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Executive Summary

Net congestion is becoming a more pressing issue in the Netherlands, partly due to the increased
penetration of renewable energy generation sources in the Dutch energy mix. The implementation of
residential microgrids into the hundreds of planned Energy Hubs in the Netherlands might alleviate the
pressure on the main utility grid through local production, consumption and storage. However, when
PV systems have period of low production and the BESSs are depleted, the microgrids would all rely
on the main utility grid for electricity supply, potentially only extending the limits needed to be reached
by the main grid. Conversely, if all microgrids would have a high PV production and storage would
be full, electricity might be exported at such a high rate that the main utility grid is challenged heavily.
These situations form the basis of the research objective of this thesis.

A literature review has indicated the need for further research on Dutch residential microgrids, while
using historical weather condition data for prolonged periods of time. In addition a clear quantitative
definition for the performance of the microgrid. Combining the research objective with the knowledge
gaps, the following main research question has been formulated:

How does the performance of residential microgrids in the Netherlands vary under different testing
conditions?

By varying load patterns, weather condition data longevity, BESS types, and microgrid sizes throughout
the various sub-questions, different scenarios have been developed to assess the performance of the
microgrid on different performance metrics. The metrics that different scenarios are scored on are:
cumulative deficit, import period duration, import and export power, and import and export ramp rates.
Taking on the modelling approach has allowed for answering the sub-questions, filling the knowledge
gaps, and achieving the research objective. Using the python library GSEE, PV system production
has been estimated and compared against different load patterns (household load patterns with gas
heating versus household load patterns with heat pump). Weather data for different time periods have
been obtained from the European Commission’s PVGIS, SARAH-3, and ERA5 datasets.

Simulating the different scenarios has provided insights into the effects of different testing conditions
on the performance of the microgrid. The factor with the highest impact on the performance was the
load pattern, with the addition of a high-impact load in the form of a heat pump to be the scenarios
requiring the highest capacity from the main utility grid. BESS type generally also impact the results,
with community batteries proving to be successful in reducing the peak import power and ramp rate
when compared to home batteries that are used for individual households. Microgrid size only impacts
the performance results in a minimal matter.

Analysing the system over a 42-year period has proven to be highly useful in redetermining the upper
limits required to be handled by the microgrid and main utility grid, when compared to the singular
year (TMY) scenarios. In all scenarios and performance metrics, analysing the system over this pro-
longed period of time has given new insights into system boundaries. It would, therefore, be highly
recommended for future studies on the performance of (Dutch residential) microgrids to take this multi-
decade perspective and prevent underestimation of the limits the microgrid system is subjected to.

These results have largely been validated by existing academic literature, but are still subject to numer-
ous limitations. This limitations include, but are not limited to, missing values in datasets, low temporal
resolution, and the exclusion of the role of monetary costs. Further recommendations would be to fo-
cus government policies and subsidies mainly on the demand of Dutch households, as electrification in
Dutch households is increasing rapidly. High-impact loads, such as a heat pump, drastically increases
the maximum burden the main utility grid has to carry and with the slow development of grid expansion,
the electricity grid can not keep up with the additional load. In addition, the Dutch home battery market
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is still in its infancy stage, but is developing rapidly. To bear the fruits of community batteries, the Dutch
government is advised to act quickly and start with the implementation of community batteries in the
planned Energy Hubs.

Understanding the interplay between different microgrid components and methods for analysis is vital
for successful implementation of the Dutch Energy Hubs and alleviation of the main utility grid. This
forms one of the largest challenges of the upcoming decade in the Dutch energy sector. For a full
understanding, the results need to be placed in the context of the socio-technical environment. Dutch
government instances will need to adjust regulations to incentivise dynamic pricing structures, rethink
the cost allocations to allow a fair distribution of costs among households, and setting up a regulatory
framework for the emerging Energy Hubs and communities, while also account for behavioural and
cultural barriers to smooth implementation of microgrids into the Dutch Energy Hubs. As these Energy
Hubs are still in the infancy stage, the Dutch government still has the opportunity to guide the standards,
policies, andmarket mechanisms that will underpin scalable, community-driven Energy Hubs - ensuring
they enhance grid stability, foster public trust, and accelerate the transition to a low-carbon energy
system.
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1
Introduction

Following European and National Climate Law, the Netherlands aims to reduce its greenhouse gas
(GHG) emissions with 55% by 2030 and achieve carbon neutrality by 2050 [1] [2] [3]. One of the ways
to achieve these targets is to increase renewable energy generation. In 2023, 17% of all energy gen-
erated in the Netherlands came from renewable sources, a 2% increase from 2022 [4]. Despite this
growth, the Netherlands still belongs to the bottom five countries of the EU-27 when it comes to the
renewable energy share [5].

Focusing solely on electricity generation, almost half of the total generation in 2023 came from re-
newable sources, such as solar, wind, and biomass [6]. Total renewable electricity production rose
by 21% in 2023, while electricity produced by fossil fuels dropped by 12%. However, due to various
factors, the growth of renewable electricity generation in the Netherlands is challenged.

Firstly, due to the fluctuating nature of solar and wind energy, energy generation is not dispatchable [7].
This means that power grid operators can not match demand with electricity supply in a controllable
manner. However, these are dependent on weather variability, storage technologies, and dispatchable
forms of electricity generation such as biomass, natural gas, or nuclear power plants.

Secondly, the issue of grid congestion is an overarching problem in the Netherlands. In the upcom-
ing years, companies all over the Netherlands cannot be connected to the electricity grid, as it is at full
capacity [8]. The Dutch government has implemented several measures to combat grid congestion,
such as faster expansion of the grid, better coordination of supply and demand, and stimulating the
installation of hybrid heat pumps, instead of all-electric heat pumps [9].

Another way of battling grid congestion is by implementing microgrids. A microgrid is defined as ”a
group of interconnected loads and distributed energy resources that acts as a single controllable entity
with respect to the grid. It can connect and disconnect from the grid to operate in grid-connected or
island mode”[10]. Microgrids help battle grid congestion, as the generated electricity is consumed lo-
cally, meaning that the electricity does not have to be transported through transmission and distribution
power lines. However, microgrids face the same challenge as any future-proof electricity grid: intermit-
tency of renewable power sources.

This intermittency of renewable energy generation results from variability in weather conditions [11].
If the aim of the microgrid is to be used in island mode, there should be enough storage capacity for
when there is insufficient energy generation. One advantage of microgrids is that during periods of
severe grid congestion, typically when there is an oversupply of renewable energy, they are likely to
generate sufficient electricity locally. However, when grid congestion is less severe, the microgrid may
not produce enough to meet demand, requiring electricity from the national grid and potentially wors-
ening congestion.

1
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As of May 2025, Dutch microgrids are still in its infancy stage, but by 2030, there should be hundreds
of them, all integrated into Energy Hubs [12]. These Energy Hubs could potentially alleviate approxi-
mately 3.2GW of the grid’s peak power demands [13]. The Dutch government has provided a roadmap
for the implementation of such Energy Hubs [14]. However, the roadmap only briefly mentions that
future energy generation is dependent on the weather, but does not go into detail on how to deal with it
or what the exact effects are, while prolonged periods of adverse weather conditions are highly critical
to future microgrid performance.

1.1. Research Objective
So far, the Energy Hubs in the Netherlands are still a work in progress and mostly conceptual. However,
with plans to implement hundreds of them by 2030, it is crucial to gain clear insights into the exact
impact of weather, among other significant factors, on electricity generation in Dutch microgrids, so
that informed decisions can be made regarding their design, efficiency, and integration into the broader
energy system. This thesis aims to contribute to the existing knowledge on microgrids and Energy
Hubs by answering the following main research question:

“How does the performance of residential microgrids in the Netherlands vary under different testing
conditions?”

The research objective is to get a clear insight into the effects of prolonged periods of adverse weather
condition on the microgrids’ performance, as well as its effects on the overall stability of the Dutch
electric power distribution systems. By varying numerous components of the microgrids’ system, such
as its household size, battery storage system and PV system configurations, this thesis aims to provide
knowledge on which components are vital to the performance of a microgrid and how it impacts full
systems’ grid stability.

1.2. Connection to CoSEM Programme
This thesis is the final part of the MSc. programme Complex Systems Engineering and Management
(CoSEM) of the faculty Technology, Policy and Management at the Delft University of Technology. The
programme emphasises on designing technological innovations in complex socio-technical environ-
ments [15]. This links perfectly well to the contents discussed in this thesis. Firstly, there is the complex
part, which indicates that a system or environment can perform differently while the overall inputs are
the same.

This is often associated with the social part of the socio-technical system, since human behaviour is
complex and cannot be predicted with full certainty. Specifically, this thesis incorporates the aspect of
complex human behaviour in the varying load patterns between different households. Another complex
element in this thesis is the randomness in weather conditions, which directly influences the production
of electricity. The technical aspect of the thesis is evident, as the microgrid with all its components
make up for the technical side of the thesis. Altering the design of the microgrid not only influences
technical characteristics, but also has its effect on the social and ethical facets. This makes that the
research objective of this thesis aligns with the fundamentals of the CoSEM programme.

1.3. Document Outline
An extensive literature review has been performed in chapter 2 to obtain insights into state-of-the-
art academic literature, resulting in the formulation of the main research question and sub-questions.
The research methods are explained in chapter 3, elaborating on the research approach, datasets,
performance metrics, scenario analysis and modelling assumptions made in this thesis. Results and
their analysis are shown in chapter 4. Lastly, the results are discussed in chapter 5, while the report
ends with the main conclusions in chapter 6.



2
Literature Review

In this chapter, a thorough literature review is conducted, providing definitions of core concepts, knowl-
edge of existing literature, and ultimately the knowledge gap that has not been fulfilled in the current
scientific literature, leading to the main research question.

2.1. Core Concepts
Microgrid: A group of interconnected loads and distributed energy resources that acts as a single con-
trollable entity with respect to the grid. It can connect and disconnect from the grid to operate in grid-
connected or island mode [10].

Dunkelflaute: A period of multiple consecutive days in which low or minimal energy can be generated
by renewable energy sources, such as solar or wind [16].

Typical Metereological Year (TMY): A collation of historical weather data derived from a multi-year time
series selected to present the unique weather phenomena with annual averages that are consistent
with long term averages [17].

2.2. Literature Review
State-of-the-art academic literature provides a comprehensive overview on the accumulated theoretical
knowledge on the relationship between weather conditions and microgrids. The articles can be divided
into two categories: resilience and performance. Whereas performance in the context of microgrids
relates to everyday operation, ensuring the power quality and grid stability, resilience refers to the ability
to bounce back after a large disruption to the microgrid and to maintain power during emergencies or
grid failures. This is an important distinction and it has wide-ranging implications for the direction of
research in this thesis.

2.2.1. Resilience
The full analysis of the literature review related to the relationship between weather conditions and
microgrid resilience can be found in Table B.1. Several key components of the articles are listed in
Table B.1, including the study’s location, the assumed generation source of the microgrid, and its main
findings.

One of the key factors that stands out from this part of the literature review is that many studies are
purely hypothetical, not relying on any specific location and its weather data. From the four articles
that do study a specific location, three of them look into microgrid resilience of a location in the United
States [18] [19] [20]. Moreover, there is not a single study that looks into the weather effect on microgrid
resilience in Europe.

Many of the articles focus on severe weather events, such as wildfires and typhoons, rather than

3



2.2. Literature Review 4

periods of prolonged intervals without considerable renewable energy generation, also known as a
dunkelflaute [21] [22] [23]. From these articles, the difference between the terms resilience and perfor-
mance becomes apparent. The articles that did not focus on severe weather events mostly used solar
data from a specific year, with some exceptions ranging from 4-20 years to identify any outliers [24]
[20] [19] [18]. Additionally, the articles use different definitions of resilience, as there does not seem to
be consensus on how to quantify the concept. The article by Sepúlveda-Mora & Hegedus (2022) even
proposes its own definition of resilience in relation to power systems [20]. Often, the focus was put on
commercial microgrids rather than residential ones, because of their higher critical load requirements.

Thus, this part of the literature review provides some highly relevant points to this thesis. Firstly, the
term resilience often is used in the context of extreme weather events, which is not relevant to this
thesis, as such events do not occur in the Netherlands. Another aspect related to the location is that
there are no articles that focus specifically on the Netherlands (or even Europe). Moreover, the term
resilience is used without a clear definition or consensus on how to quantify it in relation to microgrids.
Lastly, the articles mainly explore the resilience of commercial microgrids instead of residential micro-
grids, leaving yet another theoretical knowledge gap from this part of the literature review.

2.2.2. Performance
As the findings of the literature review about the resilience of microgrids would deviate from the research
objective, a second part of the literature review has been focussing on the performance of microgrids.
This part relates to everyday fluctuations and grid stability, rather than extreme events. This part of the
literature review also focusses solely on residential microgrids. The main findings of this part of the
literature review can be found in Table B.2.

One of the first things which stand out in the second part of this literature reivew is how there are more
studies which focus on microgrids and its performance in Europe [25] [26] [27]. Even though there still
are no Dutch studies on the performance of residential microgrids, these studies already have greater
resemblance with the Netherlands than the studies conducted in the previous part of the literature re-
view. Another notable aspect of this part of the review is how many of these studies focus solely on
the demand of the microgrid, without taking any form of supply into consideration [28] [25] [26]. Unfor-
tunately, two of these are also European based, thus providing no initial ideas or insights on the supply
side for this thesis. The majority of the studies, if specified, examine the microgrid’s performance with
PV power as (one of) the main electricity supply technology [29] [28][30] [31] [32] [27] [33] [34] [35]. This
underlines that PV power is the most common technology for residential microgrid electricity supply.

However, what none of the studies have performed is combining real-life irradiance and load data
from the same location to make accurate predictions for the full system’s performance for that precise
location. Often, only the location’s load data or irradiance data is used, but never both [25] [32] [26]
[27] [33]. As in the first part of the review, weather data is not used over a long time period and is
almost always limited to a single year. Additionally, just as for the term ’resilience’ in the first part of the
literature review, the term ’performance’ is used in multiple contexts and is refined as seems fit for the
corresponding study.

2.2.3. Knowledge Gap
The two parts of the literature review leaves several knowledge gaps to be filled with the results of
this thesis. Firstly, there is a geographical gap, as none of the studies have been performed with the
Netherlands as the (experimental) location. Another aspect that was prevalent during the review is
that barely any of the studies make use of weather data with ranges longer than a singular year. From
this, the question is raised if looking at prolonged periods of time will impact results and ask greater
achievements of the microgrids’ performance, as the study will potentially encounter more severe ad-
verse weather conditions. In addition to this, barely any study combined irradiance and load profile of a
certain location to create a full location-specific analysis. Lastly, the terms resilience and performance
are used loosely throughout the different articles. Therefore, it is important for this thesis to accurately
determine relevant criteria or metrics to rate the system’s performance on. These knowledge gaps
provide excellent input for the main research question.
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2.3. Main Research Question
From the research objective, the weather variability, microgrid performance, and need for better under-
standing of weather effects in the Netherlands are taken. From the first part of the literature review,
the aspects of lack of EU literature, studies on residential microgrids, and some methodological gaps
are taken. The second part of the literature review left knowledge gaps on the areas of combining
irradiance and load pattern data on a specific location, mostly focusing on load forecasting. Combining
the research objective with the theoretical knowledge gaps, a convincing research question can be
formulated:

“How does the performance of residential microgrids in the Netherlands vary under different testing
conditions?”

Note that in the main research question, the performance of microgrids will be assessed through its
effects on grid stability via multiple metrics, which are elaborated on in section 3.5. The different testing
conditions that are varied in this research are the weather conditions, type of BESS, microgrid size, and
load patterns. These testing conditions are explored in detail the sub-questions in section 2.4.

As the focus of the thesis is on residential microgrids, only solar power generation will be assumed.
This is because wind power, in combination with other energy sources, is often only used for com-
mercial or other types of microgrids, due to higher upfront costs and space requirements [36]. The
only study conducted on Dutch residential microgrids at the time of writing is the effect of different pric-
ing policies on PV-battery systems [37]. However, the study by Norouzi et al. also incorporates only
one year of weather data, thus likely not accounting for any large outliers in weather conditions in this
relatively short period.

2.4. Sub-Questions
To be able to answer the main research question, the following sub-questions have been formulated to
structure the research process:

1. How do different load profiles influence the performance of Dutch residential microgrids?
2. How does taking into account a prolonged time period of weather conditions influence the perfor-

mance of Dutch residential microgrids?
3. How do different battery energy storage systems (BESSs) influence the performance of Dutch

residential microgrids?
4. How doesmicrogrid size, in number of households, influence the performance of Dutch residential

microgrids?

Each of the sub-questions analyses a testing condition, that has been presented in the main research
question. Answering these sub-questions therefore will lead to a complete and valid answer to the
main research question. Further details on the testing conditions can be found in section 3.4.

Sub-question 1 explores the difference that varying load patterns can make on the microgrid’s per-
formance. For example, adding a heat pump to each household will create higher levels of electricity
consumption. Answering sub-question 2 will provide insights into the large outliers in PV system elec-
tricity production when analysing a prolonged period of several decades of weather data, instead of a
singular year. This way, periods when the system’s stability will be heavily challenged that would not
have appeared when working with shorter periods of weather data may potentially be found.

Sub-question 3 dives into the effects of using large community BESSs instead of home batteries, when
dealing with large microgrid sizes. Lastly, sub-question 4 provides insights into how the microgrids will
be performing for different sizes. This sub-question incorporates the effect of the smoothing of load
patterns when dealing with a large number of households in the microgrid, thereby potentially reducing
the need of a relatively high storage capacity and (dis)charge power of the BESS.



3
Research Methods

3.1. Research Approach
Revisiting the sub-questions found in section 2.4, a thorough analysis of many different components is
required. Therefore, theModelling Approach ismost suited to be applied to this thesis. More specifically,
a scenario-based computational model approach is used, based on the given research objective and
sub-questions. This section will go into detail as to why this is the most suitable research approach for
this thesis.

Firstly, this approach leads to the filling up of the knowledge gaps, as presented in subsection 2.2.3. A
model allows for plugging in weather conditions data, such as irradiance and temperature, and linking
it to load data to create location-specific performance output. Additionally, a modelling approach also
challenges the temporal knowledge gap of periods running for multiple decades, also linking to sub-
question 2. A model running scenarios over multiple decades can point out extreme events in which the
microgrid is maximally challenged and quantify the impact of weather conditions on microgrid stability.

Another factor as to why the modelling approach is a fitting approach for this thesis is because it al-
lows the combination of weather condition data and load data, which barely has been done in existing
academic literature. The two types of data can be combined while modelling a BESS, meaning that
an answer to sub-question 3 can be formulated. Because of the modular set up of a computational
model, it will be easy to switch between home batteries and community batteries. The same is true for
switching between households with and without a heat pump, allowing the formulation of an answer to
sub-question 1.

