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ABSTRACT

Thermal barrier coatings (TBCs) are thermal insulation coatings which are utilized to protect
the underlying substrate from high temperature degradation. They consist of a refractory
ceramic top coat (TC) layer which is adhered to the substrate with the help of a metallic bond
coat (BC) layer. Upon prolonged exposure to thermal cycling, stresses are developed within
TBCs which lead to formation and growth of microcracks. Eventually, these cracks coalesce
and lead to spallation of the TBC which exposes the underlying material to a temperature it
cannot cope with. In order to arrest crack growth and increase the TBC lifetime or the number
of thermal cycles until spallation, researchers have proposed the inclusion of self-healing
particles within the TBC. Several finite element (FE) models have also been developed to study
the impact of microstructural parameters on the TBC lifetime with the help of numerical
simulations.

However, since the simulations are deterministic in nature, the FE methods are unable to take
into consideration the uncertainties in the microstructural design variables and knowing how
to cope with such uncertainties provides a scope for improving the reliability of simulation
outputs. In order to consider the uncertainties in input variables, a brute force approach such
as Monte Carlo simulation (MCS) can be utilized in which random sampling of the input
variable distribution is carried out using which the finite element simulations can be run.
However, since each simulation is computationally expensive, MCS tends to be inefficient. In
order to circumvent this, a surrogate model can be utilized which is calibrated based on a
limited number of runs of the underlying model and is able to emulate the original model in
a computationally inexpensive manner.

In this thesis, a 2D micromechanical model for a TBC containing discrete healing particles with
a known healing response is considered whose response to thermal cyclic behaviour has been
described using a cohesive-zone based crack healing model. Variables such as the TC/BC
interface amplitude, growth rate of thermally grown oxide layer at the TC/BC interface,
diameter and volume fraction of healing particles, and the mean distance of particles from
the TC/BC interface have been used to design the TBC FE model. A polynomial chaos
expansion based surrogate model is developed which considers uncertainties in the design
variables as inputs and the TBC lifetime as the output. The trained surrogate model has been
used to obtain the statistical characteristics of the TBC lifetime as well as the sensitivity indices
of the input variables.
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The TC/BC interface amplitude has been found to be the most significant contributor to
variance in the TBC lifetime, with the parameters describing the healing particles topology
displaying a relatively minor influence. An additional model has been developed which acts
as a surrogate to the TBC micromechanical model without any healing particles. A comparison
of the realizations of TBC lifetimes generated using the two developed surrogate models
indicates that the implementation of self-healing particles within the TBC domain increases
the expected value of TBC lifetime, however, it also leads to an increase in the scatter of
thermal fatigue life as compared with the benchmark case or the TBC model without healing
particles. The thesis also contains a side study on the optimal number of processors to be
used in parallel to minimize the total computing time.
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INTRODUCTION

In this introductory chapter, a brief overview of thermal barrier coatings is presented along
with the processing methods and the resulting microstructure. This is followed by a
description of potential causes of failure and the concepts behind self-healing thermal barrier
coatings. Towards the end of the chapter, an outline of the different micromechanical
modelling techniques as well as the concept of metamodeling are described. The chapter
ends with a brief description of the thesis structure.

1.1. THERMAL BARRIER COATINGS

Thermal barrier coatings (TBCs) are thermal insulation coatings that are utilized in high
temperature environments such as turbines, internal combustion engines and pyrochemical
processes in order to protect the underlying structural substrate from thermal degradation
and to improve the operating temperature range and thermodynamic efficiency [1]. In the
aerospace industry, TBCs play a prominent role since it is the most commonly used process
to protect jet turbine blades. Consequently, the safety and integrity of the turbines as well as
maintenance and reparation schedules strongly depend on the lifetime of these systems.

A typical TBC is composed of a bond coat (BC) and a top coat (TC). The TC s a refractory layer
made up of a ceramic material that should possess properties such as low thermal
conductivity, high melting point and a coefficient of thermal expansion similar to that of the
substrate [2]. It is usually made up of zirconia which is stabilized by 7-8wt % yttria [3] in order
to prevent unwanted volumetric changes due to phase transformation at temperatures
around 1150°C. The BC provides adhesion between the top coat and the metallic substrate as
well as acts as a sacrificial layer which prevents the oxidation of underlying substrate. It is
usually made up of Nickel-Chromium alloys such as NiCoCrAlY, NiCrAlY etc. At high operating
temperatures, the diffusion of oxygen occurs within the TBC and it reacts with the aluminium
component of the bond coat resulting in formation of a thermally grown oxide layer Al;03
(TGO) at the interface of BC and TC [4].
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One of the most important aspects that influence the performance of a TBC is its
microstructure. The TBC microstructure depends on the manufacturing methods, some of
which are atmospheric plasma spraying (APS), electron beam physical vapor deposition (EB-
PVD), suspension plasma spraying (SPS), plasma spray physical vapor deposition (PS-PVD) and
solution precursor plasma spraying (SPPS). APS and EB-PVD are the commonly used
manufacturing methods. However, the latter are incorporated in order to further tailor TBC
performance and durability by developing multi-layered and functionally graded structures
[2]. APS is one of the thermal spraying techniques that is being preferably used in industries
because of its operability in a wide range of process temperatures and also because it is
comparatively cheaper than other techniques.

In APS, the ceramic powdered feedstock is passed through the plasma plume which helps in
the transfer of thermal energy and momentum to the powder particles. These melted
particles then strike the surface of the substrate and solidify to form lamellar structures
referred to as splats. Over the period of deposition, these splats generate a structure
resembling a brick-wall. However, during this rapid process it is possible that the droplets do
not wet the substrate surface completely before solidifying, resulting in the formation of
interlamellar pores [5]. The presence of these pores helps in the reduction of the inherent
thermal conductivity of the TBC. In the case of EB-PVD, a columnar microstructure is
developed in the normal direction to the substrate. These coatings consist of intercolumnar
gaps which contribute towards the amount of porosity [6]. This vapour-based fabrication
technique results in lower contamination within the TBC and a good surface finish.

k ,-—r' e

100 umbe B

Figure 1.1: TBC micrographs generated by two deposition processes (a) EB-PVD (b) APS [7]



1.2. CAUSES OF FAILURE 3

The columnar microstructure is also known to develop strain tolerant coatings due to the fact
that there is lesser contact between different columns of the structure. This results in lower
elastic modulus which helps to improve the thermal shock resistance. Figure 1.1 indicates the
microstructural differences in the TBC system generated due to the different deposition
processes. These different microstructures affect the response of the TBC to the external
environment and hence the failure mechanisms. In case of the APS manufactured TBCs, the
final failure is considered to have occurred when spallation occurs by the debonding of
regions of the top coat from the bond coat. This exposes the area underneath the top coat to
the harsh environment which may later lead to catastrophic failure. A special feature of APS
produced TBCs is that due to the supersonic impact of TBC particles on the metallic substrate,
the metallic component loses its smooth surface and a rough interface develops. The
roughness of this interface has a strong effect on the lifetime [32]. The remainder of this thesis
deals with APS produced TBCs, which is currently the most commonly used system in industry.

1.2. CAUSES OF FAILURE

Several factors leading to cracking and failure of TBCs have been identified by researchers and
experimentalists such as residual stresses, mismatch of coefficient of thermal expansion (CTE)
between the bond coat/substrate and the bond coat/top coat, thermal fatigue and formation
of thermally grown oxide [1,8]. Residual stresses can be generated within the TBC during
manufacturing when the hot melted feedstock comes in contact with comparatively cooler
substrate or pre-existing splats.

Residual stresses can also be caused by the mismatch of CTE between the substrate and the
coating. This may lead to compressive or tensile stresses within the coating depending on
whether the CTE of the coating is lower or higher than that of the substrate. Compressive
residual stresses are favourable for crack closure while tensile stresses may lead to loss of
adhesion and delamination [9]. The formation of a thin TGO layer at the interface between
the top and bond coats results in compressive stresses that can affect the local stress field.
Residual stresses are generated within the TGO when the temperature drops during thermal
cycling. The TGO growth also leads to thermal expansion mismatch between the top
coat/TGO and TGO/bond coat. This mismatch can lead to formation of microcracks near the
interface zones. Propagation and coalescence of these microcracks may lead to delamination
and final failure [9].
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Another important cause of failure in TBCs is the phenomenon of sintering at high
temperatures (> 1200°C). Sintering leads to coalescence within the microstructural domain
which reduces the porosity and thus increases the thermal conductivity of the coating, which
may cause creep degradation at the inner layers. Sintering also causes stiffening of the coating
which can lead to dissimilar contractions between the coating and the substrate which would
eventually cause microcracks [10].

One of the other major contributors to failure in TBCs is the penetration of calcium-
magnesium-alumino-silicate (CMAS) volcanic dust particles into the top coat. At high
temperatures, these deposits melt and are able to infiltrate the top coat due to capillary effect
[11]. During the cooling phase of the thermal cycle, these deposits solidify and hence affect
the elastic modulus and the thermal conductivity of the coating. Also, there exists a difference
in thermal expansion coefficients between the deposited CMAS and the top coat material
which leads to differential response to thermal cycling and hence promotes formation of
microcracks.

1.3. SELF-HEALING THERMAL BARRIER COATINGS

In order to improve the operating lifetime of TBCs, researchers have investigated the
implementation of self-healing particles within the coatings [12-14]. One of the most widely
studied methods of incorporating self-healing properties in a TBC is to include encapsulated
healing agents within the top coat, which is the location where cracks typically appear in TBCs.
Once activated by a growing microcrack, they initiate a chemical reaction which fills the crack
and restores the mechanical integrity. Figure 1.2 illustrates the concept.

