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Abstract
Proper analysis and subsequent interpretation of GPS position time series is an important issue in many geodetic and geo-
physical applications. The GPS position time series can possibly be contaminated by some abrupt changes, called offsets, 
which can be well compensated for in the functional model. An appropriate offset detection method requires proper specifica-
tion of both functional and stochastic models of the series. Ignoring colored noise will degrade the performance of the offset 
detection algorithm. We first introduce the univariate analysis to identify possible offsets in a single time series. To enhance 
the detection ability, we then introduce the multivariate analysis, which considers the three coordinate components, north, 
east and up, simultaneously. To test the performance of the proposed algorithm, we use synthetic daily time series of three 
coordinate components emulating real GPS time series. They consist of a linear trend, seasonal periodic signals, offsets and 
white plus colored noise. The average detection power on individual components, either north, east or up, are 32.3 and 47.2% 
for the cases of white noise only and white plus flicker noise, respectively. The detection power of the multivariate analysis 
increases to 70.8 and 87.1% for the above two cases. This indicates that ignoring flicker noise, existing in the structure of the 
time series, leads to lower offset detection performance. It also indicates that the multivariate analysis is more efficient than 
the univariate analysis for offset detection in the sense that the three coordinate component time series are simultaneously 
used in the offset detection procedure.

Keywords Time series analysis · Offset detection · Variance component estimation · Multivariate analysis

Introduction

In many geodetic and geophysical studies, GPS position time 
series are used in various applications such as plate tecton-
ics, glacial isostatic rebound, crustal deformation and earth-
quake dynamics (Segall and Davis 1997). Proper analysis of 
the time series is thus a prerequisite for subsequent geodetic 
and geophysical interpretations. An appropriate functional 
model of GPS time series consists of a linear trend, possible 
periodic signals (mainly annual and semi-annual signals), 
and probabilistic offsets. Other unmodeled effects can best 
be described as a combination of white and colored noise.

Offset detection, also known as data segmentation or 
homogenization in literature, aims at detecting abrupt 
changes (offsets) in a signal. Such a problem has been widely 
investigated in many scientific areas such as in climate and 
meteorology to homogenize temperature and precipitation 
series (Beaulieu et al. 2008; Gazeaux et al. 2011), in biology 
for the detection of chromosomal aberrations (Olshen et al. 
2004; Picard et al. 2005), in image processing (Pham et al. 
2000) and in geodetic and geophysical applications.

In geophysical studies, this problem appears in par-
ticular in GPS permanent station coordinates, which are 
affected by offsets. Possible offsets are considered as one 
of the main sources of systematic errors introducing biases 
into GPS time series. They can have long-lasting effects 
on the estimation of site velocities. Williams (2003a) dis-
cusses the role of offsets on the site velocity estimation of 
GPS time series and investigates its bias induced by the 
position and magnitude of the offsets. The correct detec-
tion and adaptation of offsets is thus an important issue, 
which has been paid much attention by many researchers 
over the past decades for which we may refer to Williams 
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et al. (2004), Perfetti (2006), Borghi et al. (2012), Vitti 
(2012), Gazeaux et al. (2013), and Montillet et al. (2015).

There are two main reasons that can cause offsets: 
(1) actual crustal movements, for example, due to earth-
quakes, and (2) artificial events. Artificial offsets can 
occur because of environmental, equipment malfunction 
and change, or human errors. Human-induced offsets tend 
to be related to changes in processing strategy, model 
changes, or input information such as elevation cutoff 
angle and reference frame. Equipment changes are due to 
changing the receiver, antenna, monument, or radome at 
a site (Johansson et al. 2002). Interaction of human and 
equipment changes can also introduce offsets into GPS 
time series. Such an interaction may include reporting an 
incorrect date or incorrect information in site logs or pro-
cessing input files (Williams 2003a).

There is an ongoing research in the field of offset detec-
tion and estimation. Chen and Tiao (1990) proposed a ran-
dom level shift (RLS) model to detect unknown offsets. 
This model can only detect unexpected offsets with large 
magnitude. It is thus not applicable to the offsets with small 
magnitude (Chen and Tiao 1990). Williams (2003a) pro-
posed an offset detection algorithm using the change detec-
tion methods. This method can be employed to detect offsets 
with small magnitudes. The algorithm provides an estimate 
about the time instant of the offset along with its magnitude 
(Williams 2003a). This algorithm is, however, based on the 
assumption that there is only white noise in the error term of 
the series. This may not be a valid assumption for the case of 
GPS position time series for which colored noise also exists 
in the series (Zhang et al. 1997; Williams et al. 2004; Amiri-
Simkooei et al. 2007; Khodabandeh et al. 2012). Kenyeres 
and Bruyninx (2004) identify and estimate offsets for posi-
tion time series in the EUREF permanent network. Perfetti 
(2006) addresses the detection of the existing offsets in the 
Italian GPS Fiducial Network. This method succeeded to 
detect 70% of the known offsets in the coordinate compo-
nents of the stations, but it failed to detect offsets of some 
stations due to the presence of colored noise of the series 
(Perfetti 2006).

