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ABSTRACT 
 

Thermal barrier coatings (TBCs) are thermal insulation coatings which are utilized to protect 

the underlying substrate from high temperature degradation. They consist of a refractory 

ceramic top coat (TC) layer which is adhered to the substrate with the help of a metallic bond 

coat (BC) layer. Upon prolonged exposure to thermal cycling, stresses are developed within 

TBCs which lead to formation and growth of microcracks. Eventually, these cracks coalesce 

and lead to spallation of the TBC which exposes the underlying material to a temperature it 

cannot cope with. In order to arrest crack growth and increase the TBC lifetime or the number 

of thermal cycles until spallation, researchers have proposed the inclusion of self-healing 

particles within the TBC. Several finite element (FE) models have also been developed to study 

the impact of microstructural parameters on the TBC lifetime with the help of numerical 

simulations.  

However, since the simulations are deterministic in nature, the FE methods are unable to take 

into consideration the uncertainties in the microstructural design variables and knowing how 

to cope with such uncertainties provides a scope for improving the reliability of simulation 

outputs. In order to consider the uncertainties in input variables, a brute force approach such 

as Monte Carlo simulation (MCS) can be utilized in which random sampling of the input 

variable distribution is carried out using which the finite element simulations can be run. 

However, since each simulation is computationally expensive, MCS tends to be inefficient. In 

order to circumvent this, a surrogate model can be utilized which is calibrated based on a 

limited number of runs of the underlying model and is able to emulate the original model in 

a computationally inexpensive manner.  

In this thesis, a 2D micromechanical model for a TBC containing discrete healing particles with 

a known healing response is considered whose response to thermal cyclic behaviour has been 

described using a cohesive-zone based crack healing model. Variables such as the TC/BC 

interface amplitude, growth rate of thermally grown oxide layer at the TC/BC interface, 

diameter and volume fraction of healing particles, and the mean distance of particles from 

the TC/BC interface have been used to design the TBC FE model. A polynomial chaos 

expansion based surrogate model is developed which considers uncertainties in the design 

variables as inputs and the TBC lifetime as the output. The trained surrogate model has been 

used to obtain the statistical characteristics of the TBC lifetime as well as the sensitivity indices 

of the input variables.  
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The TC/BC interface amplitude has been found to be the most significant contributor to 

variance in the TBC lifetime, with the parameters describing the healing particles topology 

displaying a relatively minor influence. An additional model has been developed which acts 

as a surrogate to the TBC micromechanical model without any healing particles. A comparison 

of the realizations of TBC lifetimes generated using the two developed surrogate models 

indicates that the implementation of self-healing particles within the TBC domain increases 

the expected value of TBC lifetime, however, it also leads to an increase in the scatter of 

thermal fatigue life as compared with the benchmark case or the TBC model without healing 

particles. The thesis also contains a side study on the optimal number of processors to be 

used in parallel to minimize the total computing time. 
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1 
INTRODUCTION 

In this introductory chapter, a brief overview of thermal barrier coatings is presented along 

with the processing methods and the resulting microstructure. This is followed by a 

description of potential causes of failure and the concepts behind self-healing thermal barrier 

coatings. Towards the end of the chapter, an outline of the different micromechanical 

modelling techniques as well as the concept of metamodeling are described. The chapter 

ends with a brief description of the thesis structure. 

1.1. THERMAL BARRIER COATINGS 

Thermal barrier coatings (TBCs) are thermal insulation coatings that are utilized in high 

temperature environments such as turbines, internal combustion engines and pyrochemical 

processes in order to protect the underlying structural substrate from thermal degradation 

and to improve the operating temperature range and thermodynamic efficiency [1]. In the 

aerospace industry, TBCs play a prominent role since it is the most commonly used process 

to protect jet turbine blades. Consequently, the safety and integrity of the turbines as well as 

maintenance and reparation schedules strongly depend on the lifetime of these systems. 

 A typical TBC is composed of a bond coat (BC) and a top coat (TC). The TC is a refractory layer 

made up of a ceramic material that should possess properties such as low thermal 

conductivity, high melting point and a coefficient of thermal expansion similar to that of the 

substrate [2]. It is usually made up of zirconia which is stabilized by 7-8wt % yttria [3] in order 

to prevent unwanted volumetric changes due to phase transformation at temperatures 

around 1150°C. The BC provides adhesion between the top coat and the metallic substrate as 

well as acts as a sacrificial layer which prevents the oxidation of underlying substrate. It is 

usually made up of Nickel-Chromium alloys such as NiCoCrAlY, NiCrAlY etc. At high operating 

temperatures, the diffusion of oxygen occurs within the TBC and it reacts with the aluminium 

component of the bond coat resulting in formation of a thermally grown oxide layer Al2O3 

(TGO) at the interface of BC and TC [4]. 
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One of the most important aspects that influence the performance of a TBC is its 

microstructure. The TBC microstructure depends on the manufacturing methods, some of 

which are atmospheric plasma spraying (APS), electron beam physical vapor deposition (EB-

PVD), suspension plasma spraying (SPS), plasma spray physical vapor deposition (PS-PVD) and 

solution precursor plasma spraying (SPPS). APS and EB-PVD are the commonly used 

manufacturing methods. However, the latter are incorporated in order to further tailor TBC 

performance and durability by developing multi-layered and functionally graded structures 

[2]. APS is one of the thermal spraying techniques that is being preferably used in industries 

because of its operability in a wide range of process temperatures and also because it is 

comparatively cheaper than other techniques.  

In APS, the ceramic powdered feedstock is passed through the plasma plume which helps in 

the transfer of thermal energy and momentum to the powder particles. These melted 

particles then strike the surface of the substrate and solidify to form lamellar structures 

referred to as splats. Over the period of deposition, these splats generate a structure 

resembling a brick-wall. However, during this rapid process it is possible that the droplets do 

not wet the substrate surface completely before solidifying, resulting in the formation of 

interlamellar pores [5]. The presence of these pores helps in the reduction of the inherent 

thermal conductivity of the TBC. In the case of EB-PVD, a columnar microstructure is 

developed in the normal direction to the substrate. These coatings consist of intercolumnar 

gaps which contribute towards the amount of porosity [6]. This vapour-based fabrication 

technique results in lower contamination within the TBC and a good surface finish.  

  

 

Figure 1.1: TBC micrographs generated by two deposition processes (a) EB-PVD (b) APS [7] 
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The columnar microstructure is also known to develop strain tolerant coatings due to the fact 

that there is lesser contact between different columns of the structure. This results in lower 

elastic modulus which helps to improve the thermal shock resistance.  Figure 1.1 indicates the 

microstructural differences in the TBC system generated due to the different deposition 

processes. These different microstructures affect the response of the TBC to the external 

environment and hence the failure mechanisms. In case of the APS manufactured TBCs, the 

final failure is considered to have occurred when spallation occurs by the debonding of 

regions of the top coat from the bond coat. This exposes the area underneath the top coat to 

the harsh environment which may later lead to catastrophic failure. A special feature of APS 

produced TBCs is that due to the supersonic impact of TBC particles on the metallic substrate, 

the metallic component loses its smooth surface and a rough interface develops. The 

roughness of this interface has a strong effect on the lifetime [32]. The remainder of this thesis 

deals with APS produced TBCs, which is currently the most commonly used system in industry. 

 

1.2. CAUSES OF FAILURE 

Several factors leading to cracking and failure of TBCs have been identified by researchers and 

experimentalists such as residual stresses, mismatch of coefficient of thermal expansion (CTE) 

between the bond coat/substrate and the bond coat/top coat, thermal fatigue and formation 

of thermally grown oxide [1,8]. Residual stresses can be generated within the TBC during 

manufacturing when the hot melted feedstock comes in contact with comparatively cooler 

substrate or pre-existing splats.  

Residual stresses can also be caused by the mismatch of CTE between the substrate and the 

coating. This may lead to compressive or tensile stresses within the coating depending on 

whether the CTE of the coating is lower or higher than that of the substrate. Compressive 

residual stresses are favourable for crack closure while tensile stresses may lead to loss of 

adhesion and delamination [9]. The formation of a thin TGO layer at the interface between 

the top and bond coats results in compressive stresses that can affect the local stress field. 

Residual stresses are generated within the TGO when the temperature drops during thermal 

cycling. The TGO growth also leads to thermal expansion mismatch between the top 

coat/TGO and TGO/bond coat. This mismatch can lead to formation of microcracks near the 

interface zones. Propagation and coalescence of these microcracks may lead to delamination 

and final failure [9].  
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Another important cause of failure in TBCs is the phenomenon of sintering at high 

temperatures (> 1200°C). Sintering leads to coalescence within the microstructural domain 

which reduces the porosity and thus increases the thermal conductivity of the coating, which 

may cause creep degradation at the inner layers. Sintering also causes stiffening of the coating 

which can lead to dissimilar contractions between the coating and the substrate which would 

eventually cause microcracks [10].  