Lastly, the research approach allows for a formulation to answering sub-question 4, by simply increasing
the number of households by simulating multiple households with their unique load pattern (and PV
system). This will potentially result in smoothing of the total load curve. Additionally, the microgrid’s
performance need to be quantified by performance metrics when using a computational model. This
makes the results replicable, clear, comparable, and insightful.

3.2. Data
To achieve the research objective (section 1.1) using the research approach that has been elaborated
on in the previous section, several research methods have been used. Various key elements are
needed in order to find answers to the sub-questions from section 2.4:

1. How do different load profiles influence the performance of Dutch residential microgrids?
2. How does taking into account a prolonged time period of weather conditions influence the perfor-

mance of Dutch residential microgrids?
3. How do different battery energy storage systems (BESSs) influence the performance of Dutch

residential microgrids?
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4. How doesmicrogrid size, in number of households, influence the performance of Dutch residential
microgrids?

Answering sub-question 1 requires distinguishing load patterns across different household types. At
least one year of household electricity consumption data is required for finding reliable results using
the model. This study distinguishes between households that heat with natural gas and those that
generate heat using a heat pump. This means that, next to a real-world household load pattern, the
electricity consumption of a heat pump also has been modelled.

To answer sub-question 2, data on weather conditions is needed for two time periods to allow for
comparison. More precisely, irradiance data is needed to estimate PV system output, while temperature
also has an effect. Additionally, temperature data is needed for estimating the consumption of the heat
pump. A common method to estimate weather conditions for a singular average year is the Typical
Meteorological Year (TMY). This method uses real-world weather data, but takes the averages for a
certain time period (e.g. one month). To check whether running the model over a prolonged time period,
a longer period of historical weather condition data is needed.

Sub-question 3 explores the difference between a home battery and community battery. For both,
specifications are required to be used as input for the model. The specifications that are used in this
study are: energy capacity, (dis)charge power, and round-trip efficiency.

Sub-question 4 can be answered by altering the number of households in the microgrid, to examine
whether the smoothing of the load pattern has a considerable effect on the overall performance of the
microgrid. The exact datasets used in this thesis are described in the following subsections.

3.2.1. Demand
Household Load Pattern
A private household dataset has been used in addition to the public average national load pattern as
described below. It entails the data of a household located in Delft over the period of one year (2023).
The temporal resolution of the dataset is 15 minutes, and the total yearly consumption is around 4,300
kWh. Approximately the first two weeks of the year have missing values (01-01-2023 00:00 to 13-01-
2023 13:45). The missing values have been accounted for in the model.

Due to legal restrictions, this dataset cannot be made public.

National Load Pattern
The yearly national load patterns are taken from the Energy-Charts database [38]. This database
does not only contain Dutch households, but the electricity demand of the Netherlands as a whole.
Therefore, this dataset is not entirely representative of the load patterns of a Dutch household, but it
does provide a valid starting point. It represents the total load of the Netherlands, meaning that any
renewable electricity production in the form of PV or wind power has not been subtracted from the initial
load. However, it should be said that this is only true for utility-scale PV power plants, as rooftop PV
production for households can be consumed directly without it being reported to the Dutch DSO’s. For
this reason, the load patterns will likely deviate from reality.

An average yearly load pattern is created by finding the average value per time step over all ten years.
To convert the total demand of the Netherlands to the load of an average Dutch household, the load
values of all time intervals are summed and thenmultiplied by amultiplication factor so that the total load
over the whole year is equal to 4,300 kWh, which is equal to the total yearly load of the household data,
and also close to the average annual electricity demand of a detached house in the Dutch province
South Holland in 2023 [39].

3.2.2. Weather Conditions
TMY
The Typical Meteorological Year (TMY) data is extracted from the European Commission’s PVGIS
(Photovoltaic Geographical Information System) [40]. The system uses the SARAH-3 database from
the years 2005 to 2023 to the year for each month which is most representative of that specific month.
For example, for the coordinates of Delft, the year 2019 is the most representative for January, while
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the year 2006 is the most representative for February. Combining all the months gives a full TMY. An
example of the global irradiance of the TMY in Delft is shown in Figure 3.1.

Figure 3.1: Global irradiance during a TMY

The TMY data uses different time periods compared to the demand data, which may lead to some
inconsistencies when synthesizing the two datasets. Typically, irradiance is higher on warmer days,
while electricity demand tends to rise on colder days, especially when heating is electric (e.g., via heat
pumps). On days with lower irradiance, electricity demand would be expected to be higher. However,
if the TMY dataset corresponds to a particularly warm day, it will show higher irradiance levels, which
could reduce the mismatch (if any) between the datasets, as compared to assuming identical days,
times, and years for both.

SARAH-3
The Surface Solar Radiation Data Set - Heliosat (SARAH-3) dataset contains many different products,
measured over the period of 01-01-1983 to 31-12-2024 [41]. The products include solar surface irra-
diance, the surface direct irradiance (direct horizontal and direct normalized), the sunshine duration,
the photosynthetically active radiation, daylight, and the effective cloud albedo. These products are
measured via satellite-observations of instruments onboard the geostationary Meteosat satellites.

The products are available as monthly and daily means, as well as 30-min instantaneous data. This
thesis makes uses of the dataset with a 30-min temporal resolution. The products are available on a
latitude/longitude grid with a spatial resolution of 0.05° x 0.05° degrees, which roughly corresponds to
5km x 5km in mid-latitude regions. The three locations (Delft, Groningen, Amsterdam) were taken from
Google, and the data points were selected using the nearest method.

From the dataset, the product solar surface irradiance is used for this thesis as an input for the GSEE
calculations. The dataset is obtained from the Satellite Application Facility on Climate Monitoring (CM-
SAF) [41].

ERA5
ERA5 is the fifth generation of the ECMWF (European Centre for Medium-Range Weather Forecasts)
reanalysis for global climate and weather [42]. ERA5 combines model data with observations across
the world for a complete dataset. The data is available from 1940 onwards and is updated daily (with
a 5-day latency).

The dataset includes more than 200 main variables through different categories, such as atmospheric,
ocean-wave and land-surface. The data is available on an hourly basis and has a spatial resolution is
0.25° x 0.25° on a regular latitude/longitude grid, roughly corresponding to 25km x 25km.
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The variables that are used for the thesis is the 2m temperature (expressed in degrees of Celsius), as
this is used for estimating the output of the PV system. The ERA5 dataset can be obtained from the
Climate Data Store, an initiative of four organisations, including the ECMWF [42].

3.3. Model Design
3.3.1. Model Architecture
The metrics described in the previous subsection are calculated using the various datasets as input.
Figure 3.2 shows the high-level overview of the model architecture, distinguishing between the data,
external python libraries, inner model workings, and the output in the form of performance metrics.

Figure 3.2: Model Architecture and Data Integration

In section 3.2, the exact datasets that have been used in this thesis are explained in detail. An extensive
elaboration on the GSEE python library for estimating PV system output, as well as the inner model
workings, assumptions, and calculations can be found in section 3.6.

Figure 3.2 also includes the ”National Load Pattern” scenario, which is a scenario that has been worked
out, but is not part of the main results section in chapter 4. This scenario assumes the aggregated total
national load pattern is implemented on a household level, as is described in subsection 3.2.1. Its
results can be found in the Appendix, and might serve as a point of reference for implementation on a
national scale.

3.3.2. Microgrid Design
The design of the residential microgrid represents a relatively simple system, which is depicted in Fig-
ure 3.3. The rooftop PV systems make up for the supply of the microgrid, while the household appli-
ances that consume electricity account for the microgrid’s demand. The energy storage (in the form of
a BESS) allows for a more balanced and controlled way of importing and exporting electricity from the
main grid, which is labelled as utility grid in Figure 3.3.

The PV system provides direct current (DC) power, while the BESS also stores and supplies electricity
as DC power. The household appliances run on alternating current (AC) power and the main grid
provides AC power, too. Note that in the figure, all households own electric vehicles (EVs), but that
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Figure 3.3: Residential Microgrid Design [43]

is not the case in the scenarios in this thesis. Also, the individual home batteries are swapped with
community batteries in some of the scenarios.

3.4. Testing Conditions & Scenarios
Using the sub-questions, several testing conditions have been determined to test different microgrid
configurations and components to reassess the microgrids’ performance and find any potential differ-
ences across the scenarios, which are discussed in the upcoming section. Each of the sub-questions
is represented by one of the testing conditions, listed below.

3.4.1. Load Patterns
The two different load patterns that are used are the national and household load patterns. The national
has a way smoother distribution, with very low peak demand values, but also a higher baseload. The
household load pattern, on the contrary, follows a pattern of a relatively low base load, but with much
higher spikes in peak demand, resulting in different ways the microgrid needs to satisfy the load.

3.4.2. Period Duration
The TMY, as the name suggests, provides data for one year, from which the irradiance and temperature
values can be obtained as input for the model [40]. The data is used to estimate PV system output and
heat pump electricity consumption.

The TMY will be compared to a period of 42 years (1983-2024) of weather data, from here on out
referred to as ”full period”. The comparison will point out if using a prolonged period of weather data
does influence the results of the model, and thus is worth using. Additionally, these tests will point out
which weather conditions can exacerbate grid congestion.

3.4.3. Battery Type
An alternative to home batteries for each individual household could be a community battery (also
known as neighbourhood battery). This battery (or stack of batteries) will be shared with the whole
neighbourhood, giving it the potential to be smaller in capacity than the individual home batteries com-
bined, benefitting from economies of scale. Community batteries provide many advantages, such as
reduced costs, higher resource efficiency, and improved collaboration [44].

However, the power output of such a battery (pack) could be a bottleneck in the systems’ resilience, as a
lot of households would require electricity simultaneously during periods of adverse weather conditions.
The specifications for the home battery and community battery can be found in Table 3.1 and Table 3.2,
respectively.
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3.4.4. Microgrid Size
Varying the number of households in the microgrid might result in different conclusions in terms of
performance. Therefore, household number will be altered to create different scenarios. The number
of households in the benchmark model will be vary between 30 and 300 households to create a ‘small
microgrid’ and ‘large microgrid’.

The Netherlands has a total of 14,574 neighbourhoods [45]. With a total of 8,374,404 households in
the Netherlands, it means that there are almost 575 households per neighbourhood in the Netherlands,
on average. However, this does give a distorted view, as there are 50 neighbourhoods with more
than 5,000 households, 5 of which even have more than 10,000 households. These neighbourhoods
drastically increase the average. The median of the dataset is 315 households per neighbourhood,
which provides a more accurate metric.

30 households in a microgrid is another realistic number, as 2152 neighbourhoods (14.8%) have 30
or less households in the Netherlands [45]. Therefore, varying the microgrid sizes to 30 and 300
households provides valuable and realistic insights into the Dutch microgrid implementation potential.

3.4.5. Scenarios
Using the testing conditions described above, multiple scenarios have been developed. Firstly, a dis-
tinction is made between the type of heating used for the households, which has an effect on its load
patterns. The first scenario assumes households to be heated by natural gas, meaning that there is
no additional electricity consumed. The second scenario assumes households to be heated by a heat
pump, which does add to the electricity consumption of households. For each of these types of load
patterns, eight distinct scenarios have been developed based on the testing conditions:

• tmy_homebattery_small: TMY weather conditions with home battery with small microgrid size
• tmy_communitybattery_small: TMY weather conditions with community battery with small mi-
crogrid size

• tmy_homebattery_large: TMY weather conditions with home battery with large microgrid size
• tmy_communitybattery_large: TMY weather conditions with community battery with large mi-
crogrid size

• fullperiod_homebattery_small: Full period weather conditions with home battery with small
microgrid size

• fullperiod_communitybattery_small: Full period weather conditions with community battery
with small microgrid size

• fullperiod_homebattery_large: Full period weather conditions with home battery with large
microgrid size

• fullperiod_communitybattery_large: Full period weather conditions with community battery
with large microgrid size

Each of these scenarios will be simulated for microgrid households with two different load patterns (gas
heating and heat pump) in order to formulate answers to the sub-questions.

3.5. Performance Metrics
The system will be evaluated through several performance metrics, each vital for understanding the
effect on overall performance of the system. The following metrics are used in assessing the perfor-
mance of the system: peak power, ramp rate, import duration period, and cumulative deficit. Below,
they are explained in detail.

The first resilience metric is the peak power for one time interval (t) that is required from the main grid
[46]. The choice for this metric relates heavily to the grid congestion issue in the Netherlands, where
peak power withdrawn from (or fed into) themain grid causes increased chances of outages and voltage
instabilities. This metric is relevant for both importing from and exporting to the main utility grid, hence
both will be used for further analysis.
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The peak power is closely related to the ramp rate, which is the change in power output at a given time
step [47]. An appropriate balance between electricity supply and demand prevents harmful effects
on the transmission system of both main grid and microgrid that can result from sudden, excessive
fluctuations [48]. Both the peak power and ramp rate are effective metrics through their simplicity and
ease of interpretation and provide a strong initial insight into the systems’ performance.

Furthermore, the systems’ resilience will be analysed based on the longest period of continuous import
needed from themain utility grid. This is the time where the supply of the PV system and battery storage
is insufficient to meet demand, resulting in a positive residual load. The final performance metric is the
total electricity needed during one continuous period, also known as the cumulative deficit. Thus, the
following resilience metrics are used in this thesis:

• Peak power [kW]
• Ramp rate [kW / time step]
• Continuous period of main grid import [hours]
• Cumulative deficit [kWh]

Each of the metrics will be expressed per microgrid household to ensure fair comparison, as there is
variation in the number of households between the different scenarios. The maximum value of the
metrics holds the most important information, as this is the indication of the boundaries needed for the
whole system not to disintegrate and black out. In addition, a value at risk (VaR) is given for each of
the metrics, which is set at the 99th percentile of the full distribution.

3.6. Model Assumptions & Calculations
To assess the microgrid’s performance, a model has been developed, following the research approach.
By running different scenarios, the differences between load patterns and other testing conditions can
be found. All the calculations and modelling have been done using the programming language Python
[49]. The exact location of the microgrid system is in Delft (latitude: 52.025, longitude: 4.375). The
model simulates with 15 minute time intervals, which is the highest temporal resolution of any dataset,
described in section 3.2. A higher temporal resolution would mean that computational power and run
time of the scenarios would increase considerably. Below the different components of the model are
described. The full python code can be found in Appendix A.

3.6.1. Demand
Appliances
To create random variation in the private household dataset for every household, a randomized variant
of the original household load pattern is generated, where the demand value at each time step can
change between -10% and +10% scaling factor. Additionally, to account for load diversity when dealing
with a high number of households, each load value is shifted randomly anywhere between -2 hours and
+2 hours. This results in modest changes in peak demand times for different households, and thus a
more realistic model.

Figure 3.4 shows an example for 10 households displaying the effect of time shifting and the scaling
factor across four days.

Heat Pump
Power consumption of the heat pump is calculated using a few basic equations. One of the inputs is the
temperature data of either the TMY or ERA5 datasets, which are elaborated on in section 3.2. Firstly,
the temperature difference is calculated using Equation 3.1, being the difference between the set indoor
temperature and the ambient temperature (obtained from either the TMY or ERA5 dataset). The set
temperature of the household is 18°C, which is the average indoor temperature in Dutch households
in 2022-2023 [50].

∆T = max(Tset − Tamb, 0) (3.1)
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Figure 3.4: Randomized Load Pattern for 10 Households (January 1st - January 4th)

Subsequently, the heating demand (in kW) is calculated using Equation 3.2, using the∆T and the heat
loss coefficient Kbuilding, which is the inverse of the Rc value. In current practice, an Rc value of 3.5-5
is advised, with a value of 3.5 already providing a good level of insulation [51] [52]. From 1992 all
buildings were required to have a minimal Rc value of 2.5 [53]. For this thesis, an Rc value of 3.5 is
taken, resulting in a Kbuilding value of 0.285 kW / °C.

Qdemand = Kbuilding ·∆T (3.2)

The Coefficient of Performance (COP) of the heat pump is calculated using Equation 3.3. The con-
stant is 3.5, with the performance dropping by 2% of the constant (= - 0.07 / °C) with an increasing
temperature [54] [55].

COP = max(acop − bcop · Tamb, 1.5) (3.3)

Finally, the heat pump power consumption can be calculated as the minimum of the maximum power
output of the heat pump and theQdemand divided by the COP, as is shown in Equation 3.4. Average heat
pumps in the Netherlands have a maximum power output of 5 - 10kW [56]. For this thesis a PHP,max of
7.5kW is assumed.

PHP = min

(
PHP, max,

Qdemand

COP

)
(3.4)

As an example, the electricity consumption of the heat pump in 2024 is shown in Figure 3.5. The peak
load is 1.68kW, while the total consumption in 2024 equals 5,520 kWh.

3.6.2. Supply
GSEE
The GSEE library builds on pvlib python, which is a “community developed toolbox that provides a set of
functions and classes for simulating the performance of photovoltaic energy systems and accomplishing
related tasks” [57]. GSEE is designed for quicker calculations and generally higher ease of use [58].

GSEE uses irradiance data, as well as location data - latitude and longitude - to simulate the output of
the PV system. Additionally, the user can provide the specifications of the PV system itself to tweak
results. These specifications include the tilt, tracking, and capacity of the PV system.
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Figure 3.5: Electricity Consumption of Heat Pump (2024)

The irradiance values of the SARAH-3 dataset provide an input for the GSEE library. In the model, an
installed capacity of the PV system of 4,000W is assumed, which roughly equals an amount of ten to
sixteen solar panels [59]. Implementing all the parameters discussed gives a supply pattern shown in
Figure 3.6.

Figure 3.6: PV System Production during a TMY using GSEE

Data Integration & Modification
TMY
Similar to the national load, the TMY dataset is also in hourly temporal resolution. Therefore, it has been
reworked to 15 min time intervals with linear interpolation for all temperature and irradiance variables.
GSEE requires two input variables, which are global_horizontal and diffuse_fraction. The global
horizontal irradiance is already in the original dataset under a different name (G(h)), so the variable
can simply be renamed. The diffuse_fraction can be calculated via Equation 3.5.

diffuse_fraction =
diffuse_horizontal
global_horizontal

(3.5)
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SARAH-3
The SARAH-3 datasets temporal resolution is 30 minutes, so linear interpolation is used for the irra-
diance variables to alter this resolution to 15 minutes. The global_horizontal can be calculated via
Equation 3.6. Then the diffuse_fraction is calculated according to Equation 3.5.

global_horizontal = direct_horizontal + diffuse_horizontal (3.6)

The original dataset contains 3.92% missing values for both direct and diffuse horizontal radiation,
mainly in the early years of the dataset. To improve data quality, all missing data points that lie between
two time steps that do contain values for irradiance, the average of its neighbouring time steps is taken.
Furthermore, all missing values for the time steps between 20:30 and 03:00 (UTC time) have been set
to a value of 0. These two modifications decrease the share of missing values to 1.26% over the full
time period.

ERA5
The temperature data from the ERA5 dataset is extracted using the ”nearest” method, which selects
the closest available data point based on the provided coordinates (latitude: 52.025, longitude: 4.375).
Then, the 2m temperature is converted from Kelvin to Celsius and changed to 15 minute time resolution
using the linear interpolation method. The SARAH-3 and ERA5 datasets are combined to create a full
period dataset which includes both the irradiance and temperature data for the full period 1983 - 2024.