To detect and estimate offsets, one may employ a univari-
ate or multivariate time series analysis. If in a linear model, 
instead of one observation vector having a single design 
and covariance matrix, there exist several observation vec-
tors with identical design matrices and identical covariance 
matrices, the model is referred to as a multivariate linear 
model (Koch 1999; Amiri-Simkooei 2007, 2009). A mul-
tivariate analysis might, for instance, be used to model the 
three coordinate components at a single station simultane-
ously. Signal detection and noise assessment of multivariate 
GPS time series have been the subject of research over the 
last decade (Amiri-Simkooei 2009, 2013; Amiri-Simkooei 
and Asgari 2012; Amiri-Simkooei et  al. 2017a). In the 

present contribution, a similar analysis is performed to the 
problem of offset detection in GPS position time series.

We aim at detecting the possible offsets using the univari-
ate and multivariate analysis. A mathematical foundation for 
the offset detection using the multivariate time series analysis 
is presented. The idea behind the proposed method, either in 
the univariate or in the multivariate analysis, originates from 
the works of Baarda (1968), Teunissen (2000), and Teunissen 
et al. (2005) of which some misspecifications such as blun-
ders are detected using the statistical tests in the functional 
model. To detect possible offsets, two hypotheses testing on 
two functional models are put forward. In the null hypothesis, 
we assume that there is no offset, whereas in the alternative 
hypothesis there is at least one. The two functional models 
are compared with each other by means of the statistical test, 
which is referred to the generalized likelihood ratio (GLR) 
test. It allows one to decide between the original model under 
the null hypothesis and the extended model under the alterna-
tive hypothesis. The correct offset detection requires a proper 
estimation of noise components of the series. Towards this 
end, the least-squares variance component estimation (LS-
VCE) can be used (Teunissen 1988; Teunissen and Amiri-
Simkooei 2008; Amiri-Simkooei 2007, 2009).

The next two sections provide the mathematical founda-
tion of the univariate and multivariate time series analyses. 
For both cases, the offset detection procedure is explained 
in details. A later section presents a few simulation case 
studies on GPS time series to investigate the efficacy of the 
proposed method. Finally, we make some conclusions in 
the last section.

Univariate GPS position time series

For the univariate time series analysis, there exists only 
one observation vector such as a daily GPS position time 
series of one component, either north, east or up. For our 
application, the univariate time series analysis consists of 
the following two steps: (1) functional and stochastic model 
identification, and (2) offset detection and validation.

Functional and stochastic model identification

For an appropriate GPS position time series analysis, the 
functional and stochastic models should be correctly speci-
fied. We briefly explain the identification of the functional 
and stochastic models for an individual coordinate compo-
nent of GPS time series.

The functional model of an individual coordinate com-
ponent, namely either of the north, east or up components, 
is of the form:

(1)E(y) = Ax,
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where E is the expectation operator, y is the m-vector of time 
series observations, e.g., daily GPS position of one compo-
nent, x is the n-vector of the unknown parameters and A is 
the m × n design matrix. Hereinafter, the observation vector 
is denoted by y(t) , where t refers to the time instant. If a lin-
ear trend plus q periodic sinusoidal signals properly describe 
the deterministic behavior of the series, the functional model 
is of the form:

where y0 and v are the intercept and the slope (site veloc-
ity or rate) of the line fitted to the series, respectively. The 
two trigonometric terms cos and sin together represent a 
sinusoidal wave with, in general, a non-zero initial phase. 
Examples of such periodic patterns include annual and semi-
annual signals, and the GPS draconitic periodic signal and 
its higher harmonics (Ray et al. 2008; Amiri-Simkooei et al. 
2007). The unknown vector x consists of the intercept y0 , 
the slope v and the coefficients (amplitudes) and ak and bk . 
Proper identification of the periodic signals is the task of 
the spectral analysis methods for which we may refer to 
the least squares harmonic estimation (LS-HE), developed 
and applied to time series by Amiri-Simkooei (2007, 2013) 
and Amiri-Simkooei et al. (2007, 2017a). An algorithm for 
identification of other misspecifications—offset detection for 
instance—can similarly be developed by the LS-HE theory. 
This is the subject of discussion in the present contribution.

