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Abstract

Survival trees are a statistical modeling technique used to predict the time until an event
occurs. They are widely valued for their interpretability, as they allow practitioners to un-
derstand how different variables influence outcomes. However, traditional survival trees
struggle to capture nonlinear relationships and rely on greedy splitting strategies, which
limit their performance in complex settings.

This thesis proposes a novel approach that addresses these limitations by generating
globally optimized survival trees using Genetic Programming Gene-pool Optimal Mixing
Evolutionary Algorithm (GP-GOMEA). By integrating a state-of-the-art evolutionary al-
gorithm into the tree construction process, the resulting survival trees optimize both the
structure and the decision nodes at a global level.

The method was evaluated on a synthetic dataset designed to require nonlinear decision
boundaries—the XOR problem. Our approach consistently outperformed traditional sur-
vival trees, achieving optimal or near-optimal results in the noise-free setting. Moreover,
the results show that GP-GOMEA survival trees can maintain a high performance even
with a smaller population size and limited data, demonstrating the method’s suitability for
problems involving nonlinear interactions.

These findings suggest that GP-GOMEA survival tree is a promising direction for ad-
vancing survival tree methodology. Future work should include evaluating the method on
real-world survival datasets and further tuning key hyperparameters, such as the number of
decision nodes.
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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide, responsible for millions of deaths
every year [47]. Survival analysis can play an essential role in supporting clinical decisions.
Survival analysis allows for the estimation of patient outcomes, the identification of key risk
factors, and the tailoring of treatment strategies accordingly.

With the increasing adoption of artificial intelligence (Al) in healthcare, clinicians have
access to powerful tools that can assist in these tasks. However, the use of Al models must
be approached with caution; clinicians must understand the model’s predictions to ensure
trust and transparency. This necessity has given rise to explainable Al (XAI), which aims
to make Al decisions transparent and interpretable.

1.1 Problem Statement

Survival analysis plays a critical role in domains such as medicine, where predicting time-
to-event outcomes is essential. Survival analysis aims to have the most accurate survival
function. This function predicts the probability that the time of an event T is later than
time 7. The survival function is formally denoted as S and defined as S(¢) = P(T > 1t).
Survival analysis deals with survival data. A distinguishing feature of survival data is the
presence of censoring [22, [14]. In this work, only right-censoring is considered—cases
where the starting date is known; however, the event of interest has not been observed.
Right-censoring can arise for various reasons, such as when a study concludes before the
event occurs, a participant withdraws, or follow-up data is lost. The presence of censored
data poses challenges for traditional predictive models, such as those minimizing the mean
squared error, as they are ill-suited to handle incomplete event information. Due to the
scarcity of survival data, it is essential to incorporate censored observations, as it leads to
more accurate models.

A survival analysis model that handles right-censored data well is the Cox proportional
hazard model, also known as the Cox regression model [6]. The Cox regression model is
the most widely used survival analysis model and has been a standard model in clinical
research. The model aims to relate the time-to-event outcome to one or more predictor
variables. Predictor variables, also known as covariates in the clinical domain, can refer
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to factors such as age, treatment group, or genetic markers. The Cox regression model
estimates hazard ratios, which quantify how a change in a predictor variable affects the
outcome relative to the baseline. This model is widely used as it is interpretable through
the hazard ratio. Despite these advantages, the Cox regression model rests on assumptions
that limit its use in more complex scenarios. One of these assumptions is that it assumes
a linear relationship between covariates and the hazard. Consequently, when effects are
nonlinear, this model fails to work [20]. More flexible approaches, like survival trees, have
been developed to address these limitations.

Survival trees are an alternative model that can capture nonlinear relationships and in-
teractions between predictor variables without requiring a parametric form [[13]]. They are
binary decision trees specifically designed for survival analysis. They aim to maximize the
difference in survival between groups by splitting across decision nodes. Survival trees use
a univariate split, where decision nodes typically take the form x; > #, comparing a single
feature x; against a threshold 7. The tree structure itself makes results easy to visualize.
Their ability to capture nonlinear relationships and ease of interpretability are the main rea-
sons survival trees are frequently used in survival analysis. Nonetheless, survival trees have
some noticeable drawbacks.

Their first drawback is that single survival trees are unstable and tend to underperform
[35)]. A remedy for this drawback is to use an ensemble method, such as the Random Sur-
vival Forest (RSF) [19], which aggregates predictions over many survival trees. Due to
ensemble averaging, RSF reduces variance and is less prone to overfitting, improving ro-
bustness. However, RSFs do not solve all the drawbacks of survival trees. In particular, the
quality of the splits determines a tree’s performance. In traditional survival trees, splitting
is done iteratively, starting from the root node, by an iterative greedy local heuristic. The
local iterative nature of survival trees is an issue, as it hinders the capture of global traits.
While this limitation is barely noticeable in simpler problems, it becomes problematic in
more complex scenarios involving nonlinear interactions between multiple variables. For
example, traditional survival trees often struggle with problems that exhibit such interac-
tions, such as the exclusive OR (XOR) problem. Survival trees would be trapped in local
optima, resulting in poor predictive performance, or they would need to grow large to cap-
ture nonlinear interactions, which would inhibit interpretability. Noise can exacerbate these
limitations, significantly degrading split quality.

Some state-of-the-art survival trees try to remedy such a limitation using dynamic con-
straint programming [[18]. While this approach partially solves the issue, the splits are still
univariate, meaning these trees must be significant to capture nonlinear interactions between
predictor variables. Another approach uses an evolutionary algorithm (EA)[24] to optimize
the splits, which encounters a similar issue. The resulting Globally Induced Survival Tree
(GIST) uses global learning to optimize the survival tree. In that study, what is unique is that
the EA optimizes the splits and structure. While both methods can optimize the tree struc-
ture and content of the decision nodes, the decision nodes remain univariate. This means
these trees still struggle if there is a nonlinear relation between multiple predictor variables.
This research aims to define a new type of tree capable of overcoming the aforementioned
limitations and featuring a multivariate split to prevent the formation of large survival trees,
as well as being able to identify nonlinear relationships between the predictor variables.
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To address the limitations of traditional survival trees, the proposed approach integrates
symbolic regression (SR) to optimize the tree splitting. SR searches for explicit mathemati-
cal expressions that best describe patterns in the data, thus capturing the global structure of
the data. The search and optimization for such expressions is performed by the gene-pool
optimal mixing evolutionary algorithm (GOMEA)[42], adapted for genetic programming
(GP)[44], known as GP-GOMEA.

GP-GOMEA evolves multiple candidate expressions jointly while exploiting learned
dependencies between predictor variables, referred to as the genotype in EAs. In this frame-
work, each expression represents a mathematical function that defines a decision split. Col-
lectively, the set of expressions determines the structure of the survival tree. By jointly
constructing and optimizing these multivariate expressions, GP-GOMEA is capable of cap-
turing complex, nonlinear relationships within the data. As a result, GP-GOMEA circum-
vents the iterative, greedy nature of conventional survival trees and performs global opti-
mization across the tree structure. The final model, a GP-GOMEA-based survival tree (GP-
GOMEA-ST), optimizes both the tree structure and the splitting functions simultaneously.
This creates an opportunity to investigate whether a globally optimized survival tree using
GP-GOMEA can deliver improved splitting strategies, predictive accuracy, and robustness
in nonlinear survival problems.

1.2 Research Question

This research aims to implement a survival tree that employs GP-GOMEA to optimize its
decision nodes and evaluate its performance on problems where traditional survival trees
typically encounter difficulties. Ultimately, this thesis seeks to address the following main
research question:

Main Research Question: Can a GP-GOMEA-based survival tree achieve a more effec-
tive splitting strategy than traditional greedy survival trees, thereby improving structural
optimization and predictive performance?

The research is divided into two stages. The first stage evaluates GP-GOMEA-ST on a
synthetic problem to provide initial insight into its capabilities. The selected synthetic prob-
lem is the exclusive OR (XOR) problem, where traditional survival trees generally struggle
due to their greedy splitting strategies. Comparisons will be made with a traditional greedy
survival tree. Additionally, GP-GOMEA-ST is tested on a noisy XOR problem to assess its
robustness to noise. This stage addresses the following research questions:

Research Question 1: Can GP-GOMEA-ST discover optimal splitting strategies in syn-
thetic problems where greedy survival trees typically fail, and how does its performance

compare to these traditional methods?

Research Question 2: How does noise in the data affect GP-GOMEA-ST?
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The second stage focuses on optimizing GP-GOMEA-ST by examining the effects of
population size and available training data. The objective is to identify the best overall hy-
perparameter settings. This stage investigates:

Research Question 3: What is the impact of dataset size and population size on the perfor-
mance of GP-GOMEA-ST?

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the relevant back-
ground explaining the GP-GOMEA framework and survival trees. Chapter 3 details the
methodology for constructing the proposed survival tree, GP-GOMEA-ST. Chapter 4 com-
pares GP-GOMEA-ST to other survival tree approaches on a synthetic problem. Chapter 5
investigates optimal hyperparameters for GP-GOMEA-ST. Chapter 6 concludes the thesis,
outlining potential limitations in the study and directions for future research.



Chapter 2

Background

This chapter will review the key concepts and background necessary of the thesis. This
chapter is split into two sections: the first section is on survival analysis and different sur-
vival models, and the second section provides a background on the gene-pool optimized
mixing evolutionary algorithm (GOMEA) used and how GOMEA can optimize a survival
tree.

2.1 Saurvival Analysis

Survival analysis is a statistical method used to analyze and model time-to-event data[4} 21]].
The primary objective is to estimate the survival function, S(r) = P(T > t), which represents
the probability that the event of interest has not occurred by time ¢. A key feature of survival
analysis is the presence of censored data. Censored data introduces incomplete information
[34]]. This generally happens due to the study design of an experiment. Survival analysis is
typically done in domains where there is a limited number of observations. Censored data
prevents traditional models from correctly predicting, as they assume complete data. There
are three main types of censoring:

* Right censoring: The most common form occurs when an individual’s event time
is unknown. For example, a patient still alive at the end of a clinical trial is right-
censored. This thesis only contains data with right censoring.

* Left censoring: Happens when the event of interest has already happened, but the
exact time is unknown. An example would be a patient who has already developed a
condition before the study’s start date, but whose onset time is not recorded.

 Interval censoring: Arises when the event occurs within an interval between two ob-
servation times, but the exact event time remains unknown. For example, a patient’s
disease progression is only known to have occurred between two clinical visits.

Survival analysis aims to estimate the survival distribution while taking censoring into
account. Survival models are often employed to quantify the effects of predictor variables on
the survival distribution. The Cox proportional hazards regression model and survival trees
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are two widely studied approaches. The upcoming sections discuss their use and benefits in
survival analysis.

2.1.1 Cox proportional hazards regression

Cox proportional hazards regression, also known as Cox regression, is a widely applied
model in survival analysis due to its semi-parametric nature and interpretability. It esti-
mates the hazard, which represents the instantaneous rate at which an event occurs at time z,
given that the individual has survived up to that time, based on a set of covariates [[6]. Cox
regression assumes that the hazard ratios between individuals are proportionate over time,
referred to as the proportional hazard assumption. The following Equation defines how
the hazard is calculated for a given time ¢

h(t|X) = ho(r) - B1Xi4B2Xo+ 4B X, 2.1)

The hazard h(¢|X) at time ¢ and coviarates X = (X, X3, ...,X,, ) depends on the baseline
hazard hg at time ¢ and covariate coefficients B, B2, ..., .. The baseline hazard is the value
when all covariates are set to zero. The effect of each covariate can be quantified by its
coefficient, rendering the Cox regression model interpretable.