3.6.3. Storage
Battery System Parameters

Home Battery

The home battery is assumed to be the LG RESU10, a common home battery in the Netherlands,
whose specifications are outlined in Table 3.1 [60]. These values are average for lithium-ion batteries.
For the round-trip efficiency, 95% efficiency is assumed.

The ratio between the total energy capacity and the average daily household electricity load (6.85 kWh)
is around 1.43. The ratio between usable capacity and household load is 1.28.

Table 3.1: Specifications of the LG RESU10 home battery

Parameter Symbol Value Unit
Total Energy Capacity Ecap_tot 9.8 kWh
Usable Energy Capacity Ecap 8.8 kWh
Maximum Charge/Discharge Power Pmax 5.0 kW
Battery Pack Round-Trip Efficiency η 0.95

Community Battery

An existing Dutch community battery is a 128kWh/55kWbattery in Rijssenhout, placed in 2017 [61]. The
community battery is used by 35 households to store excess electricity produced by PV systems to be
used during times of undersupply. If the households have the same average demand as is assumed
for this thesis, the ratio between the energy capacity of the battery and the average daily household
electricity load is approximately 0.53. This ratio is almost three times smaller than the ratio assumed
for the home battery, resulting in an unfair comparison.

However, it should be accounted for that community batteries are generally more efficient in terms of
total installed capacity relative to the number of households than individual home batteries. Therefore, a
ratio of installed capacity to household load of 1.1 is assumed. The maximum charge/discharge power
follows a capacity factor (kWh / kW) of 4, following the same parameter as an earlier home battery
and community battery study performed by CE Delft and Witteveen+Bos [62]. The same round-trip
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efficiency as for home batteries is assumed. An overview of the community battery specifications can
be found in Table 3.2.

Table 3.2: Specifications of the community battery

Parameter Symbol Value Unit
Energy Capacity Ecap 7.53× # households kWh
Maximum Charge/Discharge Power Pmax 1.88× # households kW
Battery Pack Round-Trip Efficiency η 0.95

Integration
The storage model uses the input of the supply and demand data. It is calculated for every time step
(t). Essentially, it can be split into two scenarios, one where the residual load is positive and one where
it is negative. The residual load is calculated by Equation 3.7.

Residual Load = Electricity Demand− PV Generation (3.7)

Starting off with the residual load being negative, thus PV power supply exceeding the demand at this
time step, with excess power being denoted as Pexcess:

The excess power is used to charge the battery, which is limited by the charge rate (Pmax) and remaining
capacity of the battery (Espace). If there is any remaining capacity, the power (kW) is converted into
energy (kWh) by multiplying it with the timestep_hours constant (∆t), which equals 0.25 as the data is
in 15 minute intervals. The full battery charging logic is described in Equation 3.8.

Pexcess = −Residual Load (3.8a)
Pin = min (Pexcess, Pmax) (3.8b)
Ein = Pin ·∆t (3.8c)

Estorable = Ein · η (3.8d)
Espace = Ecap − SOCi (3.8e)
Estored = min (Estorable, Espace) (3.8f)
SOCi = SOCi + Estored (3.8g)

All of the excess power which is not used to charge the battery is exported to the main utility grid (Pexport).
These calculations are done using Equation 3.9.

Eexport = (Pexcess ·∆t)−
(
Estored

η

)
(3.9a)

Pexport =
Eexport

∆t
(3.9b)

Alternatively, in case of a positive residual load, the microgrid requires additional electricity (Pshortage).
The shortage can be made up either by battery discharge or main utility grid import. The battery dis-
charge logic is shown in Equation 3.10.
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Pshortage = Residual Load (3.10a)
Eshortage = Pshortage ·∆t (3.10b)

Pdischarge,max = min

(
Pmax,

SOCi

∆t

)
(3.10c)

Eoutgoing = Pdischarge,max ·∆t (3.10d)
Eusable = Eoutgoing · η (3.10e)

Edischarged = min (Eusable, Eneeded) (3.10f)

Eactual =
Edischarged

η
(3.10g)

SOCi = SOCi − Eactual (3.10h)

In case of insufficient battery capacity to satisfy the demand, the electricity is imported from the main
utility grid. This process is explained in Equation 3.11.

Eimport = Eshortage − Edischarged (3.11a)

Pimport =
Eimport

∆t
(3.11b)

3.6.4. Metrics
The model’s calculations and assumptions for the cumulative deficit and import period duration metrics
are greatly similar. The model checks if there is a positive value for main utility grid import. If this is
the case, an import streak is started which adds the total energy imported and the time step for the
cumulative deficit and import period duration, respectively. The streak is ended when there is a streak
of more than four time steps (1 hour) of continuous non-import. The streak is ended and this counts
as one period, both for the cumulative deficit and the import period duration. All of these streaks are
added in one large array to be analysed. In case of missing values in the SARAH-3 dataset, the time
step is skipped. This means the streak is not ended, but it also does not count as an extra time step
for the import duration period.

Import power and export power, as well as the import and export ramp rates (which is the difference
between import and export power between two consecutive time steps (∆t)) are documented in sepa-
rate arrays, too. As either import or export power, or both, are zero at a give time step, only the positive
values for both power and ramp rate statistics are taken for analysis to filter out all the non-positive
values which do not make for an insightful analysis into these metrics.



4
Results

This chapter compares and analyses the various testing conditions introduced by the sub-questions.
More specifically, this chapter analyses the maximum values of the six metrics introduced in section 3.5,
as these values represent the highest performance demands placed on the microgrid and the main util-
ity grid. Given the research objective, it is evident that grid congestion is a significant issue in the
Netherlands. Evaluating the maximum values of the performance metrics helps determine whether
the testing conditions mitigate or exacerbate this problem. The distribution of all the individual scenar-
ios barely differs between scenarios and are, therefore, not relevant to consider. For reference, the
cumulative distribution functions (CDFs) of all scenarios can be found in Appendix D.

Each of the scenarios are run a total of 10 times to create an estimate of the performance metrics of the
scenarios. A higher number of runs would result in significant increases in the required computational
capacity and total time for running each of the scenarios, hence the choice of running it 10 times has
been made. The modular character of the model makes it so that switching between the different
scenarios (subsection 3.4.5) is straightforward. Multiple parallel coordinate plots (PCPs) have been
created to highlight the differences between the testing conditions. In the main text, some illustrative
examples are given, but all of the PCPs can be found in Appendix C.

One of the main results found in this chapter is the immense effect different load patterns have on the
performance metric output. The addition of a heat pump mainly increase the maximum cumulative
deficit and import period duration, but also maximum import power and ramp rate are increased. Al-
though have a lower effect than the addition of a heat pump, analysing the full period results in increases
for all of the performance metrics across all scenarios. The effect of the different types of batteries are
a less direct than for the testing conditions named above. The ”Gas Heating” scenario shows either re-
duced or similar values for the community battery, indicating that it is the preferred option. For the ”Heat
Pump” scenario, however, there seems to be a trade-off between the self-sufficiency performance met-
rics (cumulative deficit and import period duration) and the main utility grid requirements (import and
export power and ramp rate) for different battery types. Lastly, microgrid size does show to have an
impact on the results, but this is lowest compared to the other testing conditions.

4.1. Gas Heating vs Heat Pump
Figure 4.1 shows the maximum values across the two scenarios for each of the metrics. This gives
insights into the limits the microgrid system should be able to withstand. An average is provided for the
scenarios, which acts as an indicator for the use of differing load patterns on the system’s performance
requirements.

In terms of the cumulative deficit, an evident difference between the scenarios with a heat pump and
the ones without is shown, as the average cumulative deficit is 5.23 times higher throughout all the
scenarios. Scenario ”Gas Heating” also has longer maximum import durations than the ”Heat Pump”
scenario, being 2.56 times higher. An explanation for this is that during the day when there are higher
levels of irradiance, residents are not at home, resulting in low load values (possibly even base load).
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Figure 4.1: PCP comparing different load patterns (Gas
Heating vs Heat Pump)

This makes so that the load can be met by the
relatively low PV power production, thus ending
the import duration streak. However, the model
assumes the temperature of the house to always
be at least at 18°C, resulting in higher load re-
quirements, especially during colder months.

Two other metrics where the ”Heat Pump” sce-
nario makes a large difference are the import
peak power and peak ramp rate, with both met-
rics being 26% higher for the ”Heat Pump” sce-
nario, on average. For the export peak power
and peak ramp rate requirements, there is barely
any difference between the averages of the two
scenarios. However, there is a relatively large
amount of variation between the scenarios for
both import and export ramp rates, which will be
explained by other testing conditions below.

All in all, it can be concluded that the addition of
a heat pump has negative effects on the perfor-
mance of a microgrid, mostly on the import side.
Contrarily, the distinct load patterns have barely
any effect on the export metrics.

4.2. TMY vs Full Period
The effect of using a time period of 42 years as
compared to a singular year (TMY) is most clearly
shown in Figure 4.2, which shows the compari-
son between the TMY and Full Period scenarios
for the ”Heat Pump” scenario. From this figure,
it becomes apparent what the effect of using the
prolonged time period is. For essentially all of
the performance metrics, the Full Period scenar-
ios show higher results, indicating the increased
capacity required by the main utility grid in order
to supply the microgrid.

The maximum cumulative deficit increases by a
factor of 15.7%, while themaximum import period
duration even increases by 45.9%. This shows
the reduced self-sufficiency of the microgrid un-
der the most pressuring of times. Peak import
power and ramp rate are also affected, increas-
ing by a factor of 13.3% and 87.3% when the full
period is taken into account, respectively. Max-
imum export power and ramp rate are affected
less than the import, but increase nevertheless,
by factors of 7.9% and 23.1%, respectively.

The effect of analysing a full period for the ”Gas
Heating” scenario gathers similar results, the
maximum cumulative deficit (35.9%) reporting an
even higher difference than for the ”Heat Pump”
scenario. All of the other performance metrics
also show increased average maximum values
when accounting for the full period, albeit in rela-
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Figure 4.2: PCP comparing different time periods (TMY vs Full
Period) - ”Heat Pump” scenario

tively lower terms than for the ”Heat Pump” sce-
nario.

From these results, the importance of consid-
ering prolonged time periods of weather data
when conducting similar types of research is high-
lighted. Using singular year datasets (like the
TMY dataset) will potentially lead to grave un-
derestimation of the required capacity and limits
needed by the main utility grid (and microgrid) to
ensure a fully functioning system.

4.3. Home Battery vs Commu-
nity Battery
Whereas the previous two sets of testing condi-
tions has shown a clear difference between the
two options, the relationship between the BESS
type and performance metrics is more compli-
cated. For the ”Gas Heating” scenarios, the com-
munity battery achieves more favourable (scores
lower on the performance metrics) results than
the home batteries for all individual households.
Maximum cumulative deficit decreases by 19.7%,
while maximum import duration is reduced by
25.9%. Both maximum import ramp rate (25.2%)
and export ramp rate (20.1%) are also reduced
by using a community battery. The peak import
and export power is not affected and stays equal
for both battery types.

Comparing battery types for the ”Heat Pump”
scenario (Figure 4.3) proves to be less obvious,
due to both battery types performing better on
some parts of the performance metrics than the
other. For instance, the community battery sce-
narios show higher maximum cumulative deficit
(10.3%) and import period duration (18.3%) val-
ues than the home battery scenarios. Contrarily,
the average maximum import ramp rate and ex-
port ramp rate for community batteries are 23.1%
and 19.0% lower, respectively. Similar to the re-
sults from the ”Gas Heating” scenario, the aver-
age peak power for both import and export is
equal across all scenarios for this testing condi-
tion.

This makes for an interesting choice to be made
by future grid operators and government institu-
tions. On the one hand, self-sufficiency of the mi-
crogrid(s) can be favoured by opting for home bat-
teries, but this does increase the ramp rate limits
needed by the main utility grid, which might im-
pact grid congestion. On the other hand, commu-
nity batteries show reduced required ramp rate
limits, but this is at the expense of self-sufficiency,
since higher maximum values of cu-
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Figure 4.3: PCP comparing different BESS types (Home
Battery vs Community Battery) - ”Heat Pump” scenario

mulative deficit and import period duration are
found.

4.4. Small Microgrid vs Large
Microgrid
Microgrid size has an effect on the performance
metrics, but it is very small compared to the other
testing conditions. The ”Gas Heating” scenario
finds a maximum of 5.5% decrease across the
maximum values across all performance metrics
for the large microgrid size. The same conclu-
sion holds for the ”Heat Pump” scenario, where a
larger microgrid size results in a reduction of the
maximum performance metrics by 5.8% or less,
which is an effect far lower than found between
the other testing conditions. Thus, as expected, a
larger microgrid decreases the required capacity
and limits from the main utility grid and increases
self-sufficiency of the microgrid, but its effects are
far lower than for the other testing conditions.

The relatively small effect of microgrid size can
have multiple reasons. Firstly, there is a chance
that the diversified load, resulting in peak shaving,
genuinely has less effect than the other testing
conditions. Another reason could be the setup of
the model, which is further elaborated on in the
limitations section in section 5.2.

4.5. Results Analysis
The cumulative deficit in the ”Gas Heating” sce-
nario shows significantly lower values for com-
munity batteries, which aligns with the find-
ings of other studies, which found commu-
nity batteries to be more efficient in terms
of required storage capacity than home bat-
teries [63]. Also, significantly higher values
are found for the full period scenarios in com-
parison to the TMY scenarios, highlighting the
value of using datasets with a longer time span.
The longest import period happened in Decem-
ber 2006 from a period for almost 9 days,
7 of which did not have a single sun hour
[64].

A notable aspect is that import power for scenario
”Gas Heating” has superseded export power, due
to the implementation of the household load pat-
tern which is oscillating between higher and lower
power values to a large extend. The commu-
nity battery leads to lower ramp rate requirements
than the home battery, which is a similar effect
that is found in academic literature [65]. However,
this is only for the ramp rate, as for the maximum
required power, there is no difference in using
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home batteries or a community battery. This indicates that there are times that there is either too
little or too much PV power that the difference in BESS does not matter and either all load needs to
be imported when the BESS is empty or all excess electricity needs to be exported when the BESS is
already fully charged.

The maximum cumulative deficit and longest import period duration of the full period scenarios in the
”Heat Pump” exceed the maximum values of the TMY scenarios. The maximum cumulative deficit and
longest import duration period occur in November to December 2004, when in a period of 21 days, the
number of days with 1.5 sun hours or more only occurred twice [66] [67]. The deviation in this time
period compared to the ”Gas Heating” scenario can be explained by the much colder December month,
especially in the first weeks. For the first 16 days in December 2004, there only was one day with a
higher average temperature than the long-term average temperature. For the full month, the average
temperature was 3.2°C, compared to an average long-term average of 4.0°C.

Comparing these weather conditions against the temperature measurements in December 2006, it is
clear why this time period did not show up as the ’worst’ period in the ”Heat Pump” scenario. Un-
like December 2004, December 2006 was a ”very mild” month, with an average temperature of 6.5°C,
compared to the same average long-term average of 4.0°C. This would have resulted in lower power
consumption by the heat pump, leading to lower peak power requirements and total consumed elec-
tricity. The combination of both low solar irradiance and temperature has led the November-December
2004 period to be the ’worst’ period in the ”Heat Pump” scenario. This is also illustrated in Figure 4.4,
showing unusually low values for both irradiance and temperature.

Figure 4.4: Irradiance and Temperature against the monthly average December 1 - December 20, 2004

Remarkably enough, December 2004 (54 hours) and 2006 (47 hours) both recorded higher total sun
hours over the whole month compared to the long-term average of 44 hours. This indicates that the
microgrid system is always challenged during periods of low irradiance, even if this period succeeds
another period with higher than average solar irradiance. For instance, the ’worst’ run for the ”Gas
Heating” scenario starts just after a period of three days with an average of 5 sun hours per day, while
the long-term average is only 1.42 sun hours per day for December. Still, this period recorded as the
worst run over the full 42-year period. The irradiance values over this period can be found in Figure 4.5,
indicating an initial few days of high irradiance followed by days of extremely low irradiance.
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Figure 4.5: Irradiance against the monthly average December 13 - December 29, 2006

The main takeaways in this chapter are:

1. Load Pattern: Load pattern has a very large effect on the performance metric results, with ”Heat
Pump” scenarios reporting higher maximum values for almost all performance metrics compared
to the ”Gas Heating” scenarios, with the exception of the metrics related to export;

2. Time Period: Full period analyses show that greater main utility grid capacity and limits are needed
when compared to the TMY scenarios. This is true for all of the performance metrics;

3. Battery Type: Community batteries seem to report lower values for all of the performance metrics
(except peak import and export power) than the home batteries. However, for the ”Heat Pump”
scenario, higher maximum cumulative deficit and import period duration are reported, indicating
reduced self-sufficiency of the microgrid;

4. Microgrid Size: Microgrid size does impact the results, but on a relatively small scale when com-
pared to the other testing conditions.

5. Worst Run: No matter how beneficial the weather conditions preceding a period of low irradiance
and temperature are to the microgrid system, it will still get challenged heavily over a prolonged
period of several days or even weeks.



5
Discussion

5.1. Literature Validation
The results of the thesis are placed in the context of current academic literature in order to determine
the validity and novelty of these results. The results show an overall clear difference between the
maximum performance required from the system when simulating for a full period in comparison to a
single year (TMY). This indicates studies which performed with a single year might underestimate the
upper boundaries needed to be met by the microgrid, thus resulting in unforeseen situations and grid
instability caused by voltage or frequency drops. Studies performed in Italy and Kenya found similar
results when comparing traditional single-year approaches to multi-year tools [68] [69]. Even though
these studies express the performance in terms of monetary costs instead of actual system boundaries,
it is still clear that there is an advantage to be gained by using multi-year tools and approaches instead
of singular year ones. Results in this thesis underline the same principle.

Another result that is found in this thesis is the large effect a heat pump has on the overall required
capacity of the microgrid system, which is also found by a sut [70]. Peak demand even went up with a
factor of 36%, which is slightly higher than the averages that were found using the model in this thesis.

In many of the scenarios, a community battery has proven its advantages over the home batteries used
for single households. This has been especially the case in the full period scenarios, where maximum
microgrid requirements have been lowered by implementing community batteries. Although the results
in this thesis have not been as large as in some other studies, the community battery still performs
better, especially at larger microgrid sizes.

For instance, a German study found community batteries to increase self-sufficiency by 11.6%, along-
side an 8% increase in self-consumption [71]. Contrarily, the results in this thesis show a decrease in
self-sufficiency when using community batteries compared to individual home batteries, when assum-
ing that all households utilise a heat pump. Capacity-wise, the community battery enables savings of
up to 68% compared to home batteries while achieving similar results.

