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Abstract

Formation flying is a phenomenon observed very often in the natural world, e.g. birds flying in a
flock. The past decade has given a lot of emphasis on the research for the control of autonomous
Unmanned Aerial Vehicles (UAVs) of the fixed-wing kind, in an effort to emulate the behavior
of natural flocks. Emulating this behavior requires the construction of path following and form-
ation control laws with the capability of adapting to changing situations, in a similar way as
natural flocks can do.

This thesis is devoted to studying Adaptive Vector Field Guidance laws and Adaptive Form-
ation laws for fixed-wing UAVs. Formation control relies on an adaptive hierarchical formation
control method for uncertain heterogeneous nonlinear agents with Euler-Lagrange (EL) dynam-
ics. It is shown that various formations (T-V-Y formations) can be established using this method,
tested using a Matlab/Simulink environment. Additionally, a distinguishing feature of this thesis
is the development of a 3D-Simulation platform to perform a hardware in the loop (HITL) sim-
ulations (i.e. using the control hardware on board of an actual UAV): a Raspberry Pi is used to
run the formation control algorithm and to communicate with a Pixhawk Cube autopilot board
which contains the low-level control algorithm. The autopilot board is then connected to a 3D
Simulator (Gazebo) and Ground Control System (QGroundControl). The proposed HITL plat-
form promises to facilitate the testing and validation of guidance and formation laws in a much
more realistic way than a Matlab/Simulink environment can do.



iv



Contents

1 Introduction 1
1.1 Conceptualizing the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Report Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modelling Framework for Fixed-wing UAVs 7
2.1 Orientation of the UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Coordinate Frame of References . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Inertial or Earth frame Fi . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 The vehicle frame Fv . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 The body frame Fb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 The stability Fs and the wind frame Fw . . . . . . . . . . . . . . . . . 9

2.3 The Wind Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Modelling of UAVs in terms of Euler-Lagrange Dynamics . . . . . . . . . . . 11

2.4.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Communication Graphs for the UAVs . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Various Formation Strategy (T, V and Y) for a Flock of UAVs . . . . . . . . . 15
2.7 Communication graphs for hierarchical system . . . . . . . . . . . . . . . . . 15

2.7.1 Communication graph for a flock in T-Formation . . . . . . . . . . . . 15
2.7.2 Communication graph for a flock in V-Formation . . . . . . . . . . . . 16
2.7.3 Communication graph for a flock in Y-Formation . . . . . . . . . . . . 17

2.8 Formation Switching Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Adaptive Vector Field Path Following and Formation Control Algorithm 21
3.1 Path Following with Vector-Field Approach . . . . . . . . . . . . . . . . . . . 21

3.1.1 Vector Field Strategy for Straight Line Path . . . . . . . . . . . . . . . 22
3.1.2 Vector Field Strategy for Orbital Path . . . . . . . . . . . . . . . . . . 22

3.2 Adaptive Course Correction for Vector Field Path . . . . . . . . . . . . . . . . 23
3.3 Formation for a flock of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Adaptive Formation Algorithm . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Controller Design for EL Dynamics . . . . . . . . . . . . . . . . . . . 26

3.4 Formation Control Law and Adaptive Synchronization . . . . . . . . . . . . . 26

v



3.4.1 Controller for Adaptive Synchronization of Leader to the Reference/Virtual
UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Controller for Adaptive Synchronization of Follower to the Reference
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Autopilot and PX4 controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Linearised model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 PX4 Controller Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.1 PX4 Fixed-wing position controller . . . . . . . . . . . . . . . . . . . 32
3.6.2 PX4 Fixed-wing attitude controller . . . . . . . . . . . . . . . . . . . 35
3.6.3 PX4 Autopilot Flight Stack Software: an overview . . . . . . . . . . . 35

4 Gazebo: As semi-physical simulator 37
4.1 Modeling a UAV in Simulation Description Format . . . . . . . . . . . . . . . 37
4.2 Single UAV Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 SITL Environment for Single Vehicle . . . . . . . . . . . . . . . . . . 38
4.2.2 HITL environment for Single Vehicle . . . . . . . . . . . . . . . . . . 40

4.3 Multi-UAV Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 SITL environment for Multi-UAV . . . . . . . . . . . . . . . . . . . . 41
4.3.2 HITL environment for Multi-UAV . . . . . . . . . . . . . . . . . . . . 43

4.4 HITL environment with Companion Computer . . . . . . . . . . . . . . . . . 43
4.4.1 Serial Port Configuration in QGC . . . . . . . . . . . . . . . . . . . . 44

5 Simulations and Result Analysis 47
5.1 Simulation results of various formations . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Path following in T formation . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Path following in V formation . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Path following in Y formation . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Path following without Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Takeoff and Loitering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Formation Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions and Future Work 57
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



List of Figures

1.1 UAV Types Source: Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 General Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Vehicle frame Fv placed at the UAV’s center of gravity (CoG) . . . . . . . . . 9
2.3 Sequential Rotation of Fixed-wing UAV . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Wind Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Fixed-Wing UAV in Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 UAVs Adaptive Formation communication graph . . . . . . . . . . . . . . . . 15
2.7 Communication Graph for T-Formation . . . . . . . . . . . . . . . . . . . . . 16
2.8 Communication Graph for V-Formation . . . . . . . . . . . . . . . . . . . . . 17
2.9 Communication Graph for Y-Formation . . . . . . . . . . . . . . . . . . . . . 18
2.10 Network architecture for topology switching . . . . . . . . . . . . . . . . . . . 20

3.1 VF-Straight Line strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 VF-Orbital Path strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 PX4 Fixed-wing general position control scheme . . . . . . . . . . . . . . . . 33
3.4 TECS controllers source: [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Fixed-wing attitude controller source: [1] . . . . . . . . . . . . . . . . . . . . 35
3.6 The controller scheme for roll control of Fixed-wing UAV. The variables φ, φc,

p̄, pc and δa,c are the roll angle, commanded roll angle, roll rate and commanded
roll rate and commanded aileron angle respectively . . . . . . . . . . . . . . . 36

3.7 PX4 autopilot flight Stack for autonomous flying of a single vehicle . . . . . . 36

4.1 SDF Architechture source: [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 SITL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Mission for single vehicle SITL for VTOL . . . . . . . . . . . . . . . . . . . . 40
4.4 Simulator (Gazebo) with ground control station (QGC) . . . . . . . . . . . . . 40
4.5 Single vehicle HITL for VTOL . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Launching 5 VTOL UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 VTOL UAVs during flight and loitering . . . . . . . . . . . . . . . . . . . . . 42
4.8 Companion Computer (RPI 3 b+) connection to Autopilot (Pixhawk2) . . . . . 43
4.9 HITL Architecture with companion computer . . . . . . . . . . . . . . . . . . 45
4.10 HITL simulation with companion computer . . . . . . . . . . . . . . . . . . . 45

vii



5.1 The flock of UAVs first follows a line and flies in T-formation and the loiters in
an orbit maintaining the formation. . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 The flock of UAVs first follows a line and flies in V-formation and the loiters in
an orbit maintaining the formation. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 The flock of UAVs first follows a line and flies in Y-formation and the loiters in
an orbit maintaining the formation. . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Simulation results highlighting a key feature of adaptive control algorithm: An
Unsuccessful path following by Leader 1 and Follower 1 in absence of adaptive
control laws. While Leader 2 and Follower 2 achieves the formation successfully
by having an adaptive control algorithm. . . . . . . . . . . . . . . . . . . . . . 51

5.5 Simulation showing UAVS taking-off from different position on the ground at
varied time instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Five UAVs took-off from different positions on the ground at different time in-
stant and reached their respective loiter point . . . . . . . . . . . . . . . . . . 52

5.7 Figures showing the simulations of the UAVs at different stages: taking off from
ground and reaching to the loiter point in T formation and started to transition
and finally, transited to V formation . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Figures showing the simulations of the UAVs at different stages: taking off from
ground and reaching to the loiter point in V formation and started to transition
and finally, transited to Y formation . . . . . . . . . . . . . . . . . . . . . . . 54

5.9 UAVs transited from V formation to Y-formation and loiters at the specified point. 55

viii



List of Tables

2.1 Fixed-wing UAVs parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Euler Lagrange Dynamics variable Description . . . . . . . . . . . . . . . . . 14
2.3 Fixed-wing UAVs parameters for T-formation . . . . . . . . . . . . . . . . . . 16
2.4 Fixed-wing UAVs parameters for V-formation . . . . . . . . . . . . . . . . . . 17
2.5 Fixed-wing UAVs parameters for Y-formation . . . . . . . . . . . . . . . . . . 18

ix



x



Chapter 1

Introduction

Family of UAVs can be classified mainly into two categories by their shapes and flying methods:
fixed-wing type aircraft and vertical take-off and landing (VTOL) type aircraft. Fixed-wing type
aircraft are generally deployed where extensive areas are to be covered in a short time because
they can fly with considerable speeds [3]. Nowadays the availability of low-cost sensors, elec-
tronics, and air-frames has developed a significant interest in working towards cheaper UAVs
among aircraft hobbyists, academic researchers, and industries. UAVs especially fixed-wing
kind have been extensively used by military and government organizations in the past. These
UAVs were extensively helpful in carrying payloads [4], [5]. Moreover, applications such as
mapping, research, and rescue, patrol, etc. require the UAV to autonomously follow a predefined
path at a prescribed height [6], [7]. Formation flying of multiple (UAVs) has also become a sig-
nificant topic of research these days due to numerous defense and commercial applications. To
enumerate a few such as reconnaissance and surveillance missions, coordinated attacks, flying
into high-risk areas, livestock monitoring, wildfire mapping, etc.

(a) Fixed-wing UAV (b) VTOL Fixed-wing UAV

Figure 1.1: UAV Types Source: Internet
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1.1 Conceptualizing the problem

Synchronization is the core requirement for the formation flying of the multi-agent system. It is
again an emerging field of research which is drawing the attention of not only the control com-
munity but many other research fields [8],[9]. The potential solution for coordination among
large scale systems can be achieved by network synchronization. Authors of [10],[11] has dis-
cussed a solution encompassing spacecraft attitude control for unmanned aerial vehicle. There
are two methods to achieve coordination amongst the multi-agent system. Those are either dis-
tributed method or a centralized method. On one hand, a distributed approach uses a controller
for every agent that utilizes the local information from its neighbors, on the other hand in a
centralized approach every node depends on the central node for information hence, the central
node dictates all other nodes in the network and control them. A scenario where communica-
tion constraint is prevalent the distributed method has an advantage over the central approach
[12],[13]. This research work utilizes a distributed synchronization method as a way to con-
trol various UAV formations that are accompanied by uncertain parameters (mass, inertia, etc.)
with Euler-Lagrange dynamics. Distributed systems have many branches of research area that
overlaps networking, control, etc: In distributed control itself while dealing with synchroniz-
ation many areas can be overlapping, such as, distributed optimization, distributed estimation
[14] [15], networked distributed formation also known as flocking with capability in terms of
collision avoidance and distributed synchronization, if the synchronization activity is constant
then this condition is known as rendezvous or consensus building.

This work deals with one of the aforementioned areas of research: A group of UAVs flying
in some formations and traversing a predefined path. It utilizes the distributed formation control
law in the inertial frame of reference to accomplish a predefined mission. In this work mainly
three types of formation will be discussed those are inverted T (T-formation), inverted V (V-
formation) and Y-formation. To attain the formations a formation gap is maintained by the
UAVs flocking together. Also, the main feature of this thesis work will be: the UAVs in the
formation can transit from one formation to another while being airborne.

1.2 State of the art

To discuss a path following strategies, it is necessary to discuss path planning algorithms.

Path planning

A survey on path planning with respect to Autonomous aerial vehicle is discussed in [16], [17]
which summarizes state-of-the-art on path following algorithms. Control effort and cross-track
error are the main two metrics on the basis of which authors of [17] has compared the algorithms
used in path planing approach. Many path planning algorithms exist in literature to name a few;
vector-field (VF), carrot-chasing, nonlinear guidance, pure pursuit with line-of-sight and linear
quadratic regulation. While [18],[19] presents adaptive path following strategies, [20] discuss
about vector field path following of mini air-vehicles. Authors in [21],[22] has discussed the
nonlinear guidance strategy of the UAV. A carrot chasing is the simplest algorithm for path
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following and makes the UAV constantly chase a virtual target point and a Line of Sight (LOS)
guidance or pure pursuit is a geometric method that chases a virtual target path.