Despite its popularity, the Cox proportional hazards model has significant limitations.
It relies on the proportional hazards assumption and models covariate effects linearly on the
log-hazard scale. This restricts its capacity to capture complex or nonlinear relationships
between predictors. These assumptions make Cox regression less suitable for datasets with
complex feature interactions. For this reason, Cox regression is not employed in this thesis.
Instead, the focus is placed on survival trees, which offer a more flexible, nonparametric
framework. Unlike Cox models, survival trees can accommodate nonlinear dependencies
and interactions, making them more robust across diverse data types and distributions.

2.1.2 Survival Trees

Survival trees are a commonly used machine learning technique in survival analysis [[13}27]].
They aim to predict the survival function based on censored data. Survival trees are binary
decision trees specifically designed for survival analysis. The trees recursively partition the
solution space through decision nodes. A decision node contains a function of x < ¢, where
x is a feature and ¢ is a threshold value. The leaf nodes of the survival tree represent groups
of individuals with unique survival distributions. Figure [2.1| shows an example of a bare
survival tree. The most common way to create a survival tree is by greedily splitting the
solution space according to a metric. The metrics used are generally log-rank statistics [32]
or log-likelihood ratios [46] that aim to divide the solution space into groups with differ-
ent survival experiences. Survival trees are evaluated based on their ability to accurately
predict an individual’s survival probability given their predictor variables. Another strength
of survival trees is that they are interpretable. This is due to their transparent and logical
structure, which allows one to understand the decisions made.

Nonetheless, survival trees have three significant limitations. The first limitation is the
instability of a survival tree. Small changes in the data can translate into a different sur-
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vival tree, thus not generalizing well. The second limitation is that traditional survival trees
employ a local greedy metric, which does not capture global trends. The last limitation is
the iterative nature of univariate splits, which can capture nonlinear relations between pre-
dictor variables; however, this subsequently increases the size of the survival tree, thereby
reducing its interpretability.

New methods for constructing survival trees have been developed to overcome these
limitations. The following sections provide an in-depth discussion of three state-of-the-art
models: the Optimal Sparse Survival Tree, the Oblique Survival Tree, and the Globally
Induced Survival Tree, highlighting their innovations and limitations.

Figure 2.1: Example of a survival tree with two predictor variables where the graphs repre-
sent the survival function associated to each group

Optimal Sparse Survival Tree

The Optimal Sparse Survival Tree (OSST) [18]] is a state-of-the-art survival tree that uti-
lizes dynamic programming. More precisely, OSST employs a dynamic programming with
bounds approach to identify sparse survival trees. This enables the model to exhibit im-
proved predictive capabilities and capture more complex relationships. These survival trees
are “sparse” as OSST produces smaller survival trees with fewer splits. This is a desirable
feature as it allows for more interpretable solutions. Another key feature of OSST is its
non-greedy splitting strategy.

Instead of using a greedy splitting strategy, OSST uses dynamic-programming-with-
bounds, an algorithm that aims to prune the search space until it finds an optimized survival
tree. The algorithm begins with a single leaf node and recursively explores all possible
feature splits, generating sub-problems. Each sub-problem maintains a lower and upper
bound of its objective value. The search space is pruned if the bounds show that a sub-
problem cannot improve the solution. The optimization is complete once all sub-problems
are solved, at which point the optimal survival tree can be extracted. The resulting survival
tree is optimized in a non-greedy way and is also sparse.
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Despite these advantages, OSST also has limitations. The OSST is a single-tree method.
This implies that it still has the same issues as traditional survival trees. Notably, they are
sensitive to noise and data perturbations, leading to instability in some scenarios. Addi-
tionally, the OSST uses univariate splits just like traditional survival trees. Therefore, if the
OSST needs to capture a nonlinear feature, the depth of the OSST will need to be large,
lowering the tree’s capacity and interpretability. Finally, while sparsity improves inter-
pretability, it may come at the cost of predictive accuracy when modeling highly nonlinear
or complex interactions. The following section introduces another state-of-the-art survival
tree that uses an EA and outlines how it addresses some of the shortcomings of OSST.

Globally induced Survival Tree

The Globally Induced Survival Tree (GIST) [24] is a state-of-the-art survival tree that uti-
lizes EAs to achieve global learning. GIST overcomes the instability and local subopti-
mality limitations of traditional and greedy tree-based methods. Unlike conventional ap-
proaches, GIST globally optimizes the entire survival tree, aiming for both stability and
improved predictive performance.

GIST constructs trees using an evolutionary induction framework. GIST does not rely
on greedy recursive splitting; instead, it treats the entire tree as an individual and evolves a
population of trees using evolutionary operators, keeping the best-performing survival tree
as the final solution. GIST utilizes a standard EA, the primary process of which is defined
in Section This design makes GIST less sensitive to noise and small perturbations in
the dataset, addressing a significant weakness of traditional survival trees. Additionally,
GIST employs a penalty term related to the size of the survival tree to favor smaller, more
interpretable trees.

One of the key limitations is that the splits done by GIST are univariate. Hence, GIST
requires deeper trees to capture highly nonlinear effects. This reduces the interpretability
of the tree. Another limitation is the variation operation used in GIST. GIST does not con-
sider how the genotype interacts with one another and applies variation randomly. Hence,
variation operations often result in worse survival trees. The next section introduces the
last state-of-the-art survival tree that expands on GIST to create globally optimized survival
trees with multivariate splits using an EA.

Oblique survival Tree

The Oblique Survival Tree (OST)[23]] is a state-of-the-art survival tree that utilizes EAs to
induce global optimization. OST uses multivariate splits to overcome limitations of tra-
ditional survival trees, mainly their linear splits and susceptibility to being stuck in local
optimas. By employing multivariate splits, OST can model complex, nonlinear relation-
ships between predictors, improving both predictive accuracy and robustness to noise.
OST constructs trees using the same process as GIST. The primary difference is that
each split in the tree is defined as a linear combination of multiple predictors, enabling
oblique decision surfaces that can capture multidimensional relationships. Additionally,
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OST incorporates a regularization term to penalize overly complex trees, favoring simpler,
more interpretable structures.

A key limitation of OST lies in its variation operators operations that modify a
tree. OST performs minimal crossover and relies mainly on mutation to introduce diver-
sity. The reason behind that choice is that improper crossover can easily disrupt the tree
structure and degrade model quality [12]]. Similar to GIST, OST does not account for de-
pendencies between genes, meaning that variation is applied without exploiting structural
relationships in the data. Consequently, search efficiency is reduced, and beneficial build-
ing blocks may be lost during the mutation process. Furthermore, although OST supports
multivariate splits, these splits are restricted to linear combinations of predictors. This con-
straint prevents OST from modelling nonlinear decision boundaries that require interactions
between variables. Collectively, these limitations inhibit OST’s ability to discover complex
global structures, particularly in highly nonlinear problems.

These limitations have led to the development of the GP-GOMEA-based survival tree.
The following section will first aim to explain the overall process of an EA, explain how
GP-GOMEA differs from standard EAs, such as the one used in GIST [24]], and why it is
preferable to use GP-GOMEA over other EAs.

2.2 Evolutionary Algorithms

This section will discuss the fundamental principles of EAs. EAs are algorithms that draw
their name from Darwin’s widely known theory of evolution [7]. The objective of EAs are
to adapt a population to its environment. Like in nature, EAs have a population comprised
of individuals; in this case, an individual corresponds to a solution in the EA. EAs optimize
their population through the iterative process of selection and variation. The EA used in this
project is GP-GOMEA which can be view in detail in Section [2.2.5]

2.2.1 Principle components of EAs

Typically, the population of an EA is initialized randomly, and throughout the generations,
the solutions are optimized until a termination criterion is met, like a time limit or when
all individuals have converged to the same solution. A generation consists of two steps:
selection and variation.

Selection is one of the key components of an EA. Its biological counterpart is often
referred to as “’survival of the fittest”. This process ensures that the population is optimized
and converges. To do so, every individual has a fitness, a numerical way of determining
the goodness of a solution, which is obtained through a fitness function. The selection pro-
cess involves identifying the most dominant individuals in a generation with above-average
fitness. By choosing these high-performing individuals, their ”good” genes will likely be
passed down to the next generation. Therefore, future generations keep these favorable
traits. This combination of favorable traits is referred to as building blocks and is the cor-
nerstone of a good solution. The most common way to do this is with fournament selection,
as opposed to other methods such as proportionate selection and rank/domination-based se-
lection. Tournament selection is straightforward: a few individuals are selected, and only

9
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the best individual, also called the tournament winner, remains. This process is repeated
multiple times to get enough individuals for the next generation. Tournament selection can
be performed with or without replacement. An advantage of tournament selection is that it
exerts high selection pressure, meaning there is a fast convergence of the population.

Variation is the other component of a traditional EA. In nature, no two individuals have
the same DNA. This is due to variation, which ensures diversity within the population. This
factor is esdsential in EAs as it allows them to explore more of the solution space. In EAs,
two operators manage variation: crossover and mutation. Crossover is the process in which
parent individuals recombine their parameters to create new offspring individuals. This
operation aims to produce fitter offspring that keep the favorable building blocks from the
parents. A limitation of the crossover step is that it constrains the search space to the initial
population. If the optimal building blocks are not present in the initial set of individuals or
are lost in the selection process, it would be impossible to find the optimal solution; hence,
the need for another variation operator: mutation. In EAs, the mutation phase mimics the
random mutation that can occur within an individual in nature. In the context of EAs, it is
done by slightly altering an individual, such as changing a bit from a O to a 1. Mutation
allows for the introduction of new building blocks previously not in the population. It slows
down the convergence process and maintains diversity among the population.

¢

Initialization Fltnes.s Crossover Mutation Selection 4 Terminate
Calculation

Figure 2.2: The optimization process of an EA

While all EAs have a selection and variation step, how these steps are performed differs
from one EA to another. A state-of-the-art EA, GOMEA, uses a special type of variation to
obtain better individuals.

2.2.2 Gene-pool Optimized Mixing Evolutionary Algorithm

GOMEA is a state-of-the-art evolutionary algorithm [41]. One of the main characteristics
is that it utilizes Gene-pool Optimal Mixing (GOM) for the variation process. GOM allows
for intermediate function evaluation, which enables considerable speedups over traditional
EAs, as it tests various sets of modifications and accepts them if they improve the solution.
This is due to the fact that GOM can exploit the linkage between variables by performing
crossover over groups of variables with high linkage.

The sets utilized during GOM are contained in a structure called family of subsets (FOS).
The FOS, denoted as F, is a set of subsets. Assuming / different variables, a FOS is
mathematically defined in Equation

F ={F°F',.. . F7="Y where F/ C {0,1,....— 1} Aj € {0,1,....|F| -1}  (2.2)

GOM uses a FOS called the linkage tree (LT-FOS). The LT-FOS is a hierarchical struc-
ture that contains all the variables of the optimization problem. The LT-FOS is built from

10
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the bottom up, starting with univariate FOS, an FOS where every variable is modeled as in-
dependent of every other variable. Then, the two subsets that exhibit the highest similarity
according to a chosen metric are merged. This process is repeated until all the variables are
combined into a single joint set. The LT-FOS follows the following rule: any subset in the
LT-FOS with more than one variable is composed of the union of two smaller subtests in
that LT-FOS. Equation [2.3] mathematically describes that rule:

VP € F (P >1 — 3F3F (F'NF =0)A ([F*| < [F)A([FY| < [F) A (FFUFY = F)))
(2.3)

Mutual information measures similarity and is used to decide which subsets in an LT-
FOS should be merged together. By iteratively joining the subsets with the highest similar-
ity, the LT-FOS is obtained. Before every generation, GOMEA will continue to refine the
LT-FOS. By capturing variable dependencies through the LT-FOS, GOMEA can perform
more effective recombination than traditional EAs, which assume variable independence.