Pilz et al. (2019) found similar benefits of implementing a community battery, allowing for a lower
installed capacity due to less pronounced asynchrony of the demand to the PV system production [72].
These results show a clearer advantage of the community battery than the results in this thesis. This is
potentially the case because of the standard household load pattern used in this thesis. Even though
random variation is added, there is not as much variation in the (peak) load as there would be with
distinctly different households and individual load patterns.

This aspect also links to the highly limited effect microgrid sizing has on the performance metrics. The
anticipated effect before generating the results of this thesis was that microgrid size was (one of) the
testing conditions with the largest effect on the performance metrics, but it has proven to be the testing
condition with the smallest overall effect on each of the metrics throughout the scenarios. The effect of
a larger microgrid size has been much more apparent in other academic literature, such as in studies
performed in Switzerland and the United States [73] [74].
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5.2. Limitations
5.2.1. Main Utility Grid Boundaries
This thesis aims to explore the ultimate boundaries the main grid has to endure to facilitate a smoothly
operating microgrid. However, there is no knowledge on the actual upper limits of the main utility grid
at this point in time. It is well-known that the main utility grid is under heavy pressure and that net
congestion is an everyday issue only to get worse in the future. Increasing peak power and ramp rates
will only exacerbate this problem. However, due to the unknown upper limits of the TSO (TenneT) and
the various DSOs, it is not possible to place the results of this thesis into this context.

5.2.2. Missing Values SARAH-3
The amount of missing values of the SARAH-3 dataset, providing irradiance values from 1983 - 2024,
make it difficult to estimate PV system production for certain time periods. Especially in the early years,
1983-1990, with at least 10% of values missing every year. The two modifications of the dataset in this
thesis reduces the amount of missing values to around an average of 5% for the early years, but this
amount is still significant to alter the metrics, be it in a positive or negative way.

5.2.3. Temporal Resolution Datasets
Of all the datasets, the household load pattern has the highest temporal resolution with a 15 minute
interval between time steps. Many of the other datasets are hourly, while SARAH-3 is provided in 30
minute time intervals. This limitation leads to two problems. The first is that higher resolution time sets
can be created via linear interpolation, but this method averages out the variables over a certain time
period. This method is likely fine for variables like temperature or irradiance, but in case of load patterns,
there can be large differences and fluctuations between seconds. Secondly, the voltage control on the
main utility grid is also controlled over several seconds, meaning that fluctuations on this temporal
resolution can already impact the grid’s stability [75]. Therefore, analysing the system on an even
higher temporal resolution would benefit the validity of the results. A caveat that needs to be made is
that this would significantly impact the run time and computational power required by the model.

5.2.4. Household Load Data
The household load pattern and the added random variation in peak and time shifting used in this thesis
provides a solid starting point for estimating the load pattern of an increased number of households.
However, it would be better to use the load data of many different households, as this would increase
the validity of the results, by simulating more realistic scenarios. DSO’s have the data to do this, so
these organisations would likely provide more accurate results using the model of this thesis when laid
against an increased number of real-world household load patterns. Having a more diversified overall
load pattern would mostly benefit the community battery scenarios when compared to the home battery
scenarios, resulting in a more prominent distinction between the two. Additionally, increased microgrid
sizes would likely perform substantially better on the performance metrics than microgrids with a low
number of households. This might be one of the main reasons that this effect is relatively small in the
results of this thesis.

5.2.5. Monetary Costs
All results in this thesis are based on the technical boundaries and limitations of the PV system and
BESS. However, monetary costs have not been considered in this thesis. This aspect is important to
consider before implementing the solutions proposed in this thesis. For instance, a community battery
might be lower in costs per installed capacity when compared to home batteries for each household, but
this would require cooperation between the households and/or municipality in the microgrid. Addition-
ally, heat pumps or a PV system can be a high up-front investment for households, so before assuming
that each household can install these, an overview should be made on the ability and willingness-to-
pay of the households in the microgrids. Additionally, the grid stability and other technically related
aspects can also be expressed in monetary terms, such as the value of lost load or the costs of grid
failure. Expressing all assets and effects in terms of monetary costs will also allow for a fair and clear
comparison between the scenarios and testing conditions in this thesis.
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5.2.6. Heat Pump Consumption
The model in this thesis assumes the heat pump to always heat up the household to 18°C, when
ambient temperature is lower. This also happens during the night and middle of the day, when residents
are either asleep or their everyday activities (work, school, study). At these times, it is not realistic
to be heating each household as if someone were to be at home. Therefore, heat pump electricity
consumption is likely to be overestimated, given the other constant variables used in this thesis. This
effect would therefore lead to a higher pronounced difference between the ”Heat Pump” and ”Gas
Heating” scenarios than would have been the case when using real household data.

5.2.7. Constant Variables
Some of the variables in this thesis have been kept constant, but could be varied to achieve more
testing conditions and a more complete analysis of the system. Examples of this are the installed
capacity of the PV system, the home batteries, the community battery, as well as the tilt, rotation,
tracking and placement of the PV system. Additionally, other variables, such as the partial shading
effect, could have been added to allow for a more realistic and complete overview of all the effects of
testing conditions in this thesis.

5.3. Theoretical Implications & Future Research
From the literature review, several theoretical knowledge gaps have been identified, which this thesis
aims to fill. First off, there is the geographical knowledge gap, with no studies being performed on the
relation between weather effects and Dutch microgrid performance. This interplays with the fact that
current academic literature barely ever combines load data and weather data from the same location,
which allows for a more accurate model, and thus results. Also, the time of analysis of the studies
often has been limited to a singular year, without considering possible (negative) deviations in terms of
weather conditions which would critically impact the required performance of the microgrid. By combin-
ing the load and weather data of the Netherlands, while also analysing the system’s performance over
a period of more than 40 years, this study has bridged these knowledge gaps, while also adhering to
the research objective.

Coming back to the limitations of the previous subsection, there is still potential to enrich this study in
future research. Varying other components of the microgrid, such as BESS capacity, PV system capac-
ity and configuration, and adding the partial shading effect would result in a more complete analysis of
the full system. Furthermore, placing the results in context of grid boundaries or monetary costs might
lead to even more insightful results and conclusions by taking another perspective on the same issue.

Additionally, working with real-world household load patterns will lead to increased diversification of the
total load of the microgrid, thus resembling a more realistic model. This effect can also be achieved
by simulating a large number of household loads and adding more complexity to generate distinctly
different household load patterns, increasing the overall validity of the model. Lastly, increasing the
temporal resolution of the datasets, especially the load data, would lead to even more useful and
accurate results. These research directions could be taken by future studies to enhance the model,
results, and overall knowledge of microgrid systems.

5.4. Societal Implications & Recommendations
This thesis has mainly looked into the technological aspect of the net congestion issue, but in this sec-
tion the issue will be placed in a larger socio-technical view. Combining technical, social, institutional,
and ethical dimensions, the full socio-technical environment around net congestion in the Netherlands
can be understood, as well as how the results of this thesis impact this environment.

5.4.1. Technical Inisghts & Direct Recommendations
Extreme Period Analysis
This thesis has proven the benefit of using multi-decade datasets and planning tools, as opposed to a
singular year or TMY. When using the weather data of one year, it might lead to underestimations of
the preparations required to overcome longer periods of low microgrid performance, and thus reliance
on the main utility grid. Due to the small size of the Netherlands, weather conditions vary only slightly
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over the whole country, which means that when there is a period with a low number of sun hours (like in
December 2024), this applies to the whole country. This signifies that all themicrogrids, or Energy Hubs,
would need electricity from the main utility grid simultaneously, potentially leading to enhanced levels of
grid instability and net congestion. On the other side of the spectrum, during periods of extremely high
irradiance, all microgrids will be exporting electricity simultaneously, resulting in increased chances of
grid instability and net congestion, too.

To overcome the unforeseen limits the microgrid system and national electricity system should endure,
planning studies should incorporate the weather data of several decades to capture worst-case ex-
tremes. A more accurate estimation of the worst-case extremes would result in microgrid models and
planning tools that would appreciate these real-life limits a microgrid system has to face up to. This, on
its turn, will lead to policies and subsidy measurements that reflect the true performance needs of the
microgrid systems.

An important addition to this feat is that extreme weather is becoming more and more extreme by the
year due to the effects of global warming. For instance, from the 31 heat waves in the Netherlands
measured from 1901, 20 have occurred since 1990 [76]. Precipitation has also increased drastically,
showing an increase of 26% over the period 1910-2022 [77]. Precipitation has increased most during
winters (46%). For these reason, a historical analysis of weather data might result in underestimation
of the performance required by the microgrid and the system as a whole to ensure smooth operation.

Focus on High-Impact Loads
Of all the components and testing conditions in this study, the load pattern has proven to be the com-
ponent with the highest impact on the performance of a microgrid. Especially the scenarios with house-
holds utilising a heat pump, highly increased levels of cumulative deficit, import period duration, and
import power and ramp rates are found. With increasing levels of electrification, such as induction
stoves, heat pumps, and EVs, the limits of the electricity grid are going to be met. Without serious
expansion of the utility grid, it is only a matter of time before serious issues start to emerge. This is
a well-known problem in the Netherlands and grid expansion is high on the political agenda, but the
expansions are costly and require long times before fully implemented.

The Dutch government has already targeted the Dutch society in a campaign called Also turn the switch
[78]. With this campaign, the Dutch government hopes to move a portion of the peak load between
16:00 and 21:00 to another part of the day. The campaign indicates that the Dutch government is
well aware of the (upcoming) issues the electricity grid is facing and has already started taking action.
However, shifting the peak demand through appliances like dish washers or washing machines cannot
compete with heat pumps or EVs in terms of power requirements. With an increasing number of both
heat pumps and EVs in the Netherlands, the Dutch government would do well to shift their perspective
to campaigns and policies on reducing the effect that these high-impact loads have on the electricity
grid.

The results in this thesis have pointed out that load diversification and peak shifting will not make a
difference for the low-impact loads. Even though increasing microgrid size did result in a few percent-
age points reduction of the metrics, its effect has been substantially lower than the differences other
testing conditions have made. Therefore, the Dutch government would do well to target their policies
and subsidies specifically on the high-impact loads, since households without heat pumps (and EVs)
only result in minor improvements. While the campaign Also turn the switch is a good first step, it
underscores a mismatch between political messaging and the physics: shifting a dishwasher load can
never match the peak power of EV charging. This gap points to the need for tariff reforms and targeted
subsidies.

Battery Storage
This study has proven the benefits and disadvantages of community batteries when compared to home
battery for all of the individual households. In terms of maximum cumulative deficit and import period
duration, community battery scenarios score worse (in the ”Heat Pump” scenario), but they do have a
large beneficial effect on the peak power and ramp rate required from the main utility grid. As these are
the main culprits in causing the net congestion effects, national and local governments would do well
by advising or stimulating residential neighbourhoods to opt for a community battery instead of home



5.4. Societal Implications & Recommendations 28

batteries. Home battery storage systems are still better than no storage at all, but as the choice is still
largely to be made, community batteries would be highly recommended.

The number of home batteries in the Netherlands is still relatively low, but a steep increase over the
past year has seen the number of home batteries more than double to 40.000, with total capacity even
triple [79]. The choice between community batteries and home batteries is still largely to be made, but
owners of PV systems are taking matters into their own hands by purchasing home batteries. If the
Dutch government wants to maximally alleviate net congestion and ensure grid stability, community bat-
teries are recommended. The Dutch government is therefore advised to act quickly, before the growth
of home batteries reaches a level where there is no point of return. Another advantage of community
batteries over home batteries is the level of control the DSO’s and other controlling organisations have
on the import and export of electricity to the main utility grid. Without this control, home battery owners
would only look to maximise benefits and profits for individual households, which could have catas-
trophic effects when this happens on a large scale. Choosing between home and community batteries
impacts more than just peak power—it also highlights two different governance approaches: individual,
profit-driven ownership versus centrally coordinated management by the DSO.

5.4.2. Governance, Economic & Equity Dimensions
Regulatory Misalignments
The results in this thesis have shown that heat pumps can significantly increase electricity consumption,
thereby decreasing microgrid self-sufficiency and overall performance. In the Netherlands, most resi-
dential network tariffs are still flat; a tariff per kWh is paid, regardless of the time or location. As of April
2025, only 6% of Dutch households have a dynamic energy contract [80]. Incentivising households
with heat pumps and EVs to withdraw electricity at off-peak moments is key in relieving the grid.

Cost Allocation & Justice
Infrastructure costs (such as grid reinforcements) are funded through network tariffs paid for by all
users. However, the lower-income households (without a PV system or BESS) derive much lower direct
benefits from these reinforcements than the prosumers, which already captured several subsidies for
these purchases. This will only further increase the gap between lower-income and higher-income
households. Therefore, as equity should be one of the goals of the Dutch government, an altered tariff
system should be instigated, so that costs and benefits are distributed fairly among households. A first
step in the right direction would be the wide-spread implementation of community batteries, which, as
the results have shown, reduces the upper limits needed by the main utility grid (and thus reduces the
total costs for grid reinforcements).

Emerging Actors & Regulatory Frameworks
Since Energy Hubs and other similar communities in the Netherlands have not been implemented
on a large scale, a direct regulatory framework is yet to be implemented. Aggregators and energy
cooperatives are stepping in to organise these communities, but are operating in a regulatory gray zone
[81]. Establishing clear market rules and integration pathways will be key in successful integration of
Energy Hubs in the Netherlands.

5.4.3. Behavioural & Cultural Perspectives
Demand Response Barriers
Even though the Also turn the switch campaign has the right aim: shifting loads away from peak hours,
many households simply can not do so. These households lack smart timers or home-automation
systems to schedule dishwashers and washing machines. Even with the technology available, daily
routines, such as turning on the dish washer at night, need to be broken for these campaigns to work.

Trust & Participation
Roll-out of smart meters in the Netherlands faces resistance in some neighbourhoods, due to the lack
of trust of grid operators and data security. Local residents often question who really benefits from
these projects and whether they will have control. One example of this happening is in Hoogkerk, a
neighbourhood in Groningen [82]. To counter this issue, robust engagement through town hall meet-
ings, participatory design workshops, and transparent reporting on performance and revenues will be
essential to build the social license needed for new grid infrastructure and Energy Hub implementation.
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Conclusion

This thesis has explored the interplay of different components of a Dutch residential microgrid to find
out how these affect its performance and broaden the knowledge on the implementation of microgrids
into the Dutch Energy Hubs. The formulated main research question and its sub-questions is the result
of the combination of the research objective with the knowledge gap, which was found in the extensive
literature review. More specifically, this thesis aimed to find the effect of different load patterns, multi-
decade weather data, BESS types, and microgrid size on the overall performance of a microgrid and
its role in the net congestion issue. To answer these questions, a modelling approach was taken on.
The results of this thesis allow for answering the sub-questions.

Firstly, the addition of a heat pump on the load pattern has the largest impact on the performance met-
rics. With the further electrification of Dutch households, this seems to be the main challenge in smooth
implementation of microgrids into the Dutch Energy Hubs. DSO’s, local and national government would
do well to plan the expansion of grids, implementation of microgrids, and future policies aimed at the
load patterns of Dutch society according to the assumed high penetration of heat pumps and EVs into
the Dutch households.

Furthermore, the model incorporates the different time periods and compares results of a TMY with
the ones of a 42-year time period (1983-2024). Its findings indicate that when using a multi-decade
dataset, the limits of the microgrid system are challenged to a larger extend than when compared with
analysing the system in a single TMY. Using single year datasets for irradiance, temperature and other
weather conditions might lead to grave underestimations of the required main utility grid capacity for
microgrid electricity importation.

BESS types also affect the performance of the microgrid, with each having its advantages and dis-
advantages. While community batteries perform better throughout the ”Gas Heating” scenario home
batteries perform better for the performance metrics of cumulative deficit and import period duration in
the ”Heat Pump” scenario. Community batteries have proven to do better in terms of peak power and
ramp rate requirements throughout both scenarios. As the latter are the main indicators in alleviating
or exacerbating net congestion, which already is a pressing problem in the Netherlands, community
batteries seem to be the preferred option of the two. Even though community batteries might lead
to decreased self-sufficiency in terms of energy and duration, the peak requirements of the grid are
alleviated, which leads to enhanced grid stability.

Lastly, microgrid size has an unanticipated small effect on the overall performance of the microgrid. For
most of the six metrics, a larger microgrid does perform slightly better than a small microgrid, but this
effect is only small compared to the other testing conditions. This might have to do with the household
load pattern used in this thesis, and it would be beneficiary for the validity of results if the model was
used in the reference of real-world household load patterns of a greater number of households.