One of the other major contributors to failure in TBCs is the penetration of calcium-

magnesium-alumino-silicate (CMAS) volcanic dust particles into the top coat. At high 

temperatures, these deposits melt and are able to infiltrate the top coat due to capillary effect 

[11]. During the cooling phase of the thermal cycle, these deposits solidify and hence affect 

the elastic modulus and the thermal conductivity of the coating. Also, there exists a difference 

in thermal expansion coefficients between the deposited CMAS and the top coat material 

which leads to differential response to thermal cycling and hence promotes formation of 

microcracks.  

 

1.3. SELF-HEALING THERMAL BARRIER COATINGS 

In order to improve the operating lifetime of TBCs, researchers have investigated the 

implementation of self-healing particles within the coatings [12-14]. One of the most widely 

studied methods of incorporating self-healing properties in a TBC is to include encapsulated 

healing agents within the top coat, which is the location where cracks typically appear in TBCs. 

Once activated by a growing microcrack, they initiate a chemical reaction which fills the crack 

and restores the mechanical integrity. Figure 1.2 illustrates the concept.  

 

Figure 1.2: TBC healing mechanism in presence of cracks [15] 
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The high temperature stability requirement of the components necessitates that the healing 

agent should be solid yet still should be mobile enough to fill the generated cracks and inhibit 

further crack propagation [16]. The healing agent cannot be liquid due to higher CTE which 

would develop high strains during thermal cycling. After filling the crack, the healing agent 

should also be able to solidify through chemical reactions with the surrounding matrix 

material. One of the representative materials is molybdenum disilicide. When it reacts with 

oxygen, it forms molybdenum trioxide and silica which is indicated by the following reaction: 

2MoSi2 (s) + 7O2 (g) → 2MoO3 (g) + 4SiO2 (l) 

Thus, when a crack encounters a healing particle, the above reaction will take place. From the 

reaction, it can be observed that for every mole of molybdenum disilicide, 2 moles of silica 

are produced which is indicative of volume expansion. At the usual turbine operating 

temperature, the silica is a viscous liquid which flows into the crack. Silica reacts with 

surrounding zircon (ZrO2) and forms nanocrystalline zirconia (ZrSiO4) and the molybdenum 

trioxide is emitted in gaseous form through the pores in the coating. Crack propagation is 

arrested due to the fact that the produced zirconate mechanically connects both crack faces 

and the material itself and is tougher than the YSZ top coat. The typical thickness values of 

the TC and BC are 500 µm and 200 µm respectively, whereas the self-healing particles possess 

a diameter  10 µm. It is preferred to deposit the healing particles near the TC/BC interface 

where cracking and delamination predominantly occur due to mismatch in thermomechanical 

properties of individual layers [13]. 

 

1.4. MODELLING THE FRACTURE BEHAVIOUR 

Several techniques have been developed and implemented by researchers for simulation of 

crack propagation behaviour through the TBC domain and other similar heterogeneous 

media. Researchers have utilized techniques such as Cohesive Zone Modelling (CZM) [17-25], 

Extended Finite Element Method (XFEM) [26-32] and the Virtual Crack Closure Technique 

(VCCT) [33-35] for modelling and simulating the damage evolution. However, while using the 

VCCT, an initial crack needs to be specified and also the path of crack propagation needs to 

be defined before carrying out the simulation [36]. And in case of XFEM, it is difficult to 

simulate the penetration of two different cracks towards a single element [37] as well as the 

behaviour of cracks at an interface [36].  

These difficulties can be overcome with the help of CZM and therefore this technique will be 

utilized in the project. Although CZM presents several advantages over the other numerical 

techniques, it results in computationally expensive simulations. For example, a cohesive zone 

element based finite element model consisting of  5 x 105 elements consumes a total of 40-

50 CPU hours on a high performance computing cluster.  
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Also, finite element methods are deterministic as a result of which they are unable to take 

into consideration the uncertainties in microstructural variables used for developing the finite 

element model. Therefore, it becomes necessary to investigate the ways of quantifying 

uncertainties in the variables used for micromechanical simulations and understand whether 

the original finite element model can be substituted with a computationally inexpensive 

input-output relationship or a metamodel.  

 

1.5. SURROGATE MODELLING 

Surrogate modelling or metamodeling is a technique using which an approximate model of 

the original computational model is developed with the help of a limited number of runs of 

the original model [38]. The constructed surrogate model is computationally inexpensive and 

thus can be utilized for several number of runs which would not have been feasible for the 

original model. This could thus help in robust designing of input parameters. Commonly 

utilized surrogate models are Polynomial Chaos Expansion (PCE) and Gaussian Process (GP). 

Even though both the approaches are comparable in terms of performance and accuracy, PCE 

is preferred due to its ease of applicability and the underlying simplicity with which the 

relative contribution of input parameters to the output response can be obtained [38]. 

Surrogate modelling approaches have been applied by researchers in various fields involving 

complex and nonlinear model responses some of which include groundwater management 

[39, 40], sheet metal forming [41, 42], computational fluid dynamics [43, 44], design of 

composites [45, 46] and crack growth models [47, 48]. However, these metamodels which 

help in reducing computational expense have not yet been implemented for optimal 

designing of self-healing TBCs and modelling crack growth behaviour within the TBC domain.  

Therefore, the thesis objective can be stated as follows: “To determine whether a surrogate 

modelling approach can be utilized to predict the lifetime of self-healing thermal barrier 

coatings by training a polynomial chaos expansion based metamodel with the help of limited 

number of runs of the cohesive zone based numerical model.” If a sufficiently reliable 

surrogate model can be generated, it might provide advantages such as strongly reduced 

computational expense in prediction of lifetime, determination of sensitivity to 

microstructural parameters, potential proposals to the manufacturing methods and hence 

robust designing of self-healing thermal barrier coatings. 

 

 

 

 



 
1.6. THESIS ORGANIZATION  7 
 
 

 
 

1.6. THESIS ORGANIZATION 

Chapter 2 introduces the relevant concepts of micromechanical modelling and the underlying 

cohesive zone modelling theory, presents the concept of uncertainty quantification and 

surrogate modelling along with a mathematical intuition behind polynomial chaos expansion 

and discusses the link between micromechanical modelling and quantification of uncertainty 

in input parameters. In Chapter 3, the computational framework for the thesis has been 

presented along with the implemented procedure. The results and validation of the trained 

surrogate model have been addressed in Chapter 4, along with a sensitivity analysis and the 

supporting discussion. The conclusion and recommendations for prospective research work 

are provided in Chapter 5. 
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2 
THEORETICAL BACKGROUND 

 

The proposed research brings together the fields of micromechanical modelling and 

metamodel-based uncertainty quantification. Section 2.1 introduces the concept of 

micromechanical modelling with a focus on the cohesive zone theory. Section 2.2 describes 

the idea of uncertainty quantification and surrogate modelling along with a mathematical 

intuition behind polynomial chaos expansion. Section 2.3 attempts to link these two different 

topics and provides the basic framework for the bridging and subsequent implementation. 

Finally, Section 2.4 indicates the prospective variables for development of the surrogate 

model, as proposed by the literature study.  

 

2.1. INTRODUCTION TO MICROMECHANICAL MODELLING 

A lot of research is being carried out in the field of micromechanical modelling of materials in 

order to understand the effects of heterogeneous microstructures in composite materials on 

the response to external stimuli. Basically, it involves the numerical modelling and analysis of 

certain controlled volumes of material. Micromechanical modelling approaches are generally 

classified into two categories: discrete and continuum models [49].  

Discrete models are the ones in which a detailed simulation of the microstructural entities 

such as different geometries and phases is carried out. Some of the examples of this approach 

are particulate discrete element techniques, molecular dynamics and other numerical 

methods which are based on the requirement of detailed finite element analyses of particular 

heterogeneous features. As these models are computationally expensive and require 

extensive numerical efforts, the domain of study is restricted to small time and length scales.  

On the other hand, continuum models consist of continuous distribution fields which are 

implemented along with constitutive relations and classical equations in order to obtain a 

modified continuum theory. In other words, these models are able to describe the general 

overall behaviour and do not focus on specific model heterogeneities.  
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One of the widely used methods for micromechanical numerical analysis is the utilization of 

a representative volume element (RVE) or a representative unit cell which consists of all the 

microstructural heterogeneous features in the material and is able to summarize the overall 

behaviour in terms of characteristics such as strength or fatigue life. The RVE is investigated 

with the help of finite element analyses by incorporating the required boundary conditions in 

order to understand its behaviour to applied stimuli and to project it to the overall material 

domain. 