Self healing TBC

Top Coat
(TC)
e
— Bond
= Coat
(BC)

Healed cracks Thermally-
Grown
Oxide (TGO)

Figure 1.2: TBC healing mechanism in presence of cracks [15]
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The high temperature stability requirement of the components necessitates that the healing
agent should be solid yet still should be mobile enough to fill the generated cracks and inhibit
further crack propagation [16]. The healing agent cannot be liquid due to higher CTE which
would develop high strains during thermal cycling. After filling the crack, the healing agent
should also be able to solidify through chemical reactions with the surrounding matrix
material. One of the representative materials is molybdenum disilicide. When it reacts with
oxygen, it forms molybdenum trioxide and silica which is indicated by the following reaction:

2MoSi> (s) + 702 (g) - 2Mo0Os (g) + 4Si02 (1)

Thus, when a crack encounters a healing particle, the above reaction will take place. From the
reaction, it can be observed that for every mole of molybdenum disilicide, 2 moles of silica
are produced which is indicative of volume expansion. At the usual turbine operating
temperature, the silica is a viscous liquid which flows into the crack. Silica reacts with
surrounding zircon (ZrO;) and forms nanocrystalline zirconia (ZrSiO4) and the molybdenum
trioxide is emitted in gaseous form through the pores in the coating. Crack propagation is
arrested due to the fact that the produced zirconate mechanically connects both crack faces
and the material itself and is tougher than the YSZ top coat. The typical thickness values of
the TCand BC are 500 um and 200 um respectively, whereas the self-healing particles possess
a diameter ~ 10 um. It is preferred to deposit the healing particles near the TC/BC interface
where cracking and delamination predominantly occur due to mismatch in thermomechanical
properties of individual layers [13].

1.4. MODELLING THE FRACTURE BEHAVIOUR

Several techniques have been developed and implemented by researchers for simulation of
crack propagation behaviour through the TBC domain and other similar heterogeneous
media. Researchers have utilized techniques such as Cohesive Zone Modelling (CZM) [17-25],
Extended Finite Element Method (XFEM) [26-32] and the Virtual Crack Closure Technique
(VCCT) [33-35] for modelling and simulating the damage evolution. However, while using the
VCCT, an initial crack needs to be specified and also the path of crack propagation needs to
be defined before carrying out the simulation [36]. And in case of XFEM, it is difficult to
simulate the penetration of two different cracks towards a single element [37] as well as the
behaviour of cracks at an interface [36].

These difficulties can be overcome with the help of CZM and therefore this technique will be
utilized in the project. Although CZM presents several advantages over the other numerical
techniques, it results in computationally expensive simulations. For example, a cohesive zone
element based finite element model consisting of ~ 5 x 10° elements consumes a total of 40-
50 CPU hours on a high performance computing cluster.
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Also, finite element methods are deterministic as a result of which they are unable to take
into consideration the uncertainties in microstructural variables used for developing the finite
element model. Therefore, it becomes necessary to investigate the ways of quantifying
uncertainties in the variables used for micromechanical simulations and understand whether
the original finite element model can be substituted with a computationally inexpensive
input-output relationship or a metamodel.

1.5. SURROGATE MODELLING

Surrogate modelling or metamodeling is a technique using which an approximate model of
the original computational model is developed with the help of a limited number of runs of
the original model [38]. The constructed surrogate model is computationally inexpensive and
thus can be utilized for several number of runs which would not have been feasible for the
original model. This could thus help in robust designing of input parameters. Commonly
utilized surrogate models are Polynomial Chaos Expansion (PCE) and Gaussian Process (GP).
Even though both the approaches are comparable in terms of performance and accuracy, PCE
is preferred due to its ease of applicability and the underlying simplicity with which the
relative contribution of input parameters to the output response can be obtained [38].
Surrogate modelling approaches have been applied by researchers in various fields involving
complex and nonlinear model responses some of which include groundwater management
[39, 40], sheet metal forming [41, 42], computational fluid dynamics [43, 44], design of
composites [45, 46] and crack growth models [47, 48]. However, these metamodels which
help in reducing computational expense have not yet been implemented for optimal
designing of self-healing TBCs and modelling crack growth behaviour within the TBC domain.

Therefore, the thesis objective can be stated as follows: “To determine whether a surrogate
modelling approach can be utilized to predict the lifetime of self-healing thermal barrier
coatings by training a polynomial chaos expansion based metamodel with the help of limited
number of runs of the cohesive zone based numerical model.” If a sufficiently reliable
surrogate model can be generated, it might provide advantages such as strongly reduced
computational expense in prediction of lifetime, determination of sensitivity to
microstructural parameters, potential proposals to the manufacturing methods and hence
robust designing of self-healing thermal barrier coatings.
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1.6. THESIS ORGANIZATION

Chapter 2 introduces the relevant concepts of micromechanical modelling and the underlying
cohesive zone modelling theory, presents the concept of uncertainty quantification and
surrogate modelling along with a mathematical intuition behind polynomial chaos expansion
and discusses the link between micromechanical modelling and quantification of uncertainty
in input parameters. In Chapter 3, the computational framework for the thesis has been
presented along with the implemented procedure. The results and validation of the trained
surrogate model have been addressed in Chapter 4, along with a sensitivity analysis and the
supporting discussion. The conclusion and recommendations for prospective research work
are provided in Chapter 5.



1. INTRODUCTION




THEORETICAL BACKGROUND

The proposed research brings together the fields of micromechanical modelling and
metamodel-based uncertainty quantification. Section 2.1 introduces the concept of
micromechanical modelling with a focus on the cohesive zone theory. Section 2.2 describes
the idea of uncertainty quantification and surrogate modelling along with a mathematical
intuition behind polynomial chaos expansion. Section 2.3 attempts to link these two different
topics and provides the basic framework for the bridging and subsequent implementation.
Finally, Section 2.4 indicates the prospective variables for development of the surrogate
model, as proposed by the literature study.

2.1. INTRODUCTION TO MICROMECHANICAL MODELLING

A lot of research is being carried out in the field of micromechanical modelling of materials in
order to understand the effects of heterogeneous microstructures in composite materials on
the response to external stimuli. Basically, it involves the numerical modelling and analysis of
certain controlled volumes of material. Micromechanical modelling approaches are generally
classified into two categories: discrete and continuum models [49].

Discrete models are the ones in which a detailed simulation of the microstructural entities
such as different geometries and phases is carried out. Some of the examples of this approach
are particulate discrete element techniques, molecular dynamics and other numerical
methods which are based on the requirement of detailed finite element analyses of particular
heterogeneous features. As these models are computationally expensive and require
extensive numerical efforts, the domain of study is restricted to small time and length scales.

On the other hand, continuum models consist of continuous distribution fields which are
implemented along with constitutive relations and classical equations in order to obtain a
modified continuum theory. In other words, these models are able to describe the general
overall behaviour and do not focus on specific model heterogeneities.
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One of the widely used methods for micromechanical numerical analysis is the utilization of
a representative volume element (RVE) or a representative unit cell which consists of all the
microstructural heterogeneous features in the material and is able to summarize the overall
behaviour in terms of characteristics such as strength or fatigue life. The RVE is investigated
with the help of finite element analyses by incorporating the required boundary conditions in
order to understand its behaviour to applied stimuli and to project it to the overall material
domain.

2.1.1 MODELLING THE TBC DOMAIN

The TBC domain consists of a complex microstructure which is made up of the bond coat
layer, thermally grown oxide layer, top coat layer and also consists of features such as splats,
pores and microparticles in case of self-healing thermal barrier coatings. The most common
way of modelling the microstructure is with the help of a 2D representation in which the
roughness of the TC/TGO layer is represented in either a sinusoidal form or a semi-circular
form. This is because a 3D representation becomes computationally too expensive due to the
microscale complexities [50]. The representative volume element is generally modelled with
boundary conditions at either ends such as periodic boundary conditions [19, 24, 51] or
symmetry boundary conditions [50,52]. Some of the other techniques of taking into account
the intricacies of TBC domain are the use of random microstructure generation method [37]
for development of arbitrary morphologies or the utilization of experimentally obtained SEM
micrographs for post-processing and generation of finite element geometry [53].

2.1.2. THE COHESIVE ZONE METHOD

In accordance with the cohesive zone theory, cohesive elements are utilized in order to
describe the crack propagation within the material. These are zero thickness elements which
represent an interface and are indicative of the cohesive forces which occur when the
material interfaces are being separated during crack growth. When damage occurs, these
cohesive zone elements respond by opening and thus are able to simulate crack initiation and
crack propagation. In finite element simulations, cohesive elements are implemented within
the bulk material domain which is likely to be intersected by the simulated crack path. As a
result, the direction of crack growth is dependent on the availability of the cohesive elements.
These elements are in turn dependent on the amount of mesh refinement. A coarser mesh
would imply a smaller number of cohesive elements while a finer mesh would indicate the
presence of a greater number of cohesive elements. Thus, the material domain discretization
should be fine enough such that the direction of crack growth does not vary much with change
in mesh size [37].
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The element failure behaviour is described with the help of traction-separation laws. Once a
crack has been initiated, these laws describe the traction T across two crack surfaces as a
function of the distance §,, between them. Even though seemingly different forms of the
traction-separation laws exist such as the bilinear, exponential, trapezoidal, polynomial
forms, qualitatively they indicate a similar trend of traction variation. As the separation of the
cohesive surfaces increases, the traction initially increases until a maximum value is reached,
gradually starts to decrease and reaches zero when a threshold separation value §, has been
attained. Figure 2.1 represents the mode | bilinear traction-separation law.

(1 -D)K

Figure 2.1: Bilinear cohesive traction-separation law

The initial slope of the traction-separation curve ‘K’ indicates the artificial penalty stiffness
which is required to simulate a perfect bonding situation before onset of damage. ‘D’
represents the damage variable whose value lies between [0,1]. Its value for pure mode
loading for a particular separation § (where 6, < § < 6.) can be evaluated as follows:

_6:(8 = 8o)

=55, — 60) 20
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Thus, with the help of above relation, the stiffness degradation can be implemented when
the separation between crack surfaces increases above §,. It can be observed that a
relationship can be established between linear elastic fracture mechanics theory and the
cohesive zone model with the help of the traction-separation law in which the area under the
curve represents the fracture toughness G, [37].

2.2. UNCERTAINTY QUANTIFICATION AND SURROGATE MODELLING

Computational models and numerical methods have been developed in order to establish
relationships between structure, process and inherent structural properties which are
difficult to be expressed analytically. These models are often deterministic, and hence from a
given initial condition, will always produce the same response. As a result, it is assumed that
there is no involved randomness in the formation of the output and that the parameters of
the model can be deduced with absolute certainty. However, uncertainties in computer
simulations can arise due to various reasons such as lack of complete information about the
physical effects, incomplete parametrization of the model or having incomplete knowledge
of the system state which is to be simulated [54]. These uncertainties can be classified into
two groups: aleatoric and epistemic.