The stochastic model describes the statistical properties 
of observable vector y by means of a covariance matrix. 
An appropriate stochastic model leads to the best linear 
unbiased estimation (BLUE) of the unknown parameters. 
For many geodetic applications, however, the covariance 
matrix of observables is only partly known because it can 
be expressed as an unknown linear combination of a few 
known cofactor matrices,

where D is the dispersion operator, �k, k = 1,… , p are the 
unknown variance components, and Qk, k = 1,… , p are 
some known m × m cofactor matrices; Q0 is the known part 
of the stochastic model. The estimation of these unknown 
variances �k is referred to as variance component estimation 
for which we employ the least squares variance component 
estimation (LS-VCE) in the present contribution (Teunissen 
1988).

In the case of GPS position time series, the covari-
ance matrix Qy is composed of white noise plus power-law 
colored noise—flicker noise for instance. It is then of the 
form:

(2)E(y(t)) = y0 + vt +

q∑
k=1

(
ak cos�kt + bk sin�kt

)
,

(3)D(y) = Qy = Q0 +

p∑
k=1

�kQk,

where the white noise cofactor matrix Q1 = Qw = Im is an 
identity matrix of size m and Q2 = Qf  is the cofactor matrix 
of flicker noise based on the Hosking noise structure intro-
duced and used by Williams (2003b), Langbein (2004), and 
Williams et al. (2004). The LS-VCE method can be used 
to assess the noise components of the GPS position time 
series in an iterative manner. LS-VCE has many attractive 
features for which we refer to Teunissen (1988), Teunissen 
and Amiri-Simkooei (2008), and Amiri-Simkooei (2007). 
The variance components are estimated as �̂� = N−1l , where 
N is a p × p matrix, l is a p-vector and �̂� =

[
�̂�1, �̂�2,… , �̂�p

]T 
is a p-vector of unknown variances to be estimated. The 
entries of N and l are:

 and

where P⊥
A
= I − A(ATQ−1

y
A)−1ATQ−1

y
 is an orthogonal projec-

tor (Teunissen 2000) and ê = P⊥
A
y denotes the m-vector of 

the least squares residuals.

Offset detection and validation

GPS position time series can be perturbed by offsets occur-
ring at time instants that are either known, e.g., due to the 
documented equipment changes, or unknown. The offset 
may degrade the accuracy and reliability of the parame-
ters estimated for the series—the estimated velocities or 
rates for instance (Williams 2003a). To overcome such a 
problem, a proper offset detection algorithm needs to be 
developed.

After identifying the most recent functional model, 
explained in the previous section, we may now employ new 
statistical tests to detect possible offsets. Two hypotheses 
testing on the functional model are put forward. In the null 
hypothesis, it is assumed that there is no offset, whereas in 
the alternative hypothesis there is at least one. This idea 
originates from the works of Baarda (1968), Teunissen 
(2000), and Teunissen et al. (2005) in which some misspeci-
fications in the functional model were detected using the 
statistical tests. Later, this idea was used in many geodetic 
applications (Perfetti 2006; Amiri-Simkooei et al. 2017b). It 
is noted that the classical method for identification of model 
misspecifications is formulated when the estimation and test-
ing are treated individually. Teunissen (2018) proposed a 
new and more elegant detection, identification and adapta-
tion (DIA) estimator that combines estimation with testing. 
The aim of such DIA estimator is to introduce a unifying 

(4)Qy = �2
w
Qw + �2

f
Qf,

(5)nij =
1

2
tr
(
QiQ

−1
y
P⊥
A
QjQ

−1
y
P⊥
A

)

(6)li =
1

2
êTQ−1

y
QiQ

−1
y
ê,
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framework that captures the combined estimation and testing 
schemes of the DIA method. The DIA method has a wide 
range of applications in geodetic community. The applica-
tion in the present contribution on offset detection is con-
sidered to be an important issue, which will be the subject 
of research in the future.

In the classical representation of DIA, the two functional 
models under the two hypotheses are defined as

 versus

where j runs from 1 to m and x =
[
y0, v, a1, b1 … aq, bq

]T is 
the unknown vector. In Model 2, the xj is the offset magni-
tude corresponding to the augmenting m-vector aj defined as

with the Heaviside step function Hj(ti) as

Model 1, given in (7), is considered as the basis or the 
nominal model. The basic model can also include some dis-
turbances or anomalies, represented by the column vector 
aj and its corresponding unknown parameter xj in Model 2 
(j ranges from 1 to m). They are caused by the possible off-
sets that invalidate the basis model. The epoch at which the 
null hypothesis powerfully tends to be rejected (namely toff ) 
indicates the presence of an offset in the time series. To this 
end, the following maximization problem is used:

where P(tj) , called the offset power, is obtained for the epoch 
j , with j = 1,… ,m , from the following equation (Amiri-
Simkooei 2013):

which can be developed and rewritten for the column vec-
tor aj as

 where ê0 = P⊥
A
y is the least-squares residuals under the null 

hypothesis. In (13), when the time series contains white 
noise plus flicker noise, the covariance matrix of time series 