After considering a number of parameter settings, in summary, [17] concludes that Monte
Carlo simulations utilizing vector-field algorithm for path-following strategy is much better in
terms of accuracy. In comparison with nonlinear guidance strategy (NLGL) and VF path follow-
ing technique; VF technique developed [20], is more accurate as it has less-error for the same
setup in simulations. The only drawback it suffers is the number of design parameters required
are higher than other algorithms. The concept behind VF path following is to construct a vector
field around the desired path, to command the vehicle in terms of course angle. The stability
and convergence to the desired path of the nonlinear vector field path following laws is guaran-
teed and proved by utilizing Lyapunov stability analysis . Although there have been advances
over the years, many issues remain unsolved in the field of path-following. The simulations
performed in [17] and in the path-following works points out mainly four key points:

1 The actual performance of path-following methods considerably depends on the fidelity
of the UAV model used for design. When aiming at autonomous flight, parametric uncer-
tainties will certainly appear in the UAV structure (uncertain mass and inertia might vary
during the mission). Path-following algorithms that cannot adapt to such changes will not
sustain and exhibit poor performance [23].

2 The actual path-following performance does not depends only on the commanded course
angle. At a lower level, a complex suite of control algorithms commonly referred to
as autopilot must be in charge of regulating roll, pitch and altitude (rudder/wing/aileron
actuators) according to the course commanded by the path-following algorithm [23].

3 Generally, low-level controllers from autopilot layer [17] is not included into the simulat-
ors while testing the path-following algorithms for simulating single UAVs or a flock of
UAVs. It makes an important part in hardware in the loop simulations or a real flight: it is
also an open research problem to a large extent [23].

4 While investigating control algorithms for UAVs, it is more important to simulate the
effect of proposed algorithms in real-time and scenarios as close as to the realistic envir-
onment.

For this to achieve, it is required that UAV dynamic behavior of real UAVs in the actual environ-
ment is depicted as close as possible in the simulation platform. Moreover, external conditions
such as disturbances especially wind must be considered in the controller design.

Unfortunately, quite often a simulation framework that satisfies these requirements is not used
by the UAV community. Therefore a mechanism or a simulation platform with the aforemen-
tioned properties would be an interesting tool for any researcher involved with UAVs. Often,
Matlab and Simulink is used extensively to simulate and visualize along with the testing of
control algorithm. Which has certain limitations about involvement of many components. It be-
comes very cumbersome for Matlab/Simulink in running algorithm, performing simulation, and
visualizing the model in real-time. Also it is very difficult to interface the hardware components
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to matlab and simulink simulators directly.
Despite the substantial interest in UAVs, little attention has been paid in developing real-

istic simulators which represents a complete mathematical model of the UAV and the external
variables[24], that is the reason why it is important to present a Multi-Aerial Vehicle 3D Simu-
lator that will help with the validation of new controllers.

Simulator

Over many options, to enumerate a few: Unity 3D, X-plane and jMAVSim etc. Gazebo with Ro-
bot Operating System (ROS), was given preference to integrate with the this work. Gazebo offers
the ability to accurately and efficiently simulate and mimic many types of vehicles and robots
including unmanned aerial vehicles in complex indoor and outdoor environments. It has a robust
physics engine, high-quality graphics, with convenient programmatic and graphical interfaces.
Most importantly, Gazebo is free with a vibrant developer community [25]. Besides being open
source, it is a powerful 3D simulation environment for autonomous vehicles and particularly
suitable for testing and validation. Simulation is an essential tool in every algorithm developer
toolbox. A well-designed simulator makes it possible to rapidly test algorithms, design control-
lers, and perform regression testing using realistic scenarios. Keeping these features in mind,
Gazebo is being used as hardware-in-the-loop (HITL or HIL), software-in-the-loop (SITL) sim-
ulator for single vehicle. Gazebo not only supports SITL, HITL and SIH 1.2 simulations for
single vehicle but also for multi-vehicle simulation by configuring and interfacing it with ROS.

Simulation types: SITL, HITL and SIH Simulation

Some basic definitions related to simulation types based on their method is given here:

• Software-in-the-loop (SITL) simulation, is performed when the flight autopilot stack 3.6.3
runs on computer (either stand alone computer or another computer on the same network).
The main advantages of this simulation is that it is faster in comparison to other simulation
environments. The fact that all the required component are on the same machine including
the ground control stations reduces communication overhead. The disadvantage is of this
simulation is it can differ from the actual performance in real scenarios for various reasons.
The fact that the performance of a PC or a host machine may not be same as that of the
controller used during real flight.

• Hardware-in-the-loop (HITL) simulation is performed using a simulation firmware on a
real flight controller board attaching it to the simulated environment with the model of the
UAV. HITL simulation is a type of real-time simulation used to test the controller design.
This simulation shows how the controller responds, in real time for virtual stimulus.
Advantage of running HITL is that it runs the simulations to show the actual performance
of the hardware hence, the flight controller board can directly be integrated to the real UAV
after successful simulation. The main issues that can be faced is that baud-rate of sensors
and actuators used in simulator can differ to that of real flight. Insufficient Computational
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Capability: real-time target machine can lack the computational capability for running the
model in real time. If the model fails to run in real time and may produces unreliable
results.

• Simulation-In-Hardware (SIH) is an alternative to HITL for a vehicle simulation. In this
setup, everything runs on embedded hardware - the controller, the state estimator, and the
simulator. The machine is only used to display the virtual vehicle, as it is not needed to
run the physical plugins as in SITL or HITL. The SIH provides following benefits over
the HITL:
It reduces the communication bandwidth as it ensures synchronous timing by avoiding
the bidirectional connection to the computer. Which enables to simulate vehicles without
having powerful computers.
As the complete simulation remains inside the PX4 environment. Hence, it becomes easy
to modify the aerodynamic model, or noise level of the sensors, or even add a sensor to be
simulated along with incorporating the mathematical model into the simulator.

1.3 Research Objectives

To address these challenges, this thesis work is devoted to answer the following two main re-
search questions: First is related to path following strategy and second is akin to the simulator.
For path following algorithm the main objectives are: To deal with parametric uncertainties in
the UAV, to cope up with the autopilot low-level control, for testing path-following algorithms
and to scale the path-following problem for a group of UAVs. While research work carried by
the authors [26], [8] and [27] in adaptive formation control algorithms for various systems with
uncertain dynamics, the corresponding problem for UAVs is much more challenging due to the
complex UAV control architecture which will be discussed in the following chapters.
In regards to the simulator: the observations prompted to work on a simulation platform with
the following features:

• Simulate complete formation model of fixed-wing UAVs;

• Visualize real parameters and models for each fixed-wing UAV components, i.e. control
surfaces, motor and propeller model etc.;

• Direct interfacing between real hardware components used onboard such as autopilot and
companion computers along with the softwares for simulator and ground control station;

Gazebo is one such open source software that provides such kind of platform which helps in the
development of semi-physical simulator for variety of aerial vehicles. This thesis presents the
3D simulator for the multi fixed-wing UAV. It is also multi-aerial because there is a possibility
to simulate a fixed-wing as shown in Figure: 1.1(a) or VTOL UAV as shown in Figure: 1.1(b).
Along with the aforesaid tasks, this work will also be a contribution towards;

• A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs
based on [23].
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• Visualization of the various formations in Matlab/Simulink while the UAVs are airborne.

1.4 Report Synopsis

The rest of the report is organised in chapters as follows:

• Chapter 2: It starts with the formal presentation of the multiple coordinate frame of
references necessary to understand quantities related to an aerial vehicle. Then, Euler-
Lagrange dynamics in reference to Fixed-wing UAVs are discussed. Afterwards, the equa-
tions pertaining to the forces and moments acting on the vehicle in question are described.

• Chapter 3: This chapter, firstly discusses the vector field path following strategy for
straight line path and orbital path in regards to single UAV. As it is purely mathematical
model without any wind dynamics and unmodelled dynamics, hence an adaptive course
correction method is introduced to eliminate wind effect along with unmodelled dynam-
ics. Next, the general autopilot control structure used for a fixed-wing UAVs, based on
linear controller followed PX4 position and attitude control structure. Afterwards, control
algorithm using Inverse Dynamic based method pertaining to Euler Lagrange model of
UAVs is discussed in detail. Finally, formation control laws and adaptive synchronization
of leader and then follower with reference dynamics is discussed.

• Chapter 4: This chapter deals with the simulator; starting with the basics of modelling a
UAV in Gazebo, to single vehicle simulation environment, to finally multi-vehicle simu-
lation in SITL and HITL environment.

• Chapter 5: At this stage the simulations are performed for implementation of the al-
gorithms and results are analysed. Hence this chapter comprises of all the simulation
results.

• Chapter 6: A brief conclusion is given here followed by the possibility of works that can
be explored in future.
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Chapter 2

Modelling Framework for Fixed-wing
UAVs

This chapter is organised as: Firstly, a preliminary over orientation of UAV in space is given. In
the next section various co-ordinate frame of references required to model a UAV is discussed in
brief. In third section, the wind triangle model is discussed followed by a section discussing the
mathematical modelling of UAVs in terms of Euler-Lagrange Dynamics. In next three sections
communication graphs required for the formation strategies are discussed. Finally, the formation
switching topology is also discussed in details.
In this chapter, mathematical modelling of dynamics related to fixed-wing UAV is studied. It
enables the development and control the aerial vehicles which are used for controller design.
Modelling a dynamical system also enables the possibility to simulate and tune a controller
before implementing it on real vehicles.

2.1 Orientation of the UAV

At least two reference frames needs to be considered while working with vehicles moving re-
lative to the earth. The North East Down(NED) frame is commonly chosen for the Earth and
BODY for an aerial vehicle. Generally, the NED frame is not considered as inertial frame be-
cause of the rotation and velocity of the earth. The NED frame can be simplified and utilized
in many tasks and regarded as inertial without introducing too much big of an error. It can
be further simplified by looking at the earth as a 2D flat surface, and adding a vertical direc-
tion of co-ordinate system as a representation of height coordinate of the NED frame in many
cases. The same simplifications can not be done to the body-frame as this frame is accelerated
and rotated with respect to the NED frame. Coordinate and velocity transformation matrices
is therefore needed. Other reference frames of concern when working with aerial vehicles are
wind axis systems, see section: 2.5.
First, let’s consider Earth fixed frame E = {EX , EY , EZ} and body fixed frame B = {Bx, By, Bz}
on the UAV. At each moment, we need to know the position and the orientation of Body B relat-
ive to Earth E.
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Figure 2.1: General Coordinate System

2.2 Coordinate Frame of References

This section describes the various coordinate systems that are used to describe the position of
orientation of aircraft, and the transformation between these coordinate systems. Several differ-
ent coordinate systems are necessarily used for the following reasons:

• Different onboard sensors take measurements in different reference frames: for example
rate gyros take measurements in body frame while GPS takes measurement in inertial
frame.

• Equation of motions are applied in the UAVs coordinate frame of reference.

• Mathematical modelling of torques and aerodynamics forces are carried out in body frame.

2.2.1 The Inertial or Earth frame Fi
The inertial coordinate system is an earth-fixed frame with its origin at the defined home location.
As shown in the right side of Figure: 2.2, the unit vectors ii,jiand ki is directed towards north,
east, and the center of Earth, or down. This is commonly used Earth or Inertial frame of reference
and referred as the NED (north-east-down) reference frame.

2.2.2 The vehicle frame Fv
The vehicle frame represents the inertial frame translated at the center of mass of the vehicle.
The axes of Fv are pointed in the same directions of Fi as shown in Figure: 2.2.

2.2.3 The body frame Fb
The origin of the body frame is also at the center of mass of the UAV. The i-axis points out the
nose of the UAV, the j-axis points out the right wing, and the k-axis point out the belly. As the
attitude of the UAV moves, the body frame remains fixed with respect to the airframe.
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Figure 2.2: Vehicle frame Fv placed at the UAV’s center of gravity (CoG)

Rotation Parametrization and Rotation Matrices: The rotation of a rigid body in space
can be parametrized using several methods (Tait-Bryan, Euler angles, quaternion angles etc.
”Cardano angles” is a synonym for Tait-Bryan angles that are extensively used in aerospace en-
gineering; and it is normally referred as “Euler angles”.
To transform vehicle frame i.e parent frame into the body frame i.e child frame specific rotation
matrices are used with angle of rotations namely, φ, θ, and ψ about the k, j and i axes respect-
ively. Figure: 2.3 shows a sequential transformation of the frames with their respective rotation
angle.

The complete rotation matrix, called Direct Cosine Matrix and is obtained [28] as:

Rbv(φ, θ, ψ) = R(k, ψ) · R(j, θ) · R(i, φ) (2.1)

Rbv(φ, θ, ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 ·
 1 0 0

0 cosφ − sinφ
0 sinφ cosφ


(2.2)

Rbv(φ, θ, ψ) =

 cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− sinφ cosψ
− sin θ cos θ sinφ cos θ cosφ


(2.3)

The matrix has an unique property:

Rbv = (Rvb )
−1 = (Rvb )

T (2.4)

2.2.4 The stability Fs and the wind frame Fw
The stability and wind coordinate systems is introduced to complete the frame definitions and
build a suitable background when treating of aerodynamic forces.

