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Preface
Over the past four decades, extensive research was conducted on the Delft Systematic Yacht Hull
Series (DSYHS) by the Ship Hydromechanics Laboratory of the Delft University of Technology to de-
termine the hydrodynamic forces and moments acting on sailing yacht hulls. From that research, re-
gression formulas for these forces and moments were derived. These regressions make it possible to
predict the hydrodynamic forces and moments acting on arbitrary yachts. Over the years, new individ-
ual series were added to the DSYHS to keep up with the developments in yacht design. After the last
extension of the DSYHS more than ten years ago, the developments have not stopped. New research
in the form of this MSc thesis is conducted on the hydrodynamic forces acting on modern yacht hulls.
The aim of this research is to improve the velocity prediction of modern high performance yachts.

Writing my thesis on a subject so close to my personal interest and passion has been a true privilege.
I am ever thankful for getting the opportunity and the freedom to do what I really wanted to do.

I would like to express my sincere gratitude towards the people involved with my thesis. First and
foremost, to my supervisors, Dr. ir. Lex Keuning and Prof. dr. ir. René Huijsmans for their valuable
criticism and patience. I would also like to thank Dr. ir. Marc Gerritsma and Dr. ir. Robert Hekkenberg
for being the other two members of my thesis committee. Furthermore, I would like to sincerely thank
the staff of the Ship Hydromechanics Laboratory for their assistance, advise and company during my
research.

On a more personal note, I would like to sincerely thank my parents and my grandparents for their
everlasting support in all my pursuits.

Niels Kleijweg
Delft, June 2016
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Abstract
The technological developments in sailing yacht design and construction over the past fifteen years are
tremendous. As a result of these developments, the present methods for the velocity prediction of sail-
ing yachts are less applicable to recent high performance yacht designs. The accuracy of the velocity
prediction suffers from this in some extent. In order to improve the velocity prediction of contempo-
rary yachts from a hydrodynamic perspective, a new bare hull upright trimmed resistance prediction for
modern high performance yachts, to be used in velocity prediction programs (VPPs), has been derived
in this thesis.

VPPs are used extensively for the design of sailing yachts, from racing yachts to recreational yachts.
Velocity predictions are used to compare candidate designs and to optimize hull shapes, appendages,
and the dimensions of rigs and sails. Furthermore, they are used to determine ratings for individual
yachts. A VPP predicts the velocity of a yacht for various wind strengths and wind directions by finding
an equilibrium between hydrodynamic forces acting on the hull and aerodynamic forces acting on the
sails.

VPPs generally rely on the regressions derived from the Delft Systematic Yacht Hull Series (DSYHS)
for the estimation of the hydrodynamic forces and moments acting on sailing yacht hulls. The DSYHS
is a collection of different systematic series of yacht hulls. The DSYHS contains in total almost sixty
different hulls. Extensive research was conducted on the DSYHS to determine the hydrodynamic forces
and moments acting on the hulls. Regression formulas for these forces and moments were derived
from that research. These regression formulas are based on hydrostatic parameters of yacht hulls.
This makes it possible to predict the hydrodynamic forces and moments acting on an ’arbitrary’ yacht.
The regressions of the DSYHS are presumably the most accurate formulations for the prediction of
hydrodynamic forces and moments acting on yachts.

Since the beginning of the research on the DSYHS in 1973, the design of sailing yachts has changed
dramatically. Over the years, new individual series were added to the DSYHS to keep up with the
developments in yacht design. After the last extension of the DSYHS more than ten years ago, the
most pronounced developments in yacht design are the straight vertical bows, the wide transoms, the
very small overhangs aft and the very light displacement hulls. Furthermore, the contemporary designs
carry above the waterline their maximum beam all the way aft. These developments contribute to the
ever increasing speed potential of the newer designs.

As a results of these developments, the DSYHS is no longer representative of today’s high perfor-
mance yacht designs. The regression formulas derived from the DSYHS are therefore less applicable
to recent hull shapes. The accuracy of the velocity prediction of modern high performance yachts suf-
fers from this in some extent. The developments in yacht design and the limitations of the regressions of
the DSYHS for the velocity prediction of contemporary high performance yachts formed the motivation
for the present study.

The aim of this study was to improve the velocity prediction of modern high performance sailing
yachts from a hydrodynamic perspective. Improving the prediction of the bare hull upright trimmed
resistance was a promisingmethod to realize this. To this end, a new systematic series of contemporary
high performance yacht hulls has been created. A TP52-design was used as the parent model for this
series. This systematic series contains 21 different hull shapes. The new series is representative of a
wide range of today’s high performance yachts. The regression formulas derived from this new series
cover a wider speed range and a different range of hydrostatic parameters than those of the DSYHS.

The hydrodynamic forces acting on the models in this new series have been determined with com-
putational fluid dynamics (CFD). The upright trimmed resistance of the models has been determined
for eight speeds, from Froude numbers 0.25 up to 0.95. Trimmed means that a trimming moment of
the driving force and the crew’s weight is applied to the yacht. The driving force acting on a sailing
yacht is the resultant aerodynamic force acting on the sails in parallel to the yacht’s velocity. Its point
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of application is the centre of effort (CoE) of the sails. All the models have been tested for exactly the
same CoE height. The upright trimmed resistance of every model at every speed has been determined
for three different trimming moments of the crew’s weight. These three moments correspond to typical
crew configurations during sailing.

To establish the reliability and the accuracy of the numerical results presented in this thesis, a Veri-
fication & Validation (V&V) analysis has been performed. A grid refinement study has been performed
to assess the uncertainty of the numerical results for the parent hull of the systematic series. For vali-
dation, the numerical results for the parent hull have been compared to the results of resistance mea-
surements. The corresponding comparison errors for the resistance values are between -2.9 and -8.6
percent of the experimental results. Validation is successful from a programmatic standpoint. For the
purpose of deriving regressions for the upright trimmed resistance prediction in VPPs, the approach of
validating numerical results at a level below 10 percent is considered to be reasonable and acceptable.
The performance of the numerical flow solver and the accuracy of the numerical results are satisfying.
Confidence in the numerical results of the systematic series exists.

The resistance forces acting on the models in the new systematic series have been used to derive new
regression formulas for the estimation of the bare hull upright trimmed resistance based on hydrostatic
parameters of yacht hulls. Five different regressions for the upright trimmed residuary resistance of
the bare hull have been derived: a regression for the minimum resistance of the three crew positions,
three regressions for the resistance of each individual crew position, and a regression incorporating the
influence of the trimming moment of the crew’s weight on the resistance. All the expressions can be
easily implemented in existing VPPs, because they contain only hydrostatic parameters and no terms
involving the trimming moment of the driving force. For a high performance sailing yacht with a full
crew, the regressions for the minimum resistance is preferred, because this represents the optimum
performance of the yacht. The other regressions can be used for different crew configurations or other
ranges of trimming moments.

The derived regressions provide an accurate resistance prediction for models covered by the new
systematic series. Even for models (slightly) outside the parameter range covered by this series or
models with different design characteristics than the characteristic hull shapes in this series, the pre-
diction can be quite accurate. The regressions seem to be stable, robust and not too sensitive to
variations in the input parameters. The applicability of the derived regressions to the velocity prediction
of modern high performance sailing yachts with existing VPPs has been illustrated. The obtained polar
diagram seemed very reasonable.

The new regressions for the upright trimmed resistance are a good first step to improve the velocity
prediction of modern high performance sailing yachts. For accurate velocity predictions of these yachts,
it is still necessary to improve the prediction of the other resistance components as well. The motivation
is still that the regressions of the DSYHS are less applicable to modern high performance yacht designs
due to the range of parameters contained within the DSYHS and the limited speed range of the DSYHS.
Of course, the applicability of the aerodynamic models used in VPPs to high performance yachts need
to be assessed as well and improved if necesarry.
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1
Introduction

The speed of sailing yachts has always fascinated people involved in the sailing community. It is
probably the most talked-about topic when it comes to yachts. Not only on the water or on the shore
after sailing, but also in design offices. Those people always feel the desire to sail faster and faster. The
technological developments in yacht design and construction over the past decades are tremendous.
These developments contribute to the ever increasing speed potential of the newer yacht designs. For
the design of sailing yachts and especially high performance yachts, the speed potential is the dominant
factor.

The velocity of sailing yachts is predicted with velocity prediction programs (VPPs). A VPP predicts
the velocity of a yacht for various wind strengths and wind directions by finding an equilibrium between
hydrodynamic forces acting on the hull and aerodynamic forces acting on the sails. The predicted
velocity of a yacht at different true wind angles for different true wind speeds is visualized in a polar
diagram. VPPs are used extensively for the design of almost every sailing yacht, from racing yachts to
recreational yachts. Velocity predictions are used to compare candidate designs and to optimize hull
shapes, appendages, and the dimensions of rigs and sails. Furthermore, they are used to determine
ratings, or handicaps, for individual yachts. These ratings allow yachts of different sizes and with
different characteristics to race each other with an equal chance to win, at least that is the intention.

For existing racing yachts, the predicted polar diagrams are used, in combination with full-scale per-
formance measurements taken during sailing, to calculate the optimum sail combinations for specific
sailing conditions. They can also be used to calculate the optimum route based on a meteorological
forecast. Full-scale measurements are generally used to increase the accuracy of the velocity predic-
tions of these racing yachts. This is useful for the optimization of hull shapes, appendages, rigs, sails,
and the way they are sailed. Unfortunately, these are generally isolated private efforts, exclusively done
by racing teams with large budgets. Measured data is not publicly available for research, because this
would give opponents insight in the performance of the yacht. They are trying to be the fastest and
stay the fastest for a reason.

The velocity prediction of sailing yachts with VPPs relies on a set of expressions, as function of the
hydrostatic parameters of yachts, for the estimation of the hydrodynamic forces acting on them. VPPs
generally use the regressions derived from the Delft Systematic Yacht Hull Series (DSYHS) for the
estimation of the hydrodynamic forces and moments acting on yachts. The DSYHS is a collection
of different systematic series of yacht hulls. Each individual series contains a parent model and a
number of systematic variations of this parent model. The DSYHS contains seven of these series
and in total almost sixty different yacht hulls. Extensive research was conducted on the DSYHS to
determine the hydrodynamic forces and moments acting on the hulls, such as the upright resistance,
the resistance under heel and the yaw moment. All the models in the DSYHS were tested with a
consistent measurement set-up and procedure at the Ship Hydromechanics Laboratory of the Delft
University of Technology over the years. The DSYHS is presumably the largest consistent systematic
series of yacht hulls tested.

Regression formulas for the hydrodynamic forces and moments were derived from these tests.
These regression formulas are based on hydrostatic parameters of yacht hulls. This makes it possible

1



2 Introduction

to predict the hydrodynamic forces and moments acting on an ’arbitrary’ sailing yacht. The regressions
of the DSYHS are presumably the most famous and the most accurate formulations for the prediction
of hydrodynamic forces and moments acting on yachts.

Since the beginning of the extensive research on the DSYHS by Gerritsma and Moeyes [13] in
1973, the design of sailing yachts has changed dramatically. Over the years, new individual series
were added to the DSYHS to keep up with the developments in yacht design. After the last extension
of the DSYHS more than ten years ago, the developments have not stopped. The most pronounced
developments in yacht design since then are the straight vertical bows, the wide transoms, the very
small overhangs aft and the very light displacement hulls. Furthermore, the contemporary designs
carry above the waterline their maximum beam all the way aft. These developments contribute to
the ever increasing speed potential of the newer yacht designs. Modern high performance yachts are
capable of sailing in a semi-displacement mode for a wide range of conditions. Maximum speeds up
to Froude number 0.85 are the rule rather than the exception. To give an impression, Froude number
0.85 corresponds for a full-scale Transpac 52 (TP52) with a waterline length of almost 16 metres to 21
knots.

The developments in yacht design over the last years are significant. As a result, the DSYHS is
no longer representative of today’s high performance yacht designs. Recent designs may not be fully
covered by the hull shapes within the DSYHS. The regression formulas derived from the DSYHS can
therefore be less applicable to contemporary hull shapes. The accuracy of the velocity prediction of
modern high performance yachts will suffer from this in some extent.

The developments in yacht design and the possible limitations of the regressions of the DSYHS for the
velocity prediction of contemporary high performance yachts form the motivation for the present study.
Furthermore, there is very few published research on modern yachts available. Most of the research is
conducted as isolated private efforts for very small series of high performance yachts or for individual
racing yachts. Research is not published, because other design offices and opponents would bene-
fit from this. From the sailing yacht world, there is a (strong) desire to expand the publicly available
database of hydrodynamics of yacht hulls with modern designs. This current database consists primar-
ily of the DSYHS. For the design of sailing yachts and the determination of ratings of individual yachts,
there is a need to improve the velocity prediction of modern yachts.

This study aims therefore at improving the velocity prediction of modern high performance yachts
from a hydrodynamic perspective. A promising method for the improvement of the velocity prediction of
modern sailing yachts from a hydrodynamic perspective is to improve the prediction of the two largest
bare hull resistance components. This approach is followed in the present study. As a result of the
developments in sailing yacht design, it is found necessary to create a new systematic series of con-
temporary high performance yacht hulls. A modern TP52-design is used as the parent model for this
series. The new series is representative of a wide range of today’s high performance yachts. The
hydrodynamic resistance forces acting on the models in the new systematic series are used to derive
new regression formulas for the estimation of resistance forces based on hydrostatic parameters of
yacht hulls. These formulations can be used in existing VPPs.

Structure of this thesis
Since the regressions of the DSYHS are presumably the most accurate formulations for the prediction
of hydrodynamic forces andmoments acting on sailing yachts, they form the starting point of the present
study. A detailed description of the DSYHS is given in Chapter 2. The limitations of the DSYHS regres-
sions for modern yachts are investigated. These limitations form the motivation for the present study.
As a result of the developments in sailing yacht design, it is found necessary to create a new system-
atic series of contemporary yacht hulls in order to improve the velocity prediction of high performance
yachts. The new systematic series is derived in Chapter 3. The bare hull resistance components of
the parent hull are also discussed. The two largest bare hull resistance components of the parent hull
are the main focus of this study. The conditions for which the hydrodynamic forces are determined, are
discussed in Chapter 4.

For the velocity prediction of high performance yachts, a new resistance decomposition is proposed
in Chapter 5. This decomposition is followed in the present study. The hydrodynamic resistance forces
acting on the models in the systematic series are determined with computational fluid dynamics (CFD).
The numerical method and the numerical results are discussed in Chapter 6. A grid refinement study
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is performed to assess the numerical uncertainty in Chapter 7. The numerical results will be validated
with the results of resistance measurements. Chapter 8 describes these resistance measurements and
the assessment of the experimental uncertainties. The validation analysis is discussed in Chapter 9.

From the database of the new systematic series, which contains the resistance values for various
hull forms and speeds, new expressions are derived for the estimation of the resistance components
based on hydrostatic parameters of yacht hulls. A regression analysis is performed on the dataset to
derive these expressions in Chapter 10. The applicability of the derived regressions to the velocity
prediction of high performance yachts with existing VPPs is illustrated in that chapter. The conclusions
and recommendations presented in Chapter 11 conclude this thesis.





2
Delft Systematic Yacht Hull Series

The Delft Systematic Yacht Hull Series (DSYHS) is a collection of different systematic series of sailing
yacht hulls. Each individual series contains a parent model and a number of systematic variations of this
parent model. The DSYHS contains seven of these series and in total almost 60 different yacht hulls.
Extensive experimental research was conducted on the DSYHS to determine the hydrodynamic forces
and moments acting on the hulls, such as the upright resistance, the resistance under heel and the
yaw moment. The DSYHS is presumably the largest consistent systematic series of yacht hulls tested.
Regression formulas for the hydrodynamic forces and moments were derived from the measurements.
These regression formulas are based on the main dimensions and the hydrostatic coefficients of sailing
yacht hulls. This makes it possible to predict the hydrodynamic forces and moments acting on an
’arbitrary’ yacht. Velocity prediction programs (VPPs) generally rely on the regressions of the DSYHS
for the estimation of the hydrodynamic forces and moments acting on a sailing yacht.

Within the DSYHS, the resistance of sailing yachts is decomposed into various components. This
decomposition and the various resistance components are discussed in Section 2.1. The regression
formulas derived from the DSYHS for these resistance components are also given in that section.

The hydrodynamic forces and moments acting on the models were determined with resistance
measurements. All the models in the series were tested with a consistent measurement set-up and
procedure at the Ship Hydromechanics Laboratory of the Delft University of Technology over the years.
All the hydrodynamic forces and moments were extrapolated to a waterline length of ten metres. The
hydrodynamic forces and moments at this scale were used in regression analyses to derive the regres-
sion formulas given in this chapter. The extrapolation of the measured resistance forces is described
in Section 2.2.

The hydrostatic parameter range contained within the DSYHS determines the range of applicabil-
ity of the derived regressions. The range of hydrostatic parameters contained within the DSYHS is
summarized in Section 2.3. In order to asses the accuracy of the regressions, experimental results
are compared with the resistance predicted with the regressions in Section 2.4. The limitations of the
regressions are discussed in Section 2.5. These limitations form the motivation for the present study.

2.1. Resistance decomposition and regressions
The method by which the hydrodynamic resistance forces in the Delft Systematic Yacht Hull Series
(DSYHS) have been decomposed in separate components is shown in Figure 2.1. Four different types
of total resistance are defined in this figure. The total resistance mentioned in the block at the top of
each column is equal to the sum of the resistance components of the other blocks in that column. This
decomposition and the regression formulas for these components are summarized in this section.

The interest of the present study lies in the bare hull resistance components, and therefore, only
these components will be discussed further after the four different types of total resistance are sum-
marized. The bare hull resistance components are indicated with the grey-coloured blocks in Figure
2.1. The resistance components in the white-coloured blocks are not discussed in this thesis. For a
thorough discussion of these components, the reader is referred to Keuning et al. [27,28]. According
to the DSYHS decomposition, the bare hull resistance is modelled as the sum of the following five
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6 Delft Systematic Yacht Hull Series

components: the frictional resistance of the hull, the residuary resistance of the hull, the delta frictional
resistance of the hull due to heel, the delta residuary resistance of the hull due to heel, and the delta
residuary resistance due to the trimming moment of the driving force.

It should be noted that the decomposition of Figure 2.1 only holds in calm water. Since the present
study deals solely with calm-water phenomena, added resistance in waves is not discussed. For a
thorough discussion of added resistance in waves, the reader is referred to Keuning et al. [27,29].

The regressions of the DSYHS are based on hydrostatic parameters of sailing yacht hulls. This makes
it possible to predict the hydrodynamic forces and moments acting on an arbitrary sailing yacht. VPPs
generally rely on the regressions of the DSYHS for the estimation of the hydrodynamic forces and
moments acting on a sailing yacht hull.

The regressions of the DSYHS are presumably the most accurate formulations for the prediction
of hydrodynamic forces and moments acting on yacht hulls. Even for modern yachts, the DSYHS
regressions are themost accurate prediction method as was shown by Raymond [40]. Careful selection
of hydrostatic coefficients, the construction of the regressions while keeping the physics involved in
mind, and the large database of the DSYHS resulted in accurate, robust and stable regressions that are
still relatively simple. Due to the large parameter range contained within the DSYHS, the regressions
are applicable to a large variety of sailing yacht designs. Sections 2.3, 2.4 and 2.5, and the work of
Huetz [14] supports these findings.

Total upright
resistance, 𝑅ፓ

=
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resistance
hull, 𝑅ፅᑙ

Residuary
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Figure 2.1: Resistance decomposition used for the DSYHS. Figure adapted from Keuning and Sonnenberg [27]. There
are four different types of total resistance used in this decomposition. The total resistance mentioned in the block at the
top of each column is equal to the sum of the resistance components of the other blocks in that column. The resistance

components in the grey-coloured blocks are the bare hull resistance components.

2.1.1. Total resistance
There are four different types of total resistance— resistance of the hull with its appendages— defined
in the resistance decomposition, shown in Figure 2.1: the total upright resistance, the total resistance
under heel, the total resistance under heel and leeway, and the total upright trimmed resistance. Their
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definitions are given in this subsection. Please note that throughout this thesis, the trimmed condition
and the untrimmed condition imply nothing more than whether or not longitudinal trimming moments of
the driving force and the crew’s weight are applied to the yacht. In both conditions, the yacht is free to
heave and pitch.

The driving force acting on a sailing yacht is the resultant aerodynamic force acting on the sails
in parallel to the yacht’s velocity. Its point of application is the centre of effort (CoE) of the sails. In
steady-state conditions, the driving force is equal to the resistance. Obviously, the driving force and
the resistance are antiparallel vectors.

Total upright resistance
The total upright resistance of the hull with its appendages is defined by

𝑅ፓ = 𝑅ፅᑙ + 𝑅ፑᑙ + 𝑅ፕᑜ + 𝑅ፑᑜ + 𝑅ፕᑣ , (2.1)

where 𝑅ፓ is the total upright resistance, 𝑅ፅᑙ is the frictional resistance of the bare hull, 𝑅ፑᑙ is the
residuary resistance of the bare hull, 𝑅ፕᑜ is the viscous resistance of the keel, 𝑅ፑᑜ is the residuary
resistance of the keel, and 𝑅ፕᑣ is the viscous resistance of the rudder. Only the bare hull resistance
components are discussed further in this thesis. The resistance components of the rudder and the keel
are not of interest for this study. For a thorough discussion of these resistance components, the reader
is referred to Keuning and Sonnenberg [27].

Total resistance under heel
The total resistance under heel is defined by

𝑅ፓᎫ = 𝑅ፓ + Δ𝑅ፅᎫᑙ + Δ𝑅ፑᎫᑙ + Δ𝑅ፑᎫᑜ , (2.2)

where 𝑅ፓᎫ is the total resistance under heel, Δ𝑅ፅᎫᑙ is the change in frictional resistance of the bare
hull due to heel, Δ𝑅ፑᎫᑙ is the change in residuary resistance of the bare hull due to heel, and Δ𝑅ፑᎫᑜ is
the change in residuary resistance of the keel due to heel.

Total resistance under heel and leeway
The total resistance under heel and leeway is defined by

𝑅ፓᎫᎏ = 𝑅ፓᎫ + 𝑅ፈ , (2.3)

where 𝑅ፓᎫᎏ is the total resistance under heel and leeway, and 𝑅ፈ is the induced resistance. The
induced resistance is related to the side force generation of the hull with its appendages when sailing
with leeway. The induced resistance is not decomposed into separate components for the hull, the
keel and the rudder, because the side force generation and the associated induced resistance depend
heavily on the interaction between the hull and its appendages. The induced resistance is not discussed
in this thesis due to this strong coupling between the hull and its appendages. For a thorough discussion
of the induced resistance and the side force generation, the reader is referred to Keuning et al. [27,28].

Total upright trimmed resistance
The total upright trimmed resistance of the hull with its appendages is defined by

𝑅ፓ᎕ = 𝑅ፓ + Δ𝑅ፑ᎕ᑙ , (2.4)

where 𝑅ፓ᎕ is the total upright trimmed resistance, and Δ𝑅ፑ᎕ᑙ is the change in residuary resistance of
the bare hull due to the trimming moment of the driving force. The trimming moment of the driving force
influences the trim angle of the yacht and thereby its sinkage and resistance. This trimming moment
results always in a more bow-down attitude of the yacht compared to when this trimming moment is
not applied.

2.1.2. Bare hull upright resistance
The bare hull upright resistance consists of the frictional resistance of the hull and the residuary resis-
tance of the hull; i.e.

𝑅ፓᑙ = 𝑅ፅᑙ + 𝑅ፑᑙ , (2.5)
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where 𝑅ፓᑙ is the bare hull upright resistance, 𝑅ፅᑙ is the frictional resistance of the bare hull, and 𝑅ፑᑙ is
the residuary resistance of the bare hull.

Frictional resistance hull
Within the DSYHS, the frictional resistance of the bare hull is determined by

𝑅ፅᑙ =
1
2𝜌𝑉

ኼ𝑆፜𝐶፟ , (2.6)

where 𝜌 is the density of water, 𝑉 is the velocity, 𝑆፜ is the wetted surface of the canoe body, and 𝐶፟ is the
friction coefficient calculated with the International Towing Tank Conference (ITTC) 1957 Model-Ship
Correlation Line [16]:

𝐶፟ =
0.075

(logኻኺ 𝑅𝑒 − 2)ኼ
. (2.7)

Within the DSYHS, the Reynolds number, 𝑅𝑒, is defined by

𝑅𝑒 = 0.7𝐿ፖፋ ⋅ 𝑉
𝜈 , (2.8)

where 𝐿ፖፋ is the length of the waterline, and 𝜈 is the kinematic viscosity of water. 0.7𝐿ፖፋ is used as
the characteristic length in the Reynolds number. This length was originally chosen for Series 1 of
the DSYHS to allow for the particular waterline profiles of these models and the corresponding flow
field to be captured in the Reynolds number. According to Keuning and Sonnenberg [27], for the more
modern hull shapes after Series 1, a characteristic length of 0.9𝐿ፖፋ seems to be more appropriate.
Nevertheless, for consistency, 0.7𝐿ፖፋ is used as the characteristic length throughout the entire DSYHS.
This influences the residuary resistance as well.

The expression for the frictional resistance of the bare hull in the DSYHS is based on the ITTC
1957 expression for the frictional resistance [16]. Compared to the ITTC, no form factor is used for the
DSYHS; (1 + 𝑘) = 1 for the DSYHS in the ITTC procedure. As a result, the influence of the hull shape
on the frictional resistance is incorporated in the residuary resistance.

According to Keuning and Sonnenberg [27], the derivation of a formulation for the form factor, as
function of the main dimensions and the hydrostatic coefficients of yacht hulls, from the results of the
DSYHS was impossible. The absence of such a formulation made it impossible to establish the form
factor for an arbitrary sailing yacht. Moreover, Keuning and Sonnenberg show that the form factors,
derived from Prohaska’s plots, for the hull shapes within the DSYHS are generally small; for Series 1
up to 4 the form factor satisfies 1.03 ≤ (1+ 𝑘) ≤ 1.07 in all but two extreme cases. No form factor was
therefore used in the formulation of the frictional resistance for the DSYHS.

Residuary resistance hull
According to Keuning and Katgert [25], the residuary resistance of the hull can be approximated by

𝑅ፑᑙ
𝜌𝑔∇፜

= 𝑎ኺ +
∇፜ኻ/ኽ
𝐿ፖፋ

(𝑎ኻ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑎ኼ𝐶፩ + 𝑎ኽ
∇፜ኼ/ኽ
𝐴ፖ

+ 𝑎ኾ
𝐵ፖፋ
𝐿ፖፋ

+ 𝑎኿
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑎ዀ
𝐵ፖፋ
𝑇፜

+ 𝑎዁𝐶፱), (2.9)

where 𝑔 is gravitational acceleration, ∇፜ is the volume of displacement of the canoe body, 𝑎። are the
coefficients of the regression, 𝐿𝐶𝐵፟፩ is the longitudinal position of the centre of buoyancy measured
from the forward perpendicular (fp), 𝐶፩ is the prismatic coefficient, 𝐴ፖ is the waterplane area, 𝐵ፖፋ is
the beam of the waterline, 𝐿𝐶𝐹 ፩ is the longitudinal position of the centre of flotation measured from the
fp, 𝑇፜ is the draft of the canoe body, and 𝐶፱ is the maximum sectional area coefficient. The definitions
of the hydrostatic coefficients are given in Appendix A. The coefficients, 𝑎ኺ up to 𝑎዁, were determined
for Froude numbers 0.15 up to 0.75 with increments of 0.05 and are listed in Table B.2.
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2.1.3. Bare hull resistance under heel
The bare hull heeled resistance consists of the upright resistance of the hull, the delta frictional resis-
tance of the hull due to heel and the delta residuary resistance of the hull due to heel; i.e.

𝑅ፓᎫᑙ = 𝑅ፓᑙ + Δ𝑅ፅᎫᑙ + Δ𝑅ፑᎫᑙ , (2.10)

where 𝑅ፓᎫᑙ is the bare hull resistance under heel, Δ𝑅ፅᎫᑙ is the change in frictional resistance of the
bare hull due to heel, and Δ𝑅ፑᎫᑙ is the change in residuary resistance of the bare hull due to heel.

Delta frictional resistance due to heel
According to Keuning and Sonnenberg [27], the change in frictional resistance of the hull due to heel
is solely attributed to a change in wetted area of the yacht hull; i.e.

Δ𝑅ፅᎫᑙ =
1
2𝜌𝑉

ኼ𝐶፟(𝑆፜ − 𝑆፜Ꭻ), (2.11)

where 𝑆፜Ꭻ is the wetted area of the canoe body under heel.

Delta residuary resistance due to heel
According to Keuning and Katgert [26], the change in residuary resistance of the bare hull due to heel
can be approximated by

Δ𝑅ፑᎫᑙ
𝜌𝑔∇፜

= 𝑏ኺ + 𝑏ኻ(
𝐵ፖፋᎫ
𝑇፜Ꭻ

− 𝐵ፖፋ𝑇፜
) + 𝑏ኼ(𝐶፱Ꭻ − 𝐶፱) + 𝑏ኽ

𝐿ፖፋᎫ
𝐿ፖፋ

, (2.12)

where 𝑏። are the coefficients of the regression, 𝐵ፖፋᎫ is the beam of the waterline under heel, 𝑇፜Ꭻ is
the draft of the canoe body under heel, 𝐶፱Ꭻ is the maximum sectional area coefficient under heel, and
𝐿ፖፋᎫ is the length of the waterline under heel. The coefficients, 𝑏ኺ up to 𝑏ኽ, were determined for Froude
numbers 0.15 up to 0.45 with increments of 0.05 and are listed in Table B.3.

2.1.4. Bare hull upright trimmed resistance
The bare hull upright trimmed resistance, 𝑅ፓ᎕ᑙ , is defined by

𝑅ፓ᎕ᑙ = 𝑅ፓᑙ + Δ𝑅ፑ᎕ᑙ , (2.13)

where Δ𝑅ፑ᎕ᑙ is the change in residuary resistance of the bare hull due to the trimming moment of the
driving force. According to Keuning and Sonnenberg [27], the change in residuary resistance of the
bare hull due to the trimming moment of the driving force can be approximated by

Δ𝑅ፑ᎕ᑙ
𝑀᎕/(𝐾𝑀ፋ ⋅ tan 1∘)

= 𝑇ኺ + 𝑇ኻ
𝐿ፖፋ
𝐵ፖፋ

+ 𝑇ኼ
𝐵ፖፋ
𝑇፜

+ 𝑇ኽ
𝐴ፖ
∇፜ኼ/ኽ

+ 𝑇ኾ𝐿𝐶𝐵% + 𝑇኿𝐿𝐶𝐹%, (2.14)

where 𝑇። are the coefficients of the regression, 𝑀᎕ is the longitudinal trimming moment of the driving
force, 𝐾𝑀ፋ is the longitudinal metacentric height, 𝐿𝐶𝐵% is the longitudinal position of the centre of
buoyancy expressed in percentage of 𝐿ፖፋ measured from Ꮃ/Ꮄ𝐿ፖፋ, and 𝐿𝐶𝐹% is the longitudinal position
of the centre of flotation expressed in percentage of 𝐿ፖፋ measured from Ꮃ/Ꮄ𝐿ፖፋ. The coefficients, 𝑇ኺ
up to 𝑇኿, were determined for Froude numbers 0.25 up to 0.60 with increments of 0.05 and are listed
in Table B.4.

For the trimming moment of the driving force about the yacht’s CoG, the following expression is
used in the DSYHS:

𝑀᎕ = 0.65𝐿ፖፋ𝑅ፓᑙ , (2.15)

where 0.65𝐿ፖፋ is the assumed CoE height of the sails, and 𝑅ፓᑙ is the bare hull upright resistance.
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2.2. Extrapolation of resistance forces
The hydrodynamic forces and moments acting on the models of the DSYHS were determined with
resistance tests in the #1 and #2 towing tanks of the Ship Hydromechanics Laboratory at the Delft
University of Technology over the years. The waterline lengths of the models used in these tests were
1.6 metres for Series 1 and 2.0 metres for the other series. All the hydrodynamic forces and moments
were extrapolated to a prototype scale with a waterline length of ten metres. The hydrodynamic forces
and moments at this scale were used in regression analyses to derive the regressions of the DSYHS.
The resistance forces of the bare hull were extrapolated as described in this section. The described
method can be used to extrapolate the resistance to ’any’ scale.

The measured resistance of the model is decomposed into a frictional resistance and a residuary
resistance; i.e.

𝑅፭ᑞ = 𝑅፟ᑞ + 𝑅፫ᑞ , (2.16)

where 𝑅፭ᑞ is the total resistance at model scale, 𝑅፟ᑞ is the frictional resistance at model scale, and
𝑅፫ᑞ is the residuary resistance at model scale. The fictional resistance of the model follows Equation
(2.6):

𝑅፟ᑞ =
1
2𝜌ᑞ𝑉፦

ኼ𝑆፜𝐶፟ , (2.17)

where 𝜌ᑞ is the density at model scale, 𝑉፦ is the model speed, and 𝐶፟ is the friction coefficient of ITTC
1957 Model-Ship Correlation Line, determined by Equation (2.7). The Reynolds number needed for
determining 𝐶፟ is again based on a waterline length of 0.7𝐿ፖፋ and can be determined by Equation
(2.8). For the same reasons as described in Subsection 2.1.2, no form factor is used for the frictional
resistance.

As a consequence of this estimation of the frictional resistance, the residuary resistance contains
the wave-making resistance, the viscous pressure resistance and maybe a (small) part of the frictional
resistance. The wave-making resistance depends especially on the Froude number while the viscous
pressure resistance and the frictional resistance depend especially on the Reynolds number. This
introduces some (small) errors in the extrapolation procedure.

The residuary resistance of the model can now be determined from combining Equations (2.16)
and (2.17). The residuary resistance is scaled under the assumption that the residuary resistance
coefficients at model scale and at prototype scale are the same. Hence, it follows that

𝑅፫ᑡ =
𝜌ᑡ
𝜌ᑞ
𝛼ኽ𝑅፫ᑞ , (2.18)

where 𝑅፫ᑡ is the residuary resistance at prototype scale, 𝜌ᑡ is the density at prototype scale, and 𝛼
is the scale factor between the waterline lengths of the two scales. The frictional resistance, 𝑅፟ᑡ , at
prototype scale can be determined from Equations (2.6), (2.7) and (2.8). The total resistance, 𝑅፭ᑡ , at
prototype scale is now given by

𝑅፭ᑡ = 𝑅፟ᑡ + 𝑅፫ᑡ . (2.19)

2.3. Parameter range contained within the DSYHS
The DSYHS is a collection of different systematic series of sailing yacht hulls. Each individual series
contains a parent model and a number of systematic variations of this parent model. The DSYHS
contains seven of these series and in total almost 60 different hulls. The hydrostatic parameters of the
55 models of Series 1 up to 4, 6 and 7 are listed in Table B.1. The lines plans of some of the models
are depicted in Appendix C.

Over the years, a large variety of sailing yacht designs was incorporated in the DSYHS. Series 1 is
based on the Standfast 43, which was a successful Admiral’s Cupper in 1970. The parent hull of this
series is Sysser 1. The 22 hull shapes within Series 1 were tested in the 1970s. In 1983, a new parent
hull, Sysser 25, was introduced for Series 2 and 3 to reflect the changing trends in yacht design. Within
Series 3, emphasis was placed on very light displacement hulls and larger length-to-beam ratios.
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To keep up with the developments in sailing yacht design, a new parent hull, Sysser 44, was added
to the DSYHS in 1995. Sysser 44 is a 40-feet International Measurement System (IMS)-design. Series
6 and 7 were added after the year 2000. The three hull shapes of Series 6 are based on Sysser 44 and
were specifically added to create more variation in the maximum sectional area coefficient contained
within the DSYHS. The three hull shapes of Series 7 are based on Sysser 25. The goal of Series 7 was
to incorporate the characteristics of maxi and mega yachts. These yachts had smaller beam-to-length
ratios in combination with small displacement-to-length ratios than was contained within the DSYHS at
that time.

The hydrostatic parameter range contained within the DSYHS determines the range of applicability of
the regressions. Series 1 up to 4 contain together 49 models and were used to derive the regressions
given by Keuning and Sonnenberg [27]. The regression for the change in residuary resistance of
the bare hull due to the trimming moment, Equation (2.14), was derived from these 49 models. The
hydrostatic parameter range for these series is given in Table 2.1. The maximum, minimum and mean
values, and the standard deviation are listed for each parameter.

The regressions derived by Keuning and Katgert [25,26] are based on the 55 models of Series 1 up
to 4, 6 and 7. The regression for the residuary resistance of the hull, Equation (2.9), and the regression
for the change in residuary resistance of the bare hull due to heel, Equation (2.12), were derived from
these 55 models. The parameter range for these series is given in Table 2.2. The maximum, minimum
and mean values, and the standard deviation are listed for each parameter.

As a result of this large variety in hull shapes contained within the DSYHS, a very wide range of
possible yacht designs is being covered by the DSYHS. Nevertheless, it may be necessary to expand
the DSYHS once more with a new series of modern yacht designs.

Table 2.1: The parameter range contained within Series 1 up to 4 of the DSYHS. The regression for the
change in residuary resistance of the bare hull due to the trimming moment of the driving force, Equation

(2.14), is based on this range.

ፋፂፁᑗᑡ
ፋᑎᑃ 𝐶፩ ∇ᑔᎴ/Ꮅ

ፀᑎ
ፁᑎᑃ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 𝐶፱ ፁᑎᑃ

ፓᑔ

Maximum 0.582 0.599 0.265 0.366 1.002 0.230 0.777 19.38
Minimum 0.500 0.522 0.079 0.200 0.920 0.120 0.646 2.46
Mean 0.533 0.555 0.173 0.289 0.962 0.182 0.695 6.22
𝜎 0.019 0.018 0.048 0.039 0.022 0.035 0.048 3.63
𝜎 [%Mean] 3.54 3.33 27.9 13.8 2.26 19.4 6.82 59.4

Table 2.2: The parameter range contained within Series 1 up to 4, 6 and 7 of the DSYHS. The regression for
the residuary resistance of the hull, Equation (2.9), and the regression for the change in residuary resistance of

the bare hull due to heel, Equation (2.12), are based on this range.

ፋፂፁᑗᑡ
ፋᑎᑃ 𝐶፩ ∇ᑔᎴ/Ꮅ

ፀᑎ
ፁᑎᑃ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 𝐶፱ ፁᑎᑃ

ፓᑔ

Maximum 0.582 0.599 0.265 0.366 1.002 0.230 0.790 19.38
Minimum 0.500 0.519 0.079 0.170 0.920 0.120 0.646 2.46
Mean 0.535 0.553 0.172 0.282 0.962 0.180 0.700 6.12
𝜎 0.019 0.019 0.046 0.044 0.021 0.034 0.049 3.45
𝜎 [%Mean] 3.58 3.49 26.8 15.6 2.15 19.0 7.00 56.5

2.4. Comparison of the regressions with experimental results
In order to asses the accuracy of the regressions for the bare hull resistance, the resistance computed
with these regressions is compared with experimental results. A comparison of the resistance values
for the upright untrimmed condition, the upright trimmed condition and the heeled untrimmed condition
is given in this section. The comparison is made at prototype scale, 𝐿ፖፋ = 10.00𝑚.
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Ten models of the DSYHS are used in this comparison: Syssers 25, 28, 33, 39, 44, 47, 61, 62,
72 and 73. The lines plans and the hydrostatic parameters of all these Syssers are given in Appendix
C. These Syssers were tested with the standard measurement method of the DSYHS in one of the
two towing tanks of the Ship Hydromechanics Laboratory at the Delft University of Technology over
the years. The standard measurement method of the DSYHS was specifically developed by the Ship
Hydromechanics Laboratory for resistance measurements of sailing yacht models. For an explanation
of this experimental method, the reader is referred to Katgert and Den Ouden [24].

The differences between the resistance estimated with the DSYHS regressions and the measured
resistance for the upright untrimmed, upright trimmed and heeled untrimmed conditions are listed in
Table B.5. These comparison errors 𝐸 are given as a percentage of the extrapolated experimental
results. Some exceptions excluded, the DSYHS regressions reasonably — |𝐸| ≤ 10% — predict the
resistance of these ten Syssers. The resistance of the upright untrimmed condition is the most accu-
rately predicted. For Syssers 25, 28, 39 and 44, the resistance prediction is accurate with differences
between ±7.5%.

Even for the Syssers with the more ’extreme’ parameters compared to the mean values of the
parameter range contained within the DSYHS, e.g. Syssers 39, 71 and 72, the prediction is reasonable.
For Sysser 39, the prediction is accurate with differences between ±6%. For Syssers 71 and 72, the
difference between the resistance predicted by the regressions and the resistance measured in the
towing tank is within -0.1% and +16.8% for the upright resistance, and within -1.8% and +13.9% for the
trimmed resistance. This illustrates that the regressions of the DSYHS are applicable to a large variety
of sailing yacht designs.

This comparison also indicates that the resistance of the more traditional hull shapes, i.e. the hull
shapes of Series 1 up to 4, is better predicted than the resistance of the more recent hull shapes of
Series 7. This is not that strange since Series 1 up to 4 contain together 49 models while Series 7
contains only three models. The more traditional hull shapes are stronger represented in the DSYHS.
This suggests that the resistance of modern sailing yachts, which have considerably different design
characteristics than the traditional hull shapes of the DSYHS and have similar beam-to-length and
displacement-to-length ratios as Sysser 72 and 73, may not be accurately predicted by the DSYHS
regressions. As said before, Series 7 was specifically created to introduce smaller beam-to-length
ratios in combination with small displacement-to-length ratios than was contained within the DSYHS at
that time.

2.5. Limitations of the DSYHS regressions
As stated before, a very wide range of possible sailing yacht designs is being covered by the DSYHS.
In order to keep up with the trends and developments in sailing yacht design, it may be necessary to
expand the DSYHS once more with a new series of contemporary yacht designs. After the last exten-
sion of the DSYHS, the most pronounced developments in yacht design are the straight vertical bows,
the wide transoms and the very light displacement hulls. Furthermore, the contemporary designs carry
above the waterline their maximum beam all the way aft. These changes in sailing yacht design are
significant and may have led to the situation where recent designs of yacht hulls are not longer fully
covered by the hull shapes within the DSYHS. The regression formulas derived from the DSYHS can
therefore be less applicable to the contemporary hull shapes. The accuracy of the velocity predic-
tion for modern high performance sailing yachts will suffer from this in some extent. Moreover, these
developments contribute to the ever increasing speed potential of the newer designs.

The limitations of the regressions of the DSYHS for modern high performance sailing yachts are
discussed in this section. They form the motivation for the present study.

2.5.1. Speed range
An obvious limitation of the use of the regression formulas, derived from the DSYHS, for the purpose of
velocity prediction of modern high performance yachts is the speed range covered by the series. The
speeds range within the DSYHS covers Froude numbers from 0.15 up to 0.75. Some of the regressions
cover only Froude numbers up to 0.45. Modern high performance yachts are capable of reaching higher
speeds than Froude number 0.75. For the velocity prediction of these yachts, regression formulas for
the hydrodynamic forces and moments up to Froude number 0.95 are desirable.
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2.5.2. Parameter range
Another limitation of the use of the regression formulas, derived from the DSYHS, for the purpose of
velocity prediction of modern yachts is the big difference in hull design between modern hull shapes
and ’traditional’ hull shapes. Contemporary hull shapes distinguish themselves from the traditional hull
shapes of the DSYHS by their straight vertical bows, wide transoms, very long waterlines compared to
the overall length, very light displacement hulls, relatively small beam-to-length ratios of the waterline,
small displacement-to-length ratios and relatively small displacement-to-waterplane area ratios. More-
over, the contemporary designs carry above the waterline their maximum beam all the way aft. The
differences between modern and traditional hull shapes become very obvious if, for instance, the lines
plans of Sysser 25 and Sysser 85, shown in Figures C.1 and C.13, respectively, are compared with
each other. The main dimensions and the hydrostatic coefficients of modern sailing yachts may not be
fully covered by the parameter range contained within the DSYHS.

In order to put these thoughts in perspective, a comparison between the hydrostatic parameters of
the modern Sysser 85 and the parameter range contained within the DSYHS is made. The parameter
range of the DSYHS is given in Table 2.2. Sysser 85 resembles a modern Transpac 52 (TP52) racing
yacht design. The lines plan and the hydrostatic parameters of Sysser 85 are given in Appendix C.
Sysser 85 does not belong to the DSYHS.

A comparison of its parameters with the parameter range of the DSYHS is given in Table 2.3. This
comparison shows that the parameters of this hull shape fall entirely within the range of the DSYHS.
Although all its parameters lie within the parameter range of the DSYHS, the difference between some
of its parameters and the mean value of the parameters in the DSYHS is larger than the standard
deviation of the parameter in the DSYHS. This holds for the displacement-to-waterplane area ratio,
the beam-to-length ratio of the waterline, the longitudinal centre of buoyancy-to-longitudinal centre of
flotation ratio and the displacement-to-length ratio. The deviation of these parameters from the mean
value of the DSYHS coincides perfectly with the differences between the traditional hull shapes of the
DSYHS and modern hull shapes. This suggests that the regression formulas derived from the DSYHS
are less applicable to recent hull shapes. The DSYHS is no longer representative of today’s high
performance yacht designs.

Table 2.3: The parameters of Sysser 85 and the parameter range contained within the DSYHS, given in Table 2.2.

ፋፂፁᑗᑡ
ፋᑎᑃ 𝐶፩ ∇ᑔᎴ/Ꮅ

ፀᑎ
ፁᑎᑃ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 𝐶፱ ፁᑎᑃ

ፓᑔ

Maximum 0.582 0.599 0.265 0.366 1.002 0.230 0.790 19.38
Sysser 85, TP52 0.539 0.543 0.122 0.205 0.940 0.131 0.683 6.92
Minimum 0.500 0.519 0.079 0.170 0.920 0.120 0.646 2.46
Mean 0.535 0.553 0.172 0.282 0.962 0.180 0.700 6.12
𝜎 0.019 0.019 0.046 0.044 0.021 0.034 0.049 3.45

2.5.3. Resistance prediction
In order to asses the accuracy of the regressions of the DSYHS for contemporary high performance
sailing yacht designs, the predicted resistance of a modern design is compared with experimental re-
sults. The comparison is made at prototype scale, 𝐿ፖፋ = 10.00𝑚. A comparison of the total resistance
values for the upright untrimmed condition, the upright trimmed condition and the heeled untrimmed
condition for Sysser 85 is given. Sysser 85 was tested with the standard measurement method of the
DSYHS in the #1 towing tank of the Ship Hydromechanics Laboratory at the Delft University of Technol-
ogy in the year 2010. For an explanation of this experimental method, the reader is referred to Katgert
and Den Ouden [24].

The bare hull resistance calculated with the DSYHS regressions and the bare hull resistance mea-
sured in the towing tank for the upright untrimmed, upright trimmed and heeled untrimmed conditions
are depicted in Figure 2.2. In Table B.5, the bare hull resistance calculated with the DSYHS regressions
is given as a percentage change from the extrapolated experimental results. The DSYHS regressions
mostly underpredict the resistance of Sysser 85. This holds for the upright, trimmed and heeled condi-
tions. The difference between the resistance predicted by the regressions and the resistancemeasured
in the towing tank is within -15.9% and +1.9%.
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For the residuary resistance, the relative discrepancy between the regressions and the experimental
results is larger. For the upright residuary resistance, this discrepancy is within -28.4% and +3.1% for
Froude numbers up to 0.60, as can be seen in Table B.6. For Froude numbers after 0.60, the upright
residuary resistance is accurately predicted by the DSYHS regressions. Some exceptions excluded,
the change in residuary resistance due to the trimming moment of the driving force and the change in
residuary resistance due to heel is poorly predicted by the regressions of the DSYHS. Excluding Froude
number 0.25 for which the discrepancies are by far the largest, the differences are within -39.7% and
-4.4%.

The large discrepancies in residuary resistance are significant. Together with the relatively large
differences in bare hull resistance, they will definitely influence the accuracy of the performance pre-
diction of this TP52-design. One of the reasons for these relatively large differences in total resistance
and residuary resistance between the regressions of the DSYHS and the experimental results may be
the deviation of the hydrostatic parameters of Sysser 85 from the mean value of the parameter range
contained within the DSYHS.

A comparison between the accuracy of the resistance prediction formodels belonging to the DSYHS,
discussed in Section 2.4, and the accuracy of the resistance prediction for Sysser 85, not belonging to
the DSYHS, suggests that the regressions of the DSYHS predict the resistance of the models belonging
to the DSYHS more accurately.

2.5.4. Conclusions
After the last extension of the DSYHS, the most pronounced developments in sailing yacht design
are the straight vertical bows, the wide transoms, the very light displacement hulls and the very long
waterlines compared to the overall length. Above the waterline, the contemporary designs carry their
maximum beam all the way aft. These changes in sailing yacht design are significant and have led to
the situation where recent designs of sailing yacht hulls are less accurately covered by the hull shapes
within the DSYHS. The regression formulas derived from the DSYHS are therefore less applicable to
recent hull shapes. The accuracy of the velocity prediction of modern high performance sailing yachts
will suffer from this in some extent. Moreover, these developments contribute to the ever increasing
speed potential of the newer designs. The DSYHS is no longer representative of today’s high perfor-
mance yacht designs. As a result of the developments in yacht design, it is found necessary to create
a new systematic series of modern high performance yacht hulls. The regressions derived from this
new series should cover a wider speed range and a different range of main dimensions and hydrostatic
coefficients than those of the DSYHS.

Based on a similar analysis for an IMOCA 60, Huetz [14] also suggests that new regressions are
necesarry to improve the velocity prediction of recent designs, especially for the influence of heel and
trim on the bare hull resistance.
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(a) Bare hull upright resistance.
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(b) Bare hull upright trimmed resistance.
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(c) Bare hull resistance under 20 degrees heel.
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(d) Bare hull resistance under 30 degrees heel.