Aleatoric uncertainty is the one which results from inherent random variations in the quantity
and thus cannot be reduced. It is generally managed by representing the variability in the
form of probability distributions. For example, material microstructure and its resulting local
behaviour can be associated with this type of uncertainty. Generally, in order to adequately
guantify aleatoric uncertainty, identical instances of the studied system are extensively
sampled. On the other hand, epistemic uncertainty is the one which arises from inaccurate or
incomplete knowledge of the system which is being studied. As a result, it is reducible by
gathering more information about the system parameters. Uncertainties arising from
differing experimental conditions, human errors, calibration of measuring equipment or the
methods of designing experimental procedure can be associated with epistemic
uncertainties.

2.2.1. UNCERTAINTY QUANTIFICATION VS UNCERTAINTY PROPAGATION

Deterministic models consider only one of the several possible instances of the model
parameters and hence ignore the effects of uncertainties on the response. Therefore, in order
to support robust decision making, quantifying the model uncertainties and understanding
how they affect the response by propagating them through the model is necessary. Once the
uncertainties are identified or detected, they can be calibrated with the help of available data
and represented in the form of probability distributions.
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This calibration of the parameters is known as uncertainty quantification while the process of
forward propagation of the uncertainties through the levels of the model in order to predict
the response is known as uncertainty propagation. Uncertainty quantification and
propagation can indicate the degree of robustness of the system by describing how the
system responds to input variations, as indicated in Figure 2.2. This also helps in the design of
parameters by presenting values of the input in such a way that their variations have a certain
desired amount of effect on the output. Hence, uncertainty quantification can be regarded as
an inverse process in which the variations in model parameters are determined by analysing
the error between the mathematical model and some data which is available beforehand. As
an output, the process of uncertainty quantification is able to provide a representation of the
underlying parameters of the model in the form of multivariate probability distributions in
which the covariance matrix indicates the correlations between the parameters.

Output

Design Parameters

Figure 2.2: System output sensitivity with respect to input uncertainties [54]

Contrary to uncertainty quantification, the process of uncertainty propagation involves
forward analysis in which the input uncertainties are mapped through the computational
model in order to obtain the variations in the output. The most common method of carrying
this out is by using Monte Carlo sampling which involves random sampling of input
parameters and obtaining model outputs at these sampled points. However, models with high
complexity render the MC sampling procedure impractical and computationally expensive. In
order to reduce the computational effort, analytical techniques such as metamodeling or
surrogate models have been proposed which are able to approximate the original model with
functions which are easier to evaluate. Initially, a methodically chosen design of experiments
(DOE) has to be carried out for generating support points for the surrogate model. The output
values of the original model at these support points are obtained and then utilized to develop
the response surface of the metamodel. As a result, the process of predicting the output
values at points which were not considered in the DOE data collection scheme is simplified.
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2.2.2. POLYNOMIAL CHAOS EXPANSION

Chaos represents the unpredictability and resulting disorder in complex systems as a result of
lack of definitive information about the initial system conditions. Wiener [55] introduced the
term ‘homogeneous chaos’ in which a Gaussian process representing a homogeneous
dynamic system such as gas or liquid is characterized with the help of a generalized Fourier
series expansion of Hermite polynomials. Polynomial chaos is a part of homogeneous chaos
in which the states of the dynamic system were described with the help of polynomial
representations. In accordance with the Cameron-Martin theorem [56], the homogeneous
chaos converges to any processes which exhibit finite variance, as in the case of most physical
processes. In other words, it becomes possible to represent a stochastic process with the help
of a Fourier Hermite series expansion. A generalized Fourier series represents an expansion
which is based on a set of orthogonal polynomials. A sequence of polynomials P;, where i is
a non-negative integer, is termed as orthogonal within the interval [m, n] if it follows the
following:

m

Here, w represents the weight function, h; are constants and §;; is the Kronecker delta

Different classes of polynomials have different weight functions with respect to which they

are orthogonal within the specified interval. For example, the weight function in case of

%2

Hermite polynomials is e 2, to which they are orthogonal within the limits (—o0, ). In
agreement with the Cameron-Martin theorem, Xiu & Karniadakis [57] have demonstrated
that a chaos expansion based on Hermite polynomials has an optimal convergence rate to the
underlying stochastic process in case of a Gaussian process. Mathematically, this can be
understood from the attribute that the form of the probability density function for Gaussian
variables is same as that of the weight function for Hermite polynomials. They also observed
that for processes involving distributions other than the Gaussian, the convergence rate is
considerably slower.
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Extending the work of Wiener’s classical polynomial chaos, Xiu & Karniadakis introduced the
idea of using family of polynomials known as the Askey scheme, that are orthogonal with
respect to probability distributions following a non-Gaussian nature. The Askey scheme
provides different classes of polynomials for different distributions of random variables. For
instance, the Legendre polynomials are utilized in case of a uniform distribution, Jacobi
polynomials in case of a beta distribution, etc. [58]. Table 2.1 provides a summary of
orthogonal weight functions and polynomial classes for specific distributions of random
variables [59].

Distribution PDF POIZ;:;TIaI Weight function Interval
Gaussi S Hermit x ( )
aussian —e 2 ermite = —00, 00
V2m e 2
. 1
Uniform 2 Legendre 1 [—1,1]

(1-x0r'a-x)°

Beta
2v+8+1B(y + 1,6 + 1)

Jacobi (1-x)Y(1-x)° [—1,1]
Exponential e ™ Laguerre e ™ [0, o)

Table 2.1: Orthogonal polynomial classes for random variable types [59]

According to the classical polynomial chaos developed by Wiener, which is based on Hermite
polynomials, a general second-order stochastic process can be represented in the following
form [57]:

Y(x) = agH, + Z a; Hy (goil (x)) + Z Z a;, i, H, (9011 (x), @4, (X)) + -

i1=1 i1=1 i2=1

Here, H indicates the Hermite polynomials in terms of independent Gaussian input variables
(@i, ®i,» -, @i,). The above-mentioned expansion can also be represented in the following
form [60]:

R A (2.3)
i=0
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1//l.(<p) forms an orthogonal basis with respect to the joint probability density function of the
input random variables and is obtained by carrying out a tensor product of the univariate
orthogonal polynomials:

k .
v () = Hf}-aj (¢;) (2.4)
j=1

Here, a} represents the order of the univariate orthogonal polynomial P;. The above series

expansion is often truncated to a polynomial of order n since the response of the system

converges after a certain number of terms and consideration of additional terms does not

make any notable contribution towards the system response [46]. Hence, it also follows that
ki

0< Zj=1 aj <n.

Q-1

Y = Z yiv; (@) (2.5)
a=0
_ ettt (2.6)
" kin! '

Thus, the polynomial expansion is reduced to Q number of terms which is a function of the
number of input random variables k and the maximum order of the expansion n. Polynomial
chaos expansion is used for surrogate modelling in which it aims to approximate the response
of the original computationally expensive model. This can be done by calibrating the
surrogate model with the help of responses from the original model at certain number of
sampled points from the input vector space. This tendency of the surrogate model to fit the
response from the underlying original model is dependent on the computation of the
coefficients y;. As an example, Table 2.2 summarizes the types of Hermite polynomials for
different orders of PCE. Here, we shall consider k = 2 and n = 3, thus giving Q = 10 by using
Equation (2.6).
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i PCE order ith polynomial
0 n=20 1

1 n=1 ¢,

2 ¢,

3 n=2 ¢, —1

4 ¢, — 1

5 ¢,9,

6 n=23 ¢.° -3¢,
7 ¢,° — 3¢,
8 ¢,@," -1
9 6,," — 1

Table 2.2: Types of 2D Hermite polynomials

Figure 2.3 gives an idea about how the order of PCE affects the shapes of polynomial bases
which are used to approximate the underlying model for the case of two dimensional Hermite
polynomials. It can also be observed that a polynomial expansion generated with the help of
these basis functions is ideal for continuous functions in the considered variable distribution
domain but may not handle thresholds or abrupt changes too well.
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by= 0% -34, ¥, = 63-34,

¥,
=}

b= 6,(63-1) by = 6,002 - 1)

Figure 2.3: Set of 2D Hermite polynomials for PCE order = 3

Generally, the techniques used to compute the coefficients are divided into two classes:
intrusive and non-intrusive methods. As the name suggests, intrusive methods involve
modification of the original finite element code in which residual minimization has to be
carried out in the weak form of the mathematical model or the utilization of the Galerkin
approach. This weak form can be generated by projecting the original model on the
polynomial chaos basis function [61]. On the other hand, the non-intrusive methods do not
require alteration in the original deterministic finite element code. One of the widely used
non-intrusive techniques is the least squares approximation or the point collocation
approach. Once the sampling of input vector space is carried out, the sum of squares of
residuals between the output of the exact model and the approximated PCE model solution
is calculated [45].
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N Q-1
S =
=1

ACOEDIPAACH 27)
i=0

t i=

Equating the partial derivative of the above equation with respect to each of the coefficients
to zero and solving the resulting system of linear equations provides the required coefficients.

aS
—=0;i=01,..,0—-1 (2.8)
dy;

2.2.3. SAMPLING STRATEGIES

In order to train the PCE surrogate model, the original model needs to be evaluated at certain
number of sampled points from the design space of the input variables. Thus, it requires a
design of experiments for the generation of the trained data set [62]. Several experimental
design methods have been developed by researchers over the years which have been utilized
in order to obtain surrogate models for computer simulations. One of the earlier developed
sampling techniques is the 2k factorial design methodology. It is based on the “one factor at
a time” approach in which one of the input variables is varied while keeping the others fixed
and then observing the variation of the system response [63]. This process is then repeated
for all the variables in order to obtain the sensitivity of output response to each of the input
variables. As a result, this leads to high computational effort due to the requirement of large
number of simulations.

Another popular sampling strategy is the Monte Carlo sampling in which a sample value for
an input variable is randomly chosen while adhering to the probability distribution of the
input variable. Even though it has been known to be a robust experimental design approach,
Monte Carlo sampling is inefficient in practical terms due to the requirement of large sample
sizes for achieving space-filling characteristics within the input variable design space [62].
Additionally, if the sample sizes are not large enough, it is often observed that sample points
are close to each other and this clustering can lead to inaccuracies in approximation of the
original model. Quasi Monte Carlo sampling (QMCS) is an improvement over the traditional
Monte Carlo sampling (MCS) approach in which clustering of samples is avoided, thus
ensuring more uniformity of sample distribution within the design space. This technique is
also known to exhibit better convergence rate than that of MCS. However, it is generally
known to be best applied in case of uniformly distributed input variables [62].
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Latin Hypercube sampling is an experimental design approach which is known to circumvent
the issues exhibited by previously mentioned methods. It is inspired by the work of the
mathematician Leonhard Euler who developed the concept of the Latin Square while working
in the field of combinatorics. A Latin square consists of an m X m matrix which is filled with
m different entities. They are filled in a way such that each entity is present only once in each
row and each column [64]. This can be visualized in the example mentioned in Figure 2.4.
Similarly, Latin Hypercube sampling (LHS) consists of dividing the input variable space into
different levels and then choosing a representative value from each of the levels such that
the selected value occurs exactly once in each dimension. Thus, this method is also known as
the stratified sampling approach. LHS has been known to demonstrate the requirement of a
smaller number of sampled points for covering the design space as compared with other
sampling techniques. Dutta & Gandomi [62] have compared the error estimates of a surrogate
model developed using different sampling schemes and have demonstrated that LHS
possesses more desirable values for error in approximating the original model than that of
MCS and QMCS.