To ensure successful implementation of Energy Hubs in the Dutch energy system, these results have
been placed in the greater context of the socio-technical environment. Policy instruments, such as
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campaigns, subsidies, and regulations should account for cultural and behavioural barriers, while gain-
ing the trust of residents for fair and safe implementation of smart grids and energy communities. By
adjusting regulations to incentivise dynamic pricing structures, rethinking the cost allocations to allow
a fair distribution of costs among households, and setting up a regulatory framework for the emerging
Energy Hubs and communities, the Dutch government has the ability to shape the future energy system
into a resilient, inclusive, and sustainable energy future - one that empowers consumers, fosters local
communities, and accelerates the Netherlands’ transition to a low-carbon power system.
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A
Code

A.1. Reworking Datasets
A.1.1. TMY

1 # REWORKING TMY DATASET
2

3 import pandas as pd
4 import matplotlib.pyplot as plt
5

6 tmy_delft = pd.read_csv(# Path to TMY csv file,
7 skiprows=17, nrows=8760,
8 usecols=['time(UTC)','T2m','G(h)','Gb(n)','Gd(h)','WS10m'], index_col

=0)
9

10 tmy_delft.index = pd.date_range(start="2023-01-01␣00:00", end="2023-12-31␣23:00", freq="h")
11

12 tmy_delft.columns = ['temperature', 'global_horizontal', 'dni', 'dhi', 'wind_speed']
13

14 tmy_delft['diffuse_fraction'] = tmy_delft['dhi'] / tmy_delft['global_horizontal']
15

16

17 new_index = pd.date_range(start="2023-01-01␣00:00", end="2023-12-31␣23:45", freq="15min")
18

19 def resample_to_15min(df):
20 # Reindex with new 15-min frequency, initially with NaNs
21 df_15min = df.reindex(new_index)
22

23 # Interpolate linearly to fill NaNs in irradiance and weather columns
24 df_15min = df_15min.interpolate(method='time')
25

26 # Recalculate diffuse_fraction (DHI / G(h)) for the new data points
27 df_15min['diffuse_fraction'] = df_15min['dhi'] / df_15min['global_horizontal']
28

29 return df_15min
30

31 tmy_delft_15min = resample_to_15min(tmy_delft)
32

33 tmy_delft_15min.to_csv('Delft_15min_TMY.csv')

A.1.2. ERA5
1 # REWORKING ERA5 DATASET
2

3 import xarray as xr
4 import pandas as pd
5 from datetime import datetime, timedelta
6 import os
7 from glob import glob
8

9 # Folder containing all the ERA5 .nc files

37
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10 folder_path = # Adjust path to folder containing all ERA5 .nc files
11 target_lat = 52.01
12 target_lon = 4.36
13

14 # List all .nc files
15 nc_files = sorted(glob(os.path.join(folder_path, "*.nc")))
16

17 # Use the first file to find the nearest coordinate
18 first_ds = xr.open_dataset(nc_files[0], decode_times=True)
19 nearest_lat = float(first_ds['latitude'].sel(latitude=target_lat, method='nearest').values)
20 nearest_lon = float(first_ds['longitude'].sel(longitude=target_lon, method='nearest').values)
21

22 # Collect DataFrames
23 df_list = []
24

25 for file in nc_files:
26 ds = xr.open_dataset(file, decode_times=True)
27

28 # Fully reduce to 1D over valid_time by selecting a single point
29 t2m_scalar = ds['t2m'].sel(latitude=nearest_lat, longitude=nearest_lon, method="nearest")
30

31 # Ensure it's 1D over time
32 if t2m_scalar.ndim > 1:
33 t2m_scalar = t2m_scalar.squeeze()
34

35 # Convert to Celsius
36 datetimes = ds['valid_time'].values
37 t2m_celsius = t2m_scalar.values - 273.15
38

39 # Build DataFrame
40 df = pd.DataFrame({
41 'datetime': datetimes,
42 't2m_C': t2m_celsius
43 })
44

45 df_list.append(df)
46

47 # Combine and sort
48 combined_df = pd.concat(df_list).sort_values(by='datetime').reset_index(drop=True)
49

50 # Add lat/lon columns
51 combined_df['latitude'] = nearest_lat
52 combined_df['longitude'] = nearest_lon
53

54 # Save
55 combined_df.to_csv("t2m_delft.csv", index=False)

A.1.3. SARAH-3
1 # REWORKING SARAH-3 DATASET
2

3 import os
4 from collections import defaultdict
5 import pandas as pd
6

7

8 folder_path = # Path to folder containing all SARAH-3 .csv files
9 location_data = defaultdict(list)
10

11 for fname in os.listdir(folder_path):
12 if not fname.lower().endswith('.csv'):
13 continue
14

15 path = os.path.join(folder_path, fname)
16 df = pd.read_csv(path, parse_dates=['time'])
17

18 # collect each ’files data under its (lon, lat)
19 for (lon, lat), group in df.groupby(['lon', 'lat']):
20 location_data[(lon, lat)].append(group)
21

22 # concat, interpolate single NaNs, ‐zeroout nights, compute GHI
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23 for (lon, lat), chunks in location_data.items():
24 df_loc = pd.concat(chunks, ignore_index=True)
25 df_loc = df_loc.sort_values("time")
26

27 # compute GHI and diffuse fraction
28 df_loc['global_horizontal'] = (
29 df_loc['direct_horizontal'] + df_loc['diffuse_horizontal']
30 )
31 df_loc['diffuse_fraction'] = (
32 df_loc['diffuse_horizontal'].where(df_loc['global_horizontal'] > 0, 0)
33 / df_loc['global_horizontal'].where(df_loc['global_horizontal'] > 0, 1)
34 )
35

36 # save
37 out_name = f"location_lon{lon}_lat{lat}.csv"
38 df_loc.to_csv(out_name, index=False)

A.2. Integration of Datasets & GSEE supply
A.2.1. TMY

1 # TMY GSEE PV Model Run
2

3 import numpy as np
4 import pandas as pd
5 import xarray as xr
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8 from datetime import datetime
9

10 import gsee
11

12 df = pd.read_csv(# Path to reworked TMY CSV,
13 index_col=0)
14

15 coords = (52.025, 4.375)
16 df.index = pd.to_datetime(df.index)
17 df.index = df.index.tz_localize('UTC')
18

19 result_w = gsee.pv.run_model(
20 df,
21 coords=coords,
22 tilt=30,
23 azim=180,
24 tracking=0,
25 capacity=4000,
26 )
27

28 # Find indices where values are above 1750
29 high_indices = np.where(result_w > 3520)[0]
30

31 for idx in high_indices:
32 # Check boundaries: skip first and last because they have only one neighbor
33 if idx == 0 or idx == len(result_w) - 1:
34 continue
35

36 # Average of previous and next time step
37 avg = (result_w.iloc[idx - 1] + result_w.iloc[idx + 1]) / 2
38

39 # Replace the high value with average
40 result_w.iloc[idx] = avg
41

42 result_w.to_csv('Delft_15min_TMY_supply.csv')

A.2.2. ERA5 & SARAH-3
1 # INTEGRATING ERA5 and SARAH-3 datasets for GSEE
2

3 import numpy as np
4 import pandas as pd
5 import xarray as xr
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6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8 from datetime import datetime
9 import gsee
10

11 # === Load data ===
12 era5_df = pd.read_csv(
13 # Path to the ERA5 CSV file
14 )
15 sarah3_df = pd.read_csv(
16 # Path to the SARAH-3 CSV file
17 )
18

19 coords = (52.025, 4.375)
20

21 # === 1) Make sure all timestamps are ‐UTCaware ===
22 era5_df["datetime"] = pd.to_datetime(era5_df["datetime"], errors="coerce", utc=True)
23

24 if not pd.api.types.is_datetime64_any_dtype(sarah3_df["time"]):
25 sarah3_df["time"] = pd.to_datetime(sarah3_df["time"], errors="coerce", utc=True)
26

27 # In many CSVs SARAH-3 is already local time without tz, so tag as UTC:
28 sarah3_df["time"] = sarah3_df["time"].dt.tz_localize("UTC")
29

30 # Prepare ERA5 → 15 min
31 era5_df = era5_df[["datetime", "t2m_C"]].rename(columns={
32 "datetime": "time",
33 "t2m_C": "temperature"
34 })
35 era5_df = era5_df.set_index("time").sort_index()
36

37 era5_15min = (
38 era5_df
39 .resample("15T")
40 .interpolate("time")
41 .reset_index()
42 )
43

44 # Prepare SARAH-3 at its original 30 min resolution
45 sarah3_df = sarah3_df[[
46 "time",
47 "direct_horizontal",
48 "diffuse_horizontal",
49 "global_horizontal"
50 ]]
51 sarah3_df = sarah3_df.set_index("time").sort_index()
52

53 # Fill NaNs that are between two valid values
54

55 def fill_only_single_na(s: pd.Series) -> pd.Series:
56 """
57 Given a Series `s` indexed by datetime (30 min apart),
58 fill *only* those NaNs that form a block of exactly length=1,
59 i.e. s[i] is NaN but both s[i - 30min] and s[i + 30min] are ‐nonNaN.
60 All other NaN blocks (length � 2) remain NaN.
61 """
62 # 1Compute a “”raw ‐timebased interpolation for comparison
63 s_interp = s.interpolate(method="time")
64

65 # Identify which positions in the original are NaN
66 is_na = s.isna()
67

68 # Label “”runs of consecutive is_na values so that
69 grp = (~is_na).cumsum()
70

71 # For each group, count how many NaNs are in it
72 block_size = is_na.groupby(grp).transform("sum")
73

74 # Only fill those NaNs whose block_size == 1
75 fillable = is_na & (block_size == 1)
76
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77 # 6) Build a new Series: keep the original where not fillable; where fillable, take the
interpolated value;

78 # if part of a larger block_size > 1, leave NaN.
79 out = s.copy()
80 out[fillable] = s_interp[fillable]
81 return out
82

83 # Apply to each irradiance column at 30 min resolution
84 sarah3_f30 = sarah3_df.copy()
85 for col in ["direct_horizontal", "diffuse_horizontal", "global_horizontal"]:
86 sarah3_f30[col] = fill_only_single_na(sarah3_f30[col])
87

88 orig_na = sarah3_df["global_horizontal"].isna()
89 grp = (~orig_na).cumsum()
90 orig_block_size = orig_na.groupby(grp).transform("sum")
91 multi_block_mask_30 = orig_na & (orig_block_size >= 2)
92

93 # Resample the “30 min with single gaps ”filled to 15 min ===
94 sarah3_15 = (
95 sarah3_f30
96 .resample("15T")
97 .interpolate("time")
98 )
99

100 mask_30_idx = multi_block_mask_30.index
101 mask_30_vals = multi_block_mask_30.values
102 # Create a 15 ‐minfrequency index covering the same span:
103 full_15_idx = pd.date_range(
104 start=mask_30_idx.min(),
105 end=mask_30_idx.max(),
106 freq="15T",
107 tz="UTC"
108 )
109 # Build a Series at 15 min by reindex + ffill:
110 multi_block_mask_15 = (
111 pd.Series(mask_30_vals, index=mask_30_idx)
112 .reindex(full_15_idx)
113 .ffill() # a 30 ‐minTrue propagates to its two 15 min slots
114 .fillna(False) # anything before the first ‐30min timestamp is False
115 )
116

117 # Force *those* 15 min slots back to NaN in all irradiance columns ===
118 for col in ["direct_horizontal", "diffuse_horizontal", "global_horizontal"]:
119 sarah3_15.loc[multi_block_mask_15, col] = np.nan
120

121 # Force “”night –(20:0003:00 UTC) to zero on the 15 min grid ===
122 night_mask = (
123 (sarah3_15.index.hour >= 20)
124 | (sarah3_15.index.hour < 3)
125 )
126 sarah3_15.loc[night_mask, ["direct_horizontal", "diffuse_horizontal", "global_horizontal"]] =

0.0
127

128 # Recompute diffuse_fraction, forcing 0 at night as well ===
129 sarah3_15["diffuse_fraction"] = (
130 sarah3_15["diffuse_horizontal"]
131 / sarah3_15["global_horizontal"]
132 )
133 sarah3_15.loc[night_mask, "diffuse_fraction"] = 0.0
134

135 # Reset index so “”time becomes a column, then merge with ERA5 ===
136 sarah3_15 = sarah3_15.reset_index().rename(columns={"index": "time"})
137

138 merged_df = pd.merge(
139 sarah3_15,
140 era5_15min,
141 on="time",
142 how="inner"
143 )
144

145 # Save to CSV ===
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146 merged_df.to_csv("full_period_Delft_15min.csv", index=False)
147 print("Merged␣15-minute␣CSV␣for␣GSEE␣created␣successfully.")
148

149 # Ensure 'time' column is datetime with UTC timezone
150 merged_df['time'] = pd.to_datetime(merged_df['time'], utc=True)
151

152 # Set 'time' as index
153 merged_df = merged_df.set_index('time')
154

155 # Double-check: index must be timezone-aware
156 assert merged_df.index.tz is not None, "Index␣must␣be␣timezone-aware␣(UTC)"
157

158 # build a boolean mask for missing direct or diffuse irradiance
159 missing_irr_mask = merged_df[
160 ['direct_horizontal', 'diffuse_horizontal']
161 ].isna().any(axis=1)
162

163 # Simulate the GSEE PV model run
164 result_w = gsee.pv.run_model(
165 merged_df,
166 coords=coords,
167 tilt=30,
168 azim=180,
169 tracking=0,
170 capacity=4000
171 )
172 # put NaNs back wherever the inputs were NaN
173 if isinstance(result_w, xr.DataArray):
174

175 da_mask = xr.DataArray(
176 missing_irr_mask,
177 coords={'time': merged_df.index},
178 dims=['time']
179 )
180 result_w = result_w.where(~da_mask)
181 else:
182

183 result_w[missing_irr_mask] = np.nan
184

185 result_w.name = 'supply'
186

187 result_w.to_csv('full_period_Delft_supply.csv')

A.3. Running Scenarios
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import time
6 from numba import njit, prange
7 import os
8 import pickle
9

10

11 # LOAD & PREPARE ONE-YEAR DEMAND & WEATHER & FULL 42-YEAR SUPPLY
12

13 # ‐Oneyear demand pattern
14 df_base = (
15 pd.read_csv(
16 # path to the ‐oneyear demand CSV file,
17 parse_dates=["time"]
18 )
19 .set_index("time")
20 .tz_localize(None)
21 )
22

23 df_base["time_key"] = df_base.index.strftime("%m-%d␣%H:%M")
24

25 # Full period weather data
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26 df_weather = (
27 pd.read_csv(
28 # path to the full period weather CSV file,
29 usecols=["time", "temperature"],
30 parse_dates=["time"]
31 )
32 .rename(columns={"time": "time"})
33 .set_index("time")
34 .tz_localize(None) # remove +00:00 timezone info
35 )
36

37 df_weather["time_key"] = df_weather.index.strftime("%m-%d␣%H:%M")
38

39 # ‐Fullperiod –(19832024) ‐PVsupply at 15-minute resolution,
40 df_supply = pd.read_csv(
41 # path to the full period supply CSV file,
42 index_col=0,
43 parse_dates=True
44 ).rename(columns={"supply": "supply_w"})
45

46 # Remove any timezone info
47 df_supply.index = df_supply.index.tz_convert(None)
48

49 # Build helper columns on df_supply:
50 df_supply["year"] = df_supply.index.year
51 df_supply["time_key"] = df_supply.index.strftime("%m-%d␣%H:%M")
52

53 # LOAD & PREPARE TMY DATA
54 df_base_tmy = ((
55 # path to the TMY ‐oneyear demand CSV file,
56 parse_dates=["time"])
57 .set_index("time")
58 .tz_localize(None)
59 )
60

61

62 df_weather_tmy = (
63 pd.read_csv(# path to the TMY weather CSV file,
64 usecols=["Unnamed:␣0", "temperature"],
65 parse_dates=["Unnamed:␣0"])
66 .rename(columns={"Unnamed:␣0": "time"})
67 .set_index("time")
68 .tz_localize(None)
69 )
70

71 df_supply_tmy = pd.read_csv(# Path to the TMY supply file
72 , index_col=0, parse_dates=True)
73

74 df_supply_tmy.index = df_supply_tmy.index.tz_convert(None)
75

76 # Full Period Home Battery Simulation Function
77 def fp_hb_run_simulation(
78 N_households,
79 max_shift_steps,
80 hp_chance,
81 T_set,
82 K_building,
83 a_cop,
84 b_cop,
85 HP_capacity,
86 battery_capacity_wh ,
87 max_power_w,
88 efficiency,
89 timestep_hours
90 ):
91 """
92 Runs the ‐residentialmicrogrid simulation over 42 years of supply data,
93 using a single “”typical year of demand that is looped/matched onto each supply year.
94

95 Returns:
96 - all_deficits : 1D numpy array of deficit kWh/household (one entry per deficit
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streak, across all years)
97 - all_durations : 1D numpy array of streak durations in hours (one entry per

streak, across all years)
98 - import_power_full : pandas Series indexed by real datetime –(19832024), of import

power (W)
99 - export_power_full : pandas Series indexed by real datetime –(19832024), of export

power (W)
100 """
101

102 # BUILD HOUSEHOLD PROFILES FOR ONE YEAR OF DEMAND ===
103

104 T = len(df_base)
105 base_demand = df_base["power_kW"].values # shape (T,)
106 temperature = df_weather.loc[df_base.index, "temperature"].values # shape matches

base_demand
107

108 variation_matrix = np.random.uniform(1 - 0.10, 1 + 0.10, size=(T, N_households))
109 shift_steps = np.random.randint(-max_shift_steps, max_shift_steps + 1, size=N_households)
110

111 household_demand = np.empty_like(variation_matrix)
112 for i in range(N_households):
113 shifted = np.roll(base_demand * variation_matrix[:, i], shift_steps[i])
114 household_demand[:, i] = shifted
115

116 has_hp = np.random.rand(N_households) < hp_chance
117

118 # Calculate heat pump power based on temperature and demand
119 deltaT = np.clip(T_set - temperature, 0, None)
120 Q_demand = K_building * deltaT
121 COP = np.clip(a_cop - b_cop * temperature, 1.5, None)
122 P_HP_base = np.minimum(HP_capacity, Q_demand / COP)
123

124 P_HP = np.zeros_like(household_demand)
125 for i in range(N_households):
126 if has_hp[i]:
127 P_HP[:, i] = P_HP_base
128 else:
129 P_HP[:, i] = 0.0
130

131 power_total = household_demand + P_HP
132

133 base_agg_kW = np.sum(household_demand, axis=1)
134 hp_agg_kW = np.sum(P_HP, axis=1)
135 total_agg_kW = np.sum(power_total, axis=1)
136

137 df_micro = pd.DataFrame({
138 "base_agg_kW": base_agg_kW,
139 "hp_agg_kW": hp_agg_kW,
140 "total_agg_kW": total_agg_kW
141 }, index=df_base.index)
142

143 df_micro["time_key"] = df_micro.index.strftime("%m-%d␣%H:%M")
144

145 # build a ‐perhousehold DataFrame of total load (kW)
146 hh_columns = [f"HH_{i+1}" for i in range(N_households)]
147 df_households = pd.DataFrame(
148 data=power_total,
149 index=df_base.index,
150 columns=hh_columns
151 )
152 df_households["time_key"] = df_households.index.strftime("%m-%d␣%H:%M")
153

154 # PREPARE TO LOOP OVER EACH SUPPLY YEAR
155 all_deficits = []
156 all_durations = []
157 import_power_list = []
158 export_power_list = []
159

160 # Battery code
161 @njit
162 def battery_storage_sim_multi_numba(
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163 residual_matrix,
164 battery_capacity_wh ,
165 max_power_w,
166 efficiency,
167 timestep_hours
168 ):
169 T, N = residual_matrix.shape
170 soc = np.zeros(N)
171 import_mat = np.zeros((T, N))
172 export_mat = np.zeros((T, N))
173

174 for t in range(T):
175 for i in range(N):
176 resid = residual_matrix[t, i]
177

178 if resid < 0:
179 # Charging case
180 excess_power = -resid
181 incoming_power = min(excess_power, max_power_w)
182 incoming_energy_wh = incoming_power * timestep_hours
183 storable_wh = incoming_energy_wh * efficiency
184 space_left = battery_capacity_wh - soc[i]
185 stored_wh = min(storable_wh, space_left)
186 soc[i] += stored_wh
187

188 exported_wh = (excess_power * timestep_hours) - (stored_wh / efficiency)
189 export_mat[t, i] = exported_wh / timestep_hours
190 import_mat[t, i] = 0.0
191

192 elif resid > 0:
193 # Discharging case
194 needed_power = resid
195 needed_wh = needed_power * timestep_hours
196 max_discharge_power = min(max_power_w, soc[i] / timestep_hours)
197 outgoing_wh = max_discharge_power * timestep_hours
198 usable_wh = outgoing_wh * efficiency
199 discharge_wh = min(usable_wh, needed_wh)
200 actual_soc_drop = discharge_wh / efficiency
201 soc[i] -= actual_soc_drop
202

203 import_wh = needed_wh - discharge_wh
204 import_mat[t, i] = import_wh / timestep_hours
205 export_mat[t, i] = 0.0
206

207 # Clamp SoC to [0, capacity]
208 soc[i] = min(max(soc[i], 0.0), battery_capacity_wh)
209

210 return import_mat, export_mat
211

212 # Function to compute cumulative deficit streaks
213 @njit
214 def compute_import_deficit_streaks_numba(grid_import_wh, tolerance):
215 deficits = []
216 starts = []
217 curr_deficit = 0.0
218 curr_tol = 0
219 temp_start = -1
220

