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Abstract

The increasing usage of neural networks forms a threat to the cyber security as attacks with adversarial exam-
ples can deceive the networks. Because neural networks can have complex structures with tens of thousands
of parameters, they are hard for humans to understand. Hence, existing white-box attacks use very limited
network information and most state-of-the-art methods are based on gradient descent. However, intuitively
attacks and defenses can be more effective when the user understands the model and uses all information
contained by the model. In this work we further investigate the inner workings of a neural network and con-
sider using intermediate network information for the creation of adversarial examples. We show that neuron
activation values can be distinguished by the class of the data point and contain meaningful information
about the prediction of the network. Based on this information, we propose a new, gradient-free method for
creating adversarial examples based on a genetic algorithm. By covering a larger part of the search space and
manipulating the neuron activation values, our success rate exceeds most state-of-the-art methods, such as
DeepFool and RFGSM. We also find that the trade-off between success rate and distance has a huge impact
on the results of a method, wherefore we recommend to carefully balance this trade-off by formulating an
optimization formula with a separate loss and distance component.
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1
Introduction

The use of machine learning techniques and artificial intelligence is growing in many sectors. For example,
in the health care sector these techniques can help diagnose breast cancer [1], in the financial sector it can
detect credit card fraud [18], and in the car industry the techniques are employed to create self-driving vehi-
cles [9]. The increasing usage of machine learning techniques is explained by its outstanding performance,
especially for high-dimensional problems for which the patterns and solutions are not evident to the human
mind.

A popular artificial intelligence technique is the neural network. This is a model containing nodes and
weights, which are used to classify an input to a certain class. Neural networks can have complex struc-
tures with tens of thousands of parameters, and as such they are hard for humans to understand. The user of
the model is unaware of the reasoning of the model, making it nearly impossible to detect abnormalities.

This is a threat to the cyber security of the system that uses the model, and unfortunately adversaries use this
vulnerability to attack the system. A well-known and successful attack is the adversarial example. This attack
aims to make very small changes to the input, such that the data point looks the same, but its class is wrongly
predicted by the neural network.

Over the last decade, many methods were proposed to create adversarial examples, and to defend against
them [21]. The ongoing developments in this field result in a cat-and-mouse game, where adversaries find
new ways to attack the model with unseen methods to create adversarial examples, and the victim responds
to this by creating new defense mechanisms against the new attacks. As new, better methods for creating
adversarial examples are still found today, it is interesting to look at the inner workings of existing methods
and look for possible improvements.

Surprisingly, existing methods use very limited network information. Most state-of-the-art methods are
based on gradient descent, using the gradient of the loss function with respect to the input. A neural net-
work, however, likely contains much more valuable information which is not used in existing methods. This
is seemingly due to the difficulty of understanding the inner workings of a neural network and the unclear
meaning of (intermediate) network information.

An interesting and accessible piece of network information are the intermediate results of the network: the
neuron activation values. A neuron activation value is determined by the activation values of the previous
layer with their corresponding weights. The result is put through an activation function, producing our de-
sired neuron activation value.

1



2 Introduction

1.1. Motivating example
As an explanatory example, we consider a very simple neural network with two hidden neurons and two
output classes. We separate the input data by their actual output class, to be able to see the differences in
the neuron activation values. In figure 1.1 the activation values of the first hidden neuron are shown for the
separated data. The differences in activation values are clearly distinguishable for the two output classes, and
hence we suspect that we are dealing with some valuable information.

Input data points

= Class 1

Output

Activation values

Input data points

= Class 2

Output

Activation values

Figure 1.1: Visualization of a simple neural network with two hidden neurons and two output classes. The input data
is separated by their class label, showing the evaluation of the network for both classes separately. The top hidden
neuron is highlighted by showing the activation values corresponding to the input. The data points belonging to a

different class show distinguishable neuron activation values.

We want to exploit this information for creating adversarial examples by combining it with a suitable
and powerful algorithm. The algorithm should be conscious of the fact that adversarial examples are more
often found when a larger part of the search space is considered, and the algorithm needs to be capable of
optimization for high-dimensional problems. Hence, we take a genetic algorithm as these are designed to
explore large input spaces and are known for their good performance on high-dimensional data.

Combining the genetic algorithm with the neuron activation values, we aim to perturb the input in such
a manner that the activation values of the data point change. The goal is to find a perturbation for which
the activation values are similar to a different class, while the input still looks like the actual class. Let us
clarify this by going back to the example in figure 1.1. Say we have a data point for which we want to find
an adversarial example. The class label of the data point is ’1’, corresponding to a red square in the image.
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Looking at the activation values, a data point of class ’1’ usually has activation values between 2 and 4, as
opposed to data points of class ’2’ (orange squares) where the activation values lie between 0 and 2. Our goal
now is to change the red square in such a way that its activation value will look like an activation value of an
orange square, while still looking like a red square. This is shown in figure 1.2

Normal case:

Activation

Class 1

Adversarial example:

Activation

Class 2

Figure 1.2: Visualization of our goal: perturb a data point to create an adversarial example based on the changed
activation values. The input data point still has to look like it belongs to its original class, so the color of the square

may slightly change, but not too much as we do not want it to look like another class. The desired perturbation results
in activation values similar to a different class, causing the network to misclassify the perturbed data point.

This example furthermore shows the importance of covering the search space. Methods based on gradient
descent will search for corner cases where the color of the square is somewhere between red and orange,
finding the obvious adversarial examples. However, what would happen if we feed the network a purple
square? The network may have never seen a similar input before, causing unwanted or unexpected behaviour
and neuron activations, possibly resulting in new adversarial examples.

1.2. Research objectives
In this work we attempt to get a better understanding of the inner workings of a neural network, specifically
concerning the neuron activation values. To achieve this, we investigate the behaviour and patterns of neuron
activation values and try to identify to which extent changes in neuron activation values can result in finding
new adversarial examples. The main research question is therefore formulated as follows:

How do neuron activation values behave and how can we use this
information to create new adversarial examples?

The main research question is broken down into three sub-questions. The first step is to analyze neuron ac-
tivation values in very simple networks, such that potential differences between the values of distinct classes
become visible and we can reason about the meaningfulness of neuron activation values. Subsequently we
investigate whether this also holds for larger, more complicated networks. The first sub-question therefore is:

1. What differences are visible in neuron activation values for different classes,
and does this hold for different network sizes?

With the findings of this sub-question we want to investigate whether the neuron activation values are an
indicator of the class label that the network classifies the data point to, and how we can translate neuron
activation values to activation distributions and class probabilities. The option of using these activation dis-
tributions to create adversarial examples will be explored. The second sub-question therefore is:

2. How can we deduce the class label from neuron activation distributions, and
how can we use this to create adversarial examples?

As we hope to develop a new method for creating adversarial examples, primarily based on neuron activation
values, we want to evaluate its performance. The adversarial examples that are produced by the method will
be compared to adversarial examples created by state-of-the-art methods, considering amongst others the
success rate, distance, and efficiency of the methods. The third sub-question therefore is:

3. What is the performance of the new method using neuron activation values,
and how does this compare to the state-of-the-art?
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1.3. Contributions
In this work, we try to gain a deeper understanding of the information contained by neuron activation values,
and use this to propose a gradient-free method for generating adversarial examples. Our main contributions
are:

• Network insight: This work provides new insights into the inner workings of a neural network and
the value of network information for classifications. Most importantly, we find that neuron activation
values are very indicative of class labels.

• GenNeuAct: We propose a new method for generating adversarial examples. The basis of the method
is a genetic algorithm, with a fitness function based on neuron activation values. The fitness of a data
point is determined by scoring it against the estimated density function of each neuron and each output
class. The success rate of the method is higher than most state-of-the-art methods, such as FGSM,
BIM, DeepFool and RFGSM. Only C&W achieved superior success rates. The quality of the adversarial
examples created by GenNeuAct is comparable to the state-of-the-art. A big strength of this method is
the network coverage, as the method explores a larger part of the search space. Also, to our knowledge,
this is the first work to utilize intermediate network information for classification.

• Identification of ingredients for success: We compare and analyze GenNeuAct and the state-of-the-art
methods for generating adversarial examples, and look for properties causing the success of a method.
We find that the trade-off between success rate and distance has a huge impact on the results of a
method. Our findings on the C&W attack show that this trade-off can be carefully balanced by formu-
lating an optimization formula with a separate loss and distance component.

1.4. Outline
The rest of this thesis is structured as follows: In chapter 2 we give background information about neural net-
works and genetic algorithms. In chapter 3 state-of-the-art white-box attacks are discussed and evaluated,
and we look at previous works considering neuron activation values. Chapter 4 investigates what informa-
tion can be extracted from neuron activation values and how this information can be used to make network
predictions and adversarial examples. In chapter 5 the adversarial examples created by the method using
neuron activation values is compared to the state-of-the-art for four different datasets. Chapter 6 discusses
the limitations and recommendations of the research, and the conclusions are presented in chapter 7.



2
Background

This chapter presents and explains the background knowledge that is needed to understand this work. We
elucidate the basics of how a neural network is constructed and how they work. Furthermore, the principles
of a genetic algorithm are explained.

2.1. Neural networks
An artificial neural network (further referenced as neural network) is a circuit of interconnected neurons,
inspired by the biological neural networks in the brain. The neural network takes as input a vector of real
numbers, and also outputs a vector of real numbers. Between the input and output there are ’hidden layers’
with neurons which can transmit a signal to other neurons. An example of a feed-forward neural network is
shown in figure 2.1.

Figure 2.1: Example of a feed-forward neural network with 6 input neurons, 4 output neurons, and
three hidden layers with each 7 neurons

2.1.1. Components
To get from the input to the output, the network does a long series of computations. An overview of the
computations for a single neuron is visualized in figure 2.2. As visible in figure 2.1 and 2.2, a neural network
is build up out of different components, which are repeated throughout the network. The next subsections
will explain each component present in this overview.

5
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x2 w2 Σ f

Activation
function

y

Output

x1 w1

xn wn

Weights

Bias
b

...
...

Inputs

Figure 2.2: Overview of the inner computations for a single neuron in a neural network. All inputs are
multiplied by the corresponding weight and summed. Next, the bias is added to this sum. The

obtained value is inserted in the activation function, resulting in the final output of the neuron.

Weights
The connections between the neurons are called edges, and each edge has its own weight. For a fully con-
nected network, each input neuron has a connection to each neurons in the first hidden layer, each neuron
in the first hidden layer has a connection to each neuron in the second hidden layer, and so on. In the last
hidden layer, each neuron has a connection to each of the output neurons. These weights increase or de-
crease the strength of the signal at a connection. To compute the value of a hidden neuron, the first step is
to multiply the weight of each incoming edge with the value of the neuron the edge originated from. These
values are summed at the neuron. An example calculation for a single neuron is shown in figure 2.3.

x1 = 4.50

x2 = 3.00

x3 = 2.75

y = 4.05

w1 = 0.2

w2 = 0.5

w 3 = 0.6

y =∑
i xi ∗wi

= x1 ∗w1 +x2 ∗w2 +x3 ∗w3

= 4.500.2+3.00∗0.5+2.75∗0.6
= 4.05

Figure 2.3: First step in calculating a hidden neuron value: sum input times weight

Biases
Except for the neurons in the input layer, each neuron has a value called the bias. This bias is a scalar value
and is added to the result of the calculation in the previous section. The bias can be compared to a constant
in a linear functions: it does not affect the steepness of the line, but shifts the entire line left or right. When a
bias is high, the resulting neuron value will inherently also be higher. This makes it more likely for the neuron
to be activated by the activation function.

Activation functions
The final step in calculating the output value of a neuron is applying the activation function. The most popu-
lar training techniques use a method called backpropagation (more about this later), which makes use of the
gradient of the activation function. Therefore, we need a non-linear activation function. The non-linearity of
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the activation function also allows us to learn more complex data patterns. Some commonly used non-linear
activation functions and their derivative are shown in figure 2.4.
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Figure 2.4: Different activation functions and their derivative

Sigmoid The Sigmoid function outputs values between 0 and 1, such that the neuron output is normal-
ized. It gives clear predictions for x-values above 2 or below -2, and the function has a smooth gradient.
However, for very small or very large x-values, we encounter the so-called vanishing gradient problem. The
gradients for such values are so small that the weights do not change (anymore) and the network stops learn-
ing. Another problem is that this method is computationally expensive. This is important because the activa-
tion function is sometimes calculated for thousands or even millions of neurons for each data point. Another
downside of this method is that the outputs are not zero-centered, this makes the optimization of the network
harder and/or slower.

TanH The Hyperbolic Tangent (TanH) is very similar to the Sigmoid function. The biggest difference is
that TanH is zero-centered, making it easier to optimize the network. Other than that, the advantages and
disadvantages are the same as for the Sigmoid function.

ReLU The Rectified Linear Unit looks a lot like a linear function. However, since the x-values below zero
are all mapped to 0, the function is non-linear and allows for backpropagation. In contrast to the Sigmoid and
TanH function, this function is very computationally efficient, allowing the network to converge more quickly.
A downside of this method is the so-called dying ReLU problem. This occurs when the input of the activation
function approaches zero or is negative. The gradient of the function then becomes zero, also causing the
loss function to be zero. From now on, the update step of the weights will remain the same as it is dependent
on the value of the loss function. When a neuron gets into this state, we say that the neuron is dead.

Leaky ReLU The Leaky ReLU function was designed to solve the dying ReLU problem. Instead of mapping
all x-values below zero to 0, there is a small positive slope. This allows for backpropagation even with negative
values, preventing the dying ReLU problem. This method is still computationally efficient. Unfortunately the
Leaky ReLU does not solve all problems, as the predictions for negative input values are not consistent.

Swish A much newer method is the Swish activation function, developed by Google. According to the
authors, Swish tends to perform better than ReLU [37]. They show this on deeper models across various chal-
lenging datasets. The paper does not compare the computational efficiency of the new activation function
to ReLU. As the Swish function has more complicated computations, it is inherently more computationally
inefficient than ReLU, but this might be worth the gain in accuracy.

Throughout the rest of this work, the ReLU activation function is used, unless stated otherwise. This decision
is base on the limited use of the Swish method and the computational efficiency of the ReLU function.

2.1.2. Training a network
When training a neural network, the goal is to learn the values of the weights and biases such that the network
makes good predictions. The to-be-learned dataset is split into a training set and a test set. The training set is
used to learn the weights and biases, the test set is used to calculate the network’s accuracy on unseen data.
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Loss function
To train a network, a method is needed to quantify how good the neural network performs with the current
parameters. To this end we can use a loss function. The most well-known loss function is the mean squared
error (MSE) loss:

MSE = 1

n

n∑
i=1

(ytr ue − ypr ed )2,

where n is the number of training samples, ytr ue is the actual class the data point belongs to, and ypr ed is the
class prediction of the network.

