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Abstract. Lookup arguments allow to prove that the elements of a
committed vector come from a (bigger) committed table. They enable
novel approaches to reduce the prover complexity of general-purpose
zkSNARKSs, implementing “non-arithmetic operations” such as range
checks, XOR and AND more efficiently. We extend the notion of lookup
arguments along two directions and improve their efficiency: (1) we
extend vector lookups to matrix lookups (where we can prove that a
committed matrix is a submatrix of a committed table). (2) We consider
the notion of zero-knowledge lookup argument that keeps the privacy
of both the sub-vector/sub-matrix and the table. (3) We present new
zero-knowledge lookup arguments, dubbed cq+, zkcq+ and cq++, more
efficient than the state of the art, namely the recent work by Eagen,
Fiore and Gabizon named cq. Finally, we give a novel application of
zero-knowledge matrix lookup argument to the domain of zero-knowledge
decision tree where the model provider releases a commitment to a deci-
sion tree and can prove zero-knowledge statistics over the committed data
structure. Our scheme based on lookup arguments has succinct verifica-
tion, prover’s time complexity asymptotically better than the state of
the art, and is secure in a strong security model where the commitment
to the decision tree can be malicious.

1 Introduction

General-purpose zero-knowledge succinct arguments of knowledge (zkSNARKS)
promise to efficiently and succinctly prove any kind of NP-statement while keep-
ing privacy, integrity and verifiability guarantees. Thanks to their generality, a
great number of real-world applications can be performed with built-in security.
The two-step recipe for building a brand new zero-knowledge application typi-
cally consists of first describing the application in a low-level constraint system
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(for example, Rank-1 Constraint System [4] or Plonk arithemization [19]) and
then use the latest fully-developed zkSNARK as backend. Unfortunately, most
often, the unfolded circuit of the applications at hand becomes huge and, thus,
the proving time could become unfeasible for real-world applications.

Lookup arguments [6,14,32,38,39] are a novel approach to reducing the size
of unfolded circuits, bringing back to the real world many interesting applica-
tions. Briefly and informally, a lookup argument allows to trade sub-circuits
evaluations for lookup into their truth tables. For example, instead of having n
different sub-circuits describing the computation of a hash function in the final
unfolded circuit, the protocol designer could define n different custom gates that
perform efficient lookup operations in the truth table of such a hash function.
More concretely, lookup arguments are used in current zkSNARKSs for represent-
ing “non-arithmetic operations” that cannot be expressed efficiently through the
finite field operations supported by the zkSNARK, such as range checks, XOR
and AND (see for example [6,18]). Very recently, the work of Arun, Setty and
Thaler [3] shows how to use lookup arguments to create SNARKSs for virtual-
machine executions, namely a new SNARK scheme, called Jolt, that allows veri-
fication of the correct execution of a computer program specified with an assem-
bly language. Informally, in Jolt, the truth table of each assembly instruction
is encoded in a (predefined and highly structured) table. Then, lookup argu-
ments enforce the correct instructions execution, namely checking the inputs
and outputs described by their truth tables.

In this work, we advance on lookup arguments in multiple ways. We propose
new lookup arguments that improve over the state of the art [14]. One of our
schemes enjoys, almost for free, an extended notion of zero-knowledge, which we
call fully zero-knowledge, which protects the privacy of arbitrary commitments
to the tables. Orthogonally, we consider two natural extensions from vectors to
matrices and give constructions for such extensions. Finally, we motivate the
extensions to matrix and to fully zero-knowledge by giving a new application to
privacy-preserving machine learning that crucially relies on them.

New Lookup Arguments Based on cq. In a lookup argument, the prover
aims to show that each coefficient of a (short) committed vector f of size n
belongs to the (large) table t of size N > n. Since N > n, one of the desiderata
of lookup arguments is that the prover’s computation does not depend on N.
Following a fast-pace line of recent works, Eagen, Fiore, and Gabizon [14] pro-
posed an efficient lookup argument called cq (cq for cached quotients). Notably,
cq’s prover’s computation is quasi-linear in n, while the proof size and verifier’s
computation are constant (e.g., proofs are 3840 bits, when using the standard
BLS12-381 elliptic curve). In spite of appearing nearly optimal in efficiency, cq
comes with two shortcomings. The first one is that it is not designed to have zero
knowledge in mind. The second, more technical, one is that its use in larger proto-
cols likely requires additional proof elements and pairing computations.’ In this

! This is due to the fact that cq assumes an SRS of the same size as the table t, and
this allows avoiding a degree check. This condition, though, is often not guaranteed
(e.g., in a SNARK for constraint systems larger than such a table).
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work, we propose a new lookup argument, dubbed cq™, that addresses all these
shortcomings of cq and even achieves better efficiency. Namely, cqt achieves
(standard) zero-knowledge at no overhead: it has the same prover’s computation
of cq and shorter proofs (3328 bits, and 2944 bits without ZK). Additionally, we
consider two variations of cq™: the first, dubbed zkcq™, is fully zero-knowledge,
while the second, dubbed cqt™, has shorter proofs. Both schemes require in
verification only one pairing computation more than cq™.

Lookup Arguments for Matrices. A lookup argument could be used to show
that a database f is a selection of the rows of a database t. However, to naively
use lookup arguments for such an application, each row of the database must
be efficiently encoded in one single field element (supported by the lookup argu-
ment). We consider two natural extensions to matrices. We focus on Kate et al.
[25] polynomial commitment (also known as KZG commitment scheme) adapted
to matrices. We give two lookup arguments for matrices that internally call a
lookup argument for KZG commitments. The first scheme allows proving that a
committed database f is a selection of the rows of a committed database t, the
second one allows proving that f is a selection of a projection of a database t.

A New Approach to Zero-Knowledge for Decision Trees. We show an
application of fully zero-knowledge matrix lookup arguments to zero-knowledge
for decision trees (zkDT). We improve over the framework of Zhang et al.
[40], which showed zkSNARKs for evaluations of committed decision trees and
zkSNARKSs for accuracy of committed decision trees. The former kind of zero-
knowledge protocols can prove that a committed decision tree T, on input a
vector X, outputs a label v, while the latter schemes enable to validate the accu-
racy (namely, the ratio of true positives) of a decision tree on a given dataset.
Our framework can instantiate different kinds of statistics over committed
decision trees, including evaluation and accuracy. Our design decouples the com-
putation of the committed decision tree and the performed statistics. This allows
for a plug-and-play approach. For security, we extend the notion of security from
[40] considering possibly maliciously generated commitments to decision trees.

1.1 Technical Overview

Our Zero-Knowledge Lookup Arguments. Similarly to cq, cqt uses the
technique of logarithmic derivates of Habdck [23]. However, we diverge from cq
early, introducing several novel ideas that allow us to improve on cq’s efficiency.
One of the differences is that, while cq uses Aurora’s sumcheck [5] twice, our
cq™ only runs it once. Nicely, this technique allows us to kill two birds with one
stone, in fact, cq™ does not require any additional low-degree tests. We give a
more detailed technical overview in Sect.4.1.

Matrix Lookup from Vector Lookup. To commit to a matrix, we can com-
mit the concatenation of the rows of the matrix. Our matrix lookup arguments
label all the entries of such a vectorization with the coordinates of each cell of the
sub-matrix F into the bigger table T. Similarly, in the precomputation phase,
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they label each cell in the big table T with its coordinate. To prove that the k-th
row of F appears in T, we show that the labelled matrix F* = (i5,7,F ;) je[q) i
a sub-matrix of labeled table T* = (7,7, T; ;);; and that i1 =iy = --- = iq (in
particular i; = k), where d is the number of columns of the matrices. Notice that
the first claim can be proved efficiently with a (non-succinet) matrix commit-
ment for matrices with NV - d rows and 3 columns following techniques from [6],
while the second claim can be efficiently expressed through polynomial equations
following techniques from [10]. In particular, for the first part, given a challenge
p «— T, the prover hashes h(F*) = S°_ pi~! . F} to a single column (where
F; are the columns of F*). Since h(-) is a universal hash function, if h(F*) is
a subvector of h(T*), then with overwhelming probability, F* is a submatrix
of T*, thus reducing matrix lookup argument to vector lookup. For the second
part, we notice that the first column Fj of F* is a step function, thus we first
commit to the shift of F] and then show that the difference between the shifted
column and the column F7J is a function that has zeros in well-defined positions.
More details in Sect.5.2. The second scheme goes even further and proves that
a matrix F with d’ columns and d’ < d is a submatrix of T. As before, we set
F* = (i,4,F; ;)icr,jep for subset R = {ry,...,7¢} C [N] and D C [d]. Addi-
tionally, using the technique of shifted polynomials, F3 ;54 ; = F5 i1 1)04j =7
for any i, 7. More details in in our full version [7, Appendix D].

Our Approach to ZK for Decision Trees. A decision tree is an algorithm
that performs a sequence of adaptive queries reading from its input and outputs
a value. At each query, the algorithm moves from a node in the tree to one of its
children, and the output is defined by the label of the reached leaf. Two impor-
tant parameters are the total number of nodes Ny and the number of features d
of the inputs. Following the work of Chen et al. [11], we can efficiently (although
redundantly) encode a decision tree as a matrix with Ny rows and 2d + 1
columns. An evaluation of a decision tree under this alternative representation
consists of locating the row corresponding to the correct leaf and then showing
that the input vector matches all the constraints described by such a row. Thus,
we can commit to a decision tree by committing to its matrix encoding, and to
prove correct evaluation, we can commit to the single row corresponding to the
correct leaf and prove with a matrix lookup argument that the committed row
is indeed a leaf of the committed decision tree. Once isolated such a row, we can
then prove that the input vector matches all the constraints described by the
row. Notice that our strategy scales well with the number of different evalua-
tions. In fact, to prove statements which involve multiple input vectors for the
decision tree, we can commit at proving time to a matrix whose rows correspond
to the entries of the leaves reached by the evaluations (instead of committing to
a single row). Thanks to the efficiency property of the matrix lookup argument,
the prover time complexity is independent of the size of decision trees.