221 for i in range(len(grid_import_wh)):
222 val_wh = grid_import_wh[i]
223 if np.isnan(val_wh):
224 continue
225 if val_wh > 0:
226 if curr_deficit == 0.0:
227 temp_start = i
228 curr_deficit += val_wh / 1000.0
229 curr_tol = 0
230 else:
231 if curr_deficit > 0 and curr_tol < tolerance:
232 curr_tol += 1
233 else:
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234 if curr_deficit > 0.0:
235 deficits.append(curr_deficit)
236 starts.append(temp_start)
237 curr_deficit = 0.0
238 curr_tol = 0
239 temp_start = -1
240

241 if curr_deficit > 0.0:
242 deficits.append(curr_deficit)
243 starts.append(temp_start)
244

245 return deficits, starts
246

247 # Function to compute import streaks
248 def compute_import_streaks(grid_import_wh, tolerance=4, timestep_hours=timestep_hours):
249 durations = []
250 starts = []
251 curr_len = 0
252 curr_tol = 0
253 temp_start = None
254

255 for i, val_wh in enumerate(grid_import_wh):
256 if np.isnan(val_wh):
257 continue
258 if val_wh > 0:
259 if curr_len == 0:
260 temp_start = i
261 curr_len += 1
262 curr_tol = 0
263 else:
264 if curr_len > 0 and curr_tol < tolerance:
265 curr_len += 1
266 curr_tol += 1
267 else:
268 if curr_len > 0:
269 durations.append(curr_len * timestep_hours)
270 starts.append(temp_start)
271 curr_len = 0
272 curr_tol = 0
273 temp_start = None
274

275 if curr_len > 0:
276 durations.append(curr_len * timestep_hours)
277 starts.append(temp_start)
278

279 return durations, starts
280

281 # MAIN LOOP: FOR EACH SUPPLY YEAR, MERGE & RUN HOME BATTERIES
282 unique_years = sorted(df_supply["year"].unique())
283

284 for yr in unique_years:
285 supply_yr = df_supply[df_supply["year"] == yr][["time_key", "supply_w"]].copy()
286

287 # Merge supply onto each ’households “‐”typicalyear profile
288 merged_hh = pd.merge(
289 df_households.reset_index(),
290 supply_yr,
291 on="time_key",
292 how="inner",
293 sort=False
294 )
295

296 merged_hh["year"] = yr
297 merged_hh["full_datetime"] = pd.to_datetime(
298 merged_hh["year"].astype(str) + "␣" + merged_hh["time_key"],
299 format="%Y␣%m-%d␣%H:%M"
300 )
301 merged_hh = merged_hh.set_index("full_datetime").sort_index()
302

303 # Supply is per household in W → convert to kW for subtraction
304 merged_hh["supply_kw_per_hh"] = merged_hh["supply_w"] / 1000.0
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305

306 # === Replace above ‐perhousehold loop with this: ===
307

308 # Build a 2D array of residuals (shape T × N_households, in W)
309 demand_matrix_kW = merged_hh[hh_columns].values
310 supply_vec_kW = merged_hh["supply_kw_per_hh"].values
311 residual_matrix = (demand_matrix_kW - supply_vec_kW[:, None]) * 1000.0
312

313 # One call to the vectorized battery for all homes
314 import_mat, export_mat = battery_storage_sim_multi_numba(
315 residual_matrix,
316 battery_capacity_wh=battery_capacity_wh ,
317 max_power_w=max_power_w,
318 efficiency=efficiency,
319 timestep_hours=timestep_hours
320 )
321

322

323 # Convert back to DataFrames (indexed by merged_hh.index)
324 idx = merged_hh.index
325 df_imports_hh = pd.DataFrame(import_mat, index=idx, columns=hh_columns)
326 df_exports_hh = pd.DataFrame(export_mat, index=idx, columns=hh_columns)
327

328 # Sum across households to get microgrid import/export (W)
329 micro_import_W = df_imports_hh.sum(axis=1)
330 micro_export_W = df_exports_hh.sum(axis=1)
331

332 # Compute deficits & durations exactly as before
333 micro_import_Wh = micro_import_W * timestep_hours
334

335 deficits_kwh, _ = compute_import_deficit_streaks_numba(
336 micro_import_Wh.values,
337 tolerance=4,
338 )
339

340 deficits_per_household_year = np.array(deficits_kwh) / N_households
341

342 durations_hours, _ = compute_import_streaks(
343 micro_import_Wh,
344 tolerance=4,
345 timestep_hours=timestep_hours
346 )
347

348 all_deficits.append(deficits_per_household_year)
349 all_durations.append(np.array(durations_hours))
350

351 import_power_list.append(micro_import_W.rename(f"import_{yr}"))
352 export_power_list.append(micro_export_W.rename(f"export_{yr}"))
353

354

355 # CONCATENATE & RETURN AGGREGATED RESULTS ===
356 if len(all_deficits) > 0:
357 all_deficits = np.concatenate(all_deficits)
358 else:
359 all_deficits = np.array([])
360

361 if len(all_durations) > 0:
362 all_durations = np.concatenate(all_durations)
363 else:
364 all_durations = np.array([])
365

366 import_power_full = pd.concat(import_power_list, axis=0).sort_index()
367 export_power_full = pd.concat(export_power_list, axis=0).sort_index()
368

369

370 micro_import_Wh_full = import_power_full * timestep_hours
371

372 # Reuse your functions
373 total_deficits, deficit_starts = compute_import_deficit_streaks_numba(
374 micro_import_Wh_full.values,
375 tolerance=4,
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376 )
377 total_durations, duration_starts = compute_import_streaks(
378 micro_import_Wh_full,
379 tolerance=4,
380 timestep_hours=timestep_hours
381 )
382

383 return all_deficits, all_durations, import_power_full, export_power_full
384

385

386 # FULL PERIOD COMMUNITY BATTERY FUNCTION
387 def fp_cb_run_simulation(
388 N_households,
389 max_shift_steps,
390 hp_chance,
391 T_set,
392 K_building,
393 a_cop,
394 b_cop,
395 HP_capacity,
396 battery_capacity_wh ,
397 max_power_w,
398 efficiency,
399 timestep_hours
400 ):
401 """
402 Runs the ‐residentialmicrogrid simulation over 42 years of supply data,
403 using a single “”typical year of demand that is looped/matched onto each supply year.
404

405 Returns:
406 - all_deficits : 1D numpy array of deficit kWh/household (one entry per deficit

streak, across all years)
407 - all_durations : 1D numpy array of streak durations in hours (one entry per

streak, across all years)
408 - import_power_full : pandas Series indexed by real datetime –(19832024), of import

power (W)
409 - export_power_full : pandas Series indexed by real datetime –(19832024), of export

power (W)
410 """
411

412 # BUILD HOUSEHOLD PROFILES FOR THAT YEAR OF DEMAND
413

414 T = len(df_base)
415 base_demand = df_base["power_kW"].values
416 temperature = df_weather.loc[df_base.index, "temperature"].values
417

418 variation_matrix = np.random.uniform(1 - 0.10, 1 + 0.10, size=(T, N_households))
419 shift_steps = np.random.randint(-max_shift_steps, max_shift_steps + 1, size=N_households)
420

421 household_demand = np.empty_like(variation_matrix)
422 for i in range(N_households):
423 shifted = np.roll(base_demand * variation_matrix[:, i], shift_steps[i])
424 household_demand[:, i] = shifted
425

426 has_hp = np.random.rand(N_households) < hp_chance
427

428 # Heat pump power based on temperature and demand
429 deltaT = np.clip(T_set - temperature, 0, None)
430 Q_demand = K_building * deltaT
431 COP = np.clip(a_cop - b_cop * temperature, 1.5, None)
432 P_HP_base = np.minimum(HP_capacity, Q_demand / COP)
433

434 P_HP = np.zeros_like(household_demand)
435 for i in range(N_households):
436 if has_hp[i]:
437 P_HP[:, i] = P_HP_base
438 else:
439 P_HP[:, i] = 0.0
440

441 power_total = household_demand + P_HP
442
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443 base_agg_kW = np.sum(household_demand, axis=1)
444 hp_agg_kW = np.sum(P_HP, axis=1)
445 total_agg_kW = np.sum(power_total, axis=1)
446

447 df_micro = pd.DataFrame({
448 "base_agg_kW": base_agg_kW,
449 "hp_agg_kW": hp_agg_kW,
450 "total_agg_kW": total_agg_kW
451 }, index=df_base.index)
452

453 df_micro["time_key"] = df_micro.index.strftime("%m-%d␣%H:%M")
454

455 # PREPARE TO LOOP OVER EACH SUPPLY YEAR
456 all_deficits = []
457 all_durations = []
458 import_power_list = []
459 export_power_list = []
460

461 # Function to run battery storage simulation
462 @njit
463 def battery_storage_sim_numba(
464 residual_w,
465 battery_capacity_wh ,
466 max_power_w,
467 efficiency,
468 timestep_hours
469 ):
470 T = residual_w.shape[0]
471

472 battery_storage = np.zeros(T)
473 battery_discharge = np.zeros(T)
474 grid_export = np.zeros(T)
475 grid_import = np.zeros(T)
476

477 battery_state = 0.0
478

479 for t in range(T):
480 power_w = residual_w[t]
481

482 if np.isnan(power_w):
483 battery_storage[t] = battery_state
484 battery_discharge[t] = 0.0
485 grid_export[t] = np.nan
486 grid_import[t] = np.nan
487 continue
488

489 if power_w < 0:
490 # Charging case
491 total_excess_power_w = -power_w
492 incoming_power_w = min(total_excess_power_w , max_power_w)
493 incoming_energy_wh = incoming_power_w * timestep_hours
494 storable_energy_wh = incoming_energy_wh * efficiency
495 space_left_wh = battery_capacity_wh - battery_state
496 stored_wh = min(storable_energy_wh, space_left_wh)
497 battery_state += stored_wh
498

499 total_excess_energy_wh = total_excess_power_w * timestep_hours
500 used_energy_wh = stored_wh / efficiency
501 main_grid_export_wh = total_excess_energy_wh - used_energy_wh
502

503 main_grid_import_wh = 0.0
504 discharge_wh = 0.0
505

506 elif power_w > 0:
507 # Discharging case
508 needed_power_w = power_w
509 needed_energy_wh = needed_power_w * timestep_hours
510 max_discharge_power_w = min(max_power_w, battery_state / timestep_hours)
511 outgoing_power_w = max_discharge_power_w
512 outgoing_energy_wh = outgoing_power_w * timestep_hours
513 usable_energy_wh = outgoing_energy_wh * efficiency
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514 discharge_wh = min(usable_energy_wh, needed_energy_wh)
515 actual_discharge_wh = discharge_wh / efficiency
516 battery_state -= actual_discharge_wh
517 main_grid_import_wh = needed_energy_wh - discharge_wh
518 main_grid_export_wh = 0.0
519 else:
520 # Zero demand
521 discharge_wh = 0.0
522 main_grid_export_wh = 0.0
523 main_grid_import_wh = 0.0
524

525 # Clamp battery state
526 battery_state = max(0.0, min(battery_state, battery_capacity_wh))
527

528 battery_storage[t] = battery_state
529 battery_discharge[t] = discharge_wh / timestep_hours
530 grid_export[t] = main_grid_export_wh / timestep_hours
531 grid_import[t] = main_grid_import_wh / timestep_hours
532

533 return battery_storage, battery_discharge, grid_export, grid_import
534

535 # Function to compute cumulative deficit streaks
536 @njit
537 def compute_import_deficit_streaks_numba(grid_import_w, tolerance=4, timestep_hours=0.25)

:
538 deficits = []
539 starts = []
540 curr_deficit = 0.0
541 curr_tol = 0
542 temp_start = -1
543

544 for i in range(len(grid_import_w)):
545 val_wh = grid_import_w[i]
546 if np.isnan(val_wh):
547 continue
548 if val_wh > 0:
549 if curr_deficit == 0.0:
550 temp_start = i
551 curr_deficit += val_wh / 1000.0 * timestep_hours # Convert to kWh
552 curr_tol = 0
553 else:
554 if curr_deficit > 0 and curr_tol < tolerance:
555 curr_tol += 1
556 else:
557 if curr_deficit > 0.0:
558 deficits.append(curr_deficit)
559 starts.append(temp_start)
560 curr_deficit = 0.0
561 curr_tol = 0
562 temp_start = -1
563

564 if curr_deficit > 0.0:
565 deficits.append(curr_deficit)
566 starts.append(temp_start)
567

568 return deficits, starts
569

570 # Function to compute import duration streaks
571 @njit
572 def compute_import_streaks_numba(grid_import_w, tolerance=4):
573 durations = []
574 starts = []
575 curr_len = 0
576 curr_tol = 0
577 temp_start = -1
578

579 for i in range(len(grid_import_w)):
580 val_w = grid_import_w[i]
581 # Workaround for NaN-check (Numba-safe)
582 if val_w != val_w:
583 continue
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584

585 if val_w > 0:
586 if curr_len == 0:
587 temp_start = i
588 curr_len += 1
589 curr_tol = 0
590 else:
591 if curr_len > 0 and curr_tol < tolerance:
592 curr_len += 1
593 curr_tol += 1
594 else:
595 if curr_len > 0:
596 durations.append(curr_len) # NO timestep_hours multiplier here
597 starts.append(temp_start)
598 curr_len = 0
599 curr_tol = 0
600 temp_start = -1
601

602 if curr_len > 0:
603 durations.append(curr_len)
604 starts.append(temp_start)
605

606 return durations, starts
607

608 # MAIN LOOP: FOR EACH SUPPLY YEAR, MERGE & RUN BATTERY ===
609 unique_years = sorted(df_supply["year"].unique())
610

611 for yr in unique_years:
612 supply_yr = df_supply[df_supply["year"] == yr][["time_key", "supply_w"]].copy()
613

614 demand_one_year = df_micro.reset_index()[["time", "time_key", "total_agg_kW"]].copy()
615 merged = pd.merge(
616 demand_one_year,
617 supply_yr,
618 on="time_key",
619 how="inner"
620 )
621

622 merged["year"] = yr
623 merged["full_datetime"] = pd.to_datetime(
624 merged["year"].astype(str) + "␣" + merged["time_key"],
625 format="%Y␣%m-%d␣%H:%M"
626 )
627 merged = merged.set_index("full_datetime").sort_index()
628

629 merged["supply_kw"] = merged["supply_w"] / 1000.0 * N_households
630

631 merged["residual_kW"] = merged["total_agg_kW"] - merged["supply_kw"]
632 residual_w = merged["residual_kW"] * 1000.0
633

634 battery_storage, battery_discharge, grid_export, grid_import =
battery_storage_sim_numba(

635 residual_w.values,
636 battery_capacity_wh ,
637 max_power_w,
638 efficiency,
639 timestep_hours
640 )
641

642 battery_df_yr = pd.DataFrame({
643 "Battery␣SoC␣(Wh)": battery_storage,
644 "Battery␣Discharge␣(W)": battery_discharge,
645 "Export␣to␣Grid␣(W)": grid_export,
646 "Import␣from␣Grid␣(W)": grid_import,
647 }, index=merged.index)
648

649

650 merged = merged.join(battery_df_yr)
651

652 deficits_kwh, _ = compute_import_deficit_streaks_numba(
653 merged["Import␣from␣Grid␣(W)"].values,
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654 4,
655 timestep_hours
656 )
657 deficits_per_household_year = np.array(deficits_kwh) / N_households
658

659 durations, _ = compute_import_streaks_numba(
660 merged["Import␣from␣Grid␣(W)"].values,
661 4,
662 )
663 durations_hours = [d * 0.25 for d in durations]
664

665 all_deficits.append(deficits_per_household_year)
666 all_durations.append(np.array(durations_hours))
667

668 import_power_list.append(merged["Import␣from␣Grid␣(W)"].rename(f"import_{yr}"))
669 export_power_list.append(merged["Export␣to␣Grid␣(W)"].rename(f"export_{yr}"))
670

671 # CONCATENATE & RETURN AGGREGATED RESULTS
672 if len(all_deficits) > 0:
673 all_deficits = np.concatenate(all_deficits)
674 else:
675 all_deficits = np.array([])
676

677 if len(all_durations) > 0:
678 all_durations = np.concatenate(all_durations)
679 else:
680 all_durations = np.array([])
681

682 import_power_full = pd.concat(import_power_list, axis=0).sort_index()
683 export_power_full = pd.concat(export_power_list, axis=0).sort_index()
684

685 return all_deficits, all_durations, import_power_full, export_power_full
686

687 # TMY COMMUNITY BATTERY FUNCTION
688 def tmy_cb_run_simulation(
689 N_households,
690 max_shift_steps,
691 hp_chance=hp_chance,
692 T_set=T_set,
693 K_building=K_building,
694 a_cop=a_cop,
695 b_cop=-b_cop,
696 HP_capacity=HP_capacity,
697 battery_capacity_wh=battery_capacity_wh ,
698 max_power_w=max_power_w,
699 efficiency=efficiency,
700 timestep_hours=timestep_hours
701 ):
702

703 # Function to generate random variation
704 def generate_random_variation_profile(df_base_tmy, variation_pct=0.10):
705 """
706 Generate a new demand profile by randomly varying df_base['power_kW']
707 by +/- variation_pct (default 10%).
708

709 Parameters:
710 - df_base: pandas DataFrame with a 'power_kW' column
711 - variation_pct: maximum percentage variation (e.g. 0.10 for ±10%)
712

713 Returns:
714 - df_out: pandas DataFrame with a new column 'power_stochastic'
715 """
716 n = len(df_base_tmy)
717 # Random variation factors between (1 - variation_pct) and (1 + variation_pct)
718 random_factors = np.random.uniform(1 - variation_pct, 1 + variation_pct, size=n)
719

720 df_out = df_base_tmy.copy()
721 df_out['power_stochastic'] = df_out['power_kW'] * random_factors
722

723 # Clip values below 0 just in case
724 df_out['power_stochastic'] = df_out['power_stochastic'].clip(lower=0)
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725

726 return df_out
727

728 # Function to shift load times
729 def shift_profile(df, max_shift_steps=max_shift_steps):
730 df = df.copy()
731 df = df.sort_values("time")
732

733 shift = np.random.randint(-max_shift_steps, max_shift_steps + 1)
734

735 df["power_stochastic_shifted"] = np.roll(df["power_stochastic"].values, shift)
736

737 return df
738

739 # MAIN LOOP: BUILD HOUSEHOLD PROFILES
740 house_profiles = []
741

742 for i in range(N_households):
743 # Generate random variation profile
744 df_i = generate_random_variation_profile(df_base_tmy)
745

746 # Shift to de-synchronize peaks
747 df_i = shift_profile(df_i)
748

749 # Merge in outdoor temperature
750 df_i = df_i.merge(df_weather_tmy["temperature"].reset_index(),
751 on="time", how="left")
752