 

2.1.1 MODELLING THE TBC DOMAIN 

The TBC domain consists of a complex microstructure which is made up of the bond coat 

layer, thermally grown oxide layer, top coat layer and also consists of features such as splats, 

pores and microparticles in case of self-healing thermal barrier coatings. The most common 

way of modelling the microstructure is with the help of a 2D representation in which the 

roughness of the TC/TGO layer is represented in either a sinusoidal form or a semi-circular 

form. This is because a 3D representation becomes computationally too expensive due to the 

microscale complexities [50]. The representative volume element is generally modelled with 

boundary conditions at either ends such as periodic boundary conditions [19, 24, 51] or 

symmetry boundary conditions [50,52]. Some of the other techniques of taking into account 

the intricacies of TBC domain are the use of random microstructure generation method [37] 

for development of arbitrary morphologies or the utilization of experimentally obtained SEM 

micrographs for post-processing and generation of finite element geometry [53]. 

 

2.1.2. THE COHESIVE ZONE METHOD 

In accordance with the cohesive zone theory, cohesive elements are utilized in order to 

describe the crack propagation within the material. These are zero thickness elements which 

represent an interface and are indicative of the cohesive forces which occur when the 

material interfaces are being separated during crack growth. When damage occurs, these 

cohesive zone elements respond by opening and thus are able to simulate crack initiation and 

crack propagation. In finite element simulations, cohesive elements are implemented within 

the bulk material domain which is likely to be intersected by the simulated crack path. As a 

result, the direction of crack growth is dependent on the availability of the cohesive elements. 

These elements are in turn dependent on the amount of mesh refinement. A coarser mesh 

would imply a smaller number of cohesive elements while a finer mesh would indicate the 

presence of a greater number of cohesive elements. Thus, the material domain discretization 

should be fine enough such that the direction of crack growth does not vary much with change 

in mesh size [37].  
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The element failure behaviour is described with the help of traction-separation laws. Once a 

crack has been initiated, these laws describe the traction 𝑇 across two crack surfaces as a 

function of the distance 𝛿𝑛 between them. Even though seemingly different forms of the 

traction-separation laws exist such as the bilinear, exponential, trapezoidal, polynomial 

forms, qualitatively they indicate a similar trend of traction variation. As the separation of the 

cohesive surfaces increases, the traction initially increases until a maximum value is reached, 

gradually starts to decrease and reaches zero when a threshold separation value 𝛿𝑐 has been 

attained. Figure 2.1 represents the mode I bilinear traction-separation law. 

 

Figure 2.1: Bilinear cohesive traction-separation law 

The initial slope of the traction-separation curve ‘K’ indicates the artificial penalty stiffness 

which is required to simulate a perfect bonding situation before onset of damage. ‘D’ 

represents the damage variable whose value lies between [0,1]. Its value for pure mode 

loading for a particular separation 𝛿 (where 𝛿0 ≤ 𝛿 ≤ 𝛿𝑐) can be evaluated as follows: 

 

 𝐷 =
𝛿𝑐(𝛿 − 𝛿0)

𝛿(𝛿𝑐  −  𝛿0)
 (2.1) 
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Thus, with the help of above relation, the stiffness degradation can be implemented when 

the separation between crack surfaces increases above 𝛿0. It can be observed that a 

relationship can be established between linear elastic fracture mechanics theory and the 

cohesive zone model with the help of the traction-separation law in which the area under the 

curve represents the fracture toughness 𝐺𝑐 [37]. 

 

2.2. UNCERTAINTY QUANTIFICATION AND SURROGATE MODELLING 

Computational models and numerical methods have been developed in order to establish 

relationships between structure, process and inherent structural properties which are 

difficult to be expressed analytically. These models are often deterministic, and hence from a 

given initial condition, will always produce the same response. As a result, it is assumed that 

there is no involved randomness in the formation of the output and that the parameters of 

the model can be deduced with absolute certainty. However, uncertainties in computer 

simulations can arise due to various reasons such as lack of complete information about the 

physical effects, incomplete parametrization of the model or having incomplete knowledge 

of the system state which is to be simulated [54]. These uncertainties can be classified into 

two groups: aleatoric and epistemic.  

Aleatoric uncertainty is the one which results from inherent random variations in the quantity 

and thus cannot be reduced. It is generally managed by representing the variability in the 

form of probability distributions. For example, material microstructure and its resulting local 

behaviour can be associated with this type of uncertainty. Generally, in order to adequately 

quantify aleatoric uncertainty, identical instances of the studied system are extensively 

sampled. On the other hand, epistemic uncertainty is the one which arises from inaccurate or 

incomplete knowledge of the system which is being studied. As a result, it is reducible by 

gathering more information about the system parameters. Uncertainties arising from 

differing experimental conditions, human errors, calibration of measuring equipment or the 

methods of designing experimental procedure can be associated with epistemic 

uncertainties.  

 

2.2.1. UNCERTAINTY QUANTIFICATION VS UNCERTAINTY PROPAGATION 

Deterministic models consider only one of the several possible instances of the model 

parameters and hence ignore the effects of uncertainties on the response. Therefore, in order 

to support robust decision making, quantifying the model uncertainties and understanding 

how they affect the response by propagating them through the model is necessary. Once the 

uncertainties are identified or detected, they can be calibrated with the help of available data 

and represented in the form of probability distributions. 



 
2.2. UNCERTAINTY QUANTIFICATION AND SURROGATE MODELLING 13 
 
 

 
 

This calibration of the parameters is known as uncertainty quantification while the process of 

forward propagation of the uncertainties through the levels of the model in order to predict 

the response is known as uncertainty propagation. Uncertainty quantification and 

propagation can indicate the degree of robustness of the system by describing how the 

system responds to input variations, as indicated in Figure 2.2. This also helps in the design of 

parameters by presenting values of the input in such a way that their variations have a certain 

desired amount of effect on the output. Hence, uncertainty quantification can be regarded as 

an inverse process in which the variations in model parameters are determined by analysing 

the error between the mathematical model and some data which is available beforehand. As 

an output, the process of uncertainty quantification is able to provide a representation of the 

underlying parameters of the model in the form of multivariate probability distributions in 

which the covariance matrix indicates the correlations between the parameters. 

 

Figure 2.2: System output sensitivity with respect to input uncertainties [54] 

Contrary to uncertainty quantification, the process of uncertainty propagation involves 

forward analysis in which the input uncertainties are mapped through the computational 

model in order to obtain the variations in the output. The most common method of carrying 

this out is by using Monte Carlo sampling which involves random sampling of input 

parameters and obtaining model outputs at these sampled points. However, models with high 

complexity render the MC sampling procedure impractical and computationally expensive. In 

order to reduce the computational effort, analytical techniques such as metamodeling or 

surrogate models have been proposed which are able to approximate the original model with 

functions which are easier to evaluate. Initially, a methodically chosen design of experiments 

(DOE) has to be carried out for generating support points for the surrogate model. The output 

values of the original model at these support points are obtained and then utilized to develop 

the response surface of the metamodel. As a result, the process of predicting the output 

values at points which were not considered in the DOE data collection scheme is simplified. 
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2.2.2. POLYNOMIAL CHAOS EXPANSION 

Chaos represents the unpredictability and resulting disorder in complex systems as a result of 

lack of definitive information about the initial system conditions. Wiener [55] introduced the 

term ‘homogeneous chaos’ in which a Gaussian process representing a homogeneous 

dynamic system such as gas or liquid is characterized with the help of a generalized Fourier 

series expansion of Hermite polynomials. Polynomial chaos is a part of homogeneous chaos 

in which the states of the dynamic system were described with the help of polynomial 

representations. In accordance with the Cameron-Martin theorem [56], the homogeneous 

chaos converges to any processes which exhibit finite variance, as in the case of most physical 

processes. In other words, it becomes possible to represent a stochastic process with the help 

of a Fourier Hermite series expansion.  A generalized Fourier series represents an expansion 

which is based on a set of orthogonal polynomials. A sequence of polynomials 𝑃𝑖, where 𝑖 is 

a non-negative integer, is termed as orthogonal within the interval [𝑚, 𝑛] if it follows the 

following: 

 

 ∫ 𝑃𝑖(𝑥)𝑃𝑗(𝑥)𝑤(𝑥)𝑑𝑥 = ℎ𝑖𝛿𝑖𝑗

𝑛

𝑚

 (2.2) 

 

Here, 𝑤 represents the weight function, ℎ𝑖  are constants and 𝛿𝑖𝑗 is the Kronecker delta 

