
Suitability of Genetic Algorithms for solving Flexible Job Shop Problems

Marko Ivanov
Supervisor(s): Kim van den Houten, Mathijs de Weerdt

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
The aim of this research paper is to present two ge-
netic algorithms targeted at solving the Flexible Job
Shop Problem (FJSP). The first one only tackles a
single objective - the schedule makespan, while the
second one takes into account multiple objectives
for the problem. Each schedule is represented by
two integer vectors - one for the machine assign-
ments and one for the operation sequence. Special
care is taken to only produce valid schedules when
generating the starting population and applying the
mutation and crossover operations for further pop-
ulations. A Mixed Integer Linear Programming
(MILP) solution to the FJSP is presented and used
as a benchmark for the feasibility of the genetic al-
gorithms. The algorithms are tested on a set of 13
provided problem instances. The results showcase
that genetic algorithms outperform the MILP im-
plementation for large problem instances and pro-
duce solutions much faster.

1 Introduction
In a DSM production line there are multiple enzymes with
different recipes which need to be produced. There is an order
book of enzymes which need to be produced, along with a
soft deadline for each one. Each recipe is an ordered series
of operations along with their durations, which need to be
done in order to produce the enzyme. Furthermore, for each
operation, there are multiple machines in the facility which
can execute it. If a machine is used for the production of one
enzyme, it has to be cleaned before an operation with another
enzyme begins.

There is a vital question which arises here - what is the
best way to schedule the production of the enzymes given
these constraints? This can be modelled as a special form
of the Flexible Job Shop Problem. The jobs in this case are
the completion of enzyme recipes. The special part is the
existence of cleaning times between consecutive uses of the
same machine, which need to be taken into account in our
models.

The Flexible Job Shop Problem is NP-hard [1]. Explor-
ing the entire search space is infeasible even for problem in-
stances with very few machines and jobs. On top of that,
there are multiple ways to measure the fitness of a schedule -
the makespan of the schedule, idle time of the machines, total
lateness, etc.

There are a plethora of ways this problem has been ad-
dressed in scientific literature. A literature review is pre-
sented in section two. We focus on two approaches for solv-
ing FJSP - Mixed Integer Linear Programming and Genetic
Algorithms. We have been provided with an implementation
of a MILP solver, as well as a set of 13 problem instances.

The aim of this research paper is to investigate whether a
Genetic Algorithm can produce feasible solutions to the given
Flexible Job Shop problem instances for the DSM plant. A
Genetic Algorithm was chosen in order to be able to address
the problem of having more than a single objective. A Ge-
netic Algorithm can produce a set of solutions, instead of a

single one. This means we can have solutions which perform
very well on some objectives but poorly on others. This al-
lows the scheduling of the production plant to be more flexi-
ble based on different conditions.

In section 3 two genetic algorithms are presented. In sec-
tion 4 an evaluation of the results is made in comparison to
the results produced by the provided MILP implementation
on the same problem instances. Multiple configurations of
the genetic algorithm parameters are taken into account and
their performance is measured. In the next sections, some
notes on responsible research and a discussion of the process
are presented. In section 7 the concluding remarks and future
work are presented.

2 Literature review
In this section a brief introduction of the Flexible Job Shop
Problem is given, as well as a review of the literature on using
Mixed Integer Linear Programming and Genetic Algorithms
to solve it.

2.1 Introduction to Flexible Job Shop Problems
In the classical version of the Job-shop Scheduling Problem
(JSP), there are n jobs which need to be completed. Each job
has a set of operations which need to be completed in order
to finish the job. Each operation of each job has a specific
machine on which it needs to be executed. The extended ver-
sion of this problem - the Flexible Job Shop Problem (FJSP) -
each operation can be performed by a subset of the machines,
rather than only one. Research into FJSP began in the early
90s by Brucker and Schlie [2], where they gave a solution to
the problem for 2 jobs in polynomial time. It has been proven
that the general JSP is NP-hard [1]. FJSP, being an exten-
sion and a more difficult version of the classical JSP, is also
NP-hard.

There are many approaches to solving the FJSP which use
different algorithms and combinations between them. A com-
prehensive overview of the literature is presented in [3]:

Figure 1: Overview of literature on FJSP
Source: [3]

There are a few main groups present in the literature - Tabu
Search, Ant Colony Optimisation, Simulated Annealing, Par-
tical Swarm Optimisation, Mixed Integer Linear Program-
ming (MILP) and Genetic algorithms. Combinations between

different approaches are also used to try to achieve better re-
sults. In this paper we will be focusing on MILP and Genetic
algorithm approaches.