GOM uses subsets of the LT-FOS to transform a parent solution into a new offspring
for the upcoming generation. The process goes as follows: a parent solution is first copied
into a temporary offspring. Then, for each subset in the LT-FOS, processed in random or-
der, the corresponding genes are injected from a randomly selected donor parent within the
population. The donor variables are retained if they do not worsen the fitness of the so-
lution; otherwise, the variables from the parents are restored. This process is repeated for
every individual in the population, ensuring each parent creates one offspring. By focus-
ing on mixing linked gene subsets, GOM effectively exploits problem structure, balancing
exploration and exploitation.

While GOMEA provides a powerful mechanism for capturing variable dependencies
and improving variation efficiency, it traditionally focuses on optimizing a single objective.
However, in many real-world problems, multiple metrics need to be optimized. Hence,
there is a need for multi-objective (MO) optimization.

2.2.3 Multi-Objective Optimization

MO optimization aims to optimize multiple, often conflicting objectives simultaneously. In
many scenarios, the objectives can not be reduced to a single scalar objective without the
introduction of bias, as the improvement of one objective could lead to the deterioration
of another. Instead of having a single optimal solution, MO optimization provides a set of
solutions with varying trade-offs. The set of solutions, also called the approximation front,
represents different compromises between the objectives.

The approximation set is constructed using the principle of Pareto dominance. Assum-
ing a problem where all objectives need to be minimized, a solution x° is said to Pareto
dominate a solution x! if and only if for all objectives i and for at least one objective, so-
lution x° is strictly better than x'. This is formally defined in Equation his is also
denoted as x” = x'. The mathematical expression can be seen in Equation An even
stronger condition is Pareto optimal solutions. A solution x is Pareto optimal if and only if
no solution dominates it. Formally noted in Equation The set &, known as the Pareto
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2. BACKGROUND

set, is the set of all Pareto optimal solutions formally defined in Equation[2.7] The Pareto set
gives the Pareto front, the set of all objective function values corresponding to the solutions
in the Pareto set.

min £(x) = (fo(): f1 (X)s-oos for1 () 2.4)

(Vie{0,1,...m—1}: i(x°) < filc")A@Bie{0,1,...m—1}: i(x°) < fi(x")) (2.5)

3 a0 (2.6)
P = {2 a0 (2.7)
. @ Dominated solutions
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. L ]
L]
L]
- H o«
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Figure 2.3: Visualization of an approximation front with two objectives

An issue with MO optimization is front degradation: the Pareto front can worsen due
to discarding a solution in the Pareto set. To address this, elitist archives are utilized [28]].
Elitist archives store non-dominated solutions. A solution is stored in the archive if one of
the following conditions is met: the solution dominates at least one solution in the archive,
or no solution dominates it. Any dominated solution is removed from the archive. Elitist
archive allows for diverse and stable solution front

A typical use case of multi-objective optimization is symbolic regression, where both
the regression’s accuracy and the size of the expression are considered. Balancing these
objectives is essential to ensure that the resulting models are accurate and interpretable.

2.2.4 Genetic Programming and Symbolic Regression

Genetic programming (GP) is a specialized subset of EAs. In the context of GP, individuals
are symbolic expressions, typically represented as trees. Symbolic Regression (SR) is a type
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2.2. Evolutionary Algorithms

Figure 2.4: Visualization of a symbolic regression tree

20

of regression analysis that aims to uncover the mathematical expression that best describes
a data set. The aim of GP is to, formally, given a data set of d features and n samples
and a target variable y, find a relationship f such that f : R — R. One advantage of SR
is that the resulting models are inherently interpretable. In the context of this thesis, the
goal is to develop a glass-box model, meaning that the underlying decision process is fully
transparent and the explanations provided are precise and comprehensible to humans. SR
directly supports this objective by producing explicit mathematical expressions that can be
analyzed without requiring external interpretation methods. Figure shows a symbolic
regression tree for the expression: (xo*3) + cos(x;)

This thesis applies a tree-based GP framework to solve a symbolic regression problem.
Each tree represents a candidate program. Internal nodes denote functions and leaves denote
terminals. Three sets define the components used to construct these trees:

* Function set: Contains the atomic functions, arithmetic or mathematical operations
that GP can combine to form programs.

* Terminal set: Contains the variables and constants that serve as the inputs or fixed
values in the programs.

¢ Primitive set: The union of the function and terminal sets.

The GP search process operates over a vast, combinatorial space of possible symbolic
expressions. Therefore, it is key to have variation operators that are capable of navigat-
ing the entire space. Just like in a regular EA, the main variation operators are crossover,
which exchanges subtrees between individuals, and mutation, which alters the expression
of a node. Selection in a GP drives the population toward fitter individuals. This bal-
ance between exploration and exploitation enables GP to discover nonlinear and complex
relationships in data without the need to predefine the model structure. Compared to tra-
ditional regression techniques such as linear or Cox regression, SR is more flexible, as it
can automatically uncover nonlinear interactions and produce closed-form mathematical
expressions that remain interpretable.

Despite these strengths, GP-SR also faces several limitations. A well-known issue is
bloat [36], where trees tend to grow excessively large without any improvements in perfor-
mance. Thus, bloat leads to reduced interpretability. Another limitation lies in the treatment
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of constants [37]. GP often struggles to find the precise value a constant should take. This
can lead to suboptimal approximations of the true underlying function. Furthermore, varia-
tion operators such as crossover and mutation are applied in a largely random manner and
may separate correlated variables, disrupting useful structural relationships and degrading
solution quality[S]].

These challenges motivate the exploration of more advanced GP variants. In particular,
this thesis employs GP-GOMEA, a recent approach that enhances the variation process by
modeling and exploiting dependencies between program components.

2.2.5 Genetic Programming Gene-pool Optimized Mixing Evolutionary
Algorithm (GP-GOMEA)

GP-GOMEA is a genetic programming framework that incorporates GOMEA. The first
limitation in traditional GP is that variation operators may separate correlated genes. Unlike
standard GP, which applies variation randomly and often destructively, GP-GOMEA uses
linkage learning to perform more informed search operations. This prevents the destruction
of individuals, as only changes that yield an increase in fitness are considered. The version
of GP-GOMEA used in this research stems from Virgolin et al.’s project [44].

This version of GP-GOMEA is multi-tree [39]], meaning each individual is a collection
of GP trees. This collection of trees is optimized simultaneously by GP-GOMEA, allowing
for the exploration of a wider solution space while maintaining diversity of the GP trees.

Furthermore, GP-GOMEA is capable of handling both categorical and numerical data.
This versatility broadens its applicability to real-world survival analysis problems, where
datasets often contain various variable types. This reduces the amount of pre-processing or
data transformation needed.

An issue in GP is the optimization of constants often represented as Ephemeral Random
Constant (ERC) [31]. GP-GOMEA tackles this issue by using on-line binning of constants
to optimize the ERCs efficiently. On-line binning limits the constants considered during
linkage learning to a maximum of y. Once 'y unique constants have been encountered, any
new constant is assigned to the bin of the closest existing constant.

A third major limitation in GP is bloat. GP-GOMEA deals with this issue in three
ways. First, GP-GOMEA limits the number of nodes in an individual and the depth of each
node. This creates a strict upper bound that prevents individual solutions from expanding
indefinitely. Secondly, this version of GP-GOMEA utilizes MO optimization, where two
objectives are considered: size and predictive performance. By explicitly optimizing for
size, the algorithm produces smaller, more interpretable individuals, while maintaining pre-
dictive performance. This is important for applications where interpretability is necessary,
such as survival analysis. In addition, large individuals incur a higher size-objective value
and are therefore implicitly penalized, functioning as a pruning mechanism that discour-
ages excessively complex solutions. Furthermore, MO optimization is employed because
it is undesirable to have only one model. It is more desirable to have a set of different
compromises between complexity and performance that depict varying trade-offs. Lastly,
GP-GOMEA is capable of using high-arity operators [38]]. High-level arity operators allow
the creation of complex yet shallow and interpretable trees; this, in turn, prevents bloat.
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Chapter 3

GP-GOMEA Survival Tree

This section will discuss the methodology of the proposed GP-GOMEA survival tree (GP-
GOMEA-ST). GP-GOMEA-ST is implemented on top of Virgolin et al.’s project [44]. That
specific version of GP-GOMEA is described in Section As GP-GOMEA employs
MO optimization, it utilizes multiple evaluation criteria. The first evaluation criterion is
the size metric This metric is identical to Virgolin et al’s initial project. The other
criterion is fitness metrics taking into account the censored data. Specifically, the Concor-
dance Index (C-Index) and Integrated Brier ScoreIBS (IBS) Were chosen to assess the
predictive accuracy of the GP-GOMEA survival trees. As no current C++ library has imple-
mented these metrics, they were implemented manually. To ensure the proper functioning
of these metrics, they were compared to the Python scikit-survival library to verify that they
yield identical results on the same input.

The second part of this chapter discusses how a GP-GOMEA-based survival tree is
represented and the changes made to Virgolin et al.’s project to achieve that. The first step
is to impose a tree structure by imposing a hierarchical order to the nodes in the Multitree
class. The second step is to change how data is processed over a given GP-GOMEA-ST to
reflect to new tree structure.

3.1 Evaluation Criteria

This section will cover the various metrics used for MO optimization. The first metric size
is a proxy for interpretability, favoring more interpretable solutions over complex ones. The
second metric is a survival metric that favors solutions with high predictive accuracy. Two
commonly used methods were considered for the survival metric: the C-Index and the IBS.
This section will also discuss why the IBS is preferred over the C-Index.

3.1.1 Size

The first metric considered is the size of a GP-GOMEA-ST individual. The size metric St
for an individual survival tree T is defined in Equation [3.1]

Sr=Y lt| (3.1)

teT
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3. GP-GOMEA SURVIVAL TREE

In Equation |t| denotes the number of components in the expression at each decision
node ¢. Thus, St represents the cumulative size of all expressions across the survival tree T'.

The size of a survival tree is defined by two hyperparameters: the number of decision
nodes n and the maximum depth /4 of the tree. The size is bounded within the interval
[n,n-(2"+1 —1)]. While the number of decision nodes 7 scales linearly, increases in / lead
to exponential growth in the potential tree size. Consequently, restricting the upper bound
of h is important to prevent exponential growth and retain interpretability. GP-GOMEA
aims to minimize the size objective to favor smaller, more interpretable trees.

The depth of the survival trees directly impacts model complexity and the risk of over-
fitting [[17]], supporting the need to limit depth for interpretability. Some state-of-the-art
survival trees employ depth-limited dynamic programming approaches to strike a balance
between performance and interpretability [18]. While the size of a solution is essential to
maintain the interpretability of a GP-GOMEA-ST, it does not determine the predictive per-
formance of a GP-GOMEA-ST. Therefore, an additional evaluation metric is needed, most
notably the C-Index and the IBS.