𝛿𝑖𝑗 = 1     𝑖𝑓 𝑖 = 𝑗 

𝛿𝑖𝑗 = 0     𝑖𝑓 𝑖 ≠ 𝑗 

Different classes of polynomials have different weight functions with respect to which they 

are orthogonal within the specified interval. For example, the weight function in case of 

Hermite polynomials is 𝑒−
𝑥2

2 , to which they are orthogonal within the limits (−∞,∞). In 

agreement with the Cameron-Martin theorem, Xiu & Karniadakis [57] have demonstrated 

that a chaos expansion based on Hermite polynomials has an optimal convergence rate to the 

underlying stochastic process in case of a Gaussian process. Mathematically, this can be 

understood from the attribute that the form of the probability density function for Gaussian 

variables is same as that of the weight function for Hermite polynomials. They also observed 

that for processes involving distributions other than the Gaussian, the convergence rate is 

considerably slower.  
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Extending the work of Wiener’s classical polynomial chaos, Xiu & Karniadakis introduced the 

idea of using family of polynomials known as the Askey scheme, that are orthogonal with 

respect to probability distributions following a non-Gaussian nature. The Askey scheme 

provides different classes of polynomials for different distributions of random variables. For 

instance, the Legendre polynomials are utilized in case of a uniform distribution, Jacobi 

polynomials in case of a beta distribution, etc. [58]. Table 2.1 provides a summary of 

orthogonal weight functions and polynomial classes for specific distributions of random 

variables [59]. 

 

Distribution PDF 
Polynomial 

class 
Weight function Interval 

Gaussian 
1

√2𝜋
𝑒−

𝑥2

2  Hermite 𝑒−
𝑥2

2  (−∞,∞) 

Uniform 
1

2
 Legendre 1 [−1,1] 

Beta 
(1 − 𝑥)𝛾(1 − 𝑥)𝛿

2𝛾+𝛿+1𝐵(𝛾 + 1, 𝛿 + 1)
 Jacobi (1 − 𝑥)𝛾(1 − 𝑥)𝛿 [−1,1] 

Exponential 𝑒−𝑥 Laguerre 𝑒−𝑥 [0,∞) 

Table 2.1: Orthogonal polynomial classes for random variable types [59] 

According to the classical polynomial chaos developed by Wiener, which is based on Hermite 

polynomials, a general second-order stochastic process can be represented in the following 

form [57]: 

𝑌(𝑥) =  𝛼0𝐻0 + ∑ 𝛼𝑖1𝐻1 (𝜑𝑖1(𝑥)) + ∑ ∑ 𝛼𝑖1𝑖2𝐻2 (𝜑𝑖1(𝑥), 𝜑𝑖2(𝑥))

𝑖1

𝑖2=1

∞

𝑖1=1

∞

𝑖1=1

+⋯, 

Here, 𝐻 indicates the Hermite polynomials in terms of independent Gaussian input variables 

(𝜑𝑖1 , 𝜑𝑖2 , … , 𝜑𝑖𝑛). The above-mentioned expansion can also be represented in the following 

form [60]: 

 𝑌 =∑𝑦𝑖𝑖(𝜑)

∞

𝑖=0

 (2.3) 

 



 
16  2. THEORETICAL BACKGROUND 

 
 


𝑖
(𝜑) forms an orthogonal basis with respect to the joint probability density function of the 

input random variables and is obtained by carrying out a tensor product of the univariate 

orthogonal polynomials: 

 
𝑖
(𝜑) =∏𝑃

𝑗

𝛼𝑗
𝑖

(𝜑𝑗)

𝑘

𝑗=1

 (2.4) 

 

Here, 𝛼𝑗
𝑖 represents the order of the univariate orthogonal polynomial 𝑃𝑗. The above series 

expansion is often truncated to a polynomial of order 𝑛 since the response of the system 

converges after a certain number of terms and consideration of additional terms does not 

make any notable contribution towards the system response [46]. Hence, it also follows that 

0 ≤ ∑ 𝛼𝑗
𝑖𝑘

𝑗=1 ≤ 𝑛. 

 

 𝑌 = ∑𝑦𝑖𝑖(𝜑)

𝑄−1

𝛼=0

 (2.5) 

                                                  

 𝑄 =
(𝑘 + 𝑛)!

𝑘! 𝑛!
 (2.6) 

 

Thus, the polynomial expansion is reduced to 𝑄 number of terms which is a function of the 

number of input random variables 𝑘 and the maximum order of the expansion 𝑛. Polynomial 

chaos expansion is used for surrogate modelling in which it aims to approximate the response 

of the original computationally expensive model. This can be done by calibrating the 

surrogate model with the help of responses from the original model at certain number of 

sampled points from the input vector space. This tendency of the surrogate model to fit the 

response from the underlying original model is dependent on the computation of the 

coefficients 𝑦𝑖. As an example, Table 2.2 summarizes the types of Hermite polynomials for 

different orders of PCE. Here, we shall consider 𝑘 = 2 and 𝑛 = 3, thus giving 𝑄 = 10 by using 

Equation (2.6).  
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𝒊 PCE order 𝒊𝒕𝒉 Polynomial 

0 𝑛 = 0 1 

1 𝑛 = 1 1 

2  2 

3 𝑛 = 2 1
2 − 1 

4  2
2 − 1 

5  12 

6 𝑛 = 3 1
3 − 31 

7  2
3 − 32 

8  1(2
2 − 1) 

9  2(1
2 − 1) 

 

Table 2.2: Types of 2D Hermite polynomials 

 

Figure 2.3 gives an idea about how the order of PCE affects the shapes of polynomial bases 

which are used to approximate the underlying model for the case of two dimensional Hermite 

polynomials. It can also be observed that a polynomial expansion generated with the help of 

these basis functions is ideal for continuous functions in the considered variable distribution 

domain but may not handle thresholds or abrupt changes too well. 
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Figure 2.3: Set of 2D Hermite polynomials for PCE order = 3 

 

Generally, the techniques used to compute the coefficients are divided into two classes: 

intrusive and non-intrusive methods. As the name suggests, intrusive methods involve 

modification of the original finite element code in which residual minimization has to be 

carried out in the weak form of the mathematical model or the utilization of the Galerkin 

approach. This weak form can be generated by projecting the original model on the 

polynomial chaos basis function [61]. On the other hand, the non-intrusive methods do not 

require alteration in the original deterministic finite element code. One of the widely used 

non-intrusive techniques is the least squares approximation or the point collocation 

approach. Once the sampling of input vector space is carried out, the sum of squares of 

residuals between the output of the exact model and the approximated PCE model solution 

is calculated [45]. 
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 𝑆 =∑(𝑌𝑡(𝜑𝑡) −∑ 𝑦𝑖𝑖(𝜑𝑡)

𝑄−1

𝑖=0

)

2
𝑁

𝑡=1

 (2.7) 

 

Equating the partial derivative of the above equation with respect to each of the coefficients 

to zero and solving the resulting system of linear equations provides the required coefficients. 

 𝜕𝑆

𝜕𝑦𝑖
= 0;  𝑖 = 0,1, … , 𝑄 − 1 (2.8) 

 

2.2.3. SAMPLING STRATEGIES 

In order to train the PCE surrogate model, the original model needs to be evaluated at certain 

number of sampled points from the design space of the input variables. Thus, it requires a 

design of experiments for the generation of the trained data set [62]. Several experimental 

design methods have been developed by researchers over the years which have been utilized 

in order to obtain surrogate models for computer simulations. One of the earlier developed 

sampling techniques is the 2k factorial design methodology. It is based on the “one factor at 

a time” approach in which one of the input variables is varied while keeping the others fixed 

and then observing the variation of the system response [63]. This process is then repeated 

for all the variables in order to obtain the sensitivity of output response to each of the input 

variables. As a result, this leads to high computational effort due to the requirement of large 

number of simulations. 

Another popular sampling strategy is the Monte Carlo sampling in which a sample value for 

an input variable is randomly chosen while adhering to the probability distribution of the 

input variable. Even though it has been known to be a robust experimental design approach, 

Monte Carlo sampling is inefficient in practical terms due to the requirement of large sample 

sizes for achieving space-filling characteristics within the input variable design space [62]. 

Additionally, if the sample sizes are not large enough, it is often observed that sample points 

are close to each other and this clustering can lead to inaccuracies in approximation of the 

original model. Quasi Monte Carlo sampling (QMCS) is an improvement over the traditional 

Monte Carlo sampling (MCS) approach in which clustering of samples is avoided, thus 

ensuring more uniformity of sample distribution within the design space. This technique is 

also known to exhibit better convergence rate than that of MCS. However, it is generally 

known to be best applied in case of uniformly distributed input variables [62].  
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Latin Hypercube sampling is an experimental design approach which is known to circumvent 

the issues exhibited by previously mentioned methods. It is inspired by the work of the 

mathematician Leonhard Euler who developed the concept of the Latin Square while working 

in the field of combinatorics. A Latin square consists of an 𝑚 ×𝑚 matrix which is filled with 

𝑚 different entities. They are filled in a way such that each entity is present only once in each 

row and each column [64]. This can be visualized in the example mentioned in Figure 2.4. 