2.2 MILP approaches for FJSP
Mixed Integer Linear Programming is a technique which pro-
vides a mathematical model for the problem. The model is a
set of linear constraints of variables and the aim is to find a
solution by optimising the value of an objective function. In
most MILP formulations which aim to tackle the FJSP, the
objective function is to minimise the makespan of the sched-
ule. The first time an Integer Linear Programming model
was applied to a scheduling problem was in 1959 by Harvey
M. Wagner [4]. In more recent literature, multiple different
mathematical formulations have been used for the FJSP. In [5]
five different mathematical formulations are examined.

In this section we first give some mathematical notations
for the FJSP which are later used in the paper. They are also
the basis of what a MILP formulation of the problem looks
like.

Definitions for the FJSP
In this particular scenario, we have a set of jobs J , which
need to be completed on a set of available machines M . Each
job represents the production of one of the enzymes from set
E. Each job i has an associated sequence of operations Oi,
where Oij is the j-th operation of job i. Each operation has
an associated set of machines Mi,j ⊆ M , which can perform
the j-th operation of job i. Furthermore, there is a changeover
time between two consecutive operations on the same ma-
chine based on the enzymes in the two operations. COme1e2
is the changeover time on machine m where the first product
is e1 and the next one is e2. Let Sijk be the starting time of j-
th operation of job i on machine k and Cijk be the completion
time of j-th operation of job i on machine k.

There are two important precedence constraints:
1. The j-th operation of job i needs to be finished before

the j + 1-st operation can begin. In other words:

∀i ∈ J, j ∈ Oi, k ∈ Mij : Cijk ≤ Sij+1k

2. Two operations on the same machine cannot overlap.
Furthermore, the changeover time constraint between
two consecutive operations needs to be satisfied. Usu-
ally there would also be a mathematical formulation for
these constraints as well, but in the context of the genetic
algorithm it is unnecessary.

2.3 Genetic algorithm approaches for FJSP
Overview of genetic algorithms
Genetic algorithms are used in a wide variety of problems, in-
cluding different variations of the Travelling Salesman prob-
lem, real world scheduling problems, including (flexible) job
shop problems, as well as a multitude of other optimisation
problems [6]. This method is inspired by the processes of
natural selection, as first described in [7]. The main idea of
the genetic algorithm is that over a number of generations, a
population of individuals evolves in such a way that the indi-
viduals in it try to optimise a given fitness function.

There are a few parameters in a typical Genetic Algorithm:

• Population Size - the number of individuals in the popu-
lation

• Max Generation Count - for how many generations the
population will evolve

• Fitness function - the way in which individuals are
ranked. Fitter individuals have a higher chance to re-
produce and keep their characteristics into the next gen-
eration.

There is also a set of genetic operators which vary signifi-
cantly across different implementations:

• Population Initialisation - The way the individuals in the
initial population are constructed.

• Selection - The way in which the parents of are chosen,
as well as which individuals to keep to the next genera-
tion.

• Crossover - The way in which two parents are combined
to produce an offspring which keeps both parents’ char-
acteristics.

• Mutation - The way in which we mutate an individual’s
genome to achieve genetic diversity in the population.

Genetic algorithms for FJSP
Genetic algorithms are used both for single objective FJSP,
usually considering makespan, as well as for the multi-
objective case, considering objectives such as total and max-
imum machine load.

In FJSP each possible schedule is modelled as an individ-
ual chromosome from a population. The main representation
used in literature is the two vector representation first pro-
posed in [8] and used in [9], [10]. In this representation, each
schedule is represented by a machine assignment vector, as
well as an operation sequence vector. More information on
this can be found in section 3.2.

When it comes to population initialisation, it can be split
up into two categories: random initialisation and heuristic
initialisation. In [9] a totally random initialisation is used.
In [10] the operation sequence is generated at random, while
the machine assignment is based on the lowest processing
time for an operation across all available machines. In [11]
operations are assigned to machines ”taking into account the
processing times and workloads of machines on which we
have already assigned operations”.