Figure 2.4: Latin square with four samples

Using LHS, it can be ensured that all sections within the ranges of input parameters are
represented while being computationally efficient [65]. The following steps summarize the
application of LHS to multivariate distributions [66]:

1. Divide the probability density function of each input variable into N non-overlapping
equiprobable intervals.

2. Randomly sample one value from each interval.

Repeat steps 1 and 2 for all input variables.

Randomly pair the N values acquired for each variable with the values obtained for

other variables.

> ow
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These sampled points can be used to train the surrogate model in order to obtain the
polynomial coefficients using least square approximation. However, it can be intuitively
understood that the number of points to be sampled will affect the accuracy and variance of
the surrogate model since these are the points at which the surrogate model will fit to the
underlying original model. Hosder et al. [67] studied the influence of number of sampled
points on the accuracy of the PCE. According to Equation (2.6), the number of coefficients Q
to be evaluated in the PCE model depend on the number of input random variables k and the
maximum order of the expansion n. Hosder et al. related the number of PCE coefficients with
the number of points to be sampled with a parameter known as the oversampling ratio n,,
[68] and suggested that a better approximation at each polynomial order can be obtained for
n, = 2.

number of sampled points

n, = 0

(2.9)

2.3. LINKING UNCERTAINTY QUANTIFICATION AND MICROMECHANICAL
MODELLING

Researchers have developed different numerical models in order to study the impact of
microstructural variables on crack growth behaviour in TBCs. However, in the numerical
analyses, the values for the variables have been kept unchanged for a particular set of
parametric simulations while the exact values and variations are not known. As a result, the
uncertainties within those parameters are not propagated through the finite element model
and thus the reliability of the model output cannot be definitively stated. In order to take
these uncertainties into account and provide a degree of confidence in the model outputs,
various uncertainty quantification and surrogate modelling techniques are being employed.

The basic procedure utilized to develop a framework for uncertainty quantification is
described in Figure 2.5. When surrogate modelling techniques are to be used in conjunction
with finite element models, the initial step is to obtain a mapping between the input system
variables and the computational model output. This relation is described with the help of a
black box model in which only the input-output correlation is considered and not the actual
intricacies of the associated function. This is indicated by the Step A in the figure. This is
followed by the definition of a stochastic model of the input variables with the help of
available information and expert understanding, as indicated by Step B. The individual
stochastic descriptions are used to generate a joint probability density function of the input
parameters. Then in Step C, the uncertainties in the input variables are propagated through
the underlying model in order to obtain the response of interest which is treated as a random
variable.
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Properties of the response such as its mean and standard deviation can be useful for analysis
and the determination of model output reliability. For example, in micromechanical modelling
of thermal barrier coatings, the response of interest could be the final crack size whereas the
input parameters could be the TGO growth rate, interface waviness as well as the strength of
the top coat. This is then followed by Step C’ in which sensitivity analyses can be carried out
in order to determine the relative contribution of input parameters towards the variation in
the output. As a result, the less contributing factors can be identified and then considered to
be deterministic in order to reduce the computational effort.

Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation
sources of uncertainty Assessment criteria
Random variables Computational model Distribution

Mean, std. deviation

Probability of failure

A

Step C’

Sensitivity analysis

Figure 2.5: General framework for uncertainty quantification [69]

2.4. VARIABLES FOR POLYNOMIAL CHAOS EXPANSION

The APS technique, which is to be taken as the production method to create the self-healing
TBCs to be analysed in this thesis, involves a feedstock powder which is fed into the plasma
jet, as a result of which it melts and gets deposited on the substrate. Several parameters exist
that influence the interplay between the plasma jet, the particles and the substrate. As a
result, they influence the structure and properties of the deposited coating. Some of these
parameters are the flow rate of plasma, amount of input energy, feedstock composition,
particle size, powder injection distance, substrate temperature, powder fraction etc. [70].
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Researchers have attempted to investigate the dependence of lifetime and failure of TBCs on
its microstructure which is in turn dependent on the method of manufacturing and the
processing parameters. However, due to the complexity of the manufacturing method and
process variables, it is difficult to accurately predict the relations between not only the
process and the microstructure but also the microstructure and properties of TBCs. More
insights on these relations will help in better characterization, designing and prediction of
reliability of TBCs. As a result, there exist uncertainties in the variables of the generated
microstructure which need to be quantified in order to determine their influence on TBC
durability and lifetime. We will now present the microstructural parameters experimentally
or computationally known to have an effect on the TBC lifetime for conventional and self-
healing TBCs.

2.4.1. INTERFACE AMPLITUDE

Researchers have studied the effects of top coat — bond coat interface geometry on the stress
distribution and crack growth behaviour within the TBC as well as on its lifetime with the help
of experiments and finite element simulations [71-73]. Eriksson et al. found that the
amplitude of the interface depends on the size of the powder particles used as feedstock in
the APS [71]. Therefore, an unpredictability in the size of powder particles could lead to an
uncertainty in the value of the amplitude. They also observed that the roughness parameter
attributed to the amplitude had a linear correlation with the TBC life. It was found that a ~50%
change in the amplitude value led to a ~70% change in TBC life. On the other hand, they also
observed that the equivalent wavelength of the interface profile was not correlated with the
TBC life.

2.4.2. GROWTH RATE OF THERMALLY GROWN OXIDE LAYER

Another potential source of uncertainty in the prediction of TBC durability is the growth rate
of thermally grown oxide (TGO) layer at the top coat — bond coat interface. Investigations
carried out by researchers have indicated how the TGO layer thickness influences the stress
redistribution and damage evolution within TBCs [74-77]. The growth of TGO layer occurs via
the diffusion of oxygen ions through the ceramic top coat towards the TC/BC interface. It is
difficult to accurately determine the oxygen flux since it depends on a number of parameters
such as the stress levels, chemistry and microstructure of the TBC, which also depend on the
spraying conditions during manufacturing [78]. Analysing the oxidation rates for a range of
commercial super alloy compositions, deposition conditions and processes, Lim & Meguid
have reconstructed the experimental upper and lower bounds for TGO growth rate at a dwell
temperature of 1100°C [74], as indicated in Figure 2.6(a).



2.4. VARIABLES FOR POLYNOMIAL CHAOS EXPANSION 25

1400 T

—=2 m
12 ‘ ‘ ‘ . ‘ B e ol
w—1=3.3 pm

[ ==——t=3.5um

— =4 ym

10

® o
S 2
ER)

$22,max (MPa)

m— Jpper bound
Lower bound | |

6.0 |-

TGO thickness [pm]

4.0

Crack length (jum)

o

200 400 600 800 1000 - ‘ ,
Thermal cycles 00 05 1.0

Time (min)

Figure 2.6(a) TGO growth with thermal cycles at dwell temperature = 1100°C [74],
(b) variation of vertical normal stress and crack length for different TGO thicknesses
during cooling [73]

Figure 2.6(b) describes the influence of varying TGO thicknesses on vertical normal stress in
the top coat and crack length during cooling period. It has also been demonstrated by Ogawa
& Nakano [79] that the quality of the TGO is also affected by the bond coating process. They
observed that the TGO growth rate is lower when the bond coat is cold-sprayed whereas it is
higher when the bond coat is sprayed using the low-pressure plasma spraying. Due to the
complex interplay between stress levels, TGO thicknesses and diffusion rates of oxygen
through the top coat, it becomes necessary to determine the sensitivity of stress distributions
and crack growth behaviour to uncertainty in TGO growth rates in order to design coating
lifetimes with allowable levels of variations in response to thermal cycling.

2.4.3. VOLUME FRACTION AND DIAMETER OF HEALING PARTICLES

In order to extend the lifetime of TBCs and also to reduce the rate of maintenance of
components, researchers have proposed the incorporation of MoSi; healing particles in TBCs.
However, implementing these healing particles in TBCs via APS, which is the most commonly
used TBC manufacturing method, becomes difficult due to the more severe processing
conditions involved. Also, there is a difference in melting points of the ceramic feedstock and
healing particles which poses difficulties in achieving the desired TBC configuration. Koch et
al. [83] have described an approach of manufacturing self-healing TBCs via APS by adjusting
some of the underlying processing parameters. They have shown that by injecting healing
particles at a certain offset from the point of injection of ceramic feedstock into the plasma
jet, it becomes possible to deposit both components homogeneously.



26 2. THEORETICAL BACKGROUND

This is because the plasma plume loses some of its energy while melting the ceramic feedstock
and as a result, the plasma temperature reduces before it encounters the healing particles.
However, despite being able to achieve a homogeneous distribution of healing particles
within the TBC, the researchers found that the final configuration consisted of a reduced
volume content of healing particles than desired (12% instead of the desired 20%). This can
be attributed to the complexities in controlling the processing conditions such as variations
in plasma jet temperature and velocity, differences in healing particle size, turbulence, mass
flow rate of plasma, etc. While the technology to accurately control the particle volume
fraction, particle size and average distance of particles from the TC/BC interface does not exist
yet, the influence of healing particles on TBC behaviour in response to thermal cycling has
been experimentally studied using spark plasma sintering process [80-82] and with the help
of micromechanical simulations [14, 53].

For a given region or a layer near the TC/BC interface for distribution of healing particles, the
volume fraction and size of healing particles determine the number of healing sites and
amount of healing material available for recovering damage due to cracks within the TBC. This
necessitates the prediction of the degree of influence which the variations in the healing
particle volume fraction and particle size have on the TBC response to thermal fatigue. Such
a study has not yet been carried out in the context of self-healing TBCs. However, in another
investigation related to self-healing composites, the research carried out by Lv & Chen
involves the study of self-healing efficiency of unhydrated cement nuclei in cementitious
matrix material [84]. They concluded that the volume fraction as well as the distribution of
particle size of cement nuclei are key factors affecting the self-healing efficiency. It was
observed that the rate of self-healing increases with increase in volume fraction of the cement
nuclei.