(7)Model 1
(
H0

)
∶ E(y) = Ax

(8)Model 2
(
Ha

)
∶ E(y) = [A ⋮ aj]

[
x

xj

]
= Ax + ajxj,

(9)aj =

⎡⎢⎢⎣

Hj(t1)

⋮

Hj(tm)

⎤⎥⎥⎦

(10)Hj(ti) =

{
0 ti < tj
1 ti ⩾ tj, i = 1,… ,m

.

(11)toff = arg maxtjP(tj) ,

(12)P
(
tj
)
= êT

0
Q−1

y
aj

(
aT
j
Q−1

y
P⊥
A
aj

)−1

aT
j
Q−1

y
ê0,

(13)P
(
tj
)
=

(êT
0
Q−1

y
aj)

2

aT
j
Q−1

y
P⊥
A
aj
, j = 1,… ,m ,

observations reads Qy = �2
w
I + �2

f
Qf , which becomes avail-

able after estimating the variance components �2
w
and �2

f
 

using the LS-VCE method.
Because an analytical evaluation of the above maximiza-

tion problem is complicated, one has to be satisfied with 
numerical evaluation. That is, we need to compute the col-
umn vector aj at each epoch (for j = 1,… ,m ) using (9) and 
(10). One can, therefore, obtain the power of the offset val-
ues for different alternative hypotheses (i.e., j = 1,… ,m ). 
The epoch at which P

(
tj
)
 gets its maximum value, say epoch 

k, is recognized as a candidate at which possibly an offset 
has occurred ( toff = tk ). The power at this epoch is:

As a next stage, one has to validate the detected offset of 
the time series. In other words, one has to test whether or 
not the detected offset is significant. To test H0 against Ha , 
given in (7) and (8), respectively, the test statistic in (14) 
can be used (Teunissen et al. 2005). Under the null hypoth-
esis, the test statistics has a central chi-squared distribu-
tion with one degree of freedom, i.e., T

1
∼ �2(1, 0) . With 

the significance level � , the null hypothesis is accepted 
if T

1
< 𝜒2

𝛼
(1, 0) . This indicates that the offset detected in 

the previous section is not significant. If the test statistic 
exceeds the critical value of the chi-squared distribution, 
the hypothesis will be rejected in the significance level � 
(i.e., T

1
> 𝜒2

𝛼
(1, 0) ). This indicates that there is a signifi-

cant offset occurred at this epoch.
The above distribution assumption is based on the 

known covariance matrix Qy . In the case that the covari-
ance matrix is unknown, its variance components are to 
be estimated by LS-VCE. When dealing with only one 
variance component, the chi-squared distribution is to be 
replaced by a Fisher distribution. When there exist at least 
two variance components, the distribution of the above 
test statistic becomes complicated. Our observations show, 
however, that in case of GPS time series when the num-
ber of observations m is much larger than the number of 
unknowns n, the above distributional assumption is still 
valid to a good approximation.

The previous steps can then be repeated to find yet 
new offsets (if there is any). This is accomplished by add-
ing a new column aoff to the matrix A. The old design 
matrix A should then be replaced with the new one as 
A ← [A ⋮ aoff] . The previous steps are repeated by employ-
ing the new design matrix. A new time instant of the offset 
toff can then be detected and tested. The above steps are 
repeated until the null hypothesis is accepted.

(14)T
−
1
= P

(
tk
)
=

(
ê
−

T

0
Q−1

y
ak

)2

aT
k
Q−1

y
P⊥
A
ak

.
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Multivariate GPS position time series

The univariate analysis of the previous section employs 
one observation vector. To enhance the detection ability 
of the offsets, one may use several observation vectors 
having identical structure. This is the case, for example, 
when analyzing the daily GPS time series of the three 
coordinate components of north, east and up of a station, 
simultaneously. A multivariate linear model, also known 
as a repeated linear model, is in fact an extension of the 
univariate linear model. The multiple observation vectors 
have identical design and covariance matrices in the mul-
tivariate model. The multivariate analysis of the GPS time 
series is also divided into two steps: (1) functional and 
stochastic model identification, and (2) offset detection and 
validation.

