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CHAPTER SIXTEEN

Use of UAV imagery for the detection
and measurement of damages to road
networks in landslide areas
Nicoletta Nappo1,2, Olga Mavrouli3 and Maria Amparo Núñez-Andrés4
1Department of Geoscience & Engineering, Delft University of Technology, Delft, The Netherlands
2Deltares, Delft, The Netherlands
3Department of Civil Engineering, University of West Attica, Athens, Greece
4Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona, Spain

Introduction

Public administrative organizations and private companies managing road infra-
structure face the challenge of deteriorating road network assets either due to usual
stresses (e.g., vehicle loadings, traffic incidents, weathering) or because of exceptional
causes such as earthquakes and slope instabilities, causing disruption and loss of func-
tionality of the infrastructure (AASHO, 1962; ANAS, 2004; ASTM, 2020; Mavrouli
et al., 2019; Nappo et al., 2021; Postance et al., 2017). Landslides, in particular, result
in billions spent globally for the repair of severe road destructions or small-scale pave-
ment anomalies. The correlation of pavement damage (effect) with the intensity of the
ground movement (cause) provides road vulnerability, which is of utmost importance
to mitigating landslide risks and achieving safe and resilient transport networks
(Achillopoulou et al., 2020). Moreover, increasing patterns of road deformation in
time may serve as premonitory signs of larger failures. To this end, the monitoring of
road pavement damage is essential in landslide-affected areas.

Different approaches exist for monitoring the condition of linear infrastructures
during their service life. The majority of roadway maintenance strategies are based on
the assessment of the structural and operational performance of the road pavements
under usual stresses using the Pavement Condition Index, the Pavement Serviceability
Index, and the International Roughness Index (IRI) (ANAS, 2004; ASTM, 2015;
ASTM, 2020; Bryce et al., 2019; Elhadidy et al., 2021; George et al., 1989; Hatmoko
et al., 2019; Park et al., 2007; Radopoulou et al., 2016; Sidess et al., 2021; Zhang &
Wang, 2018). On the other hand, particularly for landslide-affected roads, the relatively
limited existing scientific research has been addressing the vulnerability of road infra-
structure to slope instabilities (Mavrouli et al., 2019; Pantelidis, 2011), slow-moving
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landslides (Mansour et al., 2011; Postance et al., 2017), debris flows (Winter et al., 2013;
Winter et al., 2016), earthquakes (Anbazhagan et al., 2012) or their combination
(Achillopoulou et al., 2020; Argyroudis et al., 2019; Argyroudis et al., 2020).

The assessment of road vulnerability and the reconstruction of damage evolution
over time remain crucial points under research and a challenge, as they require damage
data for varying hazard intensities and over time. The severity of road pavement damage
due to landslides is commonly expressed as a function of roadway blockage (Winter
et al., 2013; Winter, 2019), human losses (Petrucci & Gullà, 2010), road repair costs
(Donnini et al., 2017; Mavrouli et al., 2019), landslide movement rate (Mansour et al.,
2011; Mavrouli et al., 2019) or landslide-induced differential displacements of the road
pavement (Ferlisi et al., 2021; Nappo et al., 2019). The classification of the severity of
road damage caused by landslides using a road-related proxy such as pavement roughness
(i.e., IRI) has been suggested by (Nappo et al., 2021). Subjectivity in the evaluations,
incomplete inventories, or requirements of expensive instrumentations in order to have
extensive data are making the quantification of pavement damage a difficult task.
Nevertheless, nowadays, techniques such as close-range digital photogrammetry (DP)
using Unmanned Aerial Vehicles (UAVs) can be used for extracting detailed records of
the damage, given that adequate methodologies are being developed for this aim.

This chapter reviews the techniques adopted in the scientific literature for road dam-
age detection and measurement in landslide areas, with a specific focus on the use of
photogrammetry from UAVs and the methodologies for data processing. Examples from
the existing literature are presented here to discuss the advantages and disadvantages of
using this technique for road damage characterization, compared to other methods. The
aim is to determine which techniques, products, and processing methodologies are
suitable for fine to coarse-scale analyses of road damage due to landslides.

Road deformation monitoring: from in-situ measurements to
remote sensing techniques

The extent of road damage is usually presented in terms of road displacements
or deformation or deposited soil-rock volume causing the road blockage, depending
on the landslide type.