3.1.2 The predictive performance metrics

The Concordance Index (C-Index) and the Integrated Brier Score (IBS) are the two metrics
considered to evaluate the predictive performance of a GP-GOMEA-ST. These metrics are
the primary indicators of the predictive accuracy of a survival tree. The C-index [15] mea-
sures the model’s ability to correctly rank the survival times based on predicted risk scores.
To predict the risk score, the C-index utilizes the Nelson-Aalen Estimator (NAE), which
estimates the cumulative hazard function in a nonparametric way [30, [1]. Recently, nu-
merous shortcomings of the C-index were found [16} 2]. While both metrics were initially
implemented, this study ultimately prioritizes the IBS, providing a more comprehensive
assessment of survival prediction performance, particularly under censoring.

3.1.3 Integrated Brier Score

The Integrated Brier Score (IBS) is a metric mainly used in survival analysis due to its
ability to deal with censored data. The IBS evaluates a survival model’s overall accuracy
over a specified period. The time frame in this thesis is dependent on the data set and is set
between [t1, %4, Where 71 is the lowest and . is the highest time an individual survived
in the dataset. The IBS is bound between [0, 1]. Lower IBS values indicate better predictive
performance, suggesting that the survival probabilities predicted by the model are close to
the actual outcome on average over time. To get the overall performance, the IBS evaluates
the model’s performance over the entire follow-up period rather than at a single time. In this
thesis, the models evaluated are the survival trees. The IBS is estimated via the trapezoidal
rule. The trapezoidal rule numerically integrates the observed Brier Score (BS) over time
by approximating the area under the score curve as a series of trapezoids. The BS will
be discussed more deeply in section The exact formula used to calculate the IBS is
shown in Equation[3.2}
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IBS =

/ ™ BS(1) di (3.2)

Imax — 11

3.1.4 Decomposition of the IBS

Three subcomponents must first be calculated to calculate the IBS: the BS, the survival
function, and the inverse probability of censoring weights. This section will explain these
components and their use in computing the IBS.

The survival function & the Kaplan-Meier estimator

The survival function is a function that gives the probability that an individual will survive
beyond a specific time. The survival function is the foundational quantity that a model
must estimate. Often, it is neither feasible nor desirable to specify a parametric model
for the survival function; therefore, a nonparametric approach is used. A commonly used
nonparametric estimator to estimate the survival function $ is the Kaplan—Meier estimator
(KME). The following Equation [3.3]describes how the KME is calculated:

I’i—di

ri

KME(r) =S(1) =[] (3.3)
i<t

In Equation @] r; is the number of individuals at risk at time #;. It is defined as the
sum of all individuals whose event time is greater than #;. d; is the number of uncensored
individuals whose event time equals time #;. The KME is a strictly decreasing stepwise

function. It is one of the key components in calculating the Brier Score.

Brier Score

The BS is a metric that measures the accuracy of a probabilistic prediction. The original BS
is quite similar to the mean square error. The original BS is defined as follows:

1 N R
BS = N Z Z(fxy —0yy) (3.4)
x=1y=1

In the Equation N is the total number of different instances, R is the number of
different possible classes, f is the probability given to an individual, and o is the outcome
of that said event. A shortcoming of this version of the Brier score is that it does not consider
possible data censoring. While the initial BS cannot handle censored data, the integration
of the inverse probability of censoring weights (IPCW) into it makes it consider the
censoring of data.

B 1 i((O—S(t,x,-))z Ay <tAd;=1) " (1 —S(t,x,-))z Ay > l‘)) (3.5)
i3 G(yi) G(t)

The lower the BS(t), the more accurate the model is for that specific time. The Brier

Score used in this thesis is defined by the following formula@ The key components in

BS(t)
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3. GP-GOMEA SURVIVAL TREE

the BS are the survival function S, the probability of censoring weight G, and two terms.
The first term is the case term /(y; <t A§; = 1), the case term is a boolean value zero if
event 7 is censored or has a time greater than the time stamp ¢. The other is the control term
I(y; > t). Just like the case term, it is a boolean value. It takes a value of 1 if the event time
of individual i is strictly greater than the timestep ¢.

Inverse probability of censoring weight

The IPCW is one of the terms needed to calculate the Brier Score. The IPCW corrects the
BS for right-censoring. Just like the survival function, the IPCW uses the KME. However,
in this case, the KME is applied to the censored times instead of event times. This function
helps adjust for censored observations, ensuring that individuals who were censored earlier
do not bias the risk estimation. It is calculated as follows:

A Ci
Gr)=T]0--) (3.6)
Ti<t Ti
The IPCW, G(¢), represents the probability of not being censored beyond time ¢. The
first term ¢; is the number of censored individuals at time 7. The second term is risk r;.

3.2 Representation

The GP-GOMEA-ST follows the classical evolutionary algorithm framework, where a pop-
ulation is optimized across generations through the processes of selection and variation. It is
a survival tree, where every decision node is a tree-based GP optimized using GP-GOMEA.

First, the output of every decision node is constrained to be a Boolean. A GP-GOMEA-
ST is like a binary decision tree; hence, a continuous output is unnecessary, as each decision
node has two children. The root node of every decision node is enforced to be a comparison
operator. This constraint applies to trees with a height of one or more. Doing so assures an
inequality or equality, and thus a Boolean output. In the case where the tree of a decision
node is of height zero, the root node is a Boolean value (True or False).

Like in the reference project, decision nodes are stored in a list called nodes. The
decision nodes do not need to be stored differently, as imposing a decision tree structure
on a list is possible. The tree hierarchy is imposed on the nodes list through index-based
organization, following these three structural rules:

* The root node of the survival tree is located at index O in nodes.
* The left child of a node at position i is located at index 2i + 1
* The right child of a node at position i is located at index 2i + 2

A limitation of this indexing approach is that survival trees generated this way are al-
ways left-filled. Nodes are assigned in order, which leads to less flexible tree structures.
However, this representation allows for efficient top-down traversal of the tree, which is
useful when processing the data.
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Additionally, in this project, the height of GP-GOMEA-ST is constrained. GP-GOMEA-
ST has a maximum height of three; therefore, a full GP-GOMEA-ST will have at most seven
decision nodes and eight child nodes. This additional constraint is due to the fact that every
extra decision node adds exponential time to optimizing the GP-GOMEA-ST. Additionally,
increasing the number of decision nodes penalizes the interpretability of a solution.

Algorithm 1: Recursive Tree Splitting (RTS) Procedure

Input: X : data matrix, p : current node position
Output: List of data subsets (terminal nodes)
0+ 0

if p > max_nodes or X =0 then
L return o

b < Boolean output of decision node p on X;
Lirye < indices where b = 1;
Itaise < indices where b = 0;
Xirue < X[Itrue];
Xealse — X [Ifalse];
Pleft < 2p+ 15
Pright <— Zp +2;
if X # 0 then
L 0 < 0+ RTS(Xirue, Pref);

if Xfalse 7& 0 then
L 0 < 0+ RTS(Xfalseapright);

return o;

Another change made is to adapt the way data is processed to suit a GP-GOMEA-ST.
In Virgolin et al.’s original project, data is traversed sequentially across all nodes, which
is not directly applicable to a tree-based survival model. In the context of survival trees,
this sequential approach fails to respect the hierarchical ordering of the decision nodes.
Therefore, a new procedure tailored to the survival tree structure is required. The process
can be seen in Algorithm|[I] It aims to partition the initial dataset into the appropriate child
nodes of the decision tree by recursively splitting the data. The procedure begins at the root
decision node of the tree and continues until the terminal nodes are reached. Separating
the dataset enables the computation of the survival function3.1.4|in each child node. The
survival function is one of the key components to computing an individual’s fitness.

Figure shows the main steps from initialization to completion of the GP-GOMEA-
ST algorithm. Throughout this process, GP-GOMEA is responsible for initializing the pop-
ulation. Furthermore, GP-GOMEA replaces the worst-performing individuals and applies
variation to these individuals. Once created, these survival trees need a metric to evaluate
them. As the algorithm has multiple objectives, the output is a set of survival trees, all of
which are part of the approximation front.
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Figure 3.1: Schema of the process of the genetic programming gene-pool optimized mixing
evolutionary algorithm survival tree
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Chapter 4

Experiment on synthetic data

The objective of the 1st experiment is to determine the performance of GP-GOMEA-ST
on synthetic data and how robust GP-GOMEA-ST is to non-essential information. The
performance of a survival tree is given by the IBS defined in Section [3.1.3] where a lower
score indicates a better performance. GP-GOMEA-ST will be compared to two different
survival trees. One of the survival trees is the SurvivalTree model from the sksurv.tree
module of the scikit-survival library [33]], it will be referred to as the Sksurv survival
tree (SST). The other survival tree is the "Ideal” Survival Tree (IST) that is the best possible
survival tree given a dataset. The use of synthetic data allows for making an IST as the
ideal splits are known. These two different survival trees allow for benchmarking of the
implemented algorithm. Using the IST enables us to see if GP-GOMEA-ST finds the correct
boundaries. Section[d.1]does a deeper dive into the datasets.

4.1 Test Problems

Two synthetic datasets were employed in this experiment. Both datasets contain 10,000 data
points with two feature vectors, x; and x,, drawn from a uniform distribution in [—1,1].
Additionally, these datasets are split 75 — 25 training and testing. The first dataset only
has these two features. On the other hand, the second dataset has these two features and
three noisy features. Each of noisy features is generated from a different distribution: the
first noisy distribution is a uniform random integer from [0, 5], the second noisy feature is
random values from an exponential distribution with a scale of 1, and the last noisy feature
is a normal distribution with a center of 1 and a standard deviation of 1.

The motivation for using synthetic datasets is twofold. First, they provide complete
control over the sample size and feature distributions. Second, synthetic datasets allow for
the construction of datasets with known optimal solutions. For both datasets in this experi-
ment, the optimal survival tree, referred to as the ideal survival tree (IST), can be explicitly
defined. The IST allows a direct performance comparison between the GP-GOMEA-ST
and the optimal model.

Both datasets are designed to mimic the XOR problem with continuous features, a
known challenge for greedy survival trees. Such splitting strategies often fail to capture
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the non-linear relationships between features, particularly when only univariate splits are
allowed. In both of these problems, a strong performance requires discovering two hidden
intermediate features, defined in the Equation [4.]

X3 =X| XX, X4 =x%+x%. “4.1)

The ideal survival tree for both XOR problems is x3 < 0.0 XOR x4 < 0.664. Figure@
illustrates the decision boundaries for the XOR problem with x4 plotted in red and x3 in blue.
These datasets allow us to test whether GP-GOMEA-ST can discover an optimal splitting
strategy, requiring a global and multivariate splitting strategy where greedy methods strug-
gle to.

Figure 4.1: Plot showing the distribution of the data as well as the boundaries

4.2 Experimental Setup

Three different types of survival trees were evaluated to run this experiment. First, the ideal
survival tree (IST) is described in Section [4.I] The second survival tree is the SST. The
maximum height of the SST was determined through hyperparameter tuning and set to 20,
as this yielded the best results. This implementation employs a greedy splitting strategy,
with each split being univariate. The third model is the GP-GOMEA-based survival tree 3]
configured with a population size of 1024. The algorithm was allowed to run for up to
50 generations, or terminate early if no improvement in the hypervolume was observed for
ten consecutive generations. Each GP-GOMEA survival tree was limited to a maximum
of three decision nodes to ensure interpretability, with the expression inside each decision
node restricted to a maximum height of four.