Functional and stochastic model identification

For r time series, the multivariate functional model of the 
series is of the form:

with the multivariate stochastic model characterized as 
(Amiri-Simkooei 2009)

 where Y  and X are, respectively, the m × r and n × r matri-
ces of time series observations and unknown parameters, 
vec is the vector operator, and ⊗ is the Kronecker product. 
The m × n matrix A is the design matrix of a single time 
series obtained from (1) and (2). This matrix is thus assumed 
to be identical for all series. The r × r matrix Σ expresses 
the correlation among the series, while the m × m matrix 
Q characterizes the temporal correlation of the series. The 
matrix Q can be expressed as Q = swQw + sfQf , where the 
white noise cofactor matrix Qw = Im is an identity matrix 
and Qf  is the cofactor matrix of flicker noise. The contri-
bution of the two noise components is determined through 
the variance factors sw and sf . The matrix Σ along with the 
factors sw and sf can simultaneously be estimated using the 
multivariate noise assessment techniques. In particular, use 
is made of the multivariate variant of LS-VCE presented by 
Amiri-Simkooei (2009).

Offset detection and validation

To implement the multivariate offset detection method, we 
may use the most recent functional model expressed in (15). 
The following hypotheses testing on two functional models 

(15)E(vec(Y)) = (Ir ⊗ A)vec(X)

(16)D(vec(Y)) = Σ⊗ Q,

are then put forward. In the null hypothesis, it is assumed 
that there is no offset, whereas in the alternative hypothesis 
there is at least one, common at the same time instant for 
multiple time series. The two functional models are then of 
the form:

 versus

 The r-vector of offsets is xj = [x1
j
,… , xr

j
] in which 

xi
j
, i = 1,… , r denotes the offset magnitude of the ith time 

series. The corresponding design matrix (column vector) aj 
can be derived from (9) and (10). The structure introduced 
in the augmenting matrix Ir ⊗ aj indicates that the offset 
time instant is the same for all series, but their magnitudes 
are different through elements of xj . Here, again, we aim at 
identifying the time instant at which the offset power 
becomes maximum ( toff and its corresponding aoff ). The 
same idea as in the univariate analysis is also employed here. 
Towards this end, the following maximization problem is 
used:

where P(tj) , called the multivariate offset power, is obtained 
for each of the epochs (i.e., j = 1,… ,m ) from the following 
equation (Amiri-Simkooei 2013):

which can be developed and rewritten as

where Ê0 = P⊥
A
Y  is the m × r least-squares residual matrix 

under the null hypothesis. As already mentioned, matrices 
Σ and Q are to be estimated using the LS-VCE method. The 
preceding equation, with Σ̂ = ÊT

0
Q−1Ê0∕(m − n) (see Amiri-

Simkooei 2009), can be further reformulated as

where j runs from 1 to m , b = m − n is the redundancy 
(degrees of freedom) of the univariate functional model, 
‖⋅‖2

Q−1 = ( .)TQ−1( . ) denotes the squared norm of a vector, 
and PÊ0

= Ê0(Ê
T
0
Q−1Ê0)

−1ÊT
0
Q−1 is an orthogonal projector.

(17)Model 1 ∶ E(vec(Y)) = (Ir ⊗ A)vec(X)

(18)
Model 2 ∶ E(vec(Y)) =

(
Ir ⊗ A

)
vec(X) + (Ir ⊗ aj)vec(xj).

(19)toff = arg maxtjP(tj) ,

(20)P
(
tj
)
= tr

(
ÊT
0
Q−1aj

(
aT
j
Q−1P⊥

A
aj

)−1

aT
j
Q−1Ê0Σ

−1

)
,

(21)P
(
tj
)
=

aT
j
Q−1Ê0Σ

−1ÊT
0
Q−1aj

aT
j
Q−1P⊥

A
aj

, j = 1,… ,m,

(22)P
(
tj
)
= b

aT
j
Q−1PÊ0

aj

aT
j
Q−1P⊥

A
aj

= b

‖‖‖PÊ0
aj
‖‖‖
2

Q−1

‖‖‖P⊥
A
aj
‖‖‖
2

Q−1

,
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Again, the numerical evaluation of the maximization 
problem in (19) is required. That is, we need to compute the 
column vector aj at each epoch (for j = 1,… ,m ) using (9) 
and (10). One can, therefore, obtain the power of the offset 
values for different alternative hypotheses (i.e., j = 1,… ,m ) 
by employing (21) or (22). The epoch at which P

(
tj
)
 gets its 

maximum value, say epoch k, is recognized as a candidate 
at which possibly an offset has occurred ( toff ). The power at 
this epoch becomes:

One then has to validate the detected offsets of the multi-
variate analysis. We need to test whether or not the detected 
offset is statistically significant. Under the null hypoth-
esis, the test statistics has a central chi-squared distribu-
tion with r degrees of freedom, i.e., T

r
∼ �2(r, 0) . With 

the significance level � , the null hypothesis is accepted if 
T
r
< 𝜒2

𝛼
(r, 0) . This indicates that the offset detected is not 

significant. If the test statistic exceeds the critical value of 
the chi-squared distribution, the hypothesis will be rejected 
in the significance level � (i.e., T

r
> 𝜒2

𝛼
(r, 0) ). This indi-

cates that there is a significant offset occurred at this epoch. 
The same procedure is repeated for identifying other pos-
sible offsets.