Figure 2.2: The resistance calculated with the DSYHS regressions and the measured resistance for Sysser 85 with a
waterline length of ten metres for the upright untrimmed, upright trimmed and heeled untrimmed conditions.





3
New systematic series

As a result of the developments in sailing yacht design, it is necessary to create a new systematic series
of contemporary yacht hulls, in order to improve the velocity prediction of modern high performance
yachts. The regressions derived from this new series should cover a wider speed range and a different
range of hydrostatic parameters than those of the DSYHS. The new series should be representative of
a wide range of today’s high performance yacht designs.

Within this study, a new systematic series of high performance sailing yacht hulls is derived. A
modern TP52-design is used as the parent model of this new series. The parent hull is selected in
Section 3.1. From this parent hull, a number of relevant hull shapes is derived. The chosen systematic
variations and the used transformation methods are discussed in Section 3.2. The variations of the
parent model are chosen such that the new series covers the wide range of modern yacht designs as
much as possible. The derived systematic series and the models it contains, are presented in Section
3.3.

The hydrodynamic forces acting on the models in this new series are not determined with experi-
mental research in the towing tank as was done for the DSYHS, but are calculated with computational
fluid dynamics (CFD). A thorough discussion of this numerical method is given in Chapter 6. The test
conditions for which the hydrodynamic forces are determined, are given in Chapter 4. The hydrody-
namic forces acting on the models are used to derive new regressions for the bare hull resistance in
Chapter 10.

Determining the upright untrimmed resistance, the resistance under heel and the upright trimmed
resistance of the models, and deriving new regressions for all the bare hull resistance components is
beyond the scope of this study. Consequently, a choice has to be made between these resistance
components. This choice will be based on an assessment of the bare hull resistance components of
the parent hull in Section 3.1.

3.1. Parent hull
For the new systematic series of modern high performance yacht hulls, a parent hull has to be selected.
A choice was made to select a not-too-extreme design in order for the new systematic series to be
widely applicable. A modern racing yacht design was tested for various speeds and heel angles in the
towing tank of the Ship Hydromechanics Laboratory at the Delft University of Technology in the year
2010. This model, Sysser 85, was selected to be the parent hull of the new systematic series.

Sysser 85 was designed by the Ship Hydromechanics Laboratory in the year 2010. The model is
based on Sysser 28 of the DSYHS and was designed to the characteristics and main dimensions of a
Transpac 52 (TP52). According to modern high performance sailing yacht designs, Sysser 85 has a
straight vertical bow, a wide transom, a very light displacement hull, a very long waterline compared
to its overall length, and it carries above the waterline its maximum beam all the way aft. Sysser
85 satisfies the TP52 class rules [45]. Sysser 85 is not an existing TP52 and was never added to
the DSYHS. The lines plan of Sysser 85 is depicted in Figure C.13. The main dimensions and the
hydrostatic parameters of the parent hull of the new systematic series, at full scale, are listed in Table
3.1.

17
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Table 3.1: Main dimensions and hydrostatic parameters of
Sysser 85, a TP52-design, at full scale.

𝐿ፎፀ [𝑚] 15.85 𝐿𝐶𝐹 ፩ [𝑚] 8.94
𝐿ፖፋ [𝑚] 15.60 𝑆፜ [𝑚ኼ] 36.59
𝐵ፖፋ [𝑚] 3.19 𝐴ፗ [𝑚ኼ] 1.01
𝐵ፎፀ [𝑚] 4.41 𝐴ፖ [𝑚ኼ] 34.22
𝑇፜ [𝑚] 0.462 𝐶፛ [−] 0.371
∇፜ [𝑚ኽ] 8.56 𝐶፩ [−] 0.543
Δ፜ [𝑘𝑔] 8780 𝐶፱ [−] 0.683
𝐿𝐶𝐵፟፩ [𝑚] 8.40 𝐶፰ [−] 0.687

3.1.1. Bare hull resistance components
Determining the bare hull upright untrimmed resistance, the bare hull resistance under heel and the
bare hull upright trimmed resistance of the models in the new systematic series, and deriving new
regressions for all the bare hull resistance components is beyond the scope of the present study. Con-
sequently, a choice has to be made between these resistance components. A promising method for
the improvement of the velocity prediction of modern sailing yachts from a hydrodynamic perspec-
tive is to improve the prediction of the two largest bare hull resistance components. An assessment
of the relative importance of the bare hull resistance components is therefore necessary. The bare
hull resistance components of the parent hull, derived from experimental results with the resistance
decomposition shown in Figure 2.1, are examined in this subsection.

Sysser 85 was tested with the standard measurement method of the DSYHS in the #1 towing tank
of the Ship Hydromechanics Laboratory at the Delft University of Technology in the year 2010. For an
explanation of this experimental method, the reader is referred to Katgert and Den Ouden [24]. The
bare hull upright resistance, the bare hull upright trimmed resistance, and the bare hull resistance under
20 and 30 degrees were measured. The resistance values obtained from these tests are extrapolated
to a waterline length of ten metres with the method discussed in Section 2.2. The resistance values at
this scale are used in this comparison of the bare hull resistance components.

Following the resistance decomposition method of the DSYHS, shown in Figure 2.1, the bare hull
upright trimmed resistance consists of the bare hull upright untrimmed resistance and the change in
residuary resistance of the bare hull due to the trimming moment of the driving force. The bare hull re-
sistance under heel consists of the bare hull upright untrimmed resistance, and the change in residuary
and frictional resistance due to heel.

The resistance for the upright untrimmed, upright trimmed and heeled untrimmed conditions, as
well as the delta resistance components, of Sysser 85 are plotted in Figure 3.1. For the trimmed and
heeled conditions, the bare hull upright untrimmed resistance is by far the largest component of the
resistance. It covers 85 to 104 percent of the bare hull trimmed resistance and 90 to 106 percent of the
bare hull resistance under heel. For the higher Froude numbers, the delta residuary resistance due to
the trimming moment of the driving force is considerably larger than the delta resistance due to heel.

The upright untrimmed resistance and the delta resistance due to the trimming moment of the driv-
ing force seem to be the two most important bare hull resistance components for the velocity prediction
of Sysser 85. This especially holds for the higher Froude numbers, where the upright untrimmed resis-
tance and the delta resistance due to the trimming moment of the driving force are the largest bare hull
resistance components. The upright untrimmed resistance is the dominant resistance component at all
the speeds. Improving the prediction of the upright untrimmed resistance and the delta resistance due
to the trimming moment by deriving new regressions, from the new systematic series, for these com-
ponents is therefore a promising method to improve the velocity prediction of modern TP52-like yacht
designs from a hydrodynamic perspective. The upright untrimmed resistance and the delta resistance
due to the trimming moment of the driving force are therefore the main focus of this study.
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(a) Bare hull resistance.
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(b) Resistance ratio with respect to the bare hull upright untrimmed resistance.
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(c) Delta resistance components.

Figure 3.1: The bare hull resistance and the delta resistance components of Sysser 85 with a waterline length of ten metres
for the upright untrimmed, upright trimmed and heeled untrimmed conditions, derived from resistance measurements.
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3.2. Variations
In order to derive relations between the hydrodynamic forces and the geometries of various hull shapes,
a systematic series of different hull shapes is created. The new systematic series of modern high
performance yacht hulls should cover a wide range of hydrostatic parameters in order to be widely
applicable. The new series should be representative of a wide range of today’s high performance
yacht hulls. Since the available computation time is limited, the number and the type of variations
have to be chosen wisely. The varied parameter is expected to have a significant influence on the
hydrodynamic forces. Moreover, the variation in the parameter is large enough to find a noteworthy
change in the hydrodynamic forces. In order to uncouple the influence of the different hydrostatic
parameters on the hydrodynamic forces, only the specific parameter under consideration should be
changed while keeping all the other parameters constant. A large systematic series will enhance the
quality, robustness and stability of the derived regressions. The new systematic series is derived taking
all these considerations into account.

Before deriving the new systematic series, the variations between themodels are chosen in Subsec-
tion 3.2.1. After the variations are selected, the hull shapes in the systematic series can be constructed
by means of the transformation methods discussed in Subsection 3.2.2. The derived systematic series
is presented in the next section.

3.2.1. Selected variations
A new bare hull upright trimmed resistance prediction is derived from a new systematic series of high
performance yacht hulls in this study. In order to derive the new systematic series specifically for
this goal, use is made of the regressions of the DSYHS derived by Keuning et al. [25,27]. These
references give expressions for the bare hull upright resistance and the delta residuary resistance due
to the trimming moment of the driving force. These two regressions are given by Equations (2.9) and
(2.14) of this thesis. These expressions are a perfect way to identify the hydrostatic parameters that
are expected to have a significant influence on the upright trimmed resistance. Variations in these
parameters are used to construct the systematic series.

Following these two regressions of the DSYHS, the new systematic series is focussed on varia-
tions in displacement-to-length ratio, beam-to-length ratio, beam-to-draft ratio, longitudinal centre of
buoyancy-to-length ratio, longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio, pris-
matic coefficient, maximum sectional area coefficient, and displacement-to-waterplane area ratio. The
expected influence of these parameters on the resistance is discussed below. A description of the
variations applied to the 21 models of the new series is given in Table 3.2. The range of variations is
also listed there. All the models have the same waterline length.

The displacement-to-length ratio, ∇፜ኻ/ኽ/𝐿ፖፋ, also called the slenderness ratio, expresses the fineness
of a hull. Its influence on the resistance is pretty obvious. More displacement for a given waterline
length generally increases the resistance. A lower displacement-to-length ratio leads to a reduction of
the intensity of the generated waves and consequently to a reduction in wave-making resistance. It also
reduces the viscous pressure resistance. This resistance component and the wave-making resistance
are part of the residuary resistance. The displacement-to-length ratio is expected to be the dominant
parameter for the residuary resistance.

The beam-to-length ratio, 𝐵ፖፋ/𝐿ፖፋ, is also an important factor for the resistance of sailing yachts. In
general, for a given waterline length and displacement, a larger waterline beam increases the wetted
surface and therefore the frictional resistance. For the higher speeds in upright condition, it may reduce
the resistance due to generation of more dynamic lift. For a given length and displacement, a yacht
with a smaller beam-to-length ratio generally sails faster on close-hauled courses while a yacht with a
larger beam-to-length ratio is faster on broad reach courses. In general, the wider yacht has a higher
resistance under heel and leeway, a poorer seakeeping behaviour and a larger added resistance in
waves for wave encounter angles between 180 degrees (head waves) and 90 degrees (beam waves),
i.e. on courses between close-hauled and beam reach.

The beam-to-length ratio is an important factor especially for the resistance at the higher speeds. It
was originally introduced into the regressions of the DSYHS based on its importance for the resistance
of planing motorboats. For planing motorboats, the length-to-beam ratio of the part of the hull remaining
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in the water determines the aspect ratio of that waterline and for a large part the generated lift and the
resistance. Note that for a planing motorboat, its waterline beam remains almost unchanged while its
waterline length is highly influenced by the trim angle and the speed. Contrary to planing motorboats,
sailing yachts at high speeds use a large part of their waterline length for the longitudinal stability needed
to resist the trimming moment of the driving forces acting on the sails. The hydrostatic beam-to-length
ratio is considered to be an important factor for the resistance of sailing yachts, especially at the higher
speeds.

The beam-to-draft ratio, 𝐵ፖፋ/𝑇፜, expresses the proportions of the ship’s sections. It effects the re-
sistance in various ways. A larger beam-to-draft ratio implies a larger wetted surface for the same
displacement and thus a higher frictional resistance. At the lower speeds, the wave resistance gener-
ally increases with increasing beam-to-draft ratio. The beam-to-draft ratio is closely related to the dead
rise angle. A high beam-to-draft ratio implies a small dead rise angle, which is good for the planing
abilities and the resistance at the higher speeds, but results in bad seakeeping behaviour and an in-
crease in resistance at the lower speeds. A high beam-to-draft ratio implies a large deformation of the
waterline shape under heel, which may negatively influence the resistance under heel.

In general, for smooth hulls with an almost constant beam-to-draft ratio over the entire waterline
length, the beam-to-draft ratio of the waterline, 𝐵ፖፋ/𝑇፜, is highly correlated with the displacement-to-
waterplane area ratio. In this case, a high beam-to-draft ratio implies a relatively light displacement hull
with respect to its waterplane area. The beam-to-draft ratio is also likely to be highly correlated to the
displacement-to-wetted surface area ratio.

The longitudinal centre of buoyancy-to-length ratio, 𝐿𝐶𝐵፟፩/𝐿ፖፋ, defines the position of the longitudi-
nal position of the centre of buoyancy. The longitudinal centre of buoyancy expresses the degree of
concentration of the lengthwise distribution of the volume of displacement. The longitudinal centre of
buoyancy-to-length ratio is also a measure for the centreline shape. It is an important factor for the
pressure distribution along the hull and therefore for the intensity of the generated wave system. A
centre of buoyancy ahead of the optimum position is likely to intensify the generated waves at the bow
sections. A centre of buoyancy aft of the optimum position is likely to intensify the generated waves at
the aft sections and can increase flow separation at the afterbody. An optimum 𝐿𝐶𝐵፟፩ has to be found
together with an optimum prismatic coefficient, since both have a strong influence on the wave-making
resistance and interact with each other. In general, the longitudinal centre of buoyancy should move
aft with increasing speed. The variation in the optimum location of the centre of buoyancy is generally
very small over the speed range.

The prismatic coefficient, 𝐶፩, defines the ratio between the volume of displacement and the extrusion
of the maximum sectional area, 𝐴ፗ, along the waterline length;

𝐶፩ =
∇፜

𝐴ፗ𝐿ፖፋ
. (3.1)

A low prismatic coefficient indicates a relatively large maximum sectional area, concentrated displace-
ment around the midship and thus slender ends at the bow and the stern. A high prismatic coefficient
indicates an evenly distributed displacement along the waterline length with a lot of volume at the stern
and the bow. The prismatic coefficient is an important factor for the wave-making resistance. Its in-
fluence on the resistance changes with speed. It is also associated with the interference between the
waves generated at the bow and the waves generated at the stern. The displacement-to-length ratio,
the prismatic coefficient and the centre of buoyancy are the most important parameters for the intensity
and the shape of the generated wave systems at the bow and at the stern.

The optimum prismatic coefficient increases with the Froude number. An optimum prismatic coef-
ficient together with an optimum position of the longitudinal centre of buoyancy should be specifically
chosen for the desired speed range. In general, bluff — less streamlined— forebodies tend to increase
the generated waves while bluff afterbodies tend to decrease them. A high prismatic coefficient with
the centre of buoyancy far aft indicates a very bluff afterbody while the forebody is still relatively stream-
lined. With increasing speed, the optimum prismatic coefficient increases and the optimum centre of
buoyancy moves aft. The associated fuller stern increase the viscous pressure resistance by lowering
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the pressure at the afterbody due to the associated thicker boundary layer, possible flow separation
and larger streamline curvature; thereby the pressure difference between the bow and the stern is in-
creased, resulting in a higher viscous pressure resistance. However, the fuller stern generally reduces
the wave-making resistance.

At the low speeds, the wave-making resistance is relatively small and the viscous pressure resis-
tance is more important while at the higher speeds, the wave-making resistance dominates and the
viscous pressure resistance is of less importance. A yacht optimized for high speeds has a relatively
large prismatic coefficient with a centre of buoyancy moved relatively aft while a yacht optimized for
low speeds has a relatively low prismatic coefficient with the centre of buoyancy relatively far forward.

The waterplane area-to-displacement ratio, 𝐴ፖ/∇፜ኼ/ኽ, also called the loading factor, influences the
resistance especially at the higher speeds. At the higher speeds, hydrodynamic lift is generated which
reduces the resistance. The hydrodynamic lift is related to the hydrodynamic pressure acting on the
hull and the horizontal surface of the hull. For a given pressure, the generated lift is proportional to this
horizontal surface. This surface is highly correlated to the hydrostatic waterplane area. The waterplane
area-to-displacement ratio is a measure for the trade-off between the hydrodynamic lift at the higher
speeds and the yacht’s weight. It gives an indication for the planing abilities of a yacht. The higher the
ratio, the easier the hull shape should be able to plane. The loading factor was originally introduced
into the regressions of the DSYHS based on its importance for the resistance of planing motorboats.

The longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio, 𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩, defines the
longitudinal centre of flotation with respect to the longitudinal centre of buoyancy. This ratio is an
important factor for the running trim and thereby also for the running sinkage of a yacht. The longitudinal
centre of buoyancy is the point where the resultant hydrostatic buoyancy force acts on the yacht. The
longitudinal centre of gravity is located above the centre of buoyancy. The longitudinal centre of flotation
is the geometric centre of the waterplane area and the pivot point about which the sailing yacht trims.
The longitudinal centre of flotation is correlated to the centre of effort of the hydrodynamic lift provided
at the higher speeds. A higher 𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ ratio therefore helps to trim bow up at the higher speeds,
because it increases the arm between the gravity force and the resultant hydrodynamic lift. Trimming
bow up may result in lower resistance and higher dynamic lift.

The maximum sectional area coefficient, 𝐶፱, is defined by

𝐶፱ =
𝐴ፗ
𝐵ፖፋ𝑇፜

. (3.2)

It defines the fullness of the section with the maximum sectional area. A high coefficient indicates
a boxy section shape. A low coefficient indicates more V-shaped sections. The maximum sectional
area coefficient is expected to influence the residuary resistance at the lower speed and at the higher
speeds.

3.2.2. Transformation methods
In order to apply the selected variations to the parent hull, different transformation methods are used.
Variations in the beam-to-length ratio, the beam-to-draft ratio and the displacement-to-length ratio are
obtained by uniformly stretching of the geometry in three directions. Stretching along the three axes
is accomplished by multiplication of the coordinates of control points with three factors, one for each
direction.

Variations in the prismatic coefficient are obtained by narrowing or widening of the model by uni-
formly stretching. The waterlines and the buttocks are then reshaped to obtain the same displacement,
the same longitudinal centre of buoyancy-to-length ratio, the same longitudinal centre of buoyancy-to-
longitudinal centre of flotation ratio and the desired prismatic coefficient. Variations in the maximum
sectional area coefficient are obtained by altering the bilge radius and reshaping the sections.

Variations in the longitudinal centre of buoyancy-to-length ratio are obtained by shifting the sections
to obtain the longitudinal distribution of sectional areas belonging to the desired longitudinal centre
of buoyancy. Slight modifications of the sections and buttocks are necessary to obtain the desired
variation. Variations in the longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio are
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obtained by altering the shape of the design waterline by widening or narrowing the waterline in the
front and the back while keeping the same longitudinal centre of buoyancy. Slight modifications of the
buttocks are necessary to obtain the desired longitudinal centre of buoyancy.

No effort is made to incorporate specific variations in the displacement-to-waterplane area ratio. A
wide range of variations in this ratio is already present in the series as an inevitable consequence of
the above-mentioned variations. Keeping this ratio constant for these above-mentioned variations was
found to be impossible.

All the models have been faired and checked for smoothness.

3.3. Systematic series
Now the variations are selected, the new models can be derived from the parent hull with the described
transformation methods. The lines plans and the hydrostatic parameters of the 21 models in the new
series are given in Appendix C.3. The magnitude of the obtained variations deviates slightly from the
numbers given in Table 3.2. The hydrostatic coefficients and ratios of the hull shapes in this series
are listed in Table 3.3. The parameter range in the series is also given. This range differs from the
parameter range of the DSYHS, listed in Table 2.2.

Table 3.2: Description of the new systematic series.

Model Variations
Sysser 85 Parent hull.
Sysser 86 Same displacement as parent but 15% narrower and 15% deeper.
Sysser 87 Same displacement as parent but 15% wider and 15% shallower.
Sysser 88 Same beam-to-draft ratio as parent but a 15% higher displacement.
Sysser 89 Same beam-to-draft ratio as parent but a 15% lower displacement.
Sysser 90 Same beam-to-length ratio as parent but a 15% higher displacement and 15%

deeper.
Sysser 91 Same beam-to-length ratio as parent but a 15% lower displacement and 15%

shallower.
Sysser 92 Higher maximum sectional area coefficient (+7%).
Sysser 93 Lower maximum sectional area coefficient (-7%).
Sysser 94 Higher prismatic coefficient (+10%).
Sysser 95 Lower prismatic coefficient (-10%).
Sysser 96 Longitudinal centre of buoyancy moved aft by 4%. Longitudinal centre of flota-

tion moved aft by 2%.
Sysser 97 Longitudinal centre of buoyancy moved forward by 4%. Longitudinal centre of

flotation moved forward by 2%.
Sysser 98 Longitudinal centre of flotation moved aft by 2% while keeping the same lon-

gitudinal centre of buoyancy.
Sysser 99 Longitudinal centre of flotation moved forward by 2% while keeping the same

longitudinal centre of buoyancy.
Sysser 100 Similar to Sysser 86 but then with 7.5% variation.
Sysser 101 Similar to Sysser 87 but then with 7.5% variation.
Sysser 102 Similar to Sysser 88 but then with 7.5% variation.
Sysser 103 Similar to Sysser 89 but then with 7.5% variation.
Sysser 104 Similar to Sysser 90 but then with 7.5% variation.
Sysser 105 Similar to Sysser 91 but then with 7.5% variation.



24 New systematic series

Table 3.3: Hydrostatic parameters of the hull shapes in the new systematic series. The maximum,
minimum and mean values, and the standard deviation of the parameters are listed at the bottom of

the table.

∇ᑔᎳ/Ꮅ
ፋᑎᑃ

ፁᑎᑃ
ፋᑎᑃ

ፓᑔ
ፁᑎᑃ

ፋፂፁᑗᑡ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ 𝐶፩ 𝐶፱ ∇ᑔᎴ/Ꮅ

ፀᑎ

Sysser 85 0.131 0.205 0.145 0.539 0.940 0.543 0.683 0.122
Sysser 86 0.131 0.175 0.195 0.537 0.938 0.544 0.684 0.142
Sysser 87 0.131 0.239 0.106 0.538 0.939 0.544 0.684 0.104
Sysser 88 0.137 0.220 0.144 0.539 0.939 0.544 0.684 0.125
Sysser 89 0.124 0.189 0.145 0.539 0.939 0.544 0.683 0.119
Sysser 90 0.137 0.205 0.166 0.539 0.939 0.543 0.683 0.134
Sysser 91 0.124 0.205 0.123 0.539 0.939 0.544 0.683 0.110
Sysser 92 0.133 0.203 0.146 0.540 0.940 0.539 0.726 0.126
Sysser 93 0.128 0.203 0.146 0.536 0.937 0.548 0.633 0.117
Sysser 94 0.131 0.184 0.161 0.539 0.939 0.603 0.677 0.128
Sysser 95 0.131 0.224 0.132 0.539 0.941 0.497 0.685 0.118
Sysser 96 0.131 0.206 0.142 0.560 0.956 0.545 0.677 0.121
Sysser 97 0.131 0.203 0.147 0.515 0.919 0.541 0.690 0.123
Sysser 98 0.131 0.205 0.144 0.540 0.921 0.550 0.679 0.120
Sysser 99 0.131 0.205 0.145 0.539 0.957 0.535 0.692 0.122
Sysser 100 0.131 0.190 0.168 0.539 0.940 0.543 0.684 0.132
Sysser 101 0.131 0.221 0.124 0.539 0.940 0.543 0.684 0.113
Sysser 102 0.134 0.212 0.144 0.539 0.940 0.543 0.684 0.124
Sysser 103 0.128 0.197 0.145 0.539 0.940 0.543 0.683 0.121
Sysser 104 0.134 0.205 0.155 0.539 0.940 0.543 0.684 0.128
Sysser 105 0.128 0.205 0.134 0.539 0.940 0.543 0.683 0.116
Maximum 0.137 0.239 0.195 0.560 0.957 0.603 0.726 0.142
Minimum 0.124 0.175 0.106 0.515 0.919 0.497 0.633 0.104
Mean 0.131 0.205 0.146 0.538 0.939 0.544 0.683 0.122
𝜎 0.003 0.014 0.018 0.007 0.008 0.017 0.015 0.008
𝜎 [%Mean] 2.60 6.84 12.6 1.31 0.88 3.14 2.22 6.80



4
Test conditions

A new bare hull upright trimmed resistance prediction for modern high performance yachts will be de-
rived from the new systematic series in Chapter 10. The bare hull upright trimmed resistance of the
hull shapes in this series is determined for various speeds and applied trimming moments with compu-
tational fluid dynamics (CFD). The test conditions for which the hydrodynamic forces are determined,
are discussed in this chapter. A summary of these conditions concludes this chapter.

4.1. Length scales
A TP52-design is used as the parent model for the new systematic series. A TP52 has an overall
length of 15.85 metres and a waterline length of 15.60 metres. In the regression analysis discussed in
Chapter 10, the waterline length in the new systematic series is the standard ten metres of the DSYHS.
Three different scales of the waterline length are used in this thesis: model scale, prototype scale and
full scale corresponding to 𝐿ፖፋ = 2.00𝑚, 𝐿ፖፋ = 10.00𝑚 and 𝐿ፖፋ = 15.60𝑚, respectively.

A choice has to be made to either use the prototype scale in the numerical simulations or to use
the model scale in the simulations and to extrapolate the resistance to prototype scale with the method
discussed in Section 2.2. Both approaches have their pros and cons. An obvious advantage of running
simulations at model scale is the availability of data for validation, which can be obtained from resistance
measurements in a towing tank. However, the obtained resistance values have to be extrapolated. This
introduces uncertainties. Running the numerical simulations at prototype scale eliminates the need for
extrapolation, but poses difficulties for the validation of the numerical results.

The lack of reliable prototype-scale or full-scale experimental resistance data makes it really difficult
to validate the resistance values obtained from numerical simulations at these scales. Hence, the
numerical simulations are performed at model scale only. The computed resistance is extrapolated to
prototype scale using the extrapolation method discussed in Section 2.2. The resistance values at this
scale are used in the regression analysis discussed in Chapter 10.

4.2. Longitudinal trimming moment
Determining the upright trimmed resistance requires a specification of the applied trimming moment.
The longitudinal trimming moment about a sailing yacht’s centre of gravity (CoG) consists of the trim-
ming moment of the driving force and the trimming moment of the crew’s weight;

𝑀᎕ = 𝑀᎕ᑊᐸᑀᑃᑊ +𝑀᎕ᐺᑉᐼᑎ , (4.1)

where 𝑀᎕ is the longitudinal trimming moment about the yacht’s CoG, 𝑀᎕ᑊᐸᑀᑃᑊ is the longitudinal trim-
ming moment of the driving force about the CoG, and 𝑀᎕ᐺᑉᐼᑎ is the longitudinal trimming moment of
the crew’s weight about the CoG. The CoG is assumed to be located at the design waterline above the
centre of buoyancy. The definitions of the trimming moments of the driving force and the crew’s weight
are discussed in the following subsections.

25
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4.2.1. Driving force
The driving force acting on a sailing yacht is the resultant aerodynamic force acting on the sails in
parallel to the yacht’s velocity. Its point of application is the centre of effort (CoE) of the sails. In
steady-state conditions, the driving force is equal to the resistance. Obviously, the driving force and
the resistance are antiparallel vectors. The resistance of the models in the systematic series are de-
termined for steady-state conditions. The longitudinal trimming moment of the driving force about the
yacht’s CoG is therefore equal to the magnitude of the hydrodynamic resistance multiplied by the height
of the CoE of the sails above the waterline.

The position of the centre of effort is derived from the maximum sail-plan of a TP52. Measurements
of the sails are taken from the TP52 class rules [45] and are listed in Figure H.2. As a result of sail
twist, the various jibs and the various spinnakers there is no such thing as one fixed CoE height. For
a TP52, the CoE height is estimated to be 0.60𝐿ፖፋ, which covers a wide range of sailing conditions.
This height of the CoE is used throughout the entire systematic series.

With this assumption for the height of the CoE of the sails, the longitudinal trimming moment of the
driving force is given by

𝑀᎕ᑊᐸᑀᑃᑊ = 0.60𝐿ፖፋ ⋅ 𝑅ፓ᎕ᑙ , (4.2)

where 0.60𝐿ፖፋ is the assumed CoE height, and 𝑅ፓ᎕ᑙ is the upright trimmed resistance of the bare hull.
This CoE height is slightly different than the 0.65𝐿ፖፋ used in the DSYHS.

It should be noted that 0.60𝐿ፖፋ is used as the CoE height at model scale. The CoE height at the
prototype scale and full scale differs from this, because the resistance force does not simply scale
with the scale factor, between the waterline lengths, to the third power. The yacht at model scale has
a relatively higher resistance due to viscous effects. Using 0.60𝐿ፖፋ at all the scales, with of course
the corresponding waterline lengths, implies that the yacht at model scale is subjected to a relatively
larger trimming moment than at a larger scale. Consequently, this discrepancy in trimming moment
between the scales results in different trim, sinkage and resistance. Obviously, in order to extrapolate
the resistance values from one scale to another, the attitude of the yacht should remain the same. This
implies properly scaled trimming moments from one scale to the other. To obtain a similar attitude of
the model at another scale, the trimming moment should be scaled with the scale factor to the fourth
power.

The CoE height can therefore not be scaled with the scale factor only. The CoE height, 𝑧ፂ፨ፄ, at a
particular scale should satisfy the following expression in order to obtain scale similarity between the
different scales:

𝑧ፂ፨ፄ =
1.2𝑅፭ᑞ𝛼ኾ
𝑅፭ᑡ

, (4.3)

where 1.2 is the CoE height at model scale, 𝑅፭ᑞ is the resistance at model scale, 𝛼 is the scale factor
between the waterline lengths, and 𝑅፭ᑡ is the resistance at that particular scale. For the larger scales,
the centre of effort is higher than 0.60𝐿ፖፋ and varies with the speed. For Sysser 85, 0.60𝐿ፖፋ at model
scale corresponds for prototype scale to 0.83𝐿ፖፋ at Froude number 0.25, 0.77𝐿ፖፋ at Froude number
0.35, 0.69𝐿ፖፋ at Froude number 0.45 and 0.68𝐿ፖፋ at Froude numbers 0.55 up to 0.85. This holds
when no trimming moment of the crew’s weight is applied.

4.2.2. Crew’s weight
In general, a modern high performance yacht needs a large crew. The position of the crew on board
greatly influences the performance of the yacht. The weight of the crew together with its position on
board exert a trimming moment about the yacht’s CoG. This trimming moment can greatly influence
the performance of a sailing yacht, because it partly counteracts the bow-down trimming moment of
the driving force. The resulting more bow-up attitude of the yacht reduces the resistance significantly
at higher speeds due to more hydrodynamic lift while it increases the resistance at lower speeds signif-
icantly due to the intensified wave system generated at the stern and immersed transom effects, such
as possible flow separation, larger streamline curvature at the edge of the transom, lowered pressure
around this edge, and possible suction.
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The resistance forces acting on modern yachts are generally very sensitive to trim at every speed.
The sensitivity of the resistance to the trim angle, for a modern high performance yacht, is illustrated
by Table D.1. This table gives the bare hull upright resistance of Sysser 85 at Froude numbers 0.25
up to 0.85 for three different fixed pitch angles, -1, 0, and +1 degrees, while being free to heave. Some
exceptions excluded, the difference in resistance for the plus or minus one degree trim angle is about
plus or minus 10 percent over the entire speed range compared to the resistance for the zero degree
trim angle.

In real life, any crew would try to enhance the performance of a sailing yacht (during racing) by
moving its weight to the optimum position. Excluding the weight of the crew, its position on board and
thereby the trimming moment of the crew’s weight leads to an underestimation of the performance of
sailing yachts. In order to bear a close resemblance to real-life sailing conditions and to accurately
predict the velocity of modern high performance sailing yachts, trimming moments of the crew’s weight
are included in the numerical simulations. These trimming moments can also be used to cover, for
instance, movable ballast.

In order to determine the influence of the crew’s weight and its position on board on the resistance,
three crew positions and three corresponding trimming moments are defined for the numerical simula-
tions. The trimming moments used in the simulations are based on the maximum weight of the crew for
a TP52 and realistic crew positions during sailing. According to the TP52 class rules [45], the maximum
mass of the crew during racing is 1130 kilograms.

A crew position with no trimming moment, called the ’crew CoG position’, is defined to cover light
wind conditions or sailing with a small crew. It is also useful for comparison with the DSYHS, for
which no trimming moments of the crew’s weight are used. For a TP52 with a full crew, this position is
more or less the crew position for upwind sailing or broad reaching in low wind speeds. A ’crew back
position’ and corresponding trimming moment for broad reaching at high speeds is defined based on
the maximum crew weight and typical crew configurations during sailing in these conditions. For the
sake of illustration, a typical configuration of the crew on a TP52 during broad reaching at high speeds
is shown in Figure 4.1. Another condition, called the ’crew middle position’, is defined for intermediate
conditions. The trimming moment for this position is half the moment for the crew back position.

An overview of the defined crew positions and the corresponding longitudinal trimming moments
about the CoG of the models at full scale, prototype scale and model scale are given in Table 4.1. The
moments at full scale are scaled with one over the scale factor to the fourth power, i.e. 1/𝛼ኾ, to obtain
the moments applied at model and prototype scale.

The trimming moment of the crew’s weight can be translated into a shift in the longitudinal centre of
gravity of the sailing yacht. Applying a trimming moment about the ’original’ longitudinal centre of
gravity, which is located above the hydrostatic centre of buoyancy, or using a shift in the longitudinal
centre of gravity of the yacht to cover the effects of the weight of the crew and its position on board
is, of course, equivalent. The longitudinal centre of gravity of a sailing yacht together with its crew can
simply be determined by

𝐿𝐶𝐺፟፩ = 𝐿𝐶𝐵፟፩ −
𝑀᎕ᐺᑉᐼᑎ
∇፜𝜌𝑔

, (4.4)

where 𝐿𝐶𝐺፟፩ is the longitudinal position of the centre of gravity measured from the forward perpen-
dicular (fp), 𝐿𝐶𝐵፟፩ is the original longitudinal centre of gravity, 𝑀᎕ᐺᑉᐼᑎ is the trimming moment of the
crew’s weight about the original CoG, and ∇፜𝜌𝑔 is the yacht’s weight. This longitudinal centre of gravity
may be a good independent variable to cover the effects of the crew on the resistance and to facilitate
interpolation of the resistance between the three crew positions in the regression analysis, discussed
in Chapter 10.

4.2.3. Longitudinal trimming moment
With these definitions of the trimming moments of the driving and the crew’s weight, the longitudinal
trimming moment about a sailing yacht’s CoG is defined by

𝑀᎕ = 0.60𝐿ፖፋ ⋅ 𝑅ፓ᎕ᑙ +𝑀᎕ᐺᑉᐼᑎ , (4.5)
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where 𝑀᎕ᐺᑉᐼᑎ is one of the three longitudinal trimming moments of the crew’s weight from Table 4.1.
These three formulations of the longitudinal trimming moment, 𝑀᎕, about the CoG are used in the
numerical simulations and the remainder of this thesis.

The trimming moment of the driving force is applied in the numerical simulations by applying the
resistance force, computed in the previous time step, at a height of 0.60𝐿ፖፋ above the CoG in the same
horizontal direction as the ship’s velocity. The trimming moment of the crew’s weight is applied in the
numerical simulation as a constant trimming moment about the CoG of the model.

4.2.4. Effective centre of effort
Another way to interpret the use of crew positions in the simulations is to translate the trimmingmoments
of the driving force and the crew’s weight into an ’effective’ height of the CoE of the sails according to

𝑧ፂ፨ፄᑖᑗᑗ = 0.60𝐿ፖፋ +
𝑀᎕ᐺᑉᐼᑎ
𝑅ፓ᎕ᑙ

, (4.6)

where 𝑧ፂ፨ፄᑖᑗᑗ is the height of the effective CoE. This effective CoE height is simply defined as the
total longitudinal trimming moment divided by the resistance. It represents the height of the CoE of
the sails if the total trimming moment, defined by Equation (4.5), is solely attributed to the trimming
moment generated by the driving force. The trimming moment of the crew’s weight partly counteracts
the trimming moment of the driving force. The effective CoE height is therefore lower than the actual
CoE height. This lower effective centre of effort covers the concept of reefing sails and applying more
or less twist to a sail. Both reefing and twist alter the height of the CoE. The effective CoE height may
be a good independent variable to cover the effects of the total trimming moment on the resistance and
to facilitate interpolation of the resistance between the three crew positions in the regression analysis,
discussed in Chapter 10.

The effective height of the CoE makes the set-up used in this study wider applicable. The range
of trimming moments, used in the formulation of the new upright trimmed resistance prediction, covers
more than the maximum sail area and the maximum crew weight of a TP52. Different crew positions
and weight, reefing and twist are also covered by the derived regressions as long as they obey the
range of trimming moments used in the regressions.

4.3. Speed range
The upright resistance of the models in the systematic series is determined for Froude numbers 0.25
up to 0.95 with increments of 0.10. This range of Froude numbers covers speeds from 6 knots up to
23 knots for a full-scale TP52. This is a realistic speed range for a TP52 in racing conditions. The
velocities at full scale, prototype scale and model scale for this range of Froude numbers are listed in
Table 4.2.

For the crew CoG position, the maximum speed is lowered to Froude number 0.85. At Froude
number 0.95, the very high trimming moment of the driving force and the absence of a counteracting
trimming of the crew’s weight result for some of the models in a severe bow-down attitude. This bow-
down attitude results in a very high resistance. Moreover, it makes convergence of the numerical
simulations very hard and sometimes impossible. It is also not a realistic sailing condition. For all
of the models, the crew CoG position does not result in the optimum resistance at this speed. The
resistance for the other two crew positions is lower and sometimes significantly lower. It was therefore
decided to exclude the simulation for the crew CoG position at Froude number 0.95 for all of the models.

4.4. Fluid properties
Different water properties are used for the different length scales. Fresh water is used at model scale
while seawater is used at prototype scale and full scale. Following the ITTC standards for water prop-
erties [17], the density and the kinematic viscosity of fresh water at a water temperature of 17 ∘𝐶
are 998.778 𝑘𝑔/𝑚ኽ and 1.08155 ⋅ 10ዅዀ 𝑚ኼ/𝑠, respectively. For seawater with a water temperature of
15 ∘𝐶, the density and the kinematic viscosity are 1025.90 𝑘𝑔/𝑚ኽ and 1.18831⋅10ዅዀ 𝑚ኼ/𝑠, respectively.
These water properties are used throughout this thesis.

In the numerical simulations, the properties of fresh water at a water temperature of 17 ∘𝐶 are used.
For the air in the numerical simulations, the density and the kinematic viscosity are 1.2 𝑘𝑔/𝑚ኽ and
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Table 4.1: The three crew positions and corresponding longitudinal trimming
moments of the crew’s weight about the CoG at full scale, prototype scale and

model scale. A minus sign indicates a bow-up trimming moment.

Full scale Prototype scale Model scale
Crew 𝑀᎕ᐺᑉᐼᑎ 𝑀᎕ᐺᑉᐼᑎ 𝑀᎕ᐺᑉᐼᑎ

position [𝑘𝑁𝑚] [𝑘𝑁𝑚] [𝑁𝑚]
CoG 0 0 0
Middle -32.96 -5.57 -8.90
Back -65.92 -11.13 -17.80

Table 4.2: Speed range used for the numerical simulations.

Full scale Prototype scale Model scale
𝐹𝑛 𝑉 𝑉 𝑉 𝑉 𝑉፦
[−] [𝑚/𝑠] [𝑘𝑡] [𝑚/𝑠] [𝑘𝑡] [𝑚/𝑠]
0.25 3.12 6.06 2.48 4.81 1.11
0.35 4.36 8.48 3.47 6.74 1.55
0.45 5.61 10.91 4.46 8.66 1.99
0.55 6.86 13.33 5.45 10.59 2.44
0.65 8.11 15.76 6.44 12.51 2.88
0.75 9.35 18.18 7.43 14.44 3.32
0.85 10.60 20.60 8.42 16.36 3.77
0.95 11.85 23.03 9.41 18.29 4.21

Figure 4.1: A typical crew configuration on a TP52 during broad reaching at high speeds. Picture from [33].
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1.54 ⋅ 10ዅ኿𝑚ኼ/𝑠, respectively.

4.5. Summary of the test conditions
The models in the new systematic series are tested in upright condition without any appendages. No
drift angles and no heel angles are used. The bare hull upright trimmed resistance of all the models
in the new systematic series is determined with numerical simulations at model scale, 𝐿ፖፋ = 2.00 𝑚,
at Froude numbers 0.25 up to 0.95 with increments of 0.10 for the three different crew positions and
corresponding trimming moments defined in Table 4.1. Corresponding velocities are given in Table
4.2. For the crew CoG position, the maximum speed is lowered to Froude number 0.85. A centre of
effort height of 0.60𝐿ፖፋ is used for the point of application of the driving force.

The trimming moment of the crew’s weight is applied about the CoG of the model, which is assumed
to be located at the design waterline. All the models in the new systematic series are tested for the
same trimming moments of the crew’s weight. The trimming moment of the driving force is applied in
the numerical simulations by applying the resistance force, computed in the previous time step, at a
height of 0.60𝐿ፖፋ above the CoG in the same horizontal direction as the ship’s velocity. Fresh water
of 17 degrees Celsius is used in the simulations.

The resistance values computed at model scale are extrapolated to prototype scale, 𝐿ፖፋ = 10.00𝑚,
with the method discussed in Section 2.2. At prototype scale, seawater with a water temperature of 15
degrees Celsius is used. The resistance values at this scale are used to derive new regressions for
the upright trimmed resistance in Chapter 10.



5
Resistance decomposition

A resistance decomposition method is necesarry for the velocity prediction of sailing yachts, in order to
account for all the different hydrodynamic resistance forces acting on a yacht. Since the hydrodynamic
resistance decomposition used for the Delft Systematic Yacht Hull Series (DSYHS), shown in Figure
2.1, proved its value and accuracy over the years, the idea was to follow this decomposition method
for the present study. As a result, the bare hull upright untrimmed resistance and the bare hull upright
trimmed resistance have to be determined both; however, this is not strictly necesarry for the velocity
prediction of sailing yachts. A slightly different resistance decomposition is therefore proposed in this
chapter. This decomposition is followed in the present study.

Note that throughout this thesis, the trimmed condition and the untrimmed condition imply nothing
more than whether or not longitudinal trimming moments of the driving force and the crew’s weight are
applied to the yacht. In both conditions, the yacht is free to heave and pitch.

For the DSYHS, the bare hull resistance forces were measured without corrections for the trimming
moment of the driving forces. According to Keuning and Sonnenberg [27], ”This is a customary rou-
tine in the testing of sailing yachts but particularly so when testing a systematic series of not actually
designed yachts of which no sailplan is known”. Only for the upright condition, additional resistance
measurements were performed including correction moments for the driving force. This distinction
between untrimmed and trimmed was also introduced for the DSYHS because of practical reasons.
Trimmed resistance measurements for a predetermined height of the centre of effort (CoE) of the sails
are tricky or at least require a number of iteration runs in order to apply the correct trimming moment,
corresponding to the measured resistance, to the model. The required amount of tank testing for such
an approach is quite prohibitive. On the other hand, untrimmed resistance measurements are fairly
simple and do not require iteration runs. The untrimmed resistance multiplied by 0.65𝐿ፖፋ was used
as the applied trimming moment in the trimmed condition. No iteration runs were performed for the
trimmed conditions. As a result, the actual centre of effort is lower than the target centre of effort height
of 0.65𝐿ፖፋ, and the actual heights differ between the models in the DSYHS.

This distinction between untrimmed and trimmed resistance is no longer needed for numeral sim-
ulations, because it is now easily possible to determine the trimmed resistance of a sailing yacht for
exactly the predetermined CoE height. Also the resistance under heel and leeway can be determined
for this specific CoE height. Furthermore, it is now possible to test all the models in the systematic
series for exactly the same CoE height. This is important for consistency in the systematic series and
for deriving meaningful regression formulas. Determining the bare hull resistance components of the
models for exactly the same CoE height seems more logical than determining these resistance com-
ponents without including the influence of trimming moments of the driving forces. This is motivated
by the fact that the hydrodynamic forces acting on yachts are always affected by trimming moments
of the driving forces in reality. Including trimming moments for the determination of the bare hull re-
sistance components is considered to have a closer resemblance with the physics involved in real-life
sailing conditions and to be more accurate. Moreover, with the ever increasing speed potential of the
newer yacht designs, the importance of including trimming moments for accurate resistance predic-
tion of yachts in sailing conditions increases. The untrimmed resistance is redundant for the velocity
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prediction of sailing yachts. A new resistance decomposition is therefore proposed in Figure 5.1. This
decomposition is followed in the present study.

Obviously, a representative CoE height has to be chosen for the systematic series. It is unlikely
that this assumed CoE height is equal to the actual CoE height of the constructed yacht. Furthermore,
the CoE height is influenced by the trim of the sails and the various sails used. Nevertheless, it is very
likely that the trimmed resistance calculated for the assumed CoE height is a lot closer to the actual
resistance of the yacht than the untrimmed resistance using no CoE height. This holds for upright,
heeled and leeway conditions.

The new resistance decomposition, shown in Figure 5.1, makes one adjustment to the resistance de-
composition of the DSYHS, shown in Figure 2.1. In the new method, the bare hull upright resistance
and the delta resistance due to the trimming moment are added together to form the bare hull upright
trimmed resistance. No distinction between these two components is made anymore. Compared to the
method of the DSYHS, the upright untrimmed resistance is omitted from the new decomposition and is
replaced by the upright trimmed resistance. The definitions of the residuary resistance components and
the induced resistance change therefore (slightly) between both methods while the definitions of the
frictional resistance components and the viscous resistance components remain unchanged. The new
decomposition is believed to have a closer resemblance with the physics involved in real-life sailing con-
ditions. This especially holds for the higher speeds. Determining the upright resistance in untrimmed
condition is no longer necesarry. Only the upright trimmed resistance is therefore determined for the
models in the new systematic series.

From a physical point of view, it is not strange to omit the bare hull upright untrimmed resistance
from the resistance decomposition entirely and to replace it by the upright trimmed resistance. The
hydrodynamic forces and moments acting on a sailing yacht are always affected by the trimming mo-
ment of the driving force in reality. Not including a trimming moment in the calculations of the various
bare hull resistance components is physically less correct. Of course, for the lower speeds, omitting
trimming moments does not significantly affect the resistance, because the trimming moment of the
driving force is very small and does not significantly influence the trim angle of the yacht. For the
higher speeds, the trimming moments are large and influence the trim angle and the resistance con-
siderably. The resistance forces acting on modern yachts are generally very sensitive to trim at every
speed. The importance of including trimming moments for accurate resistance prediction of yachts in
sailing conditions increases with speed.

The sensitivity of the resistance to the trim angle, for a modern high performance yacht, is illustrated
by Table D.1. This table gives the bare hull upright resistance of Sysser 85 at Froude numbers 0.25
up to 0.85 for three different fixed pitch angles, -1, 0, and +1 degrees, while being free to heave. Some
exceptions excluded, the difference in resistance for the plus or minus one degree trim angle is about
plus or minus 10 percent over the entire speed range compared to the resistance for the zero degree
trim angle.

Of course, heel and leeway influence the magnitude of the trimming moment of the driving force. It
seems reasonable to attribute these differences in trimming moment to the delta resistance component
due to heel and the induced resistance.

From this new resistance decomposition, the need arises to update the regressions for the other resid-
uary resistance components and the induced resistance as well, since there is a small difference in their
definitions between the method of the DSYHS and the new method. Updating the regressions for the
other bare hull residuary resistance components and the induced resistance is also preferable based
on the limitations of the regressions of the DSYHS, as discussed in Section 2.5. However, updating all
the regressions is outside the scope of this study. Despite that the other resistance components are
not the focus of this study, they are needed for the velocity prediction of sailing yachts. To be able to
use the new resistance decomposition method in a velocity prediction program, the regressions of the
DSYHS are used for all the resistance components except for the new bare hull upright trimmed resid-
uary resistance. The new regressions derived in Chapter 10 are used for that resistance. For now, it
is assumed that between the decomposition of the DSYHS, shown in Figure 2.1, and the new decom-
position, shown in Figure 5.1, the values of the delta residuary resistance components, the residuary
resistance of the keel and the induced resistance are not changed significantly. The new decomposi-
tion and the decomposition of the DSYHS are used in Section 10.8 to calculate a velocity prediction of
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a TP52-design.

The new resistance decomposition and the various resistance components are briefly discussed in the
remainder of this chapter. The new bare hull upright trimmed resistance prediction is summarized in
Appendix G.

Upright trimmed resistance of the bare hull
For the new resistance decomposition, a new upright trimmed residuary resistance of the bare hull
is defined. Compared to the decomposition of the DSYHS, the bare hull upright trimmed residuary
resistance, 𝑅ፑ᎕ᑙ , is defined by

𝑅ፑ᎕ᑙ = 𝑅ፑᑙ + Δ𝑅ፑ᎕ᑙ , (5.1)

where 𝑅ፑᑙ is the residuary resistance of the bare hull defined by the decomposition of the DSYHS,
and Δ𝑅ፑ᎕ᑙ is the change in residuary resistance of the bare hull due to the trimming moment of the
driving force defined by the decomposition of the DSYHS. The new decomposition makes no distinction
between the influence of 𝑅ፑᑙ and Δ𝑅ፑ᎕ᑙ on the trimmed residuary resistance of the bare hull. New
formulations are derived for the bare hull trimmed residuary resistance, 𝑅ፑ᎕ᑙ , in Chapter 10.

The formulation for the frictional resistance of the bare hull remains unchanged between both meth-
ods. However, for the new decomposition a characteristic length of 0.9𝐿ፖፋ instead of 0.7𝐿ፖፋ is used
for the Reynolds number. This characteristic length seems to be more appropriate for the modern hull
shapes of the new systematic series. An explanation for this choice is given in Section 10.1. The
Reynolds number is needed to estimate the friction coefficient.

The upright trimmed resistance of the bare hull, 𝑅ፓ᎕ᑙ , is defined by

𝑅ፓ᎕ᑙ = 𝑅ፅᑙ + 𝑅ፑ᎕ᑙ , (5.2)

where 𝑅ፅᑙ is the frictional resistance of the bare hull defined by Equation (2.6).