Mutation is a necessary part of a Genetic Algorithm, which
ensures that we preserve sufficient genetic diversity in the
population and do not reach premature convergence.

The fitness function in a Genetic Algorithm aims to give
higher scores to individuals from the population, which have
certain desirable qualities. In the FJSP case, these qualities
are the different possible objectives - makespan, total ma-
chine workload, maximum machine workload, lateness, etc.

When it comes to crossover, there are a multitude of dif-
ferent operators which are typically used in genetic algo-
rithms, such as N-point crossover, Uniform crossover, Par-
tially mapped crossover, Cycle crossover and many custom
crossover operators which fit the specific representation for
each individual algorithm.

3 Methodology
In this section two genetic algorithms are presented. The
first one aims to tackle the single objective FJSP consider-
ing makespan. The second algorithm aims to serve as a proof
of concept of the suitability of genetic algorithms based on
non-dominated sorting for solving FJSP. It is based on the
NSGA-II [12] algorithm, but does not include the crowded
distancing function. Firstly, an overview of the algorithms is
presented, followed by a description of the schedule repre-
sentation. Then, each step in the algorithms is described in
detail.

3.1 Algorithm Overview
An overview of both algorithms is as follows:

1. Generate a starting population of schedule representa-
tions

2. For each generation:
(a) Optional: Select the fittest individuals to keep as

elites. Elites are kept unchanged in the next gener-
ation.

(b) Use selection to choose parents
(c) Split the parents into pairs and apply crossover
(d) Apply mutation to children and non-elite members

of the population
(e) Add elite members to the next generation’s popula-

tion
(f) Fill the rest of the population size with the fittest in-

dividuals from the mutated non-elites and children
3. Repeat either until we have reached the maximum num-

ber of generations or a set time limit
In the following sections, each of these steps is examined

in detail. Population initialisation, mutation and crossover
are the same for both algorithms, while there are differences
in the selection step and the fitness function.

3.2 Schedule Representation
A typical human-readable schedule representation is a table,
where each row contains the information for the execution of
a single operation. This includes the Machine, Start time, End
time, Product, etc. An example can be seen in figure 2.

In order to be able to use a Genetic Algorithm, a rep-
resentation of the schedules as chromosomes is needed, in
which the traditional genetic operators - selection, mutation
and crossover can be applied. Traditionally, in genetic algo-
rithms each chromosome is either a binary or an integer vec-
tor. A binary representation is not suitable for FJSP, as most
of the choices which need to be made are non-binary, e.g.
choosing which machine to assign an operation to or deter-
mining the sequence of operations. The following represen-
tation is presented in [9] and was first proposed by [8]. Each
schedule is represented by two integer vectors. The length of
both vectors is the total number of operations across all jobs∑

j∈J |Oj |. An example can be seen in figure 3. The first
vector contains the machine assignments for each operation.
In this example operation O00 is performed on machine 2,
operation O01 is performed on machine 5, etc. The second

Figure 2: Table representation of schedule

vector shows the order of execution of the operations. For
the operation sequence vector, each entry represents the job,
whose operation needs to be performed next. So the order in
which operations are scheduled starts with O50, then O40 is
scheduled and so on. In the next section the encoding and
decoding process is showcased.

Figure 3: Two-vector schedule encoding

This representation allows us to perform the genetic oper-
ations both for the machine assignments and order of opera-
tions. This representation also does not include the cleaning
time between consecutive operations. This is accounted for
in the decoding phase.

Encoding and Decoding
Let’s assume there is a two-vector representation of a sched-
ule. It needs to be decoded into a more useful representation
in order to be able to calculate the fitness function for exam-
ple. The basic idea is that the operation sequence vector is
traversed from left to right. For each operation, the machine
we need to assign the operation to is retrieved from the ma-
chine assignments vector and the operation is assigned in the
earliest possible time slot for that machine. The change-over
times are included in the decoding step - each time an opera-
tion is assigned to a machine, with the respective change-over
constrains being satisfied. The decoding works in the follow-
ing way:

1. Go through the operation sequence vector from left to
right

2. Look up the corresponding machine for this operation
from the machine assignment vector

3. Look at all the previous operation assignments for this
particular machine

4. If there is a large enough gap between two operations
on the machine, including the 2 potential change-over
cleaning times, assign the operation in the beginning of
that gap. If not, assign it after the last scheduled opera-
tion for this machine.