Numerical results and discussion

To investigate the performance of the proposed method, 
synthetic GPS time series are used in this section. Two 
issues are highlighted in this section. (1) We investigate 
the impact of an appropriate stochastic model of the series 
on the offset detection algorithm. (2) The superiority of 
the multivariate analysis over the univariate analysis is 
also highlighted in this section. The significance level of 
the hypothesis testing is considered to be � = 0.001 . This 
will then result in the critical values of the univariate and 
multivariate test �2

�
(1, 0) = 10.83 and �2

�
(3, 0) = 16.27 , 

respectively. The significance level α is the probability of 
incorrect decision when indeed the null hypothesis is true. 
Therefore, the smaller the significance level is, the more 
likely the hypothesis testing will detect a small offset. This 
may, however, lead also to an increase in detecting incor-
rect offsets that was not simulated but were detected as an 
offset by the method.

We create synthetic time series of three coordinate 
components of a permanent GPS station. The data are time 
series spanning 10 years of daily coordinate positions. 
They consist of a linear trend, the annual and semi-annual 

(23)T
−
r
= P

(
tk
)
= Pmax = b

‖‖‖PÊ0
ak
‖‖‖
2

Q−1

‖‖‖P⊥
A
ak
‖‖‖
2

Q−1

.

signals, offsets, and white and flicker noise. The param-
eter settings characterizing the synthetic data sets are 
summarized in Table 1. We only consider the first and 
second harmonics of the annual signal. Higher harmon-
ics such as tri-annual signals were also included in the 
series. However, there was no significant change in the 
final results. The multivariate analysis can in principle 
handle the statistical correlation among the three coordi-
nate components. Such correlation is, however, absent in 
real GPS time series and hence it was ignored here (see 
Amiri-Simkooei et al. 2007). For each time series, the 
covariance matrix of the series is constructed based on the 
white and flicker noise amplitudes specified in this table. 
A random error vector of normal distribution is then simu-
lated using the Cholesky decomposition of the covariance 
matrix. The simulated error, consisting of both white and 
colored noise, is then added up to the deterministic model 
explained above.

The next step is to introduce offsets. The magnitudes 
of offsets are also generated randomly, which range from 
1 to 3 mm for the north and east components and from 2 
to 6 mm for the up component (Table 1). Each offset is 
simulated using a uniform distribution in the above ranges. 
Each simulated time series has 11 offsets occurred at the 
fixed times instants of multiples of 300, i.e., at epochs 300, 
600, …, 3300. Figure 1 illustrates one typical example of 
the simulated time series along with the position of the 
simulated offsets. We did other tests considering the effi-
ciency of the solutions when the offsets are at the begin-
ning or at the end of the series. The results did not change 
significantly.

The goal now is to identify the offsets included inten-
tionally in the time series at the known epochs. The advan-
tage of the simulated data compared with real data is that 
the magnitude and position of the offsets are perfectly 
known. This will make some statistical analysis about the 
detection ability of the proposed method using both uni-
variate and multivariate analyses described in the previous 
section. The offsets are detected in four cases explained in 

Table 1  Parameter settings of simulated data sets employed in func-
tional and stochastic models

Component North East Up

Parameter
 WN amplitude (mm) 1.5 1.5 3
 FN amplitude ( mm∕year1∕4) 3 3 6
 Annual amplitude (mm) 2 2 3
 Semi-annual amplitude (mm) 1 1 2
 v (mm/year) 5 5 1
 y0 (mm) 10 10 10
 Offset magnitude (mm) [1–3] [1–3] [2–6]
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Table 2. In Case I, the coordinate components are treated 
individually using the univariate analysis. The covariance 
matrix of the series is composed of only white noise in 
this case. This is, however, not a realistic noise model 
because the simulated time series contain both white and 
flicker noise. Case II is similarly performed by the uni-
variate analysis, but the covariance matrix is considered 
to be realistic as it considers both white and flicker noise. 
Cases III and IV are similarly specified for the multivari-
ate analysis.