• Stability Frame: The velocity of the aircraft with respect to the surrounding air is called
airspeed and denoted as Va. To generate the lift necessary to flight, the wings must fly at
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Figure 2.3: Sequential Rotation of Fixed-wing UAV

a positive angle with respect to the airspeed vector. This angle is called angle of attack
and denoted with α. It is represented ib − jb plane and remains in an angle with airspeed.
Hence Stability frame is obtained by rotating the body frame around jb by the angle of
attack α towards the direction of airspeed.

• Wind Frame: When airspeed vector does not lie in the ib−kb plane, and becomes inclined
to the plane the angle of inclination is called as side-slip angle β. By rotating the stability
frame by an angle β around ks axes to get i-axes aligned with the direction of airspeed
vector a new frame is obtained. The frame thus obtained is termed as the wind frame.

2.3 The Wind Triangle

Wind has a strong impact on the flight mechanics while studying the aerial vehicle. It may even
represent 20%-50% of the airframe airspeed [26]; moreover, the aerodynamic forces depends on
the relative speed with respect to surrounding air. Therefore, wind must be properly taken into
account while modelling. The wind velocity relative to the inertial frame is hereafter represented
by Vw. In the same way, the airspeed with respect to the same frame is denoted with Va. To
account the effects of wind, the ground speed is defined as Vg, hence the UAV velocity relative
to the inertial frame is considered. Airspeed, ground speed and wind speed vectors are related by
Equation: eq. (2.5). It is briefly accounted for deriving the essential expressions in formulating
the equations of motion for an UAV.

Va = Vg − Vw (2.5)

Course Angle: To complete the wind triangle represented in Figure: 2.5. The angle between
the wind vector Vw and ii is denoted by ψω. A new angle χ is introduced, which represents
the angle between the true North and the projection of the Vg on the horizontal plane (ib, jb). It
constitutes the control variable for the the guidance logic.
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Figure 2.4: The Wind Triangle

2.4 Modelling of UAVs in terms of Euler-Lagrange Dynamics

Let us consider the variables described in Table: 2.1, and axes of motion in body frame repres-
ented in Figure: 2.5.

Variable Description
φ Euler angle for Roll
θ Euler angle for Pitch
ψ Euler angle for Yaw
p Roll rate measured along ib

q Pitch rate measured along jb

r Yaw rate measured along kb

u Body frame velocity along ib

v Body frame velocity along jb

w Body frame velocity along kb

Table 2.1: Fixed-wing UAVs parameters

The body-frame angular rates can be expressed in terms of the derivatives of the Euler angles,
provided that the proper angular rotational transformations are carried out. A successive rota-
tion around- Roll, Pitch and Yaw axes result in Equation: eq. (2.6), while an inversion of this
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Figure 2.5: Fixed-Wing UAV in Body Frame

Equation yields into eq. (2.7). p
q
r

 =

 1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 φ̇

θ̇

ψ̇

 (2.6)

 φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosψ/ cos θ

 p
q
r

 (2.7)

Inverted Equation eq. (2.7) reveals that Euler angles representation of the attitude has a math-
ematical singularity when θ = ± π

2 , in which case the yaw angle is not defined.

2.4.1 Equation of motion

The equation of motion are first derived in the inertial (earth) frame, and later the dynamics of
inertial velocity will be expressed in body frame.

Translational Motion:
Let, [τ1, τ2, τ3]T ∈ R3 be the sum of forces acting along [x, y, z]T axis respectively. Then the
Euler Lagrange equation for translational motion in the earth frame can be written as:

m

 u̇
v̇
ẇ

e −
 0

0
mg

e =

 τ1

τ2

τ3

e (2.8)
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where m is the mass, the superscript e indicates the earth frame for the UAV, and g is the
gravitational constant.The corresponding dynamics of inertial velocity expressed in body frame
[29] is:

 m 0 0
0 m 0
0 0 m

 u̇
v̇
ẇ

b +

 0 −mr mq
mr 0 −mp
−mq mp 0

 u
v
w

b

+

 mg sin θ
−mg sinφ cos θ
−mg cosφ cos θ

 =

 τ1

τ2

τ3

b (2.9)

where, superscript b expresses quantities in the body frame.

Rotational Motion:
Let, [τ4, τ5, τ6]T ∈ R3 be the sum of moments acting along [x, y, z]T axis respectively. Then the
EL equation for rotational motion in the earth frame can be written as:

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz


︸ ︷︷ ︸

I

 ṗ
q̇
ṙ

e =

 τ4

τ5

τ6

e (2.10)

where I is inertia tensor, the fixed-wing UAV is considered to be symmetric with respect to axes
x and z, as well as the fact that the inertia on the planes xy and yz is negligible hence the I take
such a form.
The dynamics of the inertial rotational velocity expressed in body frame [29] is

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 ṗ
q̇
ṙ

b +

 0 Izr − Ixzp −Iyq
−Izr + Ixzp 0 IxP − Ixzr

Iyq −IxP + Ixzr 0

 p
q
r

b =

 τ4

τ5

τ6

b (2.11)

Above Euler Lagrangian Equations: eq. (2.9) and eq. (2.11) can be combined together to be
written in a compact form:

13




m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 −Ixz
0 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz


︸ ︷︷ ︸

D(q)


u̇
v̇
ẇ
ṗ
q̇
ṙ


︸︷︷︸
q̈

+


0 −mr mq 0 0 0
mr 0 −mp 0 0 0
−mq mp 0 0 0 0

0 0 0 0 Izr − Ixzp −Iyq
0 0 0 −Izr + Ixzp 0 Ixp− Ixzr
0 0 0 Iyq −Ixp+ Ixzr 0


︸ ︷︷ ︸

C(q,q̇)
u
v
w
p
q
r


︸︷︷︸
q̇

+


mgsinθ

−mgsinφcosθ
−mgcosφcosθ

0
0
0


︸ ︷︷ ︸

g(q)

=


τ1
τ2
τ3
τ4
τ5
τ6


︸︷︷︸
τ

(2.12)

Where,

Variable Description
D(q) System inertia matrix(including added mass)
C(q, q̇) Coriolis-centripetal matrix (including added mass)
g(q) Vector of gravitational/buoyancy forces and moments
τ Vector of control inputs
Dq̈ Proportional to second derivatives of the generalized coordinates
C(q̇)q̇ Proportional to first derivatives of the generalized coordinates

Table 2.2: Euler Lagrange Dynamics variable Description

The assumption is that the origin is at the centre of gravity.

2.5 Communication Graphs for the UAVs

communication graph is a network through which the information flow Figure: 2.6 takes place
among a flock of UAVs for communicating: the formation gap and/or collision avoidance data.
Here, only formation gap data is being used. In such a network, pinner node is a special type
of node that plays a vital role; also known as reference node. Typically indicated as a system
0; and it can represent a real or a virtual UAV. The main purpose of this node is to generate the
data or information for other UAVs in the network. The communication graph describing the
allowed information flow between all the systems, pinner excluded, is defined by the pair; nodes
and edges given as:

G = (V, E) (2.13)

where, V = {1, ..., N} is a finite non empty set of nodes, and E ⊆ V × V is a set of pairs of
nodes, called edges. To include the presence of the pinner in the network is redefine as:

Ḡ = {V, E , T } (2.14)
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where, T ⊆ V is the set of those nodes, called target nodes, which receive information from
the Pinner. The next few sections, explains more in details about the communication networks
required for various formations.

2.6 Various Formation Strategy (T, V and Y) for a Flock of UAVs

. In this section, the formation strategies for group of UAVs are discussed. For formation, the
first things which is necessary among any multi-agent systems is communication on the basis
of this fact the chapter starts with the communication graph. Only communication among the
multi-agent system is not sufficient to achieve the formation. It must be synchronized to avoid
any chaos, hence the next section describes the synchronization of the hierarchical system. Af-
terwards, the strategies to maintain gaps among the UAVs to achieve the formations is described.
In the final section an approach for changing the formations while being airborne is discussed.

2.7 Communication graphs for hierarchical system

Figure 2.6: UAVs Adaptive Formation communication graph

Let us consider a group of UAVs, tied in a network of UAVs, with A=[aij ] ∈ RN×N be the
Adjacency matrix of required directed communication graph. Where the elements ofA is defined
as aii = 0 and aij = 1, if (i, j) ∈ E , where i 6= j. Also, let us define target vectorM = [aj0] ∈
RN ; to be a vector, theM establishes the directed communication of for information flow from
the Pinner to the target nodes. In this specially defined target matrix: ajo = 1 if j ∈ T and
ajo = 0 otherwise.

2.7.1 Communication graph for a flock in T-Formation

Firstly, a communication graph required for T formation strategy is described. It consists of
one leader UAV (UAV1) and 3 follower UAVs (UAV2, UAV3 and UAV4) along with the Pinner.
For the UAVs to fly and loiter around a given co-ordinate. The Pinner UAV model generates
trajectory to which the leader UAV maintain the gap. While followers receive the trajectory
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information from leader to maintain the gap with respect to the leader as depicted in the com-
munication graph Figure: 2.7. A configuration needed for T-formation is given in Table: 2.3.

Nomenclature for UAV Mass (kg) Moment of Inertia (kg.m2)

UAV-0 (Pinner) 10 Ix = 0.02, Iy = 0.026 Iz = 0.053, Ixz = 0.01

UAV-1 (Leader 1) 20 Ix = 0.1, Iy = 0.05 Iz = 0.1, Ixz = 0.01

UAV-2 (Follower 1) 30 Ix = 0.2, Iy = 0.1 Iz = 0.2, Ixz = 0.02

UAV-3 (Follower 2) 40 Ix = 0.4, Iy = 0.02 Iz = 0.4, Ixz = 0.04

UAV-4 (Follower 3) 50 Ix = 0.8, Iy = 0.04Iz = 0.08, Ixz = 0.08

Table 2.3: Fixed-wing UAVs parameters for T-formation

Figure 2.7: Communication Graph for T-Formation

The Adjacency matrix in relation to above network Figure: 1.1(b) can be written as:

AT =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.15)

2.7.2 Communication graph for a flock in V-Formation

Here the communication graph required for V formation strategy is described. It consists of two
leader UAVs (UAV1 and UAV2) and 2 follower UAVs (UAV3 and UAV4) along with the pinner.
Communication graph Figure: 2.8 depicts corresponding to V formation strategy. While Table:
2.4 can be referred for the parameters associated with the UAVs.

16



Nomenclature for UAV Mass (kg) Moment of Inertia (kg.m2)

UAV-0 (Pinner) 10 Ix = 0.02, Iy = 0.026 Iz = 0.053, Ixz = 0.01

UAV-1 (Leader 1) 20 Ix = 0.1, Iy = 0.05 Iz = 0.1, Ixz = 0.01

UAV-2 (Leader 2) 30 Ix = 0.2, Iy = 0.1 Iz = 0.2, Ixz = 0.02

UAV-3 (Follower 1) 40 Ix = 0.4, Iy = 0.02 Iz = 0.4, Ixz = 0.04

UAV-4 (Follower 2) 50 Ix = 0.8, Iy = 0.04Iz = 0.08, Ixz = 0.08

Table 2.4: Fixed-wing UAVs parameters for V-formation

Figure 2.8: Communication Graph for V-Formation

AV =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 (2.16)

2.7.3 Communication graph for a flock in Y-Formation

Finally, the communication graph required for Y formation strategy is given here. With pinner
it comprises of three leader UAVs (UAV1, UAV2 and UAV3) and 1 follower UAV (UAV4).
Communication graph Figure 2.9 shows the network associated with Y formation. While table
2.5 can be referred for the parameters associated with the UAVs.
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Nomenclature for UAV Mass (kg) Moment of Inertia (kg.m2)

UAV-0 (Pinner) 10 Ix = 0.02, Iy = 0.026 Iz = 0.053, Ixz = 0.01

UAV-1 (Leader 1) 20 Ix = 0.1, Iy = 0.05 Iz = 0.1, Ixz = 0.01

UAV-2 (Leader 2) 30 Ix = 0.2, Iy = 0.1 Iz = 0.2, Ixz = 0.02

UAV-3 (Follower 1) 40 Ix = 0.4, Iy = 0.02 Iz = 0.4, Ixz = 0.04

UAV-4 (Follower 2) 50 Ix = 0.8, Iy = 0.04Iz = 0.08, Ixz = 0.08

Table 2.5: Fixed-wing UAVs parameters for Y-formation

Figure 2.9: Communication Graph for Y-Formation

AY =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 (2.17)