Total upright trimmed resistance
The total upright trimmed resistance, 𝑅ፓ᎕, in the new decomposition is defined by

𝑅ፓ᎕ = 𝑅ፅᑙ + 𝑅ፑ᎕ᑙ + 𝑅ፕᑜ + 𝑅ፑᑜ + 𝑅ፕᑣ , (5.3)

where 𝑅ፅᑙ is the frictional resistance of the bare hull, 𝑅ፑ᎕ᑙ is the upright trimmed residuary resistance
of the bare hull, 𝑅ፕᑜ is the viscous resistance of the keel, 𝑅ፑᑜ is the residuary resistance of the keel,
and 𝑅ፕᑣ is the viscous resistance of the rudder. The regressions of the DSYHS are used for all these
resistance components except for the new bare hull upright trimmed resistance. The regressions of
the DSYHS are discussed in Chapter 2.

Total trimmed resistance under heel
The total trimmed resistance under heel, 𝑅ፓ᎕Ꭻ, is defined by

𝑅ፓ᎕Ꭻ = 𝑅ፓ᎕ + Δ𝑅ፅᎫᑙ + Δ𝑅ፑᎫᑙ + Δ𝑅ፑᎫᑜ , (5.4)

where 𝑅ፓ᎕ is the total upright trimmed resistance, Δ𝑅ፅᎫᑙ is the change in frictional resistance of the
bare hull due to heel, Δ𝑅ፑᎫᑙ is the change in residuary resistance of the bare hull due to heel, and
Δ𝑅ፑᎫᑜ is the change in residuary resistance of the keel due to heel. The regressions of the DSYHS are
used for these three delta resistance components.

Total trimmed resistance with heel and leeway
The total trimmed resistance under heel and leeway, 𝑅ፓ᎕Ꭻᎏ, is defined by

𝑅ፓ᎕Ꭻᎏ = 𝑅ፓ᎕Ꭻ + 𝑅ፈ , (5.5)

where 𝑅ፓ᎕Ꭻ is the total trimmed resistance under heel, and 𝑅ፈ is the induced resistance. The regres-
sions of the DSYHS are used for the induced resistance.
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Figure 5.1: The new resistance decomposition. There are three different types of total resistance defined in this
decomposition. The total resistance mentioned in the block at the top of each column is equal to the sum of the
resistance components of the other blocks in that column. The components in the blue-coloured blocks and the

grey-coloured block have a new formulation compared to the decomposition of the DSYHS, given Figure 2.1. For the
trimmed residuary resistance of the bare hull in the grey-coloured block, a new regression formulation is derived in
Chapter 10. For the resistance components in the white-coloured blocks, the regression formulations of the DSYHS

are used for now.
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Numerical method

The hydrodynamic forces acting on the models in the new systematic series are determined with com-
putational fluid dynamics (CFD). The numerical simulations are performed using the ISIS-CFD flow
solver [11] implemented in the commercial FINE™/Marine software package of NUMECA International
[35]. This flow solver solves the unsteady incompressible Reynolds-averaged Navier-Stokes (RANS)
equations with a finite-volume method (FVM). The theoretical background and the simulation settings
are discussed in this chapter. For the interested reader or the reader less familiar with fluid dynamics,
a more elaborate explanation of (computational) fluid dynamics is given in Appendix E. The numeri-
cal results are presented and discussed in Section 6.10. All the numerical simulations are performed
following the test conditions discussed in Chapter 4.

From a scientific point of view, it is desirable to asses the quality and the credibility of numerical
simulations. To establish the reliability and the accuracy of the numerical results, a Verification &
Validation (V&V) analysis is performed. The verification analysis and the assessment of the numerical
uncertainty are discussed in Chapter 7. The CFD results are validated with the results of resistance
measurements in Chapter 9.

6.1. Governing equations
The flow field around a ship is likely to be partly or fully turbulent. In general, for turbulent flows in
ship hydromechanics applications, the full Navier-Stokes equations are too complex to solve by direct
numerical simulation (DNS) due to the very wide range of length scales of turbulent motion. By us-
ing modelling approaches, e.g. large-eddy simulation (LES) or the Reynolds-averaged Navier-Stokes
(RANS) equations, solving turbulent motion can be greatly simplified by modelling instead of resolving
all the scales of turbulent motion. For practical ship hydromechanics applications, LES is still too costly.

For the present study, the RANS equations are used, because they produce sufficiently accurate
results for an acceptable required computation time. The numerical simulations are performed using
the ISIS-CFD flow solver [11] implemented in the commercial FINE™/Marine software package of NU-
MECA International [35]. This flow solver was developed by the Equipe Modélisation Numérique at the
Ecole Centrale de Nantes. It solves the unsteady incompressible RANS equations with a finite-volume
spatial discretization on three-dimensional unstructured meshes.

To derive the RANS equations, Reynolds averaging is applied to the Navier-Stokes equations to obtain
the mean, or time-averaged, equations of fluid motion. Following Reynolds [41], in order to capture
the randomly unsteady turbulent state of the flow, any flow quantity 𝑓 is decomposed into a mean
value, 𝑓, and a fluctuating value, 𝑓ᖣ; i.e. 𝑓 = 𝑓 + 𝑓ᖣ. For incompressible turbulent flow, fluctuations
in the velocities, 𝑢።, and the pressure, 𝑝, are expected; hence, 𝑢። = 𝑢። + 𝑢ᖣ።, and 𝑝 = 𝑝 + 𝑝ᖣ. The

35
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incompressible Reynolds-averaged Navier-Stokes equations in Cartesian coordinates are

𝜕𝑢።
𝜕𝑥።

= 0, (6.1a)

𝜕𝑢።
𝜕𝑡 + 𝑢፣

𝜕𝑢።
𝜕𝑥፣

= −1𝜌
𝜕𝑝
𝜕𝑥።

+ 𝜈𝜕
ኼ𝑢።
𝜕𝑥፣ኼ

+ 𝑔። −
𝜕𝑢ᖣ።𝑢ᖣ፣
𝜕𝑥፣

, (6.1b)

where 𝑢። are the Cartesian velocity components, 𝑥። are the Cartesian coordinates, 𝑡 is the time, 𝜌
is the density, 𝑝 is the pressure, 𝜈 is the kinematic viscosity, and 𝑔። is the gravitational acceleration.
Subscripts 𝑖 and 𝑗 can have values 1, 2 or 3 and denote one of the three Cartesian coordinates, 𝑥ኻ, 𝑥ኼ
and 𝑥ኽ, and corresponding velocity components, 𝑢ኻ, 𝑢ኼ and 𝑢ኽ. Note that as a consequence of Einstein
notation, or Einstein summation convention, summation over the repeated index in a term is implied.

Equation (6.1a) is the Reynolds-averaged conservation of mass equation, or the Reynolds-averaged
continuity equation. This equation is transformed into a pressure equation from which the pressure field
is extracted in the ISIS-CFD flow solver. The reader is referred to Wesseling [46] for the mathematical
details. Equation (6.1b) is one of the three Reynolds-averaged momentum equations.

6.1.1. Turbulence models
As a consequence of Reynolds-averaging the Navier-Stokes equations, an additional turbulence model
is necessary to close the resulting equations. Many turbulence models were developed and proposed
over the years. Selecting an appropriate turbulence model is all about balancing the desired accu-
racy against the computation time. For the present study, the large systemic series requires small
computation times while keeping a sufficiently high accuracy.

According to the ITTC [18], 𝑘 − 𝜔 two-equation turbulence models have shown to be able to yield
accurate predictions in ship hydromechanics. They are by far the most applied turbulence models in
this scientific field. A 𝑘 − 𝜔 turbulence model is also used for the present study, because it produces
sufficiently accurate results for an acceptable required computation time. 𝑘 − 𝜔 two-equation turbu-
lence models use a transport equation for the turbulent kinetic energy, 𝑘, and a transport equation for
the specific turbulence dissipation rate, 𝜔, to model the conservation of these two turbulence quanti-
ties. The turbulent kinetic energy and the specific turbulence dissipation rate calculated from the two
transport equations are used to determine the Reynolds stresses.

Various 𝑘 − 𝜔 two-equation turbulence models were developed and proposed over the years. For
an accurate determination of the hydrodynamic forces in ship hydromechanics, two good options for
turbulence modelling are the explicit algebraic stress model (EASM) 𝑘 − 𝜔 two-equation turbulence
model, Gatski and Speziale [12], and the shear stress transport (SST) 𝑘 − 𝜔 two-equation turbulence
model, developed by Menter [34]. Over the years, several changes were made to both turbulence
models; therefore, various variations of both models exist. The principles of both models have not
changed and are discussed in Appendix E.1.2. The EASM and the SST 𝑘−𝜔 two-equation turbulence
model are both implemented in the ISIS-CFD flow solver. The specific details of the turbulence models
implemented in this flow solver are given in its theoretical manual [11].

The EASM turbulence model and the SST turbulence model differ in the way the Reynolds stress
term is modelled. The SST 𝑘 − 𝜔 model is a linear eddy-viscosity model and follows the Boussinesq
hypothesis, or Boussinesq eddy-viscosity assumption. For complex turbulent flows characterized by
intense vortices, the isotropic description of turbulence in the Boussinesq hypothesis probably results in
inaccurate results. The EASM 𝑘−𝜔 model uses a different approach for the modelling of the Reynolds
stresses. Explicit algebraic stress models are derived from the six Reynolds stress equations. Com-
pared to linear eddy-viscosity models, the Reynolds stresses in EASMs are modelled with additional
(non-linear) terms that can include powers of the mean-velocity gradients or combinations of the mean
strain-rate tensor and the mean rotation-rate tensor. This allows for an anisotropic description of turbu-
lence. This anisotropic description enhances the modelling of vortices significantly compared to linear
eddy-viscosity models.

According to NUMECA International [35], the SST 𝑘 −𝜔 model is the recommended turbulence model
for all basic computations. According to them, the EASM 𝑘 − 𝜔 turbulence model yields slightly better
results for a reasonable extra computation time. A small test has been conducted to illustrates the
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small differences between both turbulence models. Table F.1 gives the resistance values of Sysser
85 computed with the two turbulence models on the medium grid at Froude numbers 0.45 and 0.85.
The resistance values are very similar and the comparison error is less than 1 percent between both
methods. The EASM model gives a slightly higher resistance at both speeds.

For the lower Froude number, the computation time of the SSTmodel is higher than that of the EASM
model while for the higher Froude number it is the opposite. This is unexpected since the more complex
EASM turbulence model is likely to have a longer computation time. Of course, this small test in not
conclusive; therefore, the recommendations of NUMECA International [35] are followed, and the SST
𝑘−𝜔 turbulence model, developed by Menter [34], is used for all the numerical simulations presented in
this thesis. Moreover, this turbulence model is chosen, because it produces consistent and sufficiently
accurate results for an acceptable required computation time. Complex turbulent flows characterized
by intense vortices are not to be expected based on the smooth hull shapes, the unappended hulls
and the fact that the resistance forces are determined in upright condition only, without any drift angles;
therefore, it is probably not necessary to use the EASM model.

6.1.2. Free surface
For capturing of the free surface in the numerical simulations, the volume of fluid (VOF) method is
used. The VOF method is a free-surface modelling technique, which is used to track and locate the
interface between the two fluids — water and air — in a numerical simulation. These incompressible
and non-miscible fluids are modelled in the governing equations through an effective density and an
effective viscosity. For each grid cell, a volume fraction, 𝑐።, is defined as the fraction of the cell that
contains fluid 𝑖. With the absence of fluid 𝑖 in a cell, 𝑐። = 0. With the sole presence of fluid 𝑖 in a cell,
𝑐። = 1. For each cell, the volume fraction satisfies 0 ≤ 𝑐። ≤ 1. The sum of the volume fraction of water,
𝑐ኻ, and the volume fraction of air, 𝑐ኼ, satisfies one in each cell. Since a volume fraction between zero
and one indicates the presence of a mixture of the two fluids in a grid cell, a specific definition of the
free-surface location is required. As definition of the interface between the two fluids, a volume fraction
of 0.5 is used.

The effective density and the effective viscosity are used in the governing equations to account for
the presence of a mixture of the two fluids in a cell. The effective density, 𝜌, and the effective viscosity,
𝜈, are defined by 𝜌 = 𝑐ኻ𝜌ኻ + 𝑐ኼ𝜌ኼ and 𝜈 = 𝑐ኻ𝜈ኻ + 𝑐ኼ𝜈ኼ, respectively, where subscript 1 indicates water
and subscript 2 indicates air.

The evolution of the volume fraction in a grid cell is governed by a convection equation that ensures
movement of the interface with the velocity of the fluid. This equation is called the volume fraction
equation.

6.2. Discretization
The important details of the spatial discretization and the temporal discretization of the unsteady in-
compressible RANS equations are discussed in this section. For the full mathematical details of the
discretization of the governing equations and the numerical methods involved, the reader is referred to
Wesseling [46] and the theoretical manual of the ISIS-CFD flow solver [11].

6.2.1. Spatial discretization
The unsteady incompressible RANS equations are solved with a finite-volume spatial discretization
on three-dimensional unstructured meshes. The finite-volume method (FVM) subdivides the computa-
tional domain into a number of finite volumes, or control volumes. The equations are integrated over the
control volumes. For each control volume, the discretized governing equations are solved to determine
the flow quantities in each of the volumes. The additional transport equations for the turbulence quan-
tities are discretized and solved similarly to the momentum equations. The volume fraction equation is
discretized with a different discretization scheme than the momentum equations.

For the discretization of the convective fluxes in the momentum equations and the equations for tur-
bulence modelling, the mixed-order AVLSMART discretization scheme [39] is used. The AVLSMART
scheme uses a combination of the first-order accurate upwind differencing scheme and the third-order
accurate QUICK scheme [32]. The third-order QUICK scheme is the base scheme of the AVLSMART
scheme. Based on local flow conditions, the AVLSMART scheme switches between theQUICK scheme
and the upwind differencing scheme in order to use the most appropriate scheme at that location. The
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AVLSMART discretization scheme is limited to third-order accuracy.
The volume fraction equation is discretized with the mixed-order BRICS discretization scheme. The

Blended Reconstruction Interface Capturing Scheme (BRICS) was developed by the Equipe Modélisa-
tion Numérique at the Ecole Centrale de Nantes [11] from other interface capturing schemes to improve
the free-surface capturing. The BRICS scheme uses a combination of the first-order accurate upwind
and downwind differencing schemes, and the second-order central differencing scheme. Hence, this
discretization method is limited to second-order accuracy. The central differencing scheme is the base
scheme of the BRICS scheme. Based on local flow conditions, it switches automatically between the
three different schemes to themost appropriate scheme at that location. As a result, the BRICS scheme
probably produces an order of accuracy lower than two.

For accurate free-surface capturing, a refinement of the grid around the free surface in the simulation
is required. The grid cells do not need to deform when the free surface changes. Accurate free-surface
capturing imposes strict requirements on the computational grid. These requirements are discussed in
Section 6.4.

The finite-volume discretization methods used on the three-dimensional unstructured meshes in the
FINE™/Marine flow solver are limited to third-order accuracy for the turbulence equations and the
momentum equations, and to second-order accuracy for the volume fraction equation. They are likely
to produce an order between one and two due to the various combinations of the first-order accurate
upwind and downwind differencing schemes, the second-order central differencing scheme, and the
third-order QUICK scheme used for the discretization of these equations.

6.2.2. Temporal discretization
The equations have to be discretized in time as well. The temporal discretization method used in the
ISIS-CFD flow solver is complex and only the important details are briefly discussed here.

Fully implicit temporal discretization schemes are used for the discretization of the momentum equa-
tions and the turbulence transport equations. The volume fraction equation is not discretized with a fully
implicit scheme. A second-order accurate, three-level scheme is used for the temporal discretization of
the time derivatives in the governing equations. The continuity equation is transformed into a pressure
equation from which the pressure field is extracted. This allows for solving the pressure and the velocity
field separately and reduces thereby computation time.

After spatial discretization and temporal discretization, a system of non-linear and coupled equations
for the discretized governing equations are obtained. The time-marching method used in the ISIS-
CFD flow solver to solve this system of equations is based on a segregated algorithm, which solves
the governing equations sequentially. This algorithm uses an iterative procedure at every time step to
solve the system of non-linear equations.

Every iteration consists of the following steps: (1) the volume fraction equation is solved, and the
effective density and the effective viscosity are updated; (2) the equations for turbulence modelling
are solved; (3) the momentum equations are solved to obtain new predictions of the velocities; (4) the
pressure equation is solved to obtain the new pressure field; (5) the velocity components are updated
with the new pressure field; and (6) if the continuity equation is sufficiently satisfied, i.e. if the residuals
are low enough or the maximum number of non-linear iterations per time step is reached, the solver
advances to the next time step and updates the flow quantities. Else the solver goes back to step (1)
and does another iteration. The number of non-linear iterations for each global time step is limited to
five for the simulation described in this thesis.

To enhance the stability of the numerical simulations, under-relaxation is applied to control the up-
date of computed flow quantities at each iteration step in the segregated algorithm. Under-relaxation
reduces the update of a flow quantity in an iteration step and thereby dampens oscillations and in-
stabilities in the solution. The computed change of a quantity in a iteration step is multiplied by an
under-relaxation factor. The flow quantity from the previous iteration step is then updated with this
reduced change to obtain the flow quantity for the present iteration step. As a consequence of the
system of non-linear equations, under-relaxation is necesarry for stability. The default under-relaxation
parameters of the ISIS-CFD flow solver are adequate for the numerical simulations described in this
thesis and they are therefore used.
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The stability of discretization schemes can depend on time step limitations and limitations on the
Courant-Friedrichs-Lewy (CFL) number. The CFL number, or simply the Courant number, is defined
as the ratio of the displacement of a fluid particle in one time step to the cell size in that direction; the
Courant number in the direction of one of the three Cartesian coordinates, 𝛼, is defined by

𝑐ᎎ =
|𝑢ᎎ|𝜏
ℎᎎ

, (6.2)

where 𝑐ᎎ is the Courant number in direction 𝛼, 𝜏 is the time step, and ℎᎎ is the cell size in direction 𝛼.
A Courant number for the three-dimensional case is obtained from summation over the three Courant
numbers defined by this equation. For unstructured grids with arbitrary shaped cells, this definition
of the Courant number is not really practical. The following definition of the Courant number, 𝐶, is
therefore used in the numerical simulations:

𝐶 = 𝐹𝜏
𝑉 , (6.3)

where 𝐹 is the total (positive) flux out of the grid cell, and 𝑉 is the volume of the cell.
The momentum equations and the turbulence transport equations are discretized with fully implicit

temporal discretization schemes. The stability of the discretization of these equations does not suffer
from any time step restrictions or CFL number limitations. The volume fraction equation is not dis-
cretized with a fully implicit scheme. The discretization of the volume fraction equation suffers from
CFL number limitations. Consequently, it cannot be used without a time step restriction. In order to
reduce this restriction in time step and to speed up the numerical computations, a sub-cycling acceler-
ation method was implemented for the volume fraction equation in the ISIS-CFD flow solver.

This sub-cycling method solves the volume fraction equation several times during one global time
step. Solving the volume fraction equation at sub-time steps reduces the Courant number. In this way,
a larger global time step is possible without compromising numerical stability. The method requires a
target Courant number and a maximum number of sub-cycles. Sub-time steps are calculated accord-
ingly. If the target Courant number is reached or the maximum number of sub-cycles is reached, the
volume fraction equation is not solved again in that global time step.

Different time step laws are implemented in the ISIS-CFD flow solver. A simple uniform time law, which
defines a constant global time step in the time-marching method, is used for the simulations described
in this thesis. The default time step size is given by 𝜏 = 0.01𝐿፫፞፟/𝑉፫፞፟, where 𝑉፫፞፟ is the reference
velocity and 𝐿፫፞፟ is the reference length, or the waterline length. This implies 100 global time steps for
every cycle of flow along the hull.

The uniform time law used together with the sub-cycling acceleration method produces satisfying
results. The sub-cycling acceleration allows for a larger global time step than the default global time
step. The global time step with the sub-cycling acceleration method is adjusted to 𝜏 = 0.025𝐿፫፞፟/𝑉፫፞፟.
Together with a target Courant number of 20, this global time step provides numerical stability and
convergence for all the simulations. A maximum number of five sub-cycles is adequate to obtain a
maximum Courant number very close to the target Courant number. The maximum number of non-
linear iterations for each global time step in the segregated algorithm is five. These settings are used
for all the numerical simulations conducted for the new systematic series.

6.2.3. Initial conditions
Suitable initial conditions are required for the governing equations. As initial condition either the body
at rest, i.e. no fluid flow, or a converged simulation is used. From a converged simulation, the pressure
field, the velocity field, the turbulence quantities and the residuals are used as initial conditions for the
new simulation. Either way, the body is accelerated with a smooth acceleration profile to the desired
forward speed in a period of one second.

A continuous progression from lower speeds to higher speeds is used. Consequently, a simulation
for a particular Froude number is restarted from the converged simulation at its previous speed. Only
for Froude numbers 0.25 and 0.65, the simulations are started with the body at rest, with no fluid flow.
This is a consequence of the low-speed grid and the high-speed grid defined in the next section. For
Froude number 0.65, a larger acceleration period of 1.75 seconds is used to suppress instabilities



40 Numerical method

during acceleration.
For the 𝑘 −𝜔 two-equation turbulence model, additional equations are solved. Consequently, suit-

able initial conditions are required. The following initial conditions for the turbulence quantities are
used: 𝜈፭ = 𝜈 ⋅ 10ዅኽ, 𝜔 = 𝑉፫፞፟/𝐿፫፞፟, and 𝑘 = 𝜈፭ ⋅ 𝜔.

6.3. Boundary layers
The governing equations and the computational mesh should ideally resolve all the significant proper-
ties of the flow. However, the modelling of turbulent boundary layers with CFD can be complex and
challenging as a consequence of the various physical characteristics of turbulence and the high ve-
locity gradients resulting from the no-slip condition at the wall. High gradients of turbulence quantities
can also be present close to the wall. For the interested reader or the reader less familiar with fluid
dynamics, a more elaborate discussion on turbulent boundary layers and scaling of the mean-velocity
profile is given in Appendix E.2.

Two approaches can be taken with CFD to resolve the high gradients close to the wall. The first
approach is to resolve the gradients with the governing equations and the equations for turbulence
modelling all the way down to the viscous sublayer, with the no-slip condition applied at the wall. This
requires a very high density of very small grid cells close to the wall, in order to capture the high
gradients accurately.

Another approach is to use wall functions to capture the physical effects and the high gradients
present in the viscous wall region. The idea of the wall-function approach is to not solve the governing
equations close to the wall. Based on log-law relations, the boundary conditions at the wall are applied
some distance away from the wall in the lower part of the log-law region. In this way, the governing
equations and the equations for turbulence modelling do not need to be solved close to the wall. The
wall functions are used to describe the mean-velocity profile and the profile of the turbulence quantities
in between the wall and the location where the boundary conditions are applied. Wall functions are
essentially log-law relations rewritten to incorporate the turbulence quantities 𝑘 and 𝜔. The reader is
referred to [11,37,47] for more details. This wall-function approach is preferable to the other approach,
because it greatly reduces the density of grid cells close to the wall and thereby the computation time.

With the wall-function approach, the first grid point normal to the wall should be located in the
lower part of the log-law region. The log-law region starts roughly somewhere between 𝑦ዄ = 20 and
𝑦ዄ = 200, depending on the Reynolds number. 𝑦ዄ is the distance from the wall expressed in viscous
lengths, or wall units. This wall coordinate, 𝑦ዄ, is defined by Equation (E.5). The Reynolds number,
𝑅𝑒, is defined by

𝑅𝑒 =
𝑉፫፞፟ ⋅ 𝐿፫፞፟

𝜈 . (6.4)

NUMECA International [35] suggests 30 ≤ 𝑦ኻዄ ≤ 300, depending on the Reynolds number. 𝑦ኻዄ is the
value of 𝑦ዄ associated with the first node near the wall. At model scale — low-Reynolds-number flows
—, 𝑦ኻዄ is about 30 while at full scale — high-Reynolds-number flows —, 𝑦ኻዄ can be as high as 300.
According to NUMECA International [35], the correct 𝑦ኻዄ can be estimated with

𝑦ኻዄ = max {30;min {30 + 270
𝑅𝑒 − 10ዀ
10ዃ ; 300}}. (6.5)

For the speed range used in the numerical computations, shown in Table 4.2, the suggested values of
𝑦ኻዄ range from 30.3 for Froude number 0.25 to 31.8 for Froude number 0.95. Based on a truncated
series solution of the Blasius equation, NUMECA International [35] proposes an estimate for the dis-
tance, 𝑦ኻ, between the wall and the first computation node, as function of 𝑦ኻዄ. This ensures that the
first grid point normal to the wall is located in the lower part of the log-law region.

Exactly following the suggestions of NUMECA International for 𝑦ኻዄ requires the generation of a
grid for every Froude number. This eliminates the possibility to restart a computation for a particular
Froude number from the converged simulation at its previous speed, because restarting is only possible
on exactly the same grid. Restarting reduces computation times and grid-generation efforts. Since
the idea is to run computations for a large systematic series, restarting of computations is necesarry.
In order to remain as close as possible to the suggested 𝑦ኻዄ values while keeping the benefits of
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restarting computations from previous speeds, the speed range used in the numerical computations,
listed in Table 4.2, is divided into a ’low-speed’ range, 0.25 ≤ 𝐹𝑛 ≤ 0.55, and a ’high-speed’ range,
0.65 ≤ 𝐹𝑛 ≤ 0.95. Only for Froude numbers 0.25 and 0.65, the simulations are started with the body
at rest.

Two grids for every model in the systematic series are generated accordingly: a ’low-speed grid’
and ’high-speed grid’. Both grids are nearly identical and differ in the boundary layer refinement only.
A different 𝑦ኻ value is used for the generation of the two grids. This results in a different cell size, only
close to the wall, in wall-normal direction. All the other grid-generation settings are exactly the same
between the two grids. As a result of the lower 𝑦ኻ value, a high-speed grid contains approximately 5.5
percent more cells than its corresponding low-speed grid.

The suggested 𝑦ኻዄ and corresponding 𝑦ኻ values for Froude numbers 0.35 and 0.65 are the most
appropriate to be used for the 𝑦ኻ value in the generation of the low- and the high-speed grid, respec-
tively. These 𝑦ኻ values give the best range of 𝑦ኻዄ values for the other speeds calculated on that grid.
The ISIS-CFD flow solver offers robust wall functions that are not too sensitive to 𝑦ኻዄ values and that
can produce accurate results for values of 𝑦ኻዄ outside the suggested range. Therefore, it is not an
issue to use slightly different 𝑦ኻዄ values than those suggested by NUMECA International [35].

To properly resolve the turbulent boundary layer, the grid should be sufficiently refined in order to
contain the computed boundary layer. Moreover, the computed boundary layer should be covered
by a minimum number of nodes in wall-normal direction. A viscous-layer refinement with eight cells in
wall-normal direction is used. The grid cells should not be stretched too rapidly in wall-normal direction,
in order to cover the highest regions of the outer layer accurately as well.

6.4. Free-surface modelling
For capturing the free surface in the numerical simulations, the volume of fluid (VOF) method is used.
The VOF method is a free-surface modelling technique that is used to track and locate the interface
between the two fluids — water and air — in the flow solver. Accurate free-surface capturing imposes
strict requirements on the computational grid. Around the resolved free surface, the grid should be
sufficiently refined to have enough nodes per wave height and per wavelength. The resolved free
surface in the simulation should always be contained within the grid refinement.

In the grid-generation process, discussed in Section 6.8, a grid refinement is applied around the
initial free surface. The initial free surface is located at 𝑧 = 0 in the computational domain, depicted in
Figure 6.1. The refinement should be large enough to cover the resolved waves. Important factors for
accurate free-surface capturing are the height of this grid refinement and the properties of the refined
cells. A highly anisotropic mesh is required in the free-surface region to have enough nodes per wave
height and per wavelength. A cell size of ᑃᑎᑃ/Ꮊ × ᑃᑎᑃ/Ꮊ × ᑃᑎᑃ/ᎳᎲᎲᎲ in the region of the free surface is
adequate. The aspect ratio of the refined cells is 125.

For accurate free-surface simulations, it is important that the resolved free surface in the simulation is
contained within the grid refinement around the initial free surface. In order to obtain accurate, but not
too costly computations, an ’optimum’ height of the grid refinement has to be found. The ’optimum’
settings for the generation of the refinement around the initial free surface are listed in Table 6.1.

A small test has been conducted to illustrate that compared to these optimum settings, increasing
the height of the grid refinement around the initial free surface is not necessary. The resistance values
of Sysser 85 at Froude numbers 0.45 and 0.85, computed on grids with the optimum height of the free-
surface grid refinement and grids with a 25-percent thicker free-surface grid refinement, are listed in
Table F.2. Again, a distinction between low- and high-speed grids is made, and therefore, four different
grids are used in this comparison. At both speeds, the difference in computed resistance between the
’optimum’ grid and the grid with the thicker refinement is negligible. However, the grids with the thicker
free-surface grid refinement contain approximately 24 percent more cells.

6.5. Ship motions: heave and pitch
To obtain the equilibrium position of a ship in a simulation, i.e. the steady-state solution with equilibrium
trim and equilibrium sinkage, two fundamentally different methods can be used. The first method is to
couple the governing equations for the flow with Newton’s second law of motion for the ship motions.
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In order for this coupling to be stable, the time step has to comply with stability restrictions and should
be relatively small. This small time step and the larger system of equations leads to an increase in
computation time. In order to decrease the computation time and to relax the restriction in time step,
another method was implemented in the FINE™/Marine flow solver [35].

This other method uses an ad hoc quasi-static approach for determining the equilibrium position
of a ship in the simulation. Ship motions are imposed rather than solved with Newton’s second law.
There is no direct coupling between the motion equations and the governing equations. The quasi-
static method assumes that ship motions change so slowly that therefore inertia forces are very small
and can be ignored. The equilibrium position in the simulation is obtained from successive predictions
of the position of the ship based on computed flow forces acting on the hull.

The ship’s position is evaluated every 20 global time steps for 0.25 ≤ 𝐹𝑛 ≤ 0.55 and every 60 global
time steps for 0.65 ≤ 𝐹𝑛 ≤ 0.95 to insure stable computations and to save computation time. After the
evaluation, the position is smoothly updated to reach the new relaxed predicted position within 20 global
time steps for 0.25 ≤ 𝐹𝑛 ≤ 0.55 and within 30 global time steps for 0.65 ≤ 𝐹𝑛 ≤ 0.95. This ensures
stable computations and smooth transitions between predicted positions. Under-relaxation is used to
relax the update of the motions and to enhance the stability of the simulations. For 0.25 ≤ 𝐹𝑛 ≤ 0.55
and 0.65 ≤ 𝐹𝑛 ≤ 0.95, under-relaxation factors of 0.20 and 0.30 are used, respectively. These under-
relaxation factors are adequate for all the numerical simulations described in this thesis.

The quasi-static method remains stable even for larger time steps. This enables the use of the sub-
cycling accelerationmethod for the volume fraction equation, discussed in Subsection 6.2.2. The quasi-
static method can be used at all Froude numbers if the settings are changed accordingly. According to
NUMECA International [35], the quasi-static approach produces the same results as the method with
Newton’s second law of motion as long as the approach is correctly used.

The sinkage and the trim of a model are calculated with respect to its centre of gravity. Its centre of
gravity is located at the same longitudinal and transverse location as its hydrostatic centre of buoyancy.
For simplicity, the centre of gravity is assumed to be located at the design waterline of the model.

6.5.1. Mesh deformation
As a result of ship motions — heave and pitch —, the computational mesh has to be deformed in
order to follow the rigid-body motion in the numerical simulations. A body-fitted mesh is generated
before the simulation. A weighted deformation method is used to translate the rigid-body motion into a
deformation of the grid cells in this mesh. The grid cells located directly around the body exactly follow
the body without being deformed. The cells further away from the body are stretched or compressed
accordingly with a weighted deformation technique.

For accurate free-surface simulations, it is important to generate a body-fitted mesh with the rigid body
in a position close to its finial position— equilibrium sinkage and trim. Otherwise, free-surface capturing
may be negatively affected by shipmotions. Since the free-surface grid refinement follows the rigid body
through the grid-deformation method, the situation may occur that the resolved free surface around the
transom and the bow is no longer contained within the free-surface grid refinement due to a too different
equilibrium position of the ship compared to its position used for grid generation. This results in the
loss of accuracy. A solution is to translate the rigid body into a position close to its finial position before
generating the grid. However, since multiple simulations for different speeds are performed on one
grid, which gives the possibility to restart computations from each other and thereby greatly reduces
computation time, finding a common position close to all the equilibrium positions computed on the grid
is difficult.

From Figures 6.3 and 6.4, which show the trim and the sinkage of Sysser 85 and Sysser 88 for
the three crew positions, it follows that there are no common positions close to the final position of
each individual simulation on the low-speed grid, 0.25 ≤ 𝐹𝑛 ≤ 0.55, and on the high-speed grid,
0.65 ≤ 𝐹𝑛 ≤ 0.95. The trim and the sinkage of the other models in the systematic series follow a
similar trend as the trim and the sinkage of Syssers 85 and 88. For every model, the trim values, and
also the sinkage values, differ a lot between speeds and crew positions. The only common thing is
that at every speed and for every crew position the models tend to sink in. That is why the models
are given an initial heave displacement of five millimetres before meshing. This ensures that for the
converged solution the resolved free surface is contained within the free-surface grid refinement when
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the model has reached its final position in the simulation. No initial pitch angle was applied before
meshing, because no common value could be found.

6.6. Numerical ventilation
High-Froude-number simulations typically require special attention with respect to numerical ventilation
phenomena on the hull. With the volume of fluid method, a mixture of air and water can be transported
under the hull in a high-Froude-number simulation. The air trapped under the hull affects the wet-
ted surface, the hydrodynamic forces, the trim and the sinkage. Numerical ventilation, or numerical
streaking, is not a physical process and should be avoided. The likelihood of numerical ventilation
increases with speed. The occurrence of numerical ventilation depends on the quality of the compu-
tational grid. At high speeds, numerical ventilation is almost impossible to prevent without additional
streaking corrections. The ISIS-CFD flow solver uses a streaking correction to correct the volume frac-
tion to physical values in the case of numerical ventilation. This streaking correction is used for the
numerical simulation described in this thesis.

6.7. Computational domain
The computational domain is defined as a rectangular cuboid around themodel, without the intersection
of the cuboid and the model’s geometry. The computational domain consists of nine surfaces: six faces
of the cuboid and three surfaces of the model’s geometry. The geometry of a model is defined by three
surfaces: a deck, a transom and a hull. The computational domain should be large enough to capture
the wake correctly, to not disturb the flow field around the model and to not influence the solution of
the simulation. A computational domain that stretches one waterline length upstream, three waterline
lengths downstream, one and a half waterline lengths to either side, one and a half waterline lengths
below, and a half waterline length above the model is adequate for Froude numbers 0.25 up to 0.95.

For computation of upright resistance values without any leeway angels, the symmetry in flow field
along the longitudinal axis of the model can be exploited. With the use of a symmetry boundary con-
dition, only half of the computational domain is required. The port side of the model is used in the
numerical simulations. The computational domain, used in the simulations described in this thesis,
measures 5𝐿ፖፋ × 1.5𝐿ፖፋ × 2𝐿ፖፋ. A schematic of this computational domain and the axes convention
are depicted in Figure 6.1. The free surface is located at 𝑧 = 0 in the domain and forms the interface
between water and air. The model moves in positive 𝑥-direction.

Adequate boundary conditions have to be applied to the nine surfaces of the computational domain.
The deck, the hull and the transom are all solid boundaries. The deck is considered to have negligible
drag compared to the hydrodynamic resistance, and therefore, a slip boundary condition is prescribed
to it. A no-slip boundary condition with wall functions is applied to the hull and the transom. To the
face of the computational domain at 𝑦 = 0, a symmetry boundary condition is applied. The other five
faces of the computational domain are external boundaries. Hydrostatic-pressure boundary conditions
are applied to the faces at 𝑧 = −1.5𝐿ፖፋ and 𝑧 = 0.5𝐿ፖፋ. The hydrostatic pressure is updated in the
numerical simulations with the position of the free surface. The fluid is free to flow across these two
faces. Far-field boundary conditions are imposed on the three faces at 𝑦 = 1.5𝐿ፖፋ, 𝑥 = 𝐿ፖፋ, and
𝑥 = −4𝐿ፖፋ.

6.8. Computational grid
The unsteady incompressible RANS equations are solved with a finite-volume spatial discretization
on three-dimensional unstructured meshes. The finite-volume method subdivides the computational
domain into a number of control volumes. For each control volume, the discretized governing equa-
tions are solved to find the flow quantities in each of the volumes. Consequently, the computational
domain has to be discretized, taking into consideration all the previously mentioned requirements on
the computational grid.

The settings used for grid generation are briefly discussed in this section and are summarized in
the middle column of Table 7.1. The grid generated with these settings is denoted the ’medium’ grid.
A medium grid contains typically about 0.86 million cells for the low-speed grid and 0.91 million cells
for the high-speed grid. For every model in the systematic series, a low-speed grid and a high-speed
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Figure 6.1: Computational domain with ship movement in positive ፱-direction.

grid are generated with these settings. Computations for the three crew positions at a specific speed
are performed on the same grid.

The computational domain of Figure 6.1 is subdivided into control volumes using the HEXPRESS™
grid generator of the FINE™/Marine software package. HEXPRESS™ generates body-fitted unstruc-
tured meshes. The advantage of unstructured meshes is that complex geometries can easily be
meshed. The generated mesh is a full hexahedral mesh consisting solely of hexahedron cells.

The grid-generation process follows the following steps: (1) an initial mesh is generated based
on the global cell size; (2) grid refinement is applied in certain regions to adapt the initial mesh to the
ship’s geometry and to facilitate accurate free-surface capturing; and (3) refinement for boundary layers
is inserted on the selected solid surfaces using the desired 𝑦ኻ value. An initial heave displacement of
five millimetres is applied to the ship’s geometry before meshing.

Optimization of the generated grid is performed automatically by HEXPRESS™ with the use of
an optimization algorithm, in order to fix negative, concave, twisted or highly skewed cells. These
cells are likely to pose robustness, stability and accuracy issues. All the generated grids contain no
negative, concave, twisted or highly skewed cells. The quality of a generated grid also depends on the
orthogonality, the aspect ratio and the expansion ratio of the grid cells. All the generated grids have a
satisfying quality.

6.8.1. Initial mesh
The initial mesh of the computational domain is generated based on the global cell size. The com-
putational domain of Figure 6.1 measures 5𝐿ፖፋ × 1.5𝐿ፖፋ × 2𝐿ፖፋ, which corresponds to 10 × 3 × 4
metres. This domain is subdivided along the Cartesian axes to create 20 cells in 𝑥-direction, 8 cells
in 𝑦-direction and 8 cells in 𝑧-direction. The resulting computational mesh contains 1280 cells. The
corresponding global cell size is 𝐿ፖፋ/4 × 3𝐿ፖፋ/16 × 𝐿ፖፋ/4, which corresponds to 0.50 × 0.375 × 0.50
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metres.

6.8.2. Surface refinement
Grid refinement is applied in certain regions to adapt the initial mesh to the ship’s geometry and to
facilitate accurate free-surface capturing. The three surfaces of the ship’s geometry — deck, transom
and hull — and the grid around the free surface have to be refined. The refinement of a cell with the
HEXPRESS™ grid generator depends on the maximum number of refinements of an initial grid cell,
the target cell size, the maximum aspect ratio of the cells, and the refinement diffusion. The cells
are successively subdivided such that either the maximum number of refinements is reached or the
geometrical criteria are met. Cells can be subdivided into two, four or eight cells. Cells are subdivided
anisotropically as often as possible to limit the number of cells in the grid. The maximum aspect ratio is
used to control the subdivision into two, four or eight cells. The refinement diffusion is used to ensure a
sufficiently smooth transition between fine and coarse cell regions. A refinement diffusion of two means
that when a cell is refined its directly neighbouring cells and the direct neighbours of the neighbouring
cell are also refined. A global diffusion means that the refinement can be diffused throughout the entire
grid.

The hull and the transom are the two surfaces where hydrodynamic forces (can) act on the ship.
The grid at these surfaces has to be refined adequately. The hull and the transom are refined similarly.
The deck is considered to have negligible drag compared to the hydrodynamic resistance, and there-
fore, fewer refinements are adequate for the deck. The grid refinement around the free surface was
already discussed in Section 6.4. The surface refinement settings used to generate the medium grid
are summarized in Table 6.1.

Some numerical tests have been conducted to illustrate that these refinement settings are adequate.
Table F.3 gives the resistance values of Sysser 85 at Froude numbers 0.45 and 0.85 computed on
three different grids: the medium grid, a grid with additional refinement of the hull compared to the
medium grid, and a grid with additional refinement of the transom curve compared to the medium grid.
The transom curve is the edge between the hull and the transom. Additional refinement of the transom
curve can have a positive effect on the capturing of the wake at the transom. A distinction between
low- and high-speed grids is made in this comparison.

The grid with additional refinement of the hull uses a maximum number of refinements of 7 instead
of 6. The number of cells in the computational grid increases with 65 percent and 75 percent for the low-
and the high-speed grid, respectively. At Froude numbers 0.45 and 0.85, the difference between the
resistance computed on the medium grid and the resistance computed on the grid with the additional
refinement of the hull is negligible.

The grid with the additional refinement of the transom curve uses amaximum number of refinements
of 8 instead of 6. Only the cells next to the transom curve are additionally refined. The number of cells
in the computational grid increases with approximately 7 percent compared to the medium grid. The
difference in resistance is negligible at both speeds. These two test indicate that the refinement settings
used for the medium grid are adequate.

6.8.3. Viscous layers
The hull and the transom are the two surfaces where hydrodynamic forces (can) act on the ship. Vis-
cous layers have to be inserted in the grid at these surfaces in order to resolve the boundary layers
correctly. The deck is considered to have negligible drag compared to the hydrodynamic resistance,
and therefore, a slip boundary condition was prescribed. Consequently, no viscous layers have to be
inserted at the deck.

A distinction between low- and high-speed grids was made in Section 6.3 based on the suggested
values for 𝑦ኻዄ. The low- and the high-speed grid are nearly identical and differ in the boundary layer
refinement only. A different 𝑦ኻ value is used for the generation of both grids, which results in a different
cell size in wall-normal direction. For the low-speed grid, 𝑦ኻ = 7.51 ⋅ 10ዅኾ 𝑚. For the high-speed grid,
𝑦ኻ = 3.58 ⋅ 10ዅኾ𝑚. All other grid-generation settings are exactly the same.

To accurately resolve the boundary layer, the grid should be sufficiently refined with high-aspect-
ratio cells close to the solid surface. The viscous layers are inserted into the grid by anisotropic refine-
ment tangential to the solid surface. The dimension of a refined cell in streamwise direction is large
compared to its dimension in wall-normal direction. The resolved boundary layer should be covered
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by a minimum number of nodes in wall-normal direction. A viscous-layer refinement with eight cells in
wall-normal direction is used. The grid cells should not be stretched too rapidly in wall-normal direction,
in order to cover the highest regions of the outer layer accurately as well. A stretching ratio of 1.2 is
used.

Table 6.1: The refinement settings for the surfaces in the computational domain, used to generate the medium grid
with the HEXPRESS™ grid generator.

Surface Number of Target cell size Maximum aspect ratio Refinement
refinements [𝑚] [−] diffusion

Hull 6 0 × 0 × 0 2 Global
Transom 6 0 × 0 × 0 2 Global
Deck 4 0 × 0 × 0 2 Global
Free surface 8 0.25 × 0.25 × 0.002 128 4

6.9. Convergence
The numerical simulations are used to determine the hydrodynamic forces acting on a ship in a steady
state. The resistance, the sinkage and the trim are the desired output quantities of a simulation. In
order to ensure reliable convergence of the solution, the following convergence criteria are defined:
all residuals should level out and the solution — forces, moments and motions — should not change
any more. A convergence criteria describing the magnitude of the drop in residuals was found to be
inadequate for the numerical simulations described in this thesis. Since most of the simulations are
restarted from a converged simulation at a lower speed and the ship is smoothly accelerated to the
new speed, the drop in residuals is very limited in the simulations. Most residuals drop only one order
of magnitude during a simulation. The residuals of the converged solution of the restarted simulation
are always a bit higher than the residuals of its previous simulation as a result of the increased speed.

The residuals of the three momentum equations for velocity components 𝑢, 𝑣 and 𝑤, the pressure
equation for the pressure 𝑝, and the transport equations for 𝑘 and 𝜔 are monitored for every simulation.
The convergence histories of forces, moments and motions are monitored as well. A typical conver-
gence history of the residuals, forces, moments and motions of a computation at Froude number 0.55
is plotted in Figure 6.2. Computations at the other speeds follow this same typical convergence be-
haviour. Only for the computations at Froude numbers 0.25 and 0.65, the convergence history is slightly
different, because these computations are started with the body at rest, i.e. no fluid flow. Consequently,
the forces, moments, motions and residuals are all zero at the start of the simulation.

After the solution is considered to be converged, based on the defined convergence criteria, the
simulation runs for at least 200 additional time steps. Small fluctuations are always present in the
solution, even after the solution is considered to be converged. The final solution of a simulation is
therefore obtained by averaging over the last 200 time steps of the simulation. For all the simulations,
the standard deviation of the resistance over the last 200 time steps is less than 0.1 percent of the
mean value.

In order to test the used convergence criteria, the simulations for Sysser 85 at Froude numbers
0.45 and 0.85 were restarted after they were considered to be converged. The resistance, sinkage and
trim values for the converged solution and the solution after a doubling of the number of time steps in
the simulation are listed in Table F.4. After the number of time steps had doubled, the resistance was
only increased by 0.042‰ and 0.47‰ for Froude numbers 0.45 and 0.85, respectively. The changes in
sinkage and trim are also negligible. These small differences strengthen the confidence in the selected
convergence criteria.

6.10. Numerical results
For the sake of illustration, the upright trimmed resistance, and corresponding heave and pitch of
Syssers 85 and 88 are shown in Figures 6.3 and 6.4. The other models in the systematic series have
similar curves. The resistance curves and the motion curves have their expected typical shape. The
difference in resistance between the crew positions also follows the expected behaviour. Typically,
the resistance for the crew CoG position is the lowest at Froude numbers 0.25 and 0.35. At Froude



6.10. Numerical results 47

0 1000 2000 3000 4000 5000 6000 700010ዅዀ

10ዅ኿

10ዅኾ

10ዅኽ

10ዅኼ

10ዅኻ

Non-linear iterations [−]

lo
g(
R
es
id
ua

l)

Residual 𝑢 Residual 𝑤 Residual 𝑘
Residual 𝑣 Residual 𝑝 Residual 𝜔

(a) History of the residuals of the three momentum equations, the pressure equation, and the two transport equations for ፤
and Ꭶ.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
−12

−10

−8

−6

−4

Global time steps [−]

Fo
rc
e,

M
om

en
t,
M
ot
io
n

𝐹፱ [𝑁] −𝐹፳ [𝑑𝑎𝑁] 𝑀፲ [𝑁𝑚] 𝑧 [𝑚𝑚] 10 ⋅ 𝜃 [∘]

(b) Convergence of resistance ፅᑩ, vertical force ፅᑫ, moment ፌᑪ about the CoG, heave ፳, and pitch ᎕.

Figure 6.2: Convergence of a computation at Froude number 0.55.



48 Numerical method

number 0.45, the resistance for the crew middle position is the lowest. At the higher Froude numbers,
the resistance for the crew back position is the lowest. At the lower speeds, the more bow-down atti-
tude for the crew CoG position reduces the intensity of the wave system generated at the stern. It also
results in a smoother flow field at the stern with less curved streamlines and less flow separation than
for the other two crew positions. With increasing speed, the influence of these effects on the resistance
becomes less important, because a more bow-up attitude increases the hydrodynamic lift and thereby
decreases the resistance.

The minimum resistance of the three crew positions for every model in the systematic series is plotted
as ratio to the minimum resistance for the parent hull, Sysser 85, in Figure 6.5. This allows for an
easy comparison of the differences between the models. The found differences in resistance between
the models in the systematic series are to be expected based on the applied variations. For instance,
Sysser 89 has to the lowest resistance at all the speeds except at Froude number 0.25. Sysser 89
has the lowest displacement, a relatively low beam-to-length ratio and the same draft-to-beam ratio as
the parent hull. Therefore, the resistance of Sysser 89 is likely to be the lowest. Sysser 91 has the
same displacement as Sysser 89, but has a relatively low draft-to-beam ratio and the same beam-to-
length ratio as the parent hull. Compared to Sysser 89 the resistance of Sysser 91 should be higher.
Compared to the parent hull, the resistance of Sysser 89 should be lower. This is indeed the case.

Except for the parent hull, every model in the systematic series has its own antithesis. The system-
atic series contains for every selected variation a hull shape with an increase of the parameter and a
hull shape with a decrease of the parameter. A description of the applied variations is given in Table
3.2. Most of the models and their antithesis have a mirrored behaviour in Figure 6.5 with respect to
the parent hull. This does not hold for all of the models, because not all the variations have a linear
relationship with the resistance. Syssers 96 and 97 show the most pronounced deviations from this
mirrored behaviour. The variations applied to these models are related to the centre of buoyancy and
the centre of flotation.

For the variations in displacement-to-length ratio, beam-to-length ratio and draft-to-beam ratio, hull
shapes with intermediate variation were created. Sysser 86 up to Sysser 91 have 15-percent variation
in a specific hydrostatic parameter compared to the parent hull. Sysser 100 up to Sysser 105 have
7.5-percent variation compared to the parent hull. Sysser 100 corresponds to Sysser 86; Sysser 101
corresponds to Sysser 87; and so on. The resistance ratio of the hull shape with the maximum variation
to the parent hull, and the resistance ratio of the hull shape with the intermediate variation to the parent
hull have a similar behaviour over the speed range, as can be seen in Figure 6.5. The shape of the
curves is very similar. For most of these variations, the resistance ratio either increases or decreases
(almost) linearly with increasing magnitude of the applied variation.