The data of the north, east and up components of a GPS 
station are simulated for 500 runs based on the parameter 
settings in Table 1. Under the above four cases, we imple-
ment the offset detection algorithm of the previous sec-
tion. The results are presented for Cases I and II (Fig. 2) 
and Cases III and IV (Fig. 3) within a 3-day window for 
the univariate and multivariate analyses, respectively. In 
the univariate analysis, the three coordinate components 
are treated individually for the north, east and up compo-
nent, whereas, in the multivariate analysis, the observation 
vector consists of three time series of the north, east and 

up components at the same time. A few observations are 
highlighted:

• The same significance level � = 0.001 was used in the 
hypothesis testing of all cases. An algorithm is said to 
be reliable if it identifies the correct positions of all 11 
offsets of the time series. False alarm (Type I error) and 
missed detection (Type II error) are two kinds of errors 
in the hypotheses testing. With the specified � , Cases 
II and IV, considering white plus flicker noise, identi-
fies more or less 11 offsets, although some of them are 
incorrect causing Type I error. This, however, does not 
hold for Cases I and III, consisting of only white noise, 
because they fail to stop after identifying 11 offsets. 
Our observations indicate that these two cases identify 
more than 20 offsets per time series, most of which are 
incorrect. This indicates that an even smaller � is to be 
set for Cases I and III to detect on average 11 offsets. 
Therefore, to make a fair comparison among all cases, 
we just analyze the first 11 detected offsets of each 
case.

• The right frames of Figs. 2 and 3, when compared with 
the left frames, indicate that the realistic noise model 
can significantly improve the offset detection proce-
dure. For the univariate analysis, Case II has higher 
detection ability compared with Case I (49 vs. 39%). A 
similar situation also holds for the multivariate analysis 
of Cases IV and III (87 vs. 71%). This indicates that 
ignoring the existing colored noise (e.g., flicker noise) 
of the time series leads to a sub-optimal offset detection 
method. Therefore, a realistic covariance matrix of time 
series has a direct impact on the results of the offset 
detection.

• Figure 3, when compared with Fig. 2, indicates that 
the multivariate analysis has higher detection ability 
than the univariate analysis. For the white noise model, 
the offset ability detection of Case III is much larger 
than that of Case I (71 vs. 39%). Similarly, Case IV 
has higher detection ability compared with Case II (87 
vs. 48%). The multivariate analysis has thus much bet-
ter performance than the univariate analysis. This is 
because in the multivariate analysis three coordinate 
time series contribute simultaneously in the offset 
detection procedure.

The above discussions indicate that a reliable offset 
detection method should take an appropriate noise model 
into consideration. For GPS position time series, the noise 
characteristics are described as a combination of white 
plus flicker noise (Zhang et al. 1997; Mao et al. 1999; 
Williams et al. 2004; Amiri-Simkooei et al. 2007). There-
fore, a reliable automatic method, prior to offset detec-
tion, should estimate the amplitudes of different noise 

Fig. 1  Typical example of synthetic time series with settings 
described in Table  1; offsets are at epochs 300, 600, …, 3300 days 
(vertical dashed lines)

Table 2  Four cases of offset detection: univariate vs. multivariate 
analysis; simple stochastic model vs. realistic stochastic model

Case Type of analysis Stochastic model

Univariate Multivariate White Flicker

I ✔ – ✔ –
II ✔ – ✔ ✔
III – ✔ ✔ –
IV – ✔ ✔ ✔
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components of the series. In addition, because an offset 
usually affects the three coordinate components of a sta-
tion simultaneously, a properly performed offset detec-
tion algorithm should take this advantage into account. 
The multivariate analysis can thus provide higher detec-
tion ability than the univariate analysis because it con-
siders the contribution of the simultaneous offsets of the 

three components. Figure 4 shows the scatter plot of the 
detected offsets on the 500 independent runs using the 
multivariate analysis vs. their true values at epochs 300, 
600, …, 3300 days. The bottom frame is less scattered 
than the top frame, and hence providing better results. 
This indicates, among all possibilities, the multivariate 
model with a proper noise model consisting of both white 

Fig. 2  Percentage histogram of correctly detected offsets within a 3-day window in univariate analysis of 500 independent runs for north (top 
row), east (middle row) and up (bottom row) components. Only white noise (left column), white noise plus flicker noise (right column)
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noise and flicker noise (Case IV) provides the best results. 
This is also what we can observe when comparing the dif-
ferent frames in Figs. 2 and 3.