For a local or detailed scale of analysis, visual inspections are a traditional way of evaluat-
ing the condition of the road infrastructure and determining the typology of pavement
damage recurring in landslide areas. For in situ monitoring, inclinometers and extens-
ometers have also been proved useful to provide the damage extent as associated with the
measured displacements (Mavrouli et al., 2019). More recently, advances in Interferometric
Synthetic Aperture Radar (InSAR) techniques have allowed estimating the displacement
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and deformation pattern on road networks induced by subsidence (Cigna et al., 2017;
Orellana et al., 2020; Ponzo et al., 2021) and landslides (Ferlisi et al., 2021; Macchiarulo
et al., 2022; Nappo et al., 2019). Although the widespread usage of InSAR data for com-
puting landslide-induced (differential) displacements affecting the pavement of different
road networks, such technique presents limitations for detecting and characterizing road
pavement cracking, depression, or upheaval commonly caused by landslides (ANAS, 2004;
ASTM, 2015; Mavrouli et al., 2019; Nappo et al., 2021). For this reason, alternative or
complementary techniques and technologies need to be considered.

Since the 2000s, first Terrestrial and later Mobile Laser Scanners (TLS and MLS)
were introduced for inspecting road conditions (Coenen & Golroo, 2017; Mertz, 2011;
Ragnoli et al., 2018). Nowadays, UAVs with mounted image sensors allow us to incor-
porate DP into the methods for detecting and measuring pavement damage (Inzerillo
et al., 2018; Nappo et al., 2021). Along the same line, innovations in computer vision
algorithms seem promising for the assessment of the condition of roadways (Gharaibeh
& Lindholm, 2014) and the inspection of pavement damage (Cubero-Fernandez et al.,
2017; Nhat-Duc et al., 2018; Oliveira & Correia, 2013; Wang et al., 2019).

Sensors for assessing road damage and condition

Two groups of sensors acquiring different types of information can be distin-
guished: digital cameras for acquiring 2D images of the road pavement, and laser sen-
sors that provide directly a 3D point cloud model. The images can be processed via
computer vision algorithms to detect geometrical features and anomalies such as
cracks. Moreover, if the images are acquired so that they comply with the principles
of stereophotogrammetry (i.e., considering adequate overlap and changes in the point
of view), a 3D surface model of the road can be built.

Digital cameras as being accessible and affordable devices have been widely adopted
by road agencies to corroborate the condition of the road infrastructure during field sur-
veys and visual inspections (Nappo et al., 2021; Ragnoli et al., 2018; Wang & Gong,
2002; Wang & Li, 1999). The same typology of digital images, which are acquired in
the visible spectrum of light, can be processed using a variety of image analysis algo-
rithms to extract pavement features and distresses. Binarization and thresholding
(Cubero-Fernandez et al., 2017; Oliveira & Correia, 2009; Powell & Satheeshkumar,
2017; Puan et al., 2007; Zou et al., 2012), edge detection (Canny, 1986; Mancini et al.,
2013; Zou et al., 2012), morphological operators (Cubero-Fernandez et al., 2017;
Mathavan et al., 2014), Markov random field (Chambon et al., 2009), fuzzy logic
(Mancini et al., 2013), convolutional neural networks (CNN) (Mandal et al., 2019;
Nhat-Duc et al., 2018) and deep learning (Mathavan, Rahman, et al., 2015) are proces-
sing algorithms proposed in the scientific literature to extract road pavement distress
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features from 2D digital images with high accuracy, often exceeding 95% (Chambon &
Moliard, 2011; Coenen & Golroo, 2017; Mathavan, Kamal, et al., 2015; Nappo et al.,
2021; Ragnoli et al., 2018; Wang et al., 2019; Zakeri et al., 2017). Possible occlusions
due to the perspective are a shortcoming of these techniques. So far, image processing is
performed by researchers rather than road maintenance authorities and practitioners.

TLS adopt LiDAR (Light Detection And Ranging) technology to acquire the spatial
coordinates of 3D objects by emitting a laser pulse toward the target and measuring the
distance between the device and the target (Vosselman & Maas, 2010). The accuracy of
most TLS sensors ranges between 3 and 6 mm @100 m and varies proportionally with
distance from the target, thus allowing scientists and road agencies to investigate either
limited portions of the road pavement or entire infrastructure assets (Oguchi et al., 2011;
Ragnoli et al., 2018; Vosselman & Maas, 2010). The measures of road pavement
unevenness obtained with TLS are comparable with IRI values obtained with traditional
precision levels and laser profilometers (Chin, 2012; Ragnoli et al., 2018). The main
drawback of using TLS for road damage assessment is the necessity of multiple acquisi-
tions from different positions to reconstruct the 3D model of a consistent portion of the
roadway (Tan & Li, 2019) avoiding occlusions and hidden areas.

