it can be said that the load-displacement curve for all variations of the maximum 
number of iterations for specimen A123A1 is independent of the prescribed maximum number of iterations. 
The difference in the peak load estimation is caused by the pre-defined upper bound error tolerance. 
However, there is a phenomenon that can be observed in Figure 5.127. It can be said that the first cracking 
occurrence does not influence the simulated non-linear behaviour of the model, which can be seen in Figure 
5.127 where no significant deviation can be seen in the load-displacement curve. Overall, the effect of 
variation on the maximum number of iterations is insignificant to the simulated global behaviour of specimen 
A123A1.  
 

  

Figure 5.128 Load-displacement Curve for Maximum Iterations Variance – H123A Modified NR Method 

 
Figure 5.128 gives an illustration of the simulated global behaviour of the beam with the Modified Newton-
Raphson method based on the load-displacement curve for specimen H123A. Based on Figure 5.128, it can 
be said that the load-displacement curve for all variations of the maximum number of iterations is dependent 
on the prescribed maximum number of iterations. The first observation that can be derived from Figure 5.128 
is non-linear behaviour cannot be simulated properly with a small maximum number of iterations. This can be 
seen in models H123A R61 NI10, R62 NI10, and R63 NI10 where one of the convergence norms has 
exceeded its upper bound tolerance at the first cracking occurrence. Another observation can be done based 
on the defined critical points in Figure 5.128. There are 2 critical points that show some deviation due to 
changes in the maximum number of iterations. The first critical point is considered not important because the 
deviation in critical point 1 does not affect the overall simulated behaviour of the beam in the non-linear region. 
This can be seen by observing the load-displacement curve between critical point 1 and critical point 2, where 
the simulated non-linear behaviour is similar for all models with specimen H123A. On critical point 2, a 
significant deviation can be seen between the results of model H123A R61 and R62. The deviation on the 
curve is considered significant due to its effect on the simulated non-linear behaviour and the peak load of 
the model. Two sets of models, NI25 and NI100, are chosen as the representative of all results of model 
H123A R61 and R62. The load-displacement curve for these models is given in Figure 5.129. 
 

 

Figure 5.129 Load-displacement Curve Model H123A NI with the Convergence State for Modified NR 
Method 
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Based on Figure 5.129, most of the steps are not converging in any convergence norms. Furthermore, higher 
relative energy variation and out-of-balance force can be seen by comparing convergence state at δ = 10-20 
mm to δ = 5-10 mm for model H123A R61, δ = 10-15 mm to δ = 5-10 mm for model H123A R62 NI25, and δ 
= 10-30 mm to δ = 5-10 mm for model H123A R62 NI100, where the curve is near its peak. 
 
In order to observe the simulated global behaviour on critical point 2, a detailed illustration for critical point 2 
is made for Figure 5.129. The first critical point 2 that is going to be observed is on model H123A R61, which 
is illustrated in Figure 5.130. 3 load steps are going to be observed in Figure 5.130. These load steps indicate 
the shift in the load-displacement curve and will be called shifting points A, B, and C for displacement at 12.06 
mm, 12.40 mm, and 13.07 mm respectively. 
 

 

Figure 5.130 Load-displacement Curve on Critical Point 2 of Model H123A R61 NI for Modified NR Method 

 
NI25 NI100 

  

  

Figure 5.131 Crack Pattern Model H123A R61 for NI Variation at δ = 12.06 mm (Shifting Point A) 

 
NI25 NI100 

  

  

Figure 5.132 Crack Pattern Model H123A R61 for NI Variation at δ = 12.40 mm (Shifting Point B) 
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NI25 NI100 
  

  

Figure 5.133 Crack Pattern Model H123A R61 for NI Variation at δ = 13.07 mm (Shifting Point C) 

 
NI25 NI100 

  

  

Figure 5.134 Crack Pattern Model H123A R61 for NI Variation at Peak Load 

 
The relative energy variation and out-of-balance force in model H123A R61 NI25 and NI100 in Figure 5.130 
is slightly increasing through all shifting points. The relative energy variation of model H123A R61 NI25 is 
slightly higher compared to model H123A R61 NI100.   
 
In terms of crack pattern, model H123A R61 NI25 has a different crack pattern compared to model H123A 
R61 NI100 where the dowel crack has dominated the crack propagation and the inclined crack has been 
formed in model H123A R61 NI25, while model H123A R61 NI100 is still developing the flexural cracks and 
the dowel crack has just formed. This difference can be seen in all shifting points in Figure 5.131, Figure 
5.132, and Figure 5.133. Furthermore, a significant difference can also be seen in the maximum crack width 
in all shifting points. These differences influenced the crack pattern at the peak load significantly in Figure 
5.134 where model H123A NI25 developed an almost fully formed flexural shear crack while model H123A 
NI100 developed flexural cracks in combination with small dowel crack. These phenomena cannot be seen 
in the convergence state of the model where both models have similar trends and similar magnitude of relative 
energy variation and out-of-balance force.  
 
The next critical point 2 that is going to be observed is on model H123A R62, which is illustrated in Figure 
5.135. 3 load steps are going to be observed in Figure 5.135. These load steps indicate the shift in the load-
displacement curve and will be called shifting points A, B, C, and D for displacement at 7.20 mm, 8.01 mm, 
10.16 mm, and 10.98 mm respectively. 
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Figure 5.135 Load-displacement Curve on Critical Point 2 of Model H123A R62 NI for Modified NR Method 
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Figure 5.136 Crack Pattern Model H123A R62 for NI Variation at δ = 7.20 mm (Shifting Point A) 
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Figure 5.137 Crack Pattern Model H123A R62 for NI Variation at δ = 8.01 mm (Shifting Point B) 
 

NI25 NI100 
  

  

Figure 5.138 Crack Pattern Model H123A R62 for NI Variation at δ = 10.16 mm (Shifting Point C) 
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NI25 NI100 
  

  

Figure 5.139 Crack Pattern Model H123A R62 for NI Variation at δ = 10.98 mm (Shifting Point D) 
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Figure 5.140 Crack Pattern Model H123A R62 for NI Variation at Peak Load 

 
The relative energy variation in model H123A R62 NI25 and NI100 in Figure 5.135 is relatively increasing 
through all shifting points. The relative out-of-balance force in Figure 5.135 is relatively constant for both 
models from shifting point A to shifting point C.  
 
In terms of crack pattern, model H123A R62 NI25 and NI100 have a similar crack pattern in shifting point A 
(Figure 5.136) and shifting point B (Figure 5.137). In shifting point C, the dowel crack in model H123A R62 
NI25 starts propagating more compared to model H123A R62 NI100, which can be observed in Figure 5.138. 
In shifting point D in Figure 5.139, the type of propagating crack in model H123A R62 NI25 changes to dowel 
crack propagation while model H123A R62 NI100 has not reached this state yet. This phenomenon cannot 
be seen in the convergence state of the model, where both models have similar trends and similar magnitude 
of relative energy variation and out-of-balance force. However, this phenomenon does not affect the crack 
pattern at the peak load significantly in Figure 5.140.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that the variation on 
the peak load of models with the Modified Newton-Raphson method and different maximum number of 
iterations is caused by the different crack patterns on the models at the same displacement. The different 
crack pattern is caused by different amount of iterations on each step on the model. The number of iterations 
is becoming a crucial factor in the NLFEA because most of the steps are not converging. It is well known that 
Modified Newton-Raphson evaluates the stiffness matrix only on the first iteration of the steps, based on the 
previous steps,  and the rest of the iterations is used only to sharpen the prediction of displacement and force 
on the model. When the numerical model has most of the steps not converging, the deviation of the stiffness 
matrix prediction is controlled by the model condition of the previous steps, which is dependent on the 
iterations done for the respective steps. Small deviation on the crack formation on one of the load steps will 
result in a completely different crack pattern, which can be seen in the numerical models with specimen 
H123A, even when the deviation on the load-displacement curve is negligible. Hence, it could be said that 
the crack propagation process is heavily dependent on the maximum number of iterations per step. 
Furthermore, this effect is size-dependent as this can only be observed in the numerical model for specimen 
H123A. 
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5.6. The Formation of Dowel Crack vs The Convergence State 
 
In order to understand the causal relationship between the formation of dowel crack and the convergence 
state of the numerical model, the first aspect that must be explained is how the dowel crack formed. The 
formation of the dowel crack can be explained by observing the stress state of the simulated model before 
and after the formation of the dowel crack. The explanation for the formation of dowel crack will be done by 
using model H123A R41_ET4/ET3 (or the same as model H123A LI0.03). The load-displacement curve is 
given in Figure 5.141 and the stress state will be observed in three points, which is referred to as shifting 
points A, B, and C, with displacement equal to 6.49 mm, 7.00 mm, and 8.01 mm respectively.  
 