753 # Randomly assign HP
754 has_hp = (np.random.rand() < hp_chance)
755

756 df_i["has_heat_pump"] = has_hp
757

758 # Heat pump calculations
759 if has_hp:
760 deltaT = np.clip(T_set - df_i["temperature"], 0, None)
761 Q_demand = K_building * deltaT
762 COP = np.clip(a_cop - b_cop * df_i["temperature"], 1.5, None)
763 P_HP = np.minimum(HP_capacity, Q_demand / COP)
764 df_i["P_HP_kW"] = P_HP
765 else:
766 df_i["P_HP_kW"] = 0.0
767

768 df_i["power_total_kW"] = df_i["power_stochastic_shifted"] + df_i["P_HP_kW"]
769 df_i["household"] = f"HH_{i+1}"
770 house_profiles.append(
771 df_i[["time","household","has_heat_pump",
772 "power_stochastic_shifted","P_HP_kW","power_total_kW"]]
773 )
774

775 df_all = pd.concat(house_profiles, ignore_index=True)
776

777 # AGGREGATE TO MICROGRID LEVEL
778 df_micro = (
779 df_all
780 .groupby("time")[["power_stochastic_shifted","P_HP_kW","power_total_kW"]]
781 .sum()
782 .rename(columns={
783 "power_stochastic_shifted": "base_agg_kW",
784 "P_HP_kW": "hp_agg_kW",
785 "power_total_kW": "total_agg_kW"
786 })
787 .reset_index()
788 )
789

790 df_micro = df_micro.set_index("time")
791 df_micro = df_micro.copy()
792 df_combined = df_micro.join(df_supply_tmy.rename(columns={"0": "supply_w"}), how="inner")
793

794 # Convert units if needed, e.g., if df_micro is in kW and df_pv in W
795 df_combined['supply_kw'] = df_combined['supply_w'] / 1000.0 * N_households
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796 df_combined['residual_kW'] = df_combined['total_agg_kW'] - df_combined['supply_kw']
797

798 # Convert to Watts for battery logic
799 residual_w = df_combined['residual_kW'] * 1000
800

801 # Function for battery storage simulation
802 def battery_storage_sim(residual_w, battery_capacity_wh=battery_capacity_wh, max_power_w=

max_power_w, efficiency=efficiency, timestep_hours=timestep_hours):
803 battery_state = 0
804 battery_storage = []
805 grid_export = []
806 battery_discharge = []
807 grid_import = []
808

809 for power_w in residual_w:
810 if power_w < 0:
811 # Excess supply -> charge battery
812 total_excess_power_w = -power_w
813 incoming_power_w = min(total_excess_power_w , max_power_w)
814 incoming_energy_wh = incoming_power_w * timestep_hours
815 storable_energy_wh = incoming_energy_wh * efficiency
816 space_left_wh = battery_capacity_wh - battery_state
817 stored_wh = min(storable_energy_wh, space_left_wh)
818 battery_state += stored_wh
819

820 # Total energy available from excess supply
821 total_excess_energy_wh = total_excess_power_w * timestep_hours
822

823 # Calculate what wasn't stored at all — lost to power limit or full battery
824 used_energy_wh = stored_wh / efficiency
825 main_grid_export_wh = total_excess_energy_wh - used_energy_wh
826

827 main_grid_import_wh = 0
828 discharge_wh = 0
829

830 elif power_w > 0:
831 # Deficit -> discharge battery
832 needed_power_w = power_w
833 needed_energy_wh = needed_power_w * timestep_hours
834 max_discharge_power_w = min(max_power_w, battery_state / timestep_hours)
835 outgoing_power_w = max_discharge_power_w
836 outgoing_energy_wh = outgoing_power_w * timestep_hours
837 usable_energy_wh = outgoing_energy_wh * efficiency
838 discharge_wh = min(usable_energy_wh, needed_energy_wh)
839 actual_discharge_wh = discharge_wh / efficiency
840 battery_state -= actual_discharge_wh
841 main_grid_import_wh = needed_energy_wh - discharge_wh
842 main_grid_export_wh = 0
843

844 else:
845 discharge_wh = 0
846 main_grid_export_wh = 0
847 main_grid_import_wh = 0
848

849 battery_state = max(0, min(battery_state, battery_capacity_wh))
850

851 battery_storage.append(battery_state)
852 battery_discharge.append(discharge_wh / timestep_hours)
853 grid_export.append(main_grid_export_wh / timestep_hours)
854 grid_import.append(main_grid_import_wh / timestep_hours)
855

856 return pd.DataFrame({
857 'Battery␣SoC␣(Wh)': battery_storage,
858 'Battery␣Discharge␣(W)': battery_discharge,
859 'Export␣to␣Grid␣(W)': grid_export,
860 'Import␣from␣Grid␣(W)': grid_import,
861 }, index=residual_w.index)
862

863 battery_df = battery_storage_sim(residual_w)
864

865 # Merge into combined dataframe
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866 df_combined = df_combined.join(battery_df)
867

868 df_combined['Import␣from␣Grid␣(Wh)'] = df_combined['Import␣from␣Grid␣(W)'] *
timestep_hours

869 import_energy_series = df_combined['Import␣from␣Grid␣(Wh)'] # this is now Wh at each
timestep

870

871 # Compute cumulative deficit streaks (kWh per streak):
872 def compute_import_deficit_streaks(grid_import_wh, tolerance=4, timestep_hours=0.25):
873 """
874 Input:
875 grid_import_wh : pd.Series or 1D array of [Wh] at each timestep
876 Output:
877 deficits : list of (kWh) imported during each ‐continuousimport streak
878 starts : list of the index where each streak began
879 """
880 deficits = []
881 starts = []
882 curr_deficit = 0.0 # in kWh
883 curr_tol = 0
884 temp_start = None
885

886 for i, val_wh in enumerate(grid_import_wh):
887 if np.isnan(val_wh):
888 continue
889

890 if val_wh > 0:
891 # If this is the first ‐positiveimport step in a new streak:
892 if curr_deficit == 0.0:
893 temp_start = i
894 # Add val_wh (Wh) ÷ 1000 → kWh
895 curr_deficit += val_wh / 1000.0
896 curr_tol = 0
897 else:
898 # val_wh == 0 → no import this step
899 if curr_deficit > 0 and curr_tol < tolerance:
900 # still “”in the streak (we allow up to `tolerance` zeros embedded)
901 curr_tol += 1
902 # but do NOT add any energy
903 else:
904 # close out the previous streak (if it exists)
905 if curr_deficit > 0.0:
906 deficits.append(curr_deficit)
907 starts.append(temp_start)
908 curr_deficit = 0.0
909 curr_tol = 0
910 temp_start = None
911

912 # If we ended while still in a ‐positiveimport streak:
913 if curr_deficit > 0.0:
914 deficits.append(curr_deficit)
915 starts.append(temp_start)
916

917 return deficits, starts
918

919 deficits_kwh, deficit_starts = compute_import_deficit_streaks(
920 import_energy_series,
921 tolerance=4,
922 timestep_hours=timestep_hours
923 )
924 # deficits_kwh is a list of [kWh] per streak. To get “per ”household:
925 deficits_per_household = np.array(deficits_kwh) / N_households
926

927 # Compute import period duration streaks (in hours) for the same import series:
928 def compute_import_streaks(grid_import_w, tolerance=4, timestep_hours=0.25):
929 """
930 Input:
931 grid_import_wh : pd.Series or 1D array of [Wh] per step
932 Output:
933 durations : list of (hours) for each ‐continuousimport streak
934 starts : list of the index where each streak began
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935 """
936 durations = []
937 starts = []
938 curr_len = 0 # number of steps in this streak
939 curr_tol = 0 # number of zeros we've tolerated so far
940 temp_start = None
941

942 for i, val_w in enumerate(grid_import_w):
943 val_w = grid_import_w[i]
944 # Workaround for NaN-check (Numba-safe)
945 if np.isnan(val_w):
946 continue
947

948 if val_w > 0:
949 if curr_len == 0:
950 temp_start = i
951 curr_len += 1
952 curr_tol = 0
953 else:
954 if curr_len > 0 and curr_tol < tolerance:
955 curr_len += 1
956 curr_tol += 1
957 else:
958 if curr_len > 0:
959 durations.append(curr_len) # NO timestep_hours multiplier here
960 starts.append(temp_start)
961 curr_len = 0
962 curr_tol = 0
963 temp_start = -1
964

965 if curr_len > 0:
966 durations.append(curr_len)
967 starts.append(temp_start)
968

969 return durations, starts
970

971 # Existing durations and starts from compute_import_streaks:
972 durations, starts = compute_import_streaks(
973 import_energy_series,
974 tolerance=4,
975 timestep_hours=timestep_hours
976 )
977 durations_hours = [d * timestep_hours for d in durations]
978

979 import_power_w = df_combined['Import␣from␣Grid␣(W)']
980 export_power_w = df_combined['Export␣to␣Grid␣(W)']
981

982 return deficits_per_household , np.array(durations_hours), import_power_w, export_power_w
983

984 # Function to run the TMY home battery simulation
985 def tmy_hb_run_simulation(
986 N_households,
987 max_shift_steps,
988 hp_chance=hp_chance,
989 T_set=T_set,
990 K_building=K_building,
991 a_cop=a_cop,
992 b_cop=-b_cop,
993 HP_capacity=HP_capacity,
994 battery_capacity_wh=battery_capacity_wh ,
995 max_power_w=max_power_w,
996 efficiency=efficiency,
997 timestep_hours=timestep_hours
998 ):
999 variation_pct = 0.10 # 10% random variation
1000

1001 # Function to compute cumulative deficit streaks
1002 @njit
1003 def compute_import_deficit_streaks_numba(grid_import_wh, tolerance, timestep_hours):
1004 deficits = []
1005 starts = []
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1006 curr_deficit = 0.0
1007 curr_tol = 0
1008 temp_start = -1
1009

1010 for i in range(len(grid_import_wh)):
1011 val_wh = grid_import_wh[i]
1012 if np.isnan(val_wh):
1013 continue
1014 if val_wh > 0:
1015 if curr_deficit == 0.0:
1016 temp_start = i
1017 curr_deficit += val_wh / 1000.0 # Wh to kWh
1018 curr_tol = 0
1019 else:
1020 if curr_deficit > 0 and curr_tol < tolerance:
1021 curr_tol += 1
1022 else:
1023 if curr_deficit > 0.0:
1024 deficits.append(curr_deficit)
1025 starts.append(temp_start)
1026 curr_deficit = 0.0
1027 curr_tol = 0
1028 temp_start = -1
1029

1030 if curr_deficit > 0.0:
1031 deficits.append(curr_deficit)
1032 starts.append(temp_start)
1033

1034 return deficits, starts
1035

1036 # Function to compute import period duration streaks
1037 @njit
1038 def compute_import_streaks_numba(grid_import_wh, tolerance, timestep_hours):
1039 durations = []
1040 starts = []
1041 curr_len = 0
1042 curr_tol = 0
1043 temp_start = -1
1044

1045 for i in range(len(grid_import_wh)):
1046 val_wh = grid_import_wh[i]
1047 if np.isnan(val_wh):
1048 continue
1049 if val_wh > 0:
1050 if curr_len == 0:
1051 temp_start = i
1052 curr_len += 1
1053 curr_tol = 0
1054 else:
1055 if curr_len > 0 and curr_tol < tolerance:
1056 curr_len += 1
1057 curr_tol += 1
1058 else:
1059 if curr_len > 0:
1060 durations.append(curr_len * timestep_hours)
1061 starts.append(temp_start)
1062 curr_len = 0
1063 curr_tol = 0
1064 temp_start = -1
1065

1066 if curr_len > 0:
1067 durations.append(curr_len * timestep_hours)
1068 starts.append(temp_start)
1069

1070 return durations, starts
1071

1072 # Function to run the battery storage simulation
1073 @njit(parallel=True)
1074 def battery_sim_all(
1075 residuals,
1076 battery_capacity_wh ,
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1077 max_power_w,
1078 efficiency,
1079 timestep_hours
1080 ):
1081 N, T = residuals.shape
1082 storage_out = np.zeros((N, T)) # Wh
1083 discharge_out = np.zeros((N, T)) # W
1084 export_out = np.zeros((N, T)) # W
1085 import_out = np.zeros((N, T)) # W
1086

1087 for i in prange(N):
1088 battery_state = 0.0
1089 for t in range(T):
1090 power_w = residuals[i, t]
1091

1092 if power_w < 0.0:
1093 # Excess → charge
1094 total_excess_power_w = -power_w
1095 incoming_power_w = min(total_excess_power_w , max_power_w)
1096 incoming_energy_wh = incoming_power_w * timestep_hours
1097 storable_wh = incoming_energy_wh * efficiency
1098 space_left = battery_capacity_wh - battery_state
1099 stored_wh = storable_wh if storable_wh < space_left else space_left
1100 battery_state += stored_wh
1101

1102 total_excess_wh = total_excess_power_w * timestep_hours
1103 used_wh = stored_wh / efficiency
1104 main_grid_export_wh = total_excess_wh - used_wh
1105

1106 main_grid_import_wh = 0.0
1107 discharge_wh = 0.0
1108 elif power_w > 0.0:
1109 # Deficit → discharge
1110 needed_energy_wh = power_w * timestep_hours
1111 max_discharge_power_w = battery_state / timestep_hours
1112 if max_discharge_power_w > max_power_w:
1113 max_discharge_power_w = max_power_w
1114 outgoing_power_w = max_discharge_power_w
1115 outgoing_wh = outgoing_power_w * timestep_hours
1116 usable_wh = outgoing_wh * efficiency
1117 if usable_wh < needed_energy_wh:
1118 discharge_wh = usable_wh
1119 else:
1120 discharge_wh = needed_energy_wh
1121 actual_discharge_wh = discharge_wh / efficiency
1122 battery_state -= actual_discharge_wh
1123 main_grid_import_wh = needed_energy_wh - discharge_wh
1124 main_grid_export_wh = 0.0
1125 else:
1126 discharge_wh = 0.0
1127 main_grid_export_wh = 0.0
1128 main_grid_import_wh = 0.0
1129

1130 # Clamp battery_state
1131 if battery_state < 0.0:
1132 battery_state = 0.0
1133 elif battery_state > battery_capacity_wh:
1134 battery_state = battery_capacity_wh
1135

1136 storage_out[i, t] = battery_state
1137 discharge_out[i, t] = discharge_wh / timestep_hours
1138 export_out[i, t] = main_grid_export_wh / timestep_hours
1139 import_out[i, t] = main_grid_import_wh / timestep_hours
1140

1141 return storage_out, discharge_out, export_out, import_out
1142

1143 # MAIN BLOCK: BUILD ALL HOUSEHOLDS AT ONCE
1144

1145 # Extract base power series and time index
1146 base_power = df_base_tmy["power_kW"].values
1147 times = df_base_tmy.index
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1148 T = base_power.shape[0]
1149

1150 # Generate all random variation factors
1151 rng = np.random.default_rng()
1152 random_factors = rng.uniform(
1153 1 - variation_pct,
1154 1 + variation_pct,
1155 size=(N_households, T)
1156 )
1157

1158 # Compute power_stochastic
1159 power_stochastic = base_power[None, :] * random_factors
1160 power_stochastic = np.clip(power_stochastic, 0.0, None)
1161

1162 # Apply random shift
1163 shifts = rng.integers(-max_shift_steps, max_shift_steps + 1, size=N_households)
1164 power_stochastic_shifted = np.empty_like(power_stochastic)
1165 for i in range(N_households):
1166 power_stochastic_shifted[i, :] = np.roll(power_stochastic[i, :], shifts[i])
1167

1168 # Weather temperature array (length T)
1169 temp_arr = df_weather_tmy["temperature"].reindex(times).values
1170

1171 # Random mask
1172 has_hp_mask = rng.random(N_households) < hp_chance
1173

1174 # Compute P_HP_kW for all households & times
1175 deltaT = np.clip(T_set - temp_arr, 0.0, None)
1176 Q_base = K_building * deltaT
1177 COP_vec = np.clip(a_cop - b_cop * temp_arr, 1.5, None)
1178

1179 Q_demand_2d = np.repeat(Q_base[None, :], N_households, axis=0)
1180 COP_2d = np.repeat(COP_vec[None, :], N_households, axis=0)
1181 HP_cap_arr = np.full((N_households, T), HP_capacity)
1182

1183 P_HP_kW = np.where(
1184 has_hp_mask[:, None],
1185 np.minimum(HP_cap_arr, Q_demand_2d / COP_2d),
1186 0.0
1187 )
1188

1189 # Total power demand per household
1190 power_total_kW = power_stochastic_shifted + P_HP_kW
1191

1192 # Supply per household
1193 supply_1d = df_supply_tmy["0"].reindex(times).values / 1000.0
1194 supply_arr = np.repeat(supply_1d[None, :], N_households, axis=0)
1195

1196 # Keep list of household names for later
1197 hh_names = [f"HH_{i+1}" for i in range(N_households)]
1198

1199 # Compute residuals (N × T) in Watts
1200 residuals_2d = (power_total_kW - supply_arr) * 1000.0
1201

1202 # RUN BATTERY SIMULATION FOR ALL HOUSEHOLDS AT ONCE
1203 storage_2d, discharge_2d, export_2d, import_2d = battery_sim_all(
1204 residuals_2d,
1205 battery_capacity_wh ,
1206 max_power_w,
1207 efficiency,
1208 timestep_hours
1209 )
1210

1211

1212 hh_repeat = np.repeat(np.arange(N_households), T) # length = N*T
1213 time_tile = np.tile(times.values, N_households) # length = N*T
1214

1215 df_out = pd.DataFrame({
1216 "household_idx": hh_repeat,
1217 "time": time_tile,
1218 "Battery␣SoC␣(Wh)": storage_2d.ravel(),
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1219 "Battery␣Discharge␣(W)": discharge_2d.ravel(),
1220 "Export␣to␣Grid␣(W)": export_2d.ravel(),
1221 "Import␣from␣Grid␣(W)": import_2d.ravel(),
1222 "power_total_kW": power_total_kW.ravel(),
1223 "supply_kW": supply_arr.ravel()
1224 })
1225

1226

1227 df_out["household"] = pd.Categorical(
1228 [hh_names[i] for i in df_out["household_idx"]],
1229 categories=hh_names
1230 )
1231

1232

1233 df_all_batt = (
1234 df_out
1235 .set_index(["time", "household"])
1236 .sort_index()
1237 )
1238

1239 # AGGREGATE AT MICROGRID LEVEL
1240 df_import_export_agg = df_all_batt.groupby(level="time")[['Import␣from␣Grid␣(W)', 'Export

␣to␣Grid␣(W)']].sum()
1241 import_energy_series = df_import_export_agg['Import␣from␣Grid␣(W)'] * timestep_hours #

Wh
1242

1243 deficits_kwh, deficit_starts = compute_import_deficit_streaks_numba(
1244 import_energy_series.values,
1245 tolerance=4,
1246 timestep_hours=timestep_hours
1247 )
1248

1249 durations_hours, duration_starts = compute_import_streaks_numba(
1250 import_energy_series.values,
1251 tolerance=4,
1252 timestep_hours=timestep_hours
1253 )
1254