As depicted, all the diagonal elements of the adjacency matrices has only zeros with upper
triangular form, this property of a network graph is termed as a hierarchical graph. This graph
also contains the root node known as pinner node along with the directed spanning tree. The
nodes in the hierarchical networks mutually depends on their neighbours for control inputs as a
consequence the nodes in hierarchy exchange control input with the neighbours: the situation of
mutual dependence creates an issue of well posedness [30] if the inputs are generated arbitrarily
without a prescribed priority; however,[27] shows that with proper modification the distributed
model reference adaptive control (MRAC) framework can work, even if the cyclic networks are
present.
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2.8 Formation Switching Topology

In this section, a very interesting phenomenon is discussed. The fact that the flight controllers
can be interfaced with an extra light weight weight computer with increased memory unit. The
extra memory and computation power can allow users to have the algorithms related to both
type of UAVs (Leader and follower). This can help in switching the role of the same UAV from
Leader to follower and vice-versa. Hence it can be fully utilize to alter the hierarchy and the
formation as well: that means say UAV starts from ground in T-formation can instantiated from
the ground control station to switch the formation to V.
The details of aforementioned idea is as follows: The fact that every UAV has an onboard com-
puter, Raspberry Pi (RPi); and multiple RPi can be configured using a single instance from
Ground Control Station (QGC), enables the topology switching during flying condition. To
achieve this advance feature, the idea is to use a server/client setup where the UAVs in forma-
tion are connected to a server as shown in Figure: 2.10 via wireless access point (AP). All the
Raspberry Pis, in formation, are connected to the server program through Wi-Fi. The server pro-
gram has two functions: Receive user input for specific formation and distribute formation gap
data between the UAVs. On receiving these data Raspberry Pi executes the formation control
algorithm and issues commands to the autopilot using onboard APIs. Each RPi is configured
with static IP and can have both leader and follower dynamics. Thus, hierarchy can be modified
while UAVs are airborne. The concept is verified using the Matlab/Simulink Software-in-the-
loop simulation. With the requisite preliminary knowledge of various co-ordinate frames, Euler
Lagrange Dynamics, and communication graph in relation to Fixed-wing UAVs; in the next
chapter algorithms related to path following is discussed.
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Figure 2.10: Network architecture for topology switching
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Chapter 3

Adaptive Vector Field Path Following
and Formation Control Algorithm

This chapter is organised as: Firstly, vector field path planning is discussed with respect to prim-
itive path planning methods i.e straight line path and orbital path. Afterwards, adaptive course
correction to the vector field algorithm is introduced to compensate for the unmodelled dynamics
and wind vectors. In the next section, formation control algorithm for multiple UAVs is brought
into prospective. In section four the control law for formation and adaptive synchronization is
given in detail. Finally, the PX4 autopilot stack and its low level controllers is discussed.

3.1 Path Following with Vector-Field Approach

In literature a path planning is described as a process of trajectory generation that is traverse by
aerial vehicle. Generally, a straight-line and an arc path are considered for path planning [31].
Mission planning can be described as set of waypoint paths predefined for UAV to autonomously
traverse and reach the goal.
From the results, it has been shown that Vector Field path following approach achieves the
lowest steady-state cross-track error and requires the least control effort with respect to the other
approaches [26]. The goal of the Vector Field approach is clearly to drive the cross-track error to
zero asymptotically using the course angle χ as the control variable. For this reason, whatever
be the UAV’s current location with respect to the required path, it is necessary that the the
commanded angle χc results in the UAV moving towards the path. The angle χ is the most
convenient control variable for this objective, since it is present in inertial frame. Considering
each point around the desired path, the set of desired course angles is called vector field because
it constitutes a set of vectors (relative to the path) of course unit vectors. It is very similar to the
artificial potential fields widely used in the robotics community for obstacle avoidance, with the
difference in the Vector Field method does not necessarily represent the gradient of a potential;
rather, the vector field simply indicates a desired direction of travel. The fundamental paths are
the line and the orbit; combining these two primitive path planning approach it is possible to
build up more involved paths VF strategies work under the assumption of first-order course χ
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dynamics:
χ̇ = αχ(χc − χ), (3.1)

with χc the commanded course angle and αχ the time constant. In the following sections, the
subscript ’sl’ will be used to indicate variables referred to the straight-line, while ’o’ is used
with respect to the orbital path.

3.1.1 Vector Field Strategy for Straight Line Path

The strategy is to construct a vector field such that, when lateral deviation or cross track error
say epy is large, the UAV course angle be χ∞ ∈ (0, π2 ) while during the condition when epy
approaches zero, the desired course also approaches zero. Let, Ksl is a positive constant which
regulates the rate of transition from χ∞ to zero. Large values ofKsl result in short, abrupt trans-
itions, while small values of Ksl cause long, smooth transitions in the desired course. Hence,
the function for the desired course χd is:

χd (epy) = −χ∞
2

π
tan−1 (kslepy) (3.2)

Since, χ∞ ∈ (0, π2 ) the term χd ∈ (−π
2 ,

π
2 ). Now, let r is the origin of the path, and q = [qn, qe]

is the unit direction vector describing the line direction in north and east components. The course
angle of the line is given χq is χq = atan 2

(
qe
qn

)
. If χq 6= 0, then Equation: eq. (3.2) is rewritten

as:
χd (epy) = χq − χ∞

2

π
tan−1 (kslepy) (3.3)

It has been proved that when χ → χd; epy → 0 for t → ∞ [26]. The controller which drives
χ→ χd is described as

χc = χ− 1

αχ
χ∞

2

π

ksl

1 + (kslepy)
2Vg sin (χ− χq)−

κsl
αχ

sat

(
χ̃

εsl

)
(3.4)

where χ̃ = χ−χd, Vg = ‖Vg‖, κsl and εsl are two control parameters governing the aggress-
iveness and counteracting a possible chattering in the control action, and sat(x) = x, if |x| < 1
or sign(x) otherwise.The control strategy described above is famously known as sliding mode
control [32].

3.1.2 Vector Field Strategy for Orbital Path

The strategy carried out for controller synthesis of course vector field that drives the vehicle
to loiter in an orbital path is almost similar to what has been discussed for straight line in the
previous section.

χd(d̃) = γ + λ
(π

2
+ tan−1(kod̃)

)
(3.5)

where, d̃ = d − ρ, d̃ is path error. d is the distance of the UAV from the orbit center, ρ is the
orbit radius and γ is the angle between the north and the UAV position with respect to the orbit
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Figure 3.1: VF-Straight Line strategy

center. The parameter λ is 1 for clockwise orbit path. [20] shows that the controller which is
able to drive:

χ→ χd and d̃→ 0 as t→∞ (3.6)

is given as,

χc = χ+
Vg
αχd

sin(χ− γ) +
βoλ

αχ
Vg cos(χ− γ)− κo

αχ
sat

(
χ̃

εo

)
(3.7)

where, the parameters ko, κo, εo are tuning parameters defined similarly to the straight-line
case.

3.2 Adaptive Course Correction for Vector Field Path

The vector field strategy of path following is based on the assumption that the wind vector
Vg = ‖Vg‖ is known and constant over time. This is an unrealistic assumption which leaves
a scope of improvement to both the controllers discussed in Section: 3.1. [18], paves a way to
address this short coming in the controller as the known-constant wind hypothesis is relaxed:
a new time-varying wind vector is defined and constituted by replacing the constant term. The
accuracy can be increased by adaptively tuning some parameters of VF in such a way as to com-
pensate for unmodelled dynamics and unknown wind.

Straight Line Path: The new estimated dynamics for a straight line is given as:
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Figure 3.2: VF-Orbital Path strategy

˙̂
Vg = Γslµslχ̃χ∞βs

2

π
sin (χ− χq) + Fsl − σslΓslV̂g (3.8)

where, Γsl, µsl and σsl is estimator gain, a weighting term, a damping term respectively, while
Fsl is a feed-forward term defined as,

Fsl =
∂V̂g
∂χ

[
−χ∞

2

π
βsV̂g sin (χ− χq)− κsl sat

(
χ̃

εsl

)]
(3.9)

Thus,

∂V̂g
∂χ
'Ws sin (ψw,s − χ) +

(
V 2
a −W 2

s sin2 (ψw,s − χ)
)− 1

2

W 2
s sin (ψw,s − χ) cos (ψw,s − χ)

(3.10)

where, Ws = ||Vw,s||, Vw,s is the velocity of steady-state wind component and ψw,s is the angle
of steady-state wind component with the north direction [33].
Orbital Path: The new estimated dynamics for a orbiting is given as:

˙̂
Vg = −Γoµoχ̃

(
1

d
sin(χ− γ) + λβo cos(χ− γ)

)
+ Fo − σoΓoV̂g (3.11)

Where,

Fo =
∂V̂g
∂χ

[
V̂g
d

sin(χ− γ) + λβoV̂g cos(χ− γ)− κo sat

(
χ̃

εo

)]
(3.12)
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3.3 Formation for a flock of UAVs

The UAVs form a hierarchical i.e, directed acyclic network while flying namely; Pinner, Leader
and Follower. To handle time-varying leader trajectories without sliding mode mechanisms for
heterogeneous uncertain UAVs EL dynamics are used. To achieve this, a continuous protocol
with the capability of handling large parametric uncertainties and arbitrary leader trajectories
considering hierarchical networks is considered. The work in [34] favours the distributed model
reference adaptive control (MRAC) with appropriate modifications, also in the presence of cyc-
lic networks. Also synchronization represented here as a solution for coordination of UAVs net-
worked systems. To coordinate multi-agent systems, the distributed approach is used for each
agent, a controller that utilizes local information, i.e. neighbours’ information. This approach
gives more advantages due to its applicability in the presence of communication constraints.
In this section, as explained above the formation control used utilizes a graph-based approach.
Each UAVs can be represented as a node in the graph. The directed graph edges represents the
allowed information flow between the UAV agents (nodes). Figure: 2.6 depicts a graph for a
common Formation.

For formation algorithm the UAV Nodes classified into three types are:

• Pinner Node: A virtual node, which runs along with the path planning algorithm, having
a reference dynamics of an UAV model. Pinner is in synchronism with all other UAVs
nodes.

• Leader Node: Leaders are the nodes next to the Pinner in the formation. They will receive
the data generated by pinner.

• Follower Nodes: Followers are the last in the hierarchy which will receive data from
neighbouring nodes either from Leader or Companion Follower. Figure: 2.6 shows such
a hierarchical representation of UAVs.

3.3.1 Adaptive Formation Algorithm

In this section, algorithm related to heterogeneous UAVs flying in a formation is discussed. A
network of UAVs is considered, each one with dynamics:

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = {1, ..., N} (3.13)

where the dynamics are in the EL form as in Equation: eq. (2.12). In state space form,
Equation: eq. (2.12) can be rewritten as follows:[

q̇
q̈

]
︸︷︷︸
ẋ

=

[
0 1
0 −D−1C

]
︸ ︷︷ ︸

A

[
q
q̇

]
︸︷︷︸
x

+

[
0

D−1

]
︸ ︷︷ ︸

B

τ +

[
0

−D−1g

]
(3.14)

Following assumptions are made while considering the EL dynamics: The inertia matrix Di(qi)
is positive definite and symmetric so that the matrix and its inverse are both uniformly bounded.
To control the dynamics there exits independent control input for each degree of freedom.
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3.3.2 Controller Design for EL Dynamics

To design a controller for the above mentioned dynamical system Inverse Dynamical Control
method is used. Such controllers are used to mitigate non-linearity of the model present if any,
which is given as:

τi = Di (qi) ai + Ci (qi, q̇i) q̇i + gi (qi) , i = {1, ..., N} (3.15)

Where ai is defined as,
ai = q̈d −Kv ėi −Kpei (3.16)

with an error term ei = qi − qd and proportional and derivative gains kp and kv respectively
of the multi variable PD controller. The user defined trajectory, velocity and acceleration are
represented by variables qd, q̇d and q̈d respectively. Combination of Equations eq. (3.13) and
eq. (3.15) yields:

Di (qi)
(
q̈i − q̈d +Kv ėi +Kpei

)
= 0 (3.17)

where,
ëi +Kv ėi +Kpei = 0 (3.18)

The state space form of error dynamics take a form:[
ėi
ëi

]
=

[
0 1
−Kp −Kv

] [
ei
ėi

]
(3.19)

Hence, [
q̇i
q̈i

]
=

[
0 1
−Kp −Kv

] [
qi
q̇i

]
+

[
0
1

](
q̇d +Kv q̇

d +Kpq
d
)

(3.20)

Equation: eq. (3.20) represents a closed-loop systems of second-order whose state matrix must
be Hurwitz by construction. With the knowledge of mathematical modelling and path following
for a UAV, now we are ready to discuss various formations in details which is one of the core of
this thesis project.

3.4 Formation Control Law and Adaptive Synchronization

Given a hierarchical network Ḡ of EL heterogeneous uncertain UAVs, a pinner with state (q0, q̇0),
the task here needs to be addressed is finding a distributed strategy for the inputs τi that respects
the communication graph, that does not require knowledge of the EL matrices, and that leads to
synchronization of the network, in other words; [qi, q̇i]→ [q0, q̇0] as t→∞ for every UAV i.