 

Figure 5.141 Load-displacement Curve of Model H123A R41 ET4/FT3 with δ = 5-10 mm 

 
Principal Stress State Crack Pattern 

  

  

Figure 5.142 Stress State of Model H123A R41 ET4/FT3 at δ = 6.49 mm (Shifting Point A) 

 
Principal Stress State Crack Pattern 

  

  

Figure 5.143 Stress State of Model H123A R41 ET4/FT3 at δ = 7.00 mm (Shifting Point B) 
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Principal Stress State Crack Pattern 
  

  

Figure 5.144 Stress State of Model H123A R41 ET4/FT3 at δ = 8.01 mm (Shifting Point C) 

 
The initiation of dowel crack is caused by the existence of flexural cracks on the beam in Figure 5.142. The 
flexural crack forms a discontinuity on the bottom part of the beam, where no stress can be transferred through 
the cracks after exceeding the ultimate tensile crack width. Therefore, the tensile stress is distributed through 
the reinforcement, which causes the principal direction of the concrete element above the reinforcement to 
rotate. The rotation of the principal direction introduces vertical stress, which resulted in splitting failure around 
the reinforcement due to insufficient strength and area of the concrete below the bar. Furthermore, it can be 
noticed that at the tip of the dowel crack, there is a concentration of tensile stress, which cause the dowel 
crack continues to propagate, which can be seen in Figure 5.143. At this stage, there is no additional flexural 
crack propagation anymore and the dowel crack will continue propagating to the support, which can be seen 
in Figure 5.144. The rate of the dowel crack propagation is based on the simulated concrete strain value 
above the reinforcement.  
 
The second aspect that will be explained is the convergence state. In this thesis, the convergence state that 
will be checked with the convergence criteria are the level of relative energy variation and out-of-balance 
force on each step in the NLFEA. In order to reach convergence in the NLFEA in this case, both force and 
energy tolerance must be satisfied. Further details about the convergence state are given in subchapter 2.1.  
 
The causal relation between the formation of dowel crack and convergence state can be analysed by 
observing Figure 5.141. As there are no converged steps in the analysis between displacement equal to 5-
10 mm, high relative energy variation and out-of-balance force can be spotted. As both relative energy 
variation and out-of-balance force are related to the internal force, it can be said that variation of relative 
energy variation and out-of-balance force is due to change in internal force, assuming that the displacement 
remains constant/have a non-significant change. The change in internal force is caused by different stress-
strain conditions of the element in the numerical model. The sudden change in the stress-strain condition of 
the model will lead to an excessive change of the principal stress-strain direction and magnitude on the 
element above the reinforcement. This happens when the dowel crack starts to form and propagate in the 
numerical model. Therefore, it can be said that the formation of the dowel crack results in bad convergence. 
The influence on the convergence state is different in every iterative-incremental method, as it has a different 
method on how it calculates the global stiffness matrix of the numerical model. Furthermore, this proves that 
the result of NLFEA is dependent on the numerical parameters such as load increment, error tolerance, and 
the maximum number of iterations due to the bad convergence, as these parameters indirectly contribute to 
determining the error found on each step in the analysis.  
 
The causal relation between the formation of dowel crack and convergence state can be verified by observing 
the principal strain condition of Figure 5.77. In Figure 5.145, the principal strain direction at the low-end of the 
inclined crack is similar for both models. In model H123A R41 FT2, an additional flexural crack is formed at 
shifting point B, causing a small difference in both relative energy variation and out-of-balance force in Figure 
5.77 when compared to model H123A R41 ET4/FT3. As the principal strain direction starts rotating in model 
H123A R41 ET4/FT3, the dowel crack continues propagating and become more apparent at shifting point C 
in Figure 5.147. The excessive rotation of the principal strain direction increases the relative energy variation 
and out-of-balance force in model H123A R41 ET4/FT3, which in turn gives a higher difference in both energy 
variation and out-of-balance force when compared to model H123A R41 FT2. The effect of excessive rotation 
of the principal strain can be analysed further by observing Figure 5.148. In the element above the 
reinforcement, the excessive rotation of the principal strain is also accompanied by the sudden change of the 
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principal strain. The sudden change of the principal strain causes a drop of tensile stress in the principal 
direction where the tensile stress and fracture energy is reduced to zero. The sudden energy release 
contributes to the high energy variation. The drop of tensile stress reduces the internal force, which in turn 
increase the out-of-balance force.  
 

FT2 ET4/FT3 
  

 

 

 

 

Figure 5.145 Principal Strain in Model H123A R41 at δ = 6.49 mm (Shifting Point A) 

 
FT2 ET4/FT3 

  

 

 

 

 

Figure 5.146 Principal Strain Model H123A R41 at δ = 7.00 mm (Shifting Point B) 
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Figure 5.147 Principal Strain Model H123A R41 at δ = 8.01 mm (Shifting Point C) 

 

 

Figure 5.148 Principal Stress-Strain Curve of Element above the Reinforcement 

 
 

5.7. Derivation of Convergence Criteria  
 
Based on the study that has been done for three types of iterative-incremental analysis procedure, Quasi-
Newton, Full Newton-Raphson, and Modified Newton-Raphson, it can be concluded that the derivation of the 
convergence criteria will not be able to create a single set of criteria that can be used for all non-linear analysis. 
The difference between each analysis would be discussed in this subchapter and a recommendation would 
be given on which configuration should be used for each analysis and which analysis should be used for 
simulating shear failure of the concrete beam.  
 
In each analysis procedure, some numerical models stopped in the middle of the analysis due to a reason. 
Overall, two problems arise in the NLFEA, the dominator of plasticity matrix equal to zero due to huge loss of 
bond-slip capacity over the shear span, causing instability on the numerical model, and divergence due to 
large relative energy variation (equal or larger than 104) and out-of-balance force (equal or larger than 104). 
The peak load of several numerical models is affected by these problems. No consistent trend can be seen 
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when observing this effect, except for model A123A1 LI0.01 with the Full Newton-Raphson method. The 
influence of the NLFEA problem is disappearing after the energy tolerance is loosen to 0.001 or the maximum 
number of iterations per step is reduced to 50. As there are no other models that have the same phenomena 
as model A123A1 LI0.01 and no significant influence can be seen in the observation of change in load 
increment, error tolerance, and the maximum number of iterations, this phenomenon is considered negligible 
for this case. The summary of the numerical models that experience these problems are given in Table 5.5.  

Table 5.5 Summary of Convergence State of Numerical Models at the Last Step 

Problem 1A* 1B* 1* 2A* 2B* 2* 

Variation of Load Increment 

Quasi-Newton – 
Crisfield 

0 0 0 0 0 0 

Full Newton-
Raphson 

6 [11]** 
 

LI0.01, 
LI0.008, 

LI0.006*** 

1 [2]** 7 [13]** 0 0 0 

Modified Newton-
Raphson 

6 [11]** 
 

LI0.016, 
LI0.01, 

LI0.006*** 

5 [7]** 
 

LI0.008*** 

11 [18]** 0 1 [3]** 1 [3]** 

Variation of Error Tolerance 

Quasi-Newton – 
Crisfield 

0 0 0 0 0 0 

Full Newton-
Raphson 

15 
 

R31_FT2, 
R32_ET2, 
R33_ET3, 
R33_FT1, 

R33_FT2*** 

1 16 0 0 0 

Modified Newton-
Raphson 

15 
 

R51_ET1, 
R51_ET3, 
R51_FT2, 

R52_ET2*** 

4 
 

R62_ET3, 
R62_FT1*** 

19 0 5 
 

R62_ET1*** 

5 

Variation of Maximum Number of Iterations 

Quasi-Newton – 
Crisfield 

0 0 0 0 0 0 

Full Newton-
Raphson 

12 
 

R31_NI25, 
R33_NI75*** 

3 
 

R41_NI50*** 

15 0 0 0 

Modified Newton-
Raphson 

12 7 
 

R63_NI50*** 

19 0 4 4 

* (1) Denominator of plasticity matrix equal to zero 
 (2) Divergence 
 (A) Numerical model for specimen A123A1 
 (B) Numerical model for specimen H123A 
** 1[2] = 1 model experiences the problem within the optimal range and 2 models experience the problem within the load increment range of 

0.1-0.004 
 Optimal range for Quasi-Newton Method = 0.1-0.02 
 Optimal range for Full Newton-Raphson Method = 0.03-0.006 
 Optimal range for Modified Newton-Raphson Method = 0.03-0.006 
*** The problem on the respective numerical model affects the magnitude of the peak load in the optimal range 
 



5.7. Derivation of Convergence Criteria 145 
 

 
 

In terms of the influence of the load increment, all methods are dependent on the prescribed load increment 
on the numerical models. A different set of ranges of load increment is used for each method to attain 
consistent results with a certain range of peak load distribution. The overview of the peak range comparison 
between different methods can be seen in Table 5.6. The smallest peak range can be obtained with the 
Quasi-Newton method, while the largest peak range is attained from the Modified Newton-Raphson method. 
However, it must be noted that the Quasi-Newton method has the most loosen convergence tolerance while 
the Modified Newton-Raphson method has the tightest convergence tolerance. If the Quasi-Newton method 
is compared to Full Newton-Raphson, it can be seen that the difference in the peak range is relatively small, 
but significant overestimation can be seen in the numerical model with the Quasi-Newton method.  