1255 deficits_per_household = np.array(deficits_kwh) / N_households
1256

1257 import_power_w = df_import_export_agg['Import␣from␣Grid␣(W)']
1258 export_power_w = df_import_export_agg['Export␣to␣Grid␣(W)']
1259

1260 return deficits_per_household , np.array(durations_hours), import_power_w, export_power_w
1261

1262

1263 # VARIABLES FOR SIMULATION
1264 N_households=300
1265

1266 max_shift_steps=8
1267 timestep_hours=0.25
1268

1269 # Home battery specifications
1270 battery_capacity_wh=8800
1271 max_power_w=5000
1272 efficiency=0.95
1273

1274 # Community battery specifications
1275 battery_capacity_wh=7530*N_households
1276 max_power_w=1880*N_households
1277 efficiency=0.95
1278

1279 # Heat pump specifications
1280 T_set = 18.0
1281 K_building = 0.285
1282 HP_capacity = 7.5
1283 a_cop, b_cop = 3.5, 0.07
1284 hp_chance = 0
1285

1286 # RUNNING THE SCENARIOS
1287 n_runs = 10
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1288 all_deficits = []
1289 all_durations = []
1290 all_import_powers = []
1291 all_export_powers = []
1292

1293 for _ in range(n_runs):
1294 start = time.time()
1295

1296 deficits, durations, import_power_w, export_power_w = fp_cb_run_simulation(
1297 N_households=N_households,
1298 max_shift_steps=max_shift_steps,
1299 hp_chance=hp_chance,
1300 T_set=T_set,
1301 K_building=K_building,
1302 a_cop=a_cop,
1303 b_cop=b_cop,
1304 HP_capacity=HP_capacity,
1305 battery_capacity_wh=battery_capacity_wh ,
1306 max_power_w=max_power_w,
1307 efficiency=efficiency,
1308 timestep_hours=timestep_hours
1309 )
1310

1311 end = time.time()
1312 print(f"Simulation␣{_␣+␣1}␣took␣{end␣-␣start:.2f}␣seconds")
1313

1314

1315 all_deficits.append(deficits)
1316 all_durations.append(durations)
1317 all_import_powers.append(import_power_w)
1318 all_export_powers.append(export_power_w)
1319

1320 # Now combine across runs for “‐importenergy deficits (kWh/household)”
1321 all_deficits_combined = np.concatenate(all_deficits) # 1D array of length = total streaks

across all runs
1322

1323 all_durations_combined = np.concatenate(all_durations)
1324

1325 import_power_all = pd.concat(all_import_powers, axis=0)
1326 import_power_per_household = import_power_all / N_households / 1000 # Normalize to per

household in kW
1327

1328 export_power_all = pd.concat(all_export_powers, axis=0)
1329 export_power_per_household = export_power_all / N_households / 1000 # Normalize to per

household in kW
1330

1331 # Convert to arrays just once
1332 imp_power = import_power_per_household.values
1333 exp_power = export_power_per_household.values
1334

1335 # Filter power > 0
1336 imp_power_pos = imp_power[imp_power > 0]
1337 exp_power_pos = exp_power[exp_power > 0]
1338

1339 # Compute ramp rates (differences between consecutive time steps)
1340 imp_ramp = np.abs(np.diff(imp_power))
1341 exp_ramp = np.abs(np.diff(exp_power))
1342

1343 # Filter ramp rates > 0
1344 imp_ramp_pos = imp_ramp[imp_ramp > 0]
1345 exp_ramp_pos = exp_ramp[exp_ramp > 0]
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Literature Review Overview

Table B.1: Overview of Literature Review Findings: Microgrid Resilience

Author(s) Year Location MG genera-
tion source

Main findings

Ming Kwok
et al. [21]

2012 Singapore Renewable +
fossil fuels

Rainfall negatively impacts solar energy col-
lected (7.61% – 14.86%). Light rainfall has a
positive effect (3%) on wind energy, but heavy
rainfall has a positive effect (24%).

Ghosh & De
[83]

2024 - Unspecified Adopting a microgrid formation reduces
weighted load cost with decrease of 52.62%,
69.1%, and 75.04% compared to the base
case for normal, high, and extreme weather
event scenarios, respectively.

Chowdhury
& Zhang [22]

2024 - Renewable +
microturbine

Leaving out the smoke effect during wildfires
results in an overestimation of solar energy
output. The addition of quick start units dras-
tically decreases load shedding costs.

Newman et
al. [18]

2020 United
States

PV + back-
up generator

The differences in fuel consumption predicted
using the Alternative Solar Profiles (ASP) and
TMY solar profiles algorithms were significant,
with, on average, a need for 9.4% more fuel
predicted using the ASP profiles for the most
severe outage period across all load profiles
and locations, and 30% more fuel required for
the most severe period.

Ch et al. [84] 2022 - Unspecified Load shedding increases microgrid resilience.
Smaller microgrids are more resilient than
large microgrids.

Wang et al.
[24]

2024 - Renewable +
microturbine

By optimizing energy storage capacity, imple-
menting load responsemechanisms, and inte-
grating renewable energy sources, microgrids
can become more efficient, reliable, and re-
silient in the face of various challenges.

62
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Laws et al.
[19]

2018 United
States

PV Generally, accounting for the value of re-
silience results in larger PV and BESS when
minimizing life cycle costs. If the cost to is-
land a system does exceed the islandable pre-
mium, then the minimum cost solution is to
incur the outage cost. Under the current as-
sumptions for storage prices and utility rate
tariffs, battery systems tend to only be eco-
nomical in locations with relatively high de-
mand charges.

Sepúlveda-
Mora &
Hegedus
[20]

2022 United
States

Renewables
+ Generator

A metric for resilience is provided. Resilience
in a hospital is 40% higher than in hotels.
When the value of lost load is included in
the economic analysis, battery systems with
autonomy as large as 12 h in combination
with PV, wind and generator are more cost-
effective than the baseline configuration.

Panteli &
Mancarella
[85]

2015 - Unspecified A framework has been developed which can
be used as a basis for developing weather-
related resilience studies.

Mohamed et
al. [23]

2019 - Unspecified From a literature review, a framework is pre-
sented for proactive resilience of power sys-
tems with a spotlight on the extreme weather
events and their effect. From the framework,
several strategies are reviewed.

Table B.2: Overview of Literature Review Findings: Microgrid Performance

Author(s) Year Location MG genera-
tion source

Main findings

Tayab et al.
[29]

2021 - PV The grey wolf optimisation (GWO) schedul-
ing strategy has proven to outperform other
strategies in forecasting PV power and load
demand.

Liu et al. [28] 2017 - PV A simulation model to predict microgrid elec-
tricity consumption has been developed for
differing weather conditions. It found that
a community microgrid can reduce electricity
costs for its users.

Naware &
Mitra [30]

2021 - PV The authors propose a classical long short-
term memory neural network model to predict
day-ahead load and solar insolation.

Wakui et al.
[86]

2016 - Unspecified A mixed integer linear programming (MILP)
model is used to predict and optimize energy
use in a microgrid using fuel cells.

Bruni et al.
[31]

2015 - PV The article compares deterministic and
stochastic Model Predictive Control (MPC),
with stochastic showing better ability to fore-
cast energy savings and system efficiency.
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Khayat et al.
[25]

2024 United
Kingdom

Not relevant Short term load forecasting can be predicted
more accurately with the Adaptive Neuro-
Fuzzy Inference System (ANFIS), instead of
a standard neural network model.

Hafsi et al.
[32]

2022 Algeria PV & Wind With the consumption minimization strategy
ECMS and external energy maximization
strategy EEMS, the article shows that sys-
tem performance is enhanced, while system
costs are minimized by reducing hydrogen
consumption.

Marinescu et
al. [26]

2013 Ireland Unspecified A comparison of different methods to perform
short term load forecasting is conducted.

Mroueh et al.
[87]

2025 - Not relevant Belief Functions Theory (BFT) decreases
forecasting errors by 12% and enhances com-
putational efficiency over existing methods,
enabling microgrids to manage loads more re-
liably using a publicly available real dataset.

Ożadowicz
& Walczyk
[27]

2023 Poland PV With a façade dynamics control system, PV-
tracking energy consumption has been re-
duced from 5% to 1% of energy consumption
in autumn and from almost 3.2% to 0.6% in
spring. This is significant, as PV system effi-
ciency is below 10%.

Hanbashi et
al. [33]

2023 Kenya PV A case study in Kenya to optimize PV-based
mini-grids design has been conducted, mainly
emphasising the need for information on the
control algorithms and availability of on-site
measurements.

Lagos et al.
[88]

2022 - Wind The paper reviews the latest wind-speed and
wind-power forecasting models used across
various power system scales—from large
wind farms to residential micro-wind turbines.
The results show that there is a large focus
on hybrid forecasting methods, especially for
short-term predictions.

Liaquat et al.
[34]

2023 - PV The authors have designed a peer-to-peer
(P2P) energy trading market for residential
solar PV users using a day-ahead continu-
ous double auction that accounts for network
losses and fees. The market improves social
welfare by 17.75% on average and also ana-
lyzes how forecasting errors affect trading be-
tween day-ahead and real-time markets.

Hakam et al.
[35]

2025 - PV A hybrid maximum power point tracking
(MPPT) algorithm is introduced. combining ar-
tificial neural networks and grey wolf optimiza-
tion (ANN-GWO). Coupled with model predic-
tive control (MPC), the approach improves
tracking efficiency by more than 9%, while
also reducing total harmonic distortion (THD).
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Scenario Results: PCPs

Figure C.1: PCP comparing different time periods (TMY vs Full Period) - ”Gas Heating” Scenario
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Figure C.2: PCP comparing different BESS types (Home Battery vs Community Battery) - ”Gas Heating” Scenario
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Figure C.3: PCP comparing different Microgrid Sizes (Small Microgrid vs Large Microgrid) - ”Gas Heating” Scenario
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Figure C.4: PCP comparing different time periods (TMY vs Full Period) - ”Heat Pump” Scenario



69

Figure C.5: PCP comparing different BESS types (Home Battery vs Community Battery) - ”Heat Pump” Scenario
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Figure C.6: PCP comparing different Microgrid Sizes (Small Microgrid vs Large Microgrid) - ”Heat Pump” Scenario
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Figure C.7: PCP comparing different Load Patterns (Natioal Load vs Gas Heating vs Heat Pump)
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Scenario Results: CDFs

D.1. Scenario "National Load Pattern"
D.1.1. Cumulative Deficit
There is a clear distinction in the CDF’s between the full period and TMY scenarios, shown in Figure D.1.
Even though the full period models have a higher maximum value, the cumulative deficit is higher for
the TMY scenarios for most of the cumulative probabilities. For instance at a cumulative probability of
0.9, the full period scenarios are around 20kWh while the cumulative deficit for the TMY scenarios is
twice at high, with a cumulative deficit value around 40kWh.

Figure D.1: CDF of the Cumulative Deficit

D.1.2. Import Period Duration
For the import period duration CDF in Figure D.2, there is a clear distinction between the TMY and full
period scenarios again. Much like for the cumulative deficit, the maximum import duration is slightly
higher for the full period scenarios. TMY scenarios have higher import period durations for all of other
cumulative probabilities.

72



D.1. Scenario "National Load Pattern" 73

Figure D.2: CDF of the Import Duration

D.1.3. Import Power
Even though the maximum values for import power are all equal for each of the scenarios, as shown in
Figure D.3, there is a distinct difference in the CDF between TMY and full period scenarios. The TMY
scenarios around a third of import power values lie below 400W, while only 15% of import power values
are below 400W. From there, there is a steep increase in probability for increasing power values. This
indicates that in the TMY scenarios, a higher share of the demand can partially be covered by electricity
supplied from the BESS.

Figure D.3: CDF of the Import Power

D.1.4. Export Power
The CDFs in Figure D.4 mainly show the differences between the BESSs. Home batteries show larger
export power for the same cumulative probabilities than the community batteries. This likely is the effect
of community batteries have a smaller capacity than home batteries, leading to an increased amount
of export power events with low export power. This does not affect the maximum export power values,
where there is a different between the TMY and full period scenarios.
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Figure D.4: CDF of the Export Power

D.1.5. Import Ramp Rate
The CDFs in Figure D.5 show a greatly similar distribution for all scenarios, with a slight difference
between the TMY and full period scenarios from a cumulative probability of 0.8. From this point onwards,
the full period scenarios have slightly higher import ramp rate values for similar cumulative probabilities,
while also having a higher maximum import ramp rate.

Figure D.5: CDF of the Import Ramp Rate

D.1.6. Export Ramp Rate
The export ramp rate CDFs show similar distributions for the different BESS types, as can be seen in
Figure D.6. The home batteries have larger export ramp rate values for equal cumulative probabilities,
compared to the community batteries. In terms of maximum export ramp rate values, it can be seen that
the full period scenarios have higher maxima, while home batteries also have higher export ramp rate
values compared to community batteries. This can be explained by the greater capacity of the home
batteries, meaning that once they are full, the microgrid system is required to export large amounts of
electricity straight away.
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Figure D.6: CDF of the Export Ramp Rate

D.2. Scenario "Gas Heating"
D.2.1. Cumulative Deficit
The distributions presented in Figure D.7 all have a greatly similar pattern, with small deviations be-
tween TMY and full period scenarios. In terms of maximum cumulative deficit values, there are two
clear distinctions. One is between the TMY and full period scenarios and the other between the BESS
types. Microgrid size does not have an impact in relation to the maximum cumulative deficit. Home
battery scenarios having a larger maximum cumulative deficit can be explained by the fact that if only
one household is importing electricity, it still counts as the same streak. As home battery capacity and
electricity can not be shared between households, there might be periods when only a small fraction of
households is importing electricity, but this still adds to the cumulative deficit, while community battery
scenarios are able to share the capacity between all households and fully cover the demand without
importing electricity.

Figure D.7: CDF of the Cumulative Deficit
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D.2.2. Import Period Duration
Import Duration CDFs have similar distribution patterns for all scenarios, which are presented in Fig-
ure D.8. There is a large difference between the TMY and full period scenarios in terms of the maximum
import duration, while the home battery TMY scenarios even exceed the full period scenarios for maxi-
mum import duration.

Figure D.8: CDF of the Import Duration

D.2.3. Import Power
The import power CDFs, shown in Figure D.9, only slow slight differences between the TMY and full
period scenarios. In terms of maximum import power requirements, the TMY scenarios show slightly
higher maxima. This seems counter-intuitive, but can be explained by the battery state of charge, which
is set to 0 at the start of the period. Likely, the full period scenarios already have some charged capacity
when coming across the same time step, resulting in a lower peak import power value.

Figure D.9: CDF of the Import Power

D.2.4. Export Power
Export power CDFs show a large difference between BESSs at low export power values, shown in
Figure D.10. This is due to the fact that for home battery scenarios lead to a higher frequency of
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low export power events, as only a small fraction of households are exporting electricity once their
individual home batteries are full, while others are still charging the home battery. For the community
battery, either the whole microgrid is exporting electricity or all households use the excess electricity
to charge the community battery. This results in a relatively low cumulative probability for small export
power values. For the home battery scenarios, a difference in TMY and full period scenario can be
seen, too. All of this does not impact the maximum export power, which is slightly lower for all TMY
scenarios compared to all full period scenarios.

Figure D.10: CDF of the Export Power

D.2.5. Import Ramp Rate
Even though the CDFs of all scenarios are vastly similar, there are three main differences in terms
of peak import ramp rate values, illustrated in Figure D.11. Firstly, full period scenarios have higher
maxima and the same is true for small microgrid sizes. Furthermore, home batteries require higher
import ramp rates than community batteries, especially for the full period scenarios, with values being
almost twice as high. This effect is expressed in a reduced manner for the TMY scenarios.

Figure D.11: CDF of the Import Ramp Rate
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D.2.6. Export Ramp Rate
A similar difference for small export ramp rate values is detected between home battery and community
battery scenarios as for the export power CDF. From Figure D.12, a difference in maximum values
between the BESSs can be seen, with community batteries greatly reducing the maximum export ramp
rate. For the TMY scenarios, larger microgrids also reduce the maximum required export ramp rate
per household. Lastly, the full period scenarios show the need for greater system boundaries in terms
of maximum export ramp rate when compared to the TMY scenarios.

Figure D.12: CDF of the Export Ramp Rate

D.3. Scenario "Heat Pump"
D.3.1. Cumulative Deficit
Cumulative deficit CDFs of Figure D.13 across all scenarios follow a similar distribution, with only slight
deviations between TMY and full period scenarios. The TMY scenarios are result in the samemaximum
values, but for the full period scenarios, the community battery scores worse than the home battery
scenarios. For the full period community battery scenarios, there is also a difference between a small
and large microgrid size, with large microgrid sizes having a lower maximum cumulative deficit per
household.

Figure D.13: CDF of the Cumulative Deficit
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D.3.2. Import Period Duration
The conclusions from the cumulative deficit CDFs shown in Figure D.14 are directly applicable to the
import durations CDFs shown in Figure D.14. There is practically no difference between the two, rela-
tively.

Figure D.14: CDF of the Import Duration

D.3.3. Import Power
The distributions shown in Figure D.15 are similar for all scenarios, with the full period home battery
scenarios having a slight deviation at the lower import power values. This is related to the electricity
import of only a fraction of the households, as capacity sharing between home batteries is not possible.
At the maximum values, there is a clear distinction between the TMY and full period scenarios, as well
as a relatively large difference between small and large microgrid sizes. The BESS type has a relatively
small effect on the maximum import power value, but an effect nonetheless.

Figure D.15: CDF of the Import Power

D.3.4. Export Power
The export power CDFs of this scenario, shown in Figure D.16, follow the same patterns as in scenario
B (Figure D.10). For low export power values, cumulative probabilities of the home battery scenarios is
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much higher, compared to the community battery scenarios. For the maximum values, there is a clear
difference between the TMY and full period scenarios, but not for any of the other testing conditions.

Figure D.16: CDF of the Export Power

D.3.5. Import Ramp Rate
The CDFS in Figure D.17 all follow the same distribution, but there are clear differences in the maximum
import ramp rate values. Home batteries score better for the TMY scenarios, while community batteries
score better by a bigger margin for the full period scenarios. For each of the scenarios, a benefit can
be seen by the larger microgrid size. Lastly, the full period scenario show larger maximum import ramp
rates requirements compared to the TMY scenarios.

Figure D.17: CDF of the Import Ramp Rate

D.3.6. Export Ramp Rate
Similar to the export power, the cumulative probability at low export ramp rate values is much higher for
the home battery models, displayed in Figure D.18. Around the 0.95 cumulative probability mark, all of
the distributions converge, but different maximum values are reached. Community battery scenarios
show a large benefit compared to the home battery scenarios. Also, there is an effect of a somewhat
similar scale between the TMY and full period scenarios. Lastly, the microgrid size also makes a
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difference, especially for the TMY scenarios, with a larger microgrid size having a lower maximum
export ramp rate value.

Figure D.18: CDF of the Export Ramp Rate
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