Beyond a Trusted Commitment to the Tree. A malicious committer could
commit to a matrix that contains a row that matches a leaf with a label, let’s say,
0, and another row that matches the same leaf but where it maliciously assigns
the label 1. Now, such a bogus commitment to a decision tree could allow the
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malicious prover to show both T(x) = 0 and T(x) = 1. The problem is that the
committed matrix does not encode a decision tree. To solve this problem, we show
a set of sufficient algebraic conditions (cf. Sect. 6.2) for a matrix to encode a deci-
sion tree. We can check efficiently these algebraic conditions through a general-
purpose zkSNARKSs for R1CS (see for example [5,8,21,29,31,33,34]). However,
the number of constraints is O(dN2,), and thus the prover time complexity is
quadratic in the number of nodes. The algebraic constraints we propose are
essentially linear equations between matrices and Hadamard-product equations,
which are the kind of equation checks performed in R1CS-based zkSNARKs. In
fact, if we gave up on the privacy of the decision tree?, we could define an R1CS
circuit that depends on the tree-structure of the decision tree, and we would go
down to O(dNi) number of constraints. We can restore zero-knowledge using
this approach, by privately committing to such an R1CS-like circuit and prove
in zero-knowledge that the circuit belongs to a well-defined family of circuits
(defined in Sect.6.2). We use the techniques from Zapico et al. [38] for com-
mitting to a basic matrix, whose rows are elementary vectors, and to prove its
basic-matrix structure and the permutation argument from Plonk [19] to prove
the rows of the matrix are all different.

1.2 Related Work

Lookup Arguments. Lookup arguments were introduced by Bootle, Cerulli,
Groth, Jakobsen and Maller [6]. The state-of-art for lookup arguments for arbi-
trary tables® is the recent work of Eagen, Fiore, Gabizon [14] named cq and
based on the technique of logarithmic derivates of Habock [23]. cq has prover
complexity proportional only to the size of the smaller vector and independent of
the bigger table assuming pre-processing for table. To our knowledge, all lookup
arguments with similar efficiency properties are based on the Kate et al. (com-
monly known as KZG) polynomial commitment scheme [25]. Among these, we
mention Caulk+ by Posen and Kattis [32] (based on Caulk [38] by Zapico et
al.) and Baloo [39] by Zapico et al.. The latter work introduces the notion of
Commit-and-Prove Checkable Subspace Argument (extending over [33]) that we
use for our (extractable) commitment scheme (cf. Sect. 6.3).

Comparison with [14]. As previously mentioned, we diverge from cq, intro-
ducing several novel ideas that allow us to improve on cq’s efficiency. As the end
result, cq™’s communication is about 14% (or even 23% in a variant without the
ZK) better than cq’s. All other efficiency parameters of cq™ are similar to cq’s.
Moreover, we propose cq' ', a batched variant of cq™. cq™" saves 23% (or 33%,

2 Specifically, giving up only to the privacy of the structure of the decision tree while
keeping private the values of the thresholds and labels.

3 Recently, Setty, Thaler and Wahby [35] introduced a new lookup argument for a
restricted subclass of tables. Their work is extremely efficient, and in particular
more efficient than cq, for such a restricted class of tables. On the other hand, cq
can handle arbitrary tables. For this reason, we refer to cq as the state-of-art for
arbitrary tables.
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in a variant without ZK) communication compared to cq. A slight drawback of
cqtT is that the verifier has to execute one more pairing. We emphasize that cq
is already almost optimally efficient, and thus improving on it is non-trivial.

Concurrent Work. Choudhuri et al. [13] very recently introduced the notion of
segment lookup arguments which, besides some syntactical differences, matches
the simpler of our notions of matrix lookup arguments. Additionally, in [13],
they show, in our lingo, a matrix lookup argument based on cq. Their matrix
lookup argument is less efficient than ours; we defer to Table 1 for more details.
Interestingly, in the same paper, the authors build a general-purpose zkSNARK
based on Plonk and matrix lookup, which they call Sublonk, showing another
application for matrix lookup arguments. The main feature of Sublonk is that
the prover’s running time grows with the size of the active part of the circuit,
namely the part of the circuit activated by its execution on a given instance.
Sublonk makes black-box use of the underlying matrix lookup argument. Thus,
we can plug in our scheme to obtain a more efficient version of Sublonk.

Privacy-Preserving Machine Learning. We focus on the related work on
zero-knowledge proofs for decision trees and, more in general, for machine learn-
ing algorithms. The main related work for decision trees is the paper of Zhang et
al. [40], where they introduce the notions of zero-knowledge proofs for decision
tree predictions and accuracy. Besides decision trees, zero-knowledge proofs and
verifiable computation for machine learning is a vibrant area of research (see for
example [1,16,24,26,30,36,37]).

Comparison with [40]. Briefly, the main techniques of [40] consist of an authen-
ticated data structure for committing to decision trees and highly-tuned R1CS
circuits to evaluate the authenticated data structure in zero-knowledge. More in
detail, they commit to a decision tree with a labelled Merkle Tree whose labelled
nodes are the nodes of the decision tree. This commitment scheme is binding and
hiding and allows for path openings (with proof size proportional to the length of
the path). On top of this authenticated data structure, they use general-purpose
zkSNARKSs for R1CS to prove, for example, the knowledge of a valid opening for
a path and the labelling of the leaf. While the basic ideas are simple, the paper
needs to solve many technical details and presents many optimizations which
are necessary to obtain a practical scheme. The backend general-purpose zero-
knowledge scheme they use is Aurora [5]. Thanks to this choice and because of
the Merkle-Tree approach, their zero-knowledge scheme has a transparent setup
and is presumably post-quantum secure.

Their security model stipulates that the decision tree is adversarially chosen,
but the commitment to a decision tree is honestly generated. On the other hand,
in our security model, we require the commitment scheme to be extractable, thus
allowing for maliciously generated commitments. Notice that, besides improving
security, our definitional choices allow for more efficient design. In fact, the (proof
for the) extractable commitment is generated only once, let’s say in an offline
phase, while the (multiple) proofs of evaluation, in the online phase, can leverage
extra security properties offered by the extractable commitment and thus faster.
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For comparison with our work, we consider the extractability of their scheme
for decision tree evaluation. This is not immediate: the main reason is that the
witness for the zkSNARK is a single path from the root to the evaluated leaf
(which could be extracted) while, to obtain our notion of extractability, it would
be required to extract the full decision tree. Additionally, their authenticated
data structure could allow to commit (and prove statements) to 2-fan-in direct-
acyclic graphs (DAGs), which are more general than trees*. We believe their
second scheme for the accuracy of decision trees can be proved secure in our
model. In fact, proposed as an efficiency optimization, their second scheme com-
putes a consistency check over the full decision tree. Thanks to this, we could
extract the full tree from the zkSNARK. We also believe that our techniques
could be integrated into theirs. Our approach separating the extractable com-
mitment from the “online-stage” of the zero-knowledge proof could be adapted
to their scheme for accuracy (thus improving its efficiency). Interestingly, by
using our approach, their scheme could be interpreted as an application of a
lookup argument based on [5,6] to decision trees. The main difference is this:
our scheme runs lookup arguments over the leaves associated with the evaluation
vectors, while the scheme in [40] requires lookups for paths from the root to the
leaves associated with the evaluation vectors.

For other points of comparison efficiency-wise (we refer the reader to Sect. 6.5
for more details), we mention that their commitments require hashing only, while
ours requires multiexponentations in a group. Therefore, their commitment stage
is faster than ours. Our proof size is concretely smaller (few kilobytes vs hundreds
of kilobytes). To compare proving time, we start from observing the asymptotic
advantages of our solutions: their prover is linear in the size of the tree and
in the complexity of a hash function; ours is sublinear in all these dimensions.
This results in concretely faster proving times despite the fact that our prover
requires group operations and theirs only field operations. This is a consequence
of removing the constants deriving from the hash function size, the sublinearity in
the tree and of the efficient lookup argument instantiations®. Our improvements
also translate to a better verification time. Our estimates show improvements
of almost one order of magnitude for proving time (regardless of the underlying
backend proof systems for [40]; see [7, Appendix A]) and two orders of magnitude
for verification time.

2 Preliminaries

We denote matrices with capital and bold, for example, M, and vectors with
lowercase and bold, for example, v. We denote with o the Hadamard product

4 We believe that this does not pose any problems neither for correctness nor for
soundness, as indeed, one could argue this is a feature rather than a bug.

5 As a bottleneck, the dependency [40] has on the hash function is one that is hard
to remove. Applying a hash function optimized for SNARK constraints, e.g. the one
we used to experimentally run [40—SWIFFT—nonetheless yields high constants in
practice regardless of the proof system used as a backend.
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between two matrices/vectors of the same size, while - is reserved for the matrix-
vector /vector-vector multiplication. Given two vectors a,b we define a < b if
and only if Vi : a; < b; (and similarly for <). We denote || the concatenation
by columns of two matrices. We denote by F a finite field, by F[X] the ring
of univariate polynomials, and by F4[X] (resp. F<4[X]) the set of polynomi-
als in F[X] of degree < d (resp. < d). For any subset S C F, we denote by
vs(X) &ef [T,cs(X — s) the vanishing polynomial of S, and by AJ(X) the s-th
Lagrange basis polynomial, which is the unique polynomial of degree at most
|S| — 1 such that for any s’ € S, it evaluates to 1 if s = s’ and to 0 otherwise.
Any multiplicative subgroup of a finite field is cyclic. Thus, given a group H, we
can find an element w that generates the subgroup H. For convenience, given a
subgroup H of order n we denote with w,, a fixed generator of H. f H C F is a
multiplicative subgroup of order n, then its vanishing polynomial has a compact
representation vyx(X) = (X" — 1) and M(X) = vg(X)wi t/(n(X — wi™h).
Both v(X) and A¥(X) can be evaluated in O(logn) field operations. For any
vector v € F", we denote by vg(X) the low degree encoding (LDE) in Hof v , i.e.,
the unique degree-(|H| — 1) polynomial such that, vg(wi:~1) = v;, when the sub-
group H is clear from the context, we simply write v(X). Similarly, we consider
the k-degree randomized low-degree encoding (RLDE) in H of a vector v € F»
to be a randomized polynomial of the form oy (X) = vg(X) + v u(X)p,(X) for
a random polynomial p, of degree k. Sometimes, we will not explicitly mention
the degree of the randomizer. In this case, the reader should assume that the
degree is set to be the minimum degree necessary to keep zero-knowledge of v
in the presence of evaluations (on points outside of H) of the polynomial v.

A type-3 bilinear group G is a tuple (q,G1,Ga,Gr, e, Pi, P2). G1,G2 and
Gr are groups of prime order q. P;, P, are generators of G1,Gs. e: G; X Gy —
Gr is an efficiently-computable non-degenerate bilinear map, and there is no
efficiently computable isomorphism between G; and Gs. We use the implicit
notation [a); == aP;, for elements in G;,i € {1,2, T} and set Pr := e(Py, Py).