Table 5.6 Quantitative Comparison between Different Iterative-incremental Analysis Method 

Iterative-
Incremental 

Analysis 
Method 

Range of Load 
Increment 

Energy 
Tolerance 

Force 
Tolerance 

Peak Range 
Specimen 
A123A1 

Peak Range 
Specimen 

H123A 

Quasi-Newton 
– Crisfield 

0.1-0.02 0.0001-0.04 0.01-0.68 1.096-1.214 1.283-1.420 

Full Newton-
Raphson 

0.03-0.006 0.0001-0.03 0.01-0.58 0.887-1.140 1.055-1.246 

Modified 
Newton-
Raphson 

0.03-0.006 0.0001-0.012 0.01-0.54 0.791-1.121 0.809-1.231 

 
When comparing each method qualitatively in order to see the influence of the load increment, each method 
has different factors that affected the simulated global behaviour of the beam. In the numerical model with 
the Quasi-Newton method, the change in load increment causes a change in the rate of crack propagation 
on the model that can be seen in the convergence state based on the change in trend from constant to linear 
growth. In the numerical model with the Full and Modified Newton-Raphson method, the change in load 
increment is caused by the initiation of dowel crack on the model that can be identified from the sudden 
increase in the relative energy variation and out-of-balance force. However, the influence of the load 
increment in the model with the Modified Newton-Raphson method is more complex, as it also affects the 
crack pattern at the peak load and size-dependent. Based on this observation, it can be said that the change 
in load increment affects the simulated cracking process on the beam.  
 
In terms of the influence of the predefined error tolerance in the numerical model, each method has a similar 
factor that affected the simulated global behaviour of the beam. In the numerical model with the Quasi-Newton 
and Full Newton-Raphson method, the change in the lower bound error tolerance causes different crack 
propagation on the model that cannot be observed clearly on the convergence state of the numerical model. 
Different crack propagation is directly correlated to the change in the predefined energy tolerance, where the 
change in lower bound energy tolerance affect the number of cracked elements and change the crack 
formation process. Furthermore, this effect is size-dependent. On the other hand, the numerical model with 
Modified Newton-Raphson does not show this behaviour. Based on this observation, it can be said that the 
Modified Newton-Raphson method has a better performance compared to other methods when the 
predefined error tolerance is varied. However, it must be noted that in Table 5.6, the numerical model with 
the Modified Newton-Raphson method has a total of 24 out of 30 models (excluding the model reference 
ET4/FT3) that has a problem at the last step.  
 
In terms of the influence of the maximum number of iterations in the numerical model, each method has 
different factors that affected the simulated global behaviour of the beam. In the numerical model with the 
Quasi-Newton method, the change in the maximum number of iterations affects the relative energy variation 
and out-of-balance force, causing changes in the type of propagating crack. This resulted in a different crack 
pattern at the peak load and influence the magnitude of the peak load. In the numerical model with the Full 
Newton-Raphson method, the change in the maximum number of iterations gives the same phenomenon as 
the change in load increment, where the initiation of the dowel crack is affected due to different levels of 
relative error in the convergence state. In the numerical model with the Modified Newton-Raphson method, 
the change in the maximum number of iterations causes different crack patterns at the same displacement 
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level due to deviation on the relative energy variation and out-of-balance force of the numerical model. The 
deviation in the relative energy variation and out-of-balance force depends heavily on the maximum number 
of iterations, as most of the steps are not converging. Furthermore, the influence of the maximum number of 
iterations in the numerical model with any method is size-dependent. Based on this observation, it can be 
said that the change in the maximum number of iterations affects the simulated cracking process of the beam. 
However, the impact of this change is more severe in the numerical model with the Modified Newton-Raphson 
method.  
 
According to these observations, it can be concluded that all methods have similar dependency behaviour to 
the load increment, predefined error tolerance and the maximum number of iterations with different degrees 
of influence. The influence of these dependencies is most severe in the numerical model with the Modified 
Newton-Raphson method, which makes this method is not recommended to be used for simulating shear 
failure in concrete beams. The influence of these dependencies in the numerical model with Quasi-Newton 
and Full Newton-Raphson is similar, but the use of Full Newton-Raphson is more recommended compared 
to Quasi-Newton because the peak load is less overestimated in the numerical model with Full Newton-
Raphson.  
 
 

5.8. Rotating vs Fixed Crack Model 
 
As the problem of formation of the dowel crack is caused by excessive rotation of the principal strain of the 
elements above the reinforcement, the numerical model with a fixed crack model that has been modelled in 
chapter 4 is observed to see whether the use of different types of cracking model can solve the problem 
related to the formation of the dowel crack. The observation will be done for both specimens. The first 
observation is done for specimen A123A1. The load-displacement curve of numerical models of specimen 
A123A1 with rotating and fixed crack model is given in Figure 5.149.  
 

 

Figure 5.149 Load-displacement Curve of model A123A1 with Different Cracking Models 

 
Figure 5.149 indicates that there is a significant difference in the peak load between model A123A1 R and F, 
where model A123A1 F gives significant underestimation of the peak load compared to the experimental 
result. Further observation on the cracking progression in the model is needed in order to understand this 
phenomenon. Critical point A is defined as the point where the numerical model with the fixed crack model 

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40

P
 (
k
N
)

 (mm)

        o                       o   

R F Exp. Results

1st Crack Crit. Point A



5.8. Rotating vs Fixed Crack Model 147 
 

 
 

starts deviating. The most important difference between the rotating and fixed crack models is the model of 
the shear retention factor. The shear retention factor in the rotating crack model is calculated implicitly while 
it is calculated explicitly in the fixed crack model with an explicit function. The process of change in the shear 
retention factor can be observed indirectly from the crack strain progression parallel to the crack opening. 
The crack strain in the perpendicular direction also needed to be observed in order to see whether the opening 
of the crack happens at the same time on the different crack models. The crack strain in the perpendicular 

( )Eknn  and parallel ( )Gknt  to the crack opening is observed in the load step before critical point A to after 

critical point A. 
 

R F 
  

  

Figure 5.150 Crack Strain in model A123A1 before Critical Point A (Load Step 31)  

 
R F 

  

  

Figure 5.151 Crack Strain in model A123A1 at Critical Point A (Load Step 32)  
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Figure 5.152 Crack Strain in model A123A1 after Critical Point A (Load Step 33)  

 
Before critical point A in Figure 5.150, it can be seen that there is a significant difference in the crack strain 

Gknt  between model A123A1 R and F. Model A123A1 R has a smaller crack strain Gknt  compared to model 

A123A1 F. Furthermore, the crack strain Gknt  in model A123A1 F is comparable in magnitude to the crack 

strain Eknn  and small dowel crack has been formed. At critical point A in Figure 5.151, the crack strain Gknt  

in the inclined flexural crack increase significantly in model A123A1 F while no significant change can be seen 
in the crack strain Gknt  in model A123A1 R. The crack strain Gknt  in model A123A1 F increase further and 

the dowel crack propagation also starts to dominate the cracking propagation process in Figure 5.152 after 
critical point A. No significant change in the crack strain Eknn  can be seen between both models in Figure 

5.150, Figure 5.151 and Figure 5.152. The excessive change in the crack strain Gknt  does not exist in model 

A123A1 R in this stage of the analysis, which cause the load capacity of model A123A1 R to keep increasing 
while model A123A1 F reach its peak.  
 

 

Figure 5.153 Load-displacement Curve of model H123A with Different Cracking Models 
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The next observation is done for the model with specimen H123A. The load-displacement curve of numerical 
models of specimen H123A with rotating and fixed crack model is given in Figure 5.153. Figure 5.153 
indicates that there is a significant difference in the peak load between model H123A R and F, where model 
H123A F gives an underestimation of the peak load compared to the experimental result. Further observation 
on the cracking progression in the model is needed in order to understand this phenomenon. Critical point A 
is defined as the point where the numerical model with the fixed crack model starts deviating. The crack strain 

in the perpendicular ( )Eknn  and parallel ( )Gknt  to the crack opening is observed in the load step before 

critical point A to after critical point A. 
 

R F 
  

  

Figure 5.154 Crack Strain in model H123A before Critical Point A (Load Step 54) 
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Figure 5.155 Crack Strain in model H123A at Critical Point A (Load Step 55) 
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Figure 5.156 Crack Strain in model H123A after Critical Point A (Load Step 56)  

 
Before critical point A in Figure 5.154, it can be seen that there is a significant difference in the crack strain 

Gknt  between model H123A R and F. Model H123A R has a smaller crack strain Gknt  compared to model 

H123A F. Furthermore, the crack strain Gknt  in model H123A F is comparable in magnitude to the crack 

strain Eknn . At the critical point A in Figure 5.155, the crack strain Gknt  in the inclined flexural crack increase 

significantly in model H123A F and the dowel crack propagation also starts to dominate the cracking 
propagation process, while no significant change can be seen in the crack strain Gknt  in model H123A R. 