2.4.4. MEAN PARTICLE DISTANCE FROM THE TOP COAT-BOND COAT INTERFACE

Several experimental and numerical studies [70-73, 85] indicate that the TBC life is strongly
influenced by the stress fields close to the TC/BC interface, primarily due to the interface
roughness, growth of TGO layer as well as the mismatch in thermomechanical properties
between individual layers. Therefore, in order to achieve effective self-healing characteristics,
it is necessary that healing particles lie close to the interfacial region which is prone to
development of cracks and crack growth by coalescence. Research has also indicated that
inclusion of healing particles within TBCs affects the fracture patterns as compared with that
of a conventional TBC without healing particles [19]. Therefore, in order to predict the
response to these complexities, it is necessary to understand the TBC crack growth behaviour
and its lifetime as a function of uncertainty in mean particle distance from TC/BC interface
which can occur as a result of lack of clarity regarding the above-mentioned processing
parameters. The cracking and healing response of self-healing TBCs has been described in
more detail in Chapter 3.
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This chapter describes the overall computational framework adopted in the project along
with the implemented procedure. The approach is mainly divided into two parts: (a) obtaining
the lifetime of self-healing thermal barrier coatings in response to thermal cycling and (b)
using the obtained lifetime results as data points for training the surrogate model. A workflow
summarizing the general computational strategy has been provided at the end of the chapter.

3.1. EVALUATION OF SELF-HEALING TBC LIFETIME
3.1.1 TBC MICROMECHANICAL MODEL

The self-healing TBC micromechanical model developed by Krishnasamy et al. [14] has been
utilized in order to obtain the number of cycles to TBC failure as a consequence of exposure
to thermal cyclic behaviour. Figure 3.1 describes the representative element for the self-
healing TBC micromechanical model. A two-dimensional framework has been utilized to
model the unit cell under plane strain condition. It consists of the ceramic top coat (TC),
metallic bond coat (BC), thermally grown oxide (TGO) layer at the TC/BC interface and self-
healing particles. The roughness of the interface as well as the splat boundaries have been
modelled in the form of sinusoidal curves. The influence of the substrate has been taken into
account in the form of periodic boundary conditions for the displacement components d,, and
d,, at the left (L) and right (R) edges of the unit cell,

da}c? - dalé = (1 + Vsub)asubATW
d% — d = 0

Here, vg,, and agy,, represent the Poisson’s ratio and the coefficient of thermal expansion
values for the substrate, respectively. The width of the unit cell is indicated by w, whereas AT
is the change in temperature responsible for generation of thermal stresses. The above
boundary condition is based on the assumption of relatively higher thickness of the substrate
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as compared with that of the TBC as a result of which the contraction or expansion of the
substrate is imposed on the TBC. Representative values have been assigned to the
geometrical features where ttc = 500um, tgc = 200um and t = 15pum indicate the thicknesses
of the TC, BC and the splats respectively whereas the wavelength of the sinusoidal interface
curve has been assigned the value of 60um. The healing particles have been assumed to be
distributed near the TC/BC interface within a layer of thickness ty;,= 150um. The lengths of
the splats have been set in such a way that the overall aspect ratio is representative of an
APS-manufactured TBC [14,71,86].
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Figure 3.1: Unit cell for the self-healing TBC system

A MATLAB code has been utilized which takes the values of amplitude and wavelength of the
TC/BC interface, number of lamellae and TBC dimensions as inputs in order to generate the
TBC unit cell lattice [14,37]. Another MATLAB code has been developed which distributes the
healing particles within the TBC domain by taking inputs such as the diameter, volume
fraction of healing particles and the desired mean distance from the TC/BC interface. These
two programs are used in conjunction in order to develop the TBC CAD file which is ready to
be meshed. This CAD file consisting of the coordinates of TBC features is then uploaded to
GMSH [88] which provides a convenient way of meshing the domain.
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The region near the TC/BC interface encompassing the healing particles has been discretized
with a fine mesh having a size of 1um. This is because of the thermomechanical mismatch in
properties near the TC/BC interface and the presence of healing particles which cause stress
redistribution and eventually pave the way for initiation and propagation of cracks. On the
other hand, in order to reduce the computational expense, the rest of the TBC domain has
been discretized with a coarser mesh having a size of 2um.

Subsequently, GMSH outputs a file which is then utilized as input by a MATLAB code that
inserts cohesive elements throughout the mesh and assigns the loading and boundary
conditions as well as the material properties to different element sets. Finally, the file
generated by the MATLAB code is used as an input file in ABAQUS. Adding cohesive elements
throughout the TBC domain ensures that the crack initiation and propagation is arbitrary and
not dependent on the presence or absence of cohesive elements in specific regions of the
TBC domain. A domain convergence analysis has been carried out for different values of TBC
width w = 240um, 360um, 480um, 600um and 720um. It has been observed that the change
in the width normalized total crack size at failure is within 10% for w = 480um, 600um and
720um. Hence the TBC width has been assigned the value w = 480um for the rest of the
analyses.

3.1.2 CRACK HEALING MECHANISM

In order to describe the system behaviour in response to cracking and subsequent healing,
the cohesive zone based self-healing model developed by Ponnusami et al. [89] has been
utilized. This model is based on a bilinear traction-separation law which takes as inputs the
mode-| fracture energy and the normal fracture strength of the cohesive element material.
The incorporation of self-healing and recovery of fracture properties is simulated with the
help of a composite-based constitutive model in which the overall traction is described as a
weighted sum of traction components of the original material and the healing material. An
important advantage of the proposed model is the ability to simulate multiple and successive
cracking and healing events. The model has been incorporated into the framework of the
simulation in the form of an ABAQUS user-material subroutine.

3.1.3 SIMULATION OF TGO GROWTH

It is known that the exposure of TBCs to elevated temperature can lead to formation of
thermally grown oxide (TGO) layer at the TC/BC interface due to high temperature diffusion
of oxygen towards the metallic bond coat [14,74,90]. The TGO layer demonstrates higher
stiffness and lower thermal expansion coefficient as compared with other TBC layers and thus
can lead to thermomechanical mismatch stresses during thermal cycling.
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In order to simulate the growth of the TGO layer and its effects as a function of number of
thermal cycles, the above mentioned ABAQUS user-material subroutine utilizes a simplified
TGO layer growth framework. Experimentally determined isothermal TGO growth curves
depicting the thickness of the TGO as a function of number of thermal cycles [91,92] have
been utilized and the data have been fitted with a logarithmic function which can be used in
the subroutine in order to determine the TGO layer thickness as a function of number of
thermal cycles.

It has been assumed that the TGO growth occurs during the dwell phase or in the course of
exposure to elevated temperature. Additionally, an inward growth of the TGO has been
proposed. This has been simulated by an incremental replacement of the BC material with
TGO material. Therefore, the subroutine replaces the thermomechanical properties of the BC
layer by those of the TGO material as a function of number of thermal cycles. This implies a
presence of a mixture zone at the interface of the newly formed TGO layer and the existing
BC layer. The properties of the elements within the mixture zone have been assigned with the
help of a weighted average of the constitutive properties of the TGO and BC elements,

S = (DSTGO + (1 - G))SBC (31)

Here, S represents the thermoelastic parameters whereas w indicates the fraction of TGO
material in the element belonging to the mixture zone. The utilized subroutine implements
the incremental modification of properties by identifying the normal distance d. of a BC
element centroid from the sinusoidal TC/BC interface and then evaluates the constitutive
properties based on the value of w as follows,

O' dc > tTGO + tmix
1, d. <t
W = (o} TGO (32)
de — trco
— trgo < d¢ < trgo t tmix
mix

Here, ttgo represents the current TGO layer thickness and t,;x indicates the thickness of the
mixture zone which is equal to the size of an element at the interface between the TGO and
BC layers.
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3.1.4 MATERIAL PROPERTIES

The material properties assigned to different components of the TBC unit cell have been
summarized in Table 3.1, and have been adopted from Krishnasamy et al. [17,18,19]. For the
different TBC layers, a linear and isotropic thermoelastic response has been considered which
can be represented using the parameters such as the Young’s modulus E, thermal expansion
coefficient a and the Poisson’s ratio v, whereas the fracture behaviour can be described with
the help of the mode-I fracture energy G;. and the normal fracture strength o,,. Additionally,
the ratio between the mode-Il and mode-I properties has been defined using the parameter
y. In order to demonstrate the lower fracture properties of the healed material as compared
with the original undamaged material, the ratio of fracture properties of the healed material
and those of the TC material has been set to 0.75.

Component E (GPa) v a (10%1/°C) o, (MPa) G;. (N/mm) y

TC 80 0.15 12.5 150 0.006 4

BC 130 0.3 14.5 500 0.3 1
Healing

. 300 0.22 9.4 200 0.01 4
particle

TGO 380 0.15 7 380 0.04 4

Substrate 200 0.28 16.5 - - -

_ Splat - - ; 50 0.001 4
interface

Table 3.1: Summary of material properties [14]

3.1.5 MECHANISM OF HEALING ACTIVATION

In order to determine if the healing process has been activated due to a crack either reaching
or originating from a healing particle, a Python based script has been utilized which consists
of a crack tracking algorithm. This script is called at the end of every heating phase of a
thermal cycle with the help of the subroutine URDFIL from ABAQUS, which can be utilized to
access the results file at the end of an increment during an analysis [93]. Initially, the algorithm
determines if any cohesive elements that are in contact with a healing particle have opened
at the end of the heating phase. A cohesive element is considered as opened if it dissipates
at least 10% of its fracture energy.
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This criterion has been chosen based on simulations which were compared with experimental
solutions in order to calibrate material properties and simulation parameters [14]. After the
initial step, the algorithm identifies the failed cohesive elements that are in contact with the
previously identified cracked elements in order to determine the crack path as well as the
total cracked area. The value for the total cracked area is compared with the available healing
volume in the healing particle in order to update the available healing volume for the
subsequent steps.