Similarly, Latin Hypercube sampling (LHS) consists of dividing the input variable space into 

different levels and then choosing a representative value from each of the levels such that 

the selected value occurs exactly once in each dimension. Thus, this method is also known as 

the stratified sampling approach. LHS has been known to demonstrate the requirement of a 

smaller number of sampled points for covering the design space as compared with other 

sampling techniques. Dutta & Gandomi [62] have compared the error estimates of a surrogate 

model developed using different sampling schemes and have demonstrated that LHS 

possesses more desirable values for error in approximating the original model than that of 

MCS and QMCS.  

 

 

Figure 2.4: Latin square with four samples 

Using LHS, it can be ensured that all sections within the ranges of input parameters are 

represented while being computationally efficient [65]. The following steps summarize the 

application of LHS to multivariate distributions [66]: 

1. Divide the probability density function of each input variable into 𝑁 non-overlapping 

equiprobable intervals. 

2. Randomly sample one value from each interval. 

3. Repeat steps 1 and 2 for all input variables. 

4. Randomly pair the 𝑁 values acquired for each variable with the values obtained for 

other variables. 

•
•

•
•
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These sampled points can be used to train the surrogate model in order to obtain the 

polynomial coefficients using least square approximation. However, it can be intuitively 

understood that the number of points to be sampled will affect the accuracy and variance of 

the surrogate model since these are the points at which the surrogate model will fit to the 

underlying original model. Hosder et al. [67] studied the influence of number of sampled 

points on the accuracy of the PCE. According to Equation (2.6), the number of coefficients 𝑄 

to be evaluated in the PCE model depend on the number of input random variables 𝑘 and the 

maximum order of the expansion 𝑛. Hosder et al. related the number of PCE coefficients with 

the number of points to be sampled with a parameter known as the oversampling ratio 𝑛𝑝 

[68] and suggested that a better approximation at each polynomial order can be obtained for 

𝑛𝑝 = 2.  

 𝑛𝑝 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑄
 (2.9) 

 

2.3. LINKING UNCERTAINTY QUANTIFICATION AND MICROMECHANICAL 

MODELLING 

Researchers have developed different numerical models in order to study the impact of 

microstructural variables on crack growth behaviour in TBCs. However, in the numerical 

analyses, the values for the variables have been kept unchanged for a particular set of 

parametric simulations while the exact values and variations are not known. As a result, the 

uncertainties within those parameters are not propagated through the finite element model 

and thus the reliability of the model output cannot be definitively stated. In order to take 

these uncertainties into account and provide a degree of confidence in the model outputs, 

various uncertainty quantification and surrogate modelling techniques are being employed.  

The basic procedure utilized to develop a framework for uncertainty quantification is 

described in Figure 2.5. When surrogate modelling techniques are to be used in conjunction 

with finite element models, the initial step is to obtain a mapping between the input system 

variables and the computational model output. This relation is described with the help of a 

black box model in which only the input-output correlation is considered and not the actual 

intricacies of the associated function. This is indicated by the Step A in the figure. This is 

followed by the definition of a stochastic model of the input variables with the help of 

available information and expert understanding, as indicated by Step B. The individual 

stochastic descriptions are used to generate a joint probability density function of the input 

parameters. Then in Step C, the uncertainties in the input variables are propagated through 

the underlying model in order to obtain the response of interest which is treated as a random 

variable.
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Properties of the response such as its mean and standard deviation can be useful for analysis 

and the determination of model output reliability. For example, in micromechanical modelling 

of thermal barrier coatings, the response of interest could be the final crack size whereas the 

input parameters could be the TGO growth rate, interface waviness as well as the strength of 

the top coat. This is then followed by Step C’ in which sensitivity analyses can be carried out 

in order to determine the relative contribution of input parameters towards the variation in 

the output. As a result, the less contributing factors can be identified and then considered to 

be deterministic in order to reduce the computational effort. 

 

 

Figure 2.5: General framework for uncertainty quantification [69] 

 

2.4. VARIABLES FOR POLYNOMIAL CHAOS EXPANSION 

The APS technique, which is to be taken as the production method to create the self-healing 

TBCs to be analysed in this thesis, involves a feedstock powder which is fed into the plasma 

jet, as a result of which it melts and gets deposited on the substrate. Several parameters exist 

that influence the interplay between the plasma jet, the particles and the substrate. As a 

result, they influence the structure and properties of the deposited coating. Some of these 

parameters are the flow rate of plasma, amount of input energy, feedstock composition, 

particle size, powder injection distance, substrate temperature, powder fraction etc. [70].  
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Researchers have attempted to investigate the dependence of lifetime and failure of TBCs on 

its microstructure which is in turn dependent on the method of manufacturing and the 

processing parameters. However, due to the complexity of the manufacturing method and 

process variables, it is difficult to accurately predict the relations between not only the 

process and the microstructure but also the microstructure and properties of TBCs. More 

insights on these relations will help in better characterization, designing and prediction of 

reliability of TBCs. As a result, there exist uncertainties in the variables of the generated 

microstructure which need to be quantified in order to determine their influence on TBC 

durability and lifetime. We will now present the microstructural parameters experimentally 

or computationally known to have an effect on the TBC lifetime for conventional and self-

healing TBCs. 

 

2.4.1. INTERFACE AMPLITUDE 

Researchers have studied the effects of top coat – bond coat interface geometry on the stress 

distribution and crack growth behaviour within the TBC as well as on its lifetime with the help 

of experiments and finite element simulations [71-73]. Eriksson et al. found that the 

amplitude of the interface depends on the size of the powder particles used as feedstock in 

the APS [71]. Therefore, an unpredictability in the size of powder particles could lead to an 

uncertainty in the value of the amplitude. They also observed that the roughness parameter 

attributed to the amplitude had a linear correlation with the TBC life. It was found that a ~50% 

change in the amplitude value led to a ~70% change in TBC life. On the other hand, they also 

observed that the equivalent wavelength of the interface profile was not correlated with the 

TBC life.  

 

2.4.2. GROWTH RATE OF THERMALLY GROWN OXIDE LAYER 

Another potential source of uncertainty in the prediction of TBC durability is the growth rate 

of thermally grown oxide (TGO) layer at the top coat – bond coat interface. Investigations 

carried out by researchers have indicated how the TGO layer thickness influences the stress 

redistribution and damage evolution within TBCs [74-77]. The growth of TGO layer occurs via 

the diffusion of oxygen ions through the ceramic top coat towards the TC/BC interface. It is 

difficult to accurately determine the oxygen flux since it depends on a number of parameters 

such as the stress levels, chemistry and microstructure of the TBC, which also depend on the 

spraying conditions during manufacturing [78]. Analysing the oxidation rates for a range of 

commercial super alloy compositions, deposition conditions and processes, Lim & Meguid 

have reconstructed the experimental upper and lower bounds for TGO growth rate at a dwell 

temperature of 1100°C [74], as indicated in Figure 2.6(a). 
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Figure 2.6(a) TGO growth with thermal cycles at dwell temperature = 1100°C [74],                           

(b) variation of vertical normal stress and crack length for different TGO thicknesses 

during cooling [73] 

Figure 2.6(b) describes the influence of varying TGO thicknesses on vertical normal stress in 

the top coat and crack length during cooling period. It has also been demonstrated by Ogawa 

& Nakano [79] that the quality of the TGO is also affected by the bond coating process. They 

observed that the TGO growth rate is lower when the bond coat is cold-sprayed whereas it is 

higher when the bond coat is sprayed using the low-pressure plasma spraying. Due to the 

complex interplay between stress levels, TGO thicknesses and diffusion rates of oxygen 

through the top coat, it becomes necessary to determine the sensitivity of stress distributions 

and crack growth behaviour to uncertainty in TGO growth rates in order to design coating 

lifetimes with allowable levels of variations in response to thermal cycling. 

 

2.4.3. VOLUME FRACTION AND DIAMETER OF HEALING PARTICLES 

In order to extend the lifetime of TBCs and also to reduce the rate of maintenance of 

components, researchers have proposed the incorporation of MoSi2 healing particles in TBCs. 