The crack strain Gknt  in model H123A F increase further in Figure 5.156 after critical point A. No significant 

change in the crack strain Eknn  can be seen between both models in Figure 5.154, Figure 5.155 and Figure 

5.156. The excessive change in the crack strain Gknt  does not exist in model H123A R in this stage of the 

analysis, which causes the load capacity of model H123A R to keep increasing while model H123A F reaches 
its peak.  
 
Based on the observation of both specimens with different crack models, the use of fixed crack in the 
numerical model will not be able to solve the problem related to the formation of dowel crack because of the 
excessive change in the crack strain Gknt . The change of crack strain Gknt  represents the change in the 

shear retention factor on the element. The shear retention loss on the element above the reinforcement is too 
excessive, therefore causing a premature failure of the numerical model.  
 
 

5.9. Summary 
 
The sensitivity analysis is done for three different parameters, load increment, error tolerance and the 
maximum number of iterations. The sensitivity study of load increment is performed by studying 11 variations 
of load increment ratios (load increment/experimental peak load) from 0.1 to 0.004. The sensitivity study of 
error tolerance is performed by studying 6 variations of error tolerance from 0.0001 to 0.005. The sensitivity 
study of the maximum number of iterations is performed by studying 5 variations from 10 iterations to 100 
iterations. The sensitivity study of error tolerance and the maximum number of iterations is also varied with 3 
different load increments ratios for each specimen. The details of these sub-variations are given in Table 5.4. 
All studies are done for 3 different iterative-incremental procedures, Quasi-Newton (Crisfield), Full Newton-
Raphson, and Modified Newton-Raphson. The study is mainly using the numerical model with the rotating 
crack model.  
 
The use of different load increments, error tolerance and the maximum number of iterations cause a variation 
of the calculated peak load. Different peak load distributions are achieved with the different methods of 
iterative-incremental analysis. The distribution of the peak load is tried to be reduced by applying an upper 



5.9. Summary 151 
 

 
 

value of error tolerance, which in turn gives a range of error tolerance instead of a single value of error 
tolerance. This treatment is only done to the results of NLFEA with different load increments as it will need 
more than three sub-variations of load step per variation in order to have a more representative data 
distribution, which consumed more than the available time. Furthermore, the necessity of studying the 
distribution of the data for both variations (error tolerance and the maximum number of iterations) has not 
been identified yet, which means that the study of both variations will be focused on the dependency of these 
variations to the global behaviour. The overview of the peak load distribution within the optimum range of load 
increment in combination with a certain level of accepted error tolerance can be seen in Table 5.6.  
 
The behaviour related to the load increment, error tolerance and the maximum number of iterations is different 
for a different iterative-incremental procedure with different degrees of influence as well. The change in the 
load increment mainly affects the propagation of the dowel crack. However, additional effects can be seen in 
different iterative-incremental analysis methods. In numerical models with the Quasi-Newton method, the 
change of load increment also affects the propagation rate of the inclined crack. In numerical models with the 
Modified Newton-Raphson method, the change of load increment also affects the crack pattern at the peak 
load on model H123A, which indicates that the additional effect in this method is size-dependent. 
Furthermore, the change in load increment also has an impact on the trend of the convergence state (the 
relative energy variation and out-of-balance force) of the analysis where the trend changes from 
constant/random to linear growth. It must be noted that 7 out of 14 models with the Full Newton-Raphson 
method have a problem at the last step of the analysis where the denominator of plasticity matrix becomes 
equal to zero and all models with the Modified Newton-Raphson method have a problem at the last step of 
the analysis where the denominator of plasticity matrix also becomes equal to zero or divergence occurs. 
 
The change in the predefined error tolerance mainly affects the propagation of inclined and dowel crack in 
numerical models with the Quasi-Newton and Full Newton-Raphson methods. This effect can be considered 
size-dependent as the effect can only be observed in the simulation of specimen H123A. The change in the 
predefined error tolerance affects the criteria of the analysis steps to be considered as converged steps, 
which cause the model to find a different equilibrium path in the analysis. On the other hand, numerical models 
with the Modified Newton-Raphson method do not exhibit this phenomenon. The Modified Newton-Raphson 
method has a better performance compared to the other methods. However, it must be noted that 5 out of 30 
models (excluding the model reference ET4/FT3) have a problem at the last step of the analysis where 
divergence occurs.  
 
The change in the maximum number of iterations mainly affects the initiation of the dowel crack in numerical 
models. This effect can be considered size-dependent as the effect can only be observed in the simulation of 
specimen H123A. Several additional effects can be seen in different iterative-incremental analysis methods. 
In the numerical model with the Quasi-Newton method, the change in the maximum number of iterations also 
affects the propagation of the dowel crack, which in turn change the crack pattern at the peak load. In the 
numerical model with the Modified Newton-Raphson method, the change in the maximum number of 
iterations affects both initiation and propagation of the inclined and dowel crack, which produce different crack 
patterns at the same displacement level. Furthermore, the change in the maximum number of iterations also 
has an impact on the convergence state where the relative error level of both energy variation and out-of-
balance force increases significantly because most of the steps are not converging. This causes the relative 
error level to be heavily dependent on the maximum number of iterations per step and the equilibrium path 
becomes sensitive to the change of the relative error level. It must be noted that 15 out of 24 models 
(excluding the model reference NI100) with the Full Newton-Raphson method have a problem at the last step 
of the analysis where the denominator of plasticity matrix becomes equal to zero and 23 out of 25 models 
(excluding the model reference NI100) with Modified Newton-Raphson method have a problem at the last 
step of the analysis where the denominator of plasticity matrix also becomes equal to zero or divergence 
occurs. 
 
Based on all observations, the main source of all peak load variations with different numerical parameters is 
connected to the formation of the dowel crack. The sudden change in the stress-strain condition of the model 
will lead to excessive rotation of the principal strain direction on the element which causes premature dowel 
crack opening in the numerical model. This problem causes bad convergence in the later stage of analysis 
and influences the iterative-incremental method differently due to different methods of forming the global 
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stiffness matrix of the numerical model. The use of the fixed crack model in the numerical model will not be 
able to solve the problem related to the formation of dowel crack because of the excessive change in the 
shear retention factor on the elements where dowel crack is formed and propagating, which lead to premature 
failure of the beam.  
 
As all methods are influenced at different levels, a single set of criteria cannot be formed for all non-linear 
analyses with a different iterative-incremental method. The Full Newton-Raphson is recommended to be used 
for simulating shear failure in the reinforced concrete beam without shear reinforcement. This method should 
be combined with a range of load increment ratio (load increment/experimental peak load) of 0.03-0.006, an 

error tolerance of 0.0001errG =  and 0.01errF = , and accepting non-converged steps if the relative energy 

variation and out-of-balance force of the corresponding step are below 0.03  and 0.58  respectively, in order 

to have a peak load ratio ranging from 0.887-1.140 for specimen A123A1 and 1.055-1.246 for specimen 
H123A.  
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6 Sensitivity Analysis of Mesh Size 
 
 
 
After solving the convergence problem, the investigation of the numerical size effect continues by studying 
the effect of using different sizes of mesh in the numerical model. The numerical configuration and details of 
the mesh size variation are given in subchapter 6.1. The change in the simulated overall behaviour of the 
numerical model is investigated in subchapter 6.3. Based on the observation and analysis in subchapter 6.3, 
the change in mesh size is causing a change in the rate of the dowel crack propagation. The correlation and 
the causal relationship between the rate of the dowel crack propagation and the mesh size are studied in 
subchapter 6.4. The study regarding mesh size is concluded in subchapter 6.5 by examining which mesh size 
is sufficient to be used for simulating shear failure in the reinforced concrete beam without shear 
reinforcement. It must be noted that any figure with a crack pattern, such as Figure 6.4, is only used to be 

studied qualitatively. The value of Ecw  always indicates a range from uncracked element ( )0Ecw =  to fully 

cracked element ( ),t uEcw CW= . A fully cracked element is defined as an element which has lost all its fracture 

energy. The value of Ecw  should not be used as a reference for any study related to the experimental crack 

width because it does not consider the effect of localised reinforcement, which should have decreased the 
crack opening around the reinforcement. 
 
 

6.1. Case Study Details for Mesh Dependency Study 
 
After solving the problem regarding convergence, the next phenomenon that will be studied is related to the 
mesh size. As mentioned in subchapter 3.5, the numerical size effect is always closely correlated to the mesh 
size dependency and one of the ways to minimize the numerical size effect is to limit the mesh size used on 
the numerical model. There are two types of limits that have been discussed in chapter 3, the limit based on 
the minimum number of elements per height and minimum size of the mesh. In the Guidelines for Nonlinear 
Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020), the limit based on the minimum 
number of elements per height is used. In order to clarify the limit, the variation of the results due to changes 
in mesh size must be studied.  
 