3.1.6 ARTIFICIALLY ACCELERATED THERMAL CYCLING

Most of the applications of TBCs involve a typical thermal loading cycle consisting of three
distinct phases: heating, dwell and cooling. To this end, the simulation framework considers
a heating phase in which the temperature is increased from 30°C (nominal ambient
temperature) to 1100°C (test temperature). This is followed by the dwell phase in which the
TBC is exposed to constant elevated temperature of 1100°C. Finally, the cooling process
involves reduction of temperature from 1100°C to 30°C. It has been assumed that during the
dwell phase, the TBC system does not experience any thermomechanical stresses since the
elevated temperature is considered to be the coating deposition temperature. Consequently,
the cooling phase is responsible for the generation of thermomechanical stresses due to the
mismatch in thermal expansion coefficients between different components of the TBC
system.

Experimental results for determination of TBC lifetime indicate that in general the lifetime is
of the order of several hundred thermal cycles. However, since it is computationally expensive
to simulate the crack initiation and growth to failure considering the modelling parameters,
the self-healing TBC model considers an accelerated thermal loading state. In order to
alleviate the computational cost while capturing the cyclic damage and healing, an artificially
accelerated TGO growth has been considered where one simulated cycle represents the TGO
growth of 25 actual cycles. The logarithmic curve used to fit the experimentally obtained TGO
growth results as a function of actual and accelerated thermal cycles can be observed in
Figure 3.2. In this way, the considered self-healing TBC model explicitly models the thermal
cycles by considering uniform temperature distribution. The effects of the rates of heating
and cooling are not considered as the micromechanical model used is essentially a static
model. Also, the material properties are taken to be temperature and time-independent.
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Figure 3.2: Calibrated TGO growth as a function of number of thermal cycles [14,92]

Complete failure of the TBC system is considered to have taken place when 90% of the TC
layer has separated from the TC/BC interface or the TGO layer. For the purpose of post-
processing, a Python script has been utilized which accesses the output database that is
generated during the simulation. This script identifies the coordinates of the cracked and
healed elements for each step of the thermal cyclic loading. A MATLAB code has been
developed which reads the data consisting of the coordinates and provides the total crack
length, length of the largest continuous crack and number of cracks as a function of number
of computational thermal cycles as well as the TBC crack patterns at failure. An example of an
output for the same can be observed in Figure 3.3. In Figure 3.3(b), the healed cracks are
plotted in blue whereas the red colour indicates the active cracks.
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3.2. TRAINING THE SURROGATE MODEL

3.2.1 INPUT VARIABLE DISTRIBUTIONS

In order to develop a surrogate model for the computationally expensive numerical
simulations, the number of computational thermal cycles to failure is considered to be the
quantity of interest. As identified in Section 2.4, the input parameters for the polynomial
chaos expansion (PCE) are the TC/BC interface amplitude, the TGO growth rate, mean
distance of healing particles from the TC/BC interface and the volume fraction and diameter
of healing particles. For the purpose of developing the PCE based surrogate model, the first
step is to obtain the orthogonal polynomials with the help of the joint probability distribution
of the input parameters. The joint probability distribution can be derived by defining the
individual input variable distributions, which in turn can be decided based on experimental
observations, existing information and expert understanding [69]. The growth rate of TGO
thickness as a function of number of thermal cycles has been quantified with the help of a
multiplying coefficient in the logarithmic function used to fit the experimentally obtained
results. Figure 3.4 gives an example of how varying the multiplying coefficient helps to modify
TGO growth rate.
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Figure 3.4: Variation of TGO growth rate
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In order to observe the impact of the variation of the interface amplitude, a uniform
distribution of values with bounds [15,25] um is considered based on finite element
simulations [71-73] and the design rules as developed in the SAMBA project [109]. The
multiplying coefficient of TGO growth rate has been assumed to vary uniformly between
[2.5,3]. This distribution has been decided with the help of prior simulations which were
carried out for a range of TGO growth rate coefficient values in order to determine the
viability of duration of simulations for the available computational resources. A normal
distribution is proposed for the volume fraction of healing particles with a mean value and
standard deviation of 7.5% and 1% respectively. For the purpose of determining the sensitivity
of TBC lifetime to diameter of healing particles, the diameter value is varied uniformly
between the bounds [10,20] um. The value for the mean distance of healing particles from
the TC/BC interface has been distributed uniformly between [45,80] um such that the healing
particles encompass the entire healing layer thickness for the considered range of volume
fraction and diameter of healing particles. The input variable distributions considered in the
project have been summarized in Table 3.2.

Input variable Unit Distribution
Interface amplitude pum Uniform ~ [15, 25]
TGO growth coefficient - Uniform ~ [2.5,3.0]
Volume fraction of healing particles % Normal ~ (7.51)
Diameter of healing particles pm Uniform ~ [10, 20]
Mean particle distance pum Uniform ~ [45,80]

Table 3.2: Statistical characteristics of uncertain input parameters
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3.2.2 SELECTING THE ORDER OF POLYNOMIAL CHAOS EXPANSION

In order to develop and train the surrogate model, Chaospy has been utilized, which is a
Python-based toolbox used for uncertainty quantification using polynomial chaos expansion
[94]. It can be used to generate random input variable distributions, obtain orthogonal
polynomials, derive samples from the defined distributions as well as generate useful
statistical metrics. Chaospy has been employed to obtain the joint probability distribution
function by defining the input variable distributions as described in Table 3.2. Obtaining the
orthogonal polynomial basis from the joint probability distribution function requires the prior
definition of the PCE order. It has been observed that there are no specific guidelines to set a
particular order since the optimum order may vary in different underlying models [45]. For a
specific number of input variables and an oversampling ratio, the chosen PCE order also
affects the number of samples to be generated for training the surrogate model as indicated
by Equation (2.6). Table 3.3 employs this equation and gives an idea about the number of
samples required for a PCE order n and number of input variables k for an oversampling ratio
of 2.

L 2 3 4 5 6
1 4 6 8 10 | 12 | 14
2 6 12 | 20 | 30 | 4 | s6
3 8 20 | 40 | 70 | 112 | 168

Table 3.3: Variation of number of sampling points with PCE order (n) and number of input
variables (k)

Since each sampling point corresponds to a computationally expensive simulation, a trade-
off between available computational resources and the accuracy of surrogate model is
required in order to decide the PCE order. For the present work, a PCE order n=2 has been
chosen such that it satisfies the computational constraints and is also able to capture the
possible non-linearities in the response of the underlying model as well as the interactions
between the input variables. It has also been observed in literature that a second-order PCE
is able to demonstrate sufficient accuracy in determining the mean and standard deviation of
the response whereas a higher order might be required in order to accurately determine
higher order statistical moments such as skewness and kurtosis [95].
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3.2.3 GENERATION OF SAMPLING POINTS

Once the input variable distributions and the PCE order have been defined, Chaospy can be
utilized to obtain the joint probability distribution of the variables, which consequently serves
two purposes. Firstly, it can be used to obtain the orthogonal polynomial basis. Secondly, it
can be used to sample points from the input variable distribution space which will be utilized
by the finite element model in order to provide the TBC lifetimes. Hence, for a PCE of
ordern = 2 and number of input variables k = 5, it can be observed from Table 3.3 that a
total of 42 samples are required. These samples can be generated from the joint distribution
of input variables with the help of Latin hypercube sampling (LHS). This is a sampling approach
which is able to encompass the input design space and hence it provides representative
samples from the entire stratification of variables.

Each sample point corresponds to a particular value of the TC/BC interface amplitude, TGO
growth rate coefficient, volume fraction and diameter of healing particles as well as the mean
distance of healing particles from the TC/BC interface. The value of the interface amplitude
can be varied within the MATLAB code which is used for geometry generation whereas the
TGO growth rate coefficient can be modified within the user subroutine before submitting
the job for finite element simulation. Additionally, a MATLAB code has also been developed
which provides the distribution of healing particles for a desired value of mean distance from
the TC/BC interface by taking the volume fraction and diameter of healing particles as inputs.

3.2.4 POST-PROCESSING OF THE SURROGATE MODEL

Once the quantity of interest, being the TBC lifetime, has been obtained for each of the
samples, the vector of TBC lifetimes can be used to train the surrogate model and obtain the
PCE coefficients. The surrogate model can then be utilized in conjunction with Monte Carlo
simulation in order to obtain the probability density function as well as statistical
characteristics such as the expected value and standard deviation of the TBC lifetime. A
Python script has been developed which provides the above-mentioned statistical outputs.
The trained model can also be used to obtain the sensitivity indices which indicate the
contribution of individual input variables to the variance in TBC lifetime. The prediction
accuracy of the surrogate model can be determined with the help of techniques such as leave-
one-out cross validation [96] or k-fold cross validation for which scripts have been developed
which utilize the scikit-learn package in Python [97]. Figure 3.5 provides the workflow of the
overall computational procedure implemented in the project.
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RESULTS AND DISCUSSION

This chapter provides the characteristics of the trained PCE-based surrogate model. Initially,
the ability of the model to fit the actual data has been described with the help of a residual
plot. This is followed by a validation of the predictive performance of the model. The trained
model has also been compared with another PCE model having order = 1 in order to
demonstrate the relative prediction capabilities. A sensitivity plot has been provided which
compares the impact of each of the considered input variables on the variation in TBC lifetime.
An additional surrogate model is developed for the case of the benchmark TBC without
healing particles in order to make a comparison with the surrogate model developed for TBC
with healing particles and determine the effect of use of self-healing particles on the expected
value of TBC lifetime and the underlying scatter in thermal fatigue life.