For classification problems, cross entropy loss (CEL) is the most commonly used loss function. The math-
ematical formulation is as follows:

C EL =−(ytr ue log(ypr ed )+ (1− ytr ue ) log(1− ypr ed )).

The cross entropy loss increases as the predictions by the network diverge from the true class. When training
a network, we try to minimize this loss.

Updating rules
Based on the result of the loss function, we want to alter the weights and biases to lower the loss. If we
compute the gradient of the loss function with respect to the weights for a single data point, we can take a
step in the direction of the gradient to lower the loss:

wnew = wol d − l r

(
∂Loss

∂wol d

)
.

We can do the same for the biases:

bnew = bol d − l r

(
∂Loss

∂bol d

)
.

l r is the learning rate, which is a hyper-parameter determining the size of the steps we take.

Backpropagation
Getting the gradients at each weight and bias in the network is done using a method called backpropaga-
tion. This method will be explained based on the notations in figure 2.5, which is a tiny neural network for
explanatory purposes. Each neuron has a value a, which denotes its activation value (output of the activation
function for that neuron). The superscript of the activation indicates in which layer the neuron is located,
and the subscript indicates its position in that layer. The same goes for the biases b, and the weights w .

Layer lLayer l −1

a(l−1)
h

a(l−1)
i

a(l−1)
j

a(l )
k

w (l )
kh

w (l )
ki

w (l )
k j

b(l−1)
h

b(l−1)
i

b(l−1)
j

b(1)
k

True class label y

Figure 2.5: Example neural network with the corresponding mathematical notations
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As the name backpropagation suggests, we start at the output layer of the network, and work our way to
the left. For simplicity we use the mean square error loss function. As was shown before, the activation value
of neuron k in layer l can be calculated as follows:

a(l )
k =σ

(∑
i

w (l )
ki a(l−1)

i +b(l )
k

)
,

where σ is the activation function of choice, for example ReLU. For convenience we also declare a variable z,
which is the value before the activation function is applied:

z(l )
k =∑

i
w (l )

ki a(l−1)
i +b(l )

k .

For a certain data point, we can use the loss function (MSE) to compute the loss of the network:

Loss =
nL−1∑
k=0

(a(l )
k − yk )2.

Now we can take a look at the gradient we actually want to compute. Using the chain-rule (visualized in figure
2.6), the gradient can be split up into three different partial derivatives:

∂Loss

∂w (l )
ki

=
∂z(l )

k

∂w (l )
ki

∂a(l )
k

∂z(l )
k

∂Loss

∂a(l )
k

w (l )
ki

Incoming weight

a(l−1)
k

Previous neuron output

b(l )
k

Bias current neuron

z(l )
k

Output before activation

a(l )
i

Output after activation

Loss

y

Desired output

Figure 2.6: Visualization of the different components used in the chain rule.

These partial derivatives are easier to compute:

∂z(l )
k

∂w (l )
ki

= a(l−1)
i ,

∂a(l )
k

∂z(l )
k

=σ′(z l
k ),

∂Loss

∂a(l )
k

= 2(a(l )
k − yk )

such that
∂Loss

∂w (l )
ki

= a(l−1)
i σ′(z(l )

k ) 2(a(l )
k − yk ).
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Similarly, we compute the gradient for the bias:

∂Loss

∂b(l )
k

=σ′(z(l )
k ) 2(a(l )

k − yk ).

The gradients are computed for each weight and bias present in the network, resulting in the gradient vec-
tor. This gradient vector will then be used to update the weights and biases according to the update formulas
discussed before. This process is repeated for all the data points in the training set, until some condition
is met. An easy and commonly used stopping criterion is setting a fixed number of epochs; one epoch is
putting all training data points through the backpropagation method once. Another stopping condition that
is commonly used is to stop training when the loss of the network is below a certain predetermined threshold.

2.2. Genetic algorithms
As mentioned before, there are numerous methods with which you can find adversarial examples. This work
uses, amongst other things, a genetic algorithm to find adversarial examples. Genetic algorithms are based
on the biological phenomenon of natural selection, which is about the change and adaption in heritable
traits of populations of living organisms. Some organisms have a certain phenotype that makes their chances
of survival higher. This phenotype will eventually get the upper hand in the reproduction of the organism,
also known as survival of the fittest. A genetic algorithm uses operators inspired by natural selection, such as
selection, crossover and mutation, to search for an optimal solution to the problem at hand.

2.2.1. Terminology
As we want to use the natural selection in a non-biological setting, we need to ’translate’ the terminology. The
process starts out with an initial population. In biology, this represents the heritable traits of each organism,
in our setting it is a set of data points. Each data point in the population is an individual solution to the prob-
lem we want to solve. A single data point in the population is also called a chromosome. Each chromosome
is build up out of genes, which in our case are the variables of a data point. An example/overview for binary
data is shown in figure 2.7.

0 0 0 0 0

1 0 0 1 0

0 0 0 1 1

1 1 0 1 1

Figure 2.7: Overview of the terminology for a binary dataset with 4 data points with each 5 variables.

Gene

Chromosome

Population

We also need a method to determine how likely a chromosome is to survive. This can be done by the use
of a fitness function, which takes as input a single data point and outputs its score. The higher the fitness,
the more likely the data point is chosen for reproduction. Fitness functions are very similar to loss functions,
which were discussed earlier this chapter. Maximizing a fitness function is in essence the same as minimizing
a loss function. All different types of loss functions explained before can therefore also be used in a genetic
algorithm.

2.2.2. Selection
To find the optimal chromosome composition for an organism, we can simply let the original population
evolve and check the genes multiple generations later as we know that the fittest chromosomes are most
likely to survive and reproduce. In the selection process of the genetic algorithm, parents are selected for
reproduction. We want the offspring to be as fit as possible, thus we choose the data points with the high-
est results from the fitness function as the parents. The number of parents selected for reproduction is a
predetermined number, and thus a hyper-parameter of the algorithm.
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2.2.3. Crossover
The next step is for the parents to combine their ’DNA’ and create offspring. This process is called crossover.
Originally this was often done using a randomly chosen crossover point. After the crossover point is reached,
all genes coming thereafter are switched with the genes of the other parent. An example for binary data is
shown in figure 2.8. It is also possible to randomly select multiple crossover points, or apply uniform crossover
where for each gene the parent is randomly chosen.

Parent 1 0 0 0 0 0

Parent 2 1 1 1 1 1

Child 1 0 0 1 1 1

Child 2 1 1 0 0 0

Figure 2.8: Crossover for binary data. The crossover point is after the second gene, causing each gene
thereafter to switch with the gene of the other parent.

Crossover
point

Crossover
point

For non-binary data, there are a lot more ways to do crossover. When dealing with real numbers, one
could for example take the average value of both parents for each gene. Another possibility is to give the
chromosome or genes of one parent higher weights, causing the child to be more like this parent. BLX-a, or
Blend Crossover, is a method for doing crossover for which it has been shown that it has a good search ability
[16]. This method uses the following formulas:

di = |P1i −P2i |

X mi n = mi n(P1i ,P2i )−αdi

X max = max(P1i ,P2i )+αdi

where P1 and P2 represent the two parents, and i indicates the index of the gene. α is a positive parameter,
for which 0.366 is a good value [43]. For each gene, the offspring value is chosen randomly from the interval
[X mi n

i , X max
i ] following the uniform distribution.

2.2.4. Mutation
The final step is mutation. The genes of the newly created offspring can be subject to mutations with a low
random probability. For the binary data shown before, this would mean that for each gene the bit is flipped
with a certain predetermined probability. The process of mutation is important, as it maintains diversity
in the population and provides possibilities to escape from local optima. This can also prevent premature
convergence of the algorithm.

For real-valued data there are, as can be expected, more options for creating mutations. Some popular
methods are:

Uniform A certain predetermined percentage of genes will be mutated, the genes are randomly deter-
mined. The mutated genes are replaced with a uniform random value between predetermined bounds for
that gene.

Non-Uniform The mutation-rate or mutation-impact is lowered as generations pass. In the early stages
of the algorithm it prevents stagnation, and in the later stages this method allows for fine tuning.

Gaussian When using a Gaussian mutation, a randomly chosen value from the Gaussian distribution is
added to the chosen gene. If the result exceeds the predetermined bounds, the result is clipped.

After the mutations, the creation of the offspring is finished. Depending on the preferences of the coder,
the whole population can be replaced with the new offspring, or the new population is a combination of
the offspring and some very fit parents. With the new population, the whole process can be repeated until
there are no significant changes anymore in the offspring produced, or when a predetermined number of
generations is reached.
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2.2.5. Evolution
In a genetic algorithm the previously explained steps are repeated a predetermined number of times, called
the number of generations. In each generation the best solutions are combined to create possibly even better
solutions, and the mutation phase allows for exploration of unseen solutions. A visualisation of the entire
algorithm is shown in figure 2.9. The example shows the evolution of the population, in which the properties
of the fittest individuals prevail and are magnified.

2.2.6. Uses
Genetic algorithms are popular due to the understandable concept and its good performance. Genetic al-
gorithms are very suitable for multi-objective optimization and it does not depend on the computation of
derivatives. Furthermore, genetic algorithms are relatively robust to local minima and maxima compared to
other optimization methods, as the algorithm is stochastic. Genetic algorithms work well in noisy environ-
ments and they are suitable for discrete as well as continuous problems.

Genetic algorithms are widely used in different application areas [7]. A well-known application of genetic
algorithms is in the field of machine learning [19], but also other sectors have benefited from this method. In
economics they are, for example, used to solve the economic dispatch problem [11]. In aeronautics, genetic
algorithms even have been used for helicopter conceptual design [12]. In this work we further explore the
application of genetic algorithms in neural networks.
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Initial population Determine fitness

Brighter =
higher fitness

Select parents

Select the
best parents

+ =

Create offspring

+ =

+ =

+ =

+ =

+ =

->

Mutate offspring

->

->

->

->

->

New population

Offspring
+ parents

Fitness new population

Figure 2.9: Overview of a genetic algorithm. In this specific example the fitness is influenced by shape and size, where
being large and/or a circle is best. Throughout the generations of the algorithm, the population evolves and will

consist of more large shapes and circles.





3
Related Work

In the previous chapter the basics of neural networks were explained, and we saw that the predictions made
by neural networks can be useful in many industries. There are, however, attackers who want to fool neural
networks such that they predict the wrong output class. This can be done by adding a small perturbation to
a data point, causing misclassification by the network, but no noticeable difference in the data point for the
human eye. The resulting data point is called an adversarial example [20]. A classic example of an adversarial
example for an image as input data is shown in figure 3.1. Even though images are most often the target of
this type of attack, adversarial examples can be created for many different types of data.

Figure 3.1: A visual representation of an adversarial example from Goodfellow et al. [20]. The picture
on the left is (correctly) classified as a panda by GoogLeNet, with 57.7% confidence. After adding a
small, carefully designed perturbation, GoogLeNet misclassifies the panda as a gibbon with a very

high confidence of 99.3%. The difference between the images is not visible to the human eye.

Neural networks and adversarial examples are a popular research topic. As such, this chapter provides an
overview of the relevant related work. Firstly, the current state-of-the-art white-box attacks are explained and
evaluated. Thereafter, we take a look at the limited existing research into (the use of) neuron activation values,
and consider the network coverage of existing methods. Finally, our findings are concluded by summarizing
the research gap.

3.1. White-box attacks
Attacks on neural networks can be distinguished by their type; It is either a white-box method or a black-box
method. For a black-box attack no knowledge about the model architecture is needed, the attack is solely
based on the inputs and outputs of the model. A white-box method uses the architecture and/or parameters
of the network for the attack. Unfortunately, white-box methods cannot always be applied, as the underlying
model needs to be accessible and known. White-box methods are, however, very interesting as they allow
the attacker to look for vulnerabilities in the model and use these to carry out a more targeted attack. The
upcoming sections discuss some of the current state-of-the-art white-box attack methods.

15
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3.1.1. L-BFGS
One of the first methods for creating targeted adversarial examples was the box-constrained Limited-memory
Broyden-Fletcher-Goldfarb-Shanno attack (L-BFGS) [42]. This method tries to find an adversarial example x ′
for input x with classified label l by minimizing the L2 distance. This is a hard problem to solve, so the
problem is approximated by the following formula:

min[c ∗||x −x ′||22 +L(x ′, l ′)]

such that C (x ′) = l ′ and x ′ ∈ [0,1]n

By minimizing L(x ′, l ′) (where L is a loss function), we try to obtain an adversarial example x ′ such that the
classifier gives x ′ the desired label l ′. By minimizing ||x − x ′||22 we try to obtain an adversarial example x ′ that
is close to the original input x. Line search is used to find the value of c for which the equation yields the
minimal value.

3.1.2. FGSM
Even though the L-BFGS attack can create close adversarial examples, it it not used often since the algorithm
is very slow. Hence, the Fast Gradient Sign Method (FGSM) was developed [20]. Instead of finding a very
close adversarial example, it was primarily designed to be fast. Another difference with the L-BFGS attack is
the distance metric: while L-BFGS is optimized for the L2 distance, FGSM is optimized for the L∞ distance.
Given input x, FGSM tries to find adversarial examples using the following formula:

x ′ = x −ε∗ sign(∆L(x, l ))

∆L(x, l ) is the gradient of the loss function, and can be computed by using the back-propagation algorithm.
By moving the input x in the direction of this gradient, the probability of the adversarial example x ′ being
classified to label l is decreased. The value of epsilon (ε) determines the magnitude of the perturbation, hence
epsilon is usually a very small value such that the perturbation remains undetectable. For every data point in
the input (e.g. for every pixel in an input image) the moving direction is determined using the gradient, after
which all data points are moved at the same time. An example of the course of this method is shown in figure
3.2.

Figure 3.2: A visualization of gradient descent. The surface represents the loss function, which we try to optimize. By
taking a step in the direction of the gradient, shown by the red arrows, we hope to get closer to the (local) optimum.

3.1.3. BIM
Later, the FGSM was extended such that perturbations are added in multiple steps. This method is known as
the Iterative FGSM or Basic Iterative Method (BIM) [25]. To avoid large changes in a data point, the step of
size ε in the direction of the sign of the gradient is substituted for multiple smaller steps of size α, which are
clipped by the value of epsilon:

x ′
0 = 0

x ′
i = x ′

i−1 − clipε(α∗ sign(∆L(x ′
i−1, l ′))

By using the clip, in each iteration the change to the adversarial example x ′
i is limited, and it is ensured that

x ′
i stays within the L∞ ε-neighbourhood of input x. According to [25], BIM can produce better results than

the regular FGSM. However, they also found that FGSM is more robust to photo-transformation than iterative
methods.
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3.1.4. RFGSM
Shortly after BIM was published, a new variant on the FGSM was introduced: the random-step FGSM (RFGSM)
[44]. This method is a simple alteration to the original FGSM, prepended by a small random perturbation. The
method uses the following formula:

x ′ = x +α∗ sign(N (0d , I d ))+ (ε−α)∗ sign(∆L(x +α∗ sign(N (0d , I d )), l ))

N represents the noise, i.e. the small random perturbation. A new parameter, α, is introduced, which needs
to be smaller than ε. The addition of a small random noise can be helpful as the true direction of the highest
gradient is sometimes disguised by sharp curvatures in the function. The authors also find that the random
perturbations decrease the transferability of adversarial examples.