3.4.1 Controller for Adaptive Synchronization of Leader to the Reference/Virtual
UAV

Here, a control law in relation to leader UAV is framed. To keep things in perspective, leader
agent is denoted with index 1. The leader access data from reference or virtual UAV; such as its
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trajectory, velocity and acceleration i.e qd, q̇d and q̈d, the main problem leader UAV faces is to
cope with uncertainty [8]. [

q̇0

q̈0

]
=

[
0 1
−Kp −Kv

]
︸ ︷︷ ︸

Am

[
q0

q̇0

]
︸︷︷︸
xm

+

[
0
1

]
︸︷︷︸
Bm

r (3.21)

where q0, q̇0 ∈ Rn is the state of the virtual UAV and r = q̈d + Kv q̇
d + Kpq

d is a user-
specified reference input. The reference dynamics Equation: section 3.4.1 basically represent
some homogeneous dynamics to which all the UAVs should synchronize to. In state space form,
the leader dynamic can be given as:[

q̇1

q̈1

]
=

[
0 1

0 −D−1
1 C1

]
︸ ︷︷ ︸

A1

[
q1

q̇1

]
︸ ︷︷ ︸

x1

+

[
0

−D−1
1 g1

]
+

[
0

D−1
1

]
︸ ︷︷ ︸

B1

τ1 (3.22)

A controller is designed which matches the leader dynamics to the reference model, for this
purpose a nonlinear model reference adaptive control method is applied. The ideal controller for
this purpose is formulated as:

τ∗1 =
[
K̄∗′1 K̄∗′1

]︸ ︷︷ ︸
K∗′1

[
q1

q̇1

]
+G∗′1 + L∗′1 r (3.23)

where ∗ indicates an ideal controller for the known system dynamics. The gains that makes the
closed loop dynamics of leader matching to the reference model can be calculated by substitut-
ing:

K̄∗′1 = −D1Kp L∗′1 = D1

K̄∗′1 = −D1Kv + C1 G∗′i = g1
(3.24)

Which yield the ideal controller:

τ∗1 = −D1Kpq1 −D1Kv q̇1 + C1q̇1 + g1 +D1r (3.25)

The synchronization is achieved adaptively as the system matrices are unknown; and hence for
the formation given in Fig. 2.6, the new controller for leader UAV is:

τ1 = Θ′D1ξD1︸ ︷︷ ︸
D̂1

(−Kpq1 −Kv q̇1 + r) + Θ′C1ξC1q̇1︸ ︷︷ ︸
Ĉ1

+ Θ′g1ξg1︸ ︷︷ ︸
ĝ1

(3.26)

where, the estimates D̂1, Ĉ1, ĝ1 and D̂2, Ĉ2, ĝ2 of the ideal matrices have been split in a
linear-in-the-parameter form.
The adaptive laws for such an estimates are:

Θ̇′C1 = −γ1B
′
m P e1 q̇1

′ξ′C1

Θ̇′g1 = −γ1B
′
m P e1 q̇1

′ξ′g1

Θ̇′D1 = −γ1B
′
m P e1 (−Kpq1 −Kv q̇1 + r)′ξ′D1 (3.27)
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where θ is the regressand, ξ is the regressor and e1 = x1 − xm. Using Lyapunov analysis the
estimation laws can be established as, where, γ1 is adaptive gain and P = P ′ > 0 is such
that:

PAm +A′mP = −Q,Q > 0 (3.28)

The linear-in-the-parameter forms for D1, C1 and g1 can be given as:

Θ∗′D1
=


m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m1 0 0 0
0 0 0 Ix1 0 −Ixz1
0 0 0 0 Iy1 0
0 0 0 −Ixz1 0 Iz1

Θ∗′g1
=


m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Θ∗′C1
=


m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 m1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Ix1 0 0 Iy1 0 0 Iz1 0 0 Ixz1 0 0
0 0 0 0 Ix1 0 0 Iy1 0 0 Iz1 0 0 Ixz1 0
0 0 0 0 0 Ix1 0 0 Iy1 0 0 Iz1 0 0 Ixz1



ξD1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ξg1 =


g sin θ

−g sinφ cos θ
−g cosφ cos θ

0
0
0

 (3.29)

ξ′C1
=


0 r̄1 −q̄1 0 0 0 0 0 0 0 0 0 0 0 0
−r̄1 0 p̄1 0 0 0 0 0 0 0 0 0 0 0 0
q̄1 −p̄1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 q̄1 0 −r̄1 0 0 p̄1 0
0 0 0 0 0 −p̄1 0 0 0 r̄1 0 0 −p̄1 0 r̄1
0 0 0 0 p̄1 0 −q̄1 0 0 0 0 0 0 −r̄1 0


3.4.2 Controller for Adaptive Synchronization of Follower to the Reference Model

Finally the control law that synchronizes follower to reference dynamics via the data accessed
from the leader since the reference model signals are not available directly to this UAV, hence
the dynamics of the leader UAV act as a reference model. As shown in Figure 2.6 the follower
agent is denoted with index 2. The dynamical model for the follower model is:[

q̇2

q̈2

]
=

[
0 1

0 −D−1
2 C2

]
︸ ︷︷ ︸

A2

[
q2

q̇2

]
︸ ︷︷ ︸

x2

+

[
0

−D−1
2 g2

]
+

[
0

D−1
2

]
︸ ︷︷ ︸

B2

τ2 (3.30)

Analogously to the previous section, the aim is to find a matching controller for follower UAVs.
The controller given for the follower UAV is:

τ∗2 =
[
K̄∗′21

¯̄K∗′21

]︸ ︷︷ ︸
K∗′21

[
q1

q̇1

]
+
[
K̄∗′2

¯̄K∗′2
]︸ ︷︷ ︸

K∗′2

[
q2 − q1

q̇2 − q̇1

]
︸ ︷︷ ︸

e21

+G∗′2 + L∗′21τ1 (3.31)
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The gains that makes the closed loop dynamics of follower matching to the dynamics of leader
can be calculated by substituting:

K̄∗′2 = −D2Kp K̄∗′21 = 0 G∗′2 = g2 (3.32)
¯̄K∗′2 = −D2Kv + C2

¯̄K∗′21 = C2 −D2D
−1
1 C1 L∗′21 = D2D

−1
1 (3.33)

After substituting above gain values in equation 3.31 and the equation henceforth obtained in
Equation 3.30 we get Ideal controller for the follower UAV as:

τ∗2 = C2q̇1 −D2D
−1
1 C1q̇1 −D2Kp ¯̄e21 −D2Kv ē21 + C2 ¯̄e21 + g2 +D2D

−1
1 τ1

= C2q̇2 +D2D
−1
1 τ1 −D2D

−1
1 C1q̇1 −D2 (Kpē21 +Kv ¯̄e21) + g2

(3.34)

The synchronization is achieved adaptively as again the system matrices are unknown; and hence
for the formation given in Figure: 2.6, the new controller for follower UAV is:

τ2 =−Θ′D2
ξD2︸ ︷︷ ︸

D̂2

(Kpē21 +Kv ¯̄e21) + Θ′C2
ξC2︸ ︷︷ ︸

Ĉ2

q̇2 + Θ′D2D1
ξD2D1︸ ︷︷ ︸

D̂2D1

τ1

−Θ′D2D1C1
ξD2D1C1︸ ︷︷ ︸

̂D2D1C1

q̇1 + Θ′g2
ξg2︸ ︷︷ ︸

ĝ2

(3.35)

In short form, Equation: eq. (3.35) can be rewritten as:

τ2 =− D̂2[Kp(q2 − q1) +Kv(q̇2 − q̇1)] + Ĉ2q̇2

+ D̂2D12τ1 − D̂2D1C12q̇1 + ĝ2 (3.36)

where, ē21 = q2 − q1, ¯̄e21 = q̇2 − q̇1,

D2 = Θ∗′D2
ξD2

C2 = Θ∗′C2
ξC2

g2 = Θ∗′g2
ξg2

D2D1 = Θ∗′D2D1
ξD2D1

D2D1C1 = Θ∗′D2D1C1
ξD2D1C1

(3.37)

Where, the estimates D̂2, Ĉ2, ĝ2, D̂2D1 and D̂2D1C1 belongs to the ideal matricesD2, C2, g2, D2D
−1
1

and D2D
−1
1 C1 respectively which have been split in a linear-in-the-parameter form again with,

a specific form of regressand Θ and regressor ξ.

The adaptive laws for such an estimates are:

Θ̇′D2D1
= −γ2B

′
m P e12 τ

′
1 ξ
′
D2D1

Θ̇′D2D1C1
= −γ2B

′
m P e12 q̇′1 ξ

′
D2D1C1

Θ̇′C2
= −γ2B

′
m P e12 q̇

′
3 ξ
′
C2

Θ̇′g2
= −γ2B

′
mP e12 ξ

′
g2

Θ̇′D2 = −γ2 B
′
m P e12

[
Kp(q2 − q1) +Kv(q̇2 − q̇1)′ ξ′D2D1

]
(3.38)
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where, ē21 = q2−q1, ¯̄e21 = q̇2− q̇1, It is proved, the proposed controllers and adaptive laws with
all closed-loop signals are bounded, for any Leader UAV:1 and Follower UAV:2, i.e subscript
(1,2) such that e12 6= 0, there exists e12 = (x2 − x1) → 0 as t → ∞. In addition, for every
follower UAV 2 there exists e2 = (x2 − x0) → 0 as t → ∞. The proposed synchronization
protocol can be extended to include gaps formation, provided that the error:

e12 = x2 − x1 + d21 =

[
q2

q̇2

]
−
[
q1

q̇1

]
+

[
d̄21

0

]
(3.39)

is considered, where d21 contains the desired formation displacement d̄21 among UAVs 2 and 1.
The linear-in-the-parameter for the control law is in the form Equation: eq. (3.35), for two UAVs,
indicated by subscripts 1 and 2 in Figure: 2.6: it is now shown that the linear-in-the-parameter
forms of D2D1 and D2D1C1 are given as: The linear-in-the-parameter forms for D1, C1 and g1

can be given as:

Θ∗′D2
=


m2 0 0 0 0 0
0 m2 0 0 0 0
0 0 m2 0 0 0
0 0 0 Ix2 0 −Ixz2
0 0 0 0 Iy2 0
0 0 0 −Ixz2 0 Iz2

Θ∗′g1
=


m2 0 0 0 0 0
0 m2 0 0 0 0
0 0 m2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Θ∗′C2
=


m2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 m2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 m2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Ix2 0 0 Iy2 0 0 Iz2 0 0 Ixz2 0 0
0 0 0 0 Ix2 0 0 Iy2 0 0 Iz2 0 0 Ixz2 0
0 0 0 0 0 Ix2 0 0 Iy2 0 0 Iz2 0 0 Ixz2



ξD2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ξg2 =


g sin θ

−g sinφ cos θ
−g cosφ cos θ

0
0
0

 ξD2D1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



ξ′C2
=


0 r̄2 −q̄2 0 0 0 0 0 0 0 0 0 0 0 0
−r̄2 0 p̄2 0 0 0 0 0 0 0 0 0 0 0 0
q̄2 −p̄2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 q̄2 0 −r̄2 0 0 p̄2 0
0 0 0 0 0 −p̄2 0 0 0 r̄2 0 0 −p̄2 0 r̄2
0 0 0 0 p̄2 0 −q̄2 0 0 0 0 0 0 −r̄2 0



Θ∗′D2D1
=


m2
m1

0 0 0 0 0

0
m2
m1

0 0 0 0

0 0
m2
m1

0 0 0

0 0 0 −
Iz1 Ix2 Ixz2

Ix1Iz1
−Ixz1

Ixz1

0
Ixz1 Ix2 Ixz2

Ix1Iz1
−Ixz1

Ixz1

0 0 0 0
Iy2
Iy1

0

0 0 0
Ixz1

Ixz2
Iz2

Ix1Iz1
−Ixz1

Ixz1

0 −
Ix1

Ixz2
Iz2

Ix1Iz1
−Ixz1

Ixz1


30



Θ∗D2D1C1
=



m2 0 0 0 0 0
0 m2 0 0 0 0
0 0 m2 0 0 0
0 0 0 Γ1 0 0
0 0 0 0 Γ1 0
0 0 0 0 0 Γ1
0 0 0 Γ2 0 0
0 0 0 0 Γ2 0
0 0 0 0 0 Γ2
0 0 0 Γ3 0 0
0 0 0 0 Γ3 0
0 0 0 0 0 Γ3
0 0 0 Γ4 0 0
0 0 0 0 Γ4 0
0 0 0 0 0 Γ4
0 0 0 Γ5 0 0
0 0 0 0 Γ5 0
0 0 0 0 0 Γ5
0 0 0 Γ6 0 0
0 0 0 0 Γ6 0
0 0 0 0 0 Γ6
0 0 0 Γ7 0 0
0 0 0 0 Γ7 0
0 0 0 0 0 Γ7
0 0 0 Γ8 0 0
0 0 0 0 Γ8 0
0 0 0 0 0 Γ8
0 0 0 Γ9 0 0
0 0 0 0 Γ9 0
0 0 0 0 0 Γ9
0 0 0 Γ10 0 0
0 0 0 0 Γ10 0
0 0 0 0 0 Γ10
0 0 0 Γ11 0 0
0 0 0 0 Γ11 0
0 0 0 0 0 Γ11
0 0 0 Γ12 0 0
0 0 0 0 Γ12 0
0 0 0 0 0 Γ12



ξ′D2D1C1
=



0 −r̄1 q̄1 0 0 0
r̄1 0 −p̄1 0 0 0
−q̄1 p̄1 0 0 0 0

0 0 0 −q̄1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −r̄1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 p̄1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 q̄1 0 0
0 0 0 0 r̄1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −p̄1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 r̄1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −p̄1 0
0 0 0 0 0 −q̄1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −r̄1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 p̄1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 q̄1


The proposed algorithm can be implemented with a different number of leaders and follow-
ers depending upon the computational capability and communication baudrate of the system.
Although, the system incorporates the distributed systems, the communication can become a
bottleneck in overall performance with higher number of UAVs.