Definition 1 (Power Discrete Logarithm [27]). Let di()), d2()\) € poly(}).
A bilinear group generator GroupGen is (d, da)-PDL (Power Discrete Logarithm)
secure if for any non-uniform PPT A, Adef}dz’Groquen’A(A) =

Pr [pp « GroupGen(1*);s «$F* : A <pp7 [(sl)fio] L [(si)jio]Q) = S} = negl(A).

2.1 Commit-and-Prove SNARKSs

A commitment scheme is a tuple of algorithm CS = (KGen, Com) where the
first algorithm samples a commitment key ck and the second algorithm, upon
input of the commitment key, a message p and opening material p, outputs a
commitment c. The basic notions of security for the commitment scheme are
(perfect) hiding and (computational) binding.

Following Groth et al. [22], we define a relation R verifying triple (pp; z;w).
We say that w is a witness to the instance x being in the relation defined
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by the parameters pp when (pp;z;w) € R (equivalently, we sometimes write
R(pp;x;w) = 1). For example, the parameters pp could be the description of
a bilinear group, or additionally contain a commitment key for a commitment
scheme or a common reference string. Whenever it is clear of the context, we
will write R(z;w) as a shortcut for R(pp; z; w).

Briefly speaking, Commit-and-Prove SNARKs (CP-SNARKs) are zkSN-
ARKs whose relations verify predicates over commitments [9]. Given a com-
mitment scheme CS, we consider relations R whose instances are of the form
v = ((cj)jey, ), where we can un-ambiguously parse the witness w =
((ps)jem, (Pi)jerg) for some £ € N with Vj : p; is in the domain of a com-
mitment scheme CS, and such that there exists a PT relation R such that let
W = (pj)jele:

Rpp;z;w) =1 <— ﬁ(pp;i;w) =1AVj € [{]: c; = Com(ck,pj, pj)-

We refer to a relation R as derived above as a Commit-and-Prove (CP) rela-
tion. Given a CP-relation R and a commitment scheme CS, we can easily derive
the associated NP-relation R. Instances of NP-relations may contain only com-
mitments. Therefore, using the notation above, the instances of the associated
CP-relation are empty strings e, namely, R is a predicate over the commit-
ted witness. To avoid cluttering the notation, in these cases, we may omit the
(empty) instance and simply write ﬁ(pp, w).

A CP-SNARK for R and commitment scheme CS is a zkSNARK for the
associated relation R as described above. More in detail, we consider a tuple of
algorithms CP = (KGen, Prove, Verify) where:

— KGen(ck) — srs is a probabilistic algorithm that takes as input a commitment
key ck for CS and it outputs srs := (ek, vk, pp), where ek is the evaluation key,
vk is the verification key, and pp are the parameters for the relation R (which
include the commitment key ck).

— Prove(ek, z,w) — 7 takes an evaluation key ek, a statement z, and a witness
w such that R(pp, z, w) holds, and returns a proof .

— Verify(vk, z,m) — b takes a verification key, a statement z, and either accepts
(b=1) or rejects (b =0) the proof .

In some cases, the KGen algorithm would simply (and deterministically) re-parse
the commitment key ck information. In these cases, we might omit KGen and
refer to the CP-SNARK as a tuple of two algorithms.

Zero-Knowledge in the SRS (and RO) Model. The zero-knowledge simu-
lator S of a CP-SNARK is a stateful PPT algorithm that can operate in three
modes. (srs,sts) « S(0,1%,d) takes care of generating the parameters and the
simulation trapdoor (if necessary). (m,sts) < S(1,sts,z) simulates the proof
for a statement z. (a,sts) «— S(2,sts, s) takes care of answering random oracle
queries. The state stg is shared and updated after each operation. We define
zero-knowledge similarly to [15,20]:
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Definition 2 (Zero-Knowledge). We say that a CP-SNARK CP for a CP-
relation R and commitment scheme CS is (perfect) zero-knowledge if there exists
a PPT simulator S such that for all adversaries A and for all d € N:
ck « CS.KGen(1*,d)
Pr | srs « CP.KGen(ck)
AProve(srs,~,-),RO(<)(srs) =1

(srs,sts) < S(0, ppg)
Asl("')’sz(')(srs) =1

T

Q

where 81,8y are stateful (wrapper) algorithms that share their state st =
(sts, Qro) where sts is initially set to be the empty string, and Qro 18 initially
set to be the empty set, such that:

- Si(z,w) denotes an oracle that first checks (pp,x,w) € R where pp is part of
srs and then runs the first output of S(1,sts, x).

— S(s) denotes an oracle that first checks if the query s is already present in
Oro and in case answers accordingly, otherwise it returns the first output a
of 8(2,sts, s). The oracle updates Qro by adding the tuple (s,a) to the set.

Knowledge Soundness. Our definition of knowledge soundness is in the alge-
braic group model [17]. An algorithm A is called algebraic if for all group elements
that A outputs, it additionally provides the representation relative to all previ-
ously received group elements. That is, if elems is the list of group elements that
A has received, then for any group element z in output, the adversary must also
provide a vector r such that z = (r,elems). We define the notion of knowledge
soundness in the algebraic model.

Definition 3 (Knowledge Soundness in the AGM). A CP-SNARK is
knowledge extractable in the Algebraic Group Model if for any PT algebraic
adversary, there exists a PT extractor £ that receives in input the algebraic
representations r1,...,r; of A and such that:

ck « CS.KGen(1*,d); srs « CP.KGen(ck);
Pr | (z,m,r1,...,17) «— A(srs);w «— E(srs,r1,...,17)| < negl(A)
Verify(srs, z, ) A =R (pp, x, w)

Indexed Relations and Universal CP-SNARKSs. We extend the notion of
relations to indexed relations [12]. We define a PT indexed relation R verifying
tuple (pp,ind,x,w). We say that w is a witness to the instance = being in the
relation defined by the pp and index ind when (pp,ind, z,w) € R (equivalently,
we sometimes write R(pp, ind, z,w) = 1).

Briefly, we say that a CP-SNARK is universal if there exists a deterministic
algorithm Der that takes as input an srs and an index ind, and outputs a special-
ized reference string srs;n,qg = (VK;,,4, €kina) Where vk, 4 is a succinct verification
key and ek;nq is a proving key for such an index. Moreover, we require that the
verifier Verify (resp. the P) of a Universal CP-SNARK takes as additional input
the specialized verification key vk;,,; (resp. the specialized ek;,q). We refer to [7,
Appendix B] for more details.
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2.2 Extractable Commitment Schemes

An extractable commitment scheme for a domain D = {D,}, is a commitment
scheme equipped with a CP-SNARK that proves the knowledge of an opening
of the commitments.

Definition 4. Given a domain D, CS = (KGen, Com, VerCom) is an eztractable
commitment scheme for the domain D if there exist two algorithms Com’, Prove’
such that Com(ck, p, p) ezecutes (1) c «— Com’(ck,p,p) and (2) = « Prove'(ck,c,
(p,p)) and outputs (c,n), and (Prove’,VerCom) is a CP-SNARK for the com-
mitment scheme (KGen, Com’) and for the CP-Relation ﬁopen defined below:

7-\’fopen = {ppasvp p e DA}

2.3 Polynomial, Vector and Matrix Commitment Schemes
We use the KZG polynomial commitment scheme of [25] described below:

KGen(1*,dy, ds) samples a type-3 pairing group with security level A and outputs
commitment key ck := (([s'] Dieldi)s ([si]Q)ie[dZ],) for random secrets s € Z,.
Com(ck, p) outputs [p(s)];.

We notice that the above commitment scheme is not hiding and it is extractable®
for the domain of polynomial of degree d; in the algebraic group model of [17]
under the power discrete logarithm assumption (PDL), which informally states
that find s is hard given a freshly sampled commitment key, see Definition 1 for
details. The commitment scheme allows for a very efficient CP-SNARK Il =
(Proveeya, Verify,,,;) for the CP-relation Revat = {(z,y;p): p(z) = y}. In particu-
lar, the prover Provee,, upon input the SRS ck, an instance ([p(s)]; , ,y) and the
witness p, computes the unique polynomial w(X) = (p(X)—vy)/(X —z) and out-
puts [w(s)], as its proof. On the other hand, the verifier Verify,,,; upon input the
SRS ck, an instance (c, z,y) and a proof 7, checks e(c—[y]; , [1],) = e(m, [s — z],).

Vector and Matrix Commitment Schemes. From a polynomial commit-
ment scheme, we can define a vector commitment. Specifically, let H be multi-
plicative subgroup of F with order N, and let wy be a fixed generator of H. We
can commit to vector v by committing to the low degree encoding of v over H.
Namely, [vgi(s)], is a commitment to v. The commitment key should additionally
contain the description of the subgroup H to allow for verification. Notice that

5 As argued in [8], we can define a vacuous CP-SNARK for opening in the AGM
where the prover does nothing and the verifier checks that the commitment is a
valid group element. However, Lipmaa et al. [28] recently defined AGMOS, a more
realistic variant of the AGM where the algebraic adversary can obliviously sample
group elements. They pointed out that KZG is only extractable after the prover
has successfully opened the commitment at some point. In this case, such a vacuous
CP-SNARK is not sufficient. We leave it to further work to prove the security of our
protocols in AGMOS.
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such a commitment scheme is not hiding. We can make it hiding by committing
to a RLDE of v over H instead of its LDE.

We define the vectorization of a matrix M € F**? to be the vector m € F™¢
which is the concatenation of the rows of M. Namely, for any i € [n],j € [d], we
define mg.;1; = M; ;. To commit to a matrix M, we commit to its vectorization
m. Notice that, additionally, the commitment key should contain the values n
and d, and the subgroup H should be of cardinality n - d.