The RFGSM is computationally efficient, and the authors claim that the method significantly outperforms
FGSM, with and without adversarial training.

3.1.5. JSMA
This method uses Saliency Maps [40], which show the impact of each data point of input x on the classifica-
tion. An example of a Saliency Map for an imagery input is shown in figure 3.3. The Jacobian-based Saliency

Figure 3.3: Original image (left) and its Saliency Map for the top-1 predicted class. The Saliency Map
shows the pixels that were most important for the classification. [40]

Map Attack (JSMA) [33] uses these Saliency Maps in selecting the most important data points for a certain
target class, which are then altered to decrease the likelihood of correct classification. This process is re-
peated until the threshold for the amount of pixels to change is reached or the attack succeeds in changing
the classification. The Saliency Map can be represented by the following formula:

S+(xi ,c) =


0 if ∂Fc (x)

∂xi
< 0,

0 if
∑

c ′ 6=c
∂Fc′ (x)
∂xi

> 0,

− ∂Fc (x)
∂xi

∗∑
c ′ 6=c

∂Fc′ (x)
∂xi

otherwise

The left part of the equation, S+(xi ,c), shows how much xi positively correlates with class c and also nega-
tively correlates with all classes other than c (c ′ 6= c). If the correlation with c is not positive, or if the corre-
lation with c ′ 6= c is not negative, the saliency is reset to zero. The F in the formula represents the output of
the softmax layer. An attacker can exploit this Saliency Map by picking a target class t for input x, not match-
ing the correct class label. The saliency for the target class can be computed, which allows for selecting data
points that are important for classifying to class t and not to the correct class label. By increasing the value of
these data points, the likelihood of classification to target class t increases, possibly causing misclassification.
This method showed good results, but has high computational cost which makes the algorithm slow and less
attractive to use.

3.1.6. DeepFool
DeepFool [32] is a method to create non-targeted adversarial examples, optimized for the L2 distance metric.
The method starts by ’assuming’ linearity, such that each class is separated by a hyperplane (resulting in a
polyhedron). In every iteration the input is perturbed such that the resulting example is moved to the closest
boundary of the polyhedron. As the linearity was only an assumption since neural networks do not have
linear decision boundaries, DeepFool takes a step in the direction of the simplified solution. This is repeated
until it finds a true adversarial example.
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DeepFool shows some very promising characteristics, as it beats the previously mentioned white-box
attacks on different aspects. Compared to L-BFGS, DeepFool is efficient and the adversarial examples that are
produced by DeepFool are closer to the original input. For FGSM and JSMA DeepFool also created adversarial
examples with smaller perturbations.

3.1.7. C&W Attack
The Carlini and Wagner (C&W) attack [10] formulates the misclassification of the adversarial example x ′ in
a way that is better for optimization. They define a function f (x ′) such that f (x ′) ≥ 0 if and only if C (x ′) =
l ′. The idea is that this function f (x ′) tells us how close we are to x being classified as class label l ′. The
authors evaluated seven different implementations for this function f (x ′), with the following implementation
yielding the best results:

f (x ′) = max(max
i 6=l ′

(Z (x ′)i )−Z (x ′)l ′ ,−κ)

Here Z (x ′)i represents the logit of class i for (adversarial) example x ′, hence maxi 6=l ′ (Z (x ′)i ) is the most
probable non-target logit. Z (x ′)l ′ then represents the probability of the target class l ′, i.e. how probable is it
that x ′ is misclassified to target class l ′. Say we have an image of a cat that we want our network to classify
incorrectly as a dog, as shown in figure 3.4. x ′ is the perturbed image of the cat we feed to the network, the
original class is cl ass2 : cat and the target class is cl ass3 : dog . Z (x ′)l ′ is the logit of the target class, which is
the input of the dog class to the (Log)Softmax function at the final layer of the network. The most probable
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Figure 3.4: Visualization of the neural network values that are used by the C&W attack. Neural networks often use a
(Log)Softmax activation function in the output layer; C&W uses the inputs to this activation function. This example

considers a toy network with five output classes as shown on the left.
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non-target logit, maxi 6=l ′ (Z (x ′)i ), is the highest logit excluding the logit of the target class. As in this example,
this is often the logit of the true class label (in this example the logit of cl ass2 : cat ).

Putting this together, the left argument of the outer max shows the difference between what class label
the classifier most probably predicts for input x ′, and what we want the classifier to predict. The parameter
κ is a tunable constant that controls the confidence in the adversarial examples. In the original work the
authors set the value of κ to 0. Now the original problem of finding a good adversarial example x ′ can be
reformulated as follows:

min
x′ ||x −x ′||22 + c ∗ f (x ′)

such that x ′ ∈ [0,1]n

The value of the constant c is determined by binary search. To get rid of the box-constrain, the method change
of variables is used, where instead of optimizing over the perturbation we optimize over w : x ′ = 1

2 ∗(tanh(w)+
1). This formulation allows for the use of general optimizers in deep learning. The final optimization problem
is as follows:

min
w

||1

2
∗ (tanh(w)+1)||2 + c ∗ f (

1

2
∗ (tanh(w)+1))

The results show that C&W attack creates better adversarial examples than FGSM and JSMA. The C&W attack
is considered to be a strong attack, but a big downside is that it is computationally expensive.

3.1.8. Overview & discussion
The presented white-box attack methods are summarized in table 3.1, where for each attack it is shown what
model information it uses, whether it is a computationally efficient method, and how its performance com-
pares to the other presented methods. As can be expected, the table shows a trade-off between performance

Network information used Computational efficiency Performance

L-BFGS
Gradient of the loss function
with respect to the input

Expensive linear search
One of the first methods for
creating adversarial exam-
ples

FGSM
Sign of the gradient of the
loss function with respect to
the input

One step gradient update,
more efficient than L-BFGS

Designed to be fast, rather
than optimal. Therefore
does not produce the min-
imal adversarial perturba-
tions

BIM
Sign of the gradient of the
loss function with respect to
the input

Similar to FGSM
Produces superior results to
FGSM

RFGSM
Sign of the gradient of the
loss function with respect to
the input

Similar to FGSM
Produces superior results to
FGSM

JSMA
Gradient of the output of the
softmax layer with respect to
the input

High computational costs
Very good results with mini-
mal modifications

DeepFool

Differences in the gradient of
the model output of the ac-
tual class with respect to the
input and the gradient of the
output for other classes with
respect to the input

More computationally effi-
cient than JSMA

Smaller perturbations than
FGSM and JSMA

C&W
Output of the network before
the softmax layer

Computationally expensive
due to its extensive search
for the most effective pertur-
bation

Can compromise defensive
distilled models on which L-
BFGS and DeepFool fail to
find adversarial examples

Table 3.1: Overview of state-of-the-art white-box methods to create adversarial examples, including the network
information the method uses, the computational efficiency and the performance compared to other methods.
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and efficiency, as better performance often comes at a greater computational cost. It is therefore not possible
to proclaim which method is the best in all cases.

Interestingly enough, the state-of-the-art white-box methods seem to use a limited amount of network
information. The first three methods, L-BFGS, FGSM, and BIM, only use the gradient of the loss function
with respect to the input. The loss function is calculated with the results from the output layer, and thus no
other model information about previous layers and neurons is used. For JSMA, DeepFool and C&W this is
very similar: these methods only use the output of the softmax layer to calculate its gradient with respect to
the input, the network output to compute gradients with respect to the input, and the output of the network
before the softmax layer respectively. No other parameters or network properties are taken into account.

Neural networks are known for their difficulty of interpretation. It is a complex task to extract what a
network has exactly learned and why. In this area of research there are a lot more steps to be taken, and it is
likely that we can extract more meaningful information from trained models than the current state-of-the-art
methods do.

3.2. Neuron activation values
An example of network information considering the whole network, instead of just one (output) layer, are
neuron activation values. Each neuron in the network has a neuron activation value for each possible input.
The neuron activation value is the final output of a neuron, which is the result of the activation function.
An example of different neuron activation patterns is shown in figure 3.5, which visualizes the intuition that
neuron activation values contain meaningful information.

To our knowledge, only limited research has been done on the use of neuron activation values, and there
are few works exploiting this model information. The known applications for neuron activation values will
be discussed next.

0.1

0.7

0.2

A

Input Hidden neurons Output

0.5

0.6

0.8

B

Figure 3.5: Example neural network for two different inputs. The example network takes as input 3 scalar values
between 0 and 1, and outputs class A, B or C. The color of the hidden neurons show the height of their activation value.
We see that the two different network inputs lead to very different neuron activation. These neuron activation patterns

contain valuable information about the class label, but this information is not used in methods that only use the
output of the network.
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3.2.1. Priority neuron network
In 2018, researchers proposed a new resource-aware neural network, called the priority neuron network
(PNN) [3]. In the paper a training algorithm is proposed which uses regularization techniques. With these
techniques the neuron activation values are constrained and a priority is assigned to each neuron. For each
neuron, its ordinal number is used as the priority criteria, as the neuron priority is inversely proportional to
its ordinal number in the layer. This idea was inspired by the multirate prediction idea in [8]. The priority
criteria imposes a relatively sorted order on the activation values.

Even though the neuron activation values are not used directly, but only indirectly influenced, this was
one of the first works we could find which specifically uses the neuron activation values. Since the method
was mainly developed to decrease training time and memory usage by creating a reconfigurable network at
runtime, the neuron activation values are not used to get a deeper understanding of the inner workings of the
neural network and increase its performance or performance of adversarial examples.

3.2.2. Large margins
In machine learning, one way to determine the loss of a classifier is by looking at the minimal distance of
the prediction to the decision boundary, called the margin. For a linear classifier, for example, the euclidean
distance to the separating hyperplane can be calculated and used as the margin. A two-dimensional example
is shown in figure 3.6.

Optimal hyperplane
Largest margin

x

y

Figure 3.6: Two-dimensional example of a large margin classifier. The red and blue data points represent different
output classes, which are separated by the optimal hyperplane which has the largest possible margin between the two

closest points of each class.

In more complex classifiers, such as a neural network, it is a lot harder to define a decision boundary.
Widely used loss functions only use a decision boundary and margin at the final output layer. In other words,
the margin is based on the distance of the input data to the decision boundary of the output. In figure 3.6, x
and y combined give the input data, and the output class is represented by the color of the data point. Hence,
the largest margin is an input-output association.

Elsayed et al. [15] introduced a new loss function, called large margin. In their work they consider the
neuron activation values as some intermediate representation of the data. Hence, they can now calculate the
margin or loss at any neuron by replacing the input data with the intermediate representation. The interme-
diate margins are combined to formulate a margin loss at each layer. The authors claim that neural networks
trained with their new loss function perform well in a number of practical scenarios compared to baselines
on standard datasets.

3.2.3. Generalization gap
Jiang et al. expanded on the work of Elsayed et al. by using the (approximated) intermediate decision bound-
aries to predict the generalization gap [22], which is the difference between the training accuracy and the test
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accuracy at the end of training. They define the margin distribution at each layer l , which is the distribution
of the distances to the decision boundary at each layer for all the training data. The distribution is normal-
ized to make it invariant to scaling, after which a compact signature of the distribution is created based on
the quartiles, since a compact signature is easier to analyse. Using this signature, a method to measure the
generalization gap is formulated. The results show that the method has high predictive power of the general-
ization gap and is thus successful. In the paper the researchers also state that the usage of hidden layers (i.e.
the neuron activation values) is crucial for the predictive power.

3.2.4. Overview & discussion

As was mentioned before, the research into the significance of neuron activation values remains limited. The
works discussed above show that intermediate network information can be valuable in classification tasks for
neural networks.

In the priority neuron network, neurons are prioritized based on their ordinal number. The reason for
this specific prioritization remains unexplained, but it does inspire us to further investigate the difference in
importance of neurons. More specifically, it would be interested to find out whether certain neurons are more
important and more often activated for certain output classes. This could lead to distinguishable neuron
activation patterns, as was visualized in figure 3.5.

In the work about large margins and the generalization gap we also see a promising future for the use
of intermediate network information. They create a loss function which takes into account the loss margins
at each hidden layer, which seems to perform well. Hence, this method encourages the use of intermediate
information in neural networks.

Even though the works discussed above use the neuron activation values in some way to, for example,
create a loss function or predict the generalization gap, the works do not elaborate much on the information
contained in the neuron activation values and why these values are important for the classification of the
neural network. With this knowledge, however, one may be able to exploit it and significantly improve the
network’s performance or the performance of adversarial examples.

3.3. Network coverage
In the process of creating adversarial examples it is not only important to utilize the available network infor-
mation, but it can also be valuable to consider the network coverage of the algorithm. Logically, with a wider
search of possible inputs one has a higher chance of finding adversarial examples. Since most well-known
and used methods to find adversarial examples use gradient descent, it is interesting to look at some down-
sides of gradient descent (and see if we can overcome these). As gradient descent always takes a step into
the direction of the negative of the gradient, it is possible that the algorithm converges to a local minimum
instead of a global minimum [28]. Even though adversarial examples may already be found in a local mini-
mum of the loss function, it can still be valuable to be able to search for adversarial examples in other parts
of the input space. Perhaps a better adversarial example can be found, or for an adversarially trained neu-
ral network where the local minimum does not provide a successful adversarial example, the wider search
may succeed in finding an adversarial example. A wider search can also find inputs for which the network is
clueless, resulting in unpredictable behaviour.

3.3.1. Neuron coverage

Most published methods to find adversarial examples do not consider or elaborate on the covered search
space. Recently, as neural networks are increasingly deployed in critical domains, the need for testing neural
networks rose and some methods that consider coverage of the input space were developed. Pei et al. [35]
created the first white-box testing framework for systematically testing deep learning systems. The main test-
ing metric of this system is neuron coverage, where a neuron is covered when its activation value is above
a predetermined threshold. The method also wants to maximize the coverage of behavioral differences be-
tween similar deep learning systems. These metrics are combined into a joint optimization problem, which
is solved by an efficient gradient-based algorithm. This method is a tool for evaluating a trained network
with respect to its neuron coverage, finding incorrect corner case behaviors. The authors suggest to use these
adversarial examples for retraining to improve the accuracy of the model.
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3.3.2. Neuron selection
Since then, several coverage metrics for neural networks have been introduced [24, 29, 41]. A recent work
[27] claims to be more effective than the previously published white-box and grey-box testing techniques, for
coverage as well as finding adversarial inputs. Their technique is based on a neuron selection strategy, where
the top neurons are selected by scoring their feature vector. This feature vector can contain constant features
and variable features, both boolean. A constant feature cannot change during testing; An example of a con-
stant feature is whether the neuron is located in the front 25% of the layers. A variable feature may change
during testing, for example whether the neuron has been activated when an adversarial input was found.
The paper considers 29 different features, which are scored in a way that the top features indicate properties
that selected neurons should have to increase the coverage (and bottom features indicate properties that se-
lected neurons should not have). In this manner, the neuron selection strategy adapts to the neural network
at hand. With this technique they were able to reach a remarkably higher coverage than existing methods
across all metrics and models.