MLS are mounted on moving vehicles and reconstruct continuous 3D models by
acquiring single or multiple scans of the investigated target (Ragnoli et al., 2018;
Schnebele et al., 2015; Williams et al., 2013). This technique is particularly useful for
pavement surface acquisitions, with an accuracy of about 1 cm depending on the speed
of the hosting vehicle (Cahalane et al., 2016; Ragnoli et al., 2018; Williams et al.,
2013). Disadvantages of MLS are the necessity of multiple acquisitions over the same
area to reconstruct the model of the entire width of the roadway, and the slowdown of
traffic flow due to the limited speed of the vehicles hosting the sensor (Tan & Li, 2019).
Moreover, to coregister the different acquisitions, differential Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit sensors are necessary.

UAVs have been emerging in the last two decades as a low-cost alternative platform
to airplanes or helicopters to acquire images and reconstruct 3D point clouds of the inves-
tigated target with centimetric accuracy and low computational time (Nex &
Remondino, 2014; Nex et al., 2022; Remondino et al., 2017; Schnebele et al., 2015).
Three types of UAV are available: fixed-wing, rotorcraft, and vertical take-off and landing
vehicles (Greenwood et al., 2019). The major advantage of using UAVs for road damage
assessment is the possibility of surveying risky or inaccessible locations (Tahar, 2013).
Other advantages are the shorter acquisition time and the maneuverability of the aircraft
that allows moving along or around the target for better and more detailed acquisitions.

Table 16.1 provides examples from the scientific literature of the applications of
TLS, MLS, and DP from UAVs for condition assessment and damage detection on
road pavements and bridges, inspection of roadway tunnels, and feature recognition of
other infrastructure assets (e.g., traffic signs, poles, guardrail and retaining walls).
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UAV platforms for pavement damage assessment in landslide-
affected areas

The advent of UAV in cartography (Crommelinck et al., 2017; James et al.,
2017; Pagán et al., 2019; Santise et al., 2014; Tahar, 2013), landslide monitoring
(Casagli et al., 2017; Fazio et al., 2019; Lissak et al., 2020; Niethammer et al., 2011)
and structural damage assessment (Fernandez Galarreta et al., 2015; Nex et al., 2019;
Stumpf et al., 2013; Vetrivel et al., 2018) among others, can be mainly attributed to
their capacity of collecting high-resolution images of the investigated target avoiding
hidden zones and being near hazardous areas that are otherwise hardly accessible.

Table 16.1 Examples of use of Terrestrial and Mobile Laser Scanner (TLS and MLS) and digital
photogrammetry (DP) from Unmanned Aerial Vehicles (UAV) for monitoring road infrastructure
components.
Road infrastructure
component

Application Technique References

Pavement Condition
assessment

TLS Alhasan et al. (2017); Barbarella et al.
(2018)

MLS Cahalane et al. (2016); Díaz-Vilariño
et al. (2016); Kumar and Angelats
(2017)

DP_UAV Cardenal et al. (2019); Gomez and
Purdie (2016); Greenwood et al.
(2019)

Damage
detection

TLS Akgul et al. (2017); Ouyang and Xu
(2013); Uddin (2014)

MLS De Blasiis et al. (2020); Kumar et al.
(2015); Van Der Horst et al. (2019)

DP_UAV Inzerillo et al. (2018); Nappo et al.
(2021); Saad and Tahar (2019);
Tan and Li (2019)

Bridge Condition
assessment

TLS Guldur et al. (2015); Lõhmus et al.
(2018); Matsumoto et al. (2018)

DP_UAV Chen et al. (2019); Pan et al. (2019)
Damage

detection
TLS Liu et al. (2019); Sedek and Serwa

(2016); Valença et al. (2017)
DP_UAV Lei et al. (2018)

Tunnel Inspection TLS Argüelles-Fraga et al. (2013)
Other assets (e.g., traffic
signs, poles, guardrails,
retaining walls)