3 Zero-Knowledge Matrix Lookup Arguments

Given two vectors f, t, we say that f is a sub-vector of t if there exits a (multi) set
K ={ki,...,k,} such that f; = t;, for any j. We write f < t to denote that f is
a sub-vector of t. Notice we diverge from the usual notion of sub-vector. Namely,
we assume that a sub-vector f may contain multiple copies of an element in t
and, moreover, any permutation of f is a sub-vector of t. We extend the notion of
sub-vectors to matrices. We say that a matrix F € F*"*? is a (rows) sub-matrix
of a matrix T € FN*? if F parsed as a Fé-vector of length n is a sub-vector of T
parsed as a Fé-vector of length N. In other words, F is a matrix whose rows are
also rows in T. Similarly, given a multi set K = {ky,...,k} we can define the
sub-matrix F|g as the sub-matrix of F which j-th row is the row Fj,. Notice
that our notion of sub-matrix is not standard. Besides the differences mentioned
for the notion of sub-vector, we consider the special case where the number of
columns of F and T are the same. This is sufficient for our application. However,
for completeness, in [7, Appendix D.1], we consider the more general case where
F may be a selection of a projection of T. We call the latter the rows-columns
sub-matrix relationship. We consider the following indexed CP-relation, where
we will refer to T as the table and to F as the sub-vector (or sub-matrix):

Rauikp := {pp; (N, d,n);&; (T, F) : F < T,|T| =N xd,|[F|=nxd}, (1)

Previous work focuses on d = 1, namely the lookup argument for vector com-
mitments, where the table T is public. Moreover, some of the previous work
did not focus on zero-knowledge. Namely, previous work focused on (ZK or not)
CP-SNARKSs for the following CP-relation:

Rip 1= {pp; (t,n);;f - £ < t, |f| = n}. (2)

A fully zero-knowledge lookup argument for a commitment scheme CS is a CP-
SNARK for the CP-relation ﬁzk|kp and for the commitment scheme CS. We
use the adjective fully zero-knowledge to distinguish our definition from the
definition from previous work. State-of-the-art lookup arguments have prover
time complexity independent of the length of the table and quasi-linear (or
even linear) on the length of the sub-vector. To obtain such a property, all the
lookup arguments for arbitrary tables in previous work precompute the table
T, producing auxiliary material that is then used during the proving phase.
Thus, using the notational framework of Universal SNARK, the precomputation
is handled by the Der algorithm (since t is in the index).
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Definition 5. A tuple of algorithm CP = (KGen, Der, Prove, Verify) is a lookup
argument for a commitment scheme CS if (1) CP forms a CP-SNARK for 7A€|kp
and CS, (2) Der is a F-linear function (with respect to the proving key in its
output) and the commitment scheme is linearly homomorphic and (3) Prove has
running time poly(n, \).

We define an additional algorithm Preproc to handle our stronger privacy require-
ment. Similarly to Der, the algorithm Preproc performs an offline preprocessing
— both algorithms are necessary only for speeding up the proving and veri-
fication algorithms. The difference is that Der works over public information,
meanwhile Preproc works over private information”.

Definition 6. A tuple of algorithm CP = (KGen, Der, Preproc, Prove, Verify) is
a fully zero-knowledge lookup argument for a matriz commitment scheme CS
if (1) (KGen, Der, Prove’, Verify) forms a CP-SNARK for ﬁzk”(p and CS where
Prove’ is the algorithm that upon witness (T, F, pr, par) such that T g =F first
runs (aux;);je(n) < Preproc(srs, T, pr) and then runs Prove with witness (F, par,
(aux;)jex)); (2) Preproc is a F-linear function and the commitment scheme is
linearly homomorphic and (3) Prove has running time poly(nd, \).

4 Owur New Zero-Knowledge Lookup Arguments

In this section, we present our new lookup arguments for KZG-based vector
commitments. Let the commitment ¢y and cg, to the vectors t and f respectively,
be KZG commitments to randomized low-degree encodings of t and f. We denote
these polynomials T(X) and F(X), respectively. Since t and f have different sizes,
we interpolate them over two multiplicative subgroups of F: K of order N and H
of order n < N. In our construction, we need n | N; however, this usually holds
in practice where both n and N are powers of two. Hence, we have

N n
TOX) = ST N 4 provie(X), F(X) = S BAR(X) + pr(X) v g(X)
j=1 i=1

Above, pr(X) is a random polynomial of degree < bg so that c¢ = [F(s)]; is per-
fectly hiding. Furthermore, our lookup arguments work (and are zero-knowledge)
for any choice of bp > 0; this property matters whenever the commitment cg is
generated by other protocols with their own zero-knowledge requirements (e.g.,
cs may come from a SNARK construction where bp is carefully set to meet the
number of leaked evaluations of F(X) in that protocol). Our lookup arguments
achieve zero knowledge without leaking additional evaluations of F(X).

On the other hand, if pr < F is a random field element, then ¢y = [T(s)]; is
a perfectly hiding commitment to t. Otherwise, if pt = 0, we capture the case
of public tables (that is the common use case of lookup arguments).

7 Alternatively, one could define one single algorithm Der that handles both public and
private data. In this case, one needs to redefine the Universal SNARK’s framework
to handle zero knowledge correctly. Our definition instead is only functional as we
require that Preproc, Prove form a two-step prover algorithm for a Universal SNARK.
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Lemma 1 (Set inclusion, [23]). Let F be a field of characteristic p > N,
and suppose that (a;)N,, (b;)X, are arbitrary sequences of field elements. Then
{a;} C {b;} as sets (with multiples of values removed), if and only if there exists
a sequence (m;);=1 of field elements from F, CF such that

N N :
Dzt Xiai =2 im X@bi 3)

in the function field F(X). Moreover, we have equality of the sets {a;} = {b;},
if and only if m; # 0, for everyi=1,...,N.

Roadmap. For the sake of presentation, we first describe our main lookup
argument cq™, which works for a public table t, thus meeting Definition 5. This
protocol is fully described in Fig. 1 and explained in the next section. Next, we
discuss an optimized variant, cq™". Finally, in Sect. 4.2 we show how to obtain
the protocol meeting the fully zero-knowledge notion of Definition 6.

4.1 cqt Lookup Argument

For ease of exposition, we present our protocol as a public coin interactive argu-
ment. We can compile it into a CP-SNARK using the Fiat-Shamir heuristic.

Setup. We assume a universal srs = (([sj]l)év:lo,([sjb)jyio)) for any Ny >
N +max(bg,1)—1 and Ny > N + max(bg, 1) + 1, where bg is the degree of the

randomization polynomial pr(X) explained earlier.

Round 1. Our interactive lookup protocol cq™ starts the same as cq [14].
Namely, based on Lemma 1, the prover computes the multiplicities vector m
such that Z;V:1 T7% = Yiz1 rx and sends to the verifier a commitment
[m(s)]; to a randomized low-degree encoding m(X) of m over K.

Round 2. The verifier sends a random challenge (3. At this point, the goal of
the prover is to convince the verifier that

N i 1
Y1 T4 = el T D (4)

which, by Schwartz-Zippel, implies the polynomial identity over F[X] and thus
f <t by Lemma 1. To this end, the prover commits to randomized low-degree
encodings of the two vectors containing the terms of the two sums, i.e.,

A(X),B(X)st. Aj = A(wl ) = vty and Bi=Bw, ) =¢l5 - ()
In order to prove the well-formedness of A(X) and B(X), as in cq, the prover
commits to the polynomials Q4(X) = (A(X)(T(X) + 8) — m(X))/vk(X) and
Qp(X) = (B(X)(F(X) + ) —1)/vu(X). As we discuss later, we compute a
commitment to @ 4(X) using the cached quotients technique of [14] to meet the
efficiency requirement (3) of Definition 5.

From this Point, Our Protocol Diverges from cq. At this point of the protocol,
cq would proceed by applying Aurora’s univariate sumcheck on both A(X) and
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B(X) to prove the correctness of results A(0) = >, A(WiM/N and B(0) =
>, B(wim1)/n and then the verifier would check that the results are equal.

In cq™, we instead apply Aurora’s univariate sumcheck on a scaled sum of
A(X) and B(X) and prove that the result is zero. More precisely, we define
C(X) := A(X) — 97'B(X)z(X) where we denote ¥ := N/n and z(X) :=
vr\u(X) and use the following lemma (see [7, Appendix C] for its proof).

Lemma 2. Z;V:O A(wf\fl) =30 o Bwi™h) iff Z;V:o C(w{{l) =0.

The lemma relies on the observation that the polynomial A(X) :=
¥~ 1B(X)z(X) encodes over K the same vector encoded by B(X) over H, i.e.,

(ﬁ) , but in different positions; while in the rest of positions it encodes
: i

zeros. Thus, Z;-V:O A(wf{l) = >, B(wit). Moreover, multiplying B(X) by
z(X) gives us for free a low-degree test on B(X).
Thus, towards proving (4), we use Aurora’s sumcheck on C(X) to show

HRc(X) S IFSN,Q[X], Qc(X) s.t. C(X) = Rc(X)X + QC(X)VK(X) . (6)

However, we do not send commitments to these two polynomials but use alter-
native techniques that allow us to obtain both zero knowledge and an efficient
degree check on R (X). More precisely, to obtain zero-knowledge, we use the
sparse ZK sumcheck technique from Lunar [8]: the prover commits to a polyno-
mial S(X) := RgX +psv(X), with the idea that in the next round we perform
a sumcheck on C(X) + n?S(X), for a random challenge 1 to be chosen by the
verifier in the following round. Actually, although for ease of expositions we
introduced the use of S(X) here; this polynomial is computed and committed as
[S(s)]; inround 1. In summary, in round 2, the prover sends [A(s), B(s), Qg(s)];-

Round 3. The verifier sends random challenges v, 7. In this round, the prover’s
goal is to show that

AX)(T(X) + ) — m(X) = Qa(X)vk(X), (7)
B(X)(F(X) +8) — 1= Qp(X)vu(X), (8)
A(X) =97 B(X)z(X) +1n* S(X) — (Rc(X) +1*Rs) X =Qc,s(X)v g (X) 9)

where Q¢ 5(X) = Qc(X) + n?ps in (9). To prove Eq.(7), we use the cached
quotient technique of [14] to compute a commitment [Q4(s)]; using n scalar
group multiplications (see below).

To prove Eq. (8), notice that we already sent @ g(X); thus, using a lineariza-
tion trick and random point evaluations, we set B, = B(7) and we show B(X)
evaluates to By on v, D(X) := By(F(X) + 8) — 1 — Qp(X)vu(y) evaluates at
0 on . We batch these claims using the verifier’s challenge 1. Namely, we send
the KZG-evaluation proof P(X) := ((B(X) — By) +nD(X))/(X — 7).

To prove Eq. (9), we apply a novel idea that allows obtaining, for free, a degree
check on Re(X). We set the polynomial U(X) = (X# —1) where g = Ny — N +2
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and ask the prover to send R%(X) = (Rc(X) + n*Rs)U(X). To balance this,
we multiply the rest of Eq. (9) by U(X), obtaining

(AX) =97 B(X)z(X)+n* S(X))U(X)-Re(X)X =Qc.s(X)vg(X)U(X) (10)

To further optimize this, we batch Eqs. (7) and (10) by using the verifier’s random
challenge 7 (and multiplying (7) by U(X)), finally obtaining:
AX) - TXOUX) + (B +mAX) —m(X) +1° S(X)) - U(X)
- EB(X) 2(X)U(X) = QX)vx(X)U(X) = nRo(X) - X (11)
The idea of this batching is that after multiplying (7) by U(X), both equations
aim to prove that the left-hand side is divisible by v g (X) and thus we can send
a single quotient polynomial Q(X) = QA(X) +nQc(X) + n?ps.