3.3.3. Overview & discussion
Testing a neural network is not yet a standard, and it is often forgotten about. The wide usage of neural
network testing is also hindered by the difficulty to produce meaningful coverage criteria. This is because
the control flow of the network does not represent all the information that is learned by the network during
training, making it unclear how structural coverage criteria should be defined [5]. Untested or poorly tested
neural networks are likely to produce unwanted results to unseen input data. This can be exploited by an
attacker, by covering a larger part of the input space and finding adversarial examples.

Current research into network coverage primarily considers methods to test the coverage of neural net-
works, based on the idea that neural networks with poor coverage at training time are more vulnerable to
adversarial examples. Attackers can, of course, also exploit such vulnerabilities by considering a wider search
space when looking for adversarial examples. Most well-known and state-of-the-art methods, however, us
gradient descent, for which the network coverage is limited. Hence, these findings inspire us to look at meth-
ods for creating adversarial examples beyond gradient descent, with higher network coverage.

3.4. Research gap
Having evaluated the previous works in the fields of white-box methods, neuron activation values, and neu-
ron coverage, we identified three research gaps:

• The state-of-the-art white-box methods seem to use a limited amount of network information. Specif-
ically, most methods only do some calculations with the (gradient of the) output layer, neglecting other
model information about previous layers and neurons.

• The research into the significance of neuron activation values remains limited. It remains uncertain
what information is exactly contained in the neuron activation values and why these values are impor-
tant for the classification of the neural network.

• Most training methods as well as methods for finding adversarial examples do not consider or elaborate
on the covered search space, possibly resulting in vulnerabilities or missed opportunities for finding
adversarial examples.





4
Hidden Neuron Activations

In this chapter we dive into the neuron activation values of the hidden neurons. After two datasets are intro-
duced, we visualize the neuron activation values to obtain a better understanding of their meaningfulness.
In section 3 neuron activation values of different class labels are compared to find out whether a predictive
measure follows from it. Finally in section 4 we present a method for finding adversarial examples based on
difference in neuron activation values.

4.1. Datasets
We would like to find out and show what information is contained in neuron activation values and how we
can use this information to our advantage. To do this, we make use of two well-known datasets, which are
small enough to create some meaningful visualizations.

Iris flower dataset
The Iris dataset [4, 17] contains measurements of three different Iris species: Iris Setosa, Iris Versicolour and
Iris Virginica. For each specie, 50 data samples are presented in the dataset. Besides the class label (specie),
there are four features: sepal length, sepal width, petal length, and petal width. Using these features, different
models have shown to perfectly predict the class label of test data [31]. A scatter matrix of the Iris dataset is
shown in figure 4.1.

Figure 4.1: Overview of the Iris flower dataset
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Pima Indian diabetes dataset
The second dataset that is used in this chapter is the Pima Indian diabetes dataset [38]. This is a dataset from
the National Institute of Diabetes and Digestive and Kidney Diseases, in which human features are mea-
sured to find correlations between (the combination of) these features and having diabetes. The features are:
number of pregnancies, glucose tolerance, diastolic blood pressure, triceps skin fold thickness, insulin, Body
Mass Index (BMI), Diabetes Pedigree Function (DPF), and age. The dataset contains features of 768 people, of
which 268 have a positive diagnosis of diabetes. The others (500) have tested negative for diabetes. A scatter
matrix of the Pima Indian diabetes dataset is shown in figure 4.2.

Figure 4.2: Overview of the Pima Indian diabetes dataset

Whereas the Iris dataset is simple enough such that some models can achieve perfect accuracy scores, the
Pima Indian diabetes dataset is more complicated. To our knowledge, the highest accuracy score of 98.35%
was obtained by deep learning using five-fold cross-validation [6].

4.2. Visualizing neuron activations
As we want to get a clearer picture of neuron activation values, this section visualizes the neuron activation
values. We look into the difference in activation values for different class labels in the same neuron, to find
out whether they are distinguishable. This is done for different network sizes, after which a conclusion and
intuition are formulated.

4.2.1. Single hidden neuron
To investigate the meaningfulness of neuron activation values, we start by training a very small neural net-
work: a network with only one hidden neuron. We train the network on the Iris dataset with a test split of
20%. The prediction accuracy on training data as well as test data is 97%. In figure 4.3 the activation values in
the single hidden neuron is shown for all data points. The corresponding density distributions are shown in
figure 4.4.

As figures 4.3 and 4.4 sort the neuron activation values by the true class label, we can see the difference
in activations for each class. For data points with true class 0, all activations are 0 (each data point is colored
purple, which corresponds to 0 according to the color-legend). For data points with the true class 1, we see
that the average activation value is about 3. Every data point, however, generates a different activation value,
creating outliers with activation values below 1 and above 5. For data points with true class 2, we see an
average activation value of just above 6. Here we can also see some outliers below 5, such that the two density
distributions overlap and correctly predicting the class label becomes harder.

The overlap in the neuron activation value distributions is nicely visualized figure 4.3. If you look at the
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Figure 4.3: Activation values of the single hidden neuron, sorted by the true class label. There are the three colored
blocks with Class 0, Class 1, and Class 2, in which the neuron activation values for each data point are shown with the
color corresponding to the activation value in the colormap (far right of the figure). The data points are numbered on
the y-axis, so each small colorbar within a class block shows the activation value of one data point. Below each class
block there is another plot with colors which shows the predictions of the network. The legend on top of the figure is

used for this. Since all data points in the lower plot of Class 0 are labeled orange, all data points are predicted to belong
to Class 0. All data points were, therefore, classified correctly by the network. The same goes for the data points

belonging to Class 2: All data points are predicted as Class 2 (blue), and thus correctly classified. In the lower plot of
Class 1 we see that not all data points were classified correctly, as not every data point has the pink label corresponding
to Class 1. For the data points labeled in blue, it means that the data point was incorrectly classified as Class 2, for the

orange labeled data points it means that the data point was incorrectly classified as Class 0.

Figure 4.4: Probability density of the neuron activation values for each true class

data points that are misclassified, i.e. the data points where the color of the lower plot does not correspond to
the correct label, it is evident why these data points were predicted to belong to another class. Let us look at
the first three data points that are misclassified. These data points belong to class 1, but they are predicted to
belong to class 2. When looking at the corresponding activation values, we see that these values are relatively
high for this class label, and thus have a light blue-greenish color. As most of the activation values for class 2
also have this color, the network mistakes these data points for class 2. The fourth point that is misclassified
also belongs to class 1, but is predicted to belong to class 0. The plot shows that the corresponding activation
value is relatively low for class 1, giving it a dark purple color. This makes the data point look a lot like class 0
data points, leading to misclassification as the network cannot distinguish these data points.

These findings show that neuron activation values contain a lot of information about the neural network’s
predictions – at least for a single hidden neuron. Next, we will investigate whether these findings hold with
more hidden neurons.

4.2.2. Hidden neuron size of [2,2]
The next network that will be considered is a network with 2 hidden layers, with each two neurons, i.e. with
a hidden neuron size of [2,2]. This network is trained on the Iris dataset, with again a test split of 20%. The
prediction accuracy on training data as well as test data is 97%. The neuron activation values for each neuron
in each layer is shown in figure 4.5.

The figure shows similar findings to the network with a single hidden neuron: the activation values for a
data point belonging to a certain class are distinguishable from the activation values of the other classes, and
for the data points that are misclassified the activation values are similar to the activation values of the class
to which the point was wrongly classified. One thing that strikes the eye is that the neuron at location (1,0)
(the top row of figure 4.5b) has activation values of zero for almost all data points, independent of their class
label. An explanation for this could be that the neuron is dead, or the current data set is very simple and the
network simply does not need more neurons to improve the performance of the network. Therefore, more
complex datasets will also be considered.
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(a) Activation values of the first hidden layer, sorted by the true class label

(b) Activation values of the second hidden layer, sorted by the true class label

Figure 4.5: Activation values for trained network on Iris data with hidden neuron size [2,2]

The Pima Indian diabetes dataset, which was discussed earlier this chapter, is a more complex dataset as
it is harder to find meaningful correlations in the data. For this dataset a network with with a hidden neuron
size of [2,2] was trained, again with a test split of 20%. The prediction accuracy on training data as well as test
data is 75%. The neuron activation values for each neuron in each hidden layer are shown in figure 4.6.
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(b) Activation values of the first hidden layer, sorted by the true class label

Figure 4.6: Activation values for trained network on the Diabetes dataset with hidden neuron size [2,2]

As can be expected by more complex data, the neuron activation values for the different class labels are
more alike. Nevertheless, meaningful differences are still present. This is more clearly shown in figure 4.7. For
the hidden neuron at position (0,0) (the first neuron in the first hidden layer), figure 4.6a shows a noticeable
difference in activation values as the samples for class 0 mostly have a blueish color, whereas the samples
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Figure 4.7: Probability density of the neuron activation values

from class 1 more often have a greenish-yellow color. This is also shown in figure 4.7a, where we can see
that for neuron (0,0) the class 1 histogram lies more to the right than the histogram of class 0, and thus the
activations of class 1 are higher. For the second neuron in the first hidden layer, neuron (0,1), it is harder to
distinguish between the different classes. In figure 4.6a this is shown by the similar colors for the different
classes for this neuron, and figure 4.7a shows the same thing as the histograms for this neuron look very alike.
The neurons in the second hidden layer give similar findings, as shown in figures 4.6b and 4.7b. The neuron
at position (1,0) shows a clear difference in activation values for the two different classes. For the neuron at
position (1,1) the activation values seem less significant for the prediction of the output class.

When looking at the data points that were classified by the network to the wrong output class, it is still
visible that these data points create activation values which deviate from the correctly classified data points.
This is not visible for every data point in every neuron, but for each misclassified data point it is at least visible
in some neurons.

4.2.3. Hidden neuron size of [5,5,5]
Thirdly, we look at a network with more hidden neurons, namely a network with 3 hidden layers which have
5 neurons each. The network is trained on the Indian Diabetes dataset, with a test split of 20%. With the
same amount of epochs but more hidden neurons, an improvement in the performance is already visible as
the prediction accuracy of this network is 78%. The neuron activation values for each neuron in each hidden
layer is shown in figure 4.8.

As this is a large figure, it will not be discussed in detail for each neuron or layer. When looking at the figure
overall, it is still visible that there are differences in activation values for the two different output classes. This
does not hold for each neuron (e.g. neuron (2,2) where all values are 0), but about half of the neurons seem
to contain meaningful information about the class labels of the data points.

4.2.4. Conclusion and intuition
In the previous sections, neuron activation values were shown for three different network sizes and two dif-
ferent datasets. The corresponding figures all show similar results, and confirm the significance of the neuron
activation values. Most importantly, the neuron activation values seem to hold information about the net-
work’s prediction, as the activation values can clearly differ in the same neuron for a data point of a different
class. Also, the neuron activation values of data points that are incorrectly classified by the network seem to
be distinguishable from the neuron activation values of correctly classified data points. These findings show
that certain activation patterns are highly predictive of certain classes.

We are interested to see whether we can ’exploit’ this finding when creating adversarial examples. Most
techniques to create adversarial examples are based on a loss function, which maps the input values onto a
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(a) Activation values of the first hidden layer, sorted by
the true class label
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(b) Activation values of the second hidden layer, sorted
by the true class label
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(c) Activation values of the third hidden layer, sorted by
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Figure 4.8: Activation values for trained network on the Diabetes dataset with hidden neuron size [5,5,5]

scalar value that indicates how well the network did at predicting the output class. This loss function uses
the network output (prediction) as well as the actual class labels. To create an adversarial example, small
alterations need to be performed on the input vector. To this end, most techniques compute the gradient
of the loss function with respect to the original input, and use this to alter the input in such a way that the
loss increases. As the loss increases, one hopes that a different output label will become more likely for the
altered data point, while still looking like the original data point. When this happens, the network will wrongly
classify the altered data point, and a successful adversarial example is found.

Instead of using the gradient of the loss function with respect to the original input, we want to influ-
ence the network’s prediction by manipulating the neuron activation values. A minor humanly unnoticeable
change in the original data point can already change the activation values inside the hidden neurons. By sub-
stantially changing the neuron activation values or by mimicking the activation values of a different output
class, new adversarial examples may be found.

4.3. Comparing neuron activations
As the goal is to change neuron activation values in a way that they either look more like the activations from
a different class or less like the activations of the actual class, we need a method to compare the neuron acti-
vation values of a single data point to the activation patterns of the different output classes. This difference
can be used in a loss function instead of the commonly used gradient.

4.3.1. Kernel Density Estimation
As was already shown in figures 4.4 and 4.7, the distribution of neuron activation values contains meaningful
information about the classifications. We want to store these distributions, such that when in the process of
creating an adversarial example the current neuron activation values can be compared to the distributions of
known classes. Note that in order to do this, the training data or other data from which the output classes are
known is needed. In this project we use the training data to estimate the distributions.

To estimate the distributions of neuron activation values for different output classes we use Kernel Density
Estimation (KDE) [13, 34]. This is a non-parametric method to estimate the probability density function of
a stochastic variable based on a finite data sample. The probability density function f of the data sample
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{x1, x2, ...xn} is estimated as follows:

f (x) = 1

nh

n∑
i=1

K
( x −xi

h

)
,

where K is a kernel and h is a smoothing parameter. The kernel K is a function which is symmetric around
the y-axis. Some commonly used kernel functions are uniform, Epanechnikov, Biweight, Triweight and Gaus-
sian. We use the Gaussian kernel function. The smoothing parameter h, also called the bandwidth, has a
big influence on the results. With a (too) small bandwidth, the resulting function will be very spiky, whereas
with a (too) big bandwidth the function becomes over-smoothed. We use Silverman’s rule of thumb [39] to
estimate the optimal value of h:

h = 0.9min

(
σ,

IQR

1.34

)
n− 1

5 ,

where σ is the standard deviation of the data sample, n is the sample size, and IQR is the interquartile range
(difference between upper and lower quartiles).

4.3.2. Class probabilities
For each hidden neuron within the network we estimate the probability density function for each possible
output class using KDE. When considering a new data point, the first step is to put it through the network.
This allows us to retrieve the activation value for each hidden neuron. These activation values are inserted
into the probability density functions of each different class, which were estimated before. For every neuron
we can find the most likely class of the data point by choosing the output class with the highest function
output. An example is shown in figure 4.9, where the same trained network was used as in figures 4.3 and 4.4
(Iris data with single hidden neuron).
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Figure 4.9: Probability density functions for network trained on Iris data with a single hidden neuron. The
dots show the results of inserting the activations of the test data into the probability density functions. The

color of the vertical line through each data point shows the actual class the data point belongs to.