Encoding a schedule from tabular form into a two-vector
representation is straightforward. To construct the machine
assignment vector, the entries are sorted by Job and Opera-
tion. The resulting Machine column is the needed machine
assignment vector. For the operation sequence vector, the en-
tries are sorted by Start time. The resulting Job column is the
needed operation sequence vector.

3.3 Initial population
The quality of individuals in the initial population is of vital
importance for the performance of the genetic algorithm. In
this paper, a randomised initial population is used. The way
each member in the initial population is constructed is the
following:

1. Construct the machine assignment vector by randomly
picking one of the available machines for each operation

2. Construct a vector which contains each job number
j, |Oj | times.

3. Construct the operation sequence vector by randomly
shuffling the just constructed vector.

Random initialisation ensures that we have enough genetic
diversity at the start. Other options, such as using heuristics to
construct the schedules such that they have lower makespan
in the start were tested but random initialisation outperformed
them. More on this can be found in the discussion section.

3.4 Selection Operator
Single objective algorithm
For the single objective genetic algorithm roulette wheel se-
lection is used. The individuals in the population are ranked
according to their fitness and the scores are normalised (the
lowest makespan member’s is set to 1 and the highest to 0).
Then a probability vector is constructed by normalising the
fitness score vector (dividing by the sum of the elements,
making sure it’s a unit vector). This vector represents the
probability of each individual to be chosen as a parent. A
random individual is picked from the population according
to the probability distribution described by the vector until as
many parents as the population size are chosen. They are then
randomly split into pairs and crossover is performed on each
pair.

To determine which individuals are chosen for the next
generation, the elites, non-elites and children are ranked
based on their makespan. The top |populationsize| sched-
ules are chosen for the next generation.

Multi-objective algorithm
Roulette wheel selection is difficult to be translated into the
multi-objective case, as we would have to combine all the
objectives into a single value in order to be able to use it.
This defeats the purpose of having multiple objectives - there
is no need implement a more advanced algorithm if all the
objectives can be reduced into a single one.

Instead of roulette wheel selection, for the multi-objective
genetic algorithm tournament selection is used. To select one
parent, ten individuals from the population are drawn at ran-
dom. The one with the best fitness is chosen to be a parent.
How the fitness of two schedules is compared in the multi-
objective case will become more clear in section 3.7.This
procedure is repeated, until we have chosen as many par-
ents as the population size. They are then split into pairs and
crossover is applied.

After the children are generated, non-dominated sorting
is applied to a joint population of the elites, non-elites
and children. As with the single objective case, the top
|population size| schedules are chosen for the next gener-
ation. More information on non-dominated sorting in 3.7.

3.5 Crossover Operator
In this algorithm, two crossover operators are used - one for
the machine assignment vector and one for the operation or-
der vector. The two operators were used in [10]. In their
work, two children are produced from each parent pair, but in
our implementation only one child is produced. This reduces
the actual runtime of the the non-dominated sorting.

The machine assignment vectors are crossed using Uni-
form crossover. We generate a random binary string with
length equal to the length of the vectors. At the positions,
which are 1 in the binary string, the machines from the first
parent are transferred to the child, while where it is 0 - the
machine assignments from the second parent are chosen. You
can see a visual representation in figure 4.

Figure 4: Machine assignment vector crossover

Cycle crossover is used for the operation sequence vector.
It works in the following way:

• Split the jobs into two groups.

• For the jobs in the first group, transfer the operations for
those jobs from the first parent’s sequence vector to the
same positions in the child operation sequence vector

• For the jobs in the second group, look up their operations
in the sequence vector of the second parent from left to
right and insert them into the empty slots in the operation
sequence vector of the child.

A visual representation can be seen in figure 5.

Figure 5: Operation sequence vector crossover

3.6 Mutation Operator
Two mutation operators are used :

1. For the machine assignment vector swap a single ma-
chine assignment with another valid machine for the op-
eration

2. For the operation sequences - chose an operation and in-
sert it at another random place in the operation sequence
vector

The first operation is used as presented in [9], while the
second one is a variation of a mutation operator used in the
same paper. In their paper the order of two random entries in
the sequence vector is swapped. In this approach, a random
operation is moved a random amount earlier or later. This
preserves the order of all operations except the one moved.
Both of the mutation operators produce valid schedules with-
out the need to apply additional procedures.