A seemingly strange thing happens for Sysser 97 at Froude number 0.95. Compared to the resistance
of the parent hull, the resistance becomes all of a sudden relatively high. Based on the hull shape of
this model, and the resistance curves and the motion curves for the three crew positions, this increase
is not that strange. Sysser 97 has the longitudinal centre of buoyancy and the longitudinal centre of
flotation relatively far forward. The position of the centre of buoyancy is pretty far ahead of the optimum
position at this speed. This strongly intensifies the generated waves at the bow sections. Furthermore,
this model has a relatively low centre of buoyancy-to-centre of flotation ratio, which makes it more
difficult to trim bow up. This decreases the generated hydrodynamic lift and increases the sinkage and
the resistance. As a consequence of the high resistance, the trimming moment of the driving force is
also high and the model trims even more bow down.

Another seemingly strange thing happens for Sysser 94 at Froude number 0.35. Only at this speed,
its resistance is higher than the resistance of the parent hull. Sysser 94 has a 10-percent higher pris-
matic coefficient than the parent hull. The three simulations for the three crew positions show the same
behaviour compared to the resistance of the parent hull. An explanation could not be found.
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Figure 6.3: Numerical results of Sysser 85.
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Figure 6.4: Numerical results of Sysser 88.
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7
Numerical uncertainty

From a scientific point of view, it is desirable to asses the quality and the credibility of numerical sim-
ulations. To establish the reliability and the accuracy of the numerical results presented in this study,
a Verification & Validation (V&V) analysis is performed. This V&V analysis is performed following the
ITTC guidelines for uncertainty analysis in CFD [15]. The verification analysis is discussed in this
chapter. Validation of the numerical results is discussed in Chapter 9.

According to Roach [43], verification is a purely mathematical procedure with the intention to show
that the equations are solved right, whereas validation is an engineering practice with the intention to
show that the right equations are solved. This implies that numerical errors and uncertainties belong
to verification. On the other hand, modelling errors and uncertainties belong to validation. Validation
consists of a comparison of numerical results and experimental results.

The different parts of the verification analysis are discussed in Section 7.1. From this discussion,
it follows that the numerical error consists solely of the discretization error. The discretization error is
determined with a grid refinement study. The procedure proposed by Eça and Hoekstra [9] is used
for this assessment. Section 7.3 describes the estimation of the discretization error with this proce-
dure. Section 7.4 describes the Eça and Hoekstra procedure for the estimation of the discretization
uncertainty from this error.

The Eça and Hoekstra procedure is based on a systematic grid refinement study. This systematic
refinement requires that the grids are geometrically similar and that the range of grid refinement is
wide and fine enough to justify the use of a truncated power series expansion of the error. Obtaining
geometric similarity between unstructured grids is a real challenge. The procedure used to obtain the
series of refined grids is described in Section 7.2.

A distinction between including and excluding the influence of solving ship motions is made in this
grid refinement study, because the quasi-static approach is used to obtain the equilibrium position of a
ship in the simulation. With this approach, ship motions are imposed rather than solved at each time
step. There is no direct coupling between the motion equations and the governing equations. This
uncoupling may lead to unwanted scatter in the dataset of the refinement study, which results in an
unexpected or strange order of convergence and unreliable uncertainty estimates. To accurately and
reliably establish the observed order of grid convergence and the numerical uncertainty of the governing
equations, two cases are investigated: one excluding the influence of solving ship motions in Section
7.6 and one including the influence of solving ship motions in Section 7.7. The reasoning behind this
approach is discussed in more detail in Section 7.5. A comparison between both cases concludes this
chapter.

The numerical uncertainty is determined for the parent hull of the systematic series on the low-speed
grid at Froude number 0.45 and on the high-speed grid at Froude number 0.85. No trimming moment
of the crew’s weight is applied; i.e. the crew CoG position is used. These Froude numbers are selected
because they both resemble ’extreme’ flow conditions with distinctive and complex flow characteristics
that may be hard to model numerically. Theoretically at Froude number 0.40, the wavelength of the
wave generated at the bow becomes equal to the waterline length of the yacht. In that case, the wave
crests generated at the bow coincides with the wave crests generated at the stern. This is coupled with a
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large increase in wave-making resistance. In practice, this typically occurs at a (slightly) higher Froude
number, because the distance between the location where the bow waves are generated and the
location where the stern waves are generated is generally (slightly) higher than the nominal waterline
length. The semi-displacement mode at Froude number 0.85 may also pose numerical difficulties
due to complex flow phenomena. The complex flow phenomena and possible numerical difficulties at
Froude numbers 0.45 and 0.85 are the reasons why they are selected for this grid refinement study.

An important distinction between errors and uncertainties has to be mentioned. Following Roache
[44], an uncertainty defines an interval that should contain the exact solution with a certain degree of
confidence; an error is defined as the difference between the numerical solution and the exact solution.
Uncertainties are estimated as the absolute value of an error estimator multiplied by a factor of safety.

7.1. Verification
Following Roach [43], verification itself consists of two parts: code verification and solution verification.
Code verification has to be done before solution verification. The purpose of code verification is to
ensure that the numerical model and the equations are correctly implemented in and solved by the
CFD solver. Solution verification assesses the numerical simulation uncertainty.

7.1.1. Code verification
Code verification involves meticulous testing of the computational code on benchmark cases presented
in literature. This makes code verification very costly and time consuming. Hence, code verification is
beyond the scope of the present study. Moreover, it is not necesarry, because use is made of the ISIS-
CFD flow solver [11] implemented in the commercial FINE™/Marine software package of NUMECA
International [35]. One of the benefits of using commercial CFD codes is that these codes are subjected
to very extensive code verification exercises prior to release. For a code verification analysis of the ISIS-
CFD flow solver, reference is made to Deng et al. [3]. A complete V&V analysis of the ISIS-CFD flow
solver is given by Deng et al. [4].

7.1.2. Solution verification
Solution verification assesses the numerical simulation uncertainty. Following Roache [43,44], the
ITTC [15], and Eça and Hoekstra [9], the numerical uncertainty is estimated as the absolute value
of a numerical error estimator multiplied by a factor of safety. The numerical error is defined as the
difference between the numerical solution and the exact solution. It consists of three parts: round-off
errors, iterative errors and discretization errors.

Round-off errors
Round-off errors arise from the finite precision of computers. Its importance tends to increase with
grid refinement. According to Eça and Hoekstra [9], round-off errors are generally suitable small due
to the double-precision arithmetic used in numerical flow solvers. Round-off errors are considered
to be negligible in the present refinement study based on the double-precision arithmetic used in the
FINE™/Marine flow solver.

Iterative errors
Iterative errors are a consequence of the non-linearity of the system of partial differential equations
solved in CFD. Various sources of non-linearity are present, e.g. the convective terms in the Reynolds-
averaged Navier–Stokes equations and in the equations of the turbulence model. The iterative conver-
gence error is defined as the difference between an intermediate solution and the solution converged
as far as the accuracy of the computer permits. From a time and cost perspective, simulations are
generally truncated close to this final solution. This introduces iterative errors.

For the estimation of the numerical error, it is convenient to neglect the influence of the iterative
errors on the numerical error compared to the discretization error, because convergence to machine
accuracy is very time consuming. Eça and Hoekstra [5] suggest as a rule of thumb that the iterative
error should be two to three orders of magnitude smaller than the discretization error, in order to have
a negligible influence on the estimation of the numerical uncertainty.
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As said before in Section 6.9, after the solution is considered to be converged based on the defined
convergence criteria, the simulation runs for at least 200 additional time steps. The final solution of a
simulation is obtained by averaging over the last 200 time steps of the simulation. For all the performed
simulations, the standard deviation of the resistance over the last 200 time steps is less than 0.1 percent
of the mean value. For the numerical simulations performed in this grid refinement study, the standard
deviation of the resistance is less than 0.03 percent of the mean value. Based on this very small
standard deviation, the iterative convergence errors are assumed to be negligible. This very small
standard deviation indicates that the used solution is very close to the solution converged as far as the
machine accuracy permits, and thus iterative errors are very small.

Furthermore, in order to test the used convergence criteria, the simulations for Sysser 85 at Froude
numbers 0.45 and 0.85 were restarted after they were considered to be converged. After the number of
time steps had doubled, the resistance was only increased by 0.042‰ and 0.47‰ for Froude numbers
0.45 and 0.85, respectively, as was shown in Table F.4. This suggests that the assumed converged
solution is very close to the to-machine-accuracy converged solution; it suggests that the iterative error
is very small. Of course, this small test is not conclusive, but it nevertheless suggests a very small
contribution of the iterative error on the numerical error compared to the discretization error determined
in Sections 7.6 and 7.7, which is between 1.3 and 2.6 percent on the medium grid. For this refinement
study, the iterative convergence errors are assumed to be negligible compared to the discretization
error.

Discretization errors
Discretization errors are a consequence of the finite-volume method that is used for the spatial dis-
cretization of the governing equations. The governing equations are discretized into a system of alge-
braic equations which introduces a numerical error. The discretization error is defined as the difference
between the numerical solution converged to machine accuracy and the exact solution. Unlike the
round-off error and the iterative error, the relative importance of the discretization error decreases with
grid refinement.

Numerical error
Under the assumption that the round-off errors and the iterative errors are indeed negligible compared
to the discretization error, the numerical error consists solely of the discretization error. An accurate
discretization error estimator is indispensable to obtain a reliable numerical uncertainty estimate. As
reported by Eça and Hoekstra [10,6], using the established methods of Roache [43,44] and others for
uncertainty estimation is found to be difficult in practical applications due to practical grid-density and
geometric-similarity limitations. These practical limitations are likely to contribute to scatter and noise
in the data [10,6]. Scatter and noise make it difficult to apply the power series expansion of the error,
used in the established methods, to the database.

To avoid these limitations, the numerical uncertainty estimation procedure proposed by Eça and
Hoekstra [9] is used. This method gives a number of possibilities for the numerical error estimation if
the power series expansion of the error, used in the established methods, does not produce satisfy-
ing results. The Eça and Hoekstra method has a similar approach as the ITTC procedures [15] and
American Society of Mechanical Engineers (ASME) procedures [1]. Klaij et al. [30] report on different
practical test cases for which the numerical uncertainty is successfully and satisfyingly determined with
the Eça and Hoekstra method. This method is also used at the Maritime Research Institute Netherlands
(MARIN). The Eça and Hoekstra procedure was thoroughly tested for a variety of cases [7,8,9,30].

In the present refinement study, the numerical uncertainty is estimated with the Eça and Hoekstra
procedure. The uncertainty is determined for Sysser 85 on the low-speed grid at Froude number 0.45
and on the high-speed grid at Froude number 0.85.

7.2. Grid generation for refinement study
Just like the established numerical uncertainty estimation methods, the Eça and Hoekstra procedure
[9] is based on a systematic grid refinement study. This systematic refinement requires that the used
grids are geometrically similar and that the range of grid refinement is wide and fine enough to justify the
use of a truncated power series expansion of the error, i.e. to give a single dominant term in the power
series expansion. Geometric similarity is satisfied when the grid refinement ratio, which is defined as
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the ratio of the cell sizes between two grids, is constant in the entire computational domain, and when
the properties of the grid cells, e.g. aspect ratio, skewness and orthogonality, are unaffected.

Unfortunately, it is a real challenge to obtain geometric similarity for a series of refined unstructured
grids. According to Eça and Hoekstra [6], the lack of geometric similarity between the grids is a main
contributor to scatter in the data of a refinement study. Great care has to be taken in order to satisfy
the geometric-similarity constraint as much as possible when generating the refined grids.

For each grid in the refinement study, a typical cell size, ℎ።, is defined by

ℎ። = Ꮅ√𝑉጖𝑁።
, (7.1)

where 𝑉጖ is the volume of computational domain, and 𝑁። is the number of cells of that particular grid.
The subscript 𝑖 can have values 1, 2, 3, 4, 5 and 6, and stands for the finest, finer, fine, medium, coarse
and coarser grid, respectively. The refinement factor, 𝑟።, between two successive grids is defined by

𝑟። =
ℎ።ዄኻ
ℎ።
. (7.2)

When generating a refined grid, the refinement ratio should be chosen carefully. Ratios close to one
are undesirable, since changes in the solution will be very small. In general, the refinement ratio is
advised to be two. However, for practical ship hydromechanics applications this refinement ratio is often
too large due to practical grid-density limitations. A refinement factor of two introduces no additional
numerical error source. With a refinement factor other than two, interpolation to a common location
is required to compute solution changes. This introduces interpolation errors. Evaluation methods for
interpolation errors are given by Roache [43].

For this refinement study, a refinement ratio of Ꮅ√2, resulting in a doubling of the amount of cells
from one grid to the other, is used. A refinement factor of two is way too large and practically infeasible,
because it results in an octupling of the amount of cells from one grid to the other. The interpolation
errors are assumed to be negligible compared to the discretization error.

7.2.1. grid-generation approach
In order to construct geometrically-similar unstructured grids with the HEXPRESS™ mesh generator,
the refinement factors have to be chosen very carefully. This is a consequence of the dependence
of the grid generator on integers to specify the initial number of cells in each direction, the number of
viscous layers and the refinement diffusion. These integers have to be scaled for some surfaces in
order to obtain geometrically similar grids. Choosing the refinement ratios carefully results again in
integers and not in rational numbers. Rational numbers have to be rounded otherwise. Rounding of
rational numbers to integers contributes to the lack of geometric similarity between the grids. Based
on the integer numbers used for the generation of the medium grid, the following refinement ratios are
used: 2.00, 1.50, 1.25, 1.00, 0.75 and 0.50. These refinement ratios are defined with the typical cell
size of the medium grid as the reference size. The typical amount of cells in the refined grids is 7, 3, 2,
0.9, 0.4 and 0.1 million.

In order to create unstructured grids with HEXPRESS™ that satisfy the geometric-similarity constraint
as much as possible, some of the settings of the grid generator, mentioned in Section 6.8, have to
be adapted accordingly. The initial mesh size has to be scaled with one over the refinement factor.
This changed initial mesh size ensures that the cells at the hull, the transom and the deck are scaled
automatically and accordingly. Therefore, changing the settings for the hull, the transom and the deck,
given in Table 6.1, is not necesarry. For these surfaces, the target cell size is namely zero. Keeping
the number of refinements and the global refinement diffusion the same ensures that the cells of the
changed initial mesh are refined similarly to the cells of the original mesh. This results in geometrically
similar cells.

For the grid refinement around the initial free surface, the settings for the target cell size and the
refinement diffusion, given in Table 6.1, have to be changed. The target cell size has to be scaled
with one over the refinement factor. As a consequence of the changed cell size, the height of the grid
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refinement around the initial free surface is scaled automatically with one over the refinement factor. To
avoid this unwanted change in the height of the free-surface grid refinement, the refinement diffusion
has to be multiplied by the refinement factor. This ensures that compared to the reference grid, the
height of the grid refinement around the initial free surface is unchanged.

For the viscous layers, the first layer thickness, which determines the cell size normal to the solid
surface, has to be adapted to ensure geometrically similar cells in the boundary layer. Since the initial
mesh size is scaled with one over the refinement factor, the first layer thickness in the boundary layer
has to be scaled similarly. This preserves the aspect ratio, the skewness and the orthogonality of
the cells in the viscous layers. To avoid the change in thickness of the viscous-layer refinement, the
number of layers has to be multiplied by the refinement factor.

In order to obtain numerical simulations with similar numerical properties concerning convergence and
stability, the global time step has to be changed for each grid as well. The most important factor to
ensure similar numerical simulations is the Courant number, which is defined similarly to Equation
(6.2) by

𝑐። =
|𝑢|𝜏።
ℎ።

, (7.3)

where 𝑐። is the Courant number on grid 𝑖, and 𝜏። is the global time step on grid 𝑖. Under the assumption
that the change in flow velocities between the grids is very small, the change of the typical cell size has
to be counteracted by a similar change in the global time step. This ensures that the Courant number
in the simulations remains more or less constant between the different grids. In this way, the numerical
properties of the simulations are more or less preserved between the grids.

From the generated grids, which are given further on in this section, it follows that despite the effort
made for the generation of the refined grids, the observed number of cells after grid generation differs
from the expected number of cells. As a consequence, the observed refinement factor also differs from
the expected refinement factor. In order to keep the Courant number in the simulations more or less
constant, the global time step is scaled with one over the observed refinement factor instead of one
over the expected refinement factor. The settings used for motion solving, discussed in Section 6.5,
are adapted for every grid to the different global time step.

The above-mentioned settings for the generation of geometrically-similar unstructured grids with HEX-
PRESS™ are summarized in Table 7.1.

7.2.2. Refined grids
The number of cells and the refinement factors of the twelve grids — six low-speed grids and six high-
speed grids — created with the above-mentioned grid-generation approach are listed in Table 7.2. The
expected refinement ratio 𝑟።∗, the expected number of cells 𝑁።∗, the observed refinement ratio 𝑟። and
the observed number of cells 𝑁። are listed in this table. The observed values are the actual values
obtained after grid generation. The first thing that strikes from this table is the difference between
the expected number of cells and the observed number of cells. Despite this sometimes relatively
big difference, the grids, with the exception of the coarser grid, are satisfactorily geometrically similar.
Mesh properties, e.g. the aspect ratio, the skewness and the orthogonality of the cells, are reasonably
preserved between the different grids. A series of grid topologies of the refined grids is shown in Figure
7.1. A part of the cross section of each grids at midship is depicted in this figure. The grids all have a
similar block-like structure.

The coarser grid is omitted from the refinement study because of the lack of geometric similarity
with the rest of the grids. Moreover, the computation results on the coarser grid are outliers in the
refinement study.

7.3. Discretization error estimation
Eça and Hoekstra [9] propose a procedure for the estimation of the numerical uncertainty of any integral
or local flow quantity, based on grid refinement studies. This method tries to avoid the limitations en-
countered with established uncertainty estimation procedures applied to practical ship hydromechanics
applications. Scatter in a dataset, arising from practical grid-density and geometric-similarity limitations
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Table 7.1: Settings used for the generation of geometrically-similar unstructured grids with HEXPRESS™, and the global
time step used for the simulations. Listed are the settings for the medium grid from Sections 6.2 and 6.8, and Table 6.1.
The settings for the refined grid are based on the settings for the medium grid and are scaled with the refinement factor.
Note that there are two different grid refinement ratios used in this table, namely, the expected ratio, ፫ᑚ∗, used for the grid
generation and the observed ratio, ፫ᑚ, used for the simulation settings. Both ratios are given for each grid in Table 7.2.

Medium grid Refined grid
Initial mesh

Cell size [𝑚] 𝐿ፖፋ/4 × 3𝐿ፖፋ/16 × 𝐿ፖፋ/4 (𝐿ፖፋ/4 × 3𝐿ፖፋ/16 × 𝐿ፖፋ/4)/𝑟።∗
Hull, transom, deck

Target cell size [𝑚] 0 × 0 × 0 Unchanged
Number of refinements 6 and deck 4 Unchanged
Refinement diffusion Global Unchanged

Free surface
Target cell size [𝑚] 0.25 × 0.25 × 0.002 (0.25 × 0.25 × 0.002)/𝑟።∗

Number of refinements 8 Unchanged
Refinement diffusion 4 4𝑟።∗

Viscous layers
Low-speed grid: 𝑦ኻ [𝑚] 7.51 ⋅ 10ዅኾ 7.51 ⋅ 10ዅኾ/𝑟።∗
High-speed grid: 𝑦ኻ [𝑚] 3.58 ⋅ 10ዅኾ 3.58 ⋅ 10ዅኾ/𝑟።∗

Number of layers 8 8𝑟።∗
Time step

Global time step [𝑠] 0.025𝐿ፖፋ / 𝑉 0.025𝐿ፖፋ / (𝑉 𝑟።)

Table 7.2: Properties of the different grids used in the grid refinement study. ፫ᑚ∗ and ፍᑚ∗ are the expected values before
grid generation while ፫ᑚ and ፍᑚ are the observed values after grid generation. Refinement ratios are defined with the

typical cell size of the medium grid as the reference size. ጂ% ዆ (ፍᑚ ዅፍᑚ∗)/ፍᑚ∗ ⋅ ኻኺኺ.

Low-speed grids High-speed grids
። 𝑟።∗ 𝑁።∗ 𝑟። 𝑁። Δ% 𝑁።∗ 𝑟። 𝑁። Δ%

[−] [−] [−] [−] [%] [−] [−] [−] [%]
Coarser 6 0.50 107859 0.60 186579 73.0 113517 0.59 186579 64.4
Coarse 5 0.75 364025 0.80 437550 20.2 383120 0.78 438776 14.5
Medium 4 1.00 862875 1.00 862875 0 908136 1.00 908136 0
Fine 3 1.25 1685303 1.26 1738538 3.2 1773703 1.27 1870953 5.5
Finer 2 1.50 2912203 1.45 2628983 -9.7 3064959 1.46 2818703 -8.0
Finest 1 2.00 6903000 1.92 6139829 -11.1 7265088 1.91 6312510 -13.1
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(a) Coarser grid (b) Coarse grid

(c) Medium grid (d) Fine grid

(e) Finer grid (f) Finest grid

Figure 7.1: The different high-speed grids used in the refinement study. For every grid, a part of the cross section of the
grid at midship is depicted. The grids for the low-speed grid are visually completely similar, since only the wall-normal cell

size in the viscous layers is different between the low-speed grid and the high-speed grid.
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[10,6], makes it difficult to apply the power series expansion of the error, used in the established meth-
ods, to the dataset. According to Eça and Hoekstra [9], other sources of scatter in the dataset are
flux limiters, which are commonly used in the discretization of convective terms to avoid spurious os-
cillations in the solution around discontinuities in the grid, and damping functions used in turbulence
models. These sources contribute to differences in discretization of the governing equations between
the grids.

To avoid those limitations often accounted in practical ship hydromechanics applications, the nu-
merical uncertainty estimation procedure proposed by Eça and Hoekstra [9] is used for the present
refinement study. In this procedure, the error is estimated with truncated power series expansions, as
function of the typical cell size. Non-weighted least-squares minimizations and weighted least-squares
minimizations are used to fit error estimators to the dataset. Different error estimators are used to es-
tablish a reliable error estimate. Classifying one of the different error estimators as the most reliable
one is done by means of the grid-convergence behaviour, the observed order of grid convergence and
the standard deviations of the fits. The Eça and Hoekstra procedure was thoroughly tested for a variety
of cases [7,8,9,30]. The method is discussed in this section.

7.3.1. Grid-convergence behaviour
Establishing the grid-convergence behaviour gives insight in, but no conclusive answer on, which nu-
merical uncertainty estimator to use. A simple way to estimate the apparent grid-convergence be-
haviour is to use the discrimination ratio, or convergence ratio. The grid-convergence behaviour for
equal grid refinement ratios between successively coarsened grid, i.e. ℎ።ዄኻ/ℎ። = ℎ።ዄኼ/ℎ።ዄኻ, can be
estimated with the convergence ratio, 𝑅፤, as proposed by Roache [43,44]:

𝑅፤ =
𝜙። − 𝜙።ዄኻ
𝜙።ዄኻ − 𝜙።ዄኼ

, (7.4)

where the subscript 𝑘 indicates a particular grid triplet, 𝜙። is any integral or other functional of the local
flow quantity under consideration, and the subscripts 𝑖, 𝑖 + 1 and 𝑖 + 2 represent three successively
coarsened grids in that grid triplet, respectively. Based on the convergence ratio, Roache identifies
four types of convergence behaviour:

• Monotonic convergence for 0 < 𝑅፤ < 1;
• Monotonic divergence for 𝑅፤ > 1;
• Oscillatory convergence for 𝑅፤ < 0 and |𝑅፤| < 1;
• Oscillatory divergence for 𝑅፤ < 0 and |𝑅፤| > 1.

These four types of grid-convergence behaviour can be used to obtain insight in the uncertainty estima-
tion procedures to use, but it gives no conclusive answer. An indication of divergent behaviour probably
yields no sufficient numerical uncertainty estimation. However, undertaking an effort with the numerical
uncertainty estimation procedure described further on in this section can still give satisfactory results,
because the convergence ratio is not that accurately defined for a series of more than three grids. An
indication of convergent behaviour probably yields a sufficient numerical uncertainty estimation, but
both types of convergence behaviour need a different approach to establish the numerical uncertainty.

From Table 7.2, it follows that for the present refinement study, the only grid triplet satisfying
ℎ።ዄኻ/ℎ። = ℎ።ዄኼ/ℎ።ዄኻ is the triplet of the fine, medium and coarse grid. Therefore, the convergence
ratio, 𝑅, for this refinement study can only be defined by

𝑅 = 𝜙ኽ − 𝜙ኾ
𝜙ኾ − 𝜙኿

, (7.5)

where subscripts 3, 4 and 5 stand for the fine grid, the medium grid and the coarse grid, respectively.

7.3.2. Different error estimators
Eça and Hoekstra focus on estimating the discretization error with truncated power series expansions.
Following Roache [43,44] and others, the basic equation for the estimation of the discretization error
with the Eça and Hoekstra procedure is

𝜖Ꭻ ≃ 𝛿ፑፄ = 𝜙። − 𝜙ኺ = 𝛼ℎ።፩, (7.6)
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where 𝜖Ꭻ is the discretization error, 𝛿ፑፄ is an estimate of the discretization error, 𝜙። is any integral or
other functional of the local flow quantity under consideration, 𝜙ኺ is the estimate of the exact solution,
𝛼 is a constant, ℎ። is the typical cell size defined by Equation (7.1), and 𝑝 is the observed order of grid
convergence. Obvious restrictions of this numerical error estimator on the dataset are the necessities
of no scatter in the dataset, monotonic convergence behaviour and data within the asymptotic range,
i.e. the range of grids should be wide and fine enough to give a single dominant term in the power series
expansion. Due to these restrictions and the limitations encountered in practical ship hydromechanics
applications, broader applicable error estimators are necessary.

Therefore, the Eça and Hoekstra procedure [9] gives three alternative error estimators that fix the
observed order of grid convergence to first order, second order or a combination of both. These alter-
native error estimators are

𝜖Ꭻ ≃ 𝛿ኻ = 𝜙። − 𝜙ኺ = 𝛼ℎ። , (7.7)
𝜖Ꭻ ≃ 𝛿ኼ = 𝜙። − 𝜙ኺ = 𝛼ℎ።ኼ, (7.8)
𝜖Ꭻ ≃ 𝛿ኻኼ = 𝜙። − 𝜙ኺ = 𝛼ኻℎ። + 𝛼ኼℎ።ኼ, (7.9)

where 𝛿ኻ, 𝛿ኼ and 𝛿ኻኼ are alternative estimators of the discretization error; and 𝛼, 𝛼ኻ and 𝛼ኼ are con-
stants. These three alternatives are only used when the error estimation with Equation (7.6) is found
impossible or deemed unreliable. The procedure for selecting a reliable error estimator is discussed in
Subsection 7.3.3.

Non-weighted least-squares minimizations and weighted least-squares minimizations are used to fit
the four error estimators to the dataset. The standard deviations of these least-squares fits provide
good information on the quality of the four error estimators; a low standard deviation implies good
agreement of the data with the fit of the error estimator, and hence, it implies a reasonable estimate of
the discretization error. The weighted least-squares minimization makes it possible to express more
confidence in the results computed on the finer grids than in the results computed on the coarser grids.
This is very desirable, since the best result — smallest discretization error — is expected on the finest
grid.

The non-weighted least-squares minimization and the weighted least-squares minimization for error
estimator 𝛿ፑፄ can be determined from the minimums of

𝑆ፑፄ(𝜙ኺ, 𝛼, 𝑝) = √
፧ᑘ

∑
።዆ኻ
(𝜙። − (𝜙ኺ + 𝛼ℎ።፩))

ኼ
, (7.10a)

𝑆ፖፑፄ(𝜙ኺ, 𝛼, 𝑝) = √
፧ᑘ

∑
።዆ኻ
𝑤።(𝜙። − (𝜙ኺ + 𝛼ℎ።፩))

ኼ
, (7.10b)

respectively, where 𝑛፠ is the number of grids in the dataset, and 𝑤። are the weights defined by

𝑤። =
1/ℎ።
፧ᑘ
∑
።዆ኻ
1/ℎ።

. (7.11)

The sum of the weights is equal to one. The minimums of Equations (7.10a) and (7.10b) can be
obtained from

𝜕𝑆
𝜕𝜙ኺ

= 0, 𝜕𝑆
𝜕𝛼 = 0,

𝜕𝑆
𝜕𝑝 = 0, (7.12)

where 𝑆 stands for either 𝑆ፑፄ or 𝑆ፖፑፄ. This least-squares minimization leads to a system of non-linear
equations for 𝜙ኺ, 𝛼, and 𝑝. For error estimators (7.7), (7.8) and (7.9), similar least-squares minimiza-
tions can be derived. These minimizations lead to systems of linear equations. For a complete descrip-
tion of all the least-squares minimizations and the corresponding systems of equations, the reader is
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referred to Eça and Hoekstra [9].
The standard deviations of the non-weighted least-squares minimization and the weighted least-

squares minimization for error estimator (7.6) are given by

𝜎ፑፄ =
√
፧ᑘ
∑
።዆ኻ
(𝜙። − (𝜙ኺ + 𝛼ℎ።፩))

ኼ

𝑛፠ − 3
, 𝜎ፖፑፄ =

√
፧ᑘ
∑
።዆ኻ
𝑛፠𝑤።(𝜙። − (𝜙ኺ + 𝛼ℎ።፩))

ኼ

𝑛፠ − 3
, (7.13)

respectively. For the other three error estimators, similar standard deviations can be derived. The
standard deviations are used to asses the quality of the four different error estimators.

7.3.3. Procedure for error estimation
The procedure for the estimation of the discretization error proposed by Eça and Hoekstra [9] is sum-
marized in this subsection. The procedure starts with determining the error estimator 𝛿ፑፄ with the
non-weighted least-squares minimization and the weighted least-squares minimization. Based on the
observed order of grid convergence, 𝑝, and the standard deviations of both fits, the following steps are
used to obtain the best estimate of the discretization error:

1. If for one of the two fits 0.5 ≤ 𝑝 ≤ 2, then that particular fit is used for the estimation of the
error. If both fits satisfy this constraint on the observed order of grid convergence, then the fit
with the smallest standard deviation is the best estimate of the discretization error. If this step is
inconclusive, steps 2 and 3 are used.

2. If for one of the two fits 𝑝 > 2, then the non-weighted and weighted least-squares minimizations of
𝛿ኻ and 𝛿ኼ are solved and the standard deviations of the four fits is determined. The error estimate
is obtained from the fit with the smallest standard deviation.

3. If the order of grid convergence is impossible to establish for both fits of 𝛿ፑፄ or for one of the
two fits of 𝛿ፑፄ the observed order of grid convergence satisfies 𝑝 < 0.5, the non-weighted and
weighted least-squares minimizations of 𝛿ኻ, 𝛿ኼ and 𝛿ኻኼ are solved and the standard deviations of
the resulting six fits are determined. The error estimate is obtained from the fit with the smallest
standard deviation.

For a second-order accurate discretization method, the constraint on the observed order of grid con-
vergence, 0.5 ≤ 𝑝 ≤ 2, is empirically defined as an acceptable range by Eça and Hoekstra [9].

The finite-volume discretization methods used on the three-dimensional unstructured meshes in the
FINE™/Marine flow solver are limited to third-order accuracy for the turbulence equations and the
momentum equations, and to second-order accuracy for the volume fraction equation. Probably, they
produce an order between one and two due to the various combinations of the first-order accurate
upwind and downwind differencing schemes, the second-order central differencing scheme and the
third-order QUICK scheme, used for the discretization of these equations. Hence, the constraint on
the observed order of grid convergence, 0.5 ≤ 𝑝 ≤ 2, empirically defined by Eça and Hoekstra, is
applicable to the present grid refinement study.

7.4. Discretization uncertainty estimation
Following Roache [43,44], the ITTC [15], and Eça and Hoekstra [9], the discretization uncertainty is
estimated as the absolute value of the discretization error estimator multiplied by a factor of safety.
Following the Grid Convergence Index (GCI) procedure from Roache [43,44], the safety factor 𝐹ፒ is
either 1.25 if the error estimate is deemed to be reliable, or 3 otherwise. In the Eça and Hoekstra
procedure, the reliability of an error estimator is assessed with its standard deviation, 𝜎, and the data
range parameter,

ΔᎫ =
max(𝜙።) −min(𝜙።)

𝑛፠ − 1
. (7.14)

The error estimator is deemed to be reliable if the observed order of convergence is in the acceptable
range and the standard deviation is smaller than the data range parameter; i.e. if 0.5 ≤ 𝑝 ≤ 2 and
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𝜎 < ΔᎫ, then 𝐹ፒ = 1.25. Else the larger safety factor, 𝐹ፒ = 3, is adopted to express the lower confidence
in the dataset and the least-squares fit.

Eça and Hoekstra [9] use a slightly different expression to estimate the discretization uncertainty than
the absolute value of the discretization error estimator 𝜖Ꭻ multiplied by a factor of safety as used in
the GCI procedure. Eça and Hoekstra add two additional terms to the expression of the discretization
uncertainty estimator from the GCI procedure, namely, the standard deviation of the fit and the absolute
difference between the value of the real data point and its value estimated with the least-squares fit.
These two terms are added to deal with possible scatter in the dataset and to give a more reliable
uncertainty estimate. Without any scatter in the dataset, this approach reduces to the GCI procedure.

For any 𝜙። from the dataset, i.e. for every grid 𝑖 in the dataset, the discretization uncertainty can be
estimated with

𝑈Ꭻ(𝜙።) = {
𝐹ፒ𝜖Ꭻ(𝜙።) + 𝜎 + |𝜙። − 𝜙ፋፒ| for 𝜎 < ΔᎫ

3 ᎟
ጂᒣ (𝜖Ꭻ(𝜙።) + 𝜎 + |𝜙። − 𝜙ፋፒ|) for 𝜎 ≥ ΔᎫ

, (7.15)

where 𝑈Ꭻ is the estimate of the discretization uncertainty, 𝜙ፋፒ is the discrete value of the least-squares
fit corresponding to 𝜙።, and

𝐹ፒ = {
1.25 for 0.5 ≤ 𝑝 ≤ 2
3 otherwise . (7.16)

Note that 𝑈Ꭻ and 𝜖Ꭻ are both functions of 𝜙።. This formulation of the discretization uncertainty, as
formulated by Eça and Hoekstra [9], defines another category of grid quality, namely, one for fits with
𝜎 ≥ ΔᎫ. The error estimators of these fits are deemed to have a poor reliability. Therefore, a safety
factor larger than three that depends on the ratio of the standard deviation to the data range parameter,
is adopted.

The estimate of the discretization uncertainty, 𝑈Ꭻ, is meant to provide a 95-percent confidence interval
about the exact solution, according to

𝜙። − 𝑈Ꭻ ≤ 𝜙፞፱ፚ፜፭ ≤ 𝜙። + 𝑈Ꭻ , (7.17)

where 𝜙፞፱ፚ፜፭ is the exact solution; i.e. the discretization uncertainty provides an interval about the
exact solution having a confidence level of 95 percent.

7.5. Discretization uncertainty and solving ship motions
As discussed in Section 6.5, the quasi-static approach is used to obtain the equilibrium position of a
ship in a simulation. With this approach, ship motions are imposed rather than solved. There is no
direct coupling between the motion equations and the governing equations. This uncoupling greatly
reduces computation time. However, this uncoupling may contaminate the estimation of the numerical
uncertainty with grid refinement studies, because the motions are not directly coupled to the computa-
tional grid, but they still influence the solution. The influence of the motions on the solution might be
erratic due to this uncoupling.

The uncoupling of motion solving from the grid-dependent governing equations results in question-
able dependency of the motions on the grid refinement. This may lead to unwanted scatter in the
dataset. This scatter can result in unexpected or strange order of convergence and unreliable uncer-
tainty estimates. The scatter in flow quantities between the grids can also be the result of a decrease
in geometric similarity between the grids due to ship motions. Different ship motions between the vari-
ous grids are likely to occur due to slight differences in flow quantities. Since a weighted deformation
method is used to translate the rigid-body motion into deformation of the grid cells, these different mo-
tions lead to different mesh deformations, which contribute to the loss of geometric similarity between
the grids. Furthermore, the difference in resistance between the grids results in different trimming mo-
ments of the driving force. These different moments are likely to increase the scatter in flow quantities
between the grids, because they influence the trim, the sinkage and the computed resistance, and
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thereby influencing themselves again, leading to a virtuous circle.

To accurately and reliably establish the observed order of grid convergence and the numerical uncer-
tainty of the governing equations, two cases are investigated: one excludingmotion solving and thereby
excluding the trimming moment of the driving force, and one including motion solving and thereby in-
cluding the trimming moment of the driving force. The numerical uncertainty is determined for Sysser
85 on the low-speed grid at Froude number 0.45 and on the high-speed grid at Froude number 0.85,
including and excluding the influence of motion solving. No trimming moment of the crew’s weight is
applied, i.e. the crew CoG position is used. The case of excluding motion solving is discussed in the
following section. The case of including motion solving is discussed in Section 7.7. A comparison
between both cases is given in Section 7.8.

7.6. Numerical uncertainty excluding solving ship motions
The numerical uncertainty of the computed resistance, excluding the influence of solving ship motions,
is determined in this section. On all the grids, the heave and the pitch are fixed at the values computed
on the medium grid for the crew CoG position. The influence of the trimming moment of the driving
force on the resistance is thereby excluded. The results of the grid refinement study, excluding the
influence of motion solving, are depicted in Figure 7.2. For Froude numbers 0.45 and 0.85, the com-
puted resistance, the least-squares fit of the error estimator and the uncertainty intervals are plotted as
function of the typical cell size, ℎ።. Plots of the discretization error, as function of the typical cell size,
are also given. The discretization uncertainty for the medium grid and the finest grid, the estimated
exact solution and the observed order of grid convergence are listed in Table 7.3a. The properties of
the fits and the dataset are given in Table 7.3b.

For Froude number 0.45, error estimator 𝛿ኻ, Equation (7.7), is found to be the best estimator of the
discretization error, and hence, the observed order of grid convergence is set to 1. According to the Eça
and Hoekstra procedure discussed in Section 7.4, a safety factor of 3 should now be chosen for this
error estimate. However, the fixed order of 1 is very close to the observed order of grid convergence
at Froude number 0.85. Therefore, the error estimator 𝛿ኻ is deemed to be reliable in this case. Hence,
following the GCI procedure of Roache [43,44], the safety factor is chosen as 1.25 at Froude number
0.45.

The weighted least-squares fit of 𝛿ኻ yields an accurate fit with a coefficient of determination 𝑅ኼ,
defined by Equation (10.6), of 0.976 and a standard deviation of 4.49 millinewton, which is only 0.54‰
of the estimated exact solution. The relative discretization uncertainties are 3.55% and 1.76% for the
medium grid and the finest grid, respectively.

For Froude number 0.85, error estimator 𝛿ፑፄ, Equation (7.6), is found to be the best estimator of the
discretization error. The observed order of grid convergence is 1.1. An order of accuracy close to
one was to be expected based on the various combinations of first-order, second-order and third-order
accurate schemes used for the discretization of the turbulence equations, the momentum equations
and the volume fraction equation. The weighted least-squares fit of 𝛿ፑፄ provides an excellent fit with a
coefficient of determination of 0.997 and a standard deviation of 9.38 millinewton, which is only 0.34‰
of the estimated exact solution. The relative discretization uncertainties are 1.84% and 0.93% for the
medium grid and the finest grid, respectively.

Since it is assumed that the round-off errors and the iterative errors are negligible compared to the
discretization error, the numerical uncertainty consist solely of the discretization uncertainty. Therefore,
the numerical uncertainties for the medium grid are 3.55% and 1.84% at Froude numbers 0.45 and
0.85, respectively. These uncertainties are used in the validation analysis discussed in Chapter 9. The
numerical uncertainty is higher at Froude number 0.45 than at Froude number 0.85 as a result of the
larger scatter in the data at the lower Froude number and the different error estimator used.
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Table 7.3: Numerical uncertainty for Sysser 85 at Froude numbers 0.45 and 0.85, excluding the influence of motion solving.

(a) Discretization errors and uncertainties for the finest grid, denoted by subscript ኻ, and the medium grid, denoted subscript ኾ.

𝐹𝑛 𝑝 𝜙ኺ 𝜖ᎫᎳ 𝑈ᎫᎳ 𝑈ᎫᎳ 𝜙ኾ 𝜖ᎫᎶ 𝑈ᎫᎶ 𝑈ᎫᎶ
[−] [−] [𝑁] [𝑁] [𝑁] [%𝜙ኻ] [𝑁] [𝑁] [𝑁] [%𝜙ኾ]
0.45 1 8.2623 0.1090 0.1470 1.76 8.4926 0.2303 0.3011 3.55
0.85 1.10 27.9018 0.2020 0.2624 0.93 28.3055 0.4037 0.5205 1.84

(b) Properties of the weighted least-squares fits and the dataset.

𝐹𝑛 Error 𝑅 𝜎 𝑅ኼ ΔᎫ 𝐹ፒ
[−] estimator [−] [𝑚𝑁] [−] [𝑚𝑁] [−]
0.45 𝛿ኻ 1.3 4.49 0.976 39.0 1.25
0.85 𝛿ፑፄ 0.59 9.38 0.997 83.9 1.25

7.7. Numerical uncertainty including solving ship motions
The numerical uncertainty of the computed resistance, including the influence of solving ship motions,
is determined in this section. The heave and the pitch are solved with the quasi-static approach. The
trimming moment of the driving force is included in the simulations. The results of the grid refinement
study, including the influence of motion solving, is depicted in Figure 7.2. For Froude numbers 0.45 and
0.85, the computed resistance, the least-squares fit of the error estimator and the uncertainty intervals
are plotted as function of the typical cell size, ℎ።. Plots of the discretization error, as function of the
typical cell size, are also given. The discretization uncertainty for the medium grid and the finest grid,
the estimated exact solution and the observed order of grid convergence are listed in Table 7.4a. The
properties of the fits and the dataset are given in Table 7.4b.

For Froude number 0.45, error estimator 𝛿ኻ, Equation (7.7), is found to be the best estimator of the
discretization error, and hence, the observed order of grid convergence is set to 1. According to the
Eça and Hoekstra procedure, a safety factor of 3 should now be chosen for this error estimate. How-
ever, the fixed order of 1 is very close to the observed order of grid convergence for Froude number
0.85. Therefore, the error estimator 𝛿ኻ is deemed to be reliable in this case. Hence, following the GCI
procedure, the safety factor is chosen as 1.25 at Froude number 0.45.

The weighted least-squares fit of 𝛿ኻ yields an accurate fit with a coefficient of determination of 0.964
and a standard deviation of 5.26 millinewton, which is only 0.64‰ of the estimated exact solution.
The relative discretization uncertainties are 3.50% and 1.71% for the medium grid and the finest grid,
respectively.

For Froude number 0.85, error estimator 𝛿ፑፄ, Equation (7.6), is found to be the best estimator of the
discretization error. The observed order of grid convergence is 1.25. An order of accuracy close to one
was to be expected. The weighted least-squares fit of 𝛿ፑፄ provides an excellent fit with a coefficient
of determination of 0.996 and a standard deviation of 11.6 millinewton, which is only 0.41‰ of the
estimated exact solution. The relative discretization uncertainties are 1.67% and 0.79% for the medium
grid and the finest grid, respectively.

The heave and the pitch computed on the different grids are plotted in Figure 7.4. The pitch angle at both
speeds follows more or less a linear grid convergence while the heave has a random distribution. The
differences in pitch and in heave between the grids are very small. The computed flow field around the
ship determines the resultant forces and moments acting on the ship. These forces and moments are
used in the quasi-static motion-solving approach to impose ship motions. Slight differences between
the flow fields of the various grids lead to minimally different motions. The influence of the minimal
difference in motions on the computed resistance is very limited in this case, as a comparison of the
computed resistance, excluding motion solving, and the computed resistance, including motion solving,
illustrates.
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Since it is assumed that the round-off errors and the iterative errors are negligible compared to the
discretization error, the numerical uncertainty consist solely of the discretization uncertainty. Therefore,
the numerical uncertainties for the medium grid are 3.50% and 1.67% at Froude numbers 0.45 and
0.85, respectively. These uncertainties are used in the validation analysis discussed in Chapter 9. The
numerical uncertainty is higher at Froude number 0.45 than at Froude number 0.85 as a result of the
larger scatter in the data at the lower Froude number and the different error estimator used.

Table 7.4: Numerical uncertainty for Sysser 85 at Froude numbers 0.45 and 0.85, including the influence of motion solving.

(a) Discretization errors and uncertainties for the finest grid, denoted by subscript ኻ, and the medium grid, denoted subscript ኾ.

𝐹𝑛 𝑝 𝜙ኺ 𝜖ᎫᎳ 𝑈ᎫᎳ 𝑈ᎫᎳ 𝜙ኾ 𝜖ᎫᎶ 𝑈ᎫᎶ 𝑈ᎫᎶ
[−] [−] [𝑁] [𝑁] [𝑁] [%𝜙ኻ] [𝑁] [𝑁] [𝑁] [%𝜙ኾ]
0.45 1 8.2675 0.1045 0.1429 1.71 8.4928 0.2253 0.2976 3.50
0.85 1.25 27.9598 0.1673 0.2220 0.79 28.3251 0.3653 0.4741 1.67

(b) Properties of the weighted least-squares fits and the dataset.

𝐹𝑛 Error 𝑅 𝜎 𝑅ኼ ΔᎫ 𝐹ፒ
[−] estimator [−] [𝑚𝑁] [−] [𝑚𝑁] [−]
0.45 𝛿ኻ 1.6 5.26 0.964 37.3 1.25
0.85 𝛿ፑፄ 0.57 11.6 0.996 84.1 1.25

7.8. Comparison of both cases
The results of the two refinement studies, excluding and including the influence of solving ship motions,
are surprisingly similar. The relative comparison error of the estimated exact solution between both
cases is 0.63‰ and 2.1‰ for Froude numbers 0.45 and 0.85, respectively. The observed order of grid
convergence, the least-squares fits of the error estimators, the discretization errors and the numerical
uncertainties are also very similar. This small difference is illustrated in Figure 7.5 by a comparison of
the discretization errors including and excluding the influence of motion solving. The results of both
cases are used in the validation analysis, discussed in Chapter 9.

The trim and the sinkage are not significantly affected by grid refinement. This contributes to a
limited influence of the trimming moment of the driving force on the uncertainty estimation.
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(d) The discretization error at ፅ፧ ዆ ኺ.ዂ኿, obtained with the weighted least-squares fit of error estimator ᎑ᑉᐼ.

Figure 7.2: Results of the grid refinement study for Sysser 85 at Froude numbers 0.45 and 0.85, excluding the influence of
motion solving.
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(d) The discretization error at ፅ፧ ዆ ኺ.ዂ኿, obtained with the weighted least-squares fit of error estimator ᎑ᑉᐼ.

Figure 7.3: Results of the grid refinement study for Sysser 85 at Froude numbers 0.45 and 0.85, including the influence of
motion solving.
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Figure 7.4: Heave and pitch for Sysser 85 at Froude numbers 0.45 and 0.85, computed on the different grids.
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(a) Weighted least-squares fits of error estimator ᎑Ꮃ at Froude number 0.45.

−3.8 −3.7 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3 −2.9 −2.8 −2.7 −2.6
−2

−1.5

−1

−0.5

logኻኺ(ℎ) [logኻኺ[𝑚]]

lo
g ኻ
ኺ(
𝜖 Ꭻ
)
[lo
g ኻ
ኺ[
𝑁]
]

CFD results excluding motions
Weighted LS-fit excluding motions
CFD results including motions
Weighted LS-fit including motions

(b) Weighted least-squares fits of error estimator ᎑ᑉᐼ at Froude number 0.85.

Figure 7.5: The discretization error, excluding and including the influence of solving ship motions.
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Experimental results

Experimental resistance measurements were conducted for validation of the numerical results. The
parent model of the new systematic series, Sysser 85, was tested in the #1 towing tank of the Ship Hy-
dromechanics Laboratory at the Delft University of Technology for various speeds and applied trimming
moments. These resistance measurements for Sysser 85 were conducted according to the numerical
test conditions. These measurements are not a part of this MSc thesis. They were conducted by the
author as part of an additional thesis. The resistance measurements are thoroughly described by the
author in [31]. For the sake of completeness, the experimental results and the experimental uncertain-
ties, given in [31], are summarized in this chapter. The experimental results are presented in Section
8.1. The experimental uncertainties are given in Section 8.2.

The main objective of these resistance tests was to determine the upright trimmed resistance of the
bare hull for the same test conditions as used for the numerical simulations. The upright trimmed
resistance of Sysser 85 was measured for the crew CoG position at Froude numbers 0.25 up to 0.85
with increments of 0.10. For the crew back position, this resistance was measured at Froude numbers
0.25 up to 0.95 with increments of 0.10.

Sysser 85 was tested in the #1 towing tank of the Ship Hydromechanics Laboratory at the Delft
University of Technology. This towing tank has a length of 142 metres, a width of 4.22 metres and a
maximum water depth of 2.5 metres. For these experiments, a model with a waterline length of two
metres was used. This waterline length is also used in the numerical computations to ensure a one-
to-one comparison between the experimental results and the numerical results. This eliminates scale
effects from the validation. The main dimensions of Sysser 85 at model scale are listed in Table 8.1.