4.1. RESIDUAL PLOT

TBC lifetime results are obtained by carrying out finite element simulations at the sampled
points. These data points are utilized to train the surrogate model as a consequence of which
the PCE coefficients are derived. In order to determine how well the trained model fits the
actual data points and to have an indication regarding the quality of fit, a residual plot is
presented in Figure 4.1. In this plot, the X-axis consists of the actual data points whereas the
corresponding Y-coordinates indicate the residual or the error between the actual values and
those produced by the surrogate model. The residual plot can be utilized for two purposes.
Firstly, it indicates the goodness of fit that can be achieved with the trained model. Secondly,
it describes whether the variation in the output can be explained by the input variables. For
instance, if there exists an observable trend or non-randomness in the residuals then this
implies that the input variables are not sufficient to describe the variation in the output. As a
result, this calls for improvement in the model. However, the obtained plot indicates that the
residual data points are scattered randomly around the zero line which supports the validity
of the trained model [98, 99].
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Figure 4.1: Residual plot for the surrogate model

Additionally, the quality of fit can also be assessed with the help of the coefficient of
determination R2. Consider a model Y whose limited number of runs on the sampled points
S = (5(1),5(2),5(3), ...S(N)) can be used to train the surrogate model Y. Here, s® represents
a particular value for each of the considered input variables. The training error can be defined
in the following manner [100]:

N
Erfian = ) (Y(s©) ~ P(s©)) (.)

i=1

The coefficient of determination can be defined as follows:

RZ—1— % (4.2)

Here, V represents the variance observed in the responses of the trained surrogate model.
However, as the cardinality or the number of terms in the PCE (Q) increases, the number of
sampled points (N) also increases which can lead to overfitting of the model to the actual
data points.
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This phenomenon can lead to increased prediction errors while using the surrogate model on
new data. In order to take this into account, the coefficient of determination can be modified
and adjusted to the number of PCE coefficients (Q) as follows [45]:

2 N -1

adjusted = 1= (N——Q—l) (1-R?) (4.3)

The following results have been obtained for the trained surrogate model:

R? =0.97

Rczldjusted = 0.94

From the obtained value of the adjusted coefficient of determination, it can be observed that
despite the underlying complexities and non-linearities in the self-healing TBC model, the
surrogate model is able to fit well to the actual data points. However, it has been observed
that the adjusted coefficient of determination overpredicts the accuracy of approximation
[101]. Also, evaluation of residuals and the quality of fit does not indicate how well the trained
model will perform on new data or unseen sample points.

4.2. LEAVE-ONE-OUT CROSS VALIDATION

In order to determine the predictive performance of the surrogate model, Leave-one-out
(LOO) cross validation technique has been implemented. According to this method, initially a
surrogate model Y9 is built by training it on all but the i sample point. This metamodel is
then used to predict the value of the original model Y at the i™" observation and the
prediction error is evaluated:

AD = y(s®) = P (s0) (4.4)

This process is repeated for all the sample points and the predicted residual sum of squares
[100] or the leave-one-out cross validation error is calculated as follows:

N
1 2
ET‘TLOO = NZ A(l) (4'5)
i=1

The LOOCYV algorithm has been represented in Figure 4.2.
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Figure 4.2: Leave-one-out cross validation process

In order to visualize the advantages of developing a surrogate model with a PCE order = 2, the
current model (Y) has been compared with a model developed using a PCE order = 1 (¥}).
Initially, LOOCV error has been evaluated for the model 71 considering the same sample
points that were utilized for training the model Y. The following results have been obtained:

Erry00(Y) = 289

Errpo(Vh) = 41.2

However, it can be observed from Table 3.3 that for an oversampling ratio = 2, the number of
sample points required for a PCE order = 1 and number of input variables = 5 is 12. Hence, as
an additional verification step, 12 samples have been chosen at random from the initial
sample space and LOOCV has been performed for those 12 samples. This process is repeated
until the entire initial sample space has been represented for the case of PCE order = 1. Finally,
the mean LOOCYV error has been evaluated.

Mean Erryp0(Y,) = 62.3

From the above results, it can be observed that a surrogate model developed with a PCE order
= 2 demonstrates a better predictive performance than the one developed with a PCE order
=1.
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4.3. TRAINED SURROGATE MODEL

Equation 4.6 states the final polynomial function derived capturing the direct and coupled
dependencies of the lifetime on model parameters.

Y = 470.53 +13.73x5 — 1.56x5% — 1.19x, + 0.01x,x5 + 0.01x,% — 8.02x5
—3.75x3%5 + 0.05x3x, + 0.27x32 + 23.44x, — 9.63x,x5 — 0.01x,x, + 0.12x,x3

+0.79x,% — 38.14x; + 4.78x,x5 — 0.01x;x4 + 0.27x; x5 — 0.46x,x, + 0.53x,2
.. (4.6)

In the above equation, Y represents the TBC lifetime in number of computational thermal
cycles. The input terms are summarized along with their respective considered distributions
as follows:

x; = TC/BCinterface amplitude Uniform ~ [15,25] um
x, = Healing particle volume fraction Normal ~(7.5,1) %
x3 = Healing particle diameter Uniform ~ [10,20] um
X, = Mean distance of healing particles from TC/BC interface  Uniform ~ [45,80] um
xs = TGO growth coefficient Uniform ~ [2.5,3]

This equation represents the surrogate model generated using the orthogonal polynomials
derived from the Askey scheme of polynomials [57, 58]. The coefficients in the model have
been obtained with the help of the method of least squares. This method utilizes the finite
element model responses at the sampling points obtained using Latin hypercube sampling.
This trained model can be used in conjunction with Monte Carlo sampling in order to derive
the probability density function of the self-healing TBC lifetime. It can also be used to observe
the relative impact of each of the input variables on the variation in the output or the
sensitivity indices. Additionally, after determination of the most sensitive input variables, the
surrogate model can be helpful to obtain the statistical characteristics of the variation of TBC
lifetime as a function of the sensitive variable while the uncertainties in the remaining
variables are propagated through the surrogate model. This implies that controlling the value
of the sensitive variables while designing the self-healing TBCs will help in the determination
of the reliability of the surrogate model output in the form of standard deviations.
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4.4, SENSITIVITY ANALYSIS

In order to obtain the relative contribution of each input variable to the output variance, a
sensitivity analysis can be carried out using the trained surrogate model. A commonly utilized
approach to evaluate sensitivity indices is Sobol’s method. Using this method, the output
variance is decomposed into contributions associated with each of the input variables.
Suppose the output Y is a function of input variables (X;,X;, X3 ... Xy). To calculate the
sensitivity index of X;, the method proposes initially fixing the variable at a particular value
(X; = ¢;) and then calculating the change in output variance or the conditional variance:

Vi (Y[X; = ¢;)

Here, the output variance Vy_; is calculated by considering the uncertainties in all but the it"
input variable. Since X; also depicts uncertainty in terms of a distribution of values, a mean of
the above-mentioned conditional variance is evaluated over the distribution of X; in order to
obtain the expected value:

E[Vy;(Y[X;)]

Since the conditional variance is calculated over all the input variables other than X;, it can be
understood that smaller the expected value of the conditional variance, more sensitive is the
output response to changes in X;. Also, according to the law of total variance [102],

V(Y) = E[V(Y|X)] + V(E[Y|X])

Therefore,

V(Y) = E[Vx~; (Y[X)] + V(Ex-;[Y]X;]) (4.7)

Dividing both sides of the equation by V(Y),

_E[Ve (YIX)] | V(Ex-i[Y]Xi])
B V(Y) V(Y)

(4.8)
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The second term on the RHS of Equation (4.8) is defined as the first order sensitivity index
which is representative of the influence on the output variance of each input variable taken
alone [95]. The Chaospy module in Python also provides the total sensitivity indices which
include the possible interactions of input variables and hence their joint effect towards the
output variance. Figure 4.3 provides a summary of the obtained sensitivity indices.
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Figure 4.3: Sensitivity indices

It can be observed that the TC/BC interface amplitude is the main contributor towards the
variance in TBC lifetime. This implies that relatively small changes in the value of the
amplitude will result in a high change in the TBC lifetime. In order to observe how the output
variance depends on the input variable sensitivity, Figure 4.4 provides the probability density
functions developed using the TBC lifetime responses from the surrogate model. Two
scenarios have been compared. The first one considers the uncertainties in all the input
variables and hence provides a general response PDF. In the second case, the input variable
having the highest sensitivity index or the interface amplitude has been fixed at its mean value
while the uncertainties in the rest of input variables have been taken into account.
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Figure 4.4: Influence of fixing the input variable with the highest sensitivity index

In order to compare the degree of variance in the two scenarios, the coefficient of variation
(COV) [45] has been calculated for both cases. COV is also known as the relative standard
deviation which is defined as the ratio of the standard deviation to the mean value. COV for
the first case has been found out to be 45% whereas the second case describes a COV of 22%.
Since the interface amplitude value is the most significant contributor to the output variance,
fixing its value reduces the dispersion in the TBC lifetime response. This implies that

incorporating focussed attempts to control the interface amplitude value will help to increase
the reliability of TBC lifetime results.

4.5. UNCERTAINTY PROPAGATION PLOTS

In order to visualize how the output changes while a particular input variable is controlled,
the variation in TBC lifetime is plotted in Figure 4.5 as a function of each variable X; while the

uncertainties in the remaining input variables X._; have been propagated through the
surrogate model.
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The above of set of figures represents the trend of the response surface generated using the
Askey scheme of polynomials as mentioned in Table 2.1 with respect to each of the input
variables. Figure 4.5(a) confirms the result from Figure 4.3 that the TBC lifetime varies the
most with changes in the interface amplitude value. It also indicates that a decrease in
interface amplitude value will lead to a gain in TBC lifetime. This observation has also been
made by several researchers who have carried out two-dimensional as well as three-
dimensional finite element studies to understand the impact of roughness or the TC/BC
interface topography on damage growth and lifetime of TBCs. Studies have indicated that an
increase in the value of interfacial waviness or roughness leads to increased magnitude of
stresses at the TC/TGO and TGO/BC interfaces as well as the TC layer, thus affecting the
fatigue life of TBCs [104, 105]. It has also been observed that the development of damage as
a result of thermal cycling is directly proportional to the interface roughness values [87]. This
implies that in order to predict the TBC lifetime, special efforts need to be taken while
measuring the value of interface amplitude. Additionally, focus should be given upon
controlling the feedstock powder size during manufacturing of TBCs to obtain a desirable
value of interface amplitude.
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Figure 4.5(b) describes the variation of TBC lifetime as a function of the TGO growth
coefficient. It can be observed that the expected value of TBC lifetime reduces with an
increase in the TGO growth coefficient value. Experimental studies have indicated that the
fracture toughness of the TGO reduces with progression of thermal cycles which paves the
way for easier crack growth and coalescence [106]. As this reduction in fracture toughness
will occur at a higher rate for a higher rate of TGO growth, the number of cycles required for
delamination will reduce, consequently reducing the TBC lifetime. Investigations have also
indicated the effects of TGO thickness values on stress redistribution and damage growth in
TBCs [74-77]. Thus, efforts can be implemented in order to reduce the TGO growth rate. It
has been observed that the TGO growth rate can be controlled by modifying the BC
manufacturing process [79] or by carrying out a pretreatment of the BC which constrains the
initiation and growth of cracks between the TC and TGO layers [107].