Feature
recognition

TLS Barbarella et al. (2019)
MLS Guan et al. (2015); Holgado-Barco

et al. (2017); Li et al. (2018)
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UAV platforms can be equipped with digital and multispectral cameras, LiDAR,
thermal detectors and other sensors, depending on their field of application (Giordan
et al., 2020; Nex et al., 2022; Tahar, 2013), and data can be acquired from different
altitudes (i.e., from close- to long-range with the limit fixed by the rules in each coun-
try or region) and in different directions (i.e., nadir or oblique geometry) (Fernández-
Hernandez et al., 2015; Martínez-Carricondo et al., 2018; Nex & Remondino, 2014).
Data acquisition can be performed manually, semiautonomously, or autonomously
depending on the degree of intervention of the UAV operator (Tahar, 2013). RGB
digital cameras are the most common sensor due to the advances in photogrammetry
and computer vision that allow RGB image data to be employed either for 2D inves-
tigations (e.g., mapping, deep learning, semantic scene analysis) or 3D scene recon-
struction and analysis (Giordan et al., 2020; Martínez-Carricondo et al., 2018; Nex &
Remondino, 2014; Nex et al., 2022).

The most common techniques for processing 2D digital images have been pre-
sented in Section 3. As for the 3D scene reconstruction, currently, structure from
motion (SfM) is the most used algorithm that allows the processing of a sequence of
2D images to reconstruct sparse and dense point clouds of the target (Giordan et al.,
2020; Martínez-Carricondo et al., 2018; Nex & Remondino, 2014). This algorithm
automatically identifies and matches corresponding features in different images, and
then creates a network of tie points determining their 3D coordinates, thus generating
a 3D point cloud (James et al., 2017; Lucieer et al., 2014; Snavely et al., 2008; Vasuki
et al., 2014; Westoby et al., 2012). From this 3D model, the images can be ortho-
projected to obtain other useful products, such as the orthophoto of the surveyed
scene or target (Giordan et al., 2020; Nex & Remondino, 2014; Westoby et al.,
2012). Optimal results are obtained when the sequence of target images has a mini-
mum overlap of 80% (Nex & Remondino, 2014). The main advantage of SfM is the
possibility of automatically calculating the camera parameters, camera position and ori-
entation, and geometry of the scene (Giordan et al., 2020; Martínez-Carricondo et al.,
2018; Westoby et al., 2012). The generated 3D model can be returned in relative or
absolute coordinates, depending on the georeferencing system.

Ground control points (GCPs), onboard GNSS (absolute position or real-time
kinematic [RTK] network), and GNSS ground reference systems (post processing
kinematic [PPK] or RTK) can be used to determine the coordinates in a global system
of the output model (Caroti et al., 2015; Giordan et al., 2020; Martínez-Carricondo
et al., 2018). The overall accuracy of the 3D point cloud and the 2D orthophoto
depends on the internal sensor characteristics, the accurate flight plan, the use of
GCPs, and the georeferencing system (Caroti et al., 2015). The accuracy of UAV-
based photogrammetric products is commonly assessed using the root mean square
error (RMSE) achieved after the bundle adjustments of all the images in the SfM
method (Caroti et al., 2015; Martínez-Carricondo et al., 2018). Despite the popularity
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of UAVs in engineering geology studies and infrastructure condition assessment, the
use of this technique for road damage characterization in landslide areas is still limited
(Nappo et al., 2021). The few available studies adopt UAV-based 3D models to (semi)
automatically detect potholes or block cracks on the road pavement that are typically
caused by a poor mixture of asphalt components and water infiltration, rather than
landslides (ASTM, 2020; Nappo et al., 2021).

Table 16.2 provides a comparison between the studies that, to the authors’ knowl-
edge, are currently using 3D models reconstructed from UAV images for road damage
detection.

In the following, some technical requirements are given for optimizing the data quality.

Model georeferencing methods
Image data collected by UAV can be positioned and oriented in space by using direct
or indirect georeferencing methods. This information is useful not only to georefer-
ence the final model in a global coordinate system but also to scale it.