A picture of the measurement set-up that was used for the resistance measurements is shown in
Figure 8.1. The model was attached to the towing carriage by two balance arms at even positions fore
and aft of the longitudinal position of the centre of gravity of the model. The balance arms allow the
model to be free in heave, roll and pitch. The resistance of the model through the water was determined
by measuring a horizontal tow force. The longitudinal trimming moment of the driving force and the
crew’s weight was exerted on the model by changing the longitudinal centre of gravity of the model
prior to a measurement run with a longitudinally shiftable weight. Three iteration runs were carried out
at each speed, in order to apply the right trimming moment corresponding to the measured resistance,
i.e. to obtain a centre of effort (CoE) height of 0.60𝐿ፖፋ in the measurement run, and to satisfy Equation
(4.5). All the final measurement runs satisfy 0.585𝐿ፖፋ ≤ 𝑧ፂ፨ፄ ≤ 0.60𝐿ፖፋ. For the details of the
measurement set-up and the measurement procedure used during the resistance measurements for
Sysser 85, the reader is referred to Kleijweg [31].
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Table 8.1: Main dimensions of the Sysser 85 model
used for the resistance measurements.

𝐿ፖፋ [𝑚] 2.000
𝐵ፖፋ [𝑚] 0.4094
𝑇፜ [𝑚] 0.0592
Δ፜ [𝑘𝑔] 17.98
𝐿𝐶𝐵፟፩ [𝑚] 1.077
𝐿𝐶𝐺፟፩ [𝑚] 1.077
𝑆፜ [𝑚ኼ] 0.5996
𝐴ፗ [𝑚ኼ] 0.01657
𝛼 [−] 5.00

Figure 8.1: A picture of the measurement set-up that was used for the resistance measurements. Figure from Kleijweg [31].
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8.1. Experimental results
The bare hull upright trimmed resistance of Sysser 85 for the crew CoG and back positions, and corre-
sponding heave, pitch and height of the CoE above the waterline are listed in Table 8.2. The given 𝑧ፂ፨ፄ
is the height of the centre of effort simulated during the measurement of that particular resistance value.
The upright trimmed resistance of Sysser 85 is plotted for the two crew positions in Figure 8.2. The
resistance, heave and pitch curves and the differences between the two crew positions are very similar
to those of the numerical results, shown in Figure 6.3. The upright untrimmed resistance of Sysser 85
is given in Table 8.3. The upright untrimmed resistance is also used in the validation analysis.

Table 8.2: The bare hull upright trimmed resistance of Sysser 85 for the crew CoG and back
positions, determined by Kleijweg [31] with the experimental method.

Crew CoG Crew back
𝐹𝑛 𝑅፭ 𝑧 𝜃 𝑧ፂ፨ፄ 𝑅፭ 𝑧 𝜃 𝑧ፂ፨ፄ
[−] [𝑁] [𝑚𝑚] [∘] [𝑚] [𝑁] [𝑚𝑚] [∘] [𝑚]
0.25 1.75 -2.0 0.15 1.20 1.85 -0.62 -0.75 1.19
0.35 3.80 -5.4 0.26 1.17 4.13 -3.5 -0.81 1.18
0.45 8.91 -10.7 -0.28 1.20 8.92 -6.8 -1.41 1.18
0.55 14.31 -11.6 -0.90 1.19 14.08 -6.6 -1.96 1.19
0.65 19.41 -9.4 -1.26 1.18 19.01 -3.8 -2.27 1.18
0.75 24.51 -6.4 -1.14 1.17 23.27 -0.49 -2.17 1.18
0.85 30.56 -6.6 -0.72 1.18 28.25 -0.14 -1.92 1.18
0.95 35.64 -3.8 -1.66 1.18

Table 8.3: The bare hull upright untrimmed resistance of Sysser 85,
determined by Kleijweg [31] with the experimental method.

𝐹𝑛 𝑅፭ 𝑧 𝜃
[−] [𝑁] [𝑚𝑚] [∘]
0.25 1.80 -2.0 0.08
0.35 3.96 -5.1 0.02
0.45 8.97 -8.9 -0.85
0.55 14.12 -8.0 -1.73
0.65 19.08 -3.8 -2.31
0.75 23.11 0.75 -2.38

8.2. Experimental uncertainty
The reliability and the accuracy of the resistancemeasurements were assessed as well by Kleijweg [31].
The experimental uncertainties were determined for the measured resistance at Froude numbers 0.45
and 0.85 for the crew CoG position. These are also the conditions for which the numerical uncertainty
was assessed in the previous chapter. The experimental uncertainties are briefly summarized below.

The uncertainty of the resistance measurements was determined, by Kleijweg [31], by following the
ITTC recommended procedures and guidelines for uncertainty analysis in experimental hydrodynamics
and resistance tests [19,20,21,22]. These recommended procedures and guidelines are based on the
Guide to the expression of uncertainty in measurement [23] of the Joint Committee for Guides in Metrol-
ogy (JCGM). Following these guidelines, uncertainties were classified into three categories: standard
uncertainty, combined standard uncertainty and expanded uncertainty. Standard uncertainties cover
all the possible elementary sources of experimental uncertainties like, for instance, repeatability, in-
strument calibration and environmental parameters.

Based on the ITTC [19,20,21,22], the following eight sources of standard uncertainties were identi-
fied and assessed for these resistance measurements: data acquisition, load cell calibration, repeata-
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(c) Pitch for the crew CoG and back positions.

Figure 8.2: Experimental results of Sysser 85, determined by Kleijweg [31].
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bility of the tests, the water temperature, ballasting of the model, the tow speed, the resistance of the
turbulence-stimulating strips, and the trimming moment. The standard uncertainties and the estimated
values at Froude numbers 0.45 and 0.85 for the crew CoG position are summarized in Table 8.5.
The dominant standard uncertainties are related to the load cell calibration, the turbulence stimulators
and the applied trimming moment. For a thorough discussion of the uncertainty components and their
assessment, the reader is referred to Kleijweg [31].

All the standard uncertainties can be joined into one combined standard uncertainty. The combined
standard uncertainty, 𝑢፜, is obtained with the root-sum-squares method as follows:

𝑢፜(�̄�) = √
ዂ

∑
።዆ኻ
𝑢ኼ። , (8.1)

where 𝑢። are the standard uncertainties, given in Table 8.5. At Froude numbers 0.45 and 0.85, the
relative combined standard uncertainties are equal to 3.16 percent and 1.97 percent, respectively.

To asses the uncertainty of a measurement result, the combined standard uncertainty can be ex-
panded to the expanded uncertainty, 𝑈ፑ, with

𝑈ፑ = 𝑘𝑢፜(�̄�), (8.2)

where 𝑘 is a coverage factor. The expanded uncertainty is meant to provide an interval about the exact
solution with a level of confidence of 95 percent, according to

�̄� − 𝑈ፑ ≤ 𝑅 ≤ �̄� + 𝑈ፑ , (8.3)

where 𝑅 is the exact solution, and �̄� is the best estimate of the measurand — quantity intended to be
measured — obtained from the average of the multiple measurement readings of the repeat tests.

According to the ITTC [21], a level of confidence of 95 percent is commonly used in experimen-
tal hydromechanics. This confidence level was also used for the numerical uncertainty determined in
Chapter 7. To provide such an interval about the measurement result, an appropriate coverage factor
has to be chosen. Based on the recommendations of the ITTC [21] and the JCGM [23], a coverage
factor of 2.23 was used. The relative expanded uncertainty at Froude numbers 0.45 and 0.85 is equal
to 7.04 percent and 4.38 percent, respectively. The experimental uncertainties of the resistance mea-
surements for Sysser 85 at Froude numbers 0.45 and 0.85 for the crew CoG position are summarized
in Table 8.5. The best estimate of the measurand is also given.
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Table 8.4: Standard uncertainties of the resistance measurements for Sysser 85 at Froude numbers
0.45 and 0.85 for the crew CoG position, determined by Kleijweg [31]. These standard uncertainties
were used to determine the relative combined standard uncertainty ፮ᑔ and the relative expanded

uncertainty ፔᑉ, given in Table 8.5.

𝐹𝑛 = 0.45 𝐹𝑛 = 0.85
Source Uncertainty 𝑢። 𝑢።

component [%�̄�] [%�̄�]
Data acquisition Averaging signals 0.0677 0.194
Load cell Calibration 2.60 0.769
Repeat tests Repeatability 0.191 0.0890
Temperature Viscosity 0.0959 0.0841
Ballasting Wetted surface 0.107 0.107
Tow speed Dynamic pressure 0.0502 0.0266
Turbulence stimulator Resistance strips 0.854 0.898
Trimming moment CoE height 1.55 1.55

Table 8.5: Uncertainty of the resistance measurements for Sysser 85 at Froude numbers
0.45 and 0.85 for the crew CoG position, determined by Kleijweg [31]. ፑᑥ ዆ ፫̄ ዅ ፑᑥᑤᑥᑣᑚᑡ ,

where ፑᑥᑤᑥᑣᑚᑡ is the resistance of the turbulence-stimulating strips.

𝐹𝑛 �̄� 𝑢፜ 𝑘 𝑈ፑ 𝑈ፑ 𝑅፭
[−] [𝑁] [%�̄�] [−] [%�̄�] [𝑁] [𝑁]
0.45 9.4290 3.16 2.23 7.04 0.6635 8.9417
0.85 31.8458 1.97 2.23 4.38 1.3962 30.1072
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Validation

To establish the reliability and the accuracy of the numerical results, a Verification & Validation (V&V)
analysis is performed. With the numerical uncertainties and the experimental uncertainties, assessed
in the previous two chapters, the validation analysis can be performed. Validation consists of a compari-
son of numerical results and experimental results, taking their corresponding uncertainties into account.
The method used in the validation analysis is discussed in Section 9.1. The results of the validation
analysis are presented and discussed in Section 9.2. Section 9.3 concludes the validation analysis
with a qualitative comparison of numerical results and experimental results.

9.1. Validation method
Following the validation procedure described by the ITTC guidelines for uncertainty analysis in CFD
[15], a comparison error, 𝐸, between the numerical result, 𝐹፱, and the experimental result, 𝑅፭, is defined
by

𝐸 = 𝐹፱ − 𝑅፭ . (9.1)

In order to determine if the numerical simulations are validated, this error is compared to the validation
uncertainty. The validation uncertainty, 𝑈ፕ, is composed of the numerical uncertainty and the experi-
mental uncertainty and is defined by

𝑈ፕ = √𝑈ᎫᎶኼ + 𝑈ፑኼ, (9.2)

where 𝑈ᎫᎶ is the estimate of the numerical discretization uncertainty for the medium grid, determined
in Chapter 7, and 𝑈ፑ is the expanded experimental uncertainty, given in Chapter 8.

The numerical results are not corrected for numerical errors in this validation analysis. For the
uncorrected values, validation at the 𝑈ፕ level is achieved if |𝐸| < 𝑈ፕ. Else the combination of all errors
in the numerical simulations and the experimental tests is larger than the validation uncertainty, and
therefore, the numerical simulations are not validated at the 𝑈ፕ level.

From a programmatic standpoint, validation of the numerical results is successful at the |𝐸| level
if the absolute value of the comparison error is lower than the required uncertainty 𝑈፫፞፪፝, i.e. if |𝐸| <
𝑈፫፞፪፝. Of course, the required uncertainty should be chosen carefully in order to fit the purpose of the
numerical results.

For the purpose of deriving regressions for the upright trimmed resistance prediction in velocity pre-
diction programs, validation at a level below 10 percent seems reasonable and acceptable. VPPs are
used extensively for the design of sailing yachts and the determination of ratings for individual yachts.
If the trends, i.e. the shapes of the resistance curves and the differences in resistance between the
models, are captured correctly, it is very likely that an optimization of a yacht design or the determi-
nation of ratings for individual yachts yields the correct result. Furthermore, VPPs may contain other
more dominant sources of errors.
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9.2. Validation results
With the numerical uncertainties and the experimental uncertainties, assessed in the previous two
chapters, the validation analysis can be performed. These uncertainties were assessed for Sysser 85
at Froude numbers 0.45 and 0.85 for the crew CoG position. The numerical uncertainties determined
for the medium grid are used in the validation analysis. The numerical results on the medium grid are of
interest, because medium grids are used to calculate the hydrodynamic forces acting on the models in
the new systematic series. A distinction between including and excluding the influence of solving ship
motions was made in the grid refinement study. The results of both cases are used in this validation
analysis. The numerical results and uncertainties are listed in Tables 7.3 and 7.4. The experimental
results and uncertainties are given in Table 8.5.

The validation of the numerical results for Sysser 85 at Froude numbers 0.45 and 0.85 for the crew
CoG position on the medium grid, including and excluding the influence of solving ship motions, is
summarized in Table 9.1. At Froude number 0.45, validation at the 𝑈ፕ level of 8.1 percent is achieved
for both cases. The absolute value of the comparison error is smaller than the validation uncertainty
at this speed. Unfortunately, at Froude number 0.85, no validation is achieved at the 𝑈ፕ level. The
absolute value of the comparison error is larger than the validation uncertainty at this speed. Although
validation is not achieved at the 𝑈ፕ level, confidence in the numerical results still exists, because the
relative comparison errors are very similar at both speeds. Despite that the relative comparison errors
are nearly the same, validation cannot be achieved due to the lower relative validation uncertainty at
the higher Froude number.

From a programmatic standpoint, validation of the numerical results at Froude number 0.85 is still
successful at the |𝐸| level if |𝐸| < 𝑈፫፞፪፝. For the purpose of deriving regressions for the bare hull upright
trimmed resistance prediction in VPPs, validation at the |𝐸| level of 6 percent is very reasonable. The
numerical results, including and excluding the influence of motion solving, at Froude number 0.85 are
therefore successfully validated from a programmatic standpoint at the |𝐸| level of 6 percent.

In order to asses the quality and the credibility of the numerical simulations for the entire speed range
and the different crew positions, the validation analysis is extended to the numerical results of Sysser
85 computed on the medium grid for the crew CoG and back positions. These numerical results are
depicted in Figure 6.3. Since no assessment of the experimental uncertainties and the numerical un-
certainties is available at other Froude numbers than 0.45 and 0.85 for the crew CoG position, validation
at the 𝑈ፕ level for the other Froude numbers and the crew back position is difficult and questionable.
According to the ITTC [15], no good procedure exists for the estimation of the uncertainty at an arbitrary
condition from the uncertainty level at a neighbouring validated condition.

Extending the validation results at Froude numbers 0.45 and 0.85 to neighbouring conditions is
therefore deemed unreliable. Although validation cannot be achieved at the 𝑈ፕ level for the other
Froude numbers and the crew back position, validation of the other numerical results is still successful
from a programmatic standpoint at the |𝐸| level if |𝐸| < 𝑈፫፞፪፝. For the intended purpose of the numerical
results, the approach of validating the numerical results at the |𝐸| level below 10 percent is considered
to be acceptable.

The experimental results, the numerical results and the comparison errors for Sysser 85, for both
crew positions, are given in Table 9.2. Comparison errors are between -2.9 and -8.6 percent of the
experimental results. Some exceptions excluded, the comparison error seems to slightly increase with
increasing Froude number. The heave values, and also the pitch values, are very similar between
the experimental method and the numerical method. The resistance, the heave and the pitch for the
experimental results and the numerical results are plotted in Figures 9.1 and 9.2 for the crew CoG
position and the crew back position, respectively. The curves of the numerical results are very similar
to the curves of the experimental results. There is some difference in the absolute values of the data
points, but the shape of the curves is nearly identical. Note that for the sake of illustration, the data
points are connected with straight line segments. Fitting a cubic spline to the data points using a
least-squares fit would provide smoother and more realistic curves, but distracts from the main goal:
validation of the actual data points.

For the intended purpose of the numerical results, validation at the |𝐸| level between 2.9 and 8.6
percent is acceptable for the same reasons as mentioned before. For this purpose, confidence in the
numerical results exists. Hence, for the resistance of Sysser 85 for the crew CoG and back positions
computed on the medium grid, validation is successful from a programmatic standpoint at the |𝐸| level
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between 2.9 and 8.6 percent.

It should be noted that the comparison errors of the resistance are influenced by the difference in applied
longitudinal trimming moment between the experimental method and the numerical method. The goal
in the experimental tests was to obtain the right CoE height of 0.60𝐿ፖፋ and not to apply the same
longitudinal trimming moment used in the corresponding numerical simulation. For both methods, the
longitudinal trimming moment is equal to the measured or computed resistance multiplied by nearly
the same CoE height. This results in different applied trimming moments between the methods. The
trimming moment applied in the numerical simulations is between 2 and 13 percent lower than the
trimming moment applied in the experimental method. Note that the CoE height in the experimental
tests satisfies 0.585𝐿ፖፋ ≤ 𝑧ፂ፨ፄ ≤ 0.60𝐿ፖፋ while the CoE height in the numerical simulations is always
equal to 0.60𝐿ፖፋ. Nevertheless, the applied trimming moment is always higher in the experimental
method than in the corresponding numerical simulation.

It is very likely that this difference in trimmingmoment increases the difference in resistance between
both methods compared to the resistance measured or computed for the same longitudinal trimming
moment. For experimental tests and numerical simulations with the same applied longitudinal trimming
moment, the comparison errors are expected to be smaller than those listed in Table 9.2.

Table 9.1: Validation of the numerical results for Sysser 85 at Froude numbers 0.45 and 0.85 for the crew CoG position,
computed on the medium grid. Numerical results and uncertainties from Tables 7.3 and 7.4. Experimental results and

uncertainties from Table 8.5.

(a) Validation of the results of the grid refinement study excluding the influence of motion solving, given in Table 7.3.

𝐹𝑛 𝑅፭ 𝑈ፑ 𝐹፱ = 𝜙ኾ 𝑈ᎫᎶ 𝐸 𝐸 𝑈ፕ 𝑈ፕ |𝐸| < 𝑈ፕ
[−] [𝑁] [𝑁] [𝑁] [𝑁] [𝑁] [%𝑅፭] [𝑁] [%𝑅፭]
0.45 8.9417 0.6635 8.4926 0.3011 -0.4491 -5.02 0.7286 8.15 3

0.85 30.1072 1.3962 28.3055 0.5205 -1.8017 -5.98 1.4901 4.95 7

(b) Validation of the results of the grid refinement study including the influence of motion solving, given in Table 7.4.

𝐹𝑛 𝑅፭ 𝑈ፑ 𝐹፱ = 𝜙ኾ 𝑈ᎫᎶ 𝐸 𝐸 𝑈ፕ 𝑈ፕ |𝐸| < 𝑈ፕ
[−] [𝑁] [𝑁] [𝑁] [𝑁] [𝑁] [%𝑅፭] [𝑁] [%𝑅፭]
0.45 8.9417 0.6635 8.4928 0.2976 -0.4489 -5.02 0.7272 8.13 3

0.85 30.1072 1.3962 28.3251 0.4741 -1.7821 -5.92 1.4745 4.90 7

9.2.1. Validation of other numerical results
Additional numerical simulations are performed for Sysser 83, Sysser 84 and Sysser 85 to extend the
validation effort and to illustrate the performance and the capabilities of the FINE™/Marine flow solver.
The bare hull upright untrimmed resistance of these three models is computed with the numerical
method described in Chapter 6.

The lines plans and the hydrostatic parameters of Sysser 83 and Sysser 84 are given in Appendix C.
Syssers 83 and 84 are more modern versions of Sysser 28. Nowadays, Sysser 83 and Sysser 84 are
outdated designs. Syssers 83 and 84 were tested with the experimental method used for the DSYHS in
the #1 towing tank of the Ship Hydromechanics Laboratory at the Delft University of Technology in the
year 2010. The bare hull upright untrimmed resistance of these two models was measured for various
speeds. These measured resistance values are used in this validation analysis. Since no assessment
of the experimental uncertainties is available, no actual validation can be achieved. The comparison
errors are given and discussed below. The experimental results for Sysser 85 were determined with
the recent tests discussed in Chapter 8.

The experimental upright untrimmed resistance and the numerical upright untrimmed resistance,
and corresponding comparison errors for Syssers 83, 84 and 85 are listed in Table 9.3. Comparison
errors are between -3.2 and -10.7 percent of the experimental results. These comparison errors are
comparable to the errors given in Table 9.2. Again, the performance of the numerical flow solver and
the accuracy of the numerical results are satisfying. A noticeable observation is that at every speed
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Table 9.2: Experimental and numerical upright trimmed resistance, trim and sinkage of Sysser 85 for the crew
CoG and back position. Numerical values are computed on the medium grid. Experimental results from Table 8.2.

(a) Crew CoG position.

Experimental Numerical
𝐹𝑛 𝑅፭ 𝑧 𝜃 𝐹፱ 𝑧 𝜃 𝐸
[−] [𝑁] [𝑚𝑚] [∘] [𝑁] [𝑚𝑚] [∘] [%𝑅፭]
0.25 1.75 -2.0 0.15 1.63 -1.9 0.13 -7.0
0.35 3.80 -5.4 0.26 3.62 -5.0 0.20 -4.8
0.45 8.91 -10.7 -0.28 8.49 -9.9 -0.35 -4.6
0.55 14.31 -11.6 -0.90 13.61 -10.5 -0.95 -4.8
0.65 19.41 -9.4 -1.26 18.11 -8.5 -1.23 -6.7
0.75 24.51 -6.4 -1.14 22.47 -6.9 -1.10 -8.3
0.85 30.56 -6.6 -0.72 28.31 -8.2 -0.68 -7.4

(b) Crew back position.

Experimental Numerical
𝐹𝑛 𝑅፭ 𝑧 𝜃 𝐹፱ 𝑧 𝜃 𝐸
[−] [𝑁] [𝑚𝑚] [∘] [𝑁] [𝑚𝑚] [∘] [%𝑅፭]
0.25 1.85 -0.62 -0.75 1.76 -0.36 -0.80 -4.8
0.35 4.13 -3.5 -0.81 3.86 -3.2 -0.87 -6.6
0.45 8.92 -6.8 -1.41 8.65 -6.1 -1.51 -2.9
0.55 14.08 -6.6 -1.96 13.24 -5.8 -1.99 -6.0
0.65 19.01 -3.8 -2.27 17.52 -3.0 -2.28 -7.9
0.75 23.27 -0.49 -2.17 21.27 -1.0 -2.15 -8.6
0.85 28.25 -0.14 -1.92 26.17 -1.4 -1.95 -7.4
0.95 35.64 -3.8 -1.66 32.87 -3.9 -1.74 -7.8

Table 9.3: Experimental and numerical upright untrimmed resistance for Syssers 83, 84 and 85.
Experimental values for Sysser 85 are from Table 8.3. Experimental values for Syssers 83 and 84

are from tests in the year 2010. Numerical values are computed on the medium grid.

Sysser 83 Sysser 84 Sysser 85
𝐹𝑛 𝑅፭ 𝐹፱ 𝐸 𝑅፭ 𝐹፱ 𝐸 𝑅፭ 𝐹፱ 𝐸
[−] [𝑁] [𝑁] [%𝑅፭] [𝑁] [𝑁] [%𝑅፭] [𝑁] [𝑁] [%𝑅፭]
0.25 1.63 1.53 -6.2 1.87 1.67 -10.7 1.80 1.64 -9.0
0.35 3.44 3.29 -4.3 3.88 3.65 -6.0 3.96 3.63 -8.5
0.45 7.97 7.72 -3.2 8.33 7.88 -5.4 8.97 8.40 -6.3
0.55 12.97 12.55 -3.2 13.45 12.70 -5.5 14.12 13.22 -6.4
0.65 17.61 16.48 -6.4 17.79 16.60 -6.7 19.08 17.53 -8.1
0.75 21.36 20.18 -5.5 22.09 20.39 -7.7 23.11 21.18 -8.3
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Figure 9.1: Experimental and numerical upright trimmed resistance, heave and pitch of Sysser 85 for
the crew CoG position. Numerical results from Figure 6.3. Experimental results from Table 8.2.
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(a) Bare hull upright trimmed resistance.
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Figure 9.2: Experimental and numerical upright trimmed resistance, heave and pitch of Sysser 85 for
the crew back position. Numerical results from Figure 6.3. Experimental results from Table 8.2.
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the comparison error of Sysser 83 is the lowest. It seems that for this more traditional hull shape with
a narrow transom and a traditional waterline shape, i.e. gradually curved waterlines in the afterbody,
the flow solver performs better. Apparently, the flow solver has more difficulties with the wide transoms
and corresponding wide waterline shapes in the afterbodies of Sysser 84 and Sysser 85 than with the
shapes of the more traditional Sysser 83. This is probably related to the increased flow separation
associated with these wider transoms.

9.2.2. Conclusions from the validation effort
The validation analysis was performed for the numerical results of the grid refinement study for Sysser
85 at Froude numbers 0.45 and 0.85 for the crew CoG position computed on the medium grid. The
numerical results on the medium grid are of interest, because medium grids are used to calculate the
hydrodynamic forces acting on themodels in the new systematic series. A distinction between including
and excluding the influence of solving ship motions was made in the refinement study, discussed in
Chapter 7. The results of the two refinement studies, excluding and including the influence of solving
ship motions, were surprisingly similar. The results of the validation analysis for both cases are also
very similar. For the validation of the numerical results of the new systematic series, the numerical
results and uncertainties of the grid refinement study including the influence of solving ship motions
and trimming moments of the driving force are the most appropriate.

At Froude number 0.45, validation at the 𝑈ፕ level of 8.1 percent was achieved for both cases.
Unfortunately, at Froude number 0.85, no validation could be achieved at the 𝑈ፕ level. The absolute
value of the comparison error is larger than the validation uncertainty at this speed. Although validation
was not achieved at the 𝑈ፕ level, confidence in the numerical results still exists, because the relative
comparison errors at both speeds are almost the same. From a programmatic standpoint, validation
of the numerical results at Froude number 0.85 was successful at the |𝐸| level of 6 percent. For the
purpose of deriving regressions for the upright trimmed resistance prediction in VPPs, the approach of
validating the numerical results at the |𝐸| level below 10 percent is considered to be reasonable and
acceptable.

In order to asses the quality and the credibility of the numerical simulations performed for the new
systematic series, the validation analysis was extended to the numerical results computed for Sysser
85 on the medium grid for the crew CoG and back positions over the entire speed range. The corre-
sponding comparison errors are between -2.9 and -8.6 percent of the experimental results. The heave
values, and also the pitch values, are very similar between the experimental method and the numer-
ical method. The trends in the resistance curves and the motion curves are captured perfectly by the
numerical method. With the absence of reliable experimental and numerical uncertainty estimates for
all the Froude numbers, validation could not be achieved at the 𝑈ፕ level. For the resistance of Sysser
85 computed on the medium grid for both crew positions, validation is successful from a programmatic
standpoint at the |𝐸| level between 2.9 and 8.6 percent.

Since the other hull shapes in the new systematic series are all derived from Sysser 85 and the
numerical simulations are performed with exactly the same settings on similar medium grids, similar
comparison errors are expected for the other hull shapes in the systematic series. All the used grids
are derived with exactly the same grid-generation settings. They all have similar mesh qualities and
geometrical properties, like the orthogonality, the aspect ratio and the skewness of the grid cells.

Additional numerical simulations were performed for two models not belonging to the new systematic
series to further extend the validation effort and to illustrate the performance and the capabilities of the
FINE™/Marine flow solver. The found comparison errors are comparable to the errors of the numerical
results for the new systematic series. Again, the performance of the numerical flow solver and the
accuracy of the numerical results are satisfying. A noticeable observation is that at every speed the
comparison error of the more traditional hull shape is the lowest. It seems that for this more traditional
hull with a traditional narrow transom and a traditional waterline shape, the flow solver performs better.
This is probably related to the increased flow separation associated with the wider transoms of the
modern designs.

In general, the numerical method underpredicts the resistance compared to the experimental method
for all the investigated cases, but yields satisfying results. The shape of the resistance curves, the
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motions and the differences in resistance between the two crew positions are captured correctly by the
numerical method compared to the experimental results.

9.3. Qualitative comparison
The validation analysis is concluded with a qualitative comparison of numerical results with experimen-
tal results. The wave system around a ship is one of the main contributors to the dissipation of energy
and has therefore a large influence on the resistance. Consequently, an accurate computation of the
wave system in the numerical simulations is necessary. Since no quantitative measurements of the
wave field were or could be taken during the experimental tests, only a qualitative comparison from
visual observations is given. The generated bow wave is compared visually for Sysser 85 at Froude
numbers 0.45 and 0.85 for the crew CoG and back position. Photographs of the bow wave in the ex-
perimental method and corresponding visualisations of the bow wave in the numerical simulations at
Froude numbers 0.45 and 0.85 are shown in Figures 9.3 and 9.4. Note the slight differences in camera
angle between the figures of the numerical method and the experimental method.

The first thing that stands out from both figures is the good qualitative agreement between both
methods. In general, the shape and the height of the bow wave seem to be similar between the exper-
imental method and the numerical method. The bow waves seem more irregular in the experimental
method than in the numerical method. This is probably a consequence of the turbulence stimulators
used in the experimental method. At Froude number 0.45, the resemblance between both methods is
striking. For instance, at Froude number 0.45 for the crew back position, the braking wave — wave
tunnel near the middle turbulence stimulator — is captured perfectly by the numerical method.

At Froude number 0.85, the resemblance is less striking. The bow waves seemmore irregular in the
experimental method than in the numerical method. The bow waves in the experimental method seem
to contain more elements of braking waves while these elements are less pronounced in the numerical
method. This is probably again a consequence of the turbulence stimulators used in the experimental
method. Wave breaking elements in the numerical method are mainly present between the highest
contour line and the top of the bow wave. Some fading of colours and some irregular shapes can be
observed there.

Overall, the shape and the height of the bow waves seem to be visually very similar between the
experimental method and the numerical method at both Froude numbers. Although this is just a quali-
tative comparison of the bow wave and no actual validation of the wave system, the visual observations
of the bow wave are encouraging and strengthen the confidence in the numerical results.
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(a) Experimental method with the crew CoG position.

(b) Numerical method with the crew CoG position.

(c) Experimental method with the crew back position.

(d) Numerical method with the crew back position.

Figure 9.3: Bow waves of Sysser 85 at Froude number 0.45 for the crew CoG and back positions, determined with
the experimental method and the numerical method.
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(a) Experimental method with the crew CoG position.

(b) Numerical method with the crew CoG position.

(c) Experimental method with the crew back position.

(d) Numerical method with the crew back position.

Figure 9.4: Bow waves of Sysser 85 at Froude number 0.85 for the crew CoG and back positions, determined with
the experimental method and the numerical method.
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Regression analysis

The hydrodynamic resistance forces acting on the hull shapes in the new systematic series are used
to derive regressions for the estimation of the bare hull upright trimmed resistance. The dataset of the
new systematic series, obtained with CFD simulations, contains the resistance values for various hull
forms, speeds and trimming moments. A regression analysis is performed on this dataset to derive
these regressions.

This analysis is performed for the resistance values extrapolated to prototype scale. In order to
separate various physical effects and thereby to enhance the quality of the regression results, the
resistance is decomposed into various components before the analysis. The decomposition and the
extrapolation of the resistance are discussed in Section 10.1. Before discussing the regression analysis
itself, a brief explanation of the for this analysis important statistical definitions is given in Section 10.2.
The method followed in the regression analysis is explained in Section 10.3.

A clear distinction between dependent variables and independent variables is made throughout this
analysis. The resistance is the dependent, or response, variable depending on the independent, or
explanatory, variables. The independent variables are the hydrostatic parameters of a hull. All the
independent variables that are assumed to be of influence on the dependent variable are given in
Section 10.4. The resistance is made non-dimensional before the analysis. This scaling allows for
removing some of the largest known physical relationships between the dependent variable and the
independent variables. More subtle physical relationships between the dependent variable and the
independent variables become thereby more apparent. The scaling of the resistance is discussed in
Section 10.5.

The results of the regression analysis are presented and discussed in Section 10.6. An verification
of the derived regressions is given in Section 10.7. The applicability of the derived regressions to
the velocity prediction of modern high performance sailing yachts with existing VPPs is illustrated in
Section 10.8. Section 10.9 concludes this chapter with a summary of the characteristics of the derived
regression formulas. The bare hull upright trimmed resistance prediction based on the new formulations
is summarized in Appendix G.

10.1. Resistance decomposition and extrapolation
In order to separate various physical effects and thereby to enhance the quality of the regression re-
sults, the resistance is decomposed into two components. These components require different treat-
ment in the analysis. Two approaches for the decomposition are considered. The first one is to follow
the decomposition of the resistance into a pressure resistance component and a frictional resistance
component, as used in the numerical flow solver. The pressure resistance is equal to the horizontal
component of the resultant force obtained with integration of the normal stresses over the wetted sur-
face of the hull. Consequently, the pressure resistance consists of the wave-making resistance and
the viscous pressure resistance. The frictional resistance is equal to the horizontal component of the
resultant force obtained with integration of the shear stresses over the wetted surface of the hull. The
decomposition into a pressure resistance and a frictional resistance makes it possible to perform a
regression analysis on both resistance components.

87
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Another possibility is to follow the extrapolation procedure discussed in Section 2.2, and to decom-
pose the resistance into an estimated frictional resistance and a residuary resistance component. The
frictional resistance is estimated with the friction coefficient calculated with the ITTC 1957 Model-Ship
Correlation Line [16]. The residuary resistance is defined as the difference between the total resistance
and the estimated frictional resistance. This decomposition is preferred over a decomposition into a
pressure resistance component and a frictional resistance component, because it allows for easy ex-
trapolation of the results to different waterline lengths with the standard extrapolation procedure used for
resistance measurements in towing tanks. This offers more flexibility for the implementation of the de-
rived regressions into velocity prediction programs and allows for an easier comparison of experimental
and numerical resistance data. Furthermore, this same extrapolation procedure and decomposition is
used to extrapolate the numerical resistance data from model scale to prototype scale. It seems to be
a natural choice to follow this decomposition.

Therefore, only the decomposition into an estimated frictional resistance and a residuary resistance
component is considered in this regression analysis. As a consequence of this estimation, the residuary
resistance contains the wave-making resistance, the viscous pressure resistance and some frictional
resistance. Only for the residuary resistance, a regression formula has to be derived.

In this regression analysis, the resistance is decomposed with the method described in Chapter 5. The
bare hull upright trimmed resistance, 𝑅ፓ᎕ᑙ , is decomposed as

𝑅ፓ᎕ᑙ = 𝑅ፅᑙ + 𝑅ፑ᎕ᑙ , (5.2)

where 𝑅ፑ᎕ᑙ is the upright trimmed residuary resistance of the bare hull, and 𝑅ፅᑙ is the frictional re-
sistance of the bare hull. For the trimmed residuary resistance of the bare hull, 𝑅ፑ᎕ᑙ , new regression
formulas are derived in this chapter. The frictional resistance of the bare hull is computed with

𝑅ፅᑙ =
1
2𝜌𝑉

ኼ𝑆፜𝐶፟ , (2.6)

where 𝜌 is the density of water, 𝑉 is the velocity, 𝑆፜ is the wetted surface of the canoe body, and 𝐶፟
is the friction coefficient. Following the procedure used for the DSYHS, no form factor is used for the
frictional resistance. The friction coefficient is calculated with the ITTC 1957 Model-Ship Correlation
Line [16]:

𝐶፟ =
0.075

(logኻኺ 𝑅𝑒 − 2)ኼ
. (2.7)

0.9𝐿ፖፋ is used as the characteristic length in the Reynolds number. Therefore, the Reynolds number
is defined by

𝑅𝑒 = 0.9𝐿ፖፋ ⋅ 𝑉
𝜈 . (10.1)

Compared to the 0.7𝐿ፖፋ used for the DSYHS, a characteristic length of 0.9𝐿ፖፋ seems to be more
appropriate for the modern hull shapes of the new systematic series. The results of a small number
of numerical simulations at prototype scale were compared to the results of numerical simulations at
model scale extrapolated to prototype scale with 0.7𝐿ፖፋ, 0.8𝐿ፖፋ and 0.9𝐿ፖፋ used as the characteristic
length in the Reynolds number. This small comparison suggested that 0.9𝐿ፖፋ was themost appropriate
length. Furthermore, Keuning and Sonnenberg [27] already suggested that a characteristic length of
0.9𝐿ፖፋ seemed more appropriate for the more modern hull shapes in the DSYHS after Series 1. Nev-
ertheless, for consistency, 0.7𝐿ፖፋ was used as the characteristic length throughout the entire DSYHS.

Unfortunately, time and resources were missing to thoroughly test the assumption of 0.9𝐿ፖፋ as the
characteristic length in the Reynolds number. Moreover, the numerical simulation at prototype scale
cannot be validated. This choice for the characteristic length remains therefore debatable. Neverthe-
less, the original choice for 0.7𝐿ፖፋ, used in the DSYHS, was that as well.

Before applying a regression analysis to the resistance data of the new systematic series, the resis-
tance is extrapolated from model scale, 𝐿ፖፋ = 2.00 𝑚, to prototype scale, 𝐿ፖፋ = 10.00 𝑚. For the
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extrapolation of the resistance forces, the method described in Section 2.2 is used. In this case, a
characteristic length of 0.9𝐿ፖፋ is used for the Reynolds number.

10.2. Statistical definitions
A brief explanation of the for this regression analysis important statistical definitions is given in this sec-
tion. For a thorough discussion of statistics, the reader is referred to Dekking et al. [2]. In the regression
analysis, the response variables and the explanatory variables are considered to be realizations of ran-
dom variables. A random variable is a variable whose possible values are numerical outcomes of a
random phenomenon. The expected value, or the mean, of random variable 𝑋 is denoted by E[𝑋].
The expected squared deviation from the mean of random variable 𝑋, or simply the variance of 𝑋, is
defined by

Var(𝑋) = E[(𝑋 − E[𝑋])ኼ]. (10.2)

The standard deviation of random variable 𝑋 is determined by 𝜎(𝑋) = √Var(𝑋). The dependence,
or relationship, between two random variables can be assessed with the covariance. The covariance
between the two random variables 𝑋ኻ and 𝑋ኼ is defined by

Cov(𝑋ኻ, 𝑋ኼ) = E[(𝑋ኻ − E[𝑋ኻ])(𝑋ኼ − E[𝑋ኼ])]. (10.3)

Two random variables can be positively correlated, negatively correlated or uncorrelated. The sign of
the covariance determines if two variables are either positively or negatively correlated. The random
variables are uncorrelated if the covariance between them is zero. The covariance gives an indication
on how two random variables influence one another.

The dependence between two random variables 𝑋ኻ and 𝑋ኼ can also be determined with the corre-
lation coefficient, 𝜌(𝑋ኻ, 𝑋ኼ). In contrast to the covariance, the correlation coefficient is dimensionless.
The correlation coefficient of the two random variables 𝑋ኻ and 𝑋ኼ is defined by

𝜌(𝑋ኻ, 𝑋ኼ) =
Cov(𝑋ኻ, 𝑋ኼ)

√Var(𝑋ኻ) Var(𝑋ኼ)
. (10.4)

In general, the correlation coefficient satisfies−1 ≤ 𝜌(𝑋ኻ, 𝑋ኼ) ≤ 1. The two random variables aremostly
correlated if 𝑋ኻ = 𝑋ኼ or 𝑋ኻ = −𝑋ኼ, corresponding to 𝜌(𝑋ኻ, 𝑋ኼ) = 1 and 𝜌(𝑋ኻ, 𝑋ኼ) = −1, respectively.
The two random variables are uncorrelated if Cov(𝑋ኻ, 𝑋ኼ) = 0, and therefore, if 𝜌(𝑋ኻ, 𝑋ኼ) = 0.

Note that if two random variables are uncorrelated, they are not necessarily independent. Two
random variables that are independent are always uncorrelated. Statistical independence implies that
the occurrence of one random variables does not affect the probability of the other. In this regression
analysis, the interest lies not in the independence between explanatory variables, but in the correlation
between explanatory variables. For stability of the regressions, it is important that the explanatory
variables in the regression are not strongly correlated to each other.

For the assembling of the regressions, the dependence of the response variable on an explanatory
variable has to be assessed; i.e. the probability of the response variable being independent from the
explanatory variable has to determined. This is done with statistical hypothesis testing. In statistical
hypothesis testing, a null hypothesis and an alternative hypothesis are proposed and compared to
each other. A test statistic is used to decide whether to reject the null hypothesis. The strength of the
evidence against the null hypothesis is quantified by a p-value. A p-value expresses the probability of
obtaining a value of the test statistic at least as extreme as the value observed for the data under the
assumptions that the null hypothesis is true. The smaller the p-value, the stronger the evidence that
the observed value bears against the null hypothesis. In statistical hypothesis testing, an observed
value is statistically significant if its p-value is less than the predefined significance level. Statistical
significance implies that the observed value is unlikely to have occurred by chance. The determination
of the p-value is complex and is not discussed here. The reader is referred to Dekking et al. [2] for
more details.

In this present analysis, the null hypothesis proposes no relationship between the response vari-
able and the explanatory variable. The alternative hypothesis proposes a relationship between the two
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types of variables. The change in the sum of squared residuals is used as the test statistic. The p-
value associated with an explanatory variable quantifies the probability of the response variable being
independent from that explanatory variable. For independence, and therefore, for omitting the explana-
tory variable from the regression model, the p-value has to be larger than the predefined significance
level. Significance levels of 5 percent and 5.5 percent are used for the inclusion and the exclusion of
explanatory variables from the regression model, respectively.

Another important criteria in the building of regressions is the mean squared error, whereby the relative
performance between two estimators can be assessed. The mean squared error of estimator 𝑇 for
parameter 𝜃 is defined by

MSE(𝑇) = E[(𝑇 − 𝜃)ኼ]. (10.5)

Let 𝑇ኻ and 𝑇ኼ be both estimators for the same parameter 𝜃. Estimator 𝑇ኻ performs better than estimator
𝑇ኼ if MSE(𝑇ኻ) < MSE(𝑇ኼ). The mean squared error is a good measure to compare the performance of
different regression models with each other.

How well the regression formula represents the dataset can be expressed with the coefficient of deter-
mination 𝑅ኼ. The coefficient of determination is the ratio of the by the regression explained variation to
the total variation. For the observed dataset, 𝑦ኻ, 𝑦ኼ, ..., 𝑦፧, and the with the regression formula predicted
dataset, 𝑓ኻ, 𝑓ኼ, ..., 𝑓፧, the coefficient of determination is defined by

𝑅ኼ = 1 −
∑፧።዆ኻ(𝑦። − 𝑓።)ኼ
∑፧።዆ኻ(𝑦። − �̄�)ኼ

, (10.6)

where �̄� is the mean value of dataset 𝑦።. The coefficient of determination is used to express how well
the final regressions fit the database.

For the assembling process of regressions and for comparing regressions with different numbers
of explanatory variables, the coefficient of determination has to be considered with care. Adding ex-
planatory variables to a regression model automatically increases the coefficient of determination. In
the assembling process, this coefficient acts as a spurious quality indicator. The adjusted coefficient
of determination, denoted by �̄�ኼ, acts as a better quality indicator in the assembling process. It is also
a better measure to compare regressions with different numbers of explanatory variables. This coef-
ficient �̄�ኼ adjusts the coefficient of determination, 𝑅ኼ, for the number of explanatory variables in the
model relative to the size of the dataset. The adjusted coefficient of determination is defined by

�̄�ኼ = 1 − (1 − 𝑅ኼ) 𝑛 − 1
𝑛 −𝑚 − 1, (10.7)

where 𝑛 is the number of points in the dataset, and 𝑚 is the number of explanatory variables in the
regression model. The adjusted coefficient of determination is used as an additional measure in the
assembling process of the regressions. The statistical significance of an explanatory variable is used
as the dominant quality measure in the assembling process.

10.3. Regression analysis method
The regression analysis is based on a multiple linear regression that attempts to model the relationship
between two or more independent variables and the dependent variable by fitting a linear equation to
the observed data. A multiple linear regression has the following characteristic form:

𝑌 = 𝑎ኺ + 𝑎ኻ𝑋ኻ + ... + 𝑎ፍ𝑋ፍ , (10.8)

where 𝑌 is the dependent variable or the response variable, 𝑋። are the independent variables or the
explanatory variables, 𝑎። are the coefficients obtained with least-squares fitting, and 𝑁 is the number
of independent variables and is greater than or equal to two. The dependent variables and the inde-
pendent variables are made non-dimensional in the analysis. One regression formula is derived for
the entire speed range. The coefficients, 𝑎።, are then determined at each Froude number individually
to avoid fitting of the humps and hollows commonly present in speed-resistance curves for the wave-
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making resistance and the residuary resistance. These humps and hollows are a result of interference
between the wave system generated at the bow and the wave system generated at the stern.

For stability of the regression, it is important that the explanatory variables in the regression are not
strongly correlated to each other. The correlation between two explanatory variables is determined with
the correlation coefficient, defined by Equation (10.4). The goal is to keep the correlation coefficient be-
tween two explanatory variables as low as possible. The explanatory variable in the regression should
have a high statistical significance, i.e. a low associated p-value, and should be (highly) correlated
to the response variable. For stability and robustness of the regression, the number of explanatory
variables in the regression should be low enough with respect to the database size. On the other hand,
the number of variables should remain high enough to capture all the significant trends in the database
and to ensure a high accuracy of the regression. An optimum number of explanatory variables in the
regression model has to be found.

The following rules of thumb for the quality of a final regression are used: adding an extra indepen-
dent variable to the regression does not significantly improve the accuracy; removing an independent
variable from the regression does significantly reduce the accuracy of the regression.

10.3.1. Database
The hydrodynamic resistance forces acting on the hull shapes in the new systematic series are used
to derive regressions for the estimation of the bare hull upright trimmed resistance based on hydro-
static parameters of yacht hulls. The dataset of the new systematic series, obtained with numerical
simulations, contains the resistance values for 21 hull shapes at eight different speeds for three crew
positions. The resistance values calculated with CFD at model scale, 𝐿ፖፋ = 2.00 𝑚, are extrapolated
to prototype scale, 𝐿ፖፋ = 10.00 𝑚. The resistance is extrapolated with the method described in Sec-
tion 2.2. In this case, a characteristic length of 0.9𝐿ፖፋ is used for the Reynolds number. The dataset
at prototype scale is used in the regression analysis. The database of the DSYHS is not used in this
regression analysis to avoid introducing errors and compatibility issues related to differences between
the experimental results of the DSYHS and the numerical results of the new systematic series, and
differences in test conditions — trimming moments and speeds — between both series.

In this regression analysis, no results are classified as outlying, and therefore, no results are omitted
from the database before the regression analysis is performed. The database for the crew CoG position
contains resistance values for Froude numbers up to 0.85. The databases for the crewmiddle and back
positions contain resistance values for Froude numbers up to 0.95. The databases of the crew CoG
and back positions contain the resistance values of all the models at all the speeds previously defined.
Only the database for the crew middle position contains no resistance values for Sysser 87 and Sysser
97 at Froude number 0.95.

Convergence of the numerical simulation for these two models at that speed was impossible, be-
cause these models were trimming bow under as a results of the very high resistance and the related
excessive trimming moment of the driving force. Of course, trimming bow under might be a result of
numerical issues related to the excessive motions, the corresponding large grid deformations and the
loss of accuracy. However, based on the hull shapes of these two models, it is likely that the resistance
at that speed is indeed very high for both. Sysser 87 is shallow and very wide. Sysser 97 has the lon-
gitudinal centre of buoyancy relatively far forward. As a consequence of the very high resistance, the
trimming moment is also very high, and the model trims bow down. The resistance and the trimming
moment are likely to amplify each other. Based on the resistance curves of these two Syssers for the
crewmiddle position up to Froude number 0.85, it is also expected that the resistance values are indeed
very high for these two models at Froude number 0.95 for this crew position. The resistance is likely
to be so high that it is doubtful that an actual sailing yacht close to those design characteristics would
ever be capable of reaching such high speeds. Therefore, it is not an issue that these two resistance
values are missing in the database.

10.3.2. Different regressions
The following five different regression formulas for the upright trimmed residuary resistance will be
derived in this analysis:

(i) A regression for the minimum upright trimmed residuary resistance;
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(ii) A regression for the upright trimmed residuary resistance with the crew CoG position;

(iii) A regression for the upright trimmed residuary resistance with the crew middle position;

(iv) A regression for the upright trimmed residuary resistance with the crew back position;

(v) A regression for the upright trimmed residuary resistance covering the three crew positions.

The five different expressions have different application possibilities. Expression (i) gives the minimum
resistance of the three crew positions in the database without any specification of the trimming moment
of the crew’s weight. Expressions (ii), (iii) and (iv) estimate the upright trimmed resistance for the crew
CoG, middle and back positions, respectively. Expression (v) incorporates the influence of the trimming
moment of the crew’s weight on the resistance through either the effective centre of effort, defined by
Equation (4.6), or the longitudinal centre of gravity, defined by Equation (4.4).

For a high performance sailing yacht with a full crew, expression (i) is preferred, because this regres-
sion simulates the optimum performance of the yacht. The other regressions can be used for different
crew configurations. The derived regressions should be easily usable in existing velocity prediction
programs.

10.3.3. Regression building
The multiple linear regressions are assembled by using a forward stepwise selection algorithm and a
backward stepwise selection algorithm. Both algorithms produce different regressions, and therefore,
they are both used. The starting model of the forward stepwise selection algorithm contains only a
constant term. Explanatory variables are added to the model based on the order of their statistical
significance with the response variable. The statistical significance of an explanatory variable with the
response variable is determined with its corresponding p-value and the predefined significance levels.
Significance levels of 5 percent and 5.5 percent are used for the inclusion and the exclusion of an
explanatory variable from the regression model, respectively.

After adding a variable to the model in an iteration step, the statistical significance of each ex-
planatory variable in the model with the response variable is determined. Based on their statistical
significance with the response variable, every explanatory variable in the model can be either included
or excluded from the regression model in this iteration step. In a following iteration step, earlier ex-
cluded variables may be reincluded. The iteration procedure stops when no explanatory variables
can be added to or removed from the regression model based on their statistical significance with the
response variable.

The backward stepwise selection algorithm uses a similar procedure. The starting model of this
algorithm contains a constant term and all the explanatory variables considered in the regressions
analysis. Explanatory variables are removed from the model based on the order of their statistical
insignificance with the response variable. Based on their statistical significance with the response
variable, every explanatory variable in the regression model can be either included or excluded from the
model in this iteration step. In a following iteration step, earlier excluded variables may be reincluded.
The iteration procedure stops when no explanatory variables can be added to or removed from the
regression model based on their statistical significance with the response variable.