3.5 Autopilot and PX4 controllers

This section presents the general autopilot control structure used for a fixed-wing UAV, based on
linear controllers. Getting acquainted with that is necessary to better understand the PX4 con-
trollers structure. The autopilot is component that is designed to control the attitude and inertial
position of an aircraft. To discuss in detail, let us consider a linearised model of the form:

3.5.1 Linearised model

For most flight manoeuvres of interest, autopilots are designed with the assumption of decoupled
lateral and longitudinal dynamics. In this way, the structure and the development of an autopilot
significantly simplifies and allows the use of successive loop closures, yielding good overall per-
formance. For the lateral dynamics, the variables of interest are the roll angle φ, the roll rate p,
the yaw angle ψ , and the yaw rate r. The control surfaces used to influence the lateral dynamics
are the ailerons and the rudder. Ailerons primarily influence the roll rate p; additionally, both ail-
erons and rudder influence the yaw angle. Similarly, the variables of interest for the longitudinal
dynamics are the pitch angle θ, the pitch rate q, the altitude h and the airspeed Va. The control
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signals used to influence the longitudinal dynamics are the elevator δe, and the throttle δt. The
elevator is used to directly in uence the pitch angle θ. In turn, the pitch angle can be used to
manipulate both the altitude and the airspeed. Vice versa, the throttle influences the airspeed and
the altitude. Therefore there are some cross talk effects. The linearized lateral and longitudinal
dynamics about the equilibrium is given as:

Roll angle φ(s) =
aφ2

s (s+ aφ1)

(
δa(s) +

1

aφ2

dφ2(s)

)
Pitch angle θ(s) =

aθ3
s2 + aθ2s+ aθ1

(
δe(s) +

1

aθ3
dθ2(s)

)
Course angle χ(s) =

g

Vgs
(φ(s) + dχ(s))

(3.40)

Height (1) h(s) = Va
s

(
θ(s) + 1

Va
dh(s)

)
if Va constant

Height (2) h(s) = θ
s

(
Va(s) + 1

θdh(s)
)

if θ constant
(3.41)

where, dφ2(s), dχ(s), dθ2(s), dh(s) are disturbances coming from the coupled dynamics and
wind action. Coefficients aφ1, aφ2, aθ1, aθ2 and aθ3 are scalars from the linearization. Such first
or second order loops allow an effective use of Proportional-Integral-Derivative (PID) control.

Because the purpose of the autopilot layer is to provide low-level controllers to govern the
various UAV states, let us now consider the PX4 control scheme.

3.6 PX4 Controller Scheme

This section comprises of control loop diagrams for main PX4 controllers as implemented in
autopilot stack. Autopilot is incorporated in flight modes and responds in closed loop or to
user input and controls the vehicle movement. Flight modes are loosely grouped into with or
without human assisted: and basically named as; assisted, manual, and auto modes, based on
the level/type of control provided by the autopilot. The autopilot transitions can be instantiated
between flight modes using ground control station. Controllers used for the vehicle movement
of fixed-wing UAVs are discussed here in detail.

3.6.1 PX4 Fixed-wing position controller

In this section, implementation of the position controller in PX4 is discussed. It utilizes total
energy control system commonly known as (TECS). It is implemented as a library which is used
in the fixed-wing position control module. It enables simultaneous control of true airspeed and
altitude of a fixed-wing aircraft.

Figure: 3.3 shows architecture related to TECS. As shown here, altitude and airspeed setpoints
are inputs while pitch angle and throttle setpoints are outputs from the control systems. Both
outputs are are used as input of the fixed wing attitude controller. The performance of th pitch
control loop directly affects the performance of TECS. Hence, a a poor tracking of the aircraft
pitch angle [1] often times causes a poor tracking of airspeed and altitude.
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Figure 3.3: PX4 Fixed-wing general position control scheme

(a) Total energy control loop of TECS control-
ler

(b) Total energy balance control loop of TECS
controller

Figure 3.4: TECS controllers source: [1]

The control of height h and true airspeed Va simultaneously is non-trivial in a sense that an
increase in the pitch angle θsp causes an increase in height at the same time it decreases the
airspeed of the UAV while an increase in the throttle increases the airspeed and height due to
increase in lift. Therefore, it has two inputs (pitch angle and throttle) both of which affects the
two outputs airspeed Va and altitude h this coupled dynamics makes the control challenging. To
solve this coupled dynamics: A regime division can be implemented: climb zone, altitude hold
zone, descent zone. A full throttle in the climb zone and zero throttle in the descent zone can be
used to regulate the airspeed with the pitch angle. In the altitude hold zone, the simplest and most

33



effective method is to regulate altitude by commanding pitch, and the airspeed by commanding
the throttle.
General control scheme Figure: 3.3, shows such an architecture where, airspeed dictates of
throttle setpoint while height dictates the pitch setpoint. However, from Equation: eq. (3.41)
it is evident that the altitude dynamics and the airspeed dynamics are coupled. Which means
the aircraft’s kinetic energy is converted to potential energy as; airspeed decreases with increase
in altitude and vice-versa. The decoupled dynamics lead to a poor performance with respect
to other methods based on energy considerations. One of the deeply analysed and improved
method is Total Energy Control Systems, or TECS [35]. In the following, the Pixhawk/PX4
implementation of TECS is described [1].

By definition, the total energy of an UAV is the sum of kinetic energy and potential energy:

ET =
1

2
mV 2

a +mgh (3.42)

The total energy rate of the UAV is given by taking the derivative with respect to time:

ĖT = mVaV̇a +mgḣ (3.43)

Hence, the specific energy rate can be given as:

Ė =
ĖT
mgVa

=
V̇a
g

+
ḣ

Va
=
V̇a
g

+ sin(γ) (3.44)

where, γ is the flight plan angle. For small γ an approximate specific energy rate can be given
as:

Ė ≈ V̇a
g

+ γ (3.45)

From the dynamic equations of an aircraft we get the following relation:

T −D = mg

(
V̇a
g

+ sin(γ)

)
≈ mg

(
V̇a
g

+ γ

)
(3.46)

where, T and D are the thrust and drag forces. In level flight, initial thrust is trimmed against
the drag and a change in thrust results thus in:

∆T = mg

(
V̇a
g

+ γ

)
(3.47)

As it can be seen, ∆T is proportional to Ė , hence altering the thrust will proportionally alter
the specific rate of energy into the UAV, which will increase the sum of the flight path angle
and the acceleration along the flight path. Therefore the thrust setpoint should be used by the
total energy control system. Elevator control on the other hand is energy conservative, and is
thus used for exchanging kinetic energy for potential energy and vice-versa. Hence, an specific
energy balance rate can be defined as:

Ḃ = γ − V̇a
g

(3.48)

34



Figure 3.5: Fixed-wing attitude controller source: [1]

3.6.2 PX4 Fixed-wing attitude controller

In PX4 autopilot stack, discrete time control loops for pitch, roll and yaw is implemented: A
discrete time cascaded control loop for attitude control is realised as shown in Figure: 3.5. In the
outer loop of this controller, a constant gain is multiplied with the calculated error between the
attitude setpoint and the estimated attitude. In other terms; a P controller is used here to generate
a rate setpoint. In inner loop of the controller, the error in rates is calculated, which is then used
with a Proportional and integral (PI) controller to generate desired angular acceleration [1].

Utilizing the desired angular acceleration and a priori knowledge of the system, the angular
position of the control effectors of the fixed-wing UAV (rudder, ailerons, elevators or elevons
etc. ) is then computed through control allocation which is also known as (mixing). The gain
scheduling for the Fixed-wing attitude controller is disabled in the absence of airspeed sensor
therefore it works as an open loop system and aerodynamic damping can be compensated using
feedforward gain. Basically, the two main components of inertial frame moments on an aircraft
are produced by the control surfaces (producing the motion - elevators, rudders, ailerons ) and
the aerodynamic damping (counteracting the motion - proportional to the body rates). In order to
keep a constant rate, this damping can be compensated using feedforward in the rate loop. The
longitudinal and lateral dynamics are assumed to be decoupled enough to work independently
and the roll and pitch controllers have the same structure Figure: 3.6 . The yaw controller,
generates yaw rate setpoint using the turn coordination constraint in order to minimize lateral
acceleration, generated when the aircraft is slipping. It also helps to counteract adverse yaw
effects and to damp the Dutch roll mode by providing extra directional damping [1].

3.6.3 PX4 Autopilot Flight Stack Software: an overview

The flight stack is a collection of guidance, navigation and control algorithms for autonom-
ous vehicles which processes the information from input to output inside the control board. It

35



Figure 3.6: The controller scheme for roll control of Fixed-wing UAV. The variables φ, φc, p̄,
pc and δa,c are the roll angle, commanded roll angle, roll rate and commanded roll rate and
commanded aileron angle respectively

includes controllers for fixed wing, multirotor and VTOL airframes as well as estimators for
attitude and position. The following diagram shows an overview of the building blocks of the
flight stack. It contains the full pipeline from sensors and autonomous flight control (Navigator),
down to the motor or servo control (Actuators).

Figure 3.7: PX4 autopilot flight Stack for autonomous flying of a single vehicle

An estimator is a component that takes one or more sensor inputs, combines them, and com-
putes a vehicle state. While controller is a component that takes a set-point and a measurement
or estimated state or a process variable as an input. The main goal of a controller is to adjust
the value of the process variable such that it matches the set-point. The output is a correction
to eventually reach that set-point. A mixer takes force commands and translates them into indi-
vidual motor commands, while ensuring that limits are not exceeded.
Next is various simulation environment for VTOL vehicle. To achieve this, setting up a Ubuntu
machine accompanying all the required softwares is first setup towards the process. For this
project Ubuntu LTS 18.04 machine is used as a host along with ROS melodic accompanying
Gazebo 9.0 and PX4 flight stack.
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Chapter 4

Gazebo: As semi-physical simulator

This chapter discusses the simulation platform that can be used for simulating and visualizing
the multiple UAVs and it is organised as: Beginning with simulator description format for a
robot modelling in this case an UAV, later on in the next section, the discussion about simulation
environment for single vehicle followed by multi-vehicle simulation environment is carried out.
Lastly, the a simulator that has been tested with configuration containing companion computer
is discussed.//

4.1 Modeling a UAV in Simulation Description Format

Gazebo uses, Simulation Description Format (SDF) for modelling a vehicle or robot: it is an
XML format that describes objects and environments for UAV simulators, visualization, and
control [36]. It was developed as part of the Gazebo robot simulator, SDF is designed for the use
of various scientific simulation applications. Due to continuous development in past few years,
SDF has become a stable, robust, and extensible format capable of describing every aspects
from robotic models, static and dynamic objects, to lighting, terrain, and even physics. A short
premise on different elements and its description is given below:
Figure 4.1 shows root elements of sdf and its description which are basic building blocks for
modelling a robot, in this case an UAV. The root contains a tree of elements for example: world
and world element encapsulates an entire world description including: models, scene, physics,
joints and plugins. A model element defines a complete UAV or any other physical object. A
model may contain many links and joints: Link is a physical link with inertia, collision, and
visual properties while a joint is a joint connection of two links with kinematic and dynamic
properties. A link and joint may contain many sensors, the sensor tags describes the type and
properties of a sensor. A link may also contain many collisions and visuals; Collision shows
collision properties of a link this can be different from visual properties of a link, a simple
collision models are often used to reduce computation time. Visual is a properties of link that
specifies the shape of the objects (box, cylinder, etc.) for the purpose of visualization of a model.
A visual may contain one material which describes the material of visual element. Finally, the
visual and collision is accompanied with geometry as a child element. Next is Scene, it specifies
the look of the environment such as clouds, speed and density of clouds. A world can have only
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one physics element which specifies the type and properties of dynamics engine.A world may
contain many light elements inside a scene. An sdf file can contain only one actor but a world
can have many actors, it is a special kind of model which can have a scripted motion. This
includes both global waypoint type animations and skeleton animations.