The mutation coefficient is a parameter which determines
how often a mutation happens. When we want to per-
form mutation on a schedule we draw two random num-
bers r1 and r2 from a uniform distribution U(0, 1). If
r1 < mutationcoefficient, mutation of type 1. is per-
formed on the schedule with a random machine. If r2 <
mutationcoefficient, mutation of type 2. is performed on
the schedule with a random operation. It could be the case
that both, only one, or none of the mutation operations are
preformed on a schedule based on the random draws.

3.7 Fitness function
Single objective algorithm
For the single objective implementation of the algorithm,
only the makespan is used as a fitness function.

The makespan of a schedule is the latest completion time
maxi∈J,i∈Oi,k∈Mij

Cijk. It measures the amount of time it
takes to complete all orders. Lower makespan means better
utilisation of the available machines.

The ranking of the individuals is done by comparing their
makespans. Lower makespan schedules are considered better
than higher makespan ones. This ranking can be achieved
by a simple sorting operation which takes O(nlog(n)) time
where n is the number of schedules to be sorted.

Multi-objective algorithm
In the multi-objective case we use two objectives: makespan
and lateness. The makespan is defined in the same way as in
the single objective case.

The lateness of the schedule is the total amount of time
a job is completed after its deadline across all jobs. If the
deadline for job i is Di, then the lateness of a schedule is∑

i∈J max (0,maxj∈Oi,k∈Mij
Cijk −Di).

If the latest completion of a job is before or at the deadline,
the sum is not increased. If it is after the deadline, the sum
is increased by the amount of time the job is delayed. As
with the makespan, a lower value for lateness means a better
schedule.

Other objectives, such as total and maximum machine load
were also considered for inclusion into the algorithm. For
the 13 provided DSM problem instances, the total machine
workload is a constant, as the processing times for each oper-
ation are the same across all machines. Tests with maximum
machine workload were performed, but the results showed no
overall improvement.

Ranking the individuals in the multi-objective algorithm
differs significantly from the single objective case. It is based
on the non-dominated sorting presented in [12].

In this approach, schedule A dominates schedule B ⇐⇒

∀i : OA
i ≥ OB

i

∃i : OA
i > OB

i

where OA
i is the value for the i-th objective for schedule

A. When using the non-dominated sorting approach to evalu-
ate schedules, we are not looking for a specific schedule, but
rather a set of non-dominated schedules, for which we can
compare the values for each separate objective.

With this definition of domination the schedules in the pop-
ulation are split into frontiers. The optimal frontier contains
the schedules which are not dominated by any other sched-
ule. These are the elite members of the population, which are
kept into the next generation unchanged. The second frontier
contains schedules which are only dominated by schedules
from the optimal frontier. All other frontiers contain con-
tain schedules which are dominated only by those in previous
frontiers. The algorithm by which this ranking is performed is
presented in [12] and its runtime is O(mn2), where m is the
number of objectives and n is the number of schedules which
are ranked. This generally means that for larger population
sizes, the ranking is quite slow in practical terms.

All schedules in the same frontier are considered as equal.
When performing tournament selection or determining which
schedules to keep in the next generation, schedules with
smaller frontier numbers are considered superior.

4 Experimental Setup and Results
To test the performance of the algorithms, the 13 provided in-
stances are used. In all of the instances there are 9 machines
and 3 different types of operations - preparation, filtering and
reception. Each machine can only do one type of operation -
machines [0, 1, 2] can perform preparation, [3, 4, 5, 6] - fil-
tering, [7, 8] - reception. The processing times per operation
per job are the same across all machines. In each consecu-
tive instance there is an increasing amount of jobs - from 6
jobs in instance 0 to 78 jobs in instance 12 in increments of 6
additional jobs per instance.

The algorithms are implemented in Python 3.8 and ran on a
personal computer. All of the tests are preformed on the same
machine in order to be able to make a fair comparison of the
results.

Firstly, the performance of the provided MILP implemen-
tation is measured and later used as a benchmark for the re-
sults of the genetic algorithms. For the single objective ge-
netic algorithm the same measurements are performed with
a time limit and the results are averaged over multiple runs.
Different values for the genetic algorithm parameters are
tested to determine which works best. The MILP results are
presented in 4.1, the genetic algorithm results in 4.2 and a
comparison between the two in 4.3.