Both stepwise algorithms produce different regressions. The results of both methods are combined
to form the ’optimum’ regression. This regression is likely to contain too many and redundant variables.
Therefore, another regression analysis is applied to the dataset with only the explanatory variables
of the ’optimum’ regression. This same iteration is applied again when necesarry. In the end, the
algorithms produced regressions with five to nine explanatory variables, depending on how difficult it
was to approximate the response variable. The resistance values at Froude numbers 0.35, 0.45 and
0.95 were the most difficult to approximate.

As a first step, a regression formula for each individual Froude number is determined to avoid fitting of
the humps and hollows commonly present in speed-resistance curves. For each Froude number, a dif-
ferent regression formula containing different explanatory variables can be obtained. The explanatory
variables of the regression formulas for the different Froude numbers are then combined into one final
regression formula. The coefficients of the regression are then redetermined for each Froude number
with least-squares fitting. The assembled regression formula is then again tested for its accuracy and
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its robustness at each Froude number, and its fit for every hull shape in the database. If necesarry, it
is adjusted and optimized.

A consequence of assembling the regression in this way is that some explanatory variables in the
final regression formula can be redundant at a specific Froude number. These redundant variables
can be artificially removed by fitting the regression model without these variables and setting their
corresponding coefficients to zero in the assembled regression. This was not done. At every speed, all
the explanatory variables of the assembled regression are used to fit the dataset. Consequently, one
regression formula is used for the entire range of Froude numbers. At every Froude number, different
coefficients are used.

The regressions analysis is applied to the minimum resistance. The used database contains for every
hull shape at every speed, the minimum resistance of the three crew positions. The derived regression
model is then used to fit the individual datasets of the crew CoG, middle and back positions separately.
The three regressions for the individual crew positions have the same form as the regression model for
the minimum resistance, but they all have different coefficients. As will be shown later on, the explana-
tory variables in the regression model for the minimum resistance are able to accurately describe the
three individual databases of the three crew positions. Therefore, it is not necessary to derive different
regression models for the individual crew positions.

Regression (v), which covers the three crew positions, is derived with an ad hoc approach. Since
the explanatory variables contained within regression (i) are capable of accurately describing the three
individual datasets of the three crew positions, these explanatory variables are permanently contained
within the regression model covering the three crew positions. Only additional explanatory variables,
facilitating a relation between the three individual databases of the three positions, can be added to
the regression model. Additional explanatory variables that are considered for connecting the three
datasets are the height of the effective CoE, and the longitudinal centre of gravity corresponding to a
trimming moment of the crew’s weight.

10.4. Explanatory variables
The following dimensionless explanatory variables are assumed to be of influence on the upright
trimmed residuary resistance and are therefore considered in this regression analysis:

• 𝐶፛, block coefficient;

• 𝐶፩, prismatic coefficient;

• 𝐶፰, waterplane area coefficient;

• 𝐶፱, maximum sectional area coefficient;

• ∇ᑔ
ፀᑎፓᑔ , vertical prismatic coefficient;

• ፁᑎᑃ
ፋᑎᑃ , beam-to-length ratio;

• ፓᑔ
ፋᑎᑃ , draft-to-length ratio;

• ፓᑔ
ፁᑎᑃ , draft-to-beam ratio;

• ∇ᑔᎳ/Ꮅ
ፋᑎᑃ , displacement-to-length ratio;

• ∇ᑔᎴ/Ꮅ
ፀᑎ , displacement-to-waterplane area ra-
tio;

• ∇ᑔᎴ/Ꮅ
ፒᑔ , displacement-to-wetted surface ratio;

• ፀᑏᎳ/Ꮄ
ፋᑎᑃ , maximum sectional area-to-length ra-
tio;

• ፀᑎᎳ/Ꮄ
ፋᑎᑃ , waterplane area-to-length ratio;

• ፒᑔᎳ/Ꮄ
ፋᑎᑃ , wetted surface-to-length ratio;

• ፋፂፁᑗᑡ
ፋᑎᑃ , longitudinal centre of buoyancy-to-
length ratio;

• ፋፂፅᑗᑡ
ፋᑎᑃ , longitudinal centre of flotation-to-
length ratio;

• ፋፂፁᑗᑡ
ፋፂፅᑗᑡ , longitudinal centre of buoyancy-to-
longitudinal centre of flotation ratio;

• ፋፂፅᑗᑡዅፋፂፁᑗᑡ
ፋᑎᑃ , difference of longitudinal cen-

tre of flotation and longitudinal centre of
buoyancy-to-length ratio;

• ፀᑏ
ፀᑎ , maximum sectional area-to-waterplane
area ratio;

• ፀᑏ
ፒᑔ , maximum sectional area-to-wetted sur-
face ratio;

• ፀᑎ
ፒᑔ , waterplane area-to-wetted surface ratio;
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• ፊፌᑃ
ፋᑎᑃ , longitudinal metacentric height-to-
length ratio;

•
፳ᐺᑠᐼᑖᑗᑗ
ፋᑎᑃ , centre of effort height-to-length ratio;

•
፳ᐺᑠᐼᑖᑗᑗ
ፊፌᑃ , centre of effort height-to-longitudinal

metacentric height ratio;

• ፋፂፆᑗᑡ
ፋᑎᑃ , longitudinal centre of gravity-to-length
ratio;

• ፋፂፁᑗᑡ
ፋፂፆᑗᑡ , longitudinal centre of buoyancy-to-
longitudinal centre of gravity ratio;

• ፋፂፅᑗᑡ
ፋፂፆᑗᑡ , longitudinal centre of flotation-to-
longitudinal centre of gravity ratio;

• ፋፂፆᑗᑡ
ፊፌᑃ , longitudinal centre of gravity-to-
longitudinal metacentric height ratio.

Only hydrostatic parameters are considered. Dynamic influences on the parameters are neglected,
because this would overcomplicate the estimation of the resistance of an arbitrary sailing yacht for
the purpose of velocity prediction with VPPs. Only parameters describing the hull as a whole are
considered. No separate parameters for the forepart and the afterpart of the hull are defined. The
six ratios including 𝐿𝐶𝐺፟፩ or 𝑧ፂ፨ፄᑖᑗᑗ are considered for the derivation of regression (v) only. 𝐿𝐶𝐺፟፩ is
defined by Equation (4.4), and 𝑧ፂ፨ፄᑖᑗᑗ is defined by Equation (4.6).

Quadratic terms of the above-mentioned explanatory variables are also considered. For stability
and robustness, quadratic terms are not preferred. In general, quadratic terms enhance instability
when the regressions are extrapolated to (slightly) outside the range of the original database. No cross
or interaction terms of the above-mentioned explanatory variables are considered.

10.5. Scaling of the residuary resistance
Scaling of the residuary resistance is used to make the residuary resistance non-dimensional. Scaling
allows for removing some of the largest known physical relationships between the dependent variable
and the independent variables. More subtle physical relationships between the dependent variable and
the independent variables become thereby more apparent.

In this analysis, the residuary resistance is assumed to scale with the hydrostatic buoyancy, ∇፜𝜌𝑔,
and the displacement-to-length ratio according to

𝑅ፑ =
𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) , (10.9)

where 𝑅ፑ is the dimensionless residuary resistance used in this regression analysis. Consequently, all
the explanatory variables and the constant term in the derived regression formula are coupled with the
displacement-to-length ratio. The supposed contribution of the explanatory variables to the residuary
resistance is assumed to follow a similar trend as the displacement-to-length ratio.

This scaling is very similar to the scaling of the residuary resistance used by Keuning et al. [27,25].
The only difference between the two scalings is the coupling of the constant term in the regression
with the displacement-to-length ratio. The scaling used by Keuning et al., shown in Equation (2.9),
couples only the explanatory variables with the displacement-to-length ratio, whereas the scaling used
in this analysis, Equation (10.9), couples also the constant term of the derived regression formula with
the displacement-to-length ratio. Compared to the scaling used by Keuning et al., this coupling of the
constant produces marginally more accurate regressions in this regression analysis.

10.6. Regressions for the upright trimmed residuary resistance
The following five regressions for the bare hull upright trimmed residuary resistance, 𝑅ፑ᎕ᑙ , have been
derived in this regression analysis:

(i) The expression for the minimum upright trimmed residuary resistance:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑎ኺ + 𝑎ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑎ኼ
𝑇፜
𝐵ፖፋ

+ 𝑎ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑎ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑎኿𝐶፩ + 𝑎ዀ𝐶፱

+ 𝑎዁𝐶፩ኼ + 𝑎ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑎ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.10)
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(ii) The expression for the upright trimmed residuary resistance with the crew CoG position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑏ኺ + 𝑏ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑏ኼ
𝑇፜
𝐵ፖፋ

+ 𝑏ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑏ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑏኿𝐶፩ + 𝑏ዀ𝐶፱

+ 𝑏዁𝐶፩ኼ + 𝑏ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑏ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.11)

(iii) The expression for the upright trimmed residuary resistance with the crew middle position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑐ኺ + 𝑐ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑐ኼ
𝑇፜
𝐵ፖፋ

+ 𝑐ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑐ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑐኿𝐶፩ + 𝑐ዀ𝐶፱

+ 𝑐዁𝐶፩ኼ + 𝑐ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑐ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.12)

(iv) The expression for the upright trimmed residuary resistance with the crew back position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑑ኺ + 𝑑ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑑ኼ
𝑇፜
𝐵ፖፋ

+ 𝑑ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑑ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑑኿𝐶፩ + 𝑑ዀ𝐶፱

+ 𝑑዁𝐶፩ኼ + 𝑑ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑑ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.13)

(v) The expression for the upright trimmed residuary resistance incorporating the influence of the
trimming moment of the crew’s weight through the longitudinal centre of gravity:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑒ኺ + 𝑒ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑒ኼ
𝑇፜
𝐵ፖፋ

+ 𝑒ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑒ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑒኿𝐶፩ + 𝑒ዀ𝐶፱

+ 𝑒዁𝐶፩ኼ + 𝑒ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑒ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

+ 𝑒ኻኺ
𝐿𝐶𝐺፟፩
𝐿ፖፋ

+ 𝑒ኻኻ(
𝐿𝐶𝐺፟፩
𝐿ፖፋ

)
ኼ

;

(10.14)

where 𝑎።, 𝑏።, 𝑐።, 𝑑። and 𝑒። are the coefficients of these five regressions. The derived regressions contain
all the hydrostatic parameters whose variations were specifically introduced into the systematic series.
The influence of each parameter on the residuary resistance seems to follow the expected behaviour
discussed in Subsection 3.2.1.

All the coefficients have been determined with the least-squares method for Froude numbers 0.25
up to 0.95 with increments of 0.10 and are listed in Table G.2. The upright resistance at any speed can
be determined by fitting a cubic spline to the estimated resistance values using a least-squares fit. The
parameter range covered by these regressions for the bare hull upright trimmed residuary resistance is
listed in Tables 3.3 and G.1. This range is prescribed by the hydrostatic parameters of the hull shapes
in the systematic series and by the longitudinal centre of gravity, 𝐿𝐶𝐺፟፩, corresponding to the three
different trimming moments of the crew’s weight.

The five different expressions have different application possibilities. Expression (i) gives the min-
imum residuary resistance of the three crew positions in the database without any specification of the
trimming moments of the driving force and the crew’s weight. Expressions (ii), (iii) and (iv) give the
residuary resistance for the crew CoG, middle and back positions, respectively. Expression (v) in-
corporates the influence of the trimming moment of the crew’s weight on the resistance through the
longitudinal centre of gravity.

For a high performance sailing yacht with a full crew, expression (i) is preferred, because this regres-
sion simulates the optimum performance of the yacht. The other regressions can be used for different
crew configurations or other ranges of trimming moments. Regression (v) can be used to calculate
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the resistance of a yacht subjected to an ’arbitrary’ trimming moment of the crew’s weight or movable
ballast. It can also be used to interpolate between the three crew positions to find, for instance, the
’optimum’ crew configuration.

All the expressions can be easily implemented in existing VPPs, because they contain only hydro-
static parameters and no terms involving the trimming moment of the driving force. These terms would
require an estimate of the trimming moment of the driving force. Such an estimate is not straightforward
to derive, because the driving force is equal to the resistance while its trimming moment influences the
resistance. The formulation for the minimum resistance, regression (i), will be used in an existing VPP
in Section 10.8. This illustrates the applicability of the derived regressions to the velocity prediction of
high performance yachts with existing VPPs. A velocity prediction calculated with the new regression
is compared to a velocity prediction calculated with the regressions of the DSYHS.

Expression (v) incorporates the influence of the trimming moment of the crew’s weight through the
longitudinal centre of gravity-to-length ratio. The longitudinal centre of gravity, 𝐿𝐶𝐺፟፩, corresponding
to a trimming moment of the crew’s weight is an ideal independent variable to cover the effects of the
crew on the residuary resistance. Together with the longitudinal centre of buoyancy-to-length ratio,
the longitudinal centre of gravity-to-length ratio determines the hydrostatic trim angle of the yacht. The
hydrostatic trim angle influences the resistance in various ways. The longitudinal centre of gravity
is preferred over the effective centre of effort, because it is less sensitive to variations in the input
parameters and provides more accurate and stable regressions. Moreover, it is a less complicated
parameter and it is easier to define for an arbitrary yacht.

The longitudinal centre of gravity is used to translate the trimming moment of the crew’s weight into
a corresponding longitudinal centre of gravity of the yacht with Equation (4.4). Applying a trimming
moment about the ’original’ longitudinal centre of gravity, which is located above the hydrostatic longi-
tudinal centre of buoyancy, or using a shift in the longitudinal centre of gravity of the yacht to cover the
effects of the trimming moment is, of course, equivalent. The range of the longitudinal centre of gravity-
to-length ratio covered by the new regressions for the bare hull upright trimmed residuary resistance is
listed in Table G.1.

Note that the trimming moment of the driving force is not incorporated in the definition of the longi-
tudinal centre of gravity. No specific definition of the trimming moment of the driving force is contained
within any of the regressions. The trimming moment of the driving force corresponding to an estimated
resistance is simply obtained from multiplying this resistance with 0.6𝐿ፖፋ.

10.6.1. Similarity with the regression of the DSYHS
The derived regressions have a similar form as the regression of the DSYHS for the upright untrimmed
residuary resistance, given by Equation (2.9). The new formulations contain additional quadratic terms,
lack the displacement-to-waterplane area ratio and use a slightly different scaling of the residuary resis-
tance. It is not surprising that the derived regressions contain similar parameters as the regression of
the DSYHS, since the variations introduced into the new systematic series were based on the DSYHS
regression.

In general, for smooth hulls with an almost constant draft-to-beam ratio over the entire waterline
length, the draft-to-beam ratio is highly correlated with the displacement-to-waterplane area ratio. Com-
pared to the regression of the DSYHS, the displacement-to-waterplane area ratio is removed from the
new regressions, because it is indeed highly correlated to the draft-to-beam ratio for the new system-
atic series. The correlation coefficient between the two was 0.97, which implies that the two ratios are
almost correlated. As a consequence, these two ratios are (almost) interchangeable in the regressions,
without significantly affecting the accuracy of the regressions. Obviously, the coefficients of the regres-
sions should be redetermined if the ratios are interchanged. Only one of these two ratios should be
used in the regressions to avoid multicollinearity between the explanatory variables in the regressions.
The draft-to-beam ratio is preferred over the displacement-to-waterplane area, because variations in
this ratio were specifically introduced into the systematic series.

Multicollinearity should be avoided, because a linear relationship between two or more explanatory
variables may result in erratic changes of the coefficients associated with the collinear variables in
response to small changes in the dataset or the regression model. Within the dataset of the regression,
multicollinearity does not necessarily affect the accuracy and the reliability of the regression model as
a whole, but it may lead to misleading and invalid predictions of the effects of any explanatory variable
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on the response variable. This makes it probably very difficult to identify redundant variables.
Two additional dimensionless forms of the waterplane area, namely, the waterplane area coeffi-

cient and the vertical prismatic coefficient, were considered as substitutions of the displacement-to-
waterplane area ratio, but they did not improve the formulations. The waterplane area coefficient was
highly correlated to the prismatic coefficient, and the vertical prismatic coefficient had no significant
influence on the residuary resistance. Therefore, the waterplane area is not included in the new re-
gressions.

10.6.2. Accuracy
The regressions are fitted to the database with the least-squares method for Froude numbers 0.25
up to 0.95 with increments of 0.10. The coefficient of determination, 𝑅ኼ, for every regression at every
Froude number is given in Table G.2. In general, the coefficient of determination is larger than 0.995 for
every Froude number, which is considered to be very good. The noteworthy exceptions are: regression
(ii), Froude number 0.85 with a 𝑅ኼ of 0.977; regression (iii), Froude number 0.25 with a 𝑅ኼ of 0.987;
regression (iv), Froude number 0.25 with a 𝑅ኼ of 0.898; and regression (v), Froude numbers 0.25, 0.85
and 0.95 with a 𝑅ኼ of 0.955, 0.967, and 0.988, respectively. With the exception of regression (iv) at
Froude number 0.25, the regressions produce accurate and adequate predictions.

An illustration of the accuracy of the fit of regression (i) to the database is depicted in Figure 10.1
for three of the eight speeds. The predicted values are plotted against their observed values. The
relative residuals are also depicted. In general, the predicted values fall closely against the target
line 𝑦 = 𝑥. Some exceptions excluded, the residuals are between plus or minus 1 percent of the
corresponding observed value, which is considered to be good. The other regressions have similar fits
to the database. Some have slightly higher residuals, which is of course related to the slightly worse
coefficient of determination for some regressions and some speeds.

For every model itself, the regressions produce accurate predictions with a coefficient of determi-
nation above 0.998. For the sake of illustration, the resistance predicted with regression (i) and the
resistance in the database of some of the models in the new systematic series are plotted in Figure
10.2. The fits are satisfactory over the entire speed range. Regressions (ii), (iii) and (iv) produce similar
fits. Note that no cubic spline is fitted to the estimated resistance values, because this would distract
from the main goal: illustrating the estimation of the actual data points. The estimated data points are
simply connected with straight line segments in all the figures presented in this chapter. Fitting a cubic
spline to the estimated data points using a least-squares fit would provide smoother and more realistic
curves.

For the sake of illustration, the residuary resistance predicted with regression (v) and the resistance
in the database of some of the models are plotted in Figure 10.4. In general, the regression incorporat-
ing the influence of the trimming moment of the crew’s weight produces accurate predictions. Only for
Syssers 86 and 94, the prediction is a bit worse, but it still captures the trends of the speed-resistance
curves and the differences between the crew positions nicely. The prediction for Sysser 94 is plotted
in Figure 10.4c.

The residuary resistance values predicted with the five regressions have been compared against the
database. For prediction 𝑓። of resistance value 𝑦። from the database, a relative comparison error, 𝜂, is
defined by

𝜂 = |𝑓። − 𝑦።|
𝑦።

⋅ 100%. (10.15)

The maximum, minimum and mean values of the relative comparison errors for every Froude number
and every regression are listed in Table G.2. In general, the maximum error is very reasonable and
the average relative comparison error is below 1 percent, which is considered to be very good. The
noteworthy exceptions are: regression (iv), Froude number 0.25 with a maximum error of 10% and an
average error of 2%; and regression (v), Froude numbers 0.25 and 0.85 with maximum errors of 31%
and 10%, respectively, and average errors of 6% and 2%, respectively.

For stability of the regressions, it is important that the explanatory variables in the regression are not
strongly correlated to each other. The correlation between two explanatory variables 𝑋ኻ and 𝑋ኼ is de-
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termined with the correlation coefficient, 𝜌(𝑋ኻ, 𝑋ኼ), defined by Equation (10.4). The correlation between
the independent variables in the final regressions is given in Table 10.1. The correlation between the
explanatory variables is low, which contributes to the stability of the regressions.

Table 10.1: Correlation between the explanatory variables in the final regressions, expressed as the
correlation coefficient defined by Equation (10.4).

∇ᑔᎳ/Ꮅ
ፋᑎᑃ

ፁᑎᑃ
ፋᑎᑃ

ፓᑔ
ፁᑎᑃ

ፋፂፁᑗᑡ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ 𝐶፩ 𝐶፱ ፋፂፆᑗᑡ

ፋᑎᑃ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 1.00 0.28 0.28 0.00 0.00 -0.04 0.26 -0.09

ፁᑎᑃ
ፋᑎᑃ 0.28 1.00 -0.80 0.04 0.05 -0.44 0.05 -0.01

ፓᑔ
ፁᑎᑃ 0.28 -0.80 1.00 -0.05 -0.04 0.25 -0.02 -0.04

ፋፂፁᑗᑡ
ፋᑎᑃ 0.00 0.04 -0.05 1.00 0.71 0.03 -0.04 0.32

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ 0.00 0.05 -0.04 0.71 1.00 -0.11 0.06 0.23

𝐶፩ -0.04 -0.44 0.25 0.03 -0.11 1.00 -0.20 0.01

𝐶፱ 0.26 0.05 -0.02 -0.04 0.06 -0.20 1.00 -0.04

ፋፂፆᑗᑡ
ፋᑎᑃ -0.09 -0.01 -0.04 0.32 0.23 0.01 -0.04 1.00

10.6.3. Alternative regressions
Quadratic terms generally enhance instability when the regressions are extrapolated to (slightly) out-
side the range of the original explanatory variables. Therefore, alternative formulations of the five
regressions are also given. These alternative formulations contain the same parameters as Equations
(10.10) up to (10.14), but exclude the quadratic terms with the exception of the (𝐿𝐶𝐺፟፩/𝐿ፖፋ)ኼ term in
Equation (10.14). This quadratic term is needed, because there is a distinctive non-linear relationship
between the resistance values of the three crew positions at every speed as can been seen in Figure
10.4. These alternative formulations provide more stability and robustness at the expense of accuracy.

All the coefficients have been redetermined for the alternative regressions with the least-squares
method and are listed in Table G.3. The coefficient of determination 𝑅ኼ and the relative comparison
errors for every regression and every Froude number are also given in this table. The accuracy of the
alternative formulations is indeed a bit lower, but still very acceptable.

For the sake of illustration, the resistance predicted with regression (i) and the resistance predicted
with regression (v) are depicted for some of the models with their corresponding resistance values in the
database in Figures 10.3 and 10.5, respectively. These predictions are very similar to the predictions
including the quadratic terms, plotted in Figures 10.2 and 10.4, but have a lower accuracy as can been
seen in these four figures.

For the prediction of the resistance of an arbitrary sailing yacht whose hydrostatic parameters clearly
satisfy the parameter range covered by the systematic series, it is advisable to use the full regressions,
including the quadratic terms, because these regressions produce the most accurate results in that
range. For predictions outside the parameter range covered by the new systematic series, it is advisable
to use the full regressions and the alternative regressions in parallel. The results of both methods
should be checked for credibility. The one seeming to have the largest credibility can then be used as
the prediction of the resistance. It should be noted that extrapolation to outside any database with any
regression will always introduce errors. Extrapolation should always be used with caution. It is up to
the user to decide which formulation of the regressions is the most appropriate one for the job at hand.
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(a) Predicted versus observed values at ፅ፧ ዆ ኺ.ኽ኿.

3.4 3.6 3.8 4.0 4.2 4.4

−1

−0.5

0

0.5

1

1.5

Observed values⋅10ኼ

R
el
at
iv
e
re
si
du

al
s
[%

ob
se
rv
ed

]

(b) Relative residuals at ፅ፧ ዆ ኺ.ኽ኿.
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(c) Predicted versus observed values at ፅ፧ ዆ ኺ.ዀ኿.
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(d) Relative residuals at ፅ፧ ዆ ኺ.ዀ኿.
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(e) Predicted versus observed values at ፅ፧ ዆ ኺ.ዃ኿.
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(f) Relative residuals at ፅ፧ ዆ ኺ.ዃ኿.

Figure 10.1: Illustration of the accuracy of the fit of regression (i) to the database.
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(a) Bare hull upright trimmed residuary resistance ፑᑉᒍᑙ .
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(b) Bare hull upright trimmed resistance ፑᑋᒍᑙ .

Figure 10.2: The resistance predicted with regression (i), including the quadratic terms, and the resistance in the database.
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(a) Bare hull upright trimmed residuary resistance ፑᑉᒍᑙ .
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(b) Bare hull upright trimmed resistance ፑᑋᒍᑙ .

Figure 10.3: The resistance predicted with regression (i), excluding the quadratic terms, and the resistance in the database.
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(a) Bare hull upright trimmed residuary resistance of Sysser 85 for the three crew positions.
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(b) Bare hull upright trimmed residuary resistance of Sysser 88 for the three crew positions.
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(c) Bare hull upright trimmed residuary resistance of Sysser 94 for the three crew positions.

Figure 10.4: The resistance predicted with regression (v), including the quadratic terms, and the resistance in the database.
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(a) Bare hull upright trimmed residuary resistance of Sysser 85 for the three crew positions.
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(b) Bare hull upright trimmed residuary resistance of Sysser 88 for the three crew positions.
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(c) Bare hull upright trimmed residuary resistance of Sysser 94 for the three crew positions.

Figure 10.5: The resistance predicted with regression (v), excluding the quadratic terms with the exception of (ፋፂፆᑗᑡ/ፋᑎᑃ)Ꮄ,
and the resistance in the database.
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10.6.4. Sensitivity
The derived regressions should not be too sensitive to variations in the input parameters. The sensitivity
of the five regressions to variations in the input parameters have been checked by altering the value
of each parameter, one at a time, by 1 percent. The effects of these variations on the resistance
have been calculated and compared to the situation with no variation. The sensitivity is defined as the
absolute percentage change from the situation with no variation. In general, the regressions seem to
be most sensitive to variations in the longitudinal centre of buoyancy-to-length ratio and the longitudinal
centre of buoyancy-to-longitudinal centre of flotation ratio. This is not surprising, since small variations
in the location of the longitudinal centre of buoyancy generally have a relatively large influence on the
residuary resistance. Furthermore, these are also the quadratic terms contained within the regression
models. The alternative regressions are slightly less sensitive to variations in these two ratios.

For illustration, the maximum and the average sensitivity of regression (i), including the quadratic
terms, to variations in the input parameters are listed in Table G.4. In general, the sensitivity is very
reasonable. For speeds above Froude number 0.35, the maximum impact on the predicted resistance
is 3 percent for all themodels, which is considered to be good. For Froude numbers 0.25, 0.35 and 0.95,
the maximum sensitivities are 11%, 6% and 7%, respectively, and are all related to variations in the
longitudinal centre of buoyancy-to-length ratio or the longitudinal centre of buoyancy-to-longitudinal
centre of flotation ratio. In general, the average sensitivity over all the models in the series is very
reasonable with values about 1 percent. The noteworthy exceptions are again related to variations in
the longitudinal centre of buoyancy-to-length ratio or the longitudinal centre of buoyancy-to-longitudinal
centre of flotation ratio at Froude numbers 0.25, 0.35 and 0.95. Regressions (ii), (iii) and (iv) have a
similar sensitivity as regression (i).

The maximum and the average sensitivity of regression (v), including the quadratic terms, to vari-
ations in the input parameters are given in Table G.5. The sensitivity of this regression is similar to
the sensitivity of regression (i). Again, for speeds above Froude number 0.35, the maximum impact
on the predicted resistance is 3 percent. The noteworthy exceptions are Froude numbers 0.25, 0.35,
0.85 and 0.95, again related to variations in the longitudinal centre of buoyancy-to-length ratio or the
longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio. Another noteworthy exception
is the longitudinal centre of gravity-to-length ratio for Froude numbers 0.25 and 0.35 with maximum
variations of 14 percent and 6 percent, respectively. This is not unexpected, since the trim angle of
a yacht is related to this ratio. At the lower speeds, small changes in trim angle give relatively large
differences in resistance due to, for instance, immersed transom effects. Nevertheless, the sensitivity
seems to be too high to be explained by only the physics involved. It seems to be a small defect in the
regressions.

In conclusion, the sensitivity of all the regressions is very reasonable. Only for Froude numbers 0.25
and 0.35, the regressions seem to be a bit too sensitive to variations in some of the parameters. All the
regressions are the most sensitive to variations in the longitudinal centre of buoyancy-to-length ratio,
the longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio and the longitudinal centre
of gravity-to-length ratio. The alternative regressions excluding the quadratic terms, with the exception
of the quadratic term of the longitudinal centre of gravity-to-length ratio, are slightly less sensitive to
variations in these first two ratios.

10.7. Verification of the regressions
In order to give a verification of the regression formulas, the regressions are tested on three models
not belonging to the systematic series. A comparison of the predicted resistance with numerical results
is given for two models. For the other model, the predicted resistance is compared with experimental
data.

10.7.1. Syssers 83 and 84
Additional numerical simulations were performed for Syssers 83 and 84 to illustrate the applicability of
the regressions to other models not belonging to the systematic series. The numerical simulations for
these two models were performed only for the crew CoG position in exactly the same way as the nu-
merical simulations for the models in the systematic series. The resistance values of these two models
are calculated with CFD at model scale and extrapolated to prototype scale. For the extrapolation of
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the resistance forces, the method described in Section 2.2 is used. A characteristic length of 0.9𝐿ፖፋ is
used for the Reynolds number. This length is also used for the models in the systematic series.

The lines plans and the hydrostatic parameters of Syssers 83 and 84 are given in Appendix C.
The hydrostatic ratios and the hydrostatic coefficients of these models are compared to the parameter
range of the systematic series in Table 10.2. For Sysser 83, its maximum sectional area coefficient falls
slightly outside the range of the series. For Sysser 84, its longitudinal centre of buoyancy-to-longitudinal
centre of flotation ratio falls slightly outside the range of the series. Both models do not comply with
all the design characteristics of the modern hull shapes in the systematic series. The hull shapes in
this series distinguish themselves from the more ’traditional’ hull shapes by their straight vertical bows,
the wide transoms and the very long waterlines compared to the overall length. Syssers 83 and 84
have no straight vertical bows and have relatively short waterlines compared to their overall length.
Sysser 83 has a ’traditional’ narrow transom shape. Sysser 84 has a ’modern’ wide transom shape at
the waterline, but it still has a long overhang aft. Syssers 83 and 84 are outdated designs.

The residuary resistance predicted with the regression for the upright trimmed residuary resistance
with the crew CoG position, regression (ii), including and excluding the quadratic terms, and the with
CFD computed resistance are plotted in Figure 10.7. The relative comparison errors of the prediction
of the residuary resistance with respect to the CFD results is given in Table 10.4. In general, the
comparison is considered to be good; especially, if it is taken into consideration that the hull shapes of
these two models differ from the characteristic hull shapes in the systematic series. Only for Froude
number 0.25, the prediction is unreasonable with a relative comparison error of -36 percent for the
prediction of the residuary resistance. For Froude 0.35, the prediction is reasonable. After Froude
number 0.45, the prediction is quite accurate. A noticeable observation is that the resistance of Sysser
84 is better predicted than the resistance of Sysser 83. This is probably related to the similar wide
transom shape of Sysser 84 compared to the models in the systematic series while Sysser 83 has a
more traditional narrow transom shape.

Again, there is a small difference between the prediction including the quadratic terms and the
prediction excluding those terms in the regression. For Sysser 83, the prediction excluding the quadratic
terms is more accurate. For Sysser 84, the prediction including the quadratic terms is more accurate.
This illustrates that for predictions (slightly) outside the parameter range covered by the systematic
series and for yachts with different design characteristics, it is advisable to use the full regressions and
the alternative regressions in parallel.

10.7.2. The SYRF Wide Light Project
As a part of the Sailing Yacht Research Foundation (SYRF) Wide Light Project [38], one modern high
performance sailing yacht design was tested by the Wolfson Unit in the QinetiQ #2 towing tank at
the Haslar Marine Technology Park, Gosport, United Kingdom. This towing tank has a length of 270
metres, a width of 12 metres and a water depth of 5.5 metres. The model tested has an overall length
of 4.88 metres and a displacement of 197 kilograms. The lines plan of the Wide Light yacht is depicted
in Figure 10.6. The hydrostatic parameters of this yacht are compared to the parameter range of the
systematic series in Table 10.2. For this yacht, the displacement-to-length ratio falls slightly outside the
range of the series. Its maximum sectional area coefficient falls also outside the range of the series.

The experimental results of this model provide a good possibility for the verification of the derived
regressions. For the sake of comparison, the experimental results are extrapolated to a waterline length
of ten metres with the method described in Section 2.2. A characteristic length of 0.9𝐿ፖፋ is used for
the Reynolds number. This length is also used for the models in the systematic series.

TheWide Light yacht was tested for a predetermined longitudinal centre of gravity to incorporate the
effects of representative trimming moments of the driving force. A different position of the longitudinal
centre of gravity was used at every speed to cover the increase in trimming moment of the driving force
with speed. In the present study, a different definition of the longitudinal centre of gravity is used in the
regressions. The longitudinal centre of gravity-to-length ratio is used in the regressions to incorporate
only the trimmingmoment of the crew’s weight. The trimmingmoment of the driving force is not explicitly
contained within the regressions.

For the purpose of comparing the experimental results with the regressions, the longitudinal cen-
tre of gravity used during the resistance measurement has to be transformed into the definition of the
longitudinal centre of gravity as used in the regressions; i.e. the trimming moment applied during the
measurement run has to be converted into a trimming moment of the driving force and a trimming mo-
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ment of the crew’s weight. The moment applied during the measurement run is equal to the difference
of the hydrostatic 𝐿𝐶𝐵፟፩ and the 𝐿𝐶𝐺፟፩ used during the measurement run, multiplied by the weight of
the model. The following procedure is used for this transformation: the measured resistance is multi-
plied with 0.60𝐿ፖፋ to obtain the trimming moment of the driving force; this moment is subtracted from
the moment applied during the measurement run; the difference in trimming moment is attributed to
a trimming moment of the crew’s weight; the corresponding 𝐿𝐶𝐺፟፩ is calculated with Equation (4.4).
With this definition of the longitudinal centre of gravity, the experimental results can be compared with
the resistance predicted with regression (v). The corresponding 𝐿𝐶𝐺፟፩-to-𝐿ፖፋ ratios are listed in Table
10.3.

The residuary resistance predicted with regression (v), including and excluding the quadratic terms,
and the measured resistance values are plotted in Figure 10.8. The total bare hull resistance values
are also given. A cubic spline is fitted to the estimated resistance values using a least-squares fit. This
fit is used to estimate the resistance values at the intermediate Froude numbers 0.3, 0.4, 0.5, and so on.
The resistance is underpredicted at every speed compared to experimental results. Nevertheless, the
trends of the speed-resistance curve are captured perfectly and the underprediction is not that large.

The relative comparison errors of the prediction of the residuary resistance with respect to the ex-
perimental results is listed in Table 10.4. For Froude numbers 0.25 and 0.35, the prediction of the
residuary resistance is unreasonable with relative comparison errors of -66 percent and -35 percent,
respectively. After Froude number 0.35, the prediction is quite accurate. There is almost no differ-
ence between the prediction including the quadratic terms and the prediction excluding those terms. In
general, the comparison is considered to be good; especially, if it is taken into consideration that the
midship sectional area falls outside the range of the series and that a comparison with experimental re-
sults is made while the database of the series contains only numerical results. Based on the validation
analysis discussed in the previous chapter, the experimental resistance values are likely to be higher
than the numerical resistance values computed with CFD.

This difference between the experimental results and the numerical results contributes to the com-
parison error between the predicted resistance, which is based on a database of numerical results, and
the measured resistance. Hence, it is likely that the regressions underpredict the resistance compared
to the experimental results. As a part of the Wide Light Project, CFD computations were conducted for
the Wide Light yacht according to the experimental test conditions with the FINE™/Marine flow solver.
Similar comparison errors between the computed resistance and the measured resistance were found
as those of the numerical simulations for the new systematic series, listed in Table 9.2.

10.8. Velocity prediction
For the velocity prediction of sailing yachts, velocity prediction programs (VPPs) are used. A VPP pre-
dicts the velocity of a yacht for various wind strengths and wind directions by balancing hydrodynamic
forces acting on the hull and aerodynamic forces acting on the sails. A detailed description of the struc-
ture of a VPP and the formulations involved is given by the Offshore Racing Congress [36]. VPPs are
used extensively for the design of yachts and the determination of ratings for individual yachts. These
ratings allow yachts of different sizes and with different characteristics to race each other with an equal
chance to win.

The velocity prediction with a VPP relies on a set of expressions, as function of the hydrostatic pa-
rameters of yacht hulls, for the estimation of the hydrodynamic forces acting on yachts. The regression
formulas of the DSYHS, given in Chapter 2, are used in VPPs for the estimation of the hydrodynamic
forces. Even for modern yachts, the regressions of the DSYHS are themost accurate predictionmethod
as was shown by Raymond [40]. Nevertheless, as discussed in Section 2.5, the DSYHS regressions
are less applicable to modern high performance yacht designs due to the range of parameters con-
tained within the DSYHS and the limited speed range of the DSYHS. The accuracy of the performance
prediction for modern yachts suffers from this in some extent.

To improve the velocity prediction, new regressions were derived to more accurately predicted
the bare hull upright trimmed resistance of high performance yachts. The applicability of the derived
regressions to the velocity prediction of high performance yachts with existing VPPs is illustrated in this
section. The regression for the minimum bare hull upright trimmed resistance is used in an existing
VPP to calculate a velocity prediction of a TP52-design. This velocity prediction is compared with a
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Table 10.2: Hydrostatic parameters of Sysser 83, Sysser 84 and the Wide Light yacht. The maximums
and the minimums of the parameter range covered by the new regression are also listed. Parameters

outside this range are highlighted in red.

∇ᑔᎳ/Ꮅ
ፋᑎᑃ

ፁᑎᑃ
ፋᑎᑃ

ፓᑔ
ፁᑎᑃ

ፋፂፁᑗᑡ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ 𝐶፩ 𝐶፱

Sysser 83 0.131 0.189 0.157 0.521 0.931 0.546 0.730
Sysser 84 0.130 0.187 0.155 0.532 0.914 0.578 0.711
Wide Light 0.123 0.192 0.119 0.526 0.923 0.562 0.751
Maximum 0.137 0.239 0.195 0.560 0.957 0.603 0.726
Minimum 0.124 0.175 0.106 0.515 0.919 0.497 0.633

Table 10.3: The longitudinal centre of gravity-to-length ratios used for the resistance measurements of
the Wide Light yacht, converted into the definition of the longitudinal centre of gravity-to-length ratio as

used in regression (10.14).

𝐹𝑛 [−] 0.25 0.35 0.45 0.55 0.65 0.75
ፋፂፆᑗᑡ
ፋᑎᑃ 0.5249 0.5259 0.5273 0.5280 0.5304 0.5325

Table 10.4: Relative comparison errors of the prediction of the residuary resistance with respect to
either CFD results or experimental results for Sysser 83, Sysser 84 and the Wide Light yacht. Errors

are given as a percentage of either numerical or experimental results.

(a) Prediction with regressions including the quadratic terms.

𝐹𝑛 [−] 0.25 0.35 0.45 0.55 0.65 0.75 0.85
Sysser 83 -36.1 12.1 10.6 3.0 -1.4 -2.6 8.6
Sysser 84 -35.8 -7.0 0.9 -2.5 -3.9 -4.3 0.0
Wide Light -66.1 -34.9 -8.5 -5.0 -8.5 -11.0

(b) Prediction with regressions excluding the quadratic terms with the exception of (ፋፂፆᑗᑡ/ፋᑎᑃ)Ꮄ.

𝐹𝑛 [−] 0.25 0.35 0.45 0.55 0.65 0.75 0.85
Sysser 83 -35.4 10.3 9.5 2.0 -1.8 -4.5 2.7
Sysser 84 -37.8 -11.1 -0.5 -4.1 -4.7 -2.9 3.4
Wide Light -66.5 -35.1 -8.4 -5.1 -8.6 -10.8

Figure 10.6: Lines plan of the SYRF Wide Light yacht [38].
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(a) Prediction of the upright trimmed residuary resistance, ፑᑉᒍᑙ , including the quadratic terms in the regression.
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(b) Prediction of the upright trimmed residuary resistance, ፑᑉᒍᑙ , excluding the quadratic terms in the regression.

Figure 10.7: The resistance of Sysser 83 and Sysser 84 predicted with regression (ii) and calculated with CFD
for the crew CoG position.
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(a) Bare hull upright trimmed residuary resistance ፑᑉᒍᑙ . Resistance predicted with regression (v), including the quadratic terms.
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(b) Bare hull upright trimmed residuary resistance ፑᑉᒍᑙ . Resistance predicted with regression (v), excluding the quadratic
terms with the exception of (ፋፂፆᑗᑡ/ፋᑎᑃ)Ꮄ.
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(c) Bare hull upright trimmed resistance ፑᑋᒍᑙ . Residuary resistance predicted with regression (v), including the quadratic terms.

Figure 10.8: The measured resistance and the predicted resistance of the Wide Light yacht. A cubic spline is fitted to the
predicted resistance values using a least-squares fit. This fit is used to estimate the resistance values at the intermediate

Froude numbers 0.3, 0.4, 0.5, and so on.
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velocity prediction calculated with the regressions of the DSYHS.

For the velocity prediction of high performance yachts, a new resistance decomposition was proposed
in Chapter 5. This decomposition, depicted in Figure 5.1, uses the upright trimmed condition for the
reference resistance. The resistance decomposition of the DSYHS, depicted in Figure 2.1, uses the
upright untrimmed condition for the reference resistance. Delta resistance components for heel and
leeway are defined with respect to the reference resistance. In the new resistance decomposition, the
upright untrimmed resistance is omitted and is replaced by the upright trimmed resistance. At least for
the higher speeds, this decomposition has a closer resemblance with the physics involved in real-life
sailing conditions, because a sailing yacht always experiences a trimming moment of the driving force
while sailing.

From this new resistance decomposition method, the need arises to update the regressions for all
the resistance components, because there is a small difference in their definitions between the method
of the DSYHS and the new method. Updating the regressions for the other resistance components is
also preferable, because these regressions are also less applicable to modern sailing yachts. However,
updating all the regressions is outside the scope of the present study. For now, it is assumed that
between themethod of the DSYHS and the newmethod, the values of the delta resistance components,
the resistance of the keel and the rudder, and the induced resistance are not changed significantly. In
that way, the regressions of the DSYHS can be used to estimate the resistance components other than
the upright trimmed bare hull resistance.

The existing WinDesign VPP, developed by the Wolfson Unit MTIA, is used to calculate the velocity
prediction of a full-scale TP52 based on Sysser 85. The 2015 release of WinDesign VPP version
4.0 is used. WinDesign VPP incorporates the regressions of the DSYHS for the estimation of the
hydrodynamic forces acting on a sailing yacht. It also allows the user to use its own data for the
hydrodynamic forces of a specific yacht through the experimental data input available in the software.
This input requires the upright resistance of the hull with its appendages, the resistance under heel
of the hull with its appendages, the effective draft and the lift curve slope, at different speeds and
heel angles. The effective draft, also called the effective span of the hull with its appendages, is used
to describe the relation between the induced resistance and the generated side force. The lift curve
slope describes the relation between the generated side force and the leeway angle. With these two
parameters, the generated side force and the corresponding induced resistance can be calculated.
The experimental data input method in WinDesign VPP is used to calculate the velocity prediction of a
full-scale TP52 based on Sysser 85 with the regressions of the DSYHS and the new regression for the
upright trimmed resistance.

For the velocity prediction with the Delft method, the original regressions of the DSYHS as described
in Chapter 2 are used. For the newmethod, the regression for the minimum upright trimmed resistance,
Equation (10.10), is used. This regression is preferred for a high performance yacht with a full crew,
because it simulates the optimum performance of the yacht. The new method uses the same delta
resistance components for heel, the same effective draft and the same lift curve slope. Both methods
have therefore only a different bare hull upright resistance. The upright resistance of the bare hull
predicted with both methods is plotted in Figure 10.9. Both methods produce a similar resistance curve.
The bare hull upright resistance predicted by the new method is between 4 and 15 percent lower than
the resistance predicted by the DSYHS. The input used in WinDesign VPP is given in Appendix H.

The bare hull upright resistance prediction of the DSYHS stops after Froude number 0.75. For
the other resistance components, the reliable hydrodynamic force prediction stops at lower Froude
numbers. WinDesign VPP uses an extrapolation procedure to come up with the resistance values at
the higher speeds. The accuracy of this procedure is questionable.

The polar diagram for the full-scale TP52 based on Sysser 85 and the TP52 class rules [45] is depicted
in Figure 10.10. A polar diagram visualizes the velocity of a yacht, given on the vertical axis, at different
true wind angles for different true wind speeds— the coloured numbers printed next to the curves. Both
methods produce similar realistic velocity predictions. The predicted velocity seems to be a bit low for
both. The prediction of the new method is slightly higher than that of the Delft method. The difference
between both methods is very limited due to the fact that the bare hull resistance, which is the only
difference between both methods, makes up only a part of the total resistance.
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Despite that the difference between both methods is limited, it shows that the new resistance de-
composition with the new bare hull upright trimmed resistance prediction is able to produce realistic
velocity predictions compared to the original velocity prediction with the regressions of the DSYHS. The
new regressions for the upright trimmed resistance are considered to be a good first step to improve
the velocity prediction of modern high performance sailing yachts. For accurate velocity predictions of
these yachts, it is necessary to improve the prediction of the other resistance components as well. The
motivation is still that the DSYHS regressions are less applicable to modern high performance yacht
designs due to the range of parameters contained within the DSYHS and the limited speed range of
the DSYHS. Of course, the applicability of the aerodynamic models used in VPPs to high performance
yachts need to be assessed as well and improved if necesarry.
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Figure 10.9: Bare hull upright resistance of a full-scale TP52 based on Sysser 85, calculated with the
regression of the DSYHS and the new regression.

10.9. Summary
In this regression analysis, five different regressions for the upright trimmed residuary resistance of the
bare hull were derived: a regression for the minimum resistance, three regressions for the resistance
of each individual crew position, and a regression incorporating the influence of the trimming moment
of the crew’s weight on the resistance. All the expressions can be easily implemented in existing
VPPs, because they contain only hydrostatic parameters and no terms involving the trimming moment
of the driving force. For a high performance sailing yacht with a full crew, regression (i) is preferred,
because it represents the optimum performance of the yacht. The other regressions can be used for
different crew configurations or other ranges of trimming moments. Regression (v) can be used to
calculate the resistance of a yacht subjected to an ’arbitrary’ trimming moment of the crew’s weight or
movable ballast. The bare hull upright trimmed resistance prediction based on the new formulations is
summarized in Appendix G. The parameter range covered by these regressions is listed in Tables 3.3
and G.1.

In general, quadratic terms enhance instability when the regressions are extrapolated to (slightly)
outside the range of the original database. Therefore, alternative formulations of the five regressions
are also given. These alternative formulations contain the same parameters as the original regressions,
but exclude the quadratic terms with the exception of the (𝐿𝐶𝐺፟፩/𝐿ፖፋ)ኼ term. This quadratic term is
needed, because there is a distinctive non-linear relationship between the resistance values of the three
crew positions at every speed. The alternative formulations provide more stability and robustness at
the expense of accuracy. The accuracy of the alternative formulations is still very acceptable.

In general, the ten regressions fit the database accurately at every Froude number. With the ex-
ception of regression (iv) at Froude number 0.25, the regressions produce accurate and adequate fits.
For every model in the database, the regressions produce accurate predictions. The corresponding
fits are satisfactory over the entire speed range. In general, the maximum comparison error is very



112 Regression analysis

10∘
20∘

30∘

40∘

50∘

60∘

70∘

80∘

90∘

100∘

110∘

120∘

130∘

140∘

150∘

160∘
170∘

2

4

6

8

10

12

14

16

18

6 68
10
12

16

20

25

8
10
12

16

20

25

𝑉 [𝑘𝑡]

Delft method
New method

Figure 10.10: Polar diagram of a full-scale TP52 based on Sysser 85, calculated with WinDesign VPP. True
wind speeds are given in knots. The input used in WinDesign VPP is given in Appendix H.
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reasonable and the average relative comparison error is mostly below 1 percent, which is considered
to be very good.

The correlation between the independent variables in the regressions is low, which contributes to the
stability of the regressions. The number of variables in the regressions seems reasonable compared
to the database size. This contributes to the stability and the robustness of the regressions.

The sensitivity of the regressions to variations in the input parameters is very reasonable. Only for
Froude numbers 0.25 and 0.35, the regressions seems to be a bit too sensitive to variations in some
of the parameters. All the regressions are the most sensitive to variations in the longitudinal centre
of buoyancy-to-length ratio, the longitudinal centre of buoyancy-to-longitudinal centre of flotation ratio,
and the longitudinal centre of gravity-to-length ratio. The alternative regressions excluding the quadratic
terms are slightly less sensitive to variations in these first two ratios.

For the prediction of the resistance of an arbitrary sailing yacht whose hydrostatic parameters clearly
satisfy the parameter range covered by the new systematic series, it is advisable to use the full regres-
sions, including the quadratic terms, because these regressions produce the most accurate results in
that range. For predictions outside the parameter range covered by the series, it is advisable to use
the full regressions and the alternative regressions in parallel. The results of both methods should be
checked for credibility.

The derived regressions have a similar form as the regression of the DSYHS for the bare hull upright
untrimmed resistance, given by Equation (2.9). The new formulations contain additional quadratic
terms, lack the displacement-to-waterplane area ratio and use a slightly different scaling of the residuary
resistance. It is not surprising that the derived regressions contain similar parameters as the regression
of the DSYHS, since this regression was used to introduce the variations into the new systematic series.
Compared to the regression of the DSYHS, the displacement-to-waterplane area ratio is removed from
the new regressions, because it is highly correlated to the draft-to-beam ratio for the new systematic
series.

The derived regressions are tested for their applicability to predict the resistance of models not belong-
ing to the systematic series and that have parameters or design characteristics not fully covered by
the systematic series. For the three models used in this comparison, the resistance is quite accurately
predicted; especially, if it is taken into consideration that some of the parameters falls outside the range
covered by the series and that the hull shapes of two of these models differ from the characteristic hull
shapes of the systematic series. Only for Froude number 0.25, the prediction seems unreasonable with
relative comparison error above 35 percent. For one of the models, the prediction for Froude number
0.35 seems also unreasonable. After Froude number 0.45, the prediction is quite accurate.