However, implementing these healing particles in TBCs via APS, which is the most commonly 

used TBC manufacturing method, becomes difficult due to the more severe processing 

conditions involved. Also, there is a difference in melting points of the ceramic feedstock and 

healing particles which poses difficulties in achieving the desired TBC configuration. Koch et 

al. [83] have described an approach of manufacturing self-healing TBCs via APS by adjusting 

some of the underlying processing parameters. They have shown that by injecting healing 

particles at a certain offset from the point of injection of ceramic feedstock into the plasma 

jet, it becomes possible to deposit both components homogeneously.  
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This is because the plasma plume loses some of its energy while melting the ceramic feedstock 

and as a result, the plasma temperature reduces before it encounters the healing particles. 

However, despite being able to achieve a homogeneous distribution of healing particles 

within the TBC, the researchers found that the final configuration consisted of a reduced 

volume content of healing particles than desired (12% instead of the desired 20%). This can 

be attributed to the complexities in controlling the processing conditions such as variations 

in plasma jet temperature and velocity, differences in healing particle size, turbulence, mass 

flow rate of plasma, etc. While the technology to accurately control the particle volume 

fraction, particle size and average distance of particles from the TC/BC interface does not exist 

yet, the influence of healing particles on TBC behaviour in response to thermal cycling has 

been experimentally studied using spark plasma sintering process [80-82] and with the help 

of micromechanical simulations [14, 53]. 

For a given region or a layer near the TC/BC interface for distribution of healing particles, the 

volume fraction and size of healing particles determine the number of healing sites and 

amount of healing material available for recovering damage due to cracks within the TBC. This 

necessitates the prediction of the degree of influence which the variations in the healing 

particle volume fraction and particle size have on the TBC response to thermal fatigue. Such 

a study has not yet been carried out in the context of self-healing TBCs. However, in another 

investigation related to self-healing composites, the research carried out by Lv & Chen 

involves the study of self-healing efficiency of unhydrated cement nuclei in cementitious 

matrix material [84]. They concluded that the volume fraction as well as the distribution of 

particle size of cement nuclei are key factors affecting the self-healing efficiency. It was 

observed that the rate of self-healing increases with increase in volume fraction of the cement 

nuclei.  

2.4.4. MEAN PARTICLE DISTANCE FROM THE TOP COAT-BOND COAT INTERFACE 

Several experimental and numerical studies [70-73, 85] indicate that the TBC life is strongly 

influenced by the stress fields close to the TC/BC interface, primarily due to the interface 

roughness, growth of TGO layer as well as the mismatch in thermomechanical properties 

between individual layers. Therefore, in order to achieve effective self-healing characteristics, 

it is necessary that healing particles lie close to the interfacial region which is prone to 

development of cracks and crack growth by coalescence. Research has also indicated that 

inclusion of healing particles within TBCs affects the fracture patterns as compared with that 

of a conventional TBC without healing particles [19]. Therefore, in order to predict the 

response to these complexities, it is necessary to understand the TBC crack growth behaviour 

and its lifetime as a function of uncertainty in mean particle distance from TC/BC interface 

which can occur as a result of lack of clarity regarding the above-mentioned processing 

parameters. The cracking and healing response of self-healing TBCs has been described in 

more detail in Chapter 3.



 
 
 

3 
COMPUTATIONAL METHODOLOGY 

 

This chapter describes the overall computational framework adopted in the project along 

with the implemented procedure. The approach is mainly divided into two parts: (a) obtaining 

the lifetime of self-healing thermal barrier coatings in response to thermal cycling and (b) 

using the obtained lifetime results as data points for training the surrogate model. A workflow 

summarizing the general computational strategy has been provided at the end of the chapter. 

 

3.1. EVALUATION OF SELF-HEALING TBC LIFETIME 

3.1.1 TBC MICROMECHANICAL MODEL 

The self-healing TBC micromechanical model developed by Krishnasamy et al. [14] has been 

utilized in order to obtain the number of cycles to TBC failure as a consequence of exposure 

to thermal cyclic behaviour. Figure 3.1 describes the representative element for the self-

healing TBC micromechanical model. A two-dimensional framework has been utilized to 

model the unit cell under plane strain condition. It consists of the ceramic top coat (TC), 

metallic bond coat (BC), thermally grown oxide (TGO) layer at the TC/BC interface and self-

healing particles. The roughness of the interface as well as the splat boundaries have been 

modelled in the form of sinusoidal curves. The influence of the substrate has been taken into 

account in the form of periodic boundary conditions for the displacement components 𝑑𝑥 and 

𝑑𝑦 at the left (L) and right (R) edges of the unit cell, 

𝑑𝑥
𝑅 − 𝑑𝑥

𝐿 = (1 + 𝑠𝑢𝑏)𝛼𝑠𝑢𝑏∆𝑇𝑤 

𝑑𝑦
𝑅 − 𝑑𝑦

𝐿 = 0 

Here, 𝑠𝑢𝑏 and 𝛼𝑠𝑢𝑏 represent the Poisson’s ratio and the coefficient of thermal expansion 

values for the substrate, respectively. The width of the unit cell is indicated by 𝑤, whereas ∆𝑇 

is the change in temperature responsible for generation of thermal stresses. The above 

boundary condition is based on the assumption of relatively higher thickness of the substrate 
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as compared with that of the TBC as a result of which the contraction or expansion of the 

substrate is imposed on the TBC. Representative values have been assigned to the 

geometrical features where 𝑡TC = 500µm, 𝑡BC = 200µm and 𝑡 = 15µm indicate the thicknesses 

of the TC, BC and the splats respectively whereas the wavelength of the sinusoidal interface 

curve has been assigned the value of 60µm. The healing particles have been assumed to be 

distributed near the TC/BC interface within a layer of thickness 𝑡HL= 150µm. The lengths of 

the splats have been set in such a way that the overall aspect ratio is representative of an 

APS-manufactured TBC [14,71,86].  

 

 

Figure 3.1: Unit cell for the self-healing TBC system 

 

A MATLAB code has been utilized which takes the values of amplitude and wavelength of the 

TC/BC interface, number of lamellae and TBC dimensions as inputs in order to generate the 

TBC unit cell lattice [14,37]. Another MATLAB code has been developed which distributes the 

healing particles within the TBC domain by taking inputs such as the diameter, volume 

fraction of healing particles and the desired mean distance from the TC/BC interface. These 

two programs are used in conjunction in order to develop the TBC CAD file which is ready to 

be meshed. This CAD file consisting of the coordinates of TBC features is then uploaded to 

GMSH [88] which provides a convenient way of meshing the domain.  
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The region near the TC/BC interface encompassing the healing particles has been discretized 

with a fine mesh having a size of 1µm. This is because of the thermomechanical mismatch in 

properties near the TC/BC interface and the presence of healing particles which cause stress 

redistribution and eventually pave the way for initiation and propagation of cracks. On the 

other hand, in order to reduce the computational expense, the rest of the TBC domain has 

been discretized with a coarser mesh having a size of 2µm.  

Subsequently, GMSH outputs a file which is then utilized as input by a MATLAB code that 

inserts cohesive elements throughout the mesh and assigns the loading and boundary 

conditions as well as the material properties to different element sets. Finally, the file 

generated by the MATLAB code is used as an input file in ABAQUS. Adding cohesive elements 

throughout the TBC domain ensures that the crack initiation and propagation is arbitrary and 

not dependent on the presence or absence of cohesive elements in specific regions of the 

TBC domain. A domain convergence analysis has been carried out for different values of TBC 

width 𝑤 = 240µm, 360µm, 480µm, 600µm and 720µm. It has been observed that the change 

in the width normalized total crack size at failure is within 10% for 𝑤 = 480µm, 600µm and 

720µm. Hence the TBC width has been assigned the value 𝑤 = 480µm for the rest of the 

analyses.  

 

3.1.2 CRACK HEALING MECHANISM 

In order to describe the system behaviour in response to cracking and subsequent healing, 

the cohesive zone based self-healing model developed by Ponnusami et al. [89] has been 

utilized. This model is based on a bilinear traction-separation law which takes as inputs the 

mode-I fracture energy and the normal fracture strength of the cohesive element material. 

The incorporation of self-healing and recovery of fracture properties is simulated with the 

help of a composite-based constitutive model in which the overall traction is described as a 

weighted sum of traction components of the original material and the healing material. An 

important advantage of the proposed model is the ability to simulate multiple and successive 

cracking and healing events. The model has been incorporated into the framework of the 

simulation in the form of an ABAQUS user-material subroutine.  

 

3.1.3 SIMULATION OF TGO GROWTH 

It is known that the exposure of TBCs to elevated temperature can lead to formation of 

thermally grown oxide (TGO) layer at the TC/BC interface due to high temperature diffusion 

of oxygen towards the metallic bond coat [14,74,90]. The TGO layer demonstrates higher 

stiffness and lower thermal expansion coefficient as compared with other TBC layers and thus 

can lead to thermomechanical mismatch stresses during thermal cycling.  
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In order to simulate the growth of the TGO layer and its effects as a function of number of 

thermal cycles, the above mentioned ABAQUS user-material subroutine utilizes a simplified 

TGO layer growth framework. Experimentally determined isothermal TGO growth curves 

depicting the thickness of the TGO as a function of number of thermal cycles [91,92] have 

been utilized and the data have been fitted with a logarithmic function which can be used in 

the subroutine in order to determine the TGO layer thickness as a function of number of 

thermal cycles.  