4.1 MILP Results
The MILP implementation uses the gurobi Mixed-Integer
Programming solver, which uses the Branch-and-Bound ap-
proach [13]. To obtain results about from the provided MILP
implementation, we measure its performance for all instances
with different time limits. For lower time limits the algorithm
doesn’t produce results for the more complex instances. We
can clearly see in the figure 6 that the more time the algo-
rithm has to explore the search space, the better solutions it
produces.

Figure 6: MILP results

4.2 Genetic algorithm Results
In this subsection the results of the genetic algorithms are
showcased. Firstly, the results of the single objective algo-
rithm are presented. Different combinations of the parame-
ters: population size, mutation coefficient and time limit were
tested. In the next section we make a comparison between the
results of the MILP and the genetic algorithms.

Single objective genetic algorithm results
The results for figure 7 were obtained in the same fashion
as with the MILP ones - by setting a time limit. For each
instance the genetic algorithm was ran 5 times. The average
minimum makespan is shown in the figure.

There are a few things to note from the results shown here.
First of all, the performance of the algorithm with mutation
coefficient 0.2 is better than with 0.4. Tests with other muta-
tion coefficients were also conducted, but these were the two
most performant ones. Secondly, while the runtime of the ge-
netic algorithm is increased, there is virtually no difference
in its performance. Experiments were ran with time limits

larger than 90 seconds, but by that stage the algorithm has
pretty much converged around a few solutions. Early conver-
gence, or even convergence around a single solution and its
neighbourhood are well known issues of genetic algorithms.
Possible causes of this early convergence are:

• The process of keeping the most highly ranked individ-
uals as elites and unchanged onto the next generation.

• Inability of crossover operator to pass on beneficial par-
ent traits to the children.

• Mutation coefficient is either too high and introduces too
much randomness in the population or too low and it
does not ensure enough genetic diversity in the popula-
tion.

• Insufficient representation of the overall search space in
the initial population.

Figure 7: Single objective genetic algorithm results

Results from multi-objective genetic algorithm
The two used objectives are makespan and lateness. In all of
the experiments the time limit was set to 90 seconds, which
is fair when taking into account the additional complexity of
the non-dominated sorting. In figure 8 we can see the results
of running the algorithm with different mutation coefficients.
The population size was the same across all runs - 100. We
can see that even with multiple objectives, the genetic algo-
rithm is able to find schedules which have makespan compa-
rable to or better than that of the results of the single objective
genetic algorithm.

Another interesting graphic to observe is the convergence
rate of both objectives in a single run of the algorithm. In fig-
ure 9 it can be seen how the average and minimum makespan
and lateness of the population change over the generations.
This also showcases one of the strengths of genetic algo-
rithms - the ability to escape from local optima. Between
generations 60 and 85 the minimum and average makespans
have converged. Either through a favourable mutation or
crossover, a new minimum is found and the algorithm is able
to improve its solution.

4.3 Comparison between MILP and GA
In figure 10 we can see the comparison between results from
the three algorithms. Both genetic algorithms were ran with
population size 100 and mutation coefficient 0.2. The single
objective genetic algorithm was ran 5 times and the average

Figure 8: Multi-objective GA; Population size: 50, Time limit: 90s

results are shown. The other two algorithms were ran only
once to produce these results.

The MILP implementation performed the best in instances
0-5. The most likely reason is that it was able to explore
most of the search space and find solutions close to the op-
timum. Then in instances 6 and 7, the three algorithms had
comparable performance. From instance 8 onward, however,
clearly the best solution was the multi-objective genetic al-
gorithm using makespan and lateness. A hypothesis for the
good performance of the algorithm is that these two objec-
tives are complementary - a lower makespan usually leads
to a decrease in lateness and lower lateness usually leads to
a lower makespan. This interplay between the two ensures
more diverse solutions are explored compared to the single
objective algorithm, increasing the probability of finding a
lower makespan solution.

5 Responsible Research
For any scientific work it is very important that all the infor-
mation is properly referenced and all the results from the ex-
periments are reproducable. Also, that the conclusions which
follow from the research can be regarded as accurate within
reasonable doubt. It is also vital that when working with sen-
sitive data such as personally identifiable information, safety
precautions are taken. To aid these aims, the following mea-
sures were taken during the course of the research.