The difference in neuron activation values of data points belonging to a different class is represented by
the three probability density functions. Each data point in the test data is inserted into all three functions,
resulting in the dots with the corresponding color. The color of the vertical line through each data point shows
the actual class the data point belongs to. According to our probability density functions, the most likely class
for the test data point is the one where the density is highest. The figure shows that this results in the correct
class label almost all of the time.

The estimated class probabilities are normalized for each neuron and multiplied with the normalized
class probabilities of all other neurons for the data point, such that we end up with one final probability
for each possible output class of a data point (which is again normalized). To visualize this, we train a net-
work with four hidden neurons on the Iris dataset. The resulting estimated probability density functions
can be found in figure 4.10. This figure again shows that the kernel density estimation does a good job at
distinguishing the neuron activation values of points with different class labels. The results of multiplying
the normalized estimated probabilities is shown in figure 4.11. For most of the test data points, the highest
estimated probability gets very close to 1, indicating that we are very confident about the class label of this
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Figure 4.10: Probability density functions for network trained on Iris data with two hidden neurons. The dots show the results of
inserting the activations of the test data into the probability density functions. The color of the vertical line through each data point

shows the actual class the data point belongs to.

data point. For some data points, however, the estimated probabilities of two different classes both have
substantial values. In these cases, there is more uncertainty and the highest estimated probability may not
correspond to the actual output class. This is the case for data point 11 and 21 in figure 4.10, where we can see
that the estimated probabilities for class 1 and class 2 lay somewhat close together, and the highest estimated
probability does not match the actual output class.
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Figure 4.11: The estimated probabilities for each possible output class. A data point has a red vertical
line through it if the class of the highest estimated probability does not match the actual output class.

In the example shown above, a small network is considered with only 4 hidden neurons. When consid-
ering bigger neural networks with hundreds of hidden neurons, the estimated class probabilities become
very small due to the multiplication of every neuron. This is solved by taking the logarithm with base 2 after
multiplication and before normalization.

4.4. Adversarial examples
To create an adversarial example, small alterations need to be performed on the input vector. To this end,
most techniques compute the gradient of the loss function with respect to the original input, and use this to
alter the input in such a way that the loss increases. As the loss increases, one hopes that a different output
label will become more likely for the altered data point, while still looking like the original data point. When
this happens, the network will wrongly classify the altered data point, and a successful adversarial example is
found. This section will discuss a new way of computing losses and adversarial examples, with the use of the
estimated class probabilities which are based on the neuron activation values.
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4.4.1. Neuron activation loss
In the previous section a method was discussed to obtain estimated class probabilities for a data point. These
probabilities can also be used to compute a loss value for the data point. A regular loss function, such as
the negative log-likelihood loss or cross entropy loss, can be used for this. The loss function takes as input
the probabilities for each class of a data point and the actual class label. It returns a single scalar value which
represents the loss or cost of the estimated probabilities with respect to the actual class label of the data point.

In our loss function we want to consider two objectives: we want the neuron activation values of the data
point (or adversarial example) to look less like its actual class, and we want the activation values to look more
like another class to cause misclassification. We capture this by the following formula:

Lossi =−p l
i +max p¬l

i

where l is the true output class of data point i . p represents the vector of probabilities for each class derived
from the density functions. We thus take the probability of the true output class and subtract the probability
of the most probable non-target class. The loss increases as the true class probability drops and/or if the
probability of a different class rises.

Similar to other techniques, we can now try to maximize the loss for a data point to find an adversarial
example. For our method this means that we try to make the neuron activation values of the data point
less likely to be in the estimated probability density function of the actual class and more likely to be in the
estimated probability density function of a different class.

4.4.2. Genetic algorithm
With the new loss function, we still need a way to make adjustments to the data point such that it can become
an adversarial example (i.e. flip the network prediction). As there already exist many successful methods for
this, we do not have to start from scratch. In 2016, Vidnerova and Neruda introduced the use of a genetic al-
gorithm to create adversarial examples [45]. Later, in 2019, the method GenAttack was developed, also based
on the genetic algorithm [2]. The authors claim that their method is the first demonstration of a black-box
attack which can succeed against some state-of-the-art defenses. As was explained in section 2.2, a genetic
algorithm uses a fitness function, which is similar to a loss function. As both methods mentioned above are
black-box, their fitness function only makes use of the input and output values of the network. It would be
interesting to see what happens when the fitness function is replaced by a white-box loss function, specifi-
cally the neuron activation loss. Before we dive into this, we first take a closer look at some of the important
properties of a genetic algorithm.

Search space
As was already explained in section 3.3.1, it is important to evaluate the search space of an algorithm. If only
a small part of the input space is considered when creating adversarial examples, it becomes less likely that a
successful adversarial example is found. A major downside of all methods based on basic gradient descent on
some loss function, is that the bounds of the search space are very tight. For each iteration, gradient descent
will change the values with a predetermined learning rate in the direction of the gradient. As a consequence,
the algorithm can get stuck in a local optimum and does not further explore the input space.

Fortunately, there are also other methods that consider a larger part of the input space, such as the genetic
algorithm. This algorithm is gradient-free and uses randomization to avoid getting stuck in local optima and
cover a large part of the input space. Figure 4.12 shows the intermediate results of a method using basic gra-
dient descent (FGSM) and a genetic algorithm based on the same loss function. The FGSM slowly converges
to a (possibly local) optimum, and stays there. The genetic algorithm more often takes a big step, favoring
exploration. As shown by the (lack of) red background, the gradient descent method crosses the decision
boundary after 27 iterations and does not consider moving back in the direction of the decision boundary.
The genetic algorithm shows that the larger, randomized steps can cause the algorithm to cross back over
the decision boundary, causing the white gaps in some iterations. As we keep track of past successful input
values, the algorithm can always recover after a ’misstep’, but it might also find a new optimum to exploit.

Figure 4.12 only showed the intermediate results for a single data point. This can also be visualized in a
different way for more data points. Figure 4.13 shows the development of adversarial examples for 5 different
data points, using the FGSM and a genetic algorithm. The scatter matrix shows the development throughout
the iterations for each pair of attributes. Looking at the FGSM, it is visible that the adjustments to the ad-
versarial examples follow a single line, limiting a wider search. As for the genetic algorithm the intermediate



34 Hidden Neuron Activations

0 10 20 30 40 50 60 70
Iteration

1

2

3

4

5
Le

ng
th

/w
id

th
 (c

m
)

RFGSM

0 10 20 30 40 50 60 70
Iteration

1

2

3

4

5

6

7

8

Le
ng

th
/w

id
th

 (c
m

)

Genetic algorithm

sepal length
sepal width
petal length
petal width

Figure 4.12: The intermediate results for searching for an adversarial example for the FGSM and
Genetic algorithm respectively. If the background is red, the adversarial example was successful.

adversarial examples are more scattered around the search space, the search space is better covered by this
method. The genetic algorithm also finds an adversarial example sooner than the FGSM.

Parameters
A genetic algorithm has several parameters that influence its results in some way. First of all, a population
size needs to be determined. With a larger population, the chance of finding an optimal solution increases.
However, for every member of the population calculations need to be made, causing large populations to also
be computationally costly. The experiments in this work use a population size of 6.

The next parameter is the number of parents, which needs to be smaller than the population size. The
number of parents determine how many data points are used to derive offspring from. As the parents rep-
resent the currently best solutions, they are also kept in the population for the next generation. A higher
number of parents can yield better convergence [36] at the cost of exploration. The experiments in this work
consider 2 parents.

The parents are used to create offspring, using a method called crossover. For non-binary data there are a
lot of ways to do crossover. In our experiments we use BLX-a, or Blend Crossover. This is a crossover method
for which it has been shown that it has a good search ability [16]. For each gene, the offspring value is chosen
randomly from the interval [X mi n

i , X max
i ] following the uniform distribution, where X mi n = mi n(P1i ,P2i )−

αdi , X max = max(P1i ,P2i )+αdi , and di = |P1i −P2i |. P1 and P2 represent the two parents and i indicates
the index of the gene. α is a positive parameter, which we set at 0.366 as this is a good value according to
previous works [43].

After the offspring is generated, the mutation phase takes place. This phase uses two parameters: the mu-
tation rate and the mutation size. The mutation rate is set at 0.1, meaning that each gene has a 10% chance
of being mutated. When a gene is selected for mutation the mutation size parameter is needed. For creating
the perturbations a random sample is drawn from the Gaussian distribution, with a standard deviation de-
termined by our mutation size parameter. In our experiments this parameter is set to 0.05, to ensure minor
perturbations.

Finally, we need to decide how many times we want to carry out the reproduction process: the number
of generations. Intuitively, the success rate rises as the number of generations is increased. However, each
generation requires some costly calculations, so for time efficiency we do not want this number to be too
high. In our experiments we run the algorithm for 100 generations.

The population size is rather small, considering we run the algorithm for 100 generations. These param-
eters show a trade-off between doing many tiny steps on fewer data points and fewer steps on many data
points (if we do many tiny steps on many data points the algorithm becomes too costly). By trial and er-
ror we found that a small population is already capable of retaining information, and a higher number of
generations helps in exploring the promising areas of the search space.

4.4.3. Combining genetic algorithms with neuron loss
We show some preliminary results of the incorporation of the neuron loss in the genetic algorithm. The
difference in adversarial examples for the new technique and the fast gradient sign method is shown in figure
4.14. This figure only shows the first thirty test data points, as with all data points the figure becomes too
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Figure 4.13: Scatter matrix of the intermediate results when developing an adversarial example. Five
different data points are considered, each shown in a different color. On the bottom-left the results

for the FGSM are shown, and in the top-right the results for the genetic algorithm are shown.

full. The results from the methods to create adversarial examples are only shown in the plot if the adversarial
example was successful.

The figure shows that the methods each find different adversarial examples. As one may have noticed,
there are more orange crosses than blue crosses. The neuron activation method found adversarial examples
for 18 of the 30 data points, whereas the fast gradient sign method found 12.

4.4.4. Accelerated alternative
For neural networks with a large number of hidden neurons, the proposed method can be very time consum-
ing. In each generation of the genetic algorithm the data points are slightly modified, after which their neuron
activation values have to be recalculated. For each data point, for each hidden neuron, and for each output
class, the new neuron activation value has to be scored against the learned density estimations. The scoring
process is expensive, hence we also introduce an alternative method with a simplified scoring mechanism.

In the alternative method, the creation of the kernel density estimations is skipped. Instead, for each
output class and each neuron, the corresponding neuron activation values of the training data is put into a
limited number of bins, similar to the histograms that were shown in figure 4.7. A probability is assigned to
each bin, corresponding to the number of neuron activation values from the training set that belong to this
bin. Instead of scoring activation values against the learned kernel density estimations, this method takes
the probabilities from the from the learned histogram. We determine in which bin the new neuron activation
value falls, and the corresponding probability is used. After the probability calculations we return to the
original method and execute the remaining steps as explained earlier. The accelerated alternative is used for
the two larger datasets in the experiments.
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Figure 4.14: Adversarial examples using FGSM and the neuron activation technique on the diabetes dataset

4.5. Summary & conclusions
At the end of this chapter we are able to answer two of our research questions. By visualizing neuron ac-
tivation values, we found that neurons have different distributions of neuron activation values for different
classes. This distinction between neuron activation values of different classes seems to hold for different net-
work sizes. The distributions seem to have a different range for each class, for which almost all activation
values fall into this range. The ranges for a single neuron are often partly overlapping, making it mostly in-
feasible to draw conclusions based on a single hidden neuron. Taking the partly overlapping distributions,
we can derive an approximate probability of a (new) neuron activation value belonging to a particular class.
These probabilities are calculated for each hidden neuron and each class, after which the probabilities of
each neuron are combined into a single probability for each class. Experiments show that this final probabil-
ity is a good predictor for the class label of the data point. We use these class probabilities for our proposed
new attack method, called GenNeuAct, to create adversarial examples. The method uses a genetic algorithm
to find small perturbations to the original data point, such that the neuron activation values change. Conse-
quently, we expect the class prediction of the network to also change, generating an adversarial example. The
performance of the new method will be evaluated in the next chapter.



5
Experiments

In the previous chapter a new method for creating adversarial examples was introduced, from now on referred
to as GenNeuAct. Initial results and comparisons to the FGSM showed a promising research direction. In this
chapter, further experiments will be presented to show the performance of the new algorithm in comparison
to the state-of-the-art methods. Different datasets of different sizes will be considered, as well as difference
in the number of hidden neurons in the neural network. This chapter will first discuss the method that was
used for the experiments. Thereafter the results are presented for each dataset. In section 3 the results are
discussed and analysed.

5.1. Method
For reproducability, this section contains a detailed description of the method that was used to carry out the
experiments. We discuss the implementation of the state-of-the-art methods, consider natural and adversar-
ial training, and look at the four datasets that are used in the experiments. Furthermore, the approach for
measuring performance is explained.

5.1.1. State-of-the-art comparison
The new technique will be compared to five state-of-the-art white-box methods for creating adversarial ex-
amples: C&W, FGSM, BIM, DeepFool, and RFGSM. For details about the inner workings of these methods,
we refer back to section 3.1 where all methods are individually discussed. For all methods except C&W, the
implementation from the PyTorch library Torchattacks [23] is used. The library also contains an implementa-
tion for the C&W attack, but the implementation does not include the binary search for the parameter c (due
to the corresponding time restraints). Since the binary search is important for the high performance of the
method, we decided to include this and use the implementation of Kaiwen Wu [46] instead of the implemen-
tation from Torchattacks. All methods use the default values of their parameters.

5.1.2. Natural and adversarial training
Neural networks and its development has gotten a lot of attention the last decade. Researchers try to im-
prove the predictions and accuracy of a neural network, and find new applications for it. As neural networks
are more widely employed, adversaries have also become more interested in neural networks, especially in
finding ways to deceive the neural network: adversarial examples. A common method for making a neural
network more robust against these adversarial examples is adversarial training. This concept was first intro-
duced by Szegedy et al. in 2013 [42]. When doing adversarial training, the network is not (only) trained on
data points of the actual dataset, but (also) on adversarial examples. When the network is only trained on the
original data points, the training type is called natural.

Adversarial training is also useful for our experiments. On a neural network that was trained naturally, it
can be (too) easy to find adversarial examples. This makes it hard to see whether one method is more effective
than another. With adversarial training the objective to find adversarial examples is harder to realize, thus
better showing the search capabilities of the different methods.