It has been assumed that the TGO growth occurs during the dwell phase or in the course of 

exposure to elevated temperature. Additionally, an inward growth of the TGO has been 

proposed. This has been simulated by an incremental replacement of the BC material with 

TGO material. Therefore, the subroutine replaces the thermomechanical properties of the BC 

layer by those of the TGO material as a function of number of thermal cycles. This implies a 

presence of a mixture zone at the interface of the newly formed TGO layer and the existing 

BC layer. The properties of the elements within the mixture zone have been assigned with the 

help of a weighted average of the constitutive properties of the TGO and BC elements, 

 
𝑆 = 𝜔𝑆TGO + (1 − 𝜔)𝑆BC 

(3.1) 

 

Here, 𝑆 represents the thermoelastic parameters whereas 𝜔 indicates the fraction of TGO 

material in the element belonging to the mixture zone. The utilized subroutine implements 

the incremental modification of properties by identifying the normal distance 𝑑c of a BC 

element centroid from the sinusoidal TC/BC interface and then evaluates the constitutive 

properties based on the value of 𝜔 as follows, 

 

 𝜔 =

{
 

 
0,                               𝑑c > 𝑡TGO + 𝑡mix
1,                               𝑑c ≤ 𝑡TGO

𝑑c − 𝑡TGO
𝑡mix

 ,                      𝑡TGO < 𝑑c < 𝑡TGO + 𝑡mix 
 (3.2) 

 

Here, 𝑡TGO represents the current TGO layer thickness and 𝑡mix indicates the thickness of the 

mixture zone which is equal to the size of an element at the interface between the TGO and 

BC layers. 
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3.1.4 MATERIAL PROPERTIES 

The material properties assigned to different components of the TBC unit cell have been 

summarized in Table 3.1, and have been adopted from Krishnasamy et al. [17,18,19]. For the 

different TBC layers, a linear and isotropic thermoelastic response has been considered which 

can be represented using the parameters such as the Young’s modulus 𝐸, thermal expansion 

coefficient α and the Poisson’s ratio , whereas the fracture behaviour can be described with 

the help of the mode-I fracture energy 𝐺𝐼𝑐 and the normal fracture strength 𝜎𝑛. Additionally, 

the ratio between the mode-II and mode-I properties has been defined using the parameter 

𝛾. In order to demonstrate the lower fracture properties of the healed material as compared 

with the original undamaged material, the ratio of fracture properties of the healed material 

and those of the TC material has been set to 0.75. 

 

Component E (GPa)  𝛂 (10-6 1/°C) 𝝈𝒏 (MPa) 𝑮𝑰𝒄 (N/mm) 𝜸 

TC 80 0.15 12.5 150 0.006 4 

BC 130 0.3 14.5 500 0.3 1 

Healing 
particle 

300 0.22 9.4 200 0.01 4 

TGO 380 0.15 7 380 0.04 4 

Substrate 200 0.28 16.5 - - - 

Splat 
interface 

- - - 50 0.001 4 

 

Table 3.1: Summary of material properties [14] 

 

3.1.5 MECHANISM OF HEALING ACTIVATION 

In order to determine if the healing process has been activated due to a crack either reaching 

or originating from a healing particle, a Python based script has been utilized which consists 

of a crack tracking algorithm. This script is called at the end of every heating phase of a 

thermal cycle with the help of the subroutine URDFIL from ABAQUS, which can be utilized to 

access the results file at the end of an increment during an analysis [93]. Initially, the algorithm 

determines if any cohesive elements that are in contact with a healing particle have opened 

at the end of the heating phase. A cohesive element is considered as opened if it dissipates 

at least 10% of its fracture energy.  



 
32  3. COMPUTATIONAL METHODOLOGY 

 
 

This criterion has been chosen based on simulations which were compared with experimental 

solutions in order to calibrate material properties and simulation parameters [14]. After the 

initial step, the algorithm identifies the failed cohesive elements that are in contact with the 

previously identified cracked elements in order to determine the crack path as well as the 

total cracked area. The value for the total cracked area is compared with the available healing 

volume in the healing particle in order to update the available healing volume for the 

subsequent steps. 

 

3.1.6 ARTIFICIALLY ACCELERATED THERMAL CYCLING 

Most of the applications of TBCs involve a typical thermal loading cycle consisting of three 

distinct phases: heating, dwell and cooling. To this end, the simulation framework considers 

a heating phase in which the temperature is increased from 30°C (nominal ambient 

temperature) to 1100°C (test temperature). This is followed by the dwell phase in which the 

TBC is exposed to constant elevated temperature of 1100°C. Finally, the cooling process 

involves reduction of temperature from 1100°C to 30°C. It has been assumed that during the 

dwell phase, the TBC system does not experience any thermomechanical stresses since the 

elevated temperature is considered to be the coating deposition temperature. Consequently, 

the cooling phase is responsible for the generation of thermomechanical stresses due to the 

mismatch in thermal expansion coefficients between different components of the TBC 

system.  

Experimental results for determination of TBC lifetime indicate that in general the lifetime is 

of the order of several hundred thermal cycles. However, since it is computationally expensive 

to simulate the crack initiation and growth to failure considering the modelling parameters, 

the self-healing TBC model considers an accelerated thermal loading state. In order to 

alleviate the computational cost while capturing the cyclic damage and healing, an artificially 

accelerated TGO growth has been considered where one simulated cycle represents the TGO 

growth of 25 actual cycles. The logarithmic curve used to fit the experimentally obtained TGO 

growth results as a function of actual and accelerated thermal cycles can be observed in 

Figure 3.2. In this way, the considered self-healing TBC model explicitly models the thermal 

cycles by considering uniform temperature distribution. The effects of the rates of heating 

and cooling are not considered as the micromechanical model used is essentially a static 

model. Also, the material properties are taken to be temperature and time-independent.  
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Figure 3.2: Calibrated TGO growth as a function of number of thermal cycles [14,92] 

 

Complete failure of the TBC system is considered to have taken place when 90% of the TC 

layer has separated from the TC/BC interface or the TGO layer. For the purpose of post-

processing, a Python script has been utilized which accesses the output database that is 

generated during the simulation. This script identifies the coordinates of the cracked and 

healed elements for each step of the thermal cyclic loading. A MATLAB code has been 

developed which reads the data consisting of the coordinates and provides the total crack 

length, length of the largest continuous crack and number of cracks as a function of number 

of computational thermal cycles as well as the TBC crack patterns at failure. An example of an 

output for the same can be observed in Figure 3.3. In Figure 3.3(b), the healed cracks are 

plotted in blue whereas the red colour indicates the active cracks. 
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Figure 3.3(a): Crack growth as a function of number of thermal cycles 

 

Figure 3.3(b): Crack pattern at TBC failure
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3.2. TRAINING THE SURROGATE MODEL 

3.2.1 INPUT VARIABLE DISTRIBUTIONS  

In order to develop a surrogate model for the computationally expensive numerical 

simulations, the number of computational thermal cycles to failure is considered to be the 

quantity of interest. As identified in Section 2.4, the input parameters for the polynomial 

chaos expansion (PCE) are the TC/BC interface amplitude, the TGO growth rate, mean 

distance of healing particles from the TC/BC interface and the volume fraction and diameter 

of healing particles. For the purpose of developing the PCE based surrogate model, the first 

step is to obtain the orthogonal polynomials with the help of the joint probability distribution 

of the input parameters. The joint probability distribution can be derived by defining the 

individual input variable distributions, which in turn can be decided based on experimental 

observations, existing information and expert understanding [69]. The growth rate of TGO 

thickness as a function of number of thermal cycles has been quantified with the help of a 

multiplying coefficient in the logarithmic function used to fit the experimentally obtained 

results. Figure 3.4 gives an example of how varying the multiplying coefficient helps to modify 

TGO growth rate.  