For one of the models, the predicted resistance was compared with measured resistance values.
For Froude numbers after 0.35, the prediction is quite accurate; especially, if it is taken into consid-
eration that the regressions are based on a database of numerical results. The resistance is under-
predicted at every speed compared to experimental results, but the trends of the speed-resistance
curve are captured perfectly and the underprediction is not that large. The measured resistance val-
ues are likely to be higher than corresponding numerical resistance values. Hence, it is likely that the
regressions underpredict the resistance compared to experimental results.

The regression for the minimum upright trimmed residuary resistance of the bare hull together with the
new resistance decomposition have been used in an existing VPP to calculate the velocity prediction
of a full-scale TP52 based on Sysser 85. This showed that the new resistance decomposition with the
new bare hull upright trimmed resistance prediction is able to produce realistic velocity predictions.

In conclusion, the derived regressions provide an accurate resistance prediction for models covered
by the new systematic series. Even for models (slightly) outside the parameter range covered by the
series or for models with different design characteristics than the hull shapes in the new systematic
series, the prediction can be quite accurate. The regressions seem to be stable, robust and not too
sensitive to variations in the input parameters.
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Velocity prediction programs (VPPs) are used extensively for the design of sailing yachts. VPPs gen-
erally rely on the regressions derived from the Delft Systematic Yacht Hull Series (DSYHS) for the
estimation of the hydrodynamic forces and moments acting on yacht hulls. After the last extension
of the DSYHS more than ten years ago, the most pronounced developments in yacht design are the
straight vertical bows, the wide transoms, the very small overhangs aft and the very light displacement
hulls. Furthermore, the contemporary designs carry above the waterline their maximum beam all the
way aft. These developments contribute to the ever increasing speed potential of the newer designs.

As a results of these developments, the DSYHS is no longer representative of today’s high perfor-
mance yacht designs. The regression formulas derived from the DSYHS are therefore less applicable
to recent hull shapes. The accuracy of the velocity prediction of modern high performance yachts suf-
fers from this in some extent. The developments in yacht design and the limitations of the regressions of
the DSYHS for the velocity prediction of contemporary high performance yachts formed the motivation
for the present study.

The aim of the present study was to improve the velocity prediction of modern high performance sail-
ing yachts from a hydrodynamic perspective. Improving the prediction of the bare hull upright trimmed
resistance was considered to be a promising method to realize this. To this end, a new systematic
series of contemporary high performance yacht hulls has been created. The new series is representa-
tive of a wide range of today’s high performance yachts. The regressions derived from this new series
cover a wider speed range and a different range of hydrostatic parameters than those of the DSYHS.

The bare hull upright trimmed resistance forces acting on the models in the new systematic series
have been determined with computational fluid dynamics (CFD) for eight speeds, from Froude number
0.25 up to 0.95, one centre of effort height and three different trimming moments of the crew’s weight.
The used trimming moments correspond to typical crew configurations during sailing.

A grid refinement study has been performed to assess the uncertainty of the numerical results for the
parent hull of the systematic series at Froude numbers 0.45 and 0.85 for the crew CoG position. For
validation, the numerical results for the parent hull have been compared to the results of resistance
measurements. At Froude number 0.45, validation was achieved. Unfortunately, at Froude number
0.85, no validation could be achieved. The absolute value of the comparison error was larger than the
validation uncertainty at this speed. Although validation was not achieved, confidence in the numerical
results still exists, because the relative comparison errors at both speeds are almost the same. From a
programmatic standpoint, validation of the numerical results at Froude number 0.85 was still successful
at a level of 6 percent. For the purpose of deriving regressions for resistance prediction in VPPs, the
approach of validating numerical results at a level below 10 percent is considered to be reasonable
and acceptable.

In order to asses the quality and the credibility of the numerical simulations performed for the new
systematic series, the validation analysis was extended to the numerical results computed for the par-
ent hull on the medium grid for the crew CoG and back positions over the entire speed range. The
corresponding comparison errors are between -2.9 and -8.6 percent of the experimental results. Vali-
dation was successful from a programmatic standpoint. The heave values, and also the pitch values,
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are very similar between the experimental method and the numerical method. The trends in the resis-
tance curves and the motion curves are captured perfectly by the numerical method. The performance
of the numerical flow solver and the accuracy of the numerical results are satisfying.

Since the other hull shapes in the new systematic series have been derived from the parent hull and
the numerical simulations have been performed with exactly the same settings on similar grids, similar
comparison errors are expected for the other hull shapes in the systematic series. Confidence in the
numerical results of the systematic series therefore exists.

The hydrodynamic resistance forces acting on the models in the new systematic series have been
used to derive new regression formulas for the estimation of the bare hull upright trimmed resistance
forces based on hydrostatic parameters of yacht hulls. Five different regressions for the upright trimmed
residuary resistance of the bare hull have been derived, all with a different application. The derived
formulations can be easily used in existing VPPs. The derived regressions provide an accurate re-
sistance prediction for models covered by the systematic series. Even for models (slightly) outside
the parameter range covered by the series or for models with different design characteristics than the
characteristic hull shapes in the series, the prediction can be quite accurate. The regressions seem
to be stable, robust and not too sensitive to variations in the input parameters. The applicability of the
derived regressions to the velocity prediction of modern high performance sailing yachts with existing
VPPs has been illustrated. The obtained polar diagram seemed very reasonable.

The new regressions for the upright trimmed resistance are a good first step to improve the velocity
prediction of modern high performance sailing yachts. For accurate velocity predictions of these yachts,
it is still necessary to improve the prediction of the other resistance components as well. The motivation
is still that the regressions of the DSYHS are less applicable to modern high performance yacht designs
due to the range of parameters contained within the DSYHS and the limited speed range of the DSYHS.

Based on the insights gained during this thesis, the following recommendations are made for further
research on resistance prediction for high performance yachts and associated topics:

• The derived regressions have been tested for three additional models not belonging to the new
systematic series. To strengthen the confidence in the resistance prediction with these regres-
sions for ’arbitrary’ yachts, a more elaborate verification study should be performed against nu-
merical resistance data and experimental resistance data.

• One parent hull, a TP52-design, was used for the new systematic series. Contemporary high
performance yacht designs are diverse and do not share all the same design characteristics and
hydrostatic parameters. For instance, some designs exhibit (hard) chines in the aft sections while
others have none. Some designs also carry their chine far forward. More recent developments
are the slightly immersed transoms and the (slightly) inverted bows of, for instance, the Volvo
Ocean 65. To cover a larger range of possible yacht designs and to improve the resistance
prediction of ’arbitrary’ yachts, the database of hydrodynamics of yacht hulls should be expanded
with additional systematic series having different parent hulls. To keep up with the developments
in yacht design, extension of the database is necesarry anyway in the foreseeable future.

• The regressions of the DSYHS seemed less applicable to modern high performance yacht de-
signs due to the range of parameters contained within the DSYHS and the limited speed range
of the DSYHS. New regressions for the bare hull upright resistance have been derived in this
thesis. The prediction of the other resistance components should be improved as well. This is
necessary for accurate velocity predictions of modern yachts.

• The applicability of the aerodynamic models used in VPPs to modern high performance yachts
should be assessed and improved if necesarry.

• To assess the numerical uncertainty, it is not necessary to do one grid refinement study excluding
the influence of solving ship motions and one grid refinement study including the influence of
solving ship motions, as long as the quasi-static method of the FINE™/Marine flow solver is
correctly used. The advise is to perform a grid refinement study including the influence of motion
solving, because the numerical uncertainty including this influence is the most appropriate one
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for the validation of the numerical results of the systematic series. If this study does not produce
reasonable and expected results, an additional grid refinement study excluding the influence of
motion solving should be performed, and the use of the quasi-static method should be questioned.
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A
Hydrostatic coefficients

Prismatic coefficient
The prismatic coefficient, 𝐶፩, is defined by

𝐶፩ =
∇፜

𝐴ፗ𝐿ፖፋ
, (3.1)

where ∇፜ is the volume of displacement of the canoe body, 𝐴ፗ is the maximum sectional area, and 𝐿ፖፋ
is the length of the waterline.

Maximum sectional area coefficient
The maximum sectional area coefficient, 𝐶፱, is defined by

𝐶፱ =
𝐴ፗ
𝐵ፖፋ𝑇፜

, (3.2)

where 𝐵ፖፋ is the beam of the waterline, and 𝑇፜ is the draft of the canoe body.

Block coefficient
The block coefficient, 𝐶፛, is defined by

𝐶፛ =
∇፜

𝐿ፖፋ𝐵ፖፋ𝑇፜
= 𝐶፱ ⋅ 𝐶፩. (A.1)

Waterplane area coefficient
The waterplane area coefficient, 𝐶፰, is defined by

𝐶፰ =
𝐴ፖ

𝐿ፖፋ𝐵ፖፋ
, (A.2)

where 𝐴ፖ is the waterplane area.
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B.1. Parameter range
Table B.1: The parameters of the models in Series 1 up to 4, 6 and 7 of the DSYHS. The parameter range contained
within the DSYHS is listed at the bottom of this table. The maximum, minimum and mean values, and the standard

deviation of the parameters are listed there. Table adapted from Keuning and Katgert [25].

Sysser ፋፂፁᑗᑡ
ፋᑎᑃ 𝐶፩ ∇ᑔᎴ/Ꮅ

ፀᑎ
ፁᑎᑃ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 𝐶፱ ፁᑎᑃ

ፓᑔ

Se
rie

s
1

1 0.523 0.564 0.201 0.317 0.980 0.210 0.646 3.99
2 0.523 0.567 0.230 0.276 0.981 0.210 0.646 3.04
3 0.523 0.572 0.173 0.364 0.981 0.210 0.647 5.35
4 0.523 0.568 0.195 0.285 0.980 0.200 0.646 3.95
5 0.524 0.559 0.212 0.364 0.981 0.230 0.647 3.96
6 0.524 0.561 0.244 0.317 0.981 0.230 0.646 2.98
7 0.523 0.561 0.174 0.317 0.980 0.190 0.646 4.95
8 0.524 0.586 0.203 0.305 0.983 0.210 0.647 3.84
9 0.522 0.546 0.199 0.328 0.979 0.210 0.646 4.13
10 0.500 0.564 0.199 0.317 0.963 0.210 0.646 3.99
11 0.550 0.565 0.203 0.317 1.000 0.210 0.646 3.99
12 0.500 0.564 0.194 0.285 0.963 0.200 0.647 3.94
13 0.550 0.564 0.198 0.285 1.000 0.200 0.646 3.94
14 0.523 0.529 0.205 0.285 0.978 0.200 0.646 3.69
15 0.523 0.530 0.212 0.316 0.978 0.210 0.646 3.68
16 0.523 0.529 0.255 0.317 0.978 0.230 0.646 2.81
17 0.500 0.598 0.191 0.317 0.966 0.210 0.647 4.24
18 0.550 0.599 0.194 0.317 1.002 0.210 0.647 4.24
19 0.500 0.530 0.208 0.317 0.960 0.210 0.646 3.75
20 0.550 0.530 0.212 0.317 0.998 0.210 0.646 3.75
21 0.523 0.598 0.188 0.285 0.983 0.200 0.647 4.17
22 0.523 0.599 0.202 0.366 0.983 0.230 0.647 4.23

Se
rie

s
2

23 0.519 0.547 0.206 0.288 0.938 0.200 0.721 4.09
24 0.521 0.543 0.109 0.286 0.933 0.140 0.739 10.96
25 0.520 0.548 0.165 0.250 0.936 0.170 0.727 5.39
26 0.521 0.543 0.093 0.250 0.924 0.130 0.749 12.91
27 0.519 0.546 0.265 0.222 0.939 0.200 0.724 2.46
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28 0.521 0.544 0.137 0.222 0.930 0.140 0.736 6.75

Se
rie

s
3

29 0.546 0.549 0.106 0.250 0.947 0.130 0.751 10.87
30 0.546 0.549 0.141 0.250 0.946 0.150 0.751 7.08
31 0.545 0.548 0.082 0.250 0.943 0.120 0.752 15.82
32 0.521 0.549 0.104 0.250 0.927 0.130 0.751 10.87
33 0.566 0.549 0.108 0.250 0.963 0.130 0.751 10.87
34 0.544 0.522 0.110 0.250 0.945 0.130 0.757 10.37
35 0.545 0.580 0.103 0.250 0.946 0.130 0.758 11.47
36 0.544 0.551 0.108 0.250 0.949 0.130 0.707 10.16
37 0.544 0.552 0.110 0.250 0.956 0.130 0.657 9.43
38 0.545 0.547 0.079 0.333 0.942 0.130 0.755 19.38
39 0.546 0.549 0.133 0.200 0.948 0.130 0.753 6.97
41 0.582 0.540 0.175 0.250 0.977 0.170 0.741 5.21

Se
rie

s
4

42 0.533 0.554 0.224 0.301 0.945 0.210 0.711 3.71
43 0.533 0.553 0.167 0.359 0.943 0.200 0.712 6.29
44 0.533 0.554 0.200 0.301 0.947 0.200 0.712 4.42
45 0.533 0.554 0.252 0.240 0.947 0.200 0.711 2.79
46 0.533 0.553 0.172 0.301 0.947 0.190 0.712 5.57
47 0.560 0.548 0.159 0.300 0.959 0.180 0.749 6.04
48 0.507 0.557 0.164 0.300 0.920 0.180 0.725 5.80
49 0.563 0.566 0.157 0.298 0.964 0.180 0.743 6.31
50 0.579 0.539 0.159 0.300 0.979 0.180 0.777 6.34

Se
rie

s
6 60 0.546 0.541 0.158 0.256 0.955 0.170 0.747 5.74

61 0.546 0.542 0.149 0.269 0.952 0.170 0.790 6.70
62 0.545 0.541 0.167 0.243 0.958 0.170 0.676 4.71

Se
rie

s
7 71 0.560 0.519 0.218 0.200 0.969 0.170 0.754 3.39

72 0.560 0.521 0.146 0.170 0.971 0.130 0.745 5.67
73 0.561 0.521 0.159 0.200 0.967 0.140 0.757 5.41

ፋፂፁᑗᑡ
ፋᑎᑃ 𝐶፩ ∇ᑔᎴ/Ꮅ

ፀᑎ
ፁᑎᑃ
ፋᑎᑃ

ፋፂፁᑗᑡ
ፋፂፅᑗᑡ

∇ᑔᎳ/Ꮅ
ፋᑎᑃ 𝐶፱ ፁᑎᑃ

ፓᑔ

Maximum 0.582 0.599 0.265 0.366 1.002 0.230 0.790 19.38
Minimum 0.500 0.519 0.079 0.170 0.920 0.120 0.646 2.46
Mean 0.535 0.553 0.172 0.282 0.962 0.180 0.700 6.12
𝜎 0.019 0.019 0.046 0.044 0.021 0.034 0.049 3.45
𝜎 [%Mean] 3.58 3.49 26.8 15.6 2.15 19.0 7.00 56.5
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B.2. Coefficients of the DSYHS regressions
Table B.2: The coefficients, ፚᑚ, of the regression for the bare hull residuary resistance, ፑᑉᑙ , Equation (2.9).

Coefficients taken from Keuning and Katgert [25]. All the coefficients are dimensionless.

𝐹𝑛 𝑎ኺ 𝑎ኻ 𝑎ኼ 𝑎ኽ 𝑎ኾ 𝑎኿ 𝑎ዀ 𝑎዁
0.15 -0.0005 0.0023 -0.0086 -0.0015 0.0061 0.0010 0.0001 0.0052
0.20 -0.0003 0.0059 -0.0064 0.0070 0.0014 0.0013 0.0005 -0.0020
0.25 -0.0002 -0.0156 0.0031 -0.0021 -0.0070 0.0148 0.0010 -0.0043
0.30 -0.0009 0.0016 0.0337 -0.0285 -0.0367 0.0218 0.0015 -0.0172
0.35 -0.0026 -0.0567 0.0446 -0.1091 -0.0707 0.0914 0.0021 -0.0078
0.40 -0.0064 -0.4034 -0.1250 0.0273 -0.1341 0.3578 0.0045 0.1115
0.45 -0.0218 -0.5261 -0.2945 0.2485 -0.2428 0.6293 0.0081 0.2086
0.50 -0.0388 -0.5986 -0.3038 0.6033 -0.0430 0.8332 0.0106 0.1336
0.55 -0.0347 -0.4764 -0.2361 0.8726 0.4219 0.8990 0.0096 -0.2272
0.60 -0.0361 0.0037 -0.2960 0.9661 0.6123 0.7534 0.0100 -0.3352
0.65 0.0008 0.3728 -0.3667 1.3957 1.0343 0.3230 0.0072 -0.4632
0.70 0.0108 -0.1238 -0.2026 1.1282 1.1836 0.4973 0.0038 -0.4477
0.75 0.1023 0.7726 0.5040 1.7867 2.1934 -1.5479 -0.0115 -0.0977

Table B.3: The coefficients, ፛ᑚ, of the regression for the change in bare hull residuary
resistance due to heel, ጂፑᑉᒣᑙ , Equation (2.12). Coefficients taken from Keuning and

Katgert [26]. All the coefficients are multiplied by ኻኺᎵ and are dimensionless.

𝐹𝑛 𝑏ኺ 𝑏ኻ 𝑏ኼ 𝑏ኽ
0.15 -1.850 -0.032 1.037 1.781
0.20 -1.032 0.000 0.731 0.996
0.25 2.061 -0.024 0.451 -2.046
0.30 10.881 -0.163 -0.431 -10.773
0.35 26.984 -0.494 -2.208 -26.780
0.40 48.633 -1.062 -4.344 -48.397
0.45 73.015 -1.795 -6.432 -72.799

Table B.4: The coefficients, ፓᑚ, of the regression for the change in residuary resistance of the bare hull
due to the trimming moment of the driving force, ጂፑᑉᒍᑙ , Equation (2.14). Coefficients taken from
Keuning and Sonnenberg [27]. All the coefficients are multiplied by ኻኺᎵ and are dimensionless.

𝐹𝑛 𝑇ኺ 𝑇ኻ 𝑇ኼ 𝑇ኽ 𝑇ኾ 𝑇኿
0.15 0 0 0 0 0 0
0.20 0 0 0 0 0 0
0.25 1.91 1.42 3.60 -3.96 -0.35 0.68
0.30 1.50 0.85 2.70 -3.00 0.16 0.01
0.35 2.55 2.66 5.49 -6.63 0.37 0.04
0.40 1.88 2.91 5.83 -6.87 1.10 -0.31
0.45 6.96 3.34 7.38 -8.94 1.65 -0.50
0.50 6.28 2.90 7.21 -8.02 1.33 -0.24
0.55 2.62 3.33 7.36 -7.56 1.78 -0.44
0.60 -4.58 3.70 7.23 -6.54 1.72 -0.66
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B.3. Comparison of the regressions with experimental results
Table B.5: Comparison errors ፄ of the bare hull resistance computed with the DSYHS regressions and the
measured resistance. E.g. ፄ(ፑᑋᑙ ) indicates the comparison error of ፑᑋᑙ with corresponding experimental
result ፑᑥ; ፄ(ፑᑋᑙ ) ዆ ፑᑋᑙ ዅ ፑᑥ. Comparison errors are given as a percentage of the experimental results, ፑᑥ.

Note that for every column, ፑᑥ is different. ፑᑋᎴᎲᑙ ዆ (ፑᑋᒣᑙ)ᒣᎾᎴᎲ∘ , and ፑᑋᎵᎲᑙ ዆ (ፑᑋᒣᑙ)ᒣᎾᎵᎲ∘ .

(a) Models from Series 2 of the DSYHS.

Sysser 25 Sysser 28
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ) 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 -4.3 -5.7 -4.4 -2.2 -2.2 0.6
0.30 -2.2 -5.4 -2.9 -1.9 -0.8 3.6
0.35 -5.8 -7.0 -6.4 1.3 2.2 5.4
0.40 -1.8 -6.1 -4.3 0.8 -0.6 -0.9
0.45 -2.2 -5.9 -3.9 -3.0 -0.9 -4.4
0.50 -0.1 -2.8 -3.3 -0.9
0.55 -0.2 -3.0 -5.0 0.5
0.60 -0.5 -1.1 -5.0 1.3
0.65 -0.6 -4.1
0.70 0.9 -2.6
0.75 -0.2 0.2

(b) Models from Series 3 of the DSYHS.

Sysser 33 Sysser 39
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ) 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 5.9 11.1 8.5 -4.7 -2.2 5.9
0.30 6.6 7.6 9.3 -0.8 -4.3 5.1
0.35 1.5 9.1 11.8 1.0 0.0 6.5
0.40 0.2 12.3 7.1 0.4 -1.0 0.5
0.45 3.1 12.4 2.5 1.2 2.2 -0.4
0.50 3.9 16.3 -2.3 1.0
0.55 2.5 17.4 -5.2 -0.7
0.60 2.2 20.6 -4.2 1.9
0.65 -0.7 -3.6
0.70 -1.4 -4.3
0.75 -0.1 0.4
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(c) Models from Series 4 of the DSYHS.

Sysser 44 Sysser 47
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ) 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 5.2 2.7 3.8 6.1 4.8 6.4
0.30 0.0 0.0 0.0 6.2 4.2 1.6
0.35 7.4 6.5 5.8 9.0 6.5 7.6
0.40 5.1 0.8 1.6 11.8 7.8 12.1
0.45 -0.5 -1.8 0.2 8.2 5.0 9.1
0.50 -1.6 -4.1 7.0 1.9
0.55 1.3 -2.8 8.1 0.5
0.60 1.5 -5.0 7.2 1.1
0.65 0.9 4.8
0.70 2.6 2.9
0.75 -2.1

(d) Models from Series 6 of the DSYHS.

Sysser 61 Sysser 62
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ) 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 4.4 4.4 5.8 3.5 5.1 5.2
0.30 5.7 3.6 7.8 15.5 3.9 16.6
0.35 7.6 8.1 18.4 11.8 4.1 10.4
0.40 5.0 4.2 15.5 -2.9 -7.8 -0.9
0.45 1.5 8.8 8.2 -7.1 -12.4 -8.5
0.50 -0.2 6.0 -3.3 -7.6
0.55 -4.6 1.5 1.3 -4.0
0.60 -5.4 2.3 0.7 -2.8

(e) Models from Series 7 of the DSYHS.

Sysser 72 Sysser 73
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 14.9 13.8 4.1 13.4
0.30 9.8 3.0 -0.1 -1.8
0.35 1.9 2.4 4.5 2.7
0.40 13.4 8.0 8.7 1.5
0.45 16.8 12.1 11.5 9.0
0.50 10.5 8.4 9.4 7.2
0.55 5.1 3.7 4.2 3.8
0.60 4.8 7.8 5.0 6.6
0.65 8.8 5.1
0.70 7.7 2.1
0.75 11.4 2.2
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(f) A model not belonging to the DSYHS.

Sysser 85
𝐹𝑛 𝐸(𝑅ፓᑙ) 𝐸(𝑅ፓ᎕ᑙ) 𝐸(𝑅ፓኼኺᑙ) 𝐸(𝑅ፓኽኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 -0.7 -11.5 -4.4 -6.6
0.30 -3.7 -1.0 -3.0 -3.9
0.35 -3.7 -8.3 -3.4 -5.5
0.40 -11.3 -14.7 -13.3 -14.8
0.45 -10.2 -15.9 -12.4 -14.9
0.50 -9.3 -14.4
0.55 -6.5 -11.2
0.60 -6.4 -7.4
0.65 -3.2
0.70 -1.8
0.75 1.9

Table B.6: Comparison errors ፄ of the residuary resistance of the bare hull computed with the DSYHS
regressions and the residuary resistance derived from resistance measurements. E.g. ፄ(ፑᑉᑙ ) indicates the
comparison error of ፑᑉᑙ with corresponding experimental result ፑᑥ; ፄ(ፑᑉᑙ ) ዆ ፑᑉᑙ ዅ ፑᑥ. Comparison errors

are given as a percentage of the experimental results, ፑᑥ. Note that for every column, ፑᑥ is different.
ፑᑉᒍᑙ ዆ ፑᑉᑙ ዄ ጂፑᑉᒍᑙ , ፑᑉᎴᎲᑙ ዆ ፑᑉᑙ ዄ (ጂፑᑉᒣᑙ)ᒣᎾᎴᎲ∘ , and ፑᑉᎵᎲᑙ ዆ ፑᑉᑙ ዄ (ጂፑᑉᒣᑙ)ᒣᎾᎵᎲ∘ .

Sysser 85
𝐹𝑛 𝐸(𝑅ፑᑙ) 𝐸(𝑅ፑ᎕ᑙ) 𝐸(𝑅ፑኼኺᑙ) 𝐸(𝑅ፑኽኺᑙ)
[−] [%𝑅፭] [%𝑅፭] [%𝑅፭] [%𝑅፭]
0.25 -4.4 -100.5 -28.9 -41.7
0.30 -15.8 -4.4 -11.7 -14.4
0.35 -11.6 -28.9 -9.8 -15.3
0.40 -28.4 -39.7 -32.2 -34.8
0.45 -20.5 -34.8 -24.4 -29.3
0.50 -17.4 -28.2
0.55 -11.3 -20.1
0.60 -11.1 -12.3
0.65 -5.4
0.70 -3.0
0.75 3.1
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C.1. Syssers belonging to the DSYHS

Figure C.1: Lines plan of Sysser 25.

Figure C.2: Lines plan of Sysser 28.
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Figure C.3: Lines plan of Sysser 33.

Figure C.4: Lines plan of Sysser 39.

Figure C.5: Lines plan of Sysser 44.
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Figure C.6: Lines plan of Sysser 47.

Figure C.7: Lines plan of Sysser 61.

Figure C.8: Lines plan of Sysser 62.
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Figure C.9: Lines plan of Sysser 72.

Figure C.10: Lines plan of Sysser 73.
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Table C.1: Hydrostatic parameters of Syssers belonging to the DSYHS.

𝐿ፖፋ 𝐿ፖፋᎴᎲ 𝐵ፖፋ 𝐵ፖፋᎴᎲ 𝑇፜ 𝑇፜ᎴᎲ ∇፜ 𝐿𝐶𝐵፟፩ 𝐿𝐶𝐹 ፩ 𝐾𝑀ፋ
[𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚ኽ] [𝑚] [𝑚] [𝑚]

Sysser 25 10.00 10.26 2.500 2.310 0.4640 0.5330 4.623 -5.199 -5.554 19.54
Sysser 28 10.00 10.31 2.222 1.945 0.3290 0.4130 2.925 -5.205 -5.595 27.02
Sysser 33 10.00 10.35 2.500 1.877 0.2300 0.3720 2.372 -5.655 -5.873 37.52
Sysser 39 10.00 10.45 2.000 1.746 0.2870 0.3730 2.371 -5.455 -5.754 30.33
Sysser 44 10.00 10.15 3.013 2.890 0.6810 0.7260 8.087 -5.329 -5.625 13.77
Sysser 47 10.00 10.67 2.997 2.736 0.4960 0.6000 6.096 -5.602 -5.840 19.37
Sysser 61 10.00 10.39 2.687 2.402 0.4010 0.5510 4.619 -5.454 -5.727 22.18
Sysser 62 10.00 10.13 2.434 2.352 0.5170 0.5250 4.609 -5.448 -5.688 19.38
Sysser 72 10.04 10.37 1.710 1.557 0.3000 0.3630 2.014 -5.619 -5.835 29.08
Sysser 73 10.00 10.31 2.012 1.862 0.3700 0.4440 2.912 -5.613 -5.820 23.27

𝐴ፖ 𝐴ፗ 𝐴ፗᎴᎲ 𝑆፜ 𝑆፜ᎴᎲ 𝐶፛ 𝐶፩ 𝐶፰ 𝐶፱ 𝐶፱ᎴᎲ
[𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [−] [−] [−] [−] [−]

Sysser 25 16.78 0.8430 0.8530 18.86 18.23 0.399 0.548 0.671 0.727 0.693
Sysser 28 14.94 0.5380 0.5450 16.12 14.96 0.400 0.544 0.672 0.736 0.678
Sysser 33 16.48 0.4320 0.4430 16.80 14.17 0.413 0.549 0.659 0.751 0.634
Sysser 39 13.40 0.4320 0.4350 14.52 13.55 0.413 0.549 0.670 0.753 0.668
Sysser 44 20.13 1.4600 1.4550 23.83 23.56 0.394 0.554 0.668 0.712 0.693
Sysser 47 20.95 1.1130 1.0770 23.14 22.04 0.410 0.548 0.699 0.749 0.656
Sysser 61 18.67 0.8520 0.8430 20.37 18.95 0.429 0.542 0.695 0.791 0.637
Sysser 62 16.57 0.8510 0.8570 18.63 18.24 0.366 0.542 0.681 0.676 0.694
Sysser 72 10.99 0.3870 0.3860 12.51 12.03 0.391 0.518 0.640 0.754 0.683
Sysser 73 12.88 0.5610 0.5580 14.79 14.32 0.391 0.519 0.640 0.754 0.675
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C.2. Syssers not belonging to the DSYHS or the new systematic
series

Figure C.11: Lines plan of Sysser 83.

Figure C.12: Lines plan of Sysser 84.

Table C.2: Hydrostatic parameters of Syssers not belonging to the DSYHS or the new systematic series.

𝐿ፖፋ 𝐿ፖፋᎴᎲ 𝐵ፖፋ 𝐵ፖፋᎴᎲ 𝑇፜ 𝑇፜ᎴᎲ ∇፜ 𝐿𝐶𝐵፟፩ 𝐿𝐶𝐹 ፩ 𝐾𝑀ፋ
[𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚ኽ] [𝑚] [𝑚] [𝑚]

Sysser 83 10.01 10.26 1.894 1.722 0.2972 0.3616 2.246 -5.212 -5.595 29.95
Sysser 84 10.01 11.10 1.870 1.674 0.2892 0.3367 2.224 -5.320 -5.818 34.16

𝐴ፖ 𝐴ፗ 𝐴ፗᎴᎲ 𝑆፜ 𝑆፜ᎴᎲ 𝐶፛ 𝐶፩ 𝐶፰ 𝐶፱ 𝐶፱ᎴᎲ
[𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [−] [−] [−] [−] [−]

Sysser 83 12.74 0.4110 0.4201 14.01 13.06 0.399 0.546 0.672 0.730 0.675
Sysser 84 13.53 0.3848 0.3748 14.72 13.91 0.411 0.578 0.723 0.711 0.665
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C.3. Syssers belonging to the new systematic series

Figure C.13: Lines plan of Sysser 85.

Figure C.14: Lines plan of Sysser 86.

Figure C.15: Lines plan of Sysser 87.



138 Syssers

Figure C.16: Lines plan of Sysser 88.

Figure C.17: Lines plan of Sysser 89.

Figure C.18: Lines plan of Sysser 90.
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Figure C.19: Lines plan of Sysser 91.

Figure C.20: Lines plan of Sysser 92.

Figure C.21: Lines plan of Sysser 93.
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Figure C.22: Lines plan of Sysser 94.

Figure C.23: Lines plan of Sysser 95.

Figure C.24: Lines plan of Sysser 96.
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Figure C.25: Lines plan of Sysser 97.

Figure C.26: Lines plan of Sysser 98.

Figure C.27: Lines plan of Sysser 99.
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Figure C.28: Lines plan of Sysser 100.

Figure C.29: Lines plan of Sysser 101.

Figure C.30: Lines plan of Sysser 102.
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Figure C.31: Lines plan of Sysser 103.

Figure C.32: Lines plan of Sysser 104.

Figure C.33: Lines plan of Sysser 105.
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Table C.3: Hydrostatic parameters of the hull shapes belonging to the new systematic series.

𝐿ፖፋ 𝐿ፖፋᎴᎲ 𝐵ፖፋ 𝐵ፖፋᎴᎲ 𝑇፜ 𝑇፜ᎴᎲ ∇፜ 𝐿𝐶𝐵፟፩ 𝐿𝐶𝐹 ፩ 𝐾𝑀ፋ
[𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚] [𝑚ኽ] [𝑚] [𝑚] [𝑚]

Sysser 85 10.00 10.13 2.047 1.905 0.2960 0.3259 2.252 -5.387 -5.734 33.38
Sysser 86 10.00 10.13 1.754 1.737 0.3428 0.3573 2.236 -5.375 -5.728 28.88
Sysser 87 10.00 10.13 2.389 2.006 0.2524 0.3038 2.242 -5.377 -5.729 39.09
Sysser 88 10.00 10.13 2.196 2.042 0.3171 0.3492 2.587 -5.386 -5.733 31.19
Sysser 89 10.00 10.13 1.888 1.757 0.2728 0.3004 1.914 -5.386 -5.733 36.18
Sysser 90 10.00 10.11 2.047 1.970 0.3404 0.3644 2.590 -5.386 -5.733 29.08
Sysser 91 10.00 10.16 2.047 1.816 0.2519 0.2886 1.917 -5.386 -5.733 39.16
Sysser 92 10.00 10.16 2.032 1.924 0.2960 0.3500 2.356 -5.402 -5.743 32.04
Sysser 93 10.00 10.03 2.030 1.853 0.2960 0.2944 2.086 -5.355 -5.716 35.61
Sysser 94 10.00 10.15 1.845 1.766 0.2972 0.3206 2.239 -5.386 -5.739 33.17
Sysser 95 10.00 9.935 2.245 2.032 0.2960 0.3305 2.263 -5.387 -5.727 33.06
Sysser 96 10.00 10.16 2.061 1.895 0.2926 0.3149 2.225 -5.596 -5.850 34.26
Sysser 97 10.00 10.07 2.026 1.904 0.2974 0.3340 2.254 -5.155 -5.609 32.84
Sysser 98 10.00 10.16 2.048 1.890 0.2955 0.3235 2.260 -5.399 -5.861 34.68
Sysser 99 10.00 10.00 2.048 1.920 0.2968 0.3269 2.251 -5.387 -5.628 33.05
Sysser 100 10.00 10.12 1.901 1.833 0.3188 0.3406 2.252 -5.387 -5.734 31.03
Sysser 101 10.00 10.16 2.214 1.967 0.2737 0.3131 2.252 -5.387 -5.734 36.08
Sysser 102 10.00 10.13 2.122 1.975 0.3068 0.3378 2.419 -5.387 -5.734 32.22
Sysser 103 10.00 10.13 1.967 1.831 0.2845 0.3131 2.079 -5.387 -5.734 34.72
Sysser 104 10.00 10.12 2.047 1.940 0.3182 0.3450 2.421 -5.387 -5.734 31.08
Sysser 105 10.00 10.15 2.047 1.863 0.2734 0.3065 2.080 -5.387 -5.734 36.11

𝐴ፖ 𝐴ፗ 𝐴ፗᎴᎲ 𝑆፜ 𝑆፜ᎴᎲ 𝐶፛ 𝐶፩ 𝐶፰ 𝐶፱ 𝐶፱ᎴᎲ
[𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [𝑚ኼ] [−] [−] [−] [−] [−]

Sysser 85 14.06 0.4143 0.4194 15.00 14.25 0.371 0.543 0.687 0.683 0.675
Sysser 86 12.05 0.4111 0.4146 13.43 13.32 0.372 0.544 0.687 0.684 0.668
Sysser 87 16.41 0.4123 0.4204 17.03 14.91 0.372 0.544 0.687 0.684 0.690
Sysser 88 15.08 0.4760 0.4818 16.08 15.28 0.372 0.544 0.687 0.684 0.676
Sysser 89 12.97 0.3522 0.3565 13.83 13.14 0.371 0.544 0.687 0.683 0.675
Sysser 90 14.06 0.4765 0.4815 15.27 14.86 0.371 0.543 0.687 0.683 0.670
Sysser 91 14.06 0.3527 0.3580 14.76 13.53 0.371 0.544 0.687 0.683 0.683
Sysser 92 14.05 0.4371 0.4362 15.08 14.51 0.392 0.539 0.691 0.726 0.648
Sysser 93 13.91 0.3806 0.3910 14.75 13.82 0.347 0.548 0.685 0.633 0.716
Sysser 94 13.34 0.3712 0.3793 14.43 13.78 0.408 0.603 0.723 0.677 0.670
Sysser 95 14.64 0.4549 0.4586 15.46 14.48 0.341 0.497 0.652 0.685 0.682
Sysser 96 14.08 0.4080 0.4067 15.00 14.15 0.369 0.545 0.683 0.677 0.681
Sysser 97 13.93 0.4164 0.4235 14.91 14.31 0.374 0.541 0.687 0.690 0.666
Sysser 98 14.38 0.4110 0.4120 15.36 14.27 0.373 0.550 0.702 0.679 0.674
Sysser 99 14.05 0.4207 0.4259 14.93 14.17 0.370 0.535 0.686 0.692 0.678
Sysser 100 13.06 0.4143 0.4186 14.19 13.83 0.372 0.543 0.687 0.684 0.670
Sysser 101 15.21 0.4143 0.4206 15.97 14.65 0.372 0.543 0.687 0.684 0.683
Sysser 102 14.57 0.4451 0.4506 15.54 14.77 0.372 0.543 0.687 0.684 0.676
Sysser 103 13.51 0.3826 0.3872 14.41 13.70 0.371 0.543 0.687 0.683 0.676
Sysser 104 14.06 0.4454 0.4504 15.13 14.57 0.372 0.543 0.687 0.684 0.672
Sysser 105 14.06 0.3827 0.3879 14.87 13.90 0.371 0.543 0.687 0.683 0.679



D
Upright resistance for fixed pitch angles

Table D.1: Upright resistance of Sysser 85 for three fixed pitch angles, computed with the
numerical method on the medium grid. The model is free to heave. ጂ% ዆ (ፅᑩ ዅፅᑩ∗)/ፅᑩ∗ ⋅ ኻኺኺ.

𝜃 = −1∘ 𝜃 = 0∘ 𝜃 = +1∘
𝐹𝑛 𝐹፱ Δ% 𝐹፱∗ 𝐹፱ Δ%
[−] [𝑁] [%] [𝑁] [𝑁] [%]
0.25 1.82 11.7 1.63 1.69 3.9
0.35 3.94 8.9 3.62 3.80 5.0
0.45 8.42 -3.3 8.71 9.67 11.0
0.55 13.60 -8.7 14.91 17.01 14.1
0.65 18.46 -8.1 20.08 22.16 10.4
0.75 22.66 -8.1 24.65 27.09 9.9
0.85 27.58 -9.4 30.43 33.47 10.0
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E
Computational fluid dynamics

The hydrodynamic forces acting on the models in the new systematic series are determined with com-
putational fluid dynamics (CFD). The numerical simulations are performed using the ISIS-CFD flow
solver [11] implemented in the commercial FINE™/Marine software package of NUMECA International
[35]. This flow solver solves the unsteady incompressible RANS equations with a finite-volume method
(FVM). The theoretical background and the simulation settings were discussed in Chapter 6. For the
interested reader, a more elaborate explanation of (computational) fluid dynamics is given in this ap-
pendix. For a thorough discussion of the physics involved in fluid dynamics, the reader is referred to
White [47] and Pope [37]. For a thorough discussion of all the mathematical details of CFD, the reader
is referred to Wesseling [46].

E.1. Governing equations
The governing equations of fluid dynamics are based on the following three fundamental physical prin-
ciples: conservation of mass, conservation of energy and Newton’s second law of motion. From these
principles, the continuity equation, the energy equation and the momentum equations can be derived,
respectively. Computational fluid dynamics (CFD) is based on these equations. With the assumption
of incompressible flow under isothermal conditions, the governing equations are the incompressible
Navier-Stokes equations. The incompressible Navier-Stokes equations in Cartesian coordinates, in an
Eulerian formulation, are given by

𝜕𝑢።
𝜕𝑥።

= 0, (E.1a)

𝜕𝑢።
𝜕𝑡 + 𝑢፣

𝜕𝑢።
𝜕𝑥፣

= −1𝜌
𝜕𝑝
𝜕𝑥።

+ 𝜈𝜕
ኼ𝑢።
𝜕𝑥፣ኼ

+ 𝑔። , (E.1b)

where 𝑢። are the Cartesian velocity components, 𝑥። are the Cartesian coordinates, 𝑡 is the time, 𝜌
is the density, 𝑝 is the pressure, 𝜈 is the kinematic viscosity, and 𝑔። is the gravitational acceleration.
Subscripts 𝑖 and 𝑗 can have values 1, 2 or 3 and denote one of the three Cartesian coordinates, 𝑥ኻ, 𝑥ኼ
and 𝑥ኽ, and corresponding velocity components, 𝑢ኻ, 𝑢ኼ and 𝑢ኽ. Note that as a consequence of Einstein
notation, or Einstein summation convention, summation over the repeated index in a term is implied.

Equation (E.1a) is the conservation of mass equation, or the continuity equation. This equation is
transformed into a pressure equation from which the pressure field is extracted in the ISIS-CFD flow
solver. The reader is referred to Wesseling [46] for the mathematical details.

Equation (E.1b) is one of the three momentum equations. The two terms on the left-hand side of the
momentum equation arise from the inertia of fluid particles and form the material derivative, or particle
derivative. The first term is the local derivative, which describes the local temporal rate of change
of momentum. The second term is the convective derivative, which describes the rate of change of
momentum as a result of the movement of fluid particles.

The first two terms on the right-hand side of the momentum equation are surface forces acting on
fluid particles and originate from the normal stresses and the shear stresses acting on these particles.
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The normal stress acting on a fluid particle is the pressure, 𝑝. The shear stress acting on a fluid particle
is 𝜇(𝜕𝑢።/𝜕𝑥፣ + 𝜕𝑢፣/𝜕𝑥።). The first term on the right-hand side is the pressure term and represents the
pressure force that acts on the fluid particles. The second term is the viscous term and represents the
friction force. The third term is the body force acting on the fluid particles.

E.1.1. Reynolds-averaged Navier-Stokes equations
The flow field around a ship is likely to be partly or fully turbulent. A turbulent flow contains a very
wide range of length scales of turbulent motion. Solving the Navier-Stokes equations for a turbulent
flow requires capturing of all the length scales — eddy sizes — of turbulent motion, because different
physical processes occur at these scales. According the energy-cascade concept of Richardson [42],
turbulent kinetic energy is produced at the largest scale and dissipated at the smallest scale by viscous
dissipation. Large eddies are unstable and break up into successively smaller and smaller eddies.
They transfer thereby their turbulent kinetic energy to smaller and smaller scales, until the turbulent
kinetic energy is dissipated at the smallest scale. All the scales of turbulent motion should be captured,
because the physical processes occurring at each scale are very import.

In general, for turbulent flows in ship hydromechanics applications, the full Navier-Stokes equations
are too complex to solve by direct numerical simulation (DNS) due to this very wide range of length
scales of turbulent motion. By using modelling approaches, e.g. large-eddy simulation (LES) or the
Reynolds-averagedNavier-Stokes (RANS) equations, solving turbulent motion can be greatly simplified
by modelling instead of resolving all the scales of turbulent motion. For practical ship hydromechanics
applications, LES is still too costly. For the present study, the RANS equations are used, because they
produce sufficiently accurate results for an acceptable required computation time.

To derive the RANS equations, Reynolds-averaging is applied to the Navier-Stokes equations to obtain
the mean, or time-averaged, equations of fluid motion. Following Reynolds [41], any flow quantity 𝑓
is decomposed into a mean value, 𝑓, and a fluctuating value, 𝑓ᖣ, in order to capture the randomly
unsteady turbulent state of the flow; i.e. 𝑓 = 𝑓 + 𝑓ᖣ. The mean value is defined by

𝑓 = 1
𝑇 ∫

፭Ꮂዄፓ

፭Ꮂ
𝑓𝑑𝑡, (E.2)

where the time period of length 𝑇 is large compared to the relevant period of the turbulent fluctuations.
The mean value of a flow quantity may vary ’slowly’ with time. If this is the case, the flow is classified
as an unsteady turbulent flow. From Equation (E.2), the following rules of averaging can be derived for
any two flow quantities 𝑓 and 𝑔:

𝑓 + 𝑔 = 𝑓 + 𝑔, 𝑐𝑓 = 𝑐𝑓, 𝑓 = 𝑓, 𝑓ᖣ = 0, 𝜕𝑓
𝜕𝑠 =

𝜕𝑓
𝜕𝑠 , 𝑓𝑔 = 𝑓 ⋅ 𝑔, (E.3)

where 𝑐 is some arbitrary constant, and 𝑠 is any time or spatial coordinate. For incompressible turbulent
flow, fluctuations in the velocities and the pressure are expected; hence, 𝑢። = 𝑢። + 𝑢ᖣ።, and 𝑝 = 𝑝 + 𝑝ᖣ.
Substitution of these Reynolds decompositions into the Navier-Stokes equations (E.1), applying time
averaging to the resulting equations, and rewriting with the rules of averaging (E.3) yields the RANS
equations:

𝜕𝑢።
𝜕𝑥።

= 0, (6.1a)

𝜕𝑢።
𝜕𝑡 + 𝑢፣

𝜕𝑢።
𝜕𝑥፣

= −1𝜌
𝜕𝑝
𝜕𝑥።

+ 𝜈𝜕
ኼ𝑢።
𝜕𝑥፣ኼ

+ 𝑔። −
𝜕𝑢ᖣ።𝑢ᖣ፣
𝜕𝑥፣

, (6.1b)

where the last term in the Reynolds-averaged momentum equation is the Reynolds stress, or turbulent
stress, term. This term originates from the transport of mean momentum by turbulent fluctuations. The
turbulent fluctuations seem to act on the mean flow as if they induce an additional stress on the fluid
particles; therefore, it is called a stress. The Reynolds stress, or turbulent stress, is defined as 𝜌𝑢ᖣ።𝑢ᖣ፣.
The first two terms on the right-hand side of the mean momentum equation represent together the
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surface forces originating from the mean molecular stress acting on a fluid particle.
The Reynolds stress term poses a problem: there are now ten unknowns — three mean-velocity

components, the mean pressure and the six Reynolds stresses — while there are only four equations
— one mean continuity equation and three mean momentum equations. An additional closure model
or turbulence model is needed for the modelling of the Reynolds stress term in the RANS equations.

E.1.2. Turbulence models
As a consequence of Reynolds-averaging the Navier-Stokes equations, an additional turbulence model
is necessary to close the resulting equations. Many turbulence models were developed and proposed
over the years. Selecting an appropriate turbulence model is all about balancing the desired accu-
racy against the computation time. For the present study, the large systemic series requires small
computation times while keeping a sufficiently high accuracy.

According to the ITTC [18], 𝑘 − 𝜔 two-equation turbulence models have shown to be able to yield
accurate predictions in ship hydromechanics. They are by far the most applied turbulence models in
this scientific field. A 𝑘 − 𝜔 turbulence model is also used for the present study, because it produces
sufficiently accurate results for an acceptable required computation time.

𝑘 − 𝜔 two-equation turbulence models use a transport equation for the turbulent kinetic energy,
𝑘, and a transport equation for the specific turbulence dissipation rate, 𝜔, to model the conservation
of these two turbulence quantities. In general, a transport equation describes the conservation of a
particular flow quantity as the rate of change of that flow quantity as function of convection, diffusion,
production and dissipation of that flow quantity. The turbulent kinetic energy is defined by 𝑘 = 𝑢ᖣ።𝑢ᖣ።/2.
The specific turbulence dissipation rate, or turbulence frequency, 𝜔, is defined as the dissipation rate
of turbulent kinetic energy, 𝜖, divided by the turbulent kinetic energy, 𝑘; i.e. 𝜔 = 𝜖/𝑘. The turbulent
kinetic energy and the specific turbulence dissipation rate calculated from the two transport equations
are used to determine the Reynolds stresses.

Various 𝑘 − 𝜔 two-equation turbulence models were developed and proposed over the years. For
an accurate determination of the hydrodynamic forces in ship hydromechanics, two good options for
turbulence modelling are the EASM 𝑘 − 𝜔 two-equation turbulence model, Gatski and Speziale [12],
and the SST 𝑘 −𝜔 two-equation turbulence model, developed by Menter [34]. Over the years, several
changes were made to both turbulence models; therefore, various variations of both models exist. The
principles of both models have not changed and are discussed in this subsection. The EASM and the
SST 𝑘 − 𝜔 two-equation turbulence model are both implemented in the ISIS-CFD flow solver. The
specific details of the turbulence models implemented in this flow solver are given in its theoretical
manual [11].

The EASM 𝑘−𝜔 turbulence model and the SST 𝑘−𝜔 turbulence model differ in the way the Reynolds
stress term is modelled. The SST 𝑘−𝜔 model is a linear eddy-viscosity model and follows the Boussi-
nesq hypothesis, or Boussinesq eddy-viscosity assumption. This hypothesis models the turbulent
stress analogous to themeanmolecular stress as a turbulent normal stress and a turbulent shear stress.
The turbulent normal stress, also called the turbulent pressure, is assumed to be proportional to the tur-
bulent kinetic energy. The turbulent shear stress is assumed to have a similar formulation as the mean
viscous shear stress, 𝜇(𝜕𝑢።/𝜕𝑥፣ +𝜕𝑢፣/𝜕𝑥።), only the dynamic viscosity, 𝜇, is replaced by the turbulent
viscosity, or eddy viscosity, 𝜇፭; i.e. the turbulent shear stress is modelled as 𝜇፭(𝜕𝑢።/𝜕𝑥፣ + 𝜕𝑢፣/𝜕𝑥።).
The eddy viscosity is determined with an empirical formulation from the turbulent kinetic energy and
the specific turbulence dissipation rate.

The shear stress transport 𝑘−𝜔 model, developed by Menter [34], combines the best performance
of 𝑘 − 𝜔 turbulence models and 𝑘 − 𝜖 turbulence models. According to Wilcox [48], 𝑘 − 𝜔 models
are superior to 𝑘 − 𝜖 models for boundary layer flows. On the other hand, for free-stream flows, 𝑘 − 𝜖
models are superior.