Direct georeferencing adopts a GNSS receiver mounted onboard the UAV, work-
ing in code mode to obtain time and geolocation information with an accuracy of a
few meters (Gabrlik, 2015), or in carrier-phase mode to reduce the error to a centi-
metric range (Colomina & Molina, 2014; Padró et al., 2019). These receivers can
work with single or multi frequency using single (usually the GPS) or multiconstella-
tion (GPS, GLONASS, GALILEO, and BEIDOU) systems. Moreover, two types of
positioning can be distinguished: absolute, when only a receiver is boarded on the
UAV that achieves an accuracy of meters; or differential (DGNSS), when a base sta-
tion is on the ground (Giordan et al., 2020). In this latter case, time and geolocation
information of UAV images can be processed after the flight via PPK (Padró et al.,
2019; Rehak & Skaloud, 2017). An alternative to PPK is the RTK (Gabrlik, 2015;
Padró et al., 2019) which allows the correction of the position estimated in real-time
by applying the correction calculated and sent from a master receiver (located in a
point of known coordinates) or a permanent station provided by a public institution,
such as the virtual reference station networks (Giordan et al., 2020). The base-
receivers are linked to the receiver onboard the UAV by radio, Bluetooth, or WLAN.
The advantage of the postprocessing techniques is the available statistical information
about the quality obtained in positioning.

Indirect georeferencing uses GCPs. GCPs are defined as points of known location and
coordinates that can be easily recognized in the sequence of images acquired by UAV
(Giordan et al., 2020). Typically, artificial black and white markers are preferred instead of
natural elements of the scene (e.g., corners, artifacts, pedestrian crossing lines) because their
color and geometry render them highly discernible in all images of the sequence (Caroti
et al., 2015; Giordan et al., 2020). GCPs are placed in the surveyed area before the UAV
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Table 16.2 Comparison between studies using UAV-based 3D models for road damage detection.
Road damage UAV Processing
Type Typical cause Flight

altitude
[m]

GSD
[cm/pixel]

GCP Georeferencing
method

RMSE(x, y, z) [m] Data Validation via field
measurements

References

Block cracks Shrinkage 5�7 0.64 Yes GCP � 3D point cloud Yes Inzerillo et al.
(2018)

Longitudinal and
transverse
cracks

Landslide 10 0.37 No Onboard
GNSS

0.32, 0.61, 0.37 2D images and
3D point
cloud

Yes Nappo et al.
(2021)

Rutting and
potholes

Poor asphalt
mixture

10�40 � No � � 3D point cloud Yes Saad and
Tahar
(2019)

Potholes Poor asphalt
mixture

15 0.5 Yes � 0.27�0.59,
0.23�0.53,
0.16�0.53

3D point cloud Yes Tan and Li
(2019)



flight and used to improve the bundle adjustment (Caroti et al., 2015; Giordan et al.,
2020), thus reaching errors in a centimeter range (Padró et al., 2019).

The use and the number of GCPs are particularly important to obtain highly accu-
rate topographic models, as digital surface models (Caroti et al., 2015; Carvajal-Ramírez
et al., 2016; Giordan et al., 2020; James et al., 2017; Martínez-Carricondo et al., 2018;
Padró et al., 2019; Reshetyuk & Mårtensson, 2016; Santise et al., 2014; Tahar, 2013).
Starting from a minimum of three, GCPs should be positioned either at the edges or
inside the surveyed area with a stratified distribution to optimize both horizontal and
vertical accuracy and minimize relative errors (Caroti et al., 2015; Giordan et al., 2020;
James et al., 2017; Martínez-Carricondo et al., 2018; Tahar, 2013).

To define the most suitable georeferencing system for each application, it is impor-
tant to evaluate the typology of the GNSS receiver, possible interferences (e.g., build-
ings, vegetation), and the accuracy that is required (Gabrlik, 2015; Giordan et al.,
2020; Padró et al., 2019). If the objective of the study is the characterization and classi-
fication of asphalt pavement damage and the UAV is equipped with onboard bi-
frequency GNSS receivers, GCPs can be theoretically omitted (Benassi et al., 2017;
Gerke & Przybilla, 2016; Nappo et al., 2021; Nex et al., 2022). However, they can be
used as support to estimate the position and scale error in the final model and they
should be used in multitemporal analyses.

Data accuracy
The quality of UAV input images and output products (i.e., point cloud and ortho-
photo) depends on the intrinsic characteristics of the sensor, the flight mission, the
photogrammetric processing, and the georeferencing system (Giordan et al., 2020;
Martínez-Carricondo et al., 2018; Nex & Remondino, 2014; Santise et al., 2014;
Tahar, 2013).