All three survival tree models were executed on 20 different random seeds for both
the noisy and non-noisy XOR datasets. The same seeds were used across all models to
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ensure consistency in the introduced randomness. From these runs, the mean and standard
deviation of the IBS were computed for both the training and testing sets. For the SST, the
IBS was calculated using the sksurv.metrics module. To calculate the IBS, the SST needs
to first predict the survival functions for the test dataset. The predicted survival functions,
the corresponding event indicators, and time-to-event values are then used to calculate the
IBS for the given PSA. Once all the IBS values are collected from the three different models,
a statistical comparison will be done. Two statistical tests are used: the Paired t-test [40]
and the Wilcoxon test [45]]. This is done to ensure that the variation between two models is
significant.

Additionally, for all 40 experimental runs involving the GP-GOMEA-ST, the approxi-
mation fronts were recorded. These fronts contain sets of solutions characterized by train-
ing and testing IBS values, the size, and expressions of the survival trees. Furthermore,
additional parameters were recorded for each seed, including the number of generations
executed, computation time, number of evaluations performed, and hypervolume. Analyz-
ing these fronts enables a detailed examination of the decision boundaries produced by the
GP-GOMEA-ST.

4.3 Results

The IBS performance of the SST and the GP-GOMEA-ST across 20 independent seeds on
both non-noisy and noisy XOR datasets can be seen in Table All the IBS values are
multiplied by 100 for clarity. In the non-noisy case, GP-GOMEA-ST achieves a mean test
IBS of 6.37, compared to 9.29 for the SST. The difference is of 3.49 corresponding to a rel-
ative improvement of approximately 37% on the test set. In the noisy case, the improvement
was slightly larger, with a mean reduction of 3.64 equivalent to a 34% improvement. The A
metric represents the deviation from the ideal IBS. It is close to zero for GP-GOMEA-ST in
both settings, particularly in the non-noisy case (0.03 on the test set). For the SST, A is larger
in both datasets, with values exceeding 2.9. Looking at the Test IBS, there is a deterioration
of 0.35, approximately a deterioration of 5.5% when noise is added to GP-GOMEA-ST. On
the other hand, the SST has a decline of 1.42. On the non-noisy training set, GP-GOMEA-
ST achieved a lower standard deviation (0.13) than the SST (0.26), whereas on the test set,
GP-GOMEA-ST recorded a higher standard deviation (0.07) than SST (0.01).

Survival Tree Dataset  Train IBS Test IBS Train A Test A
Sksurv survival tree Non-noisy 9.45+0.26 929+0.01 3484026 2.94+0.01
Sksurv survival tree Noisy 997+£040 10.71 £0.03 4.02+040 4.36+0.03

GP-GOMEA survival tree  Non-noisy 5.96 =£0.09 6.37 £0.07 0.04 £0.09 0.03 = 0.07
GP-GOMEA survival tree Noisy 633 £025 6.72+0.23 038+025 0.38+0.23
Ideal survival tree Non-noisy 5.92 £ 0.1 6.34 £0.0 Na Na
Ideal survival tree Noisy 592+0.1 6.34 £0.0 Na Na

Table 4.1: Integrated Brier Score of two types of survival tree: the SST, and GP-GOMEA-
ST. The IBS (x100) is expressed as the mean and the standard deviation, calculated over
20 seeds. The A is the difference over the 20 seeds from the ideal IBS
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Figure depicts the IBS on the test set across 20 different seeds for two models,
GP-GOMEA-ST and SST, across both the XOR and Noisy XOR datasets. The figure illus-
trates that the IBS values for GP-GOMEA-ST on both XOR problems are more tightly clus-
tered than those of the SST. Additionally, the visualizations show that only GP-GOMEA-ST
could find optimal solutions. On the XOR problem seeds: 2, 3, 5, 7, 10, 13, 14, 17, 18, and
19 have an optimal decision tree. On the noisy XOR problem seeds, 13 and 17 found the
optimal solution. This figure enables the identification of outliers within a model. There are
no outliers among both SST. On the other hand, in the GP-GOMEA-ST non-noisy condition
(indicated by blue squares), two outliers corresponding to seeds 4 and 12 are observed. On
the noisy XOR problem, GP-GOMEA-ST (as red circles) has six outliers: seeds 7, 9, 11,
12, 16, and 18.
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Figure 4.2: Scatter plot of IBS (x100) for GP-GOMEA-ST and SST across 20 seeds on
XOR and Noisy XOR datasets

Building upon identifying outliers in Figure #.2] the following section examines the
decision boundaries associated with these outlier seeds to gain insight into their behavior.
On every plot is a black outline that indicates the ideal circle size. Figure .3 shows the
boundaries of a GP-GOMEA-ST with the lowest train IBS in the solution front for seeds 4
and 12. The red function depicts the boundary created with the function Z;, Z, is the blue
contour, and Zj is the yellow contour. The best GP-GOMEA-ST in seed 4 has an IBS
of 6.75 and the solution size is 49. When simplified, the three decision nodes translate to
the following expressions:

Z1 =223 —2x — ) +23 0635209 Zp =0 <2 Zy=xb+x3>0.391
X1

For seed 12, the GP-GOMEA-ST with the lowest IBS has a value of 6.56 and a size of
3
28. Its expressions are as follows: Z; = (x(z) —l—x%) <0.616, 7, = ;—? > 0.0, and Zz = xp < ;—?
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Figure 4.3: Outliers in the non-noisy XOR problem

Among the boundaries of the best GP-GOMEA-ST per seed in the XOR problem, seed
3 stands out. Figure[d.4]displays the bounds of that special individual. It has a perfect IBS
of 6.34 and a size of 23. The three decision nodes are the following:
_ X0 X1

Zl = 157 <(o-x)(F-x5) Z=1 Zz=1

¥ @ Group 3:not Z1 and Z3
Group 1: 71 and Z2 |

ORS¢ 1 v {
KO @S0
075 050  -0.25 0.00 0.25 X
X1

Figure 4.4: Boundaries of the best performing GP-GOMEA-ST in the approximation front
on the non-noisy data on seed 3

25



4. EXPERIMENT ON SYNTHETIC DATA

Figure shows the GP-GOMEA-ST outliers in the noisy XOR problem. The red
function depicts the boundary created with the function Z;, Z; is the blue contour, and Z3
is the yellow contour. For seed 7, the GP-GOMEA-ST with the lowest IBS has a value of
7.03 and a size of 44. Its expressions, once simplified, are as follows:

2

71 :x(z) < (xo < xO) , Zr= (1 —x% —x‘f) < (x%- 1.778) , Zz=1<(x —xo)z—(xlxo)z.
X1

For seed 9, the GP-GOMEA-ST with the lowest IBS has a value of 0.0717 and a size of 42.

Its expressions are as follows:

X0
Z] = <xi‘— ;é) S ()C] —)C())4, Zz =1 S (x1 —|-)C0)4, Z3 = (xo—x1)4 S (1 +x%)2.
1

For seed 11, the GP-GOMEA-ST with the lowest IBS has a value of 0.0713 and a size

2
29.201
of 51. Its expressions are as follows: Z; = <x%3*°) <0,Z = ((xo—x1)+ 1x1§70‘868)2 <
Xl

2
(lﬂ<xle> ,and Z3 = (x; +x0)* < T+ xox1 — (x0 —x1)%.
.\’0 —
For seed 12, the GP-GOMEA-ST with the lowest IBS has a value of 7.04 and a size of
35. Its expressions are as follows:

2
X0
Z = (xl Sx0> v Z=1—(x+x) <(-x)  Zy= (@ +x)" <1— (@ —x)*

For seed 16, the GP-GOMEA-ST with the lowest IBS has a value of 7.12 and a size of
41. Tts expressions are: Z; = xox; < (x%)“, Zy = (x1+x0)* < 1—(x1 —x0)?, and Z3 =
1—(x; —X())2 < (xo +X1)4.

For seed 18, the GP-GOMEA-ST with the lowest IBS has a value of 6.94 and a size
of 46. Its expressions are: Z; = (x1x9) < 0, Zp = (x1 +x0)* < 1— (x; —x)?, and Z3 =
(%0 —x1) + —12%5) " < 1= (wvox1) — (2 +3).

Table |4.2| presents the results of statistical comparisons between the three different sur-
vival tree models using paired t-tests and Wilcoxon signed-rank tests on both training and
test datasets.

When the SST is compared to GP-GOMEA-ST, both paired t-tests and Wilcoxon tests
show highly significant differences (p < 0.001) in performance on training and test sets for
both the XOR and noisy XOR problems. The difference in IBS between GP-GOMEA-ST
and the SST is approximately 3.47 (train) and 2.91 (test) on the XOR problem, and 3.64
(train) and 3.97 (test) on the noisy XOR problem.

Comparing GP-GOMEA-ST on noisy versus non-noisy datasets reveals statistically sig-
nificant differences (p < 0.001) with a small but positive mean difference of approximately
0.37 (train) and 0.36 (test), indicating a slight performance deterioration due to noise.

The final comparison is the IST to GP-GOMEA-ST. These comparisons reveal smaller
but still statistically significant differences in performance. On the test set, the mean IBS
difference is approximately +0.04 for the non-noisy data and +0.42 for the noisy data.
Additionally, the p-values indicate significance with a value of p = 0.003 and p < 0.001 on
the test set for the XOR and Noisy XOR, respectively.
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Figure 4.5: Outliers on noisy XOR problem



4. EXPERIMENT ON SYNTHETIC DATA

Comparison Test Train p-value Test p-value Train Mean Diff (95% CI) Test Mean Diff (95% CI)

Sksurv vs GP-GOMEA Paired t-test <.001 <.001 —3.47[-3.62, —3.31] —2.91[-2.94, —2.87]
Wilcoxon <.001 <.001 - -

Sksurv vs GP-GOMEA (noisy data) Paired t-test <.001 <.001 —3.64 [—3.89, —3.38] —3.97 [-4.09, —3.85]
Wilcoxon <.001 <.001 - -

GP-GOMEA vs GP-GOMEA on the noisy data  Paired t-test <.001 <.001 +0.37 [0.26, 0.48] +0.36 [0.25, 0.48]
Wilcoxon <.001 <.001 - -

Ideal vs GPGGOMEA Paired t-test 0.042 0.003 +0.02 [0.3, —0.52] +0.04 [0.033, 0.047]
Wilcoxon < 0.037 <.001 - -

Ideal vs GPGOMEA (noisy data) Paired t-test <.001 <.001 +0.4,[0.28,0.51] +0.42 [0.30, 0.53]
Wilcoxon <.001 <.001 - -

Table 4.2: Statistical Comparison of Model Performances

4.4 Discussion

This experiment aimed to determine if GP-GOMEA-ST can overcome the XOR problem
and compare its performance to a greedy survival tree. Additionally, this experiment tried
to evaluate the impact noise has on GP-GOMEA-ST.

4.4.1 Performance of GP-GOMEA-ST

The results of this experiment demonstrated that the GP-GOMEA-ST consistently outper-
formed the SST on both the noisy and non-noisy XOR problem, and it is more robust to
noise. As shown in Table GP-GOMEA-ST outperforms the SST as it achieves lower
IBS values across both datasets. GP-GOMEA-ST reduces the IBS by more than 31% com-
pared to SST on the XOR problem and by more than 42% on the noisy XOR problem. This
highlights a substantial gain in predictive accuracy, indicating that GP-GOMEA-ST predicts
the survival function better than the SST. Not only does GP-GOMEA outperform the greedy
survival tree, but it is also capable of finding the optimal solution. The near-zero score on
the A train for the XOR problem shows that GP-GOMEA-ST can find the optimal solution
for the XOR problem. Figure shows that even in the presence of noise, GP-GOMEA
successfully identified the optimal solution, whereas the SST did not approach the optimal
solution. The low IBS reflects better survival probability estimation, hence the ability to
model the complex interactions in XOR problems. On the other hand, the high IBS for
the SST is consistent with the known limitation of standard survival trees, which typically
struggle with highly non-linear, non-separable problems like XOR. Table[d.2|further proves
that GP-GOMEA-ST outperforms the SST by as much as on both XOR problems, the com-
parison yields a p-value of p < 0.001 on both the paired-t test and the Wilcoxon test. This
shows that GP-GOMEA-ST is statistically significantly better than the SST. This means that
GP-GOMEA-ST is better equipped to handle complex datasets where potential non-linear
interactions may happen and noisy features are present.