In order to study the dependency of NLFEA results on the mesh size, 4 variations are made based on the 
number of elements per height. An additional variation is created in order to see whether the minimum size 
of the mesh should be used as a reference for the limit or not. These variations can be seen in Table 6.1. The 
specimens used for the study are the same as specimens defined in chapter 4 Identification of Problem 
Related to Convergence. All material properties and beam geometry would also be the same as defined in 
subchapter 4.1 Experimental Set-Up for Convergence Problem Identification, except for the top 
reinforcement, which is excluded from the model. The load step and convergence norms are also the same 
as defined in Table 4.10 except for the load increment/total number of steps.  

Table 6.1 Model Variation 5 

Code 
Element Size (mm) Size Ratio Load 

Increment 
Ratio 

Cracking 
Model 

Iterative-
Incremental 

Method A123A1 H123A A123A1 H123A 

M15 15 - / 20h   - 

0.03 Rotating 
Full 

Newton-
Raphson 

M20 20 - /15h   - 

M30 30 30 /10h   / 40h   

M50 50 - / 6h   - 

M60 - 60 - / 20h   

M80 - 80 - /15h   

M120 - 120 - /10h   
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Code 
Element Size (mm) Size Ratio Load 

Increment 
Ratio 

Cracking 
Model 

Iterative-
Incremental 

Method A123A1 H123A A123A1 H123A 

M200 - 200 - / 6h   

 
 

6.2. Analysis Method for Studying the Mesh Size 
 
The sensitivity analysis will be done in two stages. The first stage is to observe the global behaviour of the 
simulated beam and the convergence state of the analysis with different mesh sizes. The purpose of this 
stage is to find whether there is a connection between change in the global behaviour to the change in the 
convergence state of the analysis and how it affects the numerical model with different mesh sizes.  
 
Two types of global behaviour are going to be observed in this stage, the load-displacement curve and the 
crack propagation process. The process of flexural shear crack formation has been studied and clarified into 
4 steps in subchapter 4.5 Correlation of Crack Propagation to the Beam Global Response. Understanding 
the process of flexural shear crack formation will help identify the influence of mesh size and its connection 
to the convergence state as well. At the end of the first stage, the correlation and causal relationship of the 
mesh size to the change in the global behaviour will be analysed in order to have an insight of what is the 
root of the problem. The influence of the convergence state that has been found in subchapter 5.6 The 
Formation of Dowel Crack vs The Convergence State will also be used to help this study.  
 
The last stage is to derive new mesh size criteria that should be satisfied in order to have a numerical model 
which can simulate the correct failure mode. This stage evaluates all results from the previous stage of the 
analysis and tries to derive a set of criteria that can be used in any case.  
 
 

6.3. Effect of Mesh Size Variation 
 
The change due to different mesh sizes is studied in terms of the global behaviour and the maximum crack 
width. The study of global behaviour is explaining on how does global behaviour changes as the mesh size 
change. A problem related to the maximum crack width is found in the study of the global behaviour, where 
the maximum crack width reaches an unrealistic value at the peak load in all numerical models. The study of 
the maximum crack width will try to reduce this value by applying another criterion to the post-processing of 
the results, see its effect on the load-displacement curve and the global behaviour at the peak load and try 
deriving a rule of thumb for evaluating the load-displacement curve.   
 

6.3.1 The Study of Global Behaviour of the Beam with Different Mesh Size 
 
The simulated global behaviour of the beam is observed based on the results of NLFEA which has lower 
relative energy variation and relative out-of-balance force than the defined upper bound for both energy and 
force tolerance in subchapter 5.3.2 Effect of Load Increment Variation in Full Newton-Raphson Method. The 
first phase of observation for the simulated global behaviour of the beam will be done separately for different 
specimens. Figure 6.1 gives an illustration of the simulated global behaviour of the beam with different mesh 
sizes based on the load-displacement curve. 
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Figure 6.1 Load-displacement Curve with Different Mesh Size 

 
In the load-displacement curve in Figure 6.1, there are 2 critical points that show some deviation due to 
change in mesh size. The first critical point is considered not important because the deviation in critical point 
1 does not affect the overall simulated behaviour of the beam in the non-linear region. This can be seen by 
observing the load-displacement curve between critical point 1 and critical point 2, where the simulated non-
linear behaviour is similar for all models with specimen A123A1 and H123A. On critical point 2, a significant 
deviation can be seen between the results on both specimens. The deviation on the curve is considered 
significant due to its effect on the simulated non-linear behaviour and the peak load of the model. Two models, 
M30 and M20, are chosen as the representative of all results for specimen A123A1 and three models, M80, 
M60, and M30, for specimen H123A. The load-displacement curve for these models is given in Figure 6.2. 
 

  

Figure 6.2 Load-displacement Curve with Convergence State for Different Mesh Size 

 
Figure 5.30 indicates that most of the steps are converging in relative energy variation for model simulating 
specimen A123A1 and H123A. Furthermore, an increase in the relative energy variation and out-of-balance 
force can be seen around critical point 2 by observing convergence state at δ = 10-15 mm in specimen 
A123A1 and δ = 5-15 mm in specimen H123A.  
 
The first critical point 2 that would be analysed is for specimen A123A1. Detailed illustration for critical point 
2 of specimen A123A1 is given in Figure 6.3. 4 load steps are going to be observed in Figure 6.3. These load 
steps indicate the shift in the load-displacement curve and will be called shifting points A, B, C, and D for 
displacement at 11.23 mm, 11.98 mm, 12.73 mm, and 13.49 mm respectively. 
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Figure 6.3 Load-displacement Curve on Critical Point 2 of Model A123A1 

 
M30 M20 

  

  

Figure 6.4 Crack Pattern Model A123A1 for Different Mesh Size at δ = 11.23 mm (Shifting Point A) 
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Figure 6.5 Crack Pattern Model A123A1 for Different Mesh Size at δ = 11.98 mm (Shifting Point B) 
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Figure 6.6 Crack Pattern Model A123A1 for Different Mesh Size at δ = 12.73 mm (Shifting Point C) 
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Figure 6.7 Crack Pattern Model A123A1 for Different Mesh Size at δ = 13.49 mm (Shifting Point D) 
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Figure 6.8 Crack Pattern Model A123A1 for Different Mesh Size at Peak Load 

 
The relative energy variation and out-of-balance force in Figure 6.3 are increasing for model A123A1 M30 
and M20 from shifting point A to shifting point D. However, the rate of increment of relative energy variation 
is higher compared to the relative out-of-balance force. The difference in the relative energy variation between 
model A123A1 M30 and M20 is growing from shifting point A to shifting point D, while the difference in the 
out-of-balance force in both models is very small in all shifting points.  
 
In terms of crack pattern, models A123A1 M30 and M20 have similar crack progression at shifting point A in 
Figure 6.4. However, it must be noted that model A123A1 M30 has a smaller opening of dowel crack 
compared to model A123A1 M20. In shifting point B, the dowel crack propagates faster in model A123A1 
M30 compared to model A123A1 M20. This can be seen in Figure 6.5 where the maximum crack width and 
the tensor size in both specimens is comparable. This trend continues in Figure 6.6 and Figure 6.7 where a 
significant increase can be seen in the maximum crack width between shifting point B to C and shifting point 
C to D. This phenomenon can also be seen in Figure 6.3 where the relative energy variation in model A123A1 
M30 is higher compared to A123A1 M20. The relative energy variation in model A123A1 M30 is higher due 
to larger differences in cracked elements between the corresponding step to the previous step. As the rate of 
crack propagation increase, the number of cracked elements also increase significantly and leads to higher 
relative energy variation. Based on this observation, it can be seen that the dowel crack propagation is less 
stable in model A123A1 M30 compared to model A123A1 M20. Fortunately, this phenomenon does not affect 
the crack pattern at the peak load in Figure 6.8.  
 
The next critical point 2 in Figure 6.2 that would be analysed is for specimen H123A. Detailed illustration for 
critical point 2 of specimen H123A is given in Figure 6.9. 5 load steps are going to be observed in Figure 6.9. 
These load steps indicate the shift in the load-displacement curve and will be called shifting points A, B, C, 
D, and E for displacement at 6.47 mm, 6.98 mm, 7.98 mm, 9.49 mm, and 10.50 mm respectively. 
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Figure 6.9 Load-displacement Curve on Critical Point 2 of Model H123A 
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Figure 6.10 Crack Pattern Model H123A for Different Mesh Size at δ = 6.47 mm (Shifting Point A) 
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Figure 6.11 Crack Pattern Model H123A for Different Mesh Size at δ = 6.98 mm (Shifting Point B) 
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Figure 6.12 Crack Pattern Model H123A for Different Mesh Size at δ = 7.98 mm (Shifting Point C) 
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Figure 6.13 Crack Pattern Model H123A for Different Mesh Size at δ = 9.49 mm (Shifting Point D) 
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Figure 6.14 Crack Pattern Model H123A for Different Mesh Size at δ = 10.50 mm (Shifting Point E) 
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Figure 6.15 Crack Pattern Model H123A for Different Mesh Size at Peak Load 

 
The relative energy variation and out-of-balance force in models H123A M80, M60 and M30 in Figure 6.9 is 
relatively constant from shifting point A to shifting point C. The relative energy variation of model H123A M60 
is always higher compared to other models. From shifting point C to shifting point E, the relative energy 
variation and out-of-balance force of models H123A M80 and M30 are relatively increasing. A significant 
increase in the relative energy variation and out-of-balance force in model H123A M80 can be seen from 
shifting point D to E, while this phenomenon does not exist in model H123A M30.  
 