Figures 4.5(c), (d) and (e) also agree with the obtained sensitivity indices in such a way that
there exists less variation in TBC lifetime across the considered ranges of healing particle
diameter, particle volume fraction and the particle mean distance from TC/BC interface
respectively. This indicates that for the considered ranges of the values of variables associated
with healing particles, controlling the manufacturing process may not yield tangible benefits
in prediction of TBC lifetime. Instead, the number of available healing sites, which is derived
from the combination of the three above-mentioned variables, determines whether a
growing crack will be arrested and healed, thus resulting in a subsequent extension of TBC
lifetime as compared with the TBC without any healing particles. Although the mean distance
of healing particles from the TC/BC interface does not seem to contribute towards the
variance in TBC lifetime, it does potentially affect the damage growth characteristics. Figure
4.6 compares two cases: one in which the mean distance value is near the lower end of its
considered range and the other in which it is towards the higher end. Two representative
samples from the simulation sample space have been considered for each of the two cases.
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Figure 4.6: Comparison of crack growth behaviour for different values of particle
mean distance

It can be observed from Figure 4.6(a) that for a lower value of mean distance, the rate of crack
growth after the first cycle is fairly constant until catastrophic failure occurs. On the other
hand, Figure 4.6(b) indicates that for a higher value of mean distance, the crack growth rate
initially increases and stabilizes towards the end until the final failure occurs. This could be
attributed to the increased number of available healing sites near the TC/BC interface in case
(a), resulting in steady crack growth, whereas a reduced number of healing sites near the
TC/BC interface in case (b), resulting in an increasing initial crack growth rate until the total
crack length is large enough to encounter multiple healing sites which stabilizes the rate of
crack growth.

4.6. COMPARISON WITH THE BENCHMARK TBC

In order to estimate how the use of self-healing particles in TBCs affects the expected lifetime
and the underlying scatter as compared with the case of the conventional TBC without any
healing particles, a second PCE based surrogate model is developed with the same procedure
as described in Figure 3.5. This surrogate model considers the TC/BC interface amplitude and
TGO growth rate as the input uncertain variables which are defined over the same respective
distributions as that in the surrogate model developed for the self-healing TBC. Equation 4.9
describes the surrogate model developed for the benchmark case.
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Voenchmark = 21542 —77.40x, + 11.65x,% — 7.94x, + 0.61x,x, + 0.11x,2 .. (4.9)

In the above equation, Y, encnmark FePresents the lifetime of the benchmark TBC in number of
computational thermal cycles. The input variables and their respective distributions have
been summarized as follows:

x; = TC/BCinterface amplitude Uniform ~ [15,25] um
x, = TGO growth coefficient Uniform ~ [2.5,3]

In order to evaluate the surrogate model’s goodness of fit and its predictive performance, the
adjusted coefficient of determination and leave-one-out cross validation error are calculated:

Rcztdjusted =0.99
ETTLOO = 091

Equation 4.9 has been utilized to acquire the distribution of lifetime for the benchmark TBC.
Figure 4.7 compares the box plots which are generated using the lifetime realizations of the
surrogate models generated for the benchmark TBC and the self-healing TBC.
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Figure 4.7: Box plot comparison of the lifetime realizations of two surrogate models
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It has been found that the surrogate model for the benchmark case provides a mean lifetime
value of 13 computational thermal cycles while describing a coefficient of variation (COV) of
35 %. On the other hand, the surrogate model for the self-healing TBC depicts a mean lifetime
value of 29 computational thermal cycles and a COV = 45 %. This indicates that for the
considered range of values of the input variables, the use of self-healing particles helps to
improve the expected TBC lifetime value but at the same time leads to increased scatter in
the thermal fatigue life as compared with the benchmark TBC without any healing particles.
This observation regarding the increased scatter in lifetime could potentially be attributed to
the random distribution and inherent variations in the individual positions of the healing sites
within the self-healing TBC. Additionally, the coupled effects of the considered input variables
might affect the TBC lifetime, thus contributing to the scatter.
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CONCLUSION AND
RECOMMENDATIONS

Surrogate modelling techniques provide an efficient way of approximating complex and
deterministic numerical frameworks. These models are able to take into account the
uncertainties in the input variables that are used to design the underlying framework in order
to deliver reliable and computationally inexpensive results.

In this thesis, a surrogate model based on polynomial chaos expansion (PCE) has been
developed in order to predict the fatigue lifetime of self-healing thermal barrier coatings
(TBCs) exposed to thermal cycling. A two-dimensional TBC micromechanical model is
considered in which the response to thermal cyclic effects has been described with the help
of a cohesive-zone based crack healing model (Ponnusami et al. [89]). TBC design variables
such as the top coat (TC)/bond coat (BC) interface amplitude value, growth rate of thermally
grown oxide (TGO) layer, diameter and volume fraction of healing particles as well as the
mean distance of healing particles from the TC/BC interface have been considered along with
their respective uncertainties as inputs for the PCE model.

Latin hypercube sampling has been utilized to derive the experimental design from the input
variable distribution space. Finite element simulations have been carried out in ABAQUS on
the basis of the design points. These simulations are post-processed in order to obtain self-
healing TBC lifetimes which are then utilized to train a second order PCE surrogate model.
This model has been compared with a corresponding first order PCE model which
demonstrates the better fitting characteristics of the second order PCE. The predictive
performance of the two models has been compared using the leave-one-out cross validation
approach, the results of which also favour the second order PCE model.
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The trained surrogate model is then utilized to obtain the relative contribution of the
considered input variables to the variance in the TBC lifetime or the sensitivity indices. It has
been found that the TC/BC interface amplitude is the most significant contributor towards
the output variance, which is followed by the TGO growth rate. This implies that relatively
small changes in the value of the interface amplitude will result in large deviations in the TBC
lifetime. As a result, this calls for special efforts to determine the TC/BC interface amplitude
value. On the other hand, the variables associated with healing particles have been found to
demonstrate relatively minor influence towards the variation in TBC lifetime.

For better visualization of output variation with changes in input variables, TBC lifetime has
been plotted as a function of each of the input design variables while the uncertainties in the
rest of the variables is propagated through the surrogate model. These uncertainty
propagation plots indicate that the expected TBC lifetime reduces with an increase in the
TC/BC interface amplitude and TGO growth rate values. Therefore, in order to increase the
TBC lifetime, regulation should be exercised during the manufacturing of self-healing TBCs in
the form of a control of the powder size and bond coat processing techniques. Even though
the mean distance of healing particles from the TC/BC interface makes a negligible
contribution towards the TBC lifetime variation, it does seem to positively affect the damage
growth characteristics with progression of thermal cycles.

Another second ordered PCE based model has been developed as a surrogate to the TBC
micromechanical model without healing particles. A comparison of the lifetime realizations
generated by the two surrogate models indicates that the incorporation of healing particles
helps in improving the expected value of the TBC lifetime. However, it also leads to an
increased amount of scatter in the thermal fatigue life as compared with that of the
benchmark or the TBC model without any healing particles.

In sum, the research carried out in this thesis demonstrates the benefit of implementing a
surrogate model for developing robust designs for TBCs. The research findings point towards
the necessity of an additional layer of analysis over the conventional deterministic
approaches in order to estimate the reliability of the results and hence draw informed
conclusions. Furthermore, it also paves the way for exploration of other input variables which
could possess uncertainness in their values. For example, in this project the material
properties have been considered to be constant. However, an uncertainty in the material
properties might affect the stress redistribution and growth of damage within the TBC and
hence affect the thermal fatigue lifetime. As a result, this provides a scope for uncertainty
guantification and sensitivity analysis by considering material properties as input variables for
PCE. Since there are no specific guidelines for choosing the order of PCE other than the
practical limitations of computational resources, there are possibilities to investigate the
surrogate model performance for higher orders.
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Nonetheless, as can be observed from Table 3.3, increasing the PCE order leads to an
increased number of PCE coefficients and hence a larger experimental design sample space.
In such a scenario, sparse polynomial chaos expansions could be explored which facilitate the
detection of significant PCE coefficients [108]. As a result, the number of required sample
points is reduced. This reduced number of finite element simulations can also promote the
development and utilization of a three-dimensional TBC micromechanical model as a black
box for uncertainty quantification using surrogate modelling.
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APPENDIX-A
ANALYSIS OF COMPUTATIONAL DURATIONS

A considerable number of runs of the finite element model is required to obtain the data
points for training the surrogate model. It is known from Section 3.2.3 that the considered
order of PCE and the number of input variables lead to a total of 42 sample points. As a result,
42 simulations have to be run in order to obtain the corresponding TBC lifetimes. Since
carrying out a finite element simulation is computationally expensive, it becomes necessary
to efficiently utilize the available resources.

In order to reduce the total run time, ABAQUS provides the alternative of parallel execution
of simulations and analyses. This can be achieved by utilizing multiple processors for solving
the task at hand. For instance, the total number of elements within the finite element model
will be evenly distributed and assigned to each of the processors which will then perform the
operations in parallel. This helps in reducing the total execution time. However, since the
divided elements belong to different domains within the model which may share common
boundaries, it is necessary to ensure communication between these domains in order to pass
information.

Also, computational efforts are required to combine the results obtained by running the task
in parallel. As a result, the total execution time consists of the computation time as well as
the time required for communication between processors [103]. Therefore, an optimum
number of processors needs to be determined to ensure efficient numerical computation.
Figure A.1 provides a summary of computational times as a function of number of processors
(np) used to perform finite element simulations on a particular self-healing TBC sample.
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Figure A.1: Summary of computational durations

Here, the elapsed time is representative of the sum of times taken by all the increments in
the simulation until failure of the TBC. The wallclock time indicates the actual time taken by
the code to run during each increment as measured by a stopwatch. The total CPU time is the
sum of the user time or the amount of time taken by the processor to run the desired code
and system time which is the time taken by the processor to work on the code-related
functions or additional system calls. In addition to these durations, the total execution time
consists of the time taken to write and update the ABAQUS model and state files which can
be utilized for restarting an analysis as well as the time taken for performing convergence
checks for equilibrium after every increment. Figure A.1 indicates that while adhering to
computational constraints, the number of simultaneously running simulations can be
optimized for reducing the overall time taken for completing 42 simulations. For example, the
total execution time for n,, = 12 is only slightly lesser than that for n,, = 6. This means that
instead of running one job with n,, = 12, two jobs can be run simultaneously with n,, = 6.
Additionally, by taking into consideration the amount of data generated for each simulation
and the constraints on the available computational memory, it has been found that n, = 6
provides the most efficient recourse for the parallel execution of simulations.
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