First of all, no sensitive data is used in this paper. Proper
citations and references have been provided for the informa-
tion used from literature sources where possible. Being com-
pletely honest, there are still places where more references
are needed, a glaring one being the literature review on ge-
netic algorithms.

The source code used to implement the genetic algorithm
is available in a public GitHub repository 1 and can be freely
accessed by anyone interested. It contains the provided
MILP implementation, the implementation of the genetic al-
gorithms, the 13 problem instances, as well as the scripts used
to obtain the results. This information should be enough to

1https://github.com/whodatbo1/research project dsm enzymes/tree/marko GA

Figure 9: Convergence of multi-objective GA on instance 12; Muta-
tion coefficient: 0.2

reproduce the results in this paper, provided the genetic algo-
rithm results are averaged over multiple runs, as the random-
ness involved in its implementation can lead to outliers if ran
only once.

Something else which needs to be taken into account when
reproducing the results is the hardware, which the code is ran
on. Time limits are used for the termination of both MILP and
GA. This means that with better equipment, one can achieve
better results in the same amount of time. All of the experi-
ments were performed on the same hardware, so as to be able
to make a fair comparison. If ran on different hardware, the
absolute results may vary significantly.

6 Discussion
In this section some general remarks about the process of de-
veloping the algorithms are presented, as well as thoughts on
future versions of genetic algorithms.

Process
Over the course of the implementation of the genetic algo-
rithms there were many versions which did not make the fi-
nal paper. Combinations of different genetic operators and
parameters were tested. Here is a brief review of the experi-
ments which did not make it to the final paper.

Figure 10: Comparison between the three algorithms

Two other initialisation schemes were tested during the
research. Both of them initially construct the operation se-
quence vector at random. Then, for each operation a machine
is assigned. The first one prioritises machines with lower
cleaning times for this assignment, while the second one pri-
oritises machines with lower processing times for the opera-
tion. In the 13 provided DSM instances the processing times
per job and operation are the same across all machines. This
rendered the second method useless. The performance of the
first one was better for the initial population, but the conver-
gence rate of the algorithm was slower and better solutions
were found with random initialisation. A possible explana-
tion to this is that random initialisation provides more genetic
diversity, while the prioritisation scheme ”locks” the sched-
ules into a more specific type which more likely than not is
not close to the optimum.

Elitism in the genetic algorithms led to mixed results. Tests
were conducted both with and without keeping the most fit
part of the population as elites. It seemed that the end result
was very similar between the two approaches. The difference
is that when using elites, convergence was slower. This might
be due to the fact the there is less diversity in the population.
Also, even if we do not explicitly keep the elites unchanged
into the next population, they still have a very high chance
of being present in the next generation, as they are the most
fit individuals in the previous one. A quantitative evaluation
is necessary to determine whether elites increase the perfor-
mance of the algorithm.

Forward-looking remarks
During the implementation of the algorithm, seeing interme-
diate results lead to the conclusion that the parameters of the
algorithm are of great importance to the results. It also be-
came evident that over the course of a single run of the al-
gorithm the parameters had different influence over the pop-
ulation. For example, in the first few generation mutation is
not that important - there is enough genetic diversity in the
population already, thanks to the random initialisation. How-
ever, in later stages, when the algorithm has more or less con-
verged, mutation greatly increases in importance, as it allows
for potentially favourable traits to enter the gene pool.

These points raise a forward-looking question. Can a Ge-
netic Algorithm be constructed, such that it adapts to the
problem and sets the parameters to their optimal values?

7 Conclusion and Future work
In this research paper two versions of a genetic algorithm
were presented - one dealing with the single objective case
and one dealing with the multi-objective case. Their results
were compared to the MILP implementation on the 13 pro-
vided problem instance. It is clear that both of these algo-
rithms can outperform the MILP implementation on larger
problem instances. If given enough time and computing
power a MILP implementation will usually reach a solution
close the optimal. However, when it comes to practical appli-
cations, usually a solution which is good enough and is found
in a reasonable amount of time is sufficient. The two pre-
sented genetic algorithms showcase that in just a few minutes,
they can produce better results for large problem instances.

The results are enough to suggest that these genetic algo-
rithms can perform well on problem instances, which are not
part of the 13 provided ones. This, of course cannot be proven
unless experiments with known problem instances in the lit-
erature are conducted.

The key strengths and weaknesses of the genetic algorithm
approach can be summarised as follows: Strengths:

• Produce multiple feasible solutions.