Unlike the SST, GP-GOMEA-ST can also optimize its structure. This can be seen
in Figure where GP-GOMEA-ST managed to plot the XOR problem using only one
decision node. The other two decision nodes are void of elements. The reason why the
structure was also optimized is that GP-GOMEA-ST optimizes the IBS as well as the size,
due to the algorithm using multi-objective optimization. This ability is essential in practice
as it makes the subsequent survival trees more interpretable for humans.
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4.4. Discussion

While GP-GOMEA-ST outperforms the SST, the SST exhibits lower variance between
training and testing performance than GP-GOMEA-ST. As shown in Table[4.1] GP-GOMEA-
ST has low training and high testing variance, especially in the case of the noisy XOR prob-
lem. This trend may indicate overfitting in GP-GOMEA-ST. If this is indeed the case, it may
imply that GP-GOMEA-ST is likely to get stuck in a local optimum during the search pro-
cess and be unable to grasp the structure of the data fully. This trend can also be visualized
in Figure 4.2] where both GP-GOMEA-ST plots show greater variance than the SST coun-
terpart. The reason behind the potential overfitting is likely the EA aspect of GP-GOMEA,
which may favor more complex models that fit the training data closely. A consequence is
that GP-GOMEA-ST may not be able to generalize properly.

4.4.2 The effect of Noise on GP-GOMEA-ST

Table[.2]indicates that noise significantly negatively impacts the performance of GP-GOMEA-
ST. This can be seen from the p-value of p < 0.001 on both the paired-t test and the
Wilcoxon test when comparing GP-GOMEA-ST on both XOR problems. While the effect
on the IBS is small, an increase of approximately 0.37. This increase in IBS corresponds
to less accurate survival probability estimates when noisy features are present. A potential
explanation is that the addition of noisy features complicates the identification of correct
building blocks and thus linkage sets within GP-GOMEA. Noise also deteriorates the qual-
ity of the expressions in the decision nodes. The outliers from the regular XOR problem
displayed in Figure[4.3|both find the two hidden features: the circular feature and the "plus”
feature. The reason seed 12 performed poorly is that the threshold constant is the circular
feature is not optimal. On the other hand, Figure .5 shows that the best performing GP-
GOMEA-ST in seeds 7, 9, and 11 did not find the circular feature. Hence, this explains the
poor performance of these seeds on the noisy XOR.

Furthermore, noise appears to increase the variability in GP-GOMEA-ST’s performance
across different runs, potentially reflecting a higher susceptibility to convergence on local
optima or overfitting to noise patterns. This variability emphasizes the challenge noise poses
to evolutionary algorithms that rely on linkage learning.

Another notable effect of noise is observed in the structure of the survival trees gener-
ated by GP-GOMEMA. In the noiseless XOR problem, the root node consistently corresponds
to the circular feature. GP-GOMEA-ST employs a multi-objective optimization approach
that simultaneously minimizes the IBS and the complexity of the survival tree. As the
circular feature contains more nodes than the “plus” feature, GP-GOMEA should always
prioritize the circular feature over the other feature. However, in the noisy XOR problem,
the root node shifts to the alternate feature, suggesting that noise can influence feature se-
lection and tree topology, potentially reflecting a compensatory strategy by the model in
response to noise.
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Chapter 5

Hyperparameter optimization of the
GP-GOMEA-ST

The overarching goal of the 2nd experiment is to analyze the impact of the population size
and dataset size. More specifically, this experiment aims to observe how the dataset size and
population size impact the performance, time, size of the survival trees, and number of gen-
erations. Similar to the previous experiment [ the performance of a survival tree is given
by the IBS defined in Section[3.1.3] where a lower score indicates a better performance, and
the size of the survival tree. GP-GOMEA-ST will be compared to the Ideal Survival Tree,
which serves as an upper bound for the algorithm.

5.1 Test Problem

In this experiment, a single dataset was employed: the noisy XOR dataset (see Section 4.
The noisy version is preferred over the non-noisy version, as it better reflects real data sets
where not all variables are useful. This dataset was chosen because previous experiments
demonstrated that the GP-GOMEA-ST was capable of discovering near-optimal decision
boundaries for this problem, making it a suitable benchmark for further analysis. Addi-
tionally, the XOR problem requires the algorithm to optimize globally in order to have a
performant solution. to simultaneously optimize the nodes and structure of the

To study the effect of data set size on model performance, the original noisy XOR data
set containing 10,000 samples was used to generate ten subsets of increasing size, ranging
from 1,000 to 10,000 data points in increments of 1,000. Stratified shuffle splitting is applied
to each subset to maintain the same proportion of censored to uncensored samples found in
the original dataset. This procedure ensured that each subset remained representative of the
original distribution while allowing for a controlled analysis of the impact of dataset size on
the GP-GOMEA-ST’s predictive performance and computational efficiency.
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5.2 Experimental Setup

The GP-GOMEA-ST was executed on ten datasets of different sizes and ten different pop-
ulation sizes. A detailed description of the datasets used is provided in Section The
population sizes tested are 32, 64, 128, 256, 383, 512, 640, 786, 896, and 1024. These sizes
span a broad range with gradual increments, allowing the detection of potential performance
plateaus. The upper bound of 1024 was chosen because this population size successfully
found the ideal decision boundary in the previous experiment (Section f). Consequently,
this experiment aims to determine whether smaller population and dataset sizes can also
discover optimal or near-optimal solutions. Additionally, this experiment examines the in-
fluence of both dataset size and population size on the algorithm’s performance metrics.

To prevent the impact of outlier solutions, each combination of dataset size and pop-
ulation size was evaluated across five different random seeds. The same set of seeds was
used for all combinations to ensure fair comparison. For all runs, the approximation fronts
were recorded. These fronts contain sets of solutions characterized by training and testing
IBS values, tree size, and the corresponding expressions of the survival trees. Furthermore,
additional parameters were recorded for each seed, including the number of generations
executed and computation time. This information enables a detailed analysis of how popu-
lation and dataset size affect computational efficiency and predictive performance. For each
configuration, the Ideal Survival Tree (IST) was also computed to serve as an upper bound.
The IBS value varies with seed, dataset size, and population size as sub-sampling changes
the data composition. The IST indicates how close the GP-GOMEA-ST solutions are to the
optimal solution.

Afterwards, statistical analysis is done to evaluate differences in performance across
population sizes and dataset sizes. While multiple statistical models were considered, such
as the Kruskal-Wallis test [25]] and the Brown—Forsythe test [3]], due to the predictor vari-
ables being categorical and the outcome variable being quantitative, the most suitable statis-
tical test is the ANOVA [10, [11]. A two-way ANOVA was employed to examine the main
and interaction effects of the p on the various factors. Additionally, when no interaction
is recorded, post hoc pairwise comparisons are performed using Tukey’s HSD test [43] to
identify specific group differences.

5.3 Results

In the upcoming section, all the IBS values are multiplied by 100 for clarity. For all
heatmaps, the X-axis depicts the varying dataset sizes, ranging from 1,000 to 10,000 data
points. The Y-axis corresponds to the population size, varying from 32 to 1024. The value
in each cell was calculated by averaging over all seeds with the same combination of pop-
ulation and dataset size. Warmer, whiter colors indicate low values, whereas cooler, colder
tones represent higher values.
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Figure 5.1: Heatmap of the Time taken in minutes until completion of the algorithm, aver-
aged out over 5 seeds based on the dataset and population size

5.3.1 Computational objectives.

Heatmap [5.1] shows the average time taken in minutes to complete the GP-GOMEA-ST.
A correlation between the time taken and the dataset and population size can be observed.
Higher dataset sizes or population sizes result in longer times taken. The maximum value
is 1,969 minutes, which is approximately 33 hours. This is achieved with a population size
of 1,024 individuals and a dataset size of 8,000. The minimum value in the heatmap is 6.6
minutes. This is achieved with a population of 32 and a dataset of size 1,000. Some key
outliers are the maximum value and the values 1,344, 1,425, 1,089, and 1,762. The increase
from a population of 32 to 1024 translates to an average increase of 2,918% in time with
a standard deviation of 827. The maximum increase in time happens with the dataset of
size 7,000, with an increase of more than 4,721%. The minimum increase is observed with
the dataset of size 4000, resulting in an increase of 1,911%. The impact of increasing the
dataset size from 1,000 to 10,000 results in an average increase of 1,241% in time. Over the
10 different population sizes, the standard deviation is 287. The maximum increase in time
occurs with a population size of 512, resulting in a 1,792% increase in time. The minimum
occurs at a population size of 1024, resulting in a time increase of only 613%.
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Table 5.1: Two-Way ANOVA Summary Table for the Effect of Population Size and Dataset
Size on Time

Sum_sq df F p

Dataset size 1.49e+11 9.0 13131 <.001
Population size  1.95e+11 9.0 170.8 <.001
Interaction 7.93e+10  81.0 7.73 < .001
Residual 5.06e+10 400.0

A two-way ANOVA Table[5.T|was conducted to investigate the effects of population size
and dataset size on the time required to complete the algorithm, as well as their interaction.
The table displays a significant main effect of population size and dataset size, as well as an
interaction of time. The effect of population size has an F value of 170.8 and a significant
p-value (p < .001). The effect of the dataset size has an F value of 131.31 and a significant
p-value (p < .001). Lastly, the interaction had a lower F-value of 7.73 and a significant
p-value (p < 0.01).

384 256 128 64 32
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Figure 5.2: Heatmap of the number of Generations until completion of the algorithm, aver-
aged out over 5 seeds, based on the dataset and population size
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5.3. Results

The following heatmap displays the average number of generations required for
the algorithm to terminate across five seeds. The heatmap reveals a lack of correlation
between the number of generations and the dataset size and population size. Overall, the
average number of generations across this heatmap is 27.2. The average maximum number
of generations is 39.6. This occurs when the population size is set to 1024 and the dataset
size is set to 7,000. The average minimum number of generations is 18.6. This occurs
when the population size is set to 384 and the dataset size is 3,000. In addition to the
maximum and minimum values, there are two other noticeable outliers: a low value of 20.0
at a population size of 64 and a dataset size of 6,000, and a high value of 38.4 at a population
size of 1024 and a dataset size of 1,000.

Table 5.2: Two-Way ANOVA Summary Table for the Effect of Population Size and Dataset
Size on Number of Generations

Sum_sq df F p

Dataset size 5.46e+2 9.0 091 0.516
Population size  1.60e+3 9.0 2.67 0.005
Interaction 445¢e+3 81.0 0.82 0.856
Residual 2.67e+4 400.0

A two-way ANOVA Table was conducted to investigate the effects of population
size and dataset size on the number of generations required to complete the algorithm, as
well as their interaction. The table displays a significant main effect of population size
on the number of generations. The effect of population size has an F value of 2.67 and
a significant p-value of 0.005. On the other hand, dataset size and the interaction do not
appear to have a significant effect on the number of generations.