In terms of crack pattern, models H123A M80, M60, and M30 show similar crack progression at shifting point 
A, while a bigger crack opening can be seen as the mesh size transition from 80 mm to 30 mm in Figure 6.10. 
A small dowel crack opening can be seen in model H123A M30, while no dowel crack can be seen in other 
models. In shifting point B, model H123A M60 starts developing dowel crack while no significant change can 
be seen in other model’s crack patterns in Figure 6.11. The formation of dowel crack in model H123A M60 
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becomes more dominant in shifting point C in Figure 6.12, which cause a significant increase in the maximum 
crack width, while other models are still governed by flexural crack propagation. The formation of dowel crack 
in model H123A M30 becomes more dominant in shifting point D in Figure 6.13, while model H123A M80 is 
still governed by flexural crack propagation. The dowel crack starts propagating in model H123A M80 at 
shifting point E. However, it must be noted that the dowel crack propagation in model H123A M80 is less 
stable compared to other models, which can be seen by comparing the maximum crack width of Figure 6.13 
and Figure 6.14 where the difference maximum crack width of model H123A M80 and M30 changes rapidly 
from shifting point D to E. The change in maximum crack width in model H123A M60 due to dowel crack 
propagation, which can be seen by observing Figure 6.11 and Figure 6.12, is more stable compared to model 
H123A M80 and less stable compared to model H123A M30. This phenomenon can be correlated to the 
convergence state of the models. It can be seen that if the relative energy variation in the model exceeds a 
certain threshold, the dowel crack will start propagating. All models surpassed this threshold at different 
shifting points, where model H123A M80 exceed the threshold at shifting point E, model H123A M60 at shifting 
point B, and model H123A M30 at shifting point D. If the observation is focused on this phenomenon at each 
shifting point, the threshold of the relative energy variation that causes the formation of the dowel crack is 
0.001. The relative energy variation of model H123A M60 is higher compared to other models due to the 
formation of dowel crack, which adds more cracked elements to the model. The sudden increase of relative 
energy variation at shifting point E in model H123A M80 is due to the sudden increase in the number of 
cracked elements compared to the previous steps, which can be seen by comparing Figure 6.13 and Figure 
6.14. Based on this observation, it can be said that in the case of simulating specimen H123A, the numerical 
model with a small mesh size has more stable crack propagation compared numerical model with a larger 
mesh size. However, this phenomenon does not affect the crack pattern at the peak load in Figure 6.15.  
 
Based on the observation for both specimen A123A1 and H123A, it can be concluded that changing the mesh 
size would cause a change in the dowel crack propagation. Finer mesh would lead to more stable dowel crack 
propagation where the increment of the crack width between each load step becomes smaller. More stable 
crack propagation leads to a constant increase of the load capacity, which can be seen in Figure 6.1 whereas 
the mesh size reduces, the point where the stiffness change became less pronounce and completely 
disappeared after a certain size of the mesh is used. Furthermore, this phenomenon also implied that the 
initiation of dowel crack become less pronounced in the load-displacement curve of the numerical model with 
finer mesh. However, the formation of dowel crack can still be seen in the convergence state of the model 
where the formation of dowel crack is signified by the sudden increase in the relative energy variation of the 
model. The shifting point of this phenomenon is considered important because the shifting point controls when 
the numerical models would reach their peak capacity. 
 

6.3.2 The Study of the Maximum Crack Width with Different Mesh Size 
 

 

Figure 6.16 Experimental Result of Shear Displacement of Specimen A123A1 

Source: (Koekkoek & Yang, 2016) 
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As the numerical model usually reached an un-realistic magnitude of maximum crack width, which can be 
seen in Figure 6.8 and Figure 6.15. The term “un-realistic” is used due to a significant difference in the crack 
opening compared to the experimental result, which can be seen in Figure 6.16. In the experimental result, 
the peak load is reached when the vertical crack opening of specimen A123A1 is equal to 0.2 mm. The 
progression of the vertical crack opening on the major flexural shear crack of the numerical model must be 
observed further. The vertical crack opening is going to be referred as the shear displacement in this report. 
The observation is done by analysing the load vs shear displacement at the mid-height of the major flexural 
shear crack opening in Figure 6.17.  
 

 

Figure 6.17 The Simulated Shear Displacement Progression as the Load Increase 

 
Based on Figure 6.17, it can be seen that the shear displacement starts increasing after a certain magnitude 
of load applied on the beam. In the numerical model with specimen A123A1, the shear displacement can 
increase up to 2 mm before reaching failure. On the other hand, the numerical model with specimen H123A 
shows that the shear displacement can increase up to 11 mm before reaching failure. Several models for 
specimen A123A1 and all models for specimen H123A overestimated the peak load due to excessive vertical 
crack propagation. In order to solve this problem, Figure 6.18 is plotted to see the load increase at the early 
stage of the vertical cracking.  
 

 

Figure 6.18 The Simulated Vertical Crack Width Progression up to 1 mm 
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When the shear displacement is limited up to 1 mm, the maximum load capacity of the beam is 
underestimated in most of the models for both specimens in Figure 6.18. In the NLFEA, each concrete 
element is assigned with a specific material behaviour where the ultimate tensile crack width can be 
calculated. The ultimate tensile crack width is defined as the crack width where all fracture energy of the 
element has been consumed, which can be calculated by multiplying the ultimate tensile strain with the mesh 
size. The ultimate tensile strain is calculated based on Guidelines for Nonlinear Finite Element Analysis of 
Concrete Structures (Hendriks & Roosen, 2020). For both specimens, the ultimate tensile crack width is 
roughly equal to 0.13 mm, which is similar to the maximum vertical crack opening of the experimental result 
in Figure 6.16. If the ultimate tensile crack width is used for post-processing in combination with the previously 
defined convergence criteria, the peak load is reduced in most of the models, which can be seen in Figure 
6.19.  
 

 

Figure 6.19 The Simulated Shear Displacement Progression up to Ultimate Tensile Crack 

 

Table 6.2 Peak Load with Shear Displacement ≤ 0.13 mm 

Code 
Element Size (mm) Size Ratio Peak Load* (kN) Peak Load Ratio** 

A123A1 H123A A123A1 H123A A123A1 H123A A123A1 H123A 

M15 15 - h/20 - 125.30 - 0.92 - 

M20 20 - h/15 - 114.02 - 0.84 - 

M30 30 30 h/10 h/40 104.98 484.31 0.77 1.09 

M50 50 - h/6 - 100.25 - 0.73 - 

M60 - 60 - h/20 - 424.25 - 0.95 

M80 - 80 - h/15 - 443.11 - 1.00 

M120 - 120 - h/10 - 430.96 - 0.97 

M200 - 200 - h/6 - 445.27 - 1.00 

* The peak load is referred to as the maximum load that a beam can be sustained based on the result of simulation with NLFEA 
** The peak load ratio is calculated based on the peak load of the numerical models divided by experimental peak load 

 
Figure 6.19 shows that most of the peak load predictions in the models are underestimated. The exact value 
of the peak load in the model can be observed in Table 6.2. In order to have a satisfactory simulated result, 
the behaviour of the load-displacement curve should be observed, and the simulated failure mode must be in 
accordance with the experimental results. The modified load-displacement curve can be seen in Figure 6.20.  
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Figure 6.20 Load-displacement Curve with 
,t uCW    

 
If Figure 6.20 is compared to Figure 6.1, it can be seen that the first peak of Figure 6.1 corresponds to the 
peak of Figure 6.20 in the numerical model for specimen H123A. Therefore, it is recommended to use the 
first peak found on the load-displacement curve as the peak load of the numerical models. As almost all 
models give an underestimated peak load, the next aspect that needed to be verified is the simulated failure 
mode.  
 

M50  / 6h   M30  / 10h   
  

  
M20  / 15h   M15  / 20h   

 
 

  

Figure 6.21 Crack Pattern Model A123A1 for Different Mesh Size at Peak Load of Figure 6.1 
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Figure 6.22 Crack Pattern Model A123A1 for Different Mesh Size at Peak Load of Figure 6.20 
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Figure 6.23 Crack Pattern Model H123A for Different Mesh Size at Peak Load of Figure 6.1 
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Figure 6.24 Crack Pattern Model H123A for Different Mesh Size at Peak Load of Figure 6.20 

 
Figure 6.22 and Figure 6.24 illustrate the crack pattern for the model with specimen A123A1 and H123A 
respectively, for the defined peak in Figure 6.20. Figure 6.21 and Figure 6.23 illustrate the crack pattern for 
the model with specimen A123A1 and H123A respectively, for the defined peak in Figure 6.1. It can be seen 
that the numerical model with mesh size equal to 50 mm for specimen A123A1 cannot simulate the failure 
mode properly in any models either referring to Figure 6.1 or Figure 6.20. The same phenomenon can also 
be seen in the numerical model with mesh size equal to 200 mm and 120 mm for specimen H123A referring 
to Figure 6.20, while the numerical model for specimen H123A with any mesh can simulate the failure mode 
properly if the peak is referring to Figure 6.1. Furthermore, it can be seen that as the mesh size decrease, 
the flexural shear crack appearance becomes more obvious in the model.  
 