Adversarial training is often very expensive, as adversarial examples continuously have to be created
throughout the training process. Therefore it is always a trade-off between speed and performance, making
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it hard to select a single state-of-the-art method that is best in all cases. Projected Gradient Descent (PGD) is
a standard first-order optimization method and is known as a universal adversary [30]. This method is widely
used as it is effective and the speed is acceptable. In further experiments PGD will be used when training
a network adversarially. As we want the network to learn the adversarial inputs, but also still recognize the
normal inputs, the adversarially trained networks in the experiments will be trained on both. Each batch in
each epoch has a 75% chance of being converted to adversarial examples, thus 25% of the training is based
on original data points.

5.1.3. Datasets
The performance of the six different methods will be measured on several datasets with diverse properties.
The following datasets are considered: Pima Indian Diabetes [38], Breast Cancer Wisconsin (Diagnostics) [14],
Optical Recognition of Handwritten Digits [14], and Fashion-MNIST [47] . For each dataset, the combination
of the input size, output size, dataset size and learnability is different. An overview of the datasets is shown
in table 5.1. For each dataset a neural network is learned. The properties of the neural network, such as the
number and size of hidden layers, the learning rate, and the size of the test set, differ for each dataset. An
overview of network properties for each dataset is shown in table 5.2.

Some methods, such as the C&W attack, require the inputs to only contain values between 0 and 1. There-
fore, all datasets that did not meet this requirement beforehand are normalized for the experiments.

Dataset Description Input Output
Size

(# data-
points)

Pima Indian
Diabetes

Dataset with diagnostic
measurements to diagnostically
predict whether or not a patient

has diabetes,

8 medical
predictor values

Diagnosis:
0 or 1

768

Breast Cancer
Wisconsin

(Diagnostics)

Dataset with features computed
from a digitized image of a fine

needle aspirate (FNA) of a breast
mass. They describe

characteristics of the cell nuclei
present in the image.

30 breast cell
nucleus

measurements

Diagnosis:
0 or 1

569

Optical
Recognition of
Handwritten

Digits

Dataset of extracted normalized
bitmaps of handwritten digits
from a preprinted form. 32x32

bitmaps are divided into
nonoverlapping blocks of 4x4 and

the number of on pixels are
counted in each block.

Bitmap of
counted

activated pixels
of 8x8 (64 input

values)

Digit 0-9 5620

Fashion-MNIST
Dataset with images of 10

different article types from
Zalando.

Grayscale images
of 28x28 pixels

(784 input values)

Article class
0-9

60000

Table 5.1: Overview of the datasets used in the performance analysis, including important properties of the dataset.

Dataset Hidden layers Size test set Learning rate Batch size
Pima Indian Diabetes (20, 20) 77 (10%) 0.05 10

Breast Cancer Wisconsin (Diagnostics) (15, 15) 100 (18%) 0.005 10
Optical Recognition of Handwritten Digits (25, 25) 1000 (18%) 0.005 10

Fashion-MNIST (100, 100) 10000 (17%) 0.05 100

Table 5.2: Overview of the training parameters for each dataset.
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5.1.4. Measuring performance
With all methods, data, and network settings in place, the experiments are ready to be carried out. For each
dataset two neural networks are learned (naturally and adversarially trained), whereupon each method is
tasked to create adversarial examples for all data points in the test set. The test set is identical for both neural
networks, such that the results can be conveniently compared. For each set of created adversarial examples
two performance measures are calculated: the success rate and the mean distance. The success rate is easily
calculated by dividing the number of successful adversarial examples by the number of data points in the test
set. A higher success rate thus shows that the method was capable of finding an adversarial example for more
data points. For calculating the mean distance, only successful adversarial examples are taken into account.
For each of these points the distance to the original data point is calculated, using the Euclidean distance
measure. The distances are added and divided by the number of successful adversarial examples to get the
mean distance. The mean distance is a measure for how good the adversarial example is. A good adversarial
example is very similar to the original data point, and therefore the mean distance should be small. As the
datasets contain multidimensional data, the measuring of the distance may not feel straightforward, hence
an example is shown in figure 5.1.
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Figure 5.1: Visualizing the distance measure for multidimensional data. The figure shows two scatter matrices (bottom-left and
top-right), with each one data point from the Pima Indian Diabetes dataset. The original data point is represented by the large red dot,

and is shown for all combinations of dimensions. Each method is tasked to create an adversarial example for these data points,
resulting in either a cross (successful adversarial example) or dot (unsuccessful adversarial example) with the corresponding color. For
each dimension the distance to the original data point can be calculated straightforwardly. The matrix in the bottom left shows that all

methods successfully found an adversarial example. Most methods have found a similar example, as the crosses of these points lay
closely together in all dimensions. The RFGSM clearly found a different adversarial example, as the light blue crosses mostly isolated

from the others. As the distance to the original data point differs in each dimension, the Cartesian coordinates are used to compute the
Euclidean distance, covering all dimensions. The matrix in the top right shows that not all methods were able to find an adversarial

example.

5.2. Results
In this section the results are presented. The results are grouped per dataset, resulting in the four subsections.
In each subsection the performance of the corresponding networks are shown, followed by the analysis of the
results and the performance of GenNeuAct compared to state-of-the-art methods.



40 Experiments

5.2.1. Pima Indian Diabetes
The Pima Indian Diabetes dataset was already introduced and used in the previous chapter. The dataset
consists of 768 data points, which each contain 8 human features such as age and blood pressure. Each data
point is labeled with the corresponding diagnosis: diabetes or no diabetes.

For this dataset, neural networks are trained with two hidden layers of size 20. 10% of the data is withheld
to use for testing. The test set data points are given to the different attack methods, which will create adversar-
ial examples for these data points. For reliability we repeat the experiment 5 times, in which the networks are
trained with identical settings and data points. The accuracy scores for each network can be found in table
5.3. An overview of successful adversarial examples for each method can be found in figure 5.2 and figure 5.3
for natural training and adversarial training respectively. Details about the success rate and mean distance of
the adversarial examples can be found in figures 5.4 and 5.5.

Natural training Adversarial training (PGD)
Train accuracy Test accuracy Train accuracy Test accuracy

Net 1 0.747 0.714 0.683 0.675
Net 2 0.804 0.662 0.730 0.662
Net 3 0.774 0.597 0.730 0.701
Net 4 0.766 0.675 0.744 0.701
Net 5 0.776 0.610 0.717 0.701

Table 5.3: Overview of the accuracy scores of the 10 models trained on this dataset.
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Figure 5.2: Overview of successful adversarial examples for a naturally trained neural network on the
Pima Indian Diabetes dataset.
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Figure 5.3: Overview of successful adversarial examples for an adversarially trained neural network
on the Pima Indian Diabetes dataset.
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Figure 5.4: Overview of the success rates and mean
distances for the five networks that were trained naturally

on the Pima Indian Diabetes dataset.

Figure 5.5: Overview of the success rates and mean
distances for the five networks that were trained

adversarially on the Pima Indian Diabetes dataset.

5.2.2. Breast Cancer Wisconsin (Diagnostic)
The Breast Cancer Wisconsin (Diagnostics) dataset was created by the University of Wisconsin to improve
predicting whether a cancer is benign or malignant. For each data sample a fine needle aspirate was taken
from the breast mass, and digitized into an image. The image is analyzed, and 10 cytological features are
extracted from it (such as radius and smoothness). For each cytological feature the mean, the extreme value,
and the standard error is calculated, resulting in 30 input values per data point. All data is labeled with the
corresponding diagnosis: benign or malignant.

For this dataset, neural networks are trained with two hidden layers of size 15. About 18% of the data (100
data points) is withheld to use for testing. The test set data points are given to the different attack methods,
which will create adversarial examples for these data points. For reliability we repeat the experiment 5 times,
in which the networks are trained with identical settings and data points. The accuracy scores for each net-
work can be found in table 5.4. An overview of successful adversarial examples for each method can be found
in figure 5.6 and figure 5.7 for natural training and adversarial training respectively. Details about the success
rate and mean distance of the adversarial examples can be found in figures 5.8 and 5.9.

Natural training Adversarial training (PGD)
Train accuracy Test accuracy Train accuracy Test accuracy

Net 1 0.934 0.930 0.928 0.920
Net 2 0.921 0.920 0.928 0.920
Net 3 0.940 0.920 0.932 0.920
Net 4 0.930 0.920 0.919 0.920
Net 5 0.934 0.920 0.923 0.910

Table 5.4: Overview of the accuracy scores of the 10 models trained on this dataset.
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Figure 5.6: Overview of successful adversarial examples for an naturally trained neural network on
the Breast Cancer Wisconsin (Diagnostic) dataset.
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Figure 5.7: Overview of successful adversarial examples for an adversarially trained neural network
on the Breast Cancer Wisconsin (Diagnostic) dataset
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Figure 5.8: Overview of the success rates and mean
distances for the five networks that were trained naturally

on the Breast Cancer Wisconsin (Diagnostic) dataset.

Figure 5.9: Overview of the success rates and mean distances
for the five networks that were trained adversarially on the

Breast Cancer Wisconsin (Diagnostic) dataset.
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5.2.3. Optical Recognition of Handwritten Digits
The Optical Recognition of Handwritten Digits dataset contains handwritten digits from a total of 43 people;
30 people contributed to the training set and 13 different people to the test set. The original bitmap of 32x32
is divided into non-overlapping blocks of 4x4, whereupon the number of ’on’ pixels is summed in each block.
This generates an input of 8x8 where each value is an integer in the range 0 to 16. The summation reduces
the dimensionality of the data, and small distortions are less noticeable. By visualizing the resulting input,
the different digits are still clearly visible, as shown in figure 5.10.

Figure 5.10: Visualization of an example from each output class taken from the Optical Recognition
of Handwritten Digits dataset.

For this dataset, neural networks are trained with two hidden layers of size 25. About 18% of the data (1000
data points) is withheld to use for testing. The test set data points are given to the different attack methods,
which will create adversarial examples for these data points. For reliability we repeat the experiment 5 times,
in which the networks are trained with identical settings and data points. The accuracy scores for each net-
work can be found in table 5.5. An overview of successful adversarial examples for each method can be found
in figure 5.11 and figure 5.12 for natural training and adversarial training respectively. Details about the suc-
cess rate and mean distance of the adversarial examples can be found in figures 5.13 and 5.14. For these
experiments we used the accelerated alternative presented at the end of chapter 4.

Natural training Adversarial training (PGD)
Train accuracy Test accuracy Train accuracy Test accuracy

Net 1 0.996 0.970 0.996 0.987
Net 2 0.996 0.975 0.996 0.986
Net 3 0.995 0.966 0.996 0.987
Net 4 0.992 0.963 0.994 0.983
Net 5 0.996 0.970 0.996 0.981

Table 5.5: Overview of the accuracy scores of the 10 models trained on this dataset.

As the dataset represents simplified handwritten digits, the adversarial examples can be nicely visualized.
The results for two data points are shown, in figure 5.16 for the naturally trained network and figure 5.15 for
the adversarially trained network. These figures also show the differences in pixel values for each adversarial
example. In both given examples, DeepFool failed to create a successful adversarial example, and FGSM
failed only for the second data point. The images for the failed methods show their best attempt. Looking at
both figures, we can deduce some differences and similarities between the different methods. FGSM and BIM
show a similar pattern in changing pixel values, and most of their alterations are equal in size. The changes
made by BIM are a bit larger, causing this method to have a higher success rate than FGSM. Surprisingly, C&W
and DeepFool also show similar alteration patterns, despite their contrasting methods. DeepFool, however,
often fails to tweak the pixels precisely right to create an adversarial example, whereas C&W is almost always
successful. GenNeuAct makes some small alterations as well as large alterations. For the RFGSM it even
becomes hard to determine the correct digit visually.
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Figure 5.11: Overview of successful adversarial examples for a naturally trained neural network on
the Optical Recognition of Handwritten Digits dataset.
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Figure 5.12: Overview of successful adversarial examples for an adversarially trained neural network
on the Optical Recognition of Handwritten Digits dataset
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Figure 5.13: Overview of the success rates and mean
distances for the five networks that were trained naturally

on the Handwritten Digits dataset.

Figure 5.14: Overview of the success rates and mean
distances for the five networks that were trained
adversarially on the Handwritten Digits dataset.
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Figure 5.15: Visualization of the adversarial examples created by the different methods for one data point, using a naturally trained
network. The top row shows the adversarial example, and the bottom row shows a magnified colormap of the difference between the

original picture and the adversarial example. GenNeuAct, C&W, FGSM, BIM, and RFGSM created a successful adversarial example.
Only DeepFool failed to produce one.
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Figure 5.16: Visualization of the adversarial examples created by the different methods for one data point, using an adversarially trained
network. The top row shows the adversarial example, and the bottom row shows a magnified colormap of the difference between the

original picture and the adversarial example. GenNeuAct, C&W, BIM, and RFGSM created a successful adversarial example. FGSM and
DeepFool failed to produce one.
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5.2.4. Fashion-MNIST
The Fashion-MNIST dataset contains grayscale images of 28x28 pixels, showing ten different article types of
Zalando. This dataset was created by Zalando SE as an alternative for the MNIST dataset [26]. MNIST is a
well-known dataset of handwritten digits, consisting of 70000 images of 28x28 pixels, which is very popu-
lar and used as a benchmark among scientists exploring pattern recognition and machine learning. Despite
the popularity, the flaws and drawbacks of the dataset are discussed more often. As classic machine learn-
ing algorithms can already easily achieve 97% accuracy, MNIST is thought to be too easy. The dataset also
cannot represent modern computer vision tasks. Fashion-MNIST was created to serve as a direct drop-in-
replacement for the original MNIST dataset, without the drawbacks. The amount and size of the images as
well as the number of target classes are identical to the MNIST dataset. A sample for each output class, taken
from the training set, is shown in figure 5.17.

T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

Figure 5.17: Visualization of an example from each output class taken from the Fashion-MNIST dataset.

For this dataset, neural networks are trained with two hidden layers of size 100. The dataset has a pre-
determined test set of about 17% of the data (10000 data points). The test set data points are given to the
different attack methods, which will create adversarial examples for these data points. For reliability we re-
peat the experiment 5 times, in which the networks are trained with identical settings and data points. The
accuracy scores for each network can be found in table 5.6. An overview of successful adversarial examples for
each method can be found in figure 5.11 and figure 5.19 for natural training and adversarial training respec-
tively. Details about the success rate and mean distance of the adversarial examples can be found in figures
5.20 and 5.21. For these experiments we used the accelerated alternative presented at the end of chapter 4.

Natural training Adversarial training (PGD)
Train accuracy Test accuracy Train accuracy Test accuracy

Net 1 0.941 0.880 0.939 0.889
Net 2 0.941 0.883 0.936 0.879
Net 3 0.942 0.883 0.943 0.886
Net 4 0.942 0.879 0.940 0.887
Net 5 0.939 0.878 0.933 0.882

Table 5.6: Overview of the accuracy scores of the 10 models trained on this dataset.