Table 5.3: Tukey HSD Post-hoc Comparison Between Groups

Comparison Mean Diff p(adjusted) Lower CI

64 - 1,024 6.50 [1.39,11.61]  0.003
384 - 1,024 6.24 [1.13,11.35]  0.005
32- 1,024 508  [-0.03,10.19]  0.053

Table[5.3]is the result of the Tukey’s HSD post hoc test to examine pairwise differences
between population sizes. The comparison revealed that the population size of 1,024 differs
significantly from the other population sizes. Between population sizes 32 and 1,024, there
is a mean difference of 6.50, a 95% confidence interval of [1.39, 11.61], and a p-value of
.003. Additionally, population size 512 and 1,024 differ with a mean difference of 6.24,
95% confidence interval of [1.13, 11.35], and p-value of .005. While no other pairwise
comparisons reached statistical significance, the comparison of population sizes 32 and
1024 has an almost significant p-value.
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5.3.2 Performance metrics of GP-GOMEA-ST
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Figure 5.3: Heatmap of the average IBS of the best performing GP-GOMEA-ST in the
approximation front over 5 seeds

The heatmap[5.3]depicts the average over 5 different seeds of the GP-GOMEA-ST IBS.
In general, the heatmap suggests that a higher population size and a larger dataset yield a
better IBS score. Overall, the increase from a population of 32 to 1024 yields an average
improvement of 14.27% for the IBS. The maximum improvement is 16.91% for the dataset
of size 1,000, and the minimum improvement is 9.58% for the dataset of size 9,000. The
increase in the number of data points in the data sets produces an average improvement of
22.65% for the IBS. The maximum improvement for the ten different datasets is 26.49% for
an identical population of 64, and the minimum improvement is 19.15% for a population
of 768. Lastly, for equivalent population sizes, the dataset with 3,000 samples consistently
exhibited lower IBS values than the one with 2,000 samples.

A two-way ANOVA, Table [5.4] was done to examine the effect of population size and
dataset size on the IBS of GP-GOMEA-ST. The table displays a significant main effect
of population size and dataset size, as well as an interaction on the IBS. The effect of
population size has an F value of 80.67 and a significant p-value (p < .001). The effect of
the dataset size has an F value of 294.31 and a significant p-value (p < .001). Lastly, the
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Table 5.4: Two-Way ANOVA Summary Table for the Effect of Population Size and Dataset
Size on the IBS

Sum_sq df F p

Dataset size 2.21e-2 9.0 29431 <.001
Population size  6.07e-3 9.0 80.67 <.001

Interaction 9.84e-4  81.0 1.45 0.01
Residual 3.34e-3  400.0
Ideal IBS Scores per Dataset size
Figure 5.4

interaction had a lower F-value of 1.45 and a lower, but still significant, p-value (p < 0.01).

Figure [5.4] shows the sole impact of the dataset size on the IBS of the IST. When ex-
amining the ideal IBS given by the IST, it is apparent that the higher the number of data
points in the set, the better the IBS score. There is an 18.5% improvement in IBS score,
going from 7.783 to 6.347, as the number of data points increases from 1,000 to 10,000.
However, this is not strictly an improvement, as can be seen for 3000 data points, the IST
reaches a peak IBS of 7.819 and then steadily decreases.

Figure [5.5] is a heat map showing the difference in IBS values based on the dataset
size and population size. This is done by subtracting the IBS given by the IST from the GP-
GOMEA-ST IBS values. The resulting heatmap reveals a correlation between the difference
in IBS scores and both population size and dataset size. Lower dataset sizes and population
sizes result in bigger differences. In contrast, higher dataset sizes and population sizes result
in lower differences. The maximum difference in this heat map is 2.39. This is achieved
with a population size of 32 and a dataset size of 1,000. The minimum value is 0.17,
achieved when the population size is set to 896 and the dataset size is 7,000. The increase in
dataset size from 1,000 to 10,000 yields an average improvement of 46.31% with a standard
deviation of 13.16. The maximum is recoded at 65.17% at a population size of 512. The
minimum is 34.83% when the population size is 896. Regarding the increase in population
size from 32 to 1024, the result is an average improvement of 73.47% with a standard
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Figure 5.5: Heatmap of the Time taken in minutes until completion of the algorithm for the
best performing GP-GOMEA-ST in the approximation averaged out over 5 seeds

deviation of 8.2. The maximum improvement is 82.61%. The minimum improvement is
63.24%.

The heatmap [5.6] depicts the average over 5 different seeds of solution size for the best
performing GP-GOMEA-ST. The heatmap reveals a lack of correlation between the solution
size and the dataset size and population size. Overall, the average number of generations
across this heatmap is 44.3. The average maximum number of generations is 57.6. This
occurs when the population size is set to 640 and the dataset size is set to 4,000. The average
minimum number of generations is 31.8. This occurs when the population size is set to 128
and the dataset size is 1,000. In addition to the maximum and minimum values, there are
four other noticeable outliers: two low values of 34.4 and 35.8, both with a population size
of 384 and a dataset size of 2,000 and 4,000, respectively. The other values are 53.0, with a
population size of 32 and a dataset size of 9,000, and 52.0, with a population size of 1,024
and a dataset size of 2,000.

A two-way ANOVA, Table [5.5] was done to examine the effect of population size and
dataset size on the solution size of GP-GOMEA-ST. The table displays a significant main
effect of population size on the solution size. The effect of population size has an F value of

38



5.3. Results
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Figure 5.6: Heatmap of the Solution Size for the best performing GP-GOMEA-ST averaged
out over 5 seeds

Table 5.5: Two-Way ANOVA Summary Table for the Effect of Population Size and Dataset
Size on the Size of GP-GOMEA Solutions

Sum_sq df F p

Dataset size 7.19¢e+2 9.0 129 024
Population size  1.72e+3 9.0 3.08 0.001
Interaction 5.93e+3 81.0 1.18 0.15
Residual 2.48e+4  400.0

3.08 and a significant p-value of 0.001. On the other hand, dataset size and the interaction
do not appear to have a significant effect on the solution size.

Table[5.6]is the result of the Tukey’s HSD post hoc test to examine pairwise differences
between population sizes. The comparison revealed that the population size of 32 differs
significantly from those of the other populations. Between population sizes 32 and 128,
there is a mean difference of 5.46, a 95% confidence interval of [0.36, 10.56], and a sig-
nificant p-value of .025. The population sizes of 32 and 256 differ by a mean difference
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Table 5.6: Significant pairwise comparisons using Tukey’s HSD (a = 0.05)

Comparison Mean Diff 95% CI p (adjusted)

32-128 5.46 [0.36, 10.56] 025
32 -256 6.96 [1.86, 12.06] .001
32 -384 5.48 [0.38, 10.58] .024
32-512 5.14 [0.04, 10.24] .046
32 -896 6.88 [1.78, 11.98] .001

of 6.69, with a 95% confidence interval of [1.86, 12.06] and a significant p-value of .001.
The population sizes of 32 and 384 differ with a mean difference of 5.48, a 95% confidence
interval of [0.38, 10.58], and a significant p-value of .024. The population sizes of 32 and
512 differ with a mean difference of 5.14, a 95% confidence interval of [0.04, 10.24], and
a significant p-value of .046. Lastly, the population sizes of 32 and 896 differ with a mean
difference of 6.88, a 95% confidence interval of [1.78, 11.98], and a significant p-value of
.001.

While no other pairwise comparisons reached statistical significance, the comparison of
population sizes 32 and 1024 has an almost significant p-value.

5.3.3 Boundaries of outliers

The first outlier is when the population size is set to 1024 and the dataset size is 1,000.
In Figure the red boundary depicts the first expression Z;, the blue decision boundary
represents Z, and lastly, the brown dotted line represents Z3. For seed 1, Figure the
best performing GP-GOMEA-ST has an IBS of 8.58. Its expressions are as follows:

22
(—697) — 2)(6487 < [(X% - IXISXI) + (X%)2] )

Zy=1< (x0+x1)*,

Z) =

Zy =1 < |(—22.06)% 0. (xs- —18.34)?| .
X1

For seed 2, Figure the best performing GP-GOMEA-ST has an IBS of 8.59. Its
expressions are as follows:

11.02x, —@

Zr=(n —x0)4 = 2x0 —l—xpc;

Zy=(xo—x1)* —x1 < 1,

Zy = (xF+1)* < (%0 +x1)*%.
For seed 3, Figure the best performing GP-GOMEA-ST has an IBS of 8.91. Its
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expressions are as follows:

—-38.2
= (7.85x)* < Knole—igs) 38 9],
1

X0
Z, =0,
= (—0.69)8 < 1 — (x1x0) — (x1 —x0)%.
For seed 4, Figure the best performing GP-GOMEA-ST has an IBS of 8.27. Its
expressions are as follows:

Z = <x° +x0 < 0) = [(x] £0.794%)7] ,
Zy=(—0.7982 -2 +1) < (xo—x1)?,

Z3 = (xo —|—X1) < (xl + 1) .

For seed 5, Figure the best performing GP-GOMEA-ST has an IBS of 7.92. Its
expressions are as follows:

.854 19.58
Z = [(x0—31.20)(x0x1)(xZ+5 99+X3)] |:(11 02x1 — T )(X()~—31.38+ . ) ,
1 0
Zr =1,
Z5=0.

For seed 1, Figure the best performing GP-GOMEA-ST has an IBS of 7.11. Its
expressions are as follows:

“= :<2x1><XOX3> < (Z )} < [+,

7= [(~6.961) ~46.946 — (11 ~0)’] < |(x0—x1)* =1,y |,

i 2
75 = (’CI;X(’) g(_1.0302)4].

For seed 2, Figure [5.8b] the best performing GP-GOMEA-ST has an IBS of 6.85. Its
expressions are as follows:

Z=2< [33.254- (v — 14.705)2] ,

X0
2= [(-0.927)° - ()’] < [(s3 421",
(—17.858)*
5= ooaayt = o)

For seed 3, Figure the best performing GP-GOMEA-ST has an IBS of 6.69. Its
expressions are as follows:

Z1 = (—1.030%)* < [(x0 —x1)* + (x1 +x0)?]
Zy = (xo+x1)* < (x1 —x0)*,
23 [)C1X() — 11 ()] (0 3202)
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For seed 4, Figure the best performing GP-GOMEA-ST has an IBS of 6.69. Its
expressions are as follows:

Z = (—1.030%)* < [(x1 +x0)% + (x0 —x1)?] ,
Zy = (x1—x0)* < (11 +x0)",
Zs = [(} <x1)? = ((0<x0)*)? .

For seed 1, Figure [5.8a] the best performing GP-GOMEA-ST has an IBS of 6.95. Its
expressions are as follows:

Zy = [(9)* +21] < [1=x5— ()],

X0/36.840

X1

2
X
(1 < x%) < x%] :
X0

Zy=(xg-x7) <

Z3 =

5.4 Discussion

The aim of this second experiment was to determine how the population size and dataset
size impact GP-GOMEA-ST’s performance across different metrics and solutions found.

5.4.1 Performance metric

Two performance metrics were analyzed in this experiment: the solution size of the GP-
GOMEA-ST and the Integrated Brier Score (IBS). The results indicate that solution size
is not influenced by dataset size, but rather by population size. The ANOVA (Table [5.5)
and subsequent Tukey HSD post-hoc analysis (Table[5.6) show that the solution size of GP-
GOMEA-ST differs significantly across several population sizes. Specifically, a population
size of 32 yields significantly smaller solutions than population sizes of 128, 256, 384, 512,
and 896 (p < .05). Smaller solution sizes correspond to simpler and more interpretable
decision boundaries; however, they may also indicate limited exploration and, consequently,
suboptimal boundaries due to underfitting. When combined with the information from the
heatmaps (Figures[5.3]and Figure[5.3), these results suggest that smaller populations indeed
lead to underfitting.