Finally, to consider the overall performance of the solu-
tions, the true positive (TP), false positive (FP), and false 
negative (FN) counts are also computed within a 3-day 
window. A “True Positive” defines an offset that was 
originally simulated and also detected by the solution. A 
“False Positive” (type I error) refers to an offset that was 
not simulated, but it was reported to be present. Finally, 
an offset that was simulated but could not be detected is 

Fig. 3  Percentage histogram of correctly detected offsets within a 3-day window in multivariate analysis of 500 independent runs; Case III of 
only white noise (left), Case IV of white noise plus flicker noise (right)

Fig. 4  Scatter plot of detected offsets on 500 independent runs using 
multivariate analysis vs. their true values at epochs 300, 600, …, 
3300 days; White noise only (top), white noise plus flicker noise (bot-
tom)
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referred to as a “False Negative”, or type II error (Gazeaux 
et al. 2013). Figure 5 illustrates the percentages of the three 
variables TP, FP and FN by their position in an equilat-
eral triangle. The method has a perfect performance if it 
appears on the bottom right corner of the triangle. This 
indicates that the multivariate analysis with considering 
white and flicker noise has the best performance among 
other methods.

We now aim at investigating the efficacy of the solutions 
at small offsets. To this end, the offsets magnitudes were 
halved, i.e., 0.5–1.5 mm for horizontal components and 1–3 
mm for up component. The other settings remain the same 
as the first experiment, provided in Table 1. Table 3 gives 
the power of the correct detection of offsets over all synthetic 
time series having small offsets. Here again, the multivariate 
analysis has the higher detection power than the univariate 
analysis. Again, the realistic noise model can improve the 
offset detection procedure.

Finally, to investigate the performance of the solu-
tions in the presence of random walk noise, the synthetic 
GPS time series of the north, east and up components 
were simulated on 100 independent runs. Parameter set-
tings of simulated data sets employed in the functional 
model are provided in Table 1. The covariance matrix of 
the series, composed of white, flicker and random walk 
noise, is constructed based on the white and flicker noise 
amplitudes specified in Table 1. The random walk noise 
amplitude is considered to be 0.25 mm/year1/2 for the east 
and north components, and 0.75 mm/year1/2 for the up 
component; the average values are reported by Amiri-
Simkooei et al. (2017a). The offsets are then detected 
under four cases over three different stochastic models 
(WN, WN + FN and WN + FN + RWN). The results are 
provided in Table 4. The multivariate analysis has again 
higher detection power than the univariate analysis. Also, 
the realistic noise model can improve the offset detection 

procedure in both cases of the univariate and multivari-
ate analyses.

Concluding remarks

It is well known that the GPS position time series can be 
disrupted by offsets. Subsequently, the accuracy of the 
estimated parameters such as site velocities is degraded. 
Proper analysis of time series in general and a reliable off-
set detection method in particular are thus essential issues 
to be considered. To this end, one requires realistic and 
proper functional and stochastic models of the series. A 
proper functional model for the GPS position time series 
analysis includes a linear trend, periodic signals, probabil-
istic offsets, and blunders. A realistic stochastic model of 
the GPS position time series should best model the noise 
components of the data such as white noise and flicker 
noise. For this purpose, one may use the least squares vari-
ance component estimation (LS-VCE) to estimate the noise 
components.

We proposed a mathematical foundation for offset detec-
tion in the GPS time series, which can be applied to the uni-
variate or multivariate time series analyses. For this purpose, 
two hypotheses testing on two functional models were put 
forward. In the null hypothesis, we assumed that there is no 
offset, whereas in the alternative hypothesis there is at least 
one. The two functional models were compared by means 
of the statistical test, called the generalized likelihood ratio 
(GLR) test. Using the GLR test, one can decide between 
the original model under the null hypothesis (a model with-
out offset) and the extended model under the alternative 
hypothesis.

The performance of the multivariate time series analysis 
was compared with the univariate analysis through simu-
lated data sets. The results indicated that a proper selec-
tion of the noise components of the data has a significant 
impact on the correct detection of offsets. This indicates 
that ignoring the colored noise results in an inaccurate off-
set detection method. The results indicated that the mul-
tivariate analysis of the time series is more efficient than 
the univariate analysis for offset detection in the sense that 
the three coordinate components of north, east and up of a 
station simultaneously contributed in the offset detection 
procedure.

Table 3  Detection ability of the correct detection of offsets over all 
simulated offsets (in percent)

Case Multivariate Univariate 
(E)

Univariate 
(N)

Univariate 
(U)

WN + FN 31.6 15.9 13.5 12.8
WN 24.0 13.0 13.3 12.6

Table 4  Detection power (in 
percent) of simulated offsets 
over three different stochastic 
models

Case Multivariate Univariate (E) Univariate (N) Univariate (U)

WN + FN + RWN 47.1 23.5 26.7 18.3
WN + FN 27.6 18.5 20.6 12.0
WN 15.2 13.9 12.4 7.8
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