Figure 4.1: SDF Architechture source: [2]

In the next few sections, the simulator is discussed only with respect to fixed wing UAVs
specially VTOL type.

4.2 Single UAV Simulator

4.2.1 SITL Environment for Single Vehicle

For software-in-the-loop simulation of a single fixed-wing UAV the softwares used are; Gazebo
as simulator, PX4-(v2)/cube (black) firmware as an autopilot stack and QGroundControl as a
ground control station (GCS). The brief procedure is mentioned Appendix: A. It is necessary
to point out that ROS is not mandatory for single vehicle SITL or HITL simulations. An in-
terfacing architecture for such configuration is shown in Figure: 4.2. The different parts of the
system such as simulator, QGC and is connected via UDP (User Datagram Protocol) communic-
ation protocol, PX4 uses a simulation-specific module to listen to TCP (Transmission Control
Protocol) and UDP commonly known as MAVLink.
MAVLink or Micro Aerial Vehicle Link is a communication protocol [37]. It is specially de-
veloped for communicating with aerial robots or drones and its components (onboard autopilot
and ground control station). It is a very light weight messaging protocol. It follows a modern
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hybrid publish-subscribe and point-to-point design pattern: Data streams are sent / published
as topics while configuration sub-protocols such as the mission protocol or parameter protocol
which are point-to-point with retransmission.
To define the messages in XML files are used. According to particular mavlink communication
protocol the messages are defined in each XML files, also termed as ”dialect”. PX4 firmware
mavlink communication module contains a file named common.xml, where set of reference mes-
sages that needs to be implemented in autopilots and ground control system are defined. Many
dialect are build according to these definitions.

Figure 4.2: SITL Architecture

The next step is to build and launch the vehicle; for all purposes of this project VTOL(vertical
take off and landing) model, which combines the feature of both quad-rotor and fixed-wing UAV
is used. Firstly, QGroundControl was configured for SITL afterwards standard vtol model was
build and launched as explained in APPENDIX: A. Afterwards, the path was planned using
waypoints such as straight line path and loiter points as shown in Figure: 4.3. Finally, the model
was given a mission to fly to as shown in Figure: 4.4.
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(a) Straight line path mission (b) Straight line path with loitering mission

Figure 4.3: Mission for single vehicle SITL for VTOL

Figure 4.4: Simulator (Gazebo) with ground control station (QGC)

4.2.2 HITL environment for Single Vehicle

HITL for a single fixed wing UAV requires all softwares used in the SITL along with the hard-
ware, PX4 Cube Figure: 4.5(a). There are three ways HITL simulation are performed; in this
report only two methods will be mainly discussed. One way to achieve HITL is to attach the
Pixhawk board through USB cable to Ubuntu machine and configure the simulator as shown
in architecture Figure: 4.5(b). In this configuration the autopilot stack is build and uploaded
onto the hardware itself opposite to that of SITL; where autopilot stack also runs on the host
machine. The simulator runs the physical model of the UAV and sensor outputs are conveyed to
controllers via USB while PX4 board acknowledge the inputs and generates the actuator output
for simulator completing the loop. The PX4 and QGC and Simulator configuration setup is ex-
plained in [38].
Another way to achieve HITL is to use a companion computer along with PX4 board. This
method will be explained in the last section of this report.
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(a) PX4/Pixhawk Cube (b) HITL Configuration

Figure 4.5: Single vehicle HITL for VTOL

4.3 Multi-UAV Simulator

This section explains the method of simulation of multiple UAVs using Gazebo 9.0 and ROS
Melodic. An example setup that opens the Gazebo client graphical user interface (GUI) showing
five standard vtol vehicle model Figure: 4.6 in an empty world is described here.

4.3.1 SITL environment for Multi-UAV

This section explains, the work devoted towards developing a multi- UAV SITL environment.
To achieve the goal, MAVROS [39] package is required along with the other software packages
discussed in previous section.
MAVROS is a package that utilizes mavlink communication protocol [40] to provide commu-
nication driver for various autopilots. Additionally, it also bridges the link between UDP and
mavlink for ground control stations. UAVs are then controlled with QGroundControl and MAV-
ROS in a similar way; as a single vehicle is manage for SITL single vehicle simulation which
has been already explained in section: 4.2.1 . For simulation of each vehicle, the following is
required:

Gazebo model: This is defined in simulation description format (SDF) file in Firmware folder
of PX4 module. This SDF file is used to generate Gazebo visualization model (UAV) and also
contains the communication protocol definition for every vehicle model to be selected during
simulation. A mavlink protocol defined with argument (mavlink udp port) inside the SDF file
of Gazebo model bridges the communication with PX4. For a multi-vehicle simulation the UDP
port is defined in the main launch file. If the model being launched is of same type, separate
launch file is not needed for the number of vehicles. The same SDF file is adequate to generate
five vehicles.

PX4 node: This is the PX4 SITL application. The UDP port is defined and set in the start
up file in the application side (SITL UDP PRT) parameter in a similar fashion as that of simu-
lator. As explained in the previous section mavlink protocol bridges the same UDP port defined
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(mavlink udp port) in the simulator end to communicate with the autopilot; Gazebo with ROS
and/or Gazebo (Simulation vehicle model). Both files must be set to have the same port config-
uration as discussed previously for the mavlink udp port. On the basis of vehicle type argument,
the path in the start-up file is generated. For mutiple vehicles the launch file must also contain the
same vehicle type and vehicle ID. To make sure the configurations consistency, while describing
the vehicle ID, every vehicle to be launched with the MAV SYS ID in the start-up file must
match with the vehicle ID inside launch file. Figure 4.7 shows the the ground control station and
gazebo with the UAVs during flight.

Figure 4.6: Launching 5 VTOL UAVs

Figure 4.7: VTOL UAVs during flight and loitering
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4.3.2 HITL environment for Multi-UAV

The simulation environment for multi-UAV is set by combining Sections: 4.2.2 and 4.3.1 i.e
autopilot stack is build and uploaded onto the mutiple pixhawk boards which are then latched
to Ubuntu machine having simulator through USB cables. Multiple ROS nodes are generated to
publish and subscribe the data and command for each vehicle. This method was not successful
as it caused a communication loss of more than 50% even for 2 vehicles.

4.4 HITL environment with Companion Computer

In this section, a brief procedure is discussed for simulation of UAVs having companion com-
puter along with the PX4 hardware.
Companion Computer: It is an extra-brain to the onboard flight controller used to run com-
putationally heavy algorithm or to perform additional tasks such as image recognition which
simply cannot be handled by the controller board itself due to memory requirement. Companion
Computers can be used to interface and communicate with Pixhawk flight controller using the
mavlink protocol over a serial connection having 4 pin configuration (+5v, GND, Tx and Rx).
By doing this the companion computer gets all the mavlink data produced by the autopilot (in-
cluding GPS data) and can use it to make intelligent decisions during flight. Raspberry Pi 3 B+
model is used here as companion computer to achieve this configuration Figure 4.8 the complete
architecture for this configuration is shown in Figure 4.9.

Figure 4.8: Companion Computer (RPI 3 b+) connection to Autopilot (Pixhawk2)
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4.4.1 Serial Port Configuration in QGC

The serial (UART) ports on a Pixhawk board can be fully configured from QGC by accessing
the parameters. The companion computer in discussion is configured on TELEM 2 of Pixhawk
board by selecting the parameters as given below:

• MAV COMP ID = 2: Mavlink component ID.

• MAV 2 CONFIG = TELEM 2: This parameter configures the port for serial communic-
ation for mavlink at instance 2; Here, it configures the serial port to run mavlink on port
102 ( 102 is is for TELEM 2).

• MAV 2 MODE = 2: Option 2 is used here for Onboard standard set of messages. This
mavink mode defines the set of streamed messages and their sending rates for a companion
computer,

• MAV 2 RATE = 921600 baud: This is a parameter for configuring the maximum sending
rate for instance 2, the mavink streams in Bytes/sec. If this is set to 0, a value of /20 is
used, which corresponds to half of the theoretical maximum bandwidth. The sending rate
of the messages from each stream automatically lowers down, if the configured stream
exceed the maximum defined rate.

• MAV 2 FORWARD = True: Setting this parameter to true enables mavlink message to
forward for instance 2; i.eIf mode is enabled and either the point of reference is not the
autopilot or it is broadcast, this configuration forwards the incoming mavlink messages to
other mavlink ports. With help of this the QGC is able to talk to the companion computer
that is connected to autopilot via mavlink protocol (on a different communication link
than the ground control station).

It is necessary to set these parameters correctly and configure all the communication port from
ground control station (QGC). A complete set of configuration parameters used in to configure
ground control system and communication port are given in APPENDIX: B. QGroundControl
also enables a user to automatically tune the controller (PID) gains through parameter access. A
feature call autotune is also incorporated in QGC to automatically tune the gains.
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Figure 4.9: HITL Architecture with companion computer

The simulator is configured as explained and a HITL simulation is performed for the vehicle.
For quad-rotor part of VTOL the simulation was successful as shown in Figure: 4.10 while it
failed to run for fixed-wing part of the VTOL and can be explored in future work. The main
reason for the failure in fixed wing mode is the interfacing of the companion computer with with
autopilot and communication thereof.

Figure 4.10: HITL simulation with companion computer

This concludes the simulator part discussion for this report. Till now, most of the aspects re-
lated to the thesis is covered in details. In next chapter, the various Matlab/Simulink simulations
are discussed and the summary of result analysis is given.
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Chapter 5

Simulations and Result Analysis

This chapter discusses the simulations performed for this work and the result analysis thereof.
The chapter is organised as follows: First section of this chapter presents the simulation and
describes the results of various formations. Next section discusses the simulations and results of
formation without adaptation. In the third section, the simulation results of takeoff and loiter-
ing is shown. Finally, the simulations of formation switching by a flock of UAVs while being
airborne is shown.

5.1 Simulation results of various formations

In line with most UAV path generation approaches, the path is composed of straight lines and
orbits. Here, the simulations are performed for a flock of UAVs: To follow a straight line path
and then the loiter around and orbit. One important point that needs mention is, that the low level
controllers, implemented inside the autopilot stack (here Pixhawk/PX4) handles the kinematic
constraints (roll/pitch/yaw and altitude); instead of the path following algorithm directly. This
means that, if the radius of loitering (circular path) is chosen as 25 meters for all the UAVs;
it should not violate the physical limits. Otherwise the UAVs will fail to follow the orbit due
to maximum angle limit of the ailerons. It implies, the radius should not be too small to track
the orbit by the autopilots. To be specific with respect to fixed-wing UAVs model, following
constraints are prevalent in commercial fixed-wing UAVs: the elevators has an operating range
of±15 degrees, the ailerons has an operating range±30 degrees and the rudder has an operating
range ±25 degrees. The UAVs starting position can be chosen arbitrarily which is implemented
as initial conditions in the simulation. The initial attitude angles (roll/pitch/yaw) should be
within the autopilot operating ranges, otherwise for aforementioned reasons, the autopilot will
fail to stabilize the UAV models.

5.1.1 Path following in T formation

In Figure: 5.1 the simulations is shown for an inverted T-formation (T-formation) for the group
of fixed-wing UAVs. For the aforementioned arrangement: the communication graph is shown
in Figure: 2.7. For multi-UAV formation simulation, 4 different UAVs model and a Pinner UAV
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model for (MRAC) is considered. The parameters and configuration of the UAVs is shown in
Table: 2.3.

Figure 5.1: The flock of UAVs first follows a line and flies in T-formation and the loiters in an
orbit maintaining the formation.

5.1.2 Path following in V formation

In Figure: 5.2 the simulations is shown for an inverted V-formation (V-formation) for the group
of fixed-wing UAVs. For the aforementioned arrangement: the communication graph is shown
in Figure: 2.8. For multi-UAV formation simulation, 4 different UAVs model and a Pinner UAV
model for (MRAC) is considered. The parameters and configuration of the UAVs is shown in
Table: 2.4.

5.1.3 Path following in Y formation

Finally, in Figure: 5.3 the simulations is shown for Y-formation for the group of fixed-wing
UAVs. For the aforementioned arrangement: the communication graph is shown in Figure: 2.9.
For multi-UAV formation simulation, 4 different UAVs model and a Pinner UAV model for
(MRAC) is considered. The parameters and configuration of the UAVs is shown in Table: 2.5.
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Figure 5.2: The flock of UAVs first follows a line and flies in V-formation and the loiters in an
orbit maintaining the formation.