As this dataset contains images, the adversarial examples can be nicely visualized. The results for two
data points are shown, in figure 5.22 for the naturally trained network and figure 5.23 for the adversarially
trained network. These figures also show the differences in pixel values for each adversarial example. In both
given examples, (only) DeepFool failed to create a successful adversarial example. The images for the failed
methods show their best attempt.

Looking at both figures, we can deduce some differences and similarities between the different methods.
Much like the results from the Digits dataset, FGSM and BIM show a similar pattern in changing pixel values,
and most of their alterations are equal in size. RFGSM makes large alterations, GenNeuAct has some larger
and smaller alterations and C&W and DeepFool only have small alterations, as was also seen in the previous
results. Noteworthy is the distinctive power of C&W to only alter important pixels (i.e. not the background),
all other methods have perturbations all over the place.
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Figure 5.18: Overview of successful adversarial examples for a naturally trained neural network on
the Fashion-MNIST dataset.
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Figure 5.19: Overview of successful adversarial examples for an adversarially trained neural network
on the Fashion-MNIST dataset
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Figure 5.20: Overview of the success rates and mean
distances for the five networks that were trained naturally

on the Fashion-MNIST dataset.

Figure 5.21: Overview of the success rates and mean
distances for the five networks that were trained

adversarially on the Fashion-MNIST dataset.
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Figure 5.22: Visualization of the adversarial examples created by the different methods for one data point, using a naturally trained
network. The top row shows the adversarial example, and the bottom row shows a magnified colormap of the difference between the

original picture and the adversarial example. GenNeuAct, C&W, FGSM, BIM, and RFGSM created a successful adversarial example.
Only DeepFool failed to produce one.
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Figure 5.23: Visualization of the adversarial examples created by the different methods for one data point, using an adversarially trained
network. The top row shows the adversarial example, and the bottom row shows a magnified colormap of the difference between the

original picture and the adversarial example. GenNeuAct, C&W, FGSM, BIM, and RFGSM created a successful adversarial example.
Only DeepFool failed to produce one.



5.3. Analysis 49

5.3. Analysis
In this section we discuss the results that were presented in the previous section. Different performance
measures are evaluated, and for striking results an explanation is sought.

5.3.1. Success rate
In the results from the Indian Pima Diabetes dataset, C&W and GenNeuAct clearly distinguish themselves
from the other methods, leaving a large gap in success rate between them and the next-best method. The
results for natural and adversarial training are similar, but the performance of GenNeuAct on the adversarially
trained network varied, giving a large standard deviation. FGSM performed very badly on this dataset.

For the Breast Cancer Wisconsin dataset we see comparable results. For natural training, C&W and Gen-
NeuAct are closely followed by RFGSM, BIM and DeepFool. On the adversarially trained networks, however,
C&W and GenNeuAct remain steady while the success rate of RFGSM, BIM, and DeepFool dropped signifi-
cantly. Again, the success rate of FGSM is very low.

On the Handwritten Digits dataset we see a somewhat different behavior. For natural training, C&W,
GenNeuAct and RFGSM have excellent success rates, while BIM, DeepFool and FGSM fail to get even half
the success rate of RFGSM. For adversarial training, both GenNeuAct and RFGSM drop in success rate, but
keeping them well above BIM, DeepFool and FGSM.

On the final dataset, Fashion-MNIST, C&W comes out on top as it again reaches success rates close to
100%. C&W is followed by GenNeuAct, RFGSM, BIM, FGSM and DeepFool in that order. The ranking order is
the same for natural and adversarial training.

Overall, the success rate for each method on the different datasets is quite similar. C&W has the highest
success rates (close to 100%), followed by GenNeuAct on all datasets. The other methods vary a bit in rank
throughout the results, but in most cases GenNeuAct is followed by RFGSM, BIM, DeepFool, and FGSM in
that order. Despite the seemingly unbeatable C&W attack, GenNeuAct has a very good success rate, outper-
forming several state-of-the-art white-box attack methods. The combined success rates for all experiments
are shown in figure 5.24. The median of the success rate of GenNeuAct lies over 25% higher than the next-best
method RFGSM.
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Figure 5.24: Success rate per method, combining all results (combining all four datasets and natural as well as
adversarial training).

5.3.2. Mean distance
The success rate is not the only important measure for an adversarial attack method. Besides finding an
adversarial example, it is also important that the adversarial example is useful, meaning that it is very similar
to the original data point. This is evaluated by calculating the mean distance of the adversarial examples
to the original data points. To attain even more insight into the distances, the distances for all successful
adversarial examples are combined and summarized in figure 5.25.

It is not straightforward how to compare the distances, as higher distances occur more often for methods
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Figure 5.25: Overview of the distances between successful adversarial examples and the original data
points for all methods and datasets.

with higher success rates. On all datasets it is visible that C&W can create close adversarial examples, as the
color bars in the figure start close to zero. This is not necessarily reflected in the mean distance, as C&W
is has a very high success rate, with also adversarial examples with higher distances. Looking at the mean
distances, FGSM appears to perform best. For the adversarial examples found by this methods, the distances
are promising, but the success rate is very low. Comparing to the other methods in the figure, we see that
the other methods find adversarial examples with similar distances; the other methods mostly have a higher
mean distance as they find more adversarial examples. Similar reasoning can be applied to BIM and RFGSM,
noting that their distances are already larger than FGSM. Even though DeepFool’s success rate is similar to
BIM and FGSM, the distances for this method vary much more, resulting in better as well as worse adversarial
examples than FGSM and BIM. GenNeuAct has a relatively high mean distance on all datasets. The distances
of the adversarial examples are, however, spread widely, meaning there is a high diversity in the quality of the
adversarial examples. Comparing to C&W (both methods have high success rates), the adversarial examples
of C&W seem to be superior to the adversarial examples of GenNeuAct, since the distances of GenNeuAct are
more widely spread and the spread mostly starts at a larger distance than C&W.

5.3.3. GenNeuAct
Overall, GenNeuAct seems to be a promising method with unique adversarial examples. It has a high success
rate, but relatively large perturbations. To explain our findings, this section will elaborate some more on the
inner workings of the method, and how it gets to a certain adversarial example. This section also presents
some advantages and disadvantages of the method.

Neuron activations of adversarial examples
As GenNeuAct is focused on changing neuron activation values, it is useful for understanding to show the
effect of the method. Hence, we show the difference in neuron activation values for some original data points
and the corresponding adversarial examples. For clarity, we first look at a data point from the simpler Iris
dataset with a smaller neural network. Next, a data point from the Handwritten Digits dataset will be anal-
ysed.

Simpler example for Iris dataset
In figure 5.26 the effect of GenNeuAct on the neuron activations is shown for the simpler Iris dataset. The
neural network was naturally trained with three hidden layers of size 2, 3, and 2 respectively. The original data
point that was used for this visualization belongs to class 2 (shown in green in the figure), and the adversarial
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example created by GenNeuAct was misclassified as class 1 (shown in red in the figure). For the neurons
that are not shown in the figure, either the neuron was dead or the neuron activation values did not change
significantly for the adversarial example.
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Figure 5.26: Visualization of the change in neuron activation values when creating adversarial examples. At the top of
the figure the neural network structure is shown, highlighting three nodes for which an explanatory plot is shown

below. Each plot shows the neuron activation values of the original data point (class 2) and the generated adversarial
example (class 1). The vertical colored bars show the classification of the network for the data point.
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The three graphs show how GenNeuAct works. The distribution of the neuron activation values of the
training set for each class label is shown for each highlighted neuron. The neuron activation value of the
original data point is represented by the green vertical line, where the intersections with the density functions
are also highlighted. GenNeuAct tries to find an adversarial example for which the activation value of the
correct class lowers, and highers for other classes. This is clearly visible in the first graph, as the density of
class 2 falls and the density of class 1 even rises above the density of class 2 for the adversarial example. The
hidden neuron in the third layer, displayed in the third graph, shows similar findings. In the second graph,
the situation is different. For the original data point, class 1 already had the highest density value. For the
adversarial example the density of the original class drops, while at the same time the density of class 1 also
drops a bit. As the final decision of the neural network is created by a combination of these neurons, not all
neurons have to agree on the most likely class (as with the original data point). GenNeuAct tries to find the
smallest perturbation to the input, such that the altered neuron activation values lead to a misclassification.

Example Handwritten Digits dataset
In figure 5.27 the effect of GenNeuAct on the neuron activations is shown for the Handwritten Digits dataset.
The neural network was naturally trained with two hidden layers of size 25. The original data point that was
used for this visualization belongs to class 0 (shown in blue in the figure), and the adversarial example created
by GenNeuAct was misclassified as class 3 (shown in green in the figure). The four selected neurons for which
a graph is shown are randomly chosen, excluding dead neurons and neurons where the activation values did
not change significantly.

The graphs show that GenNeuAct tries to find an adversarial example for which the activation value of the
correct class lowers, and highers for other classes. For all four graphs the density of the correct class (blue line)
drops significantly for the adversarial example. Since there are 50 hidden neurons, it is not unlikely that there
are a few neurons for which this is not the case, but these will be a minority. The first graph shows a neuron
for which the neuron activation value drops to a value where class 6 (pink), class 7 (gray) and class 3 (green)
are the three classes with the highest density value, in that order. In the second and third graph, however,
the new activation values make classes 6 and 7 highly unlikely. Throughout the figures, the density of class 3
(green) for the adversarial example is decent, and on a whole sufficient to cause the misclassification.

The development of the adversarial example corresponding to figure 5.27 is shown in figure 5.28. The
progression is shown for both GenNeuAct and RFGSM. The leftmost picture shows the original data point,
and the rightmost picture shows the final adversarial example. The four pictures in between show intermedi-
ate results from the methods. RFGSM, which uses the gradient of the loss function with respect to the input
to find adversarial examples, fails to create an adversarial example for this data point as all its attempts are
classified as the correct class ’0’. The final image of GenNeuAct is a successful adversarial example, and is
classified by the network as ’3’. The final image shows that the desired changes in the neuron activation val-
ues cause some important pixels to alter their values to be more resemblant of a three, but also quite some
noise is generated as several pixels are activated which have a value of zero for all digits.
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Figure 5.28: Development of an adversarial example for GenNeuAct and RFGSM. For RFGSM all images are classified
as the correct class label ’0’. For GenNeuAct the last image represents a successful adversarial example as the network

classifies it as ’3’.
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Figure 5.27: Visualization of the change in neuron activation values when creating adversarial examples. At the top of
the figure the neural network structure is shown, highlighting four hidden nodes for which an explanatory plot is
shown below. Each plot shows the neuron activation values of the original data point (class 0) and the generated
adversarial example (class 3). The vertical colored bars show the classification of the network for the data point.
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5.3.4. Dominance of C&W
The results discussed before clearly show that C&W is superior to the other methods, with an impeccable suc-
cess rate and acceptable distances. It is, of course, interesting to investigate why this method is so successful,
as these aspects can be used to increase the effectiveness of future methods.

Every adversarial attack method is designed to optimize a specific formula. For L-BFGS, FGSM, BIM and
RFGSM, this formula is based on the gradient of the loss function with respect to the input. DeepFool has a
different approach, where a step is taken in the direction of a simplified, linearized solution. To get to this
solution, the differences in the gradient of the model output of the actual class with respect to the input and
the gradient of the output for other classes with respect to the input are used. C&W distinguishes itself from
the other methods by having two different components in their optimization function: a loss component and
a distance component. The loss component influences the success rate and the distance component influ-
ences the effectiveness (or similarity) of the attack. These components form a trade-off which is measured
by the magnitude of a variable c. Hence, this method can determine a favourable trade-off value for each
different network. Its importance is visible when the optimization formula is rephrased to simplified version:

min

[
Distance

component
+ c ∗ Loss

component

]
The value of c is determined by a binary search. Possibly, the distinguished trade-off method of C&W is the
reason for the superiority of its adversarial examples. The superiority does, however, come with a cost, as this
method is much more computationally expensive than FGSM, BIM, RFGSM and DeepFool.

Let us further investigate the importance of the trade-off method of C&W by skipping over the binary
search, and run the attack with different values of c. The results for a network trained on the Fashion-MNIST
dataset is shown in figure 5.29. The trade-off is clearly visible, as both the success rate and average distance
increase when c increases. With low values for c, for example the lower bound of the binary search (10−3),
the attack is barely successful. With high values for c the attack favors success over distance, and as such it is
very successful but the average distances keep rising. This emphasizes the importance of this variable, as the
performance of this method fully depends on the value of c.
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Figure 5.29: Success rates and mean distance of the C&W attack for different c values.

5.3.5. Natural versus adversarial training
The results for the adversarially trained networks compared to the naturally trained networks are similar for
each dataset. When the network is trained with adversarial examples, it should become harder for the meth-
ods to find good adversarial examples. This is clearly reflected in the results, as the success rate decreases and
the mean distance increases in most cases. The increase in distance was already shown in figure 5.25, where
the adversarial distances are located higher and are more widely spread. The differences between the success
rate and mean distances of the different training methods are shown in table 5.7, where the mean was taken
for each set of five experiments.

As expected, the success rates decrease as the adversarially trained networks are more robust and thus
it is harder for the methods to find adversarial examples. In some cases, such as for C&W, the success rate
barely changes but the mean distance does increase. As a good adversarial example has a small distance, the
increase in distance shows that C&W also has more difficulties with finding good adversarial examples.

Similar to the other methods, the performance of GenNeuAct decreases when adversarial training is ap-
plied. As such, we investigate the difference in neuron activation values for naturally and adversarially trained
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Pima Indian Diabetes Breast Cancer Wisconsin

Method
Difference

success rate
Difference mean

distance
Difference

success rate
Difference mean

distance

GenNeuAct -0.265 0.033 -0.016 0.095
C&W 0.000 0.050 0.000 0.016

FGSM -0.125 0.000 -0.128 0.002
BIM -0.200 0.003 -0.344 -0.014

DeepFool 0.034 0.062 -0.116 0.023
RFGSM -0.153 0.000 -0.290 -0.009

Handwritten Digits Fashion-MNIST

Method
Difference

success rate
Difference mean

distance
Difference

success rate
Difference mean

distance

GenNeuAct -0.424 0.051 -0.086 0.030
C&W 0.000 0.058 0.000 0.082

FGSM -0.069 0.000 -0.015 0.000
BIM -0.241 -0.002 -0.042 0.003

DeepFool -0.010 0.061 -0.002 0.029
RFGSM -0.422 0.004 -0.077 -0.010

Table 5.7: Overview of the change in value of the success rate and mean distance for natural and adversarial training. If
the success rate has risen or the mean distance is reduced, the value is printed in bold. The difference is calculated by

taking the mean of the results from the five experiments with adversarial training, minus the mean of the five
experiments with natural training.
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Figure 5.30: Difference in neuron activation distributions for a naturally and an adversarially trained network on the
Iris dataset.
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networks. Comparing the density functions of neuron activation values is not straightforward, as training a
network on identical data (even without changing to adversarial training) can lead to completely different
neuron activation value distributions. Hence, we use the small Iris dataset with a small number of hidden
neurons to investigate this. Our findings are shown in figure 5.30.