Sensor parameters that generally determine the quality of raw images are the camera
focal length, exposure time, acquisition distortions, and pixel size. The flight altitude,
speed, acquisition geometry (i.e., nadir or oblique), acquisition mode (e.g., manual or
automatic) and ground sampling distance (GSD) affect the quality of either the raw
images or the photogrammetric outputs (Agüera-Vega et al., 2017; Amrullah et al.,
2016; Martínez-Carricondo et al., 2018; Mesas-Carrascosa et al., 2016). The flight speed
should be determined according to the time exposure to avoid blurred images.

Additional environmental factors, such as wind speed, weather, morphology, and
light/shadow conditions, influence the acquisition of UAV images and, consequently,
the quality of UAV photogrammetric products (Dandois et al., 2015; Rock et al.,
2011; Tahar, 2013). Photogrammetric products can be affected by errors in the raw
input images, poor image overlap, presence/absence of GCPs, the georeferencing sys-
tem, and the photogrammetric software (Caroti et al., 2015; Jaud et al., 2016;
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Martínez-Carricondo et al., 2018; Murtiyoso & Grussenmeyer, 2017; Rosnell &
Honkavaara, 2012; Tahar, 2013; Wierzbicki et al., 2015). In case the light/shadowing
conditions are not optimal for the UAV survey, the images can be also pretreated with
shadow removal algorithms (Nex & Remondino, 2014).

Pavement damage detection and classification using a UAV-
integrated camera: a case study in North Italy

Nappo et al. (2021) developed a method for processing RGB images obtained
by a UAV-based camera to measure the pavement damage in different landslide-
affected roads and applied it to three different case studies in North Italy. After briefly
describing the proposed method, the application to the provincial road SP14 in Laino
municipality (North Italy) is discussed here.

Methodology
Fig. 16.1 illustrates the method proposed by (Nappo et al., 2021). Phase I consists in
the acquisition from UAV of images of the investigated road section to be then pro-
cessed via SfM to reconstruct a 3D point cloud and 2D orthophoto. Phase II is
devoted to the point cloud processing. A planar reference surface is fitted to the road
pavement to highlight the road pavement’s unevenness. Then, certain geometric fea-
tures, namely omnivariance, verticality, and roughness (Maas & Vosselman, 1999), are
computed to automatically classify the 3D points into damage/nondamage and in four
roughness levels (i.e., IRI) based on predetermined thresholds. In Phase III, the 2D
orthophoto is processed via binarization and thresholding (Cubero-Fernandez et al.,
2017), edge detection (Canny, 1986), and morphological operators to automatically
extract damage polygons. These are then overlaid on the 3D point cloud to associate
geometric (e.g., width and area) and photogrammetric (i.e., density of points, omni-
variance, verticality, roughness) information to each crack and to classify the polygons
according to their average roughness.

Results
Fig. 16.2 shows the photogrammetric products (i.e., 3D point cloud and 2D ortho-
photo) of the case-study road section SP14 in Laino municipality crossing an
unstable slope with a rate of movement of a few millimeters per year. The slope is
formed by Sinemurian—Lower Pliensbachian (Lower Jurassic) gray limestone in well-
defined beds of 5�70 cm thickness and Late Pleistocene (Late Quaternary) glacial
deposits in layers of 10�20 m of massive coarse gravels alternated with clayey silt and

362 Nicoletta Nappo et al.



Figure 16.1 Flowchart for the assessment of road pavement damage. Modified from Nappo, N.,
Mavrouli, O., Nex, F., van Westen, C., Gambillara, R., & Michetti, A. M. (2021). Use of UAV-based photo-
grammetry products for semi-automatic detection and classification of asphalt road damage in
landslide-affected areas. Engineering Geology, 294, 106363. https://doi.org/10.1016/j.
enggeo.2021.106363.

Figure 16.2 (A) and (B) 3D point cloud and (C) 2D orthophoto of the SP14 in Laino municipality
crossing two landslides, as reconstructed via UAV-based SfM. Coordinates system: UTM 32 N
(WGS84). Modified from Nappo, N., Mavrouli, O., Nex, F., van Westen, C., Gambillara, R., & Michetti, A.
M. (2021). Use of UAV-based photogrammetry products for semi-automatic detection and classification
of asphalt road damage in landslide-affected areas. Engineering Geology, 294, 106363. https://doi.
org/10.1016/j.enggeo.2021.106363.
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limited sand (Bini et al., 1996; Michetti et al., 2014). The photogrammetric model of
the road was reconstructed via SfM using 371 (54723 3078) RGB images of the
SP14-Laino (toward the north in Fig. 16.2C) and 492 (54723 3078) RGB images of
the entire area (Nappo et al., 2021).