To summarize, in round 3, the prover sends [P(s), R (s), Q(s)], and B,.
Verification. The verifier proceeds as described in Verify of Fig. 1. The verifi-
cation Item (ii) is a standard technique to check the batched evaluation proof
[P(s)];. The verification Item (i) instead implements the check of Eq. (11) using
pairings. Doing this requires the verifier to have in the verification key the Go
elements [T(s)U(s)], as well as [U(s),z(s)U(s), v k(s)U(s)],. Therefore, we let
Der compute all these elements and include them in the verification key.

Prover Efficiency. We discuss how the prover algorithm can be implemented
with O(n) scalar multiplications in G; and O(nlogn) F operations. First, one can
easily see that by preprocessing the computation of the elements [)\g((s)] and
[vk(s)]; and by using the n-sparsity of m, it is possible to compute [m(s), A(s)];
using 2(n + 1) scalar multiplications. Computing Q5 (X) is the only step that
requires time O(nlogn) (in field operations). Computing [B(s), @g(s), P(s)],
requires ~ 3n scalar multiplications.

Computing the commitments [R¢(s)], and [Q4(s)], with ~ 2n and n scalar
multiplications, respectively, can be achieved thanks to the cached quotients and,
again, the sparseness of m. Following [14], in Der for t, we compute and store

(T(X)—t,)A7(X)

[Qj(s)l; where Q;(X) = == 55"
Then, we use this auxiliary input to compute, with n + 1 scalar multiplications,
[Qa(8)]y — 2, 2043 [Q;(s)]; + [pa(T'(s) + B) — pmly - (12)

The correctness of Q4 (s) is due to

N A (T(X)—t)A(X)
Z] 1 4;Q;(X) = Z] 1%

_ (X)+B)A5(X) N Aj(t+8)AF(X)
=¥ W 2 T X

—~
fat?

N ANE(X) N m;AE(X)

= (T(X)+8) > = VJK'ZX) —2im v E(X)

— (AX)=pav (X)) (M(X)+B) —m(X) +pmv k(X)
- vg(X)

=Qa(X) — pa(T(X) + B) + pm -
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Using a  similar  technique, in Der we can  precompute
K(o\\N H(\\n K /\“&(X) A5 (0)
[(Tj (5))3‘:17 (r; (5))1‘:1}1 where r; (X) = U(X) : ]a and
jE[N
{TEH(X) = wU(X)} - and use them to compute [R{(s)]; in 2n
€N
scalar multiplications.

Thus, the prover’s computation is dominated by 8n scalar multiplications,
which was also the case in cq that did not achieve zero-knowledge and assumed
A(X) to be of degree < N.

cqt™: A Variant with a Shorter Proof. We can further optimize cq™ by
applying one more batching technique that consists of sending a single group
element [P*(s)]; = [P(s) + R¢(s)]; and in merging the two verification equa-
tions ((i)) and ((ii)) as follows:

e ([A(s)],, [T()U()(s = 7)]y) - e ([(B+mA(s) — m(s) +n° S(s)], . [U(s)(s —7)],) -
e (Z[B(s)),, 2()U(s)(s —)],) e (lQ 17[VK (U (s)(s —7)),) " -
e (n[B(s) +nD(s) — By, [s],) = e (n[P s(s —)]y) -

This change also requires some small changes. First, we require in the srs to
have Ny > N + max(bp, 1) + 2. Second, the verification key vky ,, computed
by Der must include [(s*U(s), s*z(s)U(s), s*v k(s)U(s));—o) - Third, the table-
dependent verification key for t should include [(s*T(s)U(s))}_],-

Overall Efficiency. Assume that we use a standard curve like BLS12-381, where
elements of Gy (resp., F) are g; = 384 (resp., f = 256) bits long. Then, in cq™,
the communication is 8g; + 1f (3328 bits) and in cq™ ", 7gy + 1f (2944 bits). The
prover executes = 8n scalar multiplications. Verifier has to execute 5 pairings in
cqt or 6 in cq™". Importantly, two or three of the pairings are with the standard
G2 element (depending on the variant, [1,z], or [1,z,2?],). Hence they can be
batched with other pairings in the master protocol and essentially come for free.

If one does not wish ZK, we can remove [S(s)|; from the argument, and proof
size is Tgq + 1f (2944 bits) in cq™, and 6g; + 1f (2560 bits) in cq™ .

To compare, in cq [14] (that is not ZK), the communication is 8g; + 3f (3840
bits), the prover’s computation is ~ 8n scalar multiplications, and the verifier
has to execute 5 pairings. Hence, even cqt (with ZK) has better communication
than cq (without ZK) while having the same cost in the rest of the parameters.

Security. In the following theorem, we argue the security of cqt (see [7,
Appendix C] for the proof and the definition of the Power Discrete Logarithm
(PDL) assumption); the proof of cq*+ is very similar.

Theorem 1. The protocol cq™ from Fig. 1 is a lookup argument according to
Definition 5. Specifically, cq™ is knowledge-sound in the AGM and ROM under
the (N1, No)-PDL assumption (see Definition 1), and, furthermore, the protocol
18 zero-knowledge.
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4.2 Our Fully Zero-Knowledge Lookup Argument

In this setting we have T(X) = Zjv 1=t )\K(X) + p1 - vr(X) where pt s F
and ¢ = [T(s)];. We need only slight modifications to turn cq™ to a fully
zero-knowledge lookup argument. We refer to the modified lookup argument as
zkeq™t. First, we defer, from Der to Preproc, the computation of all the table-
dependent group elements. Namely, Preproc(srs, t, pr) computes ([Q;(s))];)12,
and ¢y < [T(s)U(s)],. The latter group element is included as part of the proof at
proving time by the algorithm Prove. As consequence, Verify needs to additionally
run the pairing check e([1]; ,¢¢) = e(c, [U(s)],) to verify the well-formedness of
the commitment c¢. In the proof of knowledge soundness, this check allows us to

Der(srs, t,n): Assume that [t| = N = |K|, n = |H and n N, srs =
<7\>‘f\_\ J (s7); \;J)\[‘ul‘ any N1, No > N + max(bp,1) — 1.
Set p= Ny — N +2; define U(X):= (X" - 1) ¥ = N/n, and z2(X) = vx\u(X);
Define T(X) := Z_j:l = t; A5 (X);
K _ak H(x)2(X)— A
Let {100 = 252 Opn} i) = RO Oy |
JE[N]
(TX)—5)AF(X)
and {Q 73} .
]( )= v x(X) JE[N]
Compute eke,n = [(r}(5))751, (7 ())iz1, U(s), v xe(s), svr(s), (Qi(5)) 721, T(9)] 3

Compute vk ,, := [1,U(s),z(s)U(s), v x(s)U(s), T(s)U(s)],;
Return (ekg,n, vky ,,)-

i€[n] '

Prove(ekn,n, cg, (£, pr(X))): //ce = |D £.0 (s) + prls)v ,<.~JJ . deg(pr) = bp.
Compute m = (my,...,my) s.t. Vj : t; appears m; times in f; samples p,, s IF;
Compute [m(s)]; + Z?’Zl mj - [/\Hf(s)} Lt pm - k(s)]y; // noscalar mults
Sample Rg, ps <5 F and compute [S(s)], = Rs - s+ ps - vx(s);

B+ RO(vky ,[[(ct, ce) |l [m(s)]y) //Fiat-Shamir challenge.

Sample pa <5 T, pp(X) <3 F<1[X];

Let A; (—mj/(tj +[7)) Vj=1,...,N and B; + 1/(fb+[7)) Vi=1,...,n;
Compute [A(s)], + Zj\’ LA [)\K(a ] +pa - [vr(s);

Compute [B(s)], ZZ L Bi A} s)] +pB(s) - vuls)l;;

Compute Qi(X) — (BOX)(F(X) + ) — 1)/v(X) and [Qs (s)];

(v,m) < RO(B|| [A(s), B(s), @B (s),S(s)];);//Fiat-Shamir challenge
Compute By « B(v), D(X) + By - (F(X)+8) —1—-QB(X l/]]{("/),
Compute P(X) + ((B(X)— ( ) +nD(X))/(X —7) and [P(s)]y; // KZG-proof for (8).

Compute [R(s)]; + Zm #) . [T‘K( )} — 9t Z? L\ Bi- [7"3{(9)] Lt n°Rs - [U(s)],
Compute [Qa(s)], « Zm 2043 - [Qi()ly + [pa(T(s) + 8) — pmly;
Compute [Qc(s)], [PA +97 PB( )} v
Compute [Q(s)], + [Qa(s)], +1[Qc(s)], + 1 [ps];
Return m = ([m(s), S(s), A(s), B(s), @B(s), P(s), Rt:(s),Q(s)]; , By)-
Verify(vk ,,, ce, 7):
Compute [D(s)], = By(ce + [8],) — [1];, —vu() [@s(s)];.
Return 1 if and only if the following holds:
(i) e([A()],,ce) - (B + ) - [A)], — [m(s)], + n*[S(s)],,[U(s)],) - e(n/v -
[B(s)],» [2(s)U()],) 7" - e([Q(9)]y, v (s)U(9)],) ™ = e(n - [R&(5)), , [aly),
(i) e([B(s)]l +n [D(s)]l - [B’Y]l > [1]2) = e([P(S)h o5 — ”/]2)

Fig.1. Our zero-knowledge lookup argument cq*.
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ensure that the polynomials extracted from ¢ and & are of the form T*(X) and
T*(X)U(X) for some T*(X); thus, after verifying this we can apply virtually
the same proof of Theorem 1.

5 Owur Matrix Lookup Argument

We show a compiler from a fully zero-knowledge vector lookup argument for
KZG-based vector commitment to a fully zero-knowledge matrix lookup for the
(succinct) KZG-based matrix commitment from Sect. 2.3. The same construction
applies for lookup argument as in Definition 5.

5.1 The Straw Man Solution

An alternative approach to commit to a matrix is to one-by-one vector commit
to its columns. The obvious shortcoming is that the commitment scheme is not
succinct in the number of columns. Nonetheless, this approach already results in
a matrix lookup argument (under the assumption that the vector commitment is
linearly homomorphic). In particular, consider the lookup argument that hashes
together the columns t; of the table T and the columns f; of the sub-matrix F
using a random challenge p computing vectors

t =) t;p/ ! = ;0
j i

Notice that by Schwartz-Zippel lemma we that f* < t* implies F < T with
overwhelming probability. Thus, we could run a vector lookup argument over
(f*,t*), thanks to the linear homomorphic property of the commitment scheme
the verifier can compute commitments to f* and t* and verify the proof. Notice
the prover time complexity is poly(n,d, A) thanks to the F-linearity of the pre-
computation algorithm. However, the verification time is linear in in the number
of columns. We show in the next section how to restore succinct verification time
and commitment size.