For the XOR problem, the optimal solution has a size of 17, whereas the average size
of the solutions found was 42—more than twice as large. Examination of the evolved
expressions revealed that many of these solutions could be algebraically simplified. This
suggests that while GP-GOMEA-ST can discover highly predictive structures, it does so at
the cost of interpretability. Furthermore, among the solutions in the solution front, larger
trees tended to perform better than smaller ones. However, the model that performs best
on the training data is often not the best on the testing data, indicating that it has overfit to
the training set. Overall, to achieve better solution sizes, it is essential to maintain a high
population size to prevent underfitting. Perhaps a better alternative to solution size would
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be the “effective size”. This metric would compute the size of a given survival tree after
simplifying the mathematical expressions.

In contrast to the size of solutions generated by GP-GOMEA-ST, the IBS appears to be
correlated with both the dataset size and population size, as well as their interaction. This
is supported by examining Table The increase in population and dataset size leads to
an overall improvement of the IBS. The reason for such performance increases is that an
increase in population size enables more exploration of the solution space, resulting in a
greater variety of solutions. Additionally, a larger population reduces the chance of getting
stuck in local optimas.

In regards to the dataset size, this outcome aligns with expectations. A greater number
of data points provides a more representative sample of the underlying data distribution;
hence, GP-GOMEA-ST can learn decision boundaries that generalize better, reducing the
risk of overfitting to noise present in smaller datasets. Additionally, larger datasets enable
more reliable estimation of survival probabilities. Figure [5.4]shows that larger dataset sizes
generally lead to improved predictive performance, as reflected by the decreasing IBS val-
ues of the IST. However, this relationship is not strictly monotonic. The temporary increase
in IBS observed at 3,000 data points suggests that performance may depend on the specific
data samples used, potentially due to sampling variability or noise sensitivity at intermediate
dataset sizes. This observation highlights that smaller datasets may not provide sufficient
information to reliably estimate survival probabilities, resulting in unstable model behavior.
Furthermore, in real-world applications, the absence of a known optimal solution compli-
cates the evaluation of model quality, making it challenging to determine whether observed
performance fluctuations stem from data limitations or inherent model variability.

The decision boundaries generated by GP-GOMEA-ST provide additional insight into
the model’s behavior. As illustrated in Figure[5.7c|and Figure some models accurately
capture the circular decision boundary, while others only approximate it. Interestingly,
even with 1,000 data points, GP-GOMEA-ST was able to generate a 1-expression solution
to solve the XOR problem. This shows that even in smaller datasets, GP-GOMEA-ST is
capable of finding a near-optimal solution.

From the observed results, the circular boundary was found in two out of five seeds for
the population size of 1,024 with a dataset of 1,000 points (Figure[5.7), and in four out of
five seeds for the dataset shown in Figure[5.8] In both cases, when the circular boundary was
identified, the resulting surfaces closely approximated the ideal threshold for that boundary.
Importantly, all boundaries produced by GP-GOMEA-ST were multivariate, independent
of the population and dataset size, demonstrating its ability to construct complex, nonlinear
decision surfaces that traditional univariate survival trees cannot reproduce.

Lastly, the accuracy of the estimated constants improved with larger datasets, suggest-
ing that the availability of more data enhances the numerical stability of the evolved expres-
sions. Conversely, smaller datasets may lead to inaccurate or unstable constant estimation,
ultimately limiting the precision of the decision boundaries. This behavior further supports
the notion that data quantity plays a critical role in the structural robustness of GP-GOMEA-
ST.

Overall, when examining the IBS results, a clear trade-off emerges between dataset size
and population size. Smaller datasets require larger population sizes to achieve IBS values
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approaching the ideal boundaries. However, even with high population sizes, GP-GOMEA-
ST can become trapped in a local optimum, resulting in suboptimal decision boundaries.
Furthermore, the limited data available in smaller datasets negatively affects the quality of
constant estimation, which may further hinder model performance. These findings suggest
that future work should investigate whether tuning additional hyperparameters, such as tree
depth, can help GP-GOMEA-ST generate more robust and accurate solutions across varying
dataset sizes.

5.4.2 Computational metrics

Two computational metrics were analyzed: the execution time of the algorithm and the
number of generations required for convergence. The results indicate that the number of
generations is primarily influenced by population size rather than dataset size. The ANOVA
(Table ??) and subsequent Tukey HSD post-hoc analysis (Table show significant dif-
ferences in the number of generations across several population sizes. Specifically, a pop-
ulation size of 1,024 required significantly more generations than population sizes of 64
and 384 (p < .05). This suggests that larger populations enable broader exploration of the
search space, which can delay convergence but helps the algorithm escape local optima.

Across all 500 runs, only 15 (3%) reached the cap of 50 generations, indicating that
the algorithm generally converges before the maximum number of iterations is reached.
For cases in which the circular decision boundary was not found, early termination likely
reflects premature convergence rather than successful optimization. While increasing the
early-stopping threshold could mitigate this issue, it is already set to 10 generations (20% of
the total). Alternatively, adjusting the mutation rate may promote more effective exploration
and reduce the likelihood of premature convergence.

These findings highlight a key computational trade-off in GP-GOMEA-ST: larger pop-
ulations improve exploration and solution quality but come at the cost of higher computa-
tional effort and longer convergence times. Balancing this trade-off is essential for achieving
both efficiency and accuracy.

Figure [5.1] illustrates the relationship between dataset size, population size, and com-
putational time for GP-GOMEA-ST. The results show a clear upward trend: as either the
dataset size or the population size increases, the computational time rises substantially. This
observation is supported by the two-way ANOVA[5.1] which reveals significant main effects
for both dataset size and population size (p < .001), as well as a significant interaction effect
(p < .001).

The main effect of dataset size indicates that larger datasets substantially increase com-
putation time, primarily because evaluating individuals becomes more computationally ex-
pensive when more samples are used to compute the survival functions and fitness. Sim-
ilarly, the significant effect of population size suggests that larger populations prolong the
optimization process by increasing the number of individuals evaluated per generation. To-
gether, these two factors lead to an increase in computational cost, as reflected in the darker
regions of the heatmap.

The significant interaction effect implies that the influence of population size on com-
putational time depends on the dataset size, and vice versa. Specifically, for small datasets,
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increasing population size leads to modest time increases. However, for larger datasets,
computational time escalates sharply with population size, reaching over 1,800 minutes for
the largest configurations. This suggests that the joint scaling of both parameters dispropor-
tionately amplifies time, possibly due to the combined effects of increased evaluations and
longer convergence times.

Despite these increases, it is worth noting that the scaling behavior appears consis-
tent and predictable, allowing for the planning of computational resources. These results
highlight an important trade-off in GP-GOMEA-ST: while larger populations and datasets
improve model robustness and generalization, they do so at the expense of higher compu-
tational cost. Future work could explore techniques to mitigate some computational burden
without compromising model quality.
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Chapter 6

Conclusions and Future Work

This thesis aimed to develop a survival tree optimized using GP-GOMEA, enabling the si-
multaneous optimization of both the structure of the survival tree and the content of decision
nodes. The proposed GP-GOMEA-ST was evaluated on a single synthetic benchmark prob-
lem and compared to two different survival trees. The results demonstrated that this new
approach achieves promising performance in some evaluation criteria. This final chapter
summarizes the key findings of the experiments and outlines potential directions for future
research on GP-GOMEA-ST.

6.1 Conclusions

Survival trees are interpretable models that allow users to understand the interactions be-
tween predictor variables. However, a major limitation of traditional survival trees is their
inability to effectively capture nonlinear relationships coupled with their univariate split-
ting strategy. The proposed survival tree GP-GOMEA-ST addresses these limitations by
simultaneously optimizing both the structure and content of the survival tree and its de-
cision nodes using the state-of-the-art evolutionary algorithm GP-GOMEA. As a result,
GP-GOMEA-ST is capable of discovering more effective and globally optimized splitting
strategies compared to greedy, locally optimized survival trees.

Furthermore, GP-GOMEA was able to find optimal or near-optimal splitting strategies
on the synthetic problems. These problems require non-linear splits in order to perform
well on them. This suggests that GP-GOMEA-ST is capable of capturing non-linear rela-
tionships. Additionally, GP-GOMEA-ST outperformed the SST by over 35% across the dif-
ferent problems. The solution front generated from the multi-objective optimization allows
GP-GOMEA-ST to avoid overfitting to the problem compared to single-objective optimiza-
tion and offers a variety of solutions with different trade-off benefits between interpretability
and accuracy.

These findings suggest that incorporating global, multivariate optimization through GP-
GOMEA enables survival trees to overcome the inherent limitations of greedy splitting
strategies. GP-GOMEA-ST offers a viable pathway toward more accurate, interpretable,
and robust survival models. Making them a potentially viable tool for professionals to use
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to better understand how variables interact to lead to a given outcome.

While GP-GOMEA-ST appears to be a promising approach to survival trees, this thesis
overlooks some key limitations. Notably, the algorithm was tested only on synthetic data,
and hyperparameter tuning was limited. Hence, the upcoming section discusses potential
future work that would expand on GP-GOMEA-ST to solve some of these limitations.

6.2 Future work

In this section, several possible directions for future work are outlined.

Apply GP-GOMEA-ST to real-world survival datasets. While this thesis evaluated
GP-GOMEA-ST on synthetic datasets to control complexity and interpret the learned deci-
sion boundaries, real-world validation is essential to assess generalizability. Real datasets
typically have higher censoring rates, more features, and limited sample sizes (often below
1,000 samples) [26} 18 29, 9]. Applying GP-GOMEA-ST to such datasets would test its
robustness to noise, scalability, and practical predictive performance.

Compare GP-GOMEA-ST against state-of-the-art survival models. In this thesis,
GP-GOMEA-ST was primarily compared to a greedy survival tree implementation. Future
research should include systematic benchmarking against advanced survival tree methods
such as the Optimal Sparse Survival Tree[18]], Globally Induced Survival Tree [24], and
ensemble approaches like the Random Survival Forest. These comparisons would clarify
where GP-GOMEA-ST excels—particularly in terms of interpretability, robustness to noise,
and global optimization—and where further algorithmic refinements are necessary.

Extend the hyperparameter tuning of GP-GOMEA-St. Two noticeable factors that
were not tuned in this thesis are the depth of the decision nodes and the number of decision
nodes. Tuning these hyperparameters will aid in comprehending the implications of these
hyperparameters and their impact on the IBS, computation costs, and model complexity
associated with scaling these metrics. This would provide a more comprehensive picture of
GP-GOMEA-ST’s scalability, generalization capacity, and computational efficiency.

Redefine the complexity objective beyond tree size. In this thesis, GP-GOMEA-ST
utilized multi-objective optimization, balancing predictive accuracy (IBS) and solution size
to create a solution front. However, the size metric did not consistently promote inter-
pretability, as larger models often achieved superior IBS scores. Future work could explore
alternative complexity metrics. An alternative to the size metric could be the “effective”
size: the size of a tree after all expressions have been simplified. This metric would have a
more better proxy to interpretbility. The advantage of such metric would be that allows the
tree to still be big and hence diverse. This alternative metric may yield more meaningful
trade-offs between interpretability and accuracy.
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