 

6.4. The Rate of Dowel Crack Propagation vs Mesh Size 
 
The relation between the rate of dowel crack propagation and mesh size can be understood by observing the 
crack propagation length of the numerical model. The crack propagation length can be indirectly seen from 
the strain development of the element above the reinforcement on the shear span. Model A123A1 M30 and 
M20 are used for the observation. 4 load steps are chosen to be observed according to Figure 6.3, where the 
load-displacement curve starts to deviate. The illustration of the strain development and the crack length of 
the element above the reinforcement is given in Figure 6.25 and Figure 6.26 respectively.  
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Figure 6.25 Strain Development of Numerical Models with Different Mesh Size 

 

 

Figure 6.26 Length of Dowel Crack for Numerical Models with Different Mesh Size 

This figure is made by referring to Figure 6.25 from 0x =  to 400x =  mm  

 
From load steps 15 to 16, the strain increases at 0x =  to 400x =  mm is similar for both models, which is 

reflected in the length of the dowel crack as well. The strain starts to develop faster in model A123A1 M30 
compared to model A123A1 M20 from load steps 16 to 17, which also cause the dowel crack length to have 
a larger increase in model A123A1 M20. A larger difference in the strain development and dowel crack length 
between model A123A1 M30 and M20 can be seen from load steps 17 to 18. The change in the rate of strain 
development and dowel crack length can be explained with an illustration in Figure 6.27.  
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Figure 6.27 Illustration of Stress State of the Element above the Reinforcement* 

* the stars indicate the integration points, the red, orange and green lines with their size indicate the magnitude of the tensile stress. 

 
Assume that illustrations A and B in Figure 6.27 are the magnified version of the element above the 
reinforcement when the formation of the dowel crack has started. If one of the integration points has reached 
the reference tensile strain in Figure 6.25, then the element is considered cracked, as the tensor of either 
stress or strain is usually represented by only one line in NLFEA. In illustration A, the crack development 
length is equal to 2h while in illustration B is equal to h at the formation of the dowel crack. The difference in 
the crack development length will continue as the dowel crack propagates, causing the model represented 
with illustration A to have dowel crack propagating to the support faster compared to the model represented 
with illustration B. Furthermore, the area of the cracked element is larger in illustration A compared to B, 
resulting in different equilibrium conditions which increase the probability of higher stress in the adjacent 
element for illustration A in order to compensate for the stress loss on the respective element. This 
phenomenon is becoming more apparent in the strain development in Figure 6.25 due to the effect of 
excessive change of the principal stress-strain direction and magnitude, which is described in subchapter 5.6.  
 
 

6.5. Derivation of Mesh Size Criteria 
 
In order to derive the mesh size criteria, two aspects are going to be considered, the qualitative aspects of 
the results of NLFEA and the quantitative value of the peak load from the results of NLFEA. In terms of the 
qualitative aspect, as mentioned in subchapter 6.3 Effect of Mesh Size Variation, the use of smaller mesh 
size changes the rate of dowel crack propagation and affects the initiation of the dowel crack formation. These 
phenomena cause the peak load variation between numerical models with different mesh sizes. Furthermore, 
the crack pattern at the peak load is not affected in most cases.  

Table 6.3 Comparison of Peak Load with and without Shear Displacement Criterion 

Code 
Size Ratio 

Peak Load  
1* (kN) 

Peak Load  
2** (kN) 

Peak Load  
1 Ratio* 

Peak Load  
2 Ratio** 

A123A1 H123A A123A1 H123A A123A1 H123A A123A1 H123A A123A1 H123A 

M15 h/20 - 131.41 - 125.30 - 0.96 - 0.92 - 

M20 h/15 - 151.96 - 114.02 - 1.11 - 0.84 - 

M30 h/10 h/40 142.98 572.44 104.98 484.31 1.05 1.29 0.77 1.09 

M50 h/6 - 100.25 - 100.25 - 0.73 - 0.73 - 

M60 - h/20 - 539.14 - 424.25 - 1.21 - 0.95 

M80 - h/15 - 557.58 - 443.11 - 1.25 - 1.00 

M120 - h/10 - 682.20 - 430.96 - 1.53 - 0.97 

M200 - h/6 - 534.02 - 445.27 - 1.20 - 1.00 

* Peak Load 1 is defined as the peak load obtained from the load-displacement curve without satisfying the shear displacement criterion ≤ ,t uCW   

** Peak Load 2 is defined as the peak load obtained from the load-displacement curve with satisfying the shear displacement criterion ≤ ,t uCW   
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When the quantitative value is observed, there is a large distribution on the peak load with different mesh. 
The information regarding the peak load is given in Table 6.3. The peak load ratio distribution for specimen 
A123A1 and H123A is equal to 0.73-1.11 and 1.20-1.53 respectively. These distributions can be reduced by 
introducing an additional criterion related to the vertical crack width, where the peak load ratio distribution is 
changed to 0.73-0.92 for specimen A123A1 and 0.95-1.09 for specimen H123A. However, the change in the 
peak load distribution also impacted the simulated failure mode of the models. In subchapter 6.3 Effect of 
Mesh Size Variation, the use of shear displacement criterion resulted in wrong failure mode at the peak load 
for numerical model with mesh size equal to 50 mm for specimen A123A1 and mesh size equal to 200 mm 
and 120 mm for specimen H123A. This indicates that the numerical model with a mesh size ratio less than  

/15h  cannot simulate shear failure mode properly. Therefore, it is recommended to use a mesh size ratio 

larger than /15h . The use of maximum mesh size is not given as a recommendation because the use of 

small maximum mesh size resulted in a huge number of elements on large beams, such as specimen H123A, 
which increase the computation time significantly and does not give any additional advantage to the results 
compared to numerical model with a smaller number of elements/larger mesh size.  
 
 

6.6. Summary 
 
The sensitivity analysis is done for a total of 9 variations of mesh size, which consist of 4 variations of mesh 

size ranging from 15 mm ( )/ 20h  to 50 mm ( )/ 6h  and 5 variations ranging from 30 mm ( )/ 40h  to 200 mm 

( )/ 6h  for the numerical model with specimen A123A1 and H123A respectively. The study is mainly using the 

numerical model with the rotating crack model and applying the convergence criteria from chapter 5.  
 
The mesh size influences the initiation and propagation of the dowel crack. The initiation of the dowel crack 
begins at different load levels with a random pattern. The initiation can be identified from observing the 
convergence state of the analysis where the initiation of the dowel crack is usually accompanied by a sudden 
increase in the relative energy variation. The propagation of the dowel crack becomes more stable as the 
size of the mesh becomes smaller. The stability of the dowel crack propagation is identified from the increment 
of the crack width between each load step where small increments equal higher stability.  
 
As explained in subchapter 5.6, the initiation of the dowel crack propagation is varying in the different models 
due to the sudden change in the stress-strain condition of the model, which leads to excessive rotation of the 
principal strain direction in the element and causes premature dowel crack opening in the numerical model. 
This also affects the convergence state where the bad convergence can be seen in the later stage of the 
NLFEA.  
 
The mesh size is influencing the propagation of the dowel crack due to different equilibrium conditions found 
in the numerical models with different mesh sizes. The numerical model with a large element size has a bigger 
dowel crack opening compared to the numerical model with a small element size. This phenomenon causes 
two other phenomena. The first phenomenon is that the change in the simulated non-linear stiffness becomes 
more apparent in the load-displacement curve as the element size is increased. The second phenomenon is 
that the formation of the dowel crack becomes more pronounced as the element size increase. These 
phenomena are becoming more apparent due to the effect of excessive rotation of the principal strain, which 
is described in subchapter 5.6. 
 