5.2 Our Scheme

In Fig.2 we describe our scheme mtx[CP] that runs internally a lookup argu-
ment CP for KZG-based vector commitment scheme. The proof of the following
theorem is in [7, Appendix D]. In the description of the scheme, we let K (resp.
H) be a multiplicative subgroup of F of order N - d (resp. of order n - d), we let
W := wy.q be the fixed generator for H and we consider the following matrices
and polynomial:

1. the matrix R € FN*? where R;; =1,

2. for any k the matrix C*®) € F¥*4 where Cij=1J.
3. Let v g(X) be the vanishing polynomial of H={w®*7 : j € [1,d—1],i € [n]}.
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Theorem 2. The lookup argument mtx|[CP] defined in Fig. 2 is knowledge-sound
in the AGM and ROM under the (N-d, N-d)-PDL assumption and assuming that
CP is knowledge-sound. Furthermore, the protocol is zero-knowledge assuming CP
18 zero-knowledge.

A Row-Column Matrix Lookup Argument. In [7, Appendix D.1] we con-
sider the rows-columns sub-matrix relation where F < T if and only if there
exist (multi)sets R = {ry,...,rn,} and C = {ci1,...,cqa} with Fy; = T, .,
and give an rows-columns matrix-lookup argument system mtx*[CP] for such
a relation. Briefly, the main difference with the scheme in this section is that
we commit to an additional vector ¢ which is the concatenation of the vector
(c1,...,¢q) for n times, prove in zero-knowledge its tensor structure, and show

that " =f + p-5° + p2 - & is a sub-vector of t*.

Der(srs, N,d, n):
Let F,Tn,cn and €, be vectorizations of the matrices F,R, C"Y) and C™.
Compute ¢,,n < Com(ck,Tn),ce,n < Com(ck,Cn) and c¢,n < Com(cy).
Compute (ek’,vk’) < CP.Der(srs, Nd, nd).
Return (ek’, vk, ) where vk, = (c¢r,N,Ce,N, Ceyns [V 7 ()], , VK').

Preproc(srs, T, pr):
Let t be vectorization of the matrix T.
Compute (auxr,;);je(na < CP.Preproc(sts, t, pr),
(auxg,;)je(na) < CP.Preproc(srs,Tn),
(auxc,j)jeva) < CP.Preproc(srs,cn).
Let aux; = (aUXr,di+j, QUXR, di+j, AUXC,di+j)je(d]-
Return (aux;)ie[ni-

Prove(ek, (¢, cr), F, (aux;)jex):
Let S bes.t. S ; = ki for i€ [71]7j€ [d]
Let o(X) be the randomized low-degree encoding over H = (w) of the vectorization of S.
Compute w(X) such that o(w - X) — o(X) = w(X) - v(X).
(p,¢) + RO(vk,,|[(cT, cF)[[(cR.n; CR ny Cw))-
Compute z + o(w - ().
Compute proofs 7g and g/ for Reval(w - ¢, 2;0(X)) = 1 and Reva (¢, 250 (w - X)) = 1;
Let 7 proof for R ((N - d,n - d);e; (87,F7)) = 1 where

E*:f—&-p-EN—i-pQ-FN f*:?—',-p»én-&-pz-& (13)
Return 7 = ([o(s)], [0 )], » [0($)], s 7y T, 7", 2).

Verify(vk,,, (cT, cr), 7):
Parse the proof @ = (Cr,n, Cr/ n; Cw, TR, TR/, T, 2).
(p,¢) <= RO(vk, [[(cT, cr)l[(crn; CR ny Cw)).-
Compute ¢ < cT + pce,N + p“cr,n and Cg < CF + pCen + pch,n‘
Return 1 if the following checks hold (else 0):
(i) Verify,,,(ck, (crn,w-(,2)) =1,
(ii) Verify,.(ck, (crn, ¢, 2)) =1,
(iii) e(cr’,n — CRn, [1]5) = €(Cuw, [V(5)]5)s
(iv) CP.Verify(srs,vk', (¢, c), ") = 1.

Fig.2. Our Matrix Lookup Argument mtx[CP].
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5.3 Concrete Efficiency

In Table 1, we describe the complexity of proving a matrix lookup in a table T
described by a matrix of size N x d. The size of the submatrix we are looking
up in the larger table is n x d. In [7, Appendix F], we describe a breakdown of
efficiency measurements for our fully zero-knowledge construction (mtx[zkcq™]).
The values for [13] are taken directly from the paper, the number of pairings in
verification is computed by simple inspection of the protocol, the extra O(lognd)
factor in the number of exponentiations in G; for the prover arises from their
sub-protocol adapted from [38].

Table 1. Summary of efficiency of our constructions for matrix lookups. The relation
considered is parametrized with table size of size N X d and looked-up submatrix of
size n X d. P is the cost of one pairing. Proof size includes commitment to the witness.

Scheme Preprocessing Proof size Time (P) Time (V)
mtx'"[zkeq™] (Sect.5.1) | O(dN log N)F,G | (d + 9)g1 + 1f | O(nd)G + O(ndlogn)F dG, + 7P
mtx[zkeq™] (Fig. 2) O(dNlogdN)F,G | 16g; + 2f O(nd)G1 + O(ndlog(nd))F 13P
[13] O(dN log AN)F, G | 20g; + 6f O(ndlog nd)G, + O(ndlog(nd))F | 23P

6 Zero-Knowledge Decision Tree Statistics

A decision tree is an algorithm that, upon an input, performs a finite sequence
of adaptive queries on the input and eventually outputs a value. Concretely, we
consider binary decision trees where the inputs are vectors in [B]¢ for natural
numbers d and B, where the queries are comparisons and the outputs (often
called the labels) are in [B]. We let Niot be the number of nodes in a decision
tree T, and we index the root node with 1. A binary tree with Ny nodes and
where each node has either zero children or exactly two children, has N 1=
(Niot + 1)/2 leaf nodes, and the remaining Nipy = Nyot — Neas nodes are called
internal nodes (including the root node). We index the internal nodes of the
decision tree with numbers in [Njy:]. The computation of a decision tree T upon
input x, denoted as T(x), consists of a traversal of the tree from the root node to
a leaf. During the traversal, the computation fetches, from each internal node 1,
a threshold ¢; and a feature index e; € [d]. If z., < t;, the computation continues
recurring on the left child of node ¢, and otherwise, to the right child. Once
reaches a leaf, the computation outputs the label v; assigned to the leaf i as the
final output.

Therefore, seen as a data structure, a decision tree T is made by a binary
tree (namely, the structure of the tree), by the values d;, t; for each internal node
i, and by the label v; for each leaf node 7. We refer to this encoding of a tree
as the standard encoding. We define Ty, p a4 to be the set of decision trees with
Niot nodes that maps vector in [B]? to the co-domain F.

Quasi-Complete Decision Tree. We define the notion of quasi-complete deci-
sion tree. The difference with a standard tree is that during the traversal, the
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computation fetches from each internal node ¢ two vectors E; and T;, we call
the vector E; € {0,1}¢ the feature vector associated to the node i and vector
T, € [B]? the threshold vector associated to the node i. The computation con-
tinues recurring on the left child of node ¢ if Vj € [d] : E; ; =1 = z; < T, j, on
to the right child of the node ¢ if Vj € [d] : E; ; =1 = x; > T, ;, or outputs L
if neither of the two conditions holds.

Similarly to decision trees, we define 7y, 5 ; to be the set of quasi-complete
decision trees with Ny, nodes that maps feature vector in [B]d to the co-domain
F. Notice that when for any node j the (row) vector E; is an elementary vector
(namely with only one position set to 1) then the quasi-complete decision tree
is indeed a standard decision tree thus 7n,,. 5,4 C 7y, p.a-

The class of quasi-complete decision trees defines a correct but not complete
computational model. In fact, every input is either correctly labelled to one
label or to the error message L. Being a more general class of computation than
standard decision trees, it is easier to decide whether a data structure is a quasi-
complete decision tree than to decide if it is a standard decision tree. This allows
for faster prover time. On the other hand, an adversary that commits to (strictly)
quasi-complete decision tree (namely, a decision tree in 7y g 4\7n,,,B,4) cannot

prove contradicting statements, in particular, we require that it cannot prove any
statistics on an input x whenever T(x) = L.

6.1 Security Model

We consider the scenario where a model producer commits to a decision tree
T, the model producer can delegate the computation of statistics on a set of
data points and predictions over T to a server, a user can obtain such statistics.
Informally, we require integrity of the computation, namely the statistics are
correctly computed over the set of data points and predictions over the commit-
ted decision tree T, and privacy, namely the user does not learn anything more
than the validity of such statistics.

We consider an adversarial model where either the model producer and the
server can be corrupted, or the user is corrupted. Previous work considered only
the case where the model producer is honest [40] (and either the server or user
are corrupted). Notice that a corrupted model producer could commit to a use-
less/bogus decision tree. Unfortunately, we cannot do anything to prevent that.
On the other hand, we would like to prevent the corrupted model producer and
corrupted server can convince the user of the validity of incoherent statistics. For
example, an attacker should not be able to convince the user that simultaneously
T(x) =1 and T(x) = 0 for a data point x.

To formalize such property, we use the notion of knowledge soundness for
argument systems. In particular, we require that whenever the verifier is con-
vinced (w.r.t. a commitment c) of the statistic over a set of data points, there
must exist an extractor that outputs an opening of the commitment to a decision
tree T where such a statistic over such data is correct. Notice the commitment to
the decision tree is binding. Thus we must obtain coherent statistics over many
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queries on the same committed decision tree. To optimize the efficiency of the
statistic evaluations, we split in two parts the generation of a valid commitment
from the evaluation of a proof for a given tuple statistic/data points.

Definition 7. Let S be an arbitrary set of tuples (S, m) such that S : [B]"™ —
{0,1}* and m € N where S is an efficiently computable function (a statistic). A
(commit-and-prove) decision-tree-statistic argument for a set of statistics S is a
tuple zkDT = (KGen, Com, VerCom, Der, Prove, Verify) where:

(i) CSpr = (KGen, Com,VerCom) define an extractable commitment scheme for
the domain T* of (quasi-complete) decision tree. In particular, KGen takes
in input a natural number Ny the mazximum number of nodes, and the
natural numbers B and d, besides the security parameter and generates a
commitment key for the set Tj 4

(ii) CPpr = (Der, Prove, Verify) define a Unwersal CP-SNARK for the indezxed
CP-relation RDTstat defined below.