The shear stress transport model rewrites the transport equation for 𝜖 into a non-standard transport
equation for 𝜔. Multiplication of some terms in this equation for 𝜔 with a ’blending function’ combines
the standard formulations of 𝑘 − 𝜔 models and 𝑘 − 𝜖 models. The resulting non-standard transport
equation for 𝜔 and the standard transport equation for 𝑘 are used to form the SST 𝑘 −𝜔 two-equation
turbulence model. The specific turbulence dissipation rate, 𝜔, and the turbulence dissipation rate, 𝜖,
are closely related to each other by 𝜔 = 𝜖/𝑘.

Close to a solid wall, the blending function is zero, whereas far in the free-stream flow, the blending
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function is unity. The result is that close to the solid wall, the standard transport equation for 𝜔 is used,
whereas far away from the solid wall, in the free-stream flow, the non-standard transport equation for
𝜔 reduces to a formulation for 𝜔 that corresponds to the standard transport equation of 𝜖. In between
these two locations, a combination of 𝑘 −𝜔 models and 𝑘 − 𝜖 models is captured by the non-standard
transport equation for 𝜔.

For complex turbulent flows characterized by intense vortices, the isotropic description of turbulence
in the Boussinesq hypothesis probably results in inaccurate results. The EASM 𝑘 − 𝜔 model uses a
different approach for the modelling of the Reynolds stresses. Algebraic stress models are derived from
the six Reynolds stress equations. A Reynolds stress equation, or Reynolds stress transport equation,
is a conservation equation for a single Reynolds stress component and describes the rate of change of
that Reynolds stress as function of the convection, production, diffusion and dissipation of that stress.
It also incorporates pressure-strain effects. For the derivation of the Reynolds stress equations, the
reader is referred to Pope [37] and White [47].

Reynolds stress equations are extremely complex differential equations. From the six Reynolds
stress equations, simpler algebraic equations can be derived with modelling assumptions to obtain an
algebraic stress model (ASM). Algebraic stress models implicitly determine the Reynolds stresses as
function of the turbulent kinetic energy, the turbulence frequency and the mean-velocity gradients. This
requires an iterative procedure to solve all the involved equations numerically.

Explicit analytical solutions of the algebraic equations for the Reynolds stresses used in ASMs
can generally be derived. These solutions form then an explicit algebraic stress model (EASM). The
Reynolds stresses can now be explicitly determined from the turbulent kinetic energy, the turbulence
frequency and the mean-velocity gradients. For the mathematical background and the derivation of the
EASM model, the reader is referred to Gatski and Speziale [12].

Compared to linear eddy-viscosity models, the Reynolds stresses in EASMs are modelled with
additional (non-linear) terms that can include powers of the mean-velocity gradients or combinations of
the mean strain-rate tensor and the mean rotation-rate tensor. This allows for an anisotropic description
of turbulence. This anisotropic description enhances the modelling of vortices significantly compared
to linear eddy-viscosity models.

In the EASM 𝑘 − 𝜔 two-equation turbulence model, the turbulent kinetic energy and the specific
turbulence dissipation rate determined with the two transport equations are used in the explicit algebraic
expressions for the Reynolds stress components and in an empirical formulation for the eddy viscosity.
The EASM model and the SST model use different empirical formulations for the eddy viscosity.

E.2. Boundary layer
Viscous fluid flow over a solid surface produces a boundary layer as a result of the no-slip condition
between the wall and the fluid. The flow field around a ship is likely to be partly or fully turbulent, and
therefore, turbulent boundary layers are discussed. Following White [47] and Pope [37], in order to
account for the complex physical effects in turbulent boundary layers separately, the mean-velocity
profile normal to the solid wall in a turbulent boundary layer is thought to consist of an inner layer, an
overlap region and an outer layer. In the inner layer, the mean-velocity profile does not explicitly depend
on free-stream conditions. In the outer layer, the flow does not explicitly depend on wall conditions;
direct effects of viscosity on the mean velocity are negligible. The overlap region is defined as the
intermediate region between the two layers. For the sake of illustration, a typical mean-velocity profile
in a turbulent boundary layer over a smooth curved surface with a mild adverse pressure gradient is
depicted in Figure E.1. The shape of the mean-velocity profile depends on the Reynolds number of the
flow and the magnitude of the pressure gradient.

These three layers are subdivided into other regions and layers. With increasing distance from the
wall, the following layers were defined [37,47]: the viscous sublayer, the buffer layer, the log-law region
and the velocity-defect layer. The range of each region or layer depends on the Reynolds number of
the flow. For the sake of illustration, a sketch of the various wall regions and layers for a turbulent
channel flow is shown in Figure E.2. Laws exist to describe the mean-velocity profile in some of the
layers. In the log-law region, the log-law holds. The log-law states that the mean velocity at a certain
point in the turbulent boundary layer is proportional to the logarithm of the distance from that point to
the wall, i.e. 𝑢ዄ ∝ ln 𝑦ዄ.
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An illustration of a log-law fitted to a typical mean-velocity profile is shown in Figure E.1. For the
depicted mean-velocity profile, the log-law holds for approximately 30 ≤ 𝑦ዄ ≤ 200. Before 𝑦ዄ = 30,
a part of the velocity profile in the buffer layer is depicted. After 𝑦ዄ = 200, the velocity profile in the
velocity-defect layer for a mild adverse pressure gradient is depicted. The shape of the velocity profile
in this layer depends heavily on the strength and the direction of the pressure gradient. A stronger
adverse pressure gradient results in a steeper profile. A strong favourable pressure gradient results in
a velocity profile very close to the depicted log-law.

The total shear stress in a turbulent flow consists of the viscous shear stress and the turbulent shear
stress. Turbulent shear stress dominates in the turbulent boundary layer except for the region close to
the solid wall. The viscous contribution to the total shear stress is significant in the viscous wall region.
The viscous wall region ends where the overlap region and the outer layer begin. In the viscous wall
region, high velocity gradients as a result of the no-slip condition are present. Very close to the wall, in
the viscous sublayer, the turbulent shear stress is negligible, and the viscous shear stress dominates.
The viscous sublayer is a part of the viscous wall region. The buffer layer, which is also a part of the
viscous wall region, is defined as the region between the viscous sublayer and the log-law region. For
the specific details of each layer and region, the reader is referred to Pope [37] and White [47].

The range of these regions is typically defined with the distance from the wall expressed in viscous
lengths, or wall units. This wall coordinate, 𝑦ዄ, is defined by

𝑦ዄ = 𝑦𝑢Ꭱ
𝜈 , (E.5)

where 𝑦 is the normal distance to the wall, and 𝑢Ꭱ is the wall-friction velocity defined by

𝑢Ꭱ = √
𝜏ፖ
𝜌 . (E.6)

The wall shear stress, 𝜏ፖ, consists solely of the viscous shear stress and is defined for two-dimensional
flows as

𝜏ፖ = 𝜇(
𝜕𝑢
𝜕𝑦)

፲዆ኺ
. (E.7)

The wall shear stress can also be determined by

𝜏ፖ =
1
2𝜌𝑉፫፞፟

ኼ𝐶፟ , (E.8)

where 𝑉፫፞፟ is the reference velocity, and 𝐶፟ is the calculated or estimated friction coefficient.
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Figure E.1: A typical measured mean-velocity profile in a turbulent boundary layer over a smooth
curved surface with a mild adverse pressure gradient. A fitted log-law is also depicted.

Figure E.2: A sketch of the various wall regions and layers for a turbulent channel flow at ፑ፞ ዆ ኻኺᎶ. Figure from Pope [37].



F
Numerical tests

The results of the computational tests performed with the FINE™/Marine CFD solver in Chapter 6.

Turbulence models

Table F.1: Resistance of Sysser 85 for the crew CoG position, computed with two different turbulence
models on the medium grid. The computation time is also listed. ጂ% ዆ (ፅᑩ ዅ ፅᑩ∗)/ፅᑩ∗ ⋅ ኻኺኺ.

SST 𝑘 − 𝜔 model EASM 𝑘 − 𝜔 model
𝐹𝑛 𝐹፱∗ Computation time 𝐹፱ Computation time Δ%
[−] [𝑁] [𝑚𝑖𝑛] [𝑁] [𝑚𝑖𝑛] [%]
0.45 8.4926 735 8.5587 620 0.78
0.85 28.3616 851 28.5426 931 0.64

Height of the grid refinement around the initial free surface

Table F.2: Resistance of Sysser 85 for the crew CoG position, computed on the medium grid and on a grid with a
25-percent thicker grid refinement around the initial free surface. The cell sizes in the refinement region are the same

for both grids. They differ in the height of the grid refinement only. The number of grid cells, ፍᑚ, is also listed.
ጂ% ዆ (ፅᑩ ዅ ፅᑩ∗)/ፅᑩ∗ ⋅ ኻኺኺኺ.

Medium grid Thicker refinement
𝐹𝑛 𝑁። 𝐹፱∗ 𝑁። 𝐹፱ Δ%
[−] [−] [𝑁] [−] [𝑁] [‰]
0.45 862875 8.4925 1072127 8.4918 -0.076
0.85 908136 28.3094 1122809 28.3073 -0.072

Grid refinement at the hull and the transom curve

Table F.3: Resistance of Sysser 85 for the crew CoG position, computed on three different grids: the medium grid, a
grid with additional refinement of the hull compared to the medium grid, and a grid with additional refinement of the

transom curve compared to the medium grid. The number of grid cells, ፍᑚ, is also listed. ጂ% ዆ (ፅᑩ ዅ ፅᑩ∗)/ፅᑩ∗ ⋅ ኻኺኺኺ.

Medium grid Additional refinement Additional refinement
hull transom curve

𝐹𝑛 𝑁። 𝐹፱∗ 𝑁። 𝐹፱ Δ% 𝑁። 𝐹፱ Δ%
[−] [−] [𝑁] [−] [𝑁] [‰] [−] [𝑁] [‰]
0.45 862875 8.4925 1424832 8.4839 -1.0 924438 8.4868 -0.67
0.85 908136 28.3094 1586049 28.3165 0.25 977027 28.3108 0.051
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Convergence

Table F.4: The converged solution of Sysser 85 for the crew CoG position and the solution after a
doubling of the number of time steps in the simulation. ጂ% ዆ (ፅᑩ ዅ ፅᑩ∗)/ፅᑩ∗ ⋅ ኻኺኺኺ.

Converged solution Double number of time steps
𝐹𝑛 𝐹፱∗ 𝑧 𝜃 𝐹፱ 𝑧 𝜃 Δ%
[−] [𝑁] [𝑚] [∘] [𝑁] [𝑚] [∘] [‰]
0.45 8.4925 -9.8745 -0.3484 8.4928 -9.8741 -0.3475 0.042
0.85 28.3094 -8.2183 -0.6801 28.3226 -8.2330 -0.6790 0.47



G
Bare hull upright trimmed resistance

prediction
From the dataset of the new systematic series, which contains the bare hull upright trimmed resistance
values obtained with CFD for various hull forms, speeds and trimming moments, new expressions for
the estimation of the bare hull upright trimmed resistance from hydrostatic parameters of the hull have
been derived. The bare hull upright trimmed resistance prediction is summarized below. The parameter
range covered by these regression formulas is listed in Tables 3.3 and G.1. This range is prescribed
by the hydrostatic parameters of the hull shapes in the systematic series, listed in Table C.3, and by
the longitudinal centre of gravity, 𝐿𝐶𝐺፟፩, defined by Equation (4.4).

1. The frictional resistance of the bare hull, 𝑅ፅᑙ , is defined by

𝑅ፅᑙ =
1
2𝜌𝑉

ኼ𝑆፜𝐶፟ , (2.6)

where 𝜌 is the density of water, 𝑉 is the velocity of the hull, 𝑆፜ is the wetted surface of the canoe body,
and 𝐶፟ is the friction coefficient calculated with the ITTC 1957 Model-Ship Correlation Line [16]:

𝐶፟ =
0.075

(𝑙𝑜𝑔(𝑅𝑒) − 2)ኼ , (2.7)

in which the Reynolds number, 𝑅𝑒, is defined by

𝑅𝑒 = 0.9𝐿ፖፋ ⋅ 𝑉
𝜈 , (10.1)

where 𝐿ፖፋ is the length of the waterline, 0.9𝐿ፖፋ is the characteristic length in the Reynolds number,
and 𝜈 is the kinematic viscosity of water. No form factor is used in the formulation for the frictional
resistance of the bare hull.

2. The upright trimmed residuary resistance of the bare hull, 𝑅ፑ᎕ᑙ , can be determined by either one of
the following five regressions:

(i) The expression for the minimum upright trimmed residuary resistance:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑎ኺ + 𝑎ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑎ኼ
𝑇፜
𝐵ፖፋ

+ 𝑎ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑎ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑎኿𝐶፩ + 𝑎ዀ𝐶፱

+ 𝑎዁𝐶፩ኼ + 𝑎ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑎ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.10)
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(ii) The expression for the upright trimmed residuary resistance with the crew CoG position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑏ኺ + 𝑏ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑏ኼ
𝑇፜
𝐵ፖፋ

+ 𝑏ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑏ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑏኿𝐶፩ + 𝑏ዀ𝐶፱

+ 𝑏዁𝐶፩ኼ + 𝑏ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑏ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.11)

(iii) The expression for the upright trimmed residuary resistance with the crew middle position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑐ኺ + 𝑐ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑐ኼ
𝑇፜
𝐵ፖፋ

+ 𝑐ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑐ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑐኿𝐶፩ + 𝑐ዀ𝐶፱

+ 𝑐዁𝐶፩ኼ + 𝑐ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑐ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.12)

(iv) The expression for the upright trimmed residuary resistance with the crew back position:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑑ኺ + 𝑑ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑑ኼ
𝑇፜
𝐵ፖፋ

+ 𝑑ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑑ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑑኿𝐶፩ + 𝑑ዀ𝐶፱

+ 𝑑዁𝐶፩ኼ + 𝑑ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑑ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

;
(10.13)

(v) The expression for the upright trimmed residuary resistance covering the influence of the trimming
moment of the crew’s weight through the longitudinal centre of gravity:

𝑅ፑ᎕ᑙ
∇፜𝜌𝑔

( 𝐿ፖፋ∇፜ኻ/ኽ
) = 𝑒ኺ + 𝑒ኻ

𝐵ፖፋ
𝐿ፖፋ

+ 𝑒ኼ
𝑇፜
𝐵ፖፋ

+ 𝑒ኽ
𝐿𝐶𝐵፟፩
𝐿ፖፋ

+ 𝑒ኾ
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

+ 𝑒኿𝐶፩ + 𝑒ዀ𝐶፱

+ 𝑒዁𝐶፩ኼ + 𝑒ዂ(
𝐿𝐶𝐵፟፩
𝐿ፖፋ

)
ኼ

+ 𝑒ዃ(
𝐿𝐶𝐵፟፩
𝐿𝐶𝐹 ፩

)
ኼ

+ 𝑒ኻኺ
𝐿𝐶𝐺፟፩
𝐿ፖፋ

+ 𝑒ኻኻ(
𝐿𝐶𝐺፟፩
𝐿ፖፋ

)
ኼ

;

(10.14)

where 𝑎።, 𝑏።, 𝑐።, 𝑑። and 𝑒። are the coefficients of the five regressions. The longitudinal centre of gravity
is defined by Equation (4.4). All the coefficients have been determined for Froude numbers 0.25 up
to 0.95 with increments of 0.10 and are listed in Table G.2. Alternative formulations, excluding the
quadratic terms in the regressions, can also be used. The coefficients of the alternative regressions
are listed in Table G.3. The upright resistance at any speed can be determined by fitting a cubic spline
to the estimated resistance values using a least-squares fit.

3. The upright trimmed resistance of the bare hull, 𝑅ፓ᎕ᑙ , can be determined by

𝑅ፓ᎕ᑙ = 𝑅ፅᑙ + 𝑅ፑ᎕ᑙ . (5.2)

4. The total resistance with appendages under heel and leeway can now be computed by following the
procedure described in Chapter 5 and Figure 5.1. The regression formulas of the DSYHS, described
in Chapter 2, are used for the remaining resistance components.
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Table G.1: The longitudinal centre of gravity-to-length ratio range covered by
the new regressions for the bare hull upright trimmed residuary resistance.

The longitudinal centre of gravity is defined by Equation (4.4).

Crew CoG Crew middle Crew back
ፋፂፆᑗᑡ
ፋᑎᑃ = ፋፂፁᑗᑡ

ፋᑎᑃ
ፋፂፆᑗᑡ
ፋᑎᑃ

ፋፂፆᑗᑡ
ፋᑎᑃ

Sysser 85 0.539 0.563 0.588
Sysser 86 0.538 0.562 0.587
Sysser 87 0.538 0.562 0.587
Sysser 88 0.539 0.560 0.581
Sysser 89 0.539 0.567 0.596
Sysser 90 0.539 0.560 0.581
Sysser 91 0.539 0.567 0.596
Sysser 92 0.540 0.564 0.587
Sysser 93 0.536 0.562 0.589
Sysser 94 0.539 0.563 0.588
Sysser 95 0.539 0.563 0.588
Sysser 96 0.560 0.584 0.609
Sysser 97 0.515 0.540 0.565
Sysser 98 0.540 0.564 0.589
Sysser 99 0.539 0.563 0.588
Sysser 100 0.539 0.563 0.588
Sysser 101 0.539 0.563 0.588
Sysser 102 0.539 0.562 0.584
Sysser 103 0.539 0.565 0.592
Sysser 104 0.539 0.562 0.584
Sysser 105 0.539 0.565 0.592
Maximum 0.560 0.584 0.609
Minimum 0.515 0.540 0.565
Mean 0.538 0.563 0.588
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Table G.2: The coefficients of the five regressions for the upright trimmed residuary resistance of the bare hull, ፑᑉᒍᑙ ,
Equations (10.10) up to (10.14). All the coefficients are multiplied by 100 and are dimensionless. The relative

comparison error, ᎔, is defined by Equation (10.15) and is given as a percentage.

(a) Coefficients ፚᑚ of Equation (10.10).

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑎ኺ 23.919 423.42 583.43 337.16 106.99 290.66 171.44 5546.7
𝑎ኻ 5.37 17.231 63.958 128.58 148.51 158.7 212.79 277.41
𝑎ኼ 1.6124 3.3971 42.38 68.881 64.262 45.156 -4.1476 -107.88
𝑎ኽ 11.69 -562.82 -735.6 -836.22 -1713.2 -2960.9 -5466 -22459
𝑎ኾ -60.023 -517.71 -686.15 -19.537 1045.5 1543.9 3603.8 2769.9
𝑎኿ -0.97182 -135.32 -292.96 -451.47 -497.2 -681.47 -1127.7 -1950.2
𝑎ዀ -0.11358 0.62106 14.268 19.469 10.471 -6.7194 -27.266 -58.331
𝑎዁ 1.8952 134.06 261.28 392.32 425.76 583.65 964.37 1658.6
𝑎ዂ -3.6824 522.84 645.39 749.78 1615.3 2809.2 5072.8 20530
𝑎ዃ 29.979 280.49 385.85 27.111 -564.93 -853.8 -1957.4 -1552.3
𝑅ኼ 0.997 0.998 0.999 0.999 0.997 1.000 0.999 0.998

max(𝜂) 1.72 1.41 1.08 1.28 2.22 0.38 1.23 2.85
min(𝜂) 0.00 0.02 0.00 0.00 0.03 0.00 0.02 0.06
mean(𝜂) 0.68 0.36 0.25 0.33 0.46 0.13 0.35 0.55

(b) Coefficients ፛ᑚ of Equation (10.11).

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85
𝑏ኺ 23.919 450.83 1027.3 1601.4 1087.2 320.56 2053.7
𝑏ኻ 5.37 17.219 72.289 140.4 179.77 174.94 323.15
𝑏ኼ 1.6124 3.385 42.42 66.89 54.5 5.6176 -84.177
𝑏ኽ 11.69 -649.85 -1894.4 -2495.9 -2004.8 -4980.1 -17873
𝑏ኾ -60.023 -525.14 -977 -1772.9 -857.25 2656.6 6740.4
𝑏኿ -0.97182 -135.6 -239.33 -360.69 -466.83 -512.55 -594.43
𝑏ዀ -0.11358 0.71205 14.828 24.141 18.708 -3.9163 -36.941
𝑏዁ 1.8952 134.31 219.9 325.62 409.16 423.83 481.08
𝑏ዂ -3.6824 602.14 1680.9 2200.1 1751.4 4506.2 16118
𝑏ዃ 29.979 284.4 538.25 959.5 460.72 -1441.4 -3647.4
𝑅ኼ 0.997 0.998 0.999 0.999 0.999 0.999 0.977

max(𝜂) 1.72 1.61 0.71 1.00 0.85 0.87 6.21
min(𝜂) 0.00 0.13 0.05 0.03 0.01 0.02 0.11
mean(𝜂) 0.68 0.44 0.39 0.26 0.27 0.32 1.59
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(c) Coefficients ፜ᑚ of Equation (10.12).

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑐ኺ 59.305 392.32 839.13 1193.7 645.33 91.915 528.17 23833
𝑐ኻ 0.74681 14.462 64.071 135.69 174.7 170.35 230.03 357.57
𝑐ኼ -1.9106 3.2792 42.48 69.413 67.255 37.156 -31.273 -152.4
𝑐ኽ 28.511 -599.18 -1806.4 -1866.1 -2180.2 -4137.7 -9352.6 -88996
𝑐ኾ -134.69 -434.28 -624.85 -1243.9 174.45 2613.7 5043.4 2684.1
𝑐኿ -7.358 -133 -291.38 -443.5 -517.16 -552.49 -827.15 -1532.4
𝑐ዀ -0.84893 0.019508 13.67 23.148 15.485 -3.9139 -28.798 -9.0483
𝑐዁ 7.1788 129.98 259.84 390.5 449.7 462.89 680.84 1269.5
𝑐ዂ -17.446 569.27 1651.6 1679.8 1995 3841.7 8551.8 80959
𝑐ዃ 68.233 235.21 353.58 673.98 -93.014 -1429 -2750.6 -1605.7
𝑅ኼ 0.987 0.996 0.999 0.999 0.998 1.000 0.996 0.995

max(𝜂) 3.12 2.35 1.18 1.33 1.46 0.62 2.65 3.09
min(𝜂) 0.05 0.11 0.05 0.01 0.01 0.03 0.00 0.09
mean(𝜂) 1.04 0.55 0.28 0.32 0.37 0.22 0.56 0.76

(d) Coefficients ፝ᑚ of Equation (10.13).

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑑ኺ 102.83 313.3 181.99 517.85 236.29 290.66 171.44 5546.7
𝑑ኻ -9.5558 0.20992 40.507 128.64 148.61 158.7 212.79 277.41
𝑑ኼ -10.907 -5.1471 27.736 69.796 64.352 45.156 -4.1476 -107.88
𝑑ኽ 54.603 -611.2 -1447.1 -1741 -2302.3 -2960.9 -5466 -22459
𝑑ኾ -229.02 -246.56 592.53 139.32 1100.5 1543.9 3603.8 2769.9
𝑑኿ -4.612 -137.22 -320.46 -506.64 -495.64 -681.47 -1127.7 -1950.2
𝑑ዀ -2.1854 -1.8922 8.8716 18.286 9.9025 -6.7194 -27.266 -58.331
𝑑዁ 3.3174 130.84 277.85 439.98 424.33 583.65 964.37 1658.6
𝑑ዂ -40.013 591.61 1355.6 1607.3 2173.1 2809.2 5072.8 20530
𝑑ዃ 115.78 134.31 -294.95 -57.656 -593.9 -853.8 -1957.4 -1552.3
𝑅ኼ 0.898 0.993 1.000 0.999 0.997 1.000 0.999 0.998

max(𝜂) 10.03 2.54 0.62 0.96 2.19 0.38 1.23 2.85
min(𝜂) 0.07 0.02 0.00 0.02 0.02 0.00 0.02 0.06
mean(𝜂) 1.96 0.60 0.21 0.32 0.46 0.13 0.35 0.55
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(e) Coefficients ፞ᑚ of Equation (10.14).

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑒ኺ 82.941 436.11 787.77 1157.5 694.14 243.52 1036.4 4706.9
𝑒ኻ 2.373 18.098 70.515 135.62 164.85 155.39 240.36 214.83
𝑒ኼ -1.2514 5.7772 45.709 69.208 60.038 20.429 -50.393 -180.74
𝑒ኽ 120.57 -270.48 -487.64 -751.27 -819.12 -2173.1 -5913.6 -16023
𝑒ኾ -186.88 -504.8 -521.12 -1015.4 123.49 2354 5123.8 5250.8
𝑒኿ -3.9805 -134.96 -284.91 -439.96 -496.94 -588.66 -864.27 -1779.4
𝑒ዀ -0.51446 0.73107 14.115 21.833 14.117 -6.9935 -33.84 -83.507
𝑒዁ 4.4141 132.67 255.53 388.22 430.63 493.91 719.42 1474.1
𝑒ዂ -114.24 243.79 411.95 671.6 775.38 2100.7 5487.6 14731
𝑒ዃ 95.618 272.7 297.27 555.22 -67.006 -1285.4 -2782.2 -2908.2
𝑒ኻኺ -90.1 -356.65 -1259.1 -1319.9 -1383.3 -1911.9 -5134.1 -6910.3
𝑒ኻኻ 90.827 335.24 1127.9 1139.5 1180.8 1599.3 4365.7 5748.6
𝑅ኼ 0.955 0.994 0.996 0.998 0.996 0.995 0.967 0.988

max(𝜂) 31.13 3.28 2.12 1.87 3.93 3.12 10.38 5.54
min(𝜂) 0.15 0.03 0.01 0.03 0.01 0.01 0.02 0.05
mean(𝜂) 6.15 0.97 0.57 0.49 0.54 0.67 1.98 1.25
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Table G.3: The coefficients of the five alternative regressions for the upright trimmed residuary resistance of the bare
hull, ፑᑉᒍᑙ , Equations (10.10) up to (10.14) without the quadratic terms. All the coefficients are multiplied by 100 and
are dimensionless. The relative comparison error, ᎔, is defined by Equation (10.15) and is given as a percentage.

(a) Coefficients ፚᑚ of Equation (10.10). Coefficients ፚᎹ up to ፚᎻ are zero.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑎ኺ -1.9836 -15.628 -23.488 -25.462 5.8399 50.853 132.08 491.65
𝑎ኻ 5.3494 17.29 64.68 130.61 150.61 161.04 216.89 269.51
𝑎ኼ 1.5956 3.2217 42.463 69.654 65.009 45.795 -2.9428 -116.38
𝑎ኽ 7.6779 -2.3557 -44.812 -34.16 19.765 54.567 -19.522 -400.09
𝑎ኾ -3.7342 9.6253 40.282 35.094 -11.667 -55.036 -64.54 -149.55
𝑎኿ 1.1135 12.912 -3.8191 -16.935 -25.588 -35.137 -59.64 -118.48
𝑎ዀ -0.10094 0.80337 14.516 19.579 10.418 -6.7646 -27.532 -56.783
𝑅ኼ 0.996 0.920 0.989 0.993 0.992 0.990 0.981 0.922

max(𝜂) 2.14 8.50 3.40 3.04 2.67 3.02 4.06 12.29
min(𝜂) 0.20 0.41 0.09 0.02 0.01 0.16 0.14 0.41
mean(𝜂) 1.09 2.93 1.01 0.77 0.82 0.92 1.35 3.03

(b) Coefficients ፛ᑚ of Equation (10.11). Coefficients ፛Ꮉ up to ፛Ꮋ are zero.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85
𝑏ኺ -1.9836 -14.521 1.8871 23.021 50.146 160.21 479.03
𝑏ኻ 5.3494 17.19 71.406 139.19 180.3 175.05 314.06
𝑏ኼ 1.5956 3.1466 41.437 65.513 54.19 4.9196 -91.597
𝑏ኽ 7.6779 -4.1231 -89.95 -134.75 -126.35 -137.74 -543.97
𝑏ኾ -3.7342 9.4393 33.628 28.908 10.044 -49.207 -119.45
𝑏኿ 1.1135 12.886 3.4856 -1.129 -14.235 -43.642 -65.105
𝑏ዀ -0.10094 0.90428 15.246 24.8 19.11 -4.0475 -36.816
𝑅ኼ 0.996 0.911 0.982 0.988 0.994 0.990 0.940

max(𝜂) 2.14 8.40 4.91 3.84 2.14 3.24 10.98
min(𝜂) 0.20 0.29 0.06 0.11 0.01 0.18 0.11
mean(𝜂) 1.09 3.07 1.35 1.11 0.77 1.00 2.96

(c) Coefficients ፜ᑚ of Equation (10.12). Coefficients ፜Ꮉ up to ፜Ꮋ are zero.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑐ኺ 2.0538 -18.962 -28.047 -4.4687 12.536 99.306 275.89 519.46
𝑐ኻ 0.73062 14.5 63.746 135.88 175.96 171.44 229.36 360.94
𝑐ኼ -1.9318 3.0937 41.819 68.907 67.385 37.09 -33.015 -134.2
𝑐ኽ 9.6012 11.297 -33.735 -64.772 -39.7 -10.143 -161.46 -238.36
𝑐ኾ -6.5304 7.9718 39.721 23.524 2.7393 -67.557 -121.38 -240.16
𝑐኿ 0.56716 10.733 -4.1904 -11.674 -19.417 -40.06 -74.139 -136.51
𝑐ዀ -0.82095 0.1869 14.008 23.633 15.676 -4.1065 -29.06 -100.06
𝑅ኼ 0.976 0.923 0.981 0.989 0.992 0.991 0.976 0.984

max(𝜂) 3.40 7.60 4.28 2.77 2.54 2.62 5.44 3.75
min(𝜂) 0.30 0.03 0.03 0.00 0.05 0.13 0.17 0.16
mean(𝜂) 1.69 2.70 1.39 1.05 0.88 0.93 1.73 1.59
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(d) Coefficients ፝ᑚ of Equation (10.13). Coefficients ፝Ꮉ up to ፝Ꮋ are zero.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑑ኺ 11.465 -15.939 -35.48 -31.608 0.7957 50.853 132.08 491.65
𝑑ኻ -9.6368 0.35937 41.46 130.2 150.14 161.04 216.89 269.51
𝑑ኼ -10.966 -5.2587 27.929 70.156 64.694 45.795 -2.9428 -116.38
𝑑ኽ 11.416 23.401 7.9626 -17.245 30.438 54.567 -19.522 -400.09
𝑑ኾ -11.646 6.3114 40.597 34.339 -11.734 -55.036 -64.54 -149.55
𝑑኿ -0.98464 7.5061 -12.838 -19.544 -25.8 -35.137 -59.64 -118.48
𝑑ዀ -2.1394 -1.766 8.9 18.451 9.8948 -6.7646 -27.532 -56.783
𝑅ኼ 0.883 0.923 0.986 0.990 0.991 0.990 0.981 0.922

max(𝜂) 9.19 6.58 3.48 3.30 2.70 3.02 4.06 12.29
min(𝜂) 0.24 0.16 0.11 0.08 0.03 0.16 0.14 0.41
mean(𝜂) 2.63 2.34 1.09 0.99 0.89 0.92 1.35 3.03

(e) Coefficients ፞ᑚ of Equation (10.14). Coefficients ፞Ꮉ up to ፞Ꮋ are zero.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝑒ኺ 28.44 95.185 341.74 379.15 409.86 646.99 1786.6 3663
𝑒ኻ 2.3525 18.755 71.954 137.72 167.67 159.3 246.31 235.63
𝑒ኼ -1.2697 6.0277 46.307 70.062 61.307 22.316 -47.502 -173.24
𝑒ኽ -2.43 -9.9359 -47.566 -33.584 10.298 82.161 -16.71 -166.29
𝑒ኾ -7.2373 8.2898 39.355 30.491 1.9768 -54.907 -95.518 -200.5
𝑒኿ 0.89007 11.907 -1.9295 -10.089 -19.806 -41.108 -66.761 -143.38
𝑒ዀ -0.49095 0.9153 14.345 22.243 14.241 -7.1978 -34.083 -83.369
𝑒ኻኺ -83.392 -395.38 -1310.3 -1410.7 -1437.8 -2027.9 -5520.6 -10828
𝑒ኻኻ 84.873 369.58 1173.3 1220 1229 1702.2 4708.6 9150.7
𝑅ኼ 0.953 0.964 0.989 0.992 0.992 0.990 0.960 0.962

max(𝜂) 33.89 8.17 4.86 4.37 4.42 4.62 9.86 8.12
min(𝜂) 0.11 0.01 0.03 0.03 0.03 0.01 0.07 0.00
mean(𝜂) 6.33 2.24 0.97 0.85 0.74 0.97 2.35 2.34
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Table G.4: The sensitivity of regression (10.10), including the quadratic terms, to variations in the input parameters.
The sensitivities are given as an absolute percentage change from the situation with no variation.

(a) Maximum sensitivity of all the models in the systematic series.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝐵ፖፋ/𝐿ፖፋ +1% 2.7 1.0 0.9 1.0 0.9 0.8 0.8 0.9
𝑇፜/𝐵ፖፋ +1% 0.7 0.2 0.5 0.5 0.3 0.2 0.0 0.4

𝐿𝐶𝐵፟፩/𝐿ፖፋ +1% 10.1 3.4 1.9 1.0 1.5 2.4 2.5 6.8
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ +1% 10.7 5.5 3.1 1.1 1.0 2.2 3.0 3.1

𝐶፩ +1% 1.6 3.7 0.8 0.9 0.8 1.0 1.3 1.7
𝐶፱ +1% 0.2 0.1 0.6 0.5 0.2 0.1 0.4 0.7

All parameters +1% 8.5 11.0 4.2 2.8 1.6 1.1 3.2 8.7
𝐵ፖፋ/𝐿ፖፋ -1% 2.7 1.0 0.9 1.0 0.9 0.8 0.8 0.9
𝑇፜/𝐵ፖፋ -1% 0.7 0.2 0.5 0.5 0.3 0.2 0.0 0.4

𝐿𝐶𝐵፟፩/𝐿ፖፋ -1% 10.2 3.6 2.1 1.1 1.2 2.1 2.4 8.0
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ -1% 11.9 4.2 2.7 1.0 0.8 1.8 2.3 2.7

𝐶፩ -1% 1.6 3.5 0.9 0.9 0.9 1.0 1.4 1.8
𝐶፱ -1% 0.2 0.1 0.6 0.5 0.2 0.1 0.4 0.7

All parameters -1% 7.3 8.8 3.5 2.5 1.5 1.1 3.2 9.7

(b) Average sensitivity over all the models in the systematic series.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝐵ፖፋ/𝐿ፖፋ +1% 2.2 0.9 0.7 0.9 0.8 0.7 0.8 0.8
𝑇፜/𝐵ፖፋ +1% 0.5 0.1 0.4 0.3 0.2 0.1 0.0 0.2

𝐿𝐶𝐵፟፩/𝐿ፖፋ +1% 8.3 0.7 1.1 0.5 0.5 1.0 0.4 2.2
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ +1% 6.4 3.0 2.3 1.0 0.5 1.4 1.6 2.2

𝐶፩ +1% 1.2 1.7 0.3 0.4 0.5 0.6 0.8 1.1
𝐶፱ +1% 0.2 0.1 0.6 0.4 0.2 0.1 0.3 0.6

All parameters +1% 5.5 6.3 2.6 1.8 0.8 0.4 1.6 5.0
𝐵ፖፋ/𝐿ፖፋ -1% 2.2 0.9 0.7 0.9 0.8 0.7 0.8 0.8
𝑇፜/𝐵ፖፋ -1% 0.5 0.1 0.4 0.3 0.2 0.1 0.0 0.2

𝐿𝐶𝐵፟፩/𝐿ፖፋ -1% 8.3 0.6 1.4 0.6 0.3 0.7 0.5 3.8
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ -1% 7.5 1.8 1.9 1.0 0.3 1.1 1.0 1.8

𝐶፩ -1% 1.2 1.5 0.4 0.5 0.5 0.6 0.9 1.2
𝐶፱ -1% 0.2 0.1 0.6 0.4 0.2 0.1 0.3 0.6

All parameters -1% 4.5 4.1 1.9 1.6 0.7 0.5 1.6 6.4
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Table G.5: The sensitivity of regression (10.14), including the quadratic terms, to variations in the input parameters.
The sensitivities are given as an absolute percentage change from the situation with no variation.

(a) Maximum sensitivity of all the models in the systematic series.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝐵ፖፋ/𝐿ፖፋ +1% 1.3 1.1 0.9 1.0 0.9 0.8 1.0 0.7
𝑇፜/𝐵ፖፋ +1% 0.7 0.3 0.5 0.5 0.3 0.1 0.2 0.6

𝐿𝐶𝐵፟፩/𝐿ፖፋ +1% 9.0 2.4 1.7 0.9 0.8 2.3 2.7 4.4
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ +1% 18.1 5.0 2.8 1.7 0.1 2.6 4.3 5.0

𝐶፩ +1% 1.7 3.6 0.9 0.8 0.8 0.9 1.1 1.7
𝐶፱ +1% 1.0 0.1 0.6 0.5 0.3 0.1 0.5 1.0

𝐿𝐶𝐺፟፩/𝐿ፖፋ +1% 13.6 5.7 3.7 2.0 1.8 2.4 4.1 3.7
All parameters +1% 11.2 11.3 6.8 4.6 2.5 3.2 7.3 10.5

𝐵ፖፋ/𝐿ፖፋ -1% 1.3 1.1 0.9 1.0 0.9 0.8 1.0 0.7
𝑇፜/𝐵ፖፋ -1% 0.7 0.3 0.5 0.5 0.3 0.1 0.2 0.6

𝐿𝐶𝐵፟፩/𝐿ፖፋ -1% 7.5 2.7 1.9 1.0 0.6 2.0 2.5 5.2
𝐿𝐶𝐵፟፩/𝐿𝐶𝐹 ፩ -1% 22.5 3.7 2.5 1.3 0.1 2.1 3.3 4.2

𝐶፩ -1% 1.6 3.3 0.8 0.8 0.8 1.0 1.2 1.8
𝐶፱ -1% 1.0 0.1 0.6 0.5 0.3 0.1 0.5 1.0

𝐿𝐶𝐺፟፩/𝐿ፖፋ -1% 12.5 5.2 3.3 2.2 2.0 2.6 4.5 4.3
All parameters -1% 14.2 9.4 5.9 3.8 2.2 3.3 7.5 11.8

(b) Average sensitivity over all the models in the systematic series.

𝐹𝑛 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
𝐵ፖፋ𝐿ፖፋ +1% 0.7 0.9 0.8 0.9 0.8 0.7 0.9 0.6
𝑇፜𝐵ፖፋ +1% 0.3 0.2 0.4 0.3 0.2 0.1 0.1 0.4

𝐿𝐶𝐵፟፩𝐿ፖፋ +1% 2.6 0.9 1.2 0.4 0.3 1.2 0.4 0.9
𝐿𝐶𝐵፟፩𝐿𝐶𝐹 ፩ +1% 8.7 2.3 2.1 1.0 0.1 1.5 2.1 3.2

𝐶፩ +1% 0.7 1.4 0.2 0.3 0.4 0.6 0.7 1.2
𝐶፱ +1% 0.5 0.1 0.5 0.5 0.2 0.1 0.4 0.8

𝐿𝐶𝐺፟፩𝐿ፖፋ +1% 9.5 3.0 1.4 0.9 0.8 1.2 1.9 1.9
All parameters +1% 3.2 7.0 3.0 1.6 0.8 1.4 3.9 7.2

𝐵ፖፋ𝐿ፖፋ -1% 0.7 0.9 0.8 0.9 0.8 0.7 0.9 0.6
𝑇፜𝐵ፖፋ -1% 0.3 0.2 0.4 0.3 0.2 0.1 0.1 0.4

𝐿𝐶𝐵፟፩𝐿ፖፋ -1% 1.7 1.2 1.4 0.6 0.2 0.9 0.5 1.9
𝐿𝐶𝐵፟፩𝐿𝐶𝐹 ፩ -1% 11.2 1.3 1.8 0.7 0.0 1.0 1.3 2.4

𝐶፩ -1% 0.6 1.2 0.3 0.4 0.4 0.6 0.8 1.3
𝐶፱ -1% 0.5 0.1 0.5 0.5 0.2 0.1 0.4 0.8

𝐿𝐶𝐺፟፩𝐿ፖፋ -1% 8.7 2.5 1.2 0.9 0.8 1.4 2.3 2.4
All parameters -1% 4.4 4.9 2.2 1.1 0.6 1.5 4.2 8.4
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Input WinDesign VPP

The input used in WinDesign VPP to calculate a velocity prediction of a full-scale Transpac 52 (TP52)
based on Sysser 85 with the Delft method and the new method. The polar diagram is given in Figure
10.10.

DELFT Flotation Input Data for Condition Sailing (MONOHULL)
Sailing Condition

AppendagesHeel FunctionsBasics

Dspl
Dsplc

Lwl
Lsunk

Bwl
Bmax

Tc
Tmax
Trud

Ax
Cp

Awp
LCB
LCF
GYR
Ad+/-
PIPA
HBI,f
ProjA
VCBM,Long

KeelVCB
KeelTaper

  9200.0
  8780.0
  15.602
  15.850
   3.194
   4.414
   0.462
   3.500
   2.664
   1.009
   0.543
   34.23
   -3.86
   -7.33
    0.25
   0.000
   0.000
   1.300
   0.000
  -0.160  52.048
   1.210
   0.874

Heel
0
2

10
25
40

ra
   0.000
   0.093
   0.458
   1.025
   1.388

WSc
  36.510
  36.493
  36.060
  33.806
  31.813

lwl
  15.602
  15.653
  15.848
  15.853
  15.869

Fin
Bulb
Rud

Other

ws
   2.972
   3.505
   1.284
   0.000

cm
   0.550
   3.000
   0.300
   0.000

tc
 0.082
 0.400
 0.045
 0.000

Crew Wt
Crew Arm

KEEL CANT

  1130.0
   1.900
     0.0

Factors

  Wing/CB Eff
  Apndg Cd2

  Biplane Hyd
  FwdCL Apndg

  Set Angle
  Canoe Form

  Vt Grad

   0.333
On
On
No

   0.000
   0.100
   0.100

vcg shift    0.000
RudLoadFract    0.100

TabLimit    0.000
TabRatio    0.000

KeelCantRamp(d)    5.000

Model: Delft

Figure H.1: Flotation input in WinDesign VPP for a full-scale TP52 based on Sysser 85.
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Rig and Sail Plan Dimensions

Main Fore Spin

P
E

BAD

IG
J

LP
HBI

SPL
SMW

SLU
SLE
ISP

  20.400
   7.400
   2.100

  19.720
   6.188
   6.300
   1.300

   9.000
  14.000
  25.500
  23.000
  22.400

Sail Inventory

Name Area Span BaseHt AFx Aero Base

Jib   65.590   19.720    0.000    1.000 Jib_0 HEAD
Main   97.810   20.400    0.800    1.000 Main_0 MAIN
Spin  269.590   22.400    0.000    0.750 ASpin_0 SPIN

Windage Elements

Name Ax Ay Cdx Cdy Ht Type

MainRigging    1.914    1.914    1.000    1.000    9.354 other
MastBare    3.191    5.450    0.800    1.100    9.354 mast bare
MastSail    3.191    5.268    0.400    1.000    9.354 mast w/sail

Hull    3.943   20.101    0.400    0.900   -0.520 hull

Sail Sets and Member Sails

Upwind
[Up]

Jib
Main

Downwind
[Dn]

Spin
Main

Opsets

Name Flotation SailSet TWS-Lo TWS-Hi TWA-Lo TWA-Hi AWS-Lim FlatMin UpOpt

Ops_Down SailingDownwind      4.0     25.0     80.0    180.0     99.0      1.0
Ops_Upwind Sailing Upwind      4.0     25.0      0.0    130.0     99.0      1.0 *

Figure H.2: Rig and sail-plan input in WinDesign VPP for a full-scale TP52 based on Sysser 85.

Experimental data input for the Delft method
1.0
Sailing Condition
15
6.01 0.766
7.21 1.165
8.42 1.721
9.62 2.777
10.82 4.453
12.02 5.861
13.23 7.172
14.43 8.707
15.63 10.383
16.83 12.208
18.04 14.190
19.24 16.338
20.44 18.660
21.64 21.165
22.85 23.861
10
6.01
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0 0 0 0
0 0 0
0 0.766 0 0 2.11 0 57.982 1.5
15 0.839 0 0 1.868 0 38.533 1.5
22.5 0.867 0 0 1.791 0 21.599 1.5
30 0.897 0 0 1.571 0 5.397 1.5
7.21
0 0 0 0
0 0 0
0 1.165 0 0 2.037 0 57.933 1.5
15 1.271 0 0 1.745 0 38.535 1.5
22.5 1.313 0 0 1.672 0 21.634 1.5
30 1.356 0 0 1.478 0 5.400 1.5
8.42
0 0 0 0
0 0 0
0 1.721 0 0 1.964 0 57.650 1.5
15 1.877 0 0 1.622 0 38.445 1.5
22.5 1.945 0 0 1.552 0 21.591 1.5
30 2.019 0 0 1.384 0 5.398 1.5
9.62
0 0 0 0
0 0 0
0 2.777 0 0 1.891 0 57.735 1.5
15 3.069 0 0 1.499 0 38.332 1.5
22.5 3.246 0 0 1.432 0 21.644 1.5
30 3.453 0 0 1.291 0 5.397 1.5
10.82
0 0 0 0
0 0 0
0 4.453 0 0 1.819 0 58.090 1.5
15 4.872 0 0 1.376 0 38.430 1.5
22.5 5.145 0 0 1.313 0 21.639 1.5
30 5.468 0 0 1.198 0 5.400 1.5
12.02
0 0 0 0
0 0 0
0 5.861 0 0 1.746 0 57.854 1.5
15 6.362 0 0 1.253 0 38.622 1.5
22.5 6.683 0 0 1.193 0 21.633 1.5
30 7.061 0 0 1.105 0 5.397 1.5
13.23
0 0 0 0
0 0 0
0 7.172 0 0 1.673 0 57.609 1.5
15 7.808 0 0 1.129 0 38.706 1.5
22.5 8.226 0 0 1.074 0 21.566 1.5
30 8.721 0 0 1.012 0 5.391 1.5
14.43
0 0 0 0
0 0 0
0 8.707 0 0 1.6 0 57.685 1.5
15 9.484 0 0 1.006 0 38.809 1.5
22.5 10.002 0 0 0.954 0 21.678 1.5
30 10.616 0 0 0.918 0 5.403 1.5
15.63
0 0 0 0
0 0 0
0 10.383 0 0 1.527 0 57.076 1.5
15 11.214 0 0 0.883 0 38.088 1.5
22.5 11.742 0 0 0.834 0 21.527 1.5
30 12.362 0 0 0.825 0 5.392 1.5
16.83
0 0 0 0
0 0 0
0 12.208 0 0 1.454 0 59.620 1.5
15 13.028 0 0 0.76 0 38.886 1.5
22.5 13.542 0 0 0.732 0 21.748 1.5
30 14.150 0 0 0.715 0 5.409 1.5
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Experimental data input for the new method
1.0
Sailing Condition
15
6.01 0.683
7.21 1.043
8.42 1.642
9.62 2.695
10.82 4.146
12.02 5.494
13.23 6.876
14.43 8.303
15.63 9.743
16.83 11.207
18.04 12.819
19.24 14.718
20.44 16.985
21.64 19.653
22.85 22.627
10
6.01
0 0 0 0
0 0 0
0 0.683 0 0 2.11 0 57.982 1.5
15 0.756 0 0 1.868 0 38.533 1.5
22.5 0.784 0 0 1.791 0 21.599 1.5
30 0.814 0 0 1.571 0 5.397 1.5
7.21
0 0 0 0
0 0 0
0 1.043 0 0 2.037 0 57.933 1.5
15 1.149 0 0 1.745 0 38.535 1.5
22.5 1.191 0 0 1.672 0 21.634 1.5
30 1.234 0 0 1.478 0 5.400 1.5
8.42
0 0 0 0
0 0 0
0 1.642 0 0 1.964 0 57.650 1.5
15 1.798 0 0 1.622 0 38.445 1.5
22.5 1.866 0 0 1.552 0 21.591 1.5
30 1.940 0 0 1.384 0 5.398 1.5
9.62
0 0 0 0
0 0 0
0 2.695 0 0 1.891 0 57.735 1.5
15 2.987 0 0 1.499 0 38.332 1.5
22.5 3.164 0 0 1.432 0 21.644 1.5
30 3.371 0 0 1.291 0 5.397 1.5
10.82
0 0 0 0
0 0 0
0 4.146 0 0 1.819 0 58.090 1.5
15 4.565 0 0 1.376 0 38.430 1.5
22.5 4.838 0 0 1.313 0 21.639 1.5
30 5.161 0 0 1.198 0 5.400 1.5
12.02
0 0 0 0
0 0 0
0 5.494 0 0 1.746 0 57.854 1.5
15 5.995 0 0 1.253 0 38.622 1.5
22.5 6.316 0 0 1.193 0 21.633 1.5
30 6.694 0 0 1.105 0 5.397 1.5
13.23
0 0 0 0
0 0 0
0 6.876 0 0 1.673 0 57.609 1.5
15 7.512 0 0 1.129 0 38.706 1.5
22.5 7.930 0 0 1.074 0 21.566 1.5
30 8.425 0 0 1.012 0 5.391 1.5
14.43
0 0 0 0
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0 0 0
0 8.303 0 0 1.6 0 57.685 1.5
15 9.080 0 0 1.006 0 38.809 1.5
22.5 9.598 0 0 0.954 0 21.678 1.5
30 10.212 0 0 0.918 0 5.403 1.5
15.63
0 0 0 0
0 0 0
0 9.743 0 0 1.527 0 57.076 1.5
15 10.574 0 0 0.883 0 38.088 1.5
22.5 11.102 0 0 0.834 0 21.527 1.5
30 11.722 0 0 0.825 0 5.392 1.5
16.83
0 0 0 0
0 0 0
0 11.207 0 0 1.454 0 59.620 1.5
15 12.027 0 0 0.76 0 38.886 1.5
22.5 12.541 0 0 0.732 0 21.748 1.5
30 13.149 0 0 0.715 0 5.409 1.5
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