The UAV survey was performed with a DJI Phantom 4 PRO flying at 10 m alti-
tude from the main road and 30 m over the surrounding area. The images were
acquired manually in nadir mode following a regular flight path assuring more than
80% overlap between adjacent images (Nappo et al., 2021). The bundle adjustment of
the photogrammetric block was performed with SfM algorithms using commercial
software (Nappo et al., 2021). Being the RMSE of the block adjustment lower than
0.7 m and the road section 200 m long, the relative error is acceptable for the average
length of cracks and their width, and it did not affect the subsequent detection and
classification of pavement damage. As mentioned, the section of the SP14-Laino
shown in Fig. 16.3 is 200 m long and is characterized by 15 longitudinal cracks of
0.32�3.50 cm width and 8 transverse cracks of 0.76�2.63 cm, as measured during
field investigations. A similar damage pattern was observed on a secondary road run-
ning upslope with respect to the SP14—Laino (Fig. 16.3), where additional 13 longi-
tudinal and 9 transverse cracks were observed during field investigations.

Figure 16.3 Evidence of longitudinal and transverse cracks on the pavement of the main road (towards
north) and the secondary road running upslope (towards south). Modified from Nappo, N., Mavrouli, O.,
Nex, F., van Westen, C., Gambillara, R., & Michetti, A. M. (2021). Use of UAV-based photogrammetry
products for semi-automatic detection and classification of asphalt road damage in landslide-affected
areas. Engineering Geology, 294, 106363. https://doi.org/10.1016/j.enggeo.2021.106363.
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The authors performed a twofold analysis. First, they processed the 3D point cloud
of the road section to retrieve a hotspot map of pavement unevenness (Fig. 16.4A)
showing that heterogeneous landslide movements have resulted in irregular road dam-
age patterns (Nappo et al., 2021). Then, they automatically classified the 3D points
into damage/nondamage (Fig. 16.4b) and four severity levels based on the point
roughness (i.e., IRI) (Fig. 16.4c). Afterward, the authors processed the 2D orthophoto
of the SP14-Laino to automatically extract damage polygons that were classified
according to their average roughness (i.e., IRI) (Fig. 16.4D). By combining the pro-
cessing results of both UAV-based 2D orthophoto and 3D point clouds, the authors
demonstrated that road pavement cracks wider than 1 cm can be detected. An overlap
of 93% was found between automatic and manual damage detection (Nappo et al.,
2021). The attributed damage classes are in accordance with visual observations.

Final remarks

The management of road infrastructure requires methodologies for quantitively
assessing the damage induced by landslides on road asphalt pavements, other than the
effects of usual stresses (AASHO, 1962; ANAS, 2004; ASTM, 2020).

The UAV products presented here have been proved to be successful in detecting
landslide-induced longitudinal and transverse cracks. By processing the 2D images collected
by digital cameras on a UAV platform, 3D point clouds and 2D orthophotos of the investi-
gated road section can be generated. The three postprocessing products that can be provided
following the procedure presented here are (1) a damage hotspot map to locate unevenness
of the road pavement within the landslide body, (2) a 3D point cloud where points are
attributed with a damage/nondamage value and a roughness value, and (3) locations of dam-
age on the road in the form of damage polygons where the damage is classified according to
the average roughness of the inside points. These products can assist in the prioritization of
interventions and maintenance operations in a landslide risk management scenario.