RoTstat = {pp; (Sym); g, (%)jem): T+ ) :Ti(:)(ill ' (S,T(n);;%)s} '

6.2 The Extended Encoding of Decision Trees

We introduce an alternative encoding of a decision tree as a data structure before
presenting our zero-knowledge decision-tree statistics argument. We follow the
work of Chen et al. [11]. In particular, we define a d-dimensional boz as a tuple of
vectors in [B + 1], where the first vector defines the left bounds and the second
vector defines the right bounds. We say that a vector x € [B]? is contained in
abox (b",b") if b~ < x < b". We can assign to each node of a decision tree a
d—dimensional box. In particular, we denote with (N;, N;) the box assigned to
the i-th node in the tree and with N7, N~ the tuple of matrices of all the boxes
of a decision tree (mapping the i-th row to the box of i-th node).

We can associate a (quasi-complete) decision tree to a tuple of matrices,
below we define such a relation:

Definition 8. Given a quasi-complete decision tree T with Nyt nodes and given
matrices N°, N, we say that (N,N~) is a boxes-encoding of T if

1. N7 =0 and N7 = B+ 1, where 0 (resp. 1 and B) is the vector of all 0
(resp. of all 1 and of all B).

2. Letp € [Nint] be the index of a node and let | and r respectively be the indexes
of the left child and right child of the node with index p.

N, -N,=0 N, -N,=0 (14)
E,o(N;-T,) =0 E,o(N,-T,) =0 (15)
(1-Ep)o(N,-N,)=0 (1-Ey)o(N,-N,)=0  (16)
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The computation, through a boxes-encoding, of a decision tree T(x) consists
in finding the index k of the leaf whose box contains x and outputs the label
associated with such a leaf. For a quasi-complete decision tree, such an index
k might not exist. We formalize this in the next definition and prove such a
computational equivalence in the next lemma whose proof is in [7, Appendix E].

Definition 9. Let T be a quasi-complete decision tree with Nyt nodes (with
domain [B]?) and (N",N") be a boves-encoding of T. For any x € [B]%, if x is
contained in the box of a leaf of T define the index of the leaf as kt(x) such that
x is contained in (Ny, (), Ny () else kr(x) is set to L.

Whenever it is clear from the context, we will omit the subscript T and write
k(x) to refer to such an index.

Lemma 3. Let T be a quasi-complete decision tree with Nio nodes and (N7, N7)
be a bozes-encoding of T. Let v be the vector of the labels assigned to the leaf
nodes of T, namely for any i € [Nigt + 1, Niot], we have v; as the label assigned
to the i-th leaf. For any x € [B]¢, T(x) = vy or T(x) = L.

As corollary of the above lemma, we have that the boxes of leaf do not overlap
because no vector x can be contained in more than one of the boxes of the leaves.

Before giving the next definition, we set some notation: given a decision tree,
we say that node p splits at coordinate i* € [d] if i* is a coordinate where p’s left
and right child boundaries are different, namely, N, ; # N;, and N, # N,
where ¢ and r are the left and right child of p. We are ready to describe our
(more redundant but ZKP-friendly) encoding of a quasi-complete decision tree.

Definition 10. Let T be a quasi-complete decision tree with Nyt nodes. Let
7 =(N",N,v,L,R,E) be a tuple of matrices (described below). We say that
T is an extended encoding of T if the following conditions hold:

(i) (N",N7) is a bozes-encoding of T;
(ii) v is the vector of the labels assigned to the leaf nodes of T;
(i) L (resp. R) is the Nigy X Nior bit matriz whose p-th row is the elementary
vector €] (resp. e]) if € is the left (resp. r is the right) child of node p’s in
T!
(iv) E € {0,1}Nmxd s the bit matriz such that its p-th row and i column is 1
iff the node p splits at coordinate i.

Let Encode be the algorithm that, given a quasi-complete decision tree T, com-
putes the extended encoding of T.

Let the matrices P~, P~ € FNim*d describe the boxing encodings of the internal
nodes, and F~,F~ € FNer*4 describe the boxing encodings of the leaves. Thus:

N = () anaN = ().
F- F-
The function Encode in Definition 10 is injective but not surjective. In the next

lemma (whose proof is in [7, Appendix EJ]), we give sufficient conditions for
belonging in the image of Encode.
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Lemma 4. Consider a tuple (N",N",L,R,E,v) such that the following con-
straints hold:

a) The following equations hold:

N; =0,N; =B +1,

L-N =P ,R-N =P,

Eo(L-N —R-N")=0

(1-E)o(P —R-N") =0, (1-E)o(P —L-N')=0

b) All the bozxes are not empty. Namely, for all i,j we have N; ; <N; ;.
¢) The matric (%) is a (row) permutation of the (squared) matriz (0||In,,—1)

(the matriz whose rows are the row vectors (€;)ic(2, Ny, Of length Niot).

Then there exists a quasi-complete decision tree T with Niot nodes such that
Encode(T) = (N,N",L,R,E, v).

6.3 Extractable Commitment to Decision Trees

In a nutshell our commitment procedure on input a decision tree computes the
encoding described in Sect. 6.2, then it commits to the matrices F*,F~ and v
and prove in zero-knowledge the constraints from Lemma 4. We can implement
the latter zero-knowledge proof using a general-purpose R1CS circuit describing
the constraints of the lemma, however, the size of the circuit would be O(dN2,),
in fact, we would need to commit to the remaining matrices P~, P~ L, R and E
and we would need already O(dNZ2,) multiplication gates for Eq. (18). We show
how to remove the quadratic dependency from the number of total nodes. The
main idea is to notice that L and R have sparsity linear in Ny, thus we can use
techniques from [39] to commit to such sparse matrices and then prove in zero-
knowledge that the constraints in Item c¢) of Lemma 4 hold for the committed
matrices. The remaining constraints can be proved in O(dNio log(dNiot)).

The Building Blocks. Consider the following (indexed) CP-relations:

Rin = {ppie; (M,N,R) : M- N = R} (21)

Rhad = {pp;e; (M,N) : Mo N = 0} (22)
Rperm = {pp; (N, i(X));;p(X) : 3m,¥j € [N] s i(w(w?)) = p(w’)}  (23)
Rehife = {pp; S;e;(v,u) 1 Vi = U(its  (mod [u) } (24)

Reng = {pPP; (B, n,d);e;X : X € [B]"*"} (25)
ﬁsm:{pp:K;e;M:M‘K:O} (26)

Our scheme uses CP-SNARKs for all the relations above as building blocks. The

first three relations are standard, and CP-SNARKSs for them can be found in
the related work. Given a CP-SNARK for Rj;,, we can define a CP-SNARK for
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Rehife in fact that the shifting operator can be described through a linear trans-
formation. The latter linear transformation can be public, thus the underlying
CP-SNARK (for 7%“,1) does not need to be zero-knowledge w.r.t. the first matrix
M, in particular, a commitment to such a matrix could be part of the index
polynomials. A CP-SNARK for 7A€mg can be realized using our lookup argument
and considering the table b = (j),cp) and proving that the vectorization X of

X is such that X < b. Finally, a CP-SNARK for Rem can be easily realized by
committing to a matrix T such that Tx = T and 0 everywhere else and to the
vanishing polynomial in v g in Go as part of the index. At proving time, the
prover returns as proof a commitment to the quotient polynomial ¢ such that
(X)) =q(X) v g(X) where f/(X) is the polynomial associated to the matrix
M — T'. At verification time the verifier checks e(cm — ¢, [1]5) = e(m, [V k],)-

For the CP-SNARK for 7A€|in, we require two different commitment schemes,
one for the first matrix and one for the other two. In particular, we consider an
alternative way to commit to matrices following the work of [33,39]. Let M be
a basic matriz, namely a matrix whose rows are elementary vectors. Let H be
any fixed subgroup with |H| > Nyt of F with generator w. For any basic matrix
M € {0,1}™** and n,k € N, let colp(X) be the (low-degree) polynomial such
that colns(w’) = w? where the i-th row of M is the vector e, (notice that coly is
the LDE of the vector whose i-th element is the value w?). We define the sparse
(hiding) commitment of a matrix M as a (hiding) polynomial commitment of
colng. Namely, we define:

sparseCom(ck, M, p) := Com(ck, coln, p)-

Notice that, by the above definition, a sparse commitment to a basic matrix M
has a dual interpretation (as a sparse matrix or as a vector col).

Let CPj, be a CP-SNARK for the 7%“” relation where the first matrix is
committed using sparseCom while the other matrices are committed with the
matrix commitment scheme from Sect.2.3. An instantiation of such a scheme
can be found for the matrix-times-vector case (namely, N € F"*1) in Baloo
by [39] (see Sects.5.2, 5.3 and 5.4 of the paper). We show a generalization to
matrix-times-matrix case in [7, Appendix E.4]. We write to underline that
the matrix M is committed with a sparse matrix commitment. For example,
we can write (pp,e;, N,R) € Rin to identify the statement that there are
commitments c,s, cy,cr Where the first is a sparse matrix commitment and that
open to M,N and R with M - N = R.

Let CPpaq be a CP-SNARK for the 7A€had relation where all the matrices
are committed using the commitment scheme from Sect. 2.3. Notice that a CP-
SNARK for our matrix commitment scheme for such a CP-relation derives
directly from CP-SNARK for vector commitment. Finally, let CPyerm be a CP-
SNARK for the CP-relation 7A2perm. The permutation argument of Plonk [19] is
a CP-SNARK for such a relation.

8 Alternatively, we can consider the same subgroup used for the matrix commitment
and thus |H| = Ntot -d.
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The Extractable Commitment to Decision Tree. We define our extractable
commitment scheme for the domain of quasi-complete decision trees. The main
idea is, as part of the proof of opening, to commit to the matrices L and R
through sparse commitments to basic matrices and then prove the linear rela-
tions from Lemma 4 in zero-knowledge with a complexity that is linear in the
sparsity of the matrices and the dimension d. The additional constraints on the
two matrices L and R are proved using the permutation argument. To improve
readability, we list below shortcuts used in the protocol’s description.