For the naturally trained network, the density functions look very similar throughout the network, only
the scales are different. In the first two hidden layers we see similar behavior for the adversarially trained net-
work: the density functions look very similar to the corresponding density function of the naturally trained
network, with a different scale. Despite the similar shape, there is a very noteworthy change for the adver-
sarially trained network: a larger part of the curves is covered. In the first two hidden layers this difference
is visible in the left of the density functions, as the peak of the green curve has shifted to the right. In the
third hidden layer we see something different, as the three classes have a completely different density func-
tion compared to the naturally trained network. The significance of the change in activation distributions
becomes clear when looking at an example, shown in figure 5.31
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Figure 5.31: Visualization of the change in neuron activation values when creating adversarial examples, showing the
differences in natural and adversarial training. Each plot shows the neuron activation values of the original data point

(green dot) and the generated adversarial example (red dot if succeeded, else green dot). The vertical colored bars
show the classification of the network for the data point.

In the figure on the left we see the change in neuron activation values of a data point and an adversarial
example created by GenNeuAct. The methods finds inputs with neuron activation values such that we de-
scend the green curve, and climb curves of other classes, making misclassification more likely. The plots on
the right show the process of finding an adversarial example on an adversarially trained network. Due to the
adversarial training, the neuron activation value of the original data point has moved further away from the
other density curves, to the other side of the peak of the green curve. When the method descends its curve
now, we have similar problems to gradient descent where we only find local optima and fail to find an adver-
sarial example. As GenNeuAct uses a genetic algorithm with random mutations, there are chances to escape
the local optima. As other curves are further away, the mutations are less likely big enough to escape the local
optima, resulting in lower success rates on adversarial training. Future work can consider tackling this chal-
lenge by altering the loss function such that getting higher on the curves of a different class is more heavily
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weighted than descending the curve of its own class. In this work we only considered PGD for adversarial
training; other methods may have different effects on the activation density functions.

We further investigate the difference in neuron activation values for natural and adversarial training with
the Mann-Whitney U test. This is a nonparametric statistical test to determine if two independent samples
come from the same distribution. We perform this test for every neuron and every combination of output
classes, where the two samples are the neuron activation values in that specific neuron for the two selected
classes. When the pvalue resulting from the test is lower than 0.05, the samples differ significantly and we
conclude that the samples came from different distributions. We are interested in whether the percentage of
significantly different neuron activations per output class pair drops when adversarial training is used. The
results are shows in table 5.8.

Natural training Adversarial training
Pima Indian Diabetes 0.724 0.681
Handwritten Digits 0.941 0.919
Wisconsin Breast Cancer 0.968 0.949
Fashion-MNIST 0.962 0.961

Table 5.8: Difference in percentages of significantly different activation values for each combination
of output classes in every neuron (dead neurons excluded). This table shows the average percentage

over the five networks that were trained in the corresponding setting.

The table shows a slight drop in significantly different neuron activation values for each dataset. This
could explain the increasing difficulty for GenNeuAct in finding adversarial examples when adversarial train-
ing is used. However, the decreases are small and therefore it is hard to say how big its role is in increasing the
difficulty of finding adversarial examples.

5.3.6. Time efficiency
The run time of GenNeuAct depends on the size of the dataset and the number of hidden neurons. At the
start of the method, the estimated density function needs to be calculated for every neuron and every output
class. For large networks, this task can become time consuming. However, the calculation of the estimated
density functions only needs to happen once and as such the time consequences are reasonable.

The basic steps of the genetic algorithm that are used for creating adversarial examples are fairly efficient.
These steps, of course, take longer when the population size or number of generations is increased. The
bottleneck in the genetic algorithm for GenNeuAct is the fitness calculation. To determine the fitness of a
data point the data point first needs to be put through the network to retrieve its neuron activation values.
Thereafter the neuron activation value for each neuron is scored against the estimated density functions of all
different output classes. As one can expect, the more hidden neurons the network has and the more output
classes the dataset has, the longer this process takes. The accelerated alternative speeds up this process by
replacing the density functions with bins, making the scoring procedure less expensive.

Currently the time efficiency of GenNeuAct is undoubtebly worse than some of the state-of-the-art meth-
ods (FGSM, BIM, RFGSM and DeepFool). However, the time efficiency of the methods also depend a lot on
the implementation. In our experiments the implementation of the Torchattack library is used for most state-
of-the-art methods. These implementations have been designed and reviewed to be as fast as possible. The
focus of this work was to explore the possibilities around neuron activation values, wherefore the speed of the
algorithm was not a main priority. A re-implementation of GenNeuAct with a focus on efficiency will likely
accelerate the process.

That the implementation is important is also shown by the C&W attack that was used in our experiments.
We did not use the Torchattack library for the C&W attack, as its implementation does not include the binary
search for the parameter c (due to the corresponding time restraints). Since the binary search is important for
the high performance of the method, we decided to include this and use the implementation of Kaiwen Wu
[37]. Even though very successful, the implementation is not efficient. The C&W attack is by nature more ex-
pensive than methods such as FGSM, but this implementation is unnecessarily slow. As our implementation
of GenNeuAct is not (yet) optimized for time efficiency, GenNeuAct may also be unnecessarily slow.

The choice of machine learning library may also have a positive impact on the run time of GenNeuAct.
The current implementation uses the PyTorch library, which is in hindsight probably not the most lucrative
choice for our method. This library does not store the intermediate neuron values, only giving us the network
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output. By registering a forward hook in the network, we were able to keep track of the neuron activation
values of a single data point. Because of the inner workings of the PyTorch library, however, it is not possible
to get all neuron activation values from a batch; with our hook we can only extract the neuron values from
the last data point in the batch. Consequently, when we want to get the neuron activations from a set of
points, we need to put these points through the network one by one, which is more expensive than putting
a batch through the network. By using a different library or framework which does not have this limitation,
GenNeuAct’s time efficiency may significantly increase as the method needs the intermediate neuron values
a lot.

On a whole, GenNeuAct is currently not time efficient enough to compete with most state-of-the-art
methods. There are, however, still many aspects of the implementation that can be improved for time effi-
ciency. This may result in a speed-up large enough to compete with the state-of-the-art methods concerning
time efficiency.



6
Discussion

In this work we introduced and evaluated a new white-box attack method which uses neuron activation val-
ues to create adversarial examples. This chapter points out some limitations concerning the generalizeability
of the obtained results. Furthermore, recommendations for future work are presented.

6.1. Limitations
As the scope of this research was limited, we identify some limitations concerning the generalizeability of
the results. As the limitations can be overcome by more extensive research, the limitations also already show
some possibilities for future work.

Neural network type
Throughout the research, only relatively simple neural networks are considered. All networks used in exper-
iments consist of fully connected layers and use the ReLU activation function. The findings therefore only
apply to this type of neural network. Future work could explore the use of different activation functions and
the use of different layer types, such as convolution layers.

Representativeness of datasets
Another limitation of this research concerns the use of different datasets for testing the performance of Gen-
NeuAct. In the final experiment only four datasets were considered. Even though the datasets were selected
because of their variety and recommendations by other works, the datasets may not be representative of all
datasets. As such, it is unsure to which extent the results are generalizable. Future work could further inves-
tigate this.

Parameter tuning
Each attack method has its own set of parameters, which can be changed to alter the attack in a desired
way. Examples of some method specific parameters are the maximum perturbation (ε), step size (α) and the
number of steps. As we already saw for the c parameter in the C&W attack, the parameter settings can have
a big influence on the method’s performance. In this work, all experiments are carried out with the default
parameter settings of the method. No parameter tuning was done, and as such the result could be different
and perhaps even better when (dataset specific) parameter tuning is done. The same goes for GenNeuAct, as
the method could also benefit from more parameter tuning.

6.2. Recommendations for future work
During the research we noticed several potential improvements and extensions to the proposed method,
which were not explored due to time constraints. Hence, we present these ideas here as a recommendation
for future work.
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Acceleration
Currently, GenNeuAct is quite computationally expensive, causing the method to be rather slow. The focus
of this work was to explore the possibilities around neuron activation values, wherefore the speed of the
algorithm was not a priority. A re-implementation of the proposed method with a focus on efficiency will
likely accelerate the process.

The choice of machine learning library may also have a positive impact on the run time of the method.
The current implementation uses the PyTorch library, which is in hindsight probably not the most lucrative
choice for our method. This library does not store the intermediate neuron values, only giving us the network
output. By registering a forward hook in the network, we were able to keep track of the neuron activation
values of a single data point. Because of the inner workings of the PyTorch library, however, it is not possible
to get all neuron activation values from a batch; with our hook we can only extract the neuron values from
the last data point in the batch. Consequently, when we want to get the neuron activations from a set of
points, we need to put these points through the network one by one, which is more expensive than putting
a batch through the network. By using a different library or framework which does not have this limitation,
GenNeuAct’s time efficiency may significantly increase as the method needs the intermediate neuron values
a lot.

Distance-loss trade-off
Most well-known and state-of-the-art white-box methods use the gradient of the loss function to find ad-
versarial examples. These methods limit the step-size to assure small perturbations. With a step-size that is
small enough, the methods aim to find the closest adversarial example. C&W has a different approach, which
is very successful according to our results. The optimization formula of C&W consist of two components in-
stead of one. Similar to the previously mentioned methods and GenNeuAct, one of these components is the
loss component, which focuses on the success rate of the adversarial examples. C&W adds another compo-
nent to their optimization formula: a distance component. The importance of the distance component over
the loss component is determined by a variable. This variable showed to be of high importance for the per-
formance of the method, and experiments showed that this variable captures the trade-off between success
and distance exquisitely. Our intuition is that more methods can benefit by incorporating this trade-off. As
such, for future work we recommend to extend the implementation of GenNeuAct by including a separate
distance component in the optimization formula.

Classification with neuron activation values
In our proposed method we use neuron activation values to predict class labels. In chapter 4 we showed how
we get class probabilities from the combination of the distributions of neuron activation values of all neurons.
We noticed that the final class probabilities point to one class with high confidence, as the probability for
this class approaches 1 and the probabilities for all other classes approach 0. GenNeuAct uses this to attack
the network, but our intuition is that this could also be very useful for improving the robustness of a neural
network. Currently, the classification of a data point is only based on the output layer of a neural network. For
future work we propose to use the neuron activation values to classify a data point instead. As this method
takes more network information into account and makes predictions with more certainty than the regular
method, we expect that a network using activation based classification will be more robust against adversarial
attacks.
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Conclusions

In this research we investigated the behaviour of neuron activation values with the intention of finding pat-
terns from which a class prediction can be extracted, and in turn adversarial examples can be generated in
a new fashion. We proudly conclude that neuron activation values contain meaningful information with
which we can generate new adversarial examples. As such, the main research question was answered. Below
we summarize the answers to the sub-questions of the research:

• What differences are visible in neuron activation values for different classes, and does this hold for
different network sizes?
By visualizing neuron activation values, we found that neurons have different distributions of neuron
activation values for different classes. The distributions seem to have a different range for each class,
for which almost all activation values fall into this range. The ranges for a single neuron are often partly
overlapping, making it mostly infeasible to draw conclusions based on a single hidden neuron. We in-
vestigated the difference in distributions for different network sizes. With more hidden neurons, the
distributions of neuron activation values for different classes are still distinguishable in a single neu-
ron. We found that on average in 89% of the cases the neuron activation values of two different output
classes are significantly different, considering 40 networks trained naturally as well as adversarially on
four different datasets.

• How can we deduce the class label from neuron activation distributions, and how can we use this to
create adversarial examples?
Taking the partly overlapping distributions from the previous sub-question, we can derive an approxi-
mate probability of a (new) neuron activation value belonging to a particular class. These probabilities
are calculated for each hidden neuron and each class, after which the probabilities of each neuron are
combined into a single probability for each class. Experiments show that this final probability is a good
predictor for the class label of the data point.

We presented a method, GenNeuAct, which uses the probabilities following from the neuron activation
values to create adversarial examples. The method uses a genetic algorithm to find small perturbations
to the original data point, such that the neuron activation values change. Consequently, we expect
the class prediction of the network to also change, generating an adversarial example. The intuition
and process of finding an adversarial example with GenNeuAct are visualized in figure 5.26, where the
change in neuron activation values causes misclassification by the network. With this technique we
find different adversarial examples than state-of-the-art methods.

• What is the performance of the new method using neuron activation values, and how does this com-
pare to the state-of-the-art?
The performance of GenNeuAct is evaluated and compared by running experiments on four datasets:
the Pima Indian Diabetes dataset, the Wisconsin Breast Cancer dataset, the Handwritten Digits dataset,
and Fashion-MNIST. For each dataset, 5 networks are trained naturally and 5 networks are trained ad-
versarially (with PGD), after which the performance of GenNeuAct is compared to five state-of-the-art
methods (C&W, FGSM, BIM, DeepFool, and RFGSM). The performance of the adversarial examples are
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evaluated using different measures, the most important measures being success rate and quality (dis-
tance). With an average success rate of 79%, GenNeuAct beats most state-of-the-art methods, such
as FGSM (25%), BIM (44%), DeepFool (40%) and RFGSM (64%). Only C&W achieved superior success
rates, approaching an average success rate of 100%. The quality of the adversarial examples created by
GenNeuAct is comparable to the state-of-the-art.

A big strength of GenNeuAct is the network coverage, as the method explores a larger part of the search
space. Also, to our knowledge, this is the first work to (successfully) utilize intermediate network infor-
mation for guiding the search to adversarial examples.

This work has proven the value of (intermediate) network information, by proposing a method for creat-
ing adversarial examples solely based on neuron activation values. GenNeuAct is a promising method with
unique adversarial examples, compatible with the state-of-the-art. It has a high success rate, but relatively
large perturbations. For further development of the method we recommend to lower the size of the per-
turbations by balancing the loss-distance trade-off, investigate the effect of different neuron activation loss
functions, and improve the speed of the method by efficient reimplementation.

Besides introducing a new algorithm and evaluating its performance compared to state-of-the-art meth-
ods, we also investigated why these results were obtained, providing a deeper understanding of the inner
workings of the methods and developing new insights. For deeper understanding, we visualized how neuron
activation values and their density functions change for different input classes, and we also visualized how
these density functions are used in the process of creating adversarial examples. During analysis we found
that the trade-off between success rate and distance has a huge impact on the results of a method. Our find-
ings on the C&W attack show that this trade-off can be carefully balanced by formulating an optimization
formula with a separate loss and distance component. Furthermore we gained insight into the effect of ad-
versarial training on neuron activation values. The adversarial training impacts the neuron activation values
such that the estimated density functions move in a way that makes it harder to find a close adversarial exam-
ple. Future work can utilize these insights to develop even better attacks and defenses for neural networks.
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