• Incorporate multiple objective functions.

• Reach good solutions faster than MILP implementation
for larger instances.

Weaknesses:

• Difficulty in setting parameters - it is difficult to judge
which combination of population size, mutation coeffi-
cient and genetic operators will perform well on a prob-
lem instance. Multiple different combinations need to
experimented with to judge the best performance.

• Rarely reaches the optimal solutions.

• Premature convergence.

• Randomness in results. Running the algorithm only
once may not lead to a good solution.

To further add to the quality of the research, there are a few
steps which can be taken:

• Test the algorithms on problem instances which are used
as benchmarks in the literature.

• Use problem specific traits as objectives. The unique
part about the DSM problems is the presence of clean-
ing times. A possible objective function is the minimisa-
tion of total cleaning time or maximum machine clean-
ing time.

• Test the multi-objective approach on more than two ob-
jectives, as well with objectives which might be conflict-
ing with one another. This would really add to the ability
to generalise the results for more practical applications,
where flexibility is needed.

References
[1] M. R. Garey, D. S. Johnson, and Ravi Sethi. The com-

plexity of flowshop and jobshop scheduling. Mathemat-
ics of Operations Research, 1(2):117–129, 1976.

[2] P. Brucker and R. Schlie. Job-shop scheduling with
multi-purpose machines. Computing, 45(4):369–375,
1990.

[3] Berend Denkena, Fritz Schinkel, Jonathan Pirnay, and
Sören Wilmsmeier. Quantum algorithms for process
parallel flexible job shop scheduling. CIRP Journal
of Manufacturing Science and Technology, 33:100–114,
2021.

[4] Harvey M. Wagner. An integer linear-programming
model for machine scheduling. Naval Research Logis-
tics Quarterly, 6(2):131–140, 1959.

[5] Yunus Demir and S. Kürşat İşleyen. Evaluation of math-
ematical models for flexible job-shop scheduling prob-
lems. Applied Mathematical Modelling, 37(3):977–988,
2013.

[6] Shabnam Sangwan. Literature review on genetic algo-
rithm. International Journal of Research, 5:1142, 06
2018.

[7] Charles Darwin. On the Origin of Species by Means
of Natural Selection. Murray, London, 1859. or the
Preservation of Favored Races in the Struggle for Life.

[8] M. Gen, Y. Tsujimura, and E. Kubota. Solving job-shop
scheduling problems by genetic algorithm. 2:1577–
1582 vol.2, 1994.

[9] Jie Gao, Linyan Sun, and Mitsuo Gen. A hybrid genetic
and variable neighborhood descent algorithm for flex-
ible job shop scheduling problems. Computers amp;
Operations Research, 35(9):2892–2907, 2008.

[10] Xiaojuan Wang, Liang Gao, Chaoyong Zhang, and
Xinyu Shao. A multi-objective genetic algorithm based
on immune and entropy principle for flexible job-shop
scheduling problem. The International Journal of Ad-
vanced Manufacturing Technology, 51(5-8):757–767,
2010.

[11] I. Kacem, S. Hammadi, and P. Borne. Approach by lo-
calization and multiobjective evolutionary optimization
for flexible job-shop scheduling problems. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews), 32(1):1–13, 2002.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-
ii, 2002.

[13] Mixed-integer programming (mip) – a primer on the
basics. https://www.gurobi.com/resource/mip-basics/.
Accessed: 2022-06-19.

https://www.gurobi.com/resource/mip-basics/

	Introduction
	Literature review
	Introduction to Flexible Job Shop Problems
	MILP approaches for FJSP
	Definitions for the FJSP

	Genetic algorithm approaches for FJSP
	Overview of genetic algorithms
	Genetic algorithms for FJSP

	Methodology
	Algorithm Overview
	Schedule Representation
	Encoding and Decoding

	Initial population
	Selection Operator
	Single objective algorithm
	Multi-objective algorithm

	Crossover Operator
	Mutation Operator
	Fitness function
	Single objective algorithm
	Multi-objective algorithm

	Experimental Setup and Results
	MILP Results
	Genetic algorithm Results
	Single objective genetic algorithm results
	Results from multi-objective genetic algorithm

	Comparison between MILP and GA

	Responsible Research
	Discussion
	Process
	Forward-looking remarks

	Conclusion and Future work