P (2)r e (2P ()P ()
F- F- 0 0
= L\ 5 R 0\ =& E
L=(3) R=(3) R=(3) B=(3)
The padding for the matrices make them all to have Nio: rows. Moreover, we let

B be the matrix whose first row is the vector (B+1,..., B+1) and the remaining
rows are set to 0, and we let b(X) be the LDE of the vectorization of such a

KGen(1*, (Neot, B, d)):
Sample a type-3 pairing group pps with security level A.
Set ck’ « (ppgs ([si] Ve ( [51}2)15[1\12] for random secrets s < Zg.
Let M1 := [Nint], N2 := (Nint, Not), N3 := {1}, for i € [3] compute srssm,1 < CPsm.Der(ck’, \V;).
Compute srsperm < CPperm.Der(ck’, (Neot — 1,id)).
Compute srspmg <~ CPrng.Der(ck’, (B, Niot, d)).
Compute srsshife <~ CPahite.Der(ck’, Nint).
Return ck := (ck’, [b(s)]; , SrSperm, SSrg, SrSshitt, (SrSsm,5 ) je(3])-

Com(ck, T, pr):
Compute (L,R,E,N",N", v) < Encode(T), parses pr as (pu, p., p.).
¢y < Com(ck, v, po).
c. < Com(ck,F.,p.),c. < Com(ck,F,,p.), c < Com(ck,P.,p.),c. + Com(ck,P ,p.).
Cin + Com(ck,L-N",), ¢, < Com(ck, R-N) and cg + Com(ck, E).
cr + sparseCom(ck, L), cg + sparseCom(ck, R) and c/z < sparseCom(R.).
Let colg,, colg and colr be the underlying polynomials.

Prove the following statements, let @ = (m1,...,m16) be the proofs.
Tlyeey T TN, @ N,L-NY, (RIN",P), (RIN,R-N") € Rin,
5, Ty 77 (B,L-N'-R-N), 1-EP -R-N), 1-EP —L-N") € Rpu,
78,791 (B, Neot, d);N" = N" = 1) € Ring, (Neet — 1,idl; colg (X) + colr (X)) € Rperm,
10 : (Nint, colg , colr) € ﬁshifty
T, .., 6 ! (N FL), (N L), (Was PL), (Vs PL), (M35 PL), (N33 Pl — B) € Ram.

Return (c_,c.,c,), ® where 7 = (c/, ¢, Cin, Crn,CE,CL, CR, C, TF) -
Verify(ck, cr):
Let cr = (c.,c.,cy, ) and parse 7. Let cy,. < c. +c and cn,. ¢ c, +c’.
1. Verify i, w2, 73, ma w.r.t. (cp,cn,.,c"), (cL,en, s Cin), (CRyCN, ., C.), (CRyCN, s Crn)-
. Verify s, 6, m7 w.r.t. (Ce,Cin — Crn), ([1], — cE ¢l — &), ([1], — €, ¢ — cin).
. Verify s, mg w.r.t. ((B, Neot, d);cn,. —cn,. — [1],) and (Nt — 1,4d; ¢ + cR).
. Verify w19 w.r.t. (Nint; (Cr,CR))-
. Verify 711, ..., 76 wor.t. (N1, c.),(N,c.),(Na, ), (N2, ), (Ns,cl), (N5, ¢/, — [b(s)],)-

Tt W N

Fig. 3. Our extractable commitment CSpr. The value N1 > Niot - d, N1 and Ny are
big enough to support all the building-block.
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matrix. This polynomial can be computed in O(dlogd) operations, however,
for simplicity, we commit to the polynomial at key-generation phase. We let id
be the low-degree polynomial that evaluates id(w') = w'*! for i € [Nyt — 1]
(equivalently, the commitment [id(s)], is a sparse-matrix commitment to the
matrix (0||In,,-1))-

Theorem 3. The commitment scheme CSpr defined in Fig. 3 is hiding and it is
an extractable commitment scheme for the domain {7y, p 4} Nw.d,B i the AGM
and assuming the building blocks are knowledge-sound and zero-knowledge.

Efficiency. The extractable commitment in this section has constant proof size
when the CP-SNARK for Ry, is instantiated with the building block described
in [7, Appendix E.4]. Its proving time is O(d Nyt log(dNyot)) when applied to a
decision tree with d features and Ny, nodes. Notice that Ny is usually at least
one order of magnitude larger than d.

6.4 CP-SNARK for Statistics on Decision Trees
Consider the scheme CPpp in Fig.4 based on the following building blocks:
1. Let CPyp. be a CP-SNARK for the indexed CP-relation:

. Fi|...|Fp) < (T4]|...|| T,
Rmp*:{pp; (N, d,n);&; (T5)jepm)> (Fj)jepm) - éj1;|||Tj|H: ]L\; x d(, |}§!| :|7|1 ch)i}

2. Let CPpog be a CP-SNARK for Ryng in Eq. (25).
3. Let CPgat be a CP-SNARK for the following indexed CP-relation:

Rstat = {pp, (S, m);y;v : S(v) =y A [v]| =m}

Notice, we can easily define a CP-SNARK for 7A3|kp* on top of our compiler from
Sect. 5. Namely, we batch together the matrices T; and the matrices F; using a
random challenge, as described in Sect. 5.1, and then we run our matrix lookup
argument. As corollary of Theorem 3 and the theorem below, we have that the
CPpr and the commitment scheme CSpp from the previous section define a
decision-tree statistic argument.

Theorem 4. CPpr = (Der,Prove,Vgrify) in Fig. 4 defines an Universal CP-
SNARK for the indexed CP-relation RpTstat-

6.5 Efficiency and Concrete Instantiations

We discuss how to instantiate our scheme above, the resulting system has a
universal trusted setup.

— CPikp+ can be instantiated with our construction mtx[zkeq™] from Sect. 3;
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Der(srs, (S, m)):
Compute srs(s,m) = CPstat.Der(ck, (S, m)), srsm <= CPip..Der(ck, Niot,d, m).
Compute srs(p m,q) < CPmg.Der(ck, (B, m,d)) with values B, d contained in srs.
Return the specialized SRSs.

Pt’OVG(SI’S7 (CT7 Y, (X]’)]E[m]), (T7 p‘r)):
Parse ct = (c.,c.,¢) and pr = (p., p., pu)-
Let k; = kr(x:) and K = {k1,...,km}, where kr(-) as defined in Definition 9.

Compute matrix commitments ci,cz,c3 to the matrices (F. )k, (F.)x, V|x-
Compute a proof ke that

(m;e; ((Fﬂ F~7V), (F~)|K~, (Fa)\K, V\K)) S ﬁlkp*-
Compute a (not hiding) commitment to the matrix X whose rows are the vectors (X;);cm-
Compute proofs 7., and 7, for the following two statements:

((Bym,d); X — (F.)|x) € Reng, ((Bym,d); (F.)jx — X — 1) € Reng.

Compute a proof 7star that ((S,m);y;vik)) € Restat-
Return (c1,C2, C3, Tzkikps Trng, Mrngs Mstat ) -

Verify(srs, Vk(S,m)7 (cT, 9, (x])jG['"r])‘r mT):
Parse the proof 71 = (c1, €2, C3, Takikp; Tings Trng, Mstat)-
Compute cx <+ Com(ck,X) (X computed from (x;);e[m]) - Return 1 if the following state-
ments hold (else 0):
1. CPips.Verify(srs, vk, , (c1,¢2,¢3,C.,C., Cu), Takikp) = 1

2. CPrng.Verify(srs, vk g 1. 4)5 (€x — C1), Trng) = 1 and
CPrng.Verify(srs, vk g, a)s (c2 — ex — [1]}), Tmg) = 1

3. CPsar.Verify(srs, vk (g ), (€3, ), Tstar) = 1
4. VerCom(ck,ct) = 1.

Fig. 4. Our CP-SNARK CPpr. The pre-processing algorithm runs the preprocessing
of the matrix lookup argument on F_,F_ v and openings pr = (p., p_, pv)-

— CPpng can be implemented through a (vector) lookup in a table of size B
where the subvector being looked up is of size m?;

— CPgat can be implemented through a general-purpose commit-and-prove
SNARK, such as [2,8]. For concreteness, and to minimize proof size, in the
remainder of this document, we consider the proof scheme CP-LunarLite
from [8] (Sect.9.4).

We can provide an upper bound on the total proof size for the instantiations
above to 20G; elements!? per each of the proof above (this is a loose upper
bound)—see Table1 in this work, Table1l and Sect.9.4 in [8]. On a concrete
curve like BLS12-381 this yields a total proof size of at most approximately
3.84 KB (this is a generous lower bound). For comparison, the proof size in [40]
is of the order of hundreds of kilobytes.

9 The idea is to consider the table b = (7)jerB) and prove, through a lookup argument,
that that X < b where X is the vectorization of X.
10 We approximate the size of field elements with that of G; elements.
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Decision Tree Accuracy. In the specific case of proving decision tree accu-
racy we prove that a decision tree is able to correctly estimate a specific frac-
tion of a given data sample. Namely we consider the statistic that upon input
(vj)jem) (Yj)jepm) computes > eqy (vs,y;) /m, v; = T(x;) for j € [m] where
k € N is a small constant and eqy, is the function returning 1 when its two argu-
ments, of size k, are equal'’; otherwise it returns 0. Thanks to Theorem 4 this

)

can be reduced to a CP-SNARK for the following relation!?:

Race Z{(Wk); ((Wi)sermys ) s (V) jepm : 1" = Zeqk (v5,95) } (27)

Even with an R1CS-based (Rank-1 Constraint System) general purpose SNARK,
the relation above can be implemented very efficiently.

Our estimates show improvements of almost one order of magnitude for prov-
ing time and two orders of magnitude for verification time for representative
choices of parameters (see full version for details). Our prover runs in the order
of a few seconds; our verifier in the order of 100ms. The construction in [40]
in contrast has a prover running in the order of minutes (2-5m) and a verifier
running in the order of 10s'3.

Table 2. Comparison between our solution and [40] for zero-knowledge decision tree
accuracy. Parameters are d (number of attributes), m (size of sample), |H| is the cost of
hash function invocation (such as SHA256); |Hcirc| is the cost of a hash function invo-
cation as a circuit; [P is the cost of one pairing. Notation O(f) refers to O(f log f). This
table does not include the one-time cost of preprocessing for the prover (see Table 1 for
concrete costs). Notice that the asymptotics in the row for our construction account for
just the commitment algorithm and the extractability proof. The asymptotics reported
for [40] are actually a lower bound and do not include some additional factors in their
complexity, such as tree height. Dominated factors, such as B and k (input and output
size of decision tree respectively), are also not included in the asymptotics.

Scheme Commit Time | Prover Time Verifier Time Proof Size
[40] O(Neot)|H| O(md + Niot logm + Niot|Heire|)F | O(md)F O(log? (md))f
Our solution | O(dNiwt)(G + F) | O(md) (G + F) O(m)G +O(1)P | O(1)(g1 + )
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