It has been shown that UAV-based 3D models of road pavement can be used to auto-
matically detect longitudinal and transverse cracks wider than 1 cm. This renders UAV-
based camera sensors suitable for road damage assessment in the framework of vulnerability
analyses, where quantitative parameters (e.g., road roughness) are needed to correlate the
cause of damage (i.e., landslide) with its effect (i.e., different typologies of pavement cracks
with different width and roughness). In this regard, the obtained models allow measuring
the size (width, length, area), shape (pattern of points with similar features), the relative
location of 3D points (distance from the reference plane, omnivariance, verticality), and
roughness of longitudinal and transverse cracks on the road surface.
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Figure 16.4 (A) Road damage hotspot map. Automatic classification of the 3D point cloud in (B) dam-
age/nondamage and (C) IRI-based severity levels. (D) Classification of 2D road damage polygons in IRI-
based severity levels. Coordinates system: UTM 32 N (WGS84). Map lines delineate study areas and do
not necessarily depict accepted national boundaries. Modified from Nappo, N., Mavrouli, O., Nex, F.,
van Westen, C., Gambillara, R., & Michetti, A. M. (2021). Use of UAV-based photogrammetry products
for semi-automatic detection and classification of asphalt road damage in landslide-affected areas.
Engineering Geology, 294, 106363. https://doi.org/10.1016/j.enggeo.2021.106363.
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Compared to TLS and MLS, DP from UAV platforms has the advantage of acquir-
ing data in complex topographic or morphological contexts with difficult access.
Moreover, data acquired by UAVs are less sensitive to occlusion. Another advantage of
using DP from UAV is the possibility of acquiring 2D image data to be used either for
image analysis purposes or for reconstructing 3D models via the SfM algorithm.
Nevertheless, precautions need to be taken during the acquisition and processing of the
images. The UAV flight should be planned, thus determining the appropriate flight alti-
tude (e.g., close or long range), speed, acquisition mode (i.e., nadir or oblique), GSD,
minimum overlap between adjacent images (e.g., 80%), possibility of safely placing
GCPs, presence of vegetation or other objects (e.g., power lines) that may obstruct the
view and render the UAV flight unsafe. Depending on the length of the road section to
be examined, the flight duration can be determined before the field survey, thus carrying
an appropriate number of batteries, also depending on the UAV specifications, endur-
ance, and capacity. The typology of the sensor to be used for road damage assessment
can be determined based on the required GSD and resolution requirements of the
images. At the time of writing, there is a variety of commercial models complying with
the necessary prerequisites, such as a compact size and weight that allows to incorporate
new sensors (e.g., digital camera, multiband camera, laser scanner), onboard GNSS
receiver in single/multifrequency using single/multiple constellation with or without
RTK options, and sufficient battery capacity to fly the UAV long enough to capture a
multitude of information of the investigated target or area.

Given the difficulty in placing GCPs along road sections crossing steep
unstable slopes, some authors neglect the use of GCPs for bundle adjustment or geore-
ferencing of their 3D point clouds, opting instead for RTK georeferencing of each
image based on the GNSS mounted onboard the UAV (Nappo et al., 2021; Saad &
Tahar, 2019). This approach can generate a shift of the whole point cloud with respect
to the datum, although not compromising the relative positioning of the UAV images
and the road damage detection and measurement (Nappo et al., 2021; Nex et al.,
2022). Nevertheless, to achieve high-accuracy, an adequate number of GCPs is
required either at the edges or inside the surveyed scene (Caroti et al., 2015; James
et al., 2017; Martínez-Carricondo et al., 2018; Tahar, 2013).

Future works may address a higher level of automation by implementing point pat-
tern recognition of 3D points with similar features and applying artificial intelligence
for road damage recognition and measurement (Nex et al., 2022). Additional efforts
are needed to standardize the use of DP employing UAV platforms for road damage
assessment in decision support systems for road maintenance agencies, such as the
transportation asset management and pavement management system (Marzouk &
Osama, 2017; Ragnoli et al., 2018; Sinha et al., 2017). Currently, DP from UAVs is
suitable for small-scale investigations where national and international regulations per-
mit it (EASA, 2022; ENAC, 2022; FAA, 2022; ICAO, 2022). These regulations often
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require special permissions for operating UAVs for commercial or scientific purposes,
thus preventing airspace congestion, preserving the privacy and safety of citizens, and
assuring the safety of UAV operators and infrastructure users (Giordan et al., 2020).
Nowadays, common international regulations have been established in Europe (EASA,
2022), for instance, to overcome the divergence of national laws. Despite the necessity
of regulating the use of UAVs, especially to avoid their unsafe use, some authors
(Giordan et al., 2020) argue that such restrictions are advisable in routine surveys but
might be limited in emergency scenarios where quick responses are demanded (e.g.,
bridge collapse, sudden landslide activation, road blockage due to debris flows).
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