Result: 1

Here, the main noticeable point is all the UAVs in the formation has different masses and inertia:
Despite the uncertainty the formation control for all varied arrangements (T-V-Y) is achieved. It
clearly demonstrates the superiority and potency of the method proposed and applied in forma-
tion control.

Note: Advantage of the adaptive control law is that it allows the heterogeneous UAVs to ho-
mogenize and adopt to the same dynamics. It achieves the homogeneity by compensating for
difference in inertia and mass through adaptive control correction. Throughout the formation
control literature, it is found and well known fact that the homogeneous dynamics are a crucial
feature for achieving proper coordinated motion [27], [41].

5.2 Path following without Adaptation

The simulation is set up in a similar way as explained for V formation or inverted V formation.
It consists of two leader and two follower UAVs model, out of which one leader-follower pair ie.
(Leader 1 and Follower 1) follows the adaptive control algorithm while the other leader-follower
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Figure 5.3: The flock of UAVs first follows a line and flies in Y-formation and the loiters in an
orbit maintaining the formation.

(Leader 2 and follower 2) does not employ adaptive control. In other words, first pair consists
of varying control gains while for the other pair gains are kept constant. This results into the
failure for the second to adapt according to varying uncertain mass/inertia.

Result: 2

Here an important feature and relevance of adaptative control is highlighted: The simulation in
Figure: 5.4 shows that in absence of adaption the two UAVs not employing adaptation cannot
close the gap with respect to their predecessor and they eventually leave the formation. It can
be noted from Table: 2.4 that the inertia and masses of the UAVs varies with a factor 10 and 5
respectively. Hence, this proves the uniqueness of and relevance of adaptive control algorithm
by adapting to such an uncertain heterogeneous system. Evidently, this fact is proved here
by utilizing software-in-the-loop simulation in case of the UAVs that the algorithm can handle
uncertain inertia and mass and if such an adaptation is not present, it is quite difficult to work on
formation control strategy.
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Figure 5.4: Simulation results highlighting a key feature of adaptive control algorithm: An
Unsuccessful path following by Leader 1 and Follower 1 in absence of adaptive control laws.
While Leader 2 and Follower 2 achieves the formation successfully by having an adaptive control
algorithm.

5.3 Takeoff and Loitering

In this section, the Matlab simulation results for take-off and loitering of fixed-wing UAVs is
shown utilizing the adaptive formation control law.
Simulation results in Figure: 5.5 shows the that five UAVs have took off from different positions

on the ground and they are following a trajectory at different time instant. While the simulation
results in Figure: 5.6 shows the UAVs have followed their trajectories and loitering around their
respective loiter point without any formation. It is important to point out that, the formation
control algorithm can also be instantiated now to fly in a formation.

5.4 Formation Switching

In this section, the simulation results are shown for a flock of UAVs: Took-off from different
positions and starts to fly in T formation Figure: 5.7(a). Afterwards, it loiters around a given
position maintaining the same formation Figure: 5.7(b) which then transitions from T to V-
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Figure 5.5: Simulation showing UAVS taking-off from different position on the ground at varied
time instant

Figure 5.6: Five UAVs took-off from different positions on the ground at different time instant
and reached their respective loiter point

formation as depicted in Figures: 5.7(c) and 5.7(d). As it can be seen trails of previous formation
(T-formation) are removed to keep the picture neat. Figure: ?? show a completely transited
formation and flock is flying towards the loitering point Figure: 5.8(b). In the next part; Figure:
5.8(c) shows a transition from formation V and Figure: 5.8(d) shows the transited Y-formation.
Finally, the simulation ends with the Figure: 5.9 showing the flock reaching at the loitering
point in Y-formation. As it can be seen trails of previous formation (T and V formations) are
removed to keep the picture neat. At this point formation of all three formations while UAVs
being airborne is shown.

With this ends the simulations and results. In the next chapter the conclusions of this thesis
work with some key points which can be addressed in future is discussed.
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(a) UAVs taking-off from different positions and flying in T-formation
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(b) Flock of UAVs loitering in T-formation
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(c) Start of formation tansition from T to V-
formation
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(d) Transited formation from T to V

Figure 5.7: Figures showing the simulations of the UAVs at different stages: taking off from
ground and reaching to the loiter point in T formation and started to transition and finally, trans-
ited to V formation
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(a) UAVs completely transited and flying in V-formation

-200 -100 0 100 200 300 400 500 600

y-axis(m)

-200

-100

0

100

200

300

400

500

600

x
-a

x
is

(m
)

Multi fixed-wing UAV formation, XY plane

UAV-1

UAV-2

UAV-3

UAV-4

UAV-5

(b) Flock of UAVs loitering in V-formation
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(c) Start of formation tansition from V to Y-
formation
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(d) Transited formation from V to Y

Figure 5.8: Figures showing the simulations of the UAVs at different stages: taking off from
ground and reaching to the loiter point in V formation and started to transition and finally, trans-
ited to Y formation
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Figure 5.9: UAVs transited from V formation to Y-formation and loiters at the specified point.
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Chapter 6

Conclusions and Future Work

In this chapter the conclusions are given based on the research work. The future possibility of
the research that need to be carried out is given in the last and the final section of this chapter.

6.1 Conclusions

This work has discussed the adaptive formation laws with keeping focus on Fixed-wing un-
manned aerial vehicles (UAVS) and its software-in-the-loop (SITL) implementation utilizing
MATLAB/Simulink environment. As mentioned previously the two main focus areas this thesis
posses; Various formation control algorithms with different gaps accompanying with the simula-
tion of fixed-wing UAVs in Matlab/Simulink environment, in the presence of parametric uncer-
tainties represented by uncertain mass and inertia. It also showed the failure of path following
strategies in absence of adaptation. In the later half, Gazebo a 3D simulator for simulations in
various environment software-in-the-loop (SITL), hardware-in-the-loop (HITL) and visualiza-
tion of UAVs (VTOL) is developed with an aim that can be extended to real UAV scenarios.
This work also explains the software architectures and communication protocols that is utilized
for configuring various hardwares needed to achieve (HITL) e.g HITL simulation configuration
where PX4 is used as an autopilots to run low level controllers and Raspberry Pi as a companion
computer to have an extra computation power that can be used while implementing formation
algorithm.
The aspects that are tackled in relation to guidance and control for fixed-wing UAVs are: Mat-
lab modelling of fixed-wing UAVs, vector field path following, adaptive formation control laws,
software and hardware integration, PX4 autopilot low-level (pitch/roll/yaw) control, and last but
not the least; software-in-the loop simulations showing various formation strategies. Finally, the
simulator: Gazebo proved to be a powerful tool to depict real scenarios to perform simulations
with the actual PX4 autopilot control structure of the Fixed-wing UAV (VTOL). For commu-
nication among the different component of vehicle and hardwares of real flights, MAVLink: the
communication protocol was reverse engineered to and achieve the goal.
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6.2 Future Work

This works opens up a completely new arena of research with humongous possibility. To start
with, development and integration of the adaptive formation algorithm utilizing Gazebo as sim-
ulator. Secondly, to have a lower communication overhead a software-in-the-loop (SITL) sim-
ulation for the formation control laws utilizing PX4 low-level controllers. The task then can
be taken and improvised for hardware-in-the-loop (HITL) simulation approaches, utilizing the
simulator developed as part of this work. It is well known fact that, Ad-hoc networking allows
to restructure a graph on the fly; hence utilizing technologies such as, Zigbee, Ad-hoc Wi-Fi
networking or LoRaWAN etc. to setup communications in Switching Formation Topology and
validate the effectiveness of various adaptive formations. Utilizing the work HITL with compan-
ion computer and PX4 hardwares can be extended for Fixed-wing part of UAV which then can be
used to perform HITL showing various formations. Hardware in the loop Simulations performed
as part of this thesis had communication overhead due to physics model running in simulator;
the technique of Simulation-in-hardware (SIH) can be performed to achieve low communica-
tion overhead and increase the real time performance of the simulators. Finally, a simulation
environment where companion computer is directly latched to the simulator again to reduce
communication overhead and improve the performance of the simulator can be performed.
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[37] Beat Küng Don Gagne Julian Oes Lorenz Meier, Hamish Willee. The standard communic-
ation protocol for drones; [available : Online], https://mavlink.io/en/.

61

http://gazebosim.org/projects
http://sdformat.org/
https://mavlink.io/en/


[38] PX4 Developers Community. [available : Online], https://dev.px4.io/v1.9.0/
en/simulation/hitl.html.

[39] Vladimir Ermakov vooon341 AT gmail DOT com. [available : Online], http://wiki.
ros.org/mavros.

[40] PX4 Developers Community. [available : Online], https://dev.px4.io/v1.9.0/
en/ros/mavros_installation.html.

[41] Youssef Abou Harfouch, Shuai Yuan, and Simone Baldi. An adaptive approach to co-
operative longitudinal platooning of heterogeneous vehicles with communication losses.
IFAC-PapersOnLine, 50(1):1352 – 1357, 2017. 20th IFAC World Congress.

62

https://dev.px4.io/v1.9.0/en/simulation/hitl.html
https://dev.px4.io/v1.9.0/en/simulation/hitl.html
http://wiki.ros.org/mavros
http://wiki.ros.org/mavros
https://dev.px4.io/v1.9.0/en/ros/mavros_installation.html
https://dev.px4.io/v1.9.0/en/ros/mavros_installation.html


Acronyms

AP: Access point

API: Application program interface

APF: Adaptive path following

EL: Euler Lagrange

GCS: Ground control system

GPS: Global positioning system

GUI: Graphical user interface

HITL/HIL: Hardware in the loop

LOS: Line of sight

MAV: Micro aerial vehicle

MRAC: Model reference adaptive control

NED: North east down

PC: Personal computer

PD: Proportional derivative

PI: Proportional and integral

QGC QGround control

ROS: Robot operating system

RPi: Raspberry Pi

SDF: Simulation description format

SITL: Software in the loop

SIH: Simulation in hardware

TCP: Transmission Control Protocol

TECS: Total energy control system

UART: Universal Asynchronous Receiver/Transmitter

UAV: Unmanned aerial vehicle

UDP: User Datagram Protocol

VF: Vector field

VTOL: Vertical take-off and landing

VTP: Virtual target point

WAP: Wireless access point
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APPENDIX A

Building the simulator to launch VTOL model

• The first and foremost step is to have a linux machine and setup with all necessary
software such as ROS melodic with Gazebo 9.0. wiki.ros.org/melodic,
MAVlink and MAROS QGroundcontrol etc.

• Many issues may prompt depending on the configuration and version of OS and
environment https://dev.px4.io/master/en/simulation/ suggests how
to acknowledge them.

• Clone from github https://github.com/PX4/Firmware; browse in folder
Firmware to the launch file.

• Create a new launch file for single vehicle with vehicle type standard vtol to generate
simulation description format (sdf) model.

• In the same folder again create a new launch file for vehicle configuration and vehicle
type standard vtol for example; abcd uav mavros model.launch.

• Build using the following commands:

• DONTRUN=1 make px4 sitl gazebo standard vtol
It generates an sdf file which can be changed according to the need for example; the
environment of simulation can be set such as SITL or HITL also the vehicle parameters
itself can be configured.

• source Tools/setup gazebo.bash $(pwd) $(pwd)/build/px4 sitl default.

• export ROS PACKAGE PATH=$ROS PACKAGE PATH:$(pwd):$(pwd)/Tools/sitl gazebo.
These two commands sets up the environment for simulation; Gazebo as simulator and
ROS for communication nodes.

• roslaunch px4 abcd uav mavros model.launch
with this command pops up the Gazebo environment showing the vehicle model for
simulation.
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APPENDIX B

Building the simulator for VTOL model using companion computer

Hardware Connection

• Raspberry Pi containing the formation control algorithm is connected to the Pixhawk
board using UART cable.

• The Pixhawk board is connected to Ubuntu machine through micro USB and USB
respectively.

QGroundControl Parameterization.

In airframe first set the airfarme type HIL Standard VTOL. Then following parameters
need to be configured.

• SYS AUTOSTART = 1002.

• MAV 0 CONFIG = Disabled

• GPS 1 CONFIG = Disabled

• GPS 2 CONFIG = TELEM 2
A reboot of the vehicle is needed here for further configuration of parameters.

• SER TELE2 BAUD = 57600 8N1

• MAV 1 CONFIG = TELEM 2

• MAV 1 MODE = Onboard

• SER TEL2 BAUD = 921600

After setting parameters, the procedure from APPENDIX: A shall be followed. Now, the
commands to navigate or follow a path can be issued from Raspberry Pi using UART interface.
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