Almost all numerical model variations are able to simulate the correct failure, but at the peak load, the 
numerical models predict an excessive crack opening of the major flexural shear crack. In order to reduce 
the crack opening, another criterion is used in the post-processing where the analysis steps are considered 

valid if the shear displacement of the major flexural shear crack ( )  in the numerical model at the 

corresponding step is below the ultimate tensile crack width ( ),t uCW , which is calculated from the Guidelines 

for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020). The ultimate tensile 
crack width of both specimens is equal to 0.13 mm. However, the failure mode at the peak load changes due 
to this process and a mesh size ratio larger than /15h  is required in order to have the correct simulated 

failure mode. A maximum mesh size ratio is not defined as the use of small maximum mesh size resulted in 



170 6. Sensitivity Analysis of Mesh Size 
 

 
 

a huge number of elements in large beams, such as specimen H123A, which increases the computation time 
significantly and does not give any additional advantage to the results compared to numerical models with a 
smaller number of elements or larger mesh size. It must be noted that the minimum mesh size ratio is only 
derived based on two specimens and further study is needed to determine whether the ratio should be 
increased or can be decreased.  
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7 Conclusion and Recommendation 
 
 
 

7.1. Overview of the Study 
 
The numerical simulations of flexural shear failure in reinforced concrete beams without shear reinforcement 
in NLFEA show a large scatter of results in terms of peak load. This study is trying to investigate the cause 
of this phenomenon and how to increase both the accuracy and precision of the results. The investigation is 
done for two beams specimen which fails in flexural shear. The investigation is strictly limited to cases with 

similar shear slenderness ( )/a d . These beams have a total height ( )h  of 300 mm and 1200 mm, a shear 

span ( )a  of 1000 mm and 4500 mm, and shear slenderness ( )/a d  of 3.70 and 3.91 respectively.  

 
The study is divided into three stages:  

1. The first stage is done to investigate how the flexural shear failure mode can be obtained with NLFEA 
by studying the results of 16 models with different numerical configurations of the following variables:  

a. Cracking model (Rotating and Fixed crack model) 
b. Reinforcement configuration (With or without top reinforcement)  
c. Convergence criteria (Energy and Force)  
d. Incremental iterative analysis methods (Quasi-Newton, Full Newton-Raphson and Modified 

Newton-Raphson)  
It was found that bad convergence was achieved at the later stage of the analysis and by not accepting 
non-converged steps, the results became dependent on the convergence state of the analysis where 
different peak loads were achieved in different numerical configurations for a single case study.  
 

2. The second stage is done to investigate the influence of different numerical parameters on the results 
of NLFEA and whether these dependencies have an influence on the convergence state of the 
analysis. All load steps are accepted in this stage, regardless of their convergence state, and the 
rotating crack model is used in these numerical models. The investigation is done for the following 
numerical parameters:  

a. Load increment ratio (0.004 to 0.1 times the experimental total deformation)  
b. Error tolerance (Energy and Force Tolerance with 0.0001-0.005)  
c. Maximum Number of Iterations (10 to 100 per load step)  

It was found that the results of NLFEA were dependent on these numerical parameters due to its 
influence in the process of initiation and propagation of dowel crack on each analysis. This happens 
due to a sudden change in the stress-strain condition of the numerical model when a dowel crack 
initiates and propagates. As a result, the principal stress-strain of the element above the reinforcement 
change its direction and magnitude excessively, causing a bad convergence in the later stage of the 
analysis.  
 
An additional study is done by replacing the crack model with a fixed crack model with a damage-
based shear retention model. It was found that this did not solve the problem due to the excessive 
change in the shear retention factor on the elements where dowel crack is formed and propagating, 
which lead to premature failure of the beam.  
 

3. The third stage is done to investigate the influence of the mesh size on the results of NLFEA. The 
numerical models use the rotating crack model and the results are evaluated with the convergence 
criteria developed in the second stage. The investigation is done for the following variations:  

a. Specimen A123A1 with 300h =  mm: / 20 / 6h h−  ( :15,20,30,50eleh  mm)  

b. Specimen H123A with 1200h =  mm: / 40 / 6h h−  ( :30,60,80,120,200eleh  mm)  

It was found that the results of NLFEA were dependent on the mesh size due to the difference in 
initiation and propagation rate of dowel crack. The difference in dowel crack initiation is caused by the 
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excessive change of the principal stress-strain on the element above the reinforcement, as mentioned 
in the previous stage. The difference in dowel crack propagation rate is caused by different increments 
of the dowel crack length between each load step, where the dowel crack length is following the size 
of the mesh. This cause the dowel crack length to varies with different mesh, making the dowel crack 
longer in the numerical model with a larger mesh size. Furthermore, the difference in dowel crack 
length also affects the equilibrium conditions found by the numerical model where a different load 
capacity can be found at the same level of displacement.  

 
 

7.2. Conclusions 
 
Based on the study that has been performed, the following conclusions can be drawn:  
 

1. The use of different values for the numerical parameters, such as load increment, error tolerance, and 
the maximum number of iterations influence the initiation and propagation of the dowel crack. This 
causes an excessive change of the principal stress-strain direction and magnitude on the element 
above the reinforcement. As a result, convergence is difficult to achieve in the later stage of analysis. 
However, it is not necessary to reach convergence at each load step, as it is still possible to simulate 
the shear failure mode with sufficient accuracy with the recommended choice of numerical 
parameters.  
 

2. The result of NLFEA is dependent on the numerical parameters such as load increment, error 
tolerance, and the maximum number of iterations, as the error found on each step in the analysis is 
determined based on the chosen value of these parameters in the numerical model. These parameters 
are also used to define the magnitude of the accepted errors in the critical steps that could not 
converge. As a result, the accumulation of the error eventually influences the simulated peak load. 
 

3. The excessive change of principal stress-strain is influencing the iterative-incremental method 
differently due to different methods of forming the global stiffness matrix of the numerical model.  
 

4. The use of the fixed crack model with damage-based shear retention model in the numerical model is 
not able to solve the excessive change of principal stress-strain on the element above the 
reinforcement due to the excessive change in the shear retention factor on the elements where dowel 
crack is formed and propagating, which lead to premature failure of the beam.  

 
5. The use of different sizes of mesh influences the initiation and propagation rate of the dowel crack. 

The initiation of the dowel crack causes an excessive change of the principal stress-strain direction 
and magnitude on the element above the reinforcement. The propagation rate of the dowel crack is 
dependent on the mesh size where a smaller increment of the dowel crack length between each load 
step can be achieved with a reduction of the size of the mesh.  
 

6. Numerical models with very large mesh sizes cannot simulate the development of flexural shear crack 
properly and give an overestimation of the shear displacement on the crack opening.  

 
 

7.3. Recommendation for Practice 
 
Based on the study that has been performed, the following recommendations are given to reach a reliable 
simulation of shear failure for members without shear reinforcement:  
 

1. The use of Full Newton-Raphson is recommended for the simulation of shear failure with NLFEA, as 

it gives the smallest variation of the peak load ratio ( )normP , ranging from 0.887 1.140−  for specimen 

A123A1 and 1.055 1.246−  for specimen H123A, compared to the other iterative-incremental method 

when the analysis is done with a load increment ratio (load increment/experimental peak load) within 
0.03 0.006−  and an error tolerance of 0.0001errG =  and 0.01errF = . Non-converged steps can still be 
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accepted if the relative energy variation and out-of-balance force of the corresponding step are below 
0.03  and 0.58  respectively. Further detail of the comparison of the peak load ratio variation with 

different iterative-incremental methods is given in Table 5.6. 
 

2. An additional criterion can be added to the evaluation of the acceptable analysis step in order to 
prevent an excessive crack opening on the major flexural shear crack at the peak load. The analysis 

step can still be considered valid if the shear displacement on the major flexural shear crack ( )  on 

the respective step is below the ultimate tensile crack width ( ),t uCW , which can be calculated from the 

Guidelines for Nonlinear Finite Element Analysis of Concrete Structures (Hendriks & Roosen, 2020).  
 

3. The mesh size should be smaller than /15h  to simulate the flexural shear failure correctly with a 

realistic crack opening. The mesh size should only be sufficiently smaller than the limit, as decreasing 
the mesh size will also increase the computation time and based on the study that has been 
performed, no significant improvement can be seen in the result.  

 
 

7.4. Recommendations for Further Study 
 
Based on the study that has been performed, the following recommendations are given for further study 
related to this topic:  
 

1. The study indicates that the dependency of the result to the numerical parameters is the initiation and 
formation of the dowel crack. Further analysis should be performed to understand how does the 
stress-strain in the element just above the reinforcement changes after the flexural shear crack is 
formed and its correlation to the crack development of the corresponding flexural crack.   
 

2. As the study is limited to two specimens with comparable shear slenderness, the convergence criteria 

and the mesh size criteria should be tested for more specimens with a different shear span ( )a , beam 

depth ( )d  and shear slenderness ( )/a d  in order to see whether it gives satisfactory results or the 

criteria needs further modification.  
 

3. Based on the results of the study, the use of the rotating crack model with the Full Newton-Raphson 
method still causes a certain level of overestimation in the peak load ratio. Further analysis should be 
done on how each component of NLFEA works in order to understand the reason behind this 
phenomenon. This can be done by performing sensitivity analysis for all parameters of the model in 
order to determine the necessity of each parameter. This could also help reduce the number of non-
linearities, which will result in shorter computational time and increase the number of converged steps 
in NLFEA. 
 

4. The use of the fixed crack model with damage-based shear retention model results in excessive loss 
of shear retention factor. Further study is needed to identify the cause of this phenomenon and 
whether the use of different shear retention models can solve this problem. Sensitivity analysis can 
also be done afterwards in order to see its dependency on the numerical parameters, such as load 
increment, error tolerance, the maximum number of iterations and mesh size.  
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