 

Figure 3.4: Variation of TGO growth rate 
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In order to observe the impact of the variation of the interface amplitude, a uniform 

distribution of values with bounds [15,25] µm is considered based on finite element 

simulations [71-73] and the design rules as developed in the SAMBA project [109]. The 

multiplying coefficient of TGO growth rate has been assumed to vary uniformly between 

[2.5,3]. This distribution has been decided with the help of prior simulations which were 

carried out for a range of TGO growth rate coefficient values in order to determine the 

viability of duration of simulations for the available computational resources. A normal 

distribution is proposed for the volume fraction of healing particles with a mean value and 

standard deviation of 7.5% and 1% respectively. For the purpose of determining the sensitivity 

of TBC lifetime to diameter of healing particles, the diameter value is varied uniformly 

between the bounds [10,20] µm. The value for the mean distance of healing particles from 

the TC/BC interface has been distributed uniformly between [45,80] µm such that the healing 

particles encompass the entire healing layer thickness for the considered range of volume 

fraction and diameter of healing particles. The input variable distributions considered in the 

project have been summarized in Table 3.2.  

 

Input variable Unit Distribution 

Interface amplitude µm Uniform  [15, 25] 

TGO growth coefficient - Uniform  [2.5, 3.0] 

Volume fraction of healing particles % Normal  (7.5, 1) 

Diameter of healing particles µm Uniform  [10, 20] 

Mean particle distance µm Uniform  [45, 80] 

 

Table 3.2: Statistical characteristics of uncertain input parameters 
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3.2.2 SELECTING THE ORDER OF POLYNOMIAL CHAOS EXPANSION  

In order to develop and train the surrogate model, Chaospy has been utilized, which is a 

Python-based toolbox used for uncertainty quantification using polynomial chaos expansion 

[94]. It can be used to generate random input variable distributions, obtain orthogonal 

polynomials, derive samples from the defined distributions as well as generate useful 

statistical metrics. Chaospy has been employed to obtain the joint probability distribution 

function by defining the input variable distributions as described in Table 3.2. Obtaining the 

orthogonal polynomial basis from the joint probability distribution function requires the prior 

definition of the PCE order. It has been observed that there are no specific guidelines to set a 

particular order since the optimum order may vary in different underlying models [45]. For a 

specific number of input variables and an oversampling ratio, the chosen PCE order also 

affects the number of samples to be generated for training the surrogate model as indicated 

by Equation (2.6). Table 3.3 employs this equation and gives an idea about the number of 

samples required for a PCE order 𝑛 and number of input variables 𝑘 for an oversampling ratio 

of 2. 

 

n       
k 1 2 3 4 5 6 

1 4 6 8 10 12 14 

2 6 12 20 30 42 56 

3 8 20 40 70 112 168 

 

Table 3.3: Variation of number of sampling points with PCE order (𝑛) and number of input 

variables (𝑘) 

 

Since each sampling point corresponds to a computationally expensive simulation, a trade-

off between available computational resources and the accuracy of surrogate model is 

required in order to decide the PCE order. For the present work, a PCE order 𝑛=2 has been 

chosen such that it satisfies the computational constraints and is also able to capture the 

possible non-linearities in the response of the underlying model as well as the interactions 

between the input variables. It has also been observed in literature that a second-order PCE 

is able to demonstrate sufficient accuracy in determining the mean and standard deviation of 

the response whereas a higher order might be required in order to accurately determine 

higher order statistical moments such as skewness and kurtosis [95].  
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3.2.3 GENERATION OF SAMPLING POINTS  

Once the input variable distributions and the PCE order have been defined, Chaospy can be 

utilized to obtain the joint probability distribution of the variables, which consequently serves 

two purposes. Firstly, it can be used to obtain the orthogonal polynomial basis. Secondly, it 

can be used to sample points from the input variable distribution space which will be utilized 

by the finite element model in order to provide the TBC lifetimes. Hence, for a PCE of 

order 𝑛 = 2 and number of input variables 𝑘 = 5, it can be observed from Table 3.3 that a 

total of 42 samples are required. These samples can be generated from the joint distribution 

of input variables with the help of Latin hypercube sampling (LHS). This is a sampling approach 

which is able to encompass the input design space and hence it provides representative 

samples from the entire stratification of variables.  

Each sample point corresponds to a particular value of the TC/BC interface amplitude, TGO 

growth rate coefficient, volume fraction and diameter of healing particles as well as the mean 

distance of healing particles from the TC/BC interface. The value of the interface amplitude 

can be varied within the MATLAB code which is used for geometry generation whereas the 

TGO growth rate coefficient can be modified within the user subroutine before submitting 

the job for finite element simulation. Additionally, a MATLAB code has also been developed 

which provides the distribution of healing particles for a desired value of mean distance from 

the TC/BC interface by taking the volume fraction and diameter of healing particles as inputs.  

 

3.2.4 POST-PROCESSING OF THE SURROGATE MODEL 

Once the quantity of interest, being the TBC lifetime, has been obtained for each of the 

samples, the vector of TBC lifetimes can be used to train the surrogate model and obtain the 

PCE coefficients. The surrogate model can then be utilized in conjunction with Monte Carlo 

simulation in order to obtain the probability density function as well as statistical 

characteristics such as the expected value and standard deviation of the TBC lifetime. A 

Python script has been developed which provides the above-mentioned statistical outputs. 

The trained model can also be used to obtain the sensitivity indices which indicate the 

contribution of individual input variables to the variance in TBC lifetime. The prediction 

accuracy of the surrogate model can be determined with the help of techniques such as leave-

one-out cross validation [96] or k-fold cross validation for which scripts have been developed 

which utilize the scikit-learn package in Python [97]. Figure 3.5 provides the workflow of the 

overall computational procedure implemented in the project. 
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Figure 3.5: Overall computational workflow 
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4 
RESULTS AND DISCUSSION 

 
This chapter provides the characteristics of the trained PCE-based surrogate model. Initially, 

the ability of the model to fit the actual data has been described with the help of a residual 

plot. This is followed by a validation of the predictive performance of the model. The trained 

model has also been compared with another PCE model having order = 1 in order to 

demonstrate the relative prediction capabilities. A sensitivity plot has been provided which 

compares the impact of each of the considered input variables on the variation in TBC lifetime. 

An additional surrogate model is developed for the case of the benchmark TBC without 

healing particles in order to make a comparison with the surrogate model developed for TBC 

with healing particles and determine the effect of use of self-healing particles on the expected 

value of TBC lifetime and the underlying scatter in thermal fatigue life. 

4.1. RESIDUAL PLOT 

TBC lifetime results are obtained by carrying out finite element simulations at the sampled 

points. These data points are utilized to train the surrogate model as a consequence of which 

the PCE coefficients are derived. In order to determine how well the trained model fits the 

actual data points and to have an indication regarding the quality of fit, a residual plot is 

presented in Figure 4.1. In this plot, the X-axis consists of the actual data points whereas the 

corresponding Y-coordinates indicate the residual or the error between the actual values and 

those produced by the surrogate model. The residual plot can be utilized for two purposes. 

Firstly, it indicates the goodness of fit that can be achieved with the trained model. Secondly, 

it describes whether the variation in the output can be explained by the input variables. For 

instance, if there exists an observable trend or non-randomness in the residuals then this 

implies that the input variables are not sufficient to describe the variation in the output. As a 

result, this calls for improvement in the model. However, the obtained plot indicates that the 

residual data points are scattered randomly around the zero line which supports the validity 

of the trained model [98, 99].  
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Figure 4.1: Residual plot for the surrogate model 

Additionally, the quality of fit can also be assessed with the help of the coefficient of 

determination 𝑅2. Consider a model 𝑌 whose limited number of runs on the sampled points 

𝑆 = (𝑠(1), 𝑠(2), 𝑠(3), … 𝑠(𝑁)) can be used to train the surrogate model 𝑌̌. Here, 𝑠(𝑖) represents 

a particular value for each of the considered input variables. The training error can be defined 

in the following manner [100]: 

 𝐸𝑟𝑟𝑡𝑟𝑎𝑖𝑛 =
1

𝑁
∑(𝑌(𝑠(𝑖)) − 𝑌̌(𝑠(𝑖)))

2
𝑁

𝑖=1

 (4.1) 

 

The coefficient of determination can be defined as follows: 

 𝑅2 = 1 −
𝐸𝑟𝑟𝑡𝑟𝑎𝑖𝑛

𝑉̌
 (4.2) 

 

Here, 𝑉̌ represents the variance observed in the responses of the trained surrogate model. 

However, as the cardinality or the number of terms in the PCE (𝑄) increases, the number of 

sampled points (𝑁) also increases which can lead to overfitting of the model to the actual 

data points.  
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This phenomenon can lead to increased prediction errors while using the surrogate model on 

new data. In order to take this into account, the coefficient of determination can be modified 

and adjusted to the number of PCE coefficients (𝑄) as follows [45]: 

 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 − (

𝑁 − 1

𝑁 − 𝑄 − 1
) (1 − 𝑅2) (4.3) 

 

The following results have been obtained for the trained surrogate model: 

𝑅2 = 0.97 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 0.94 

From the obtained value of the adjusted coefficient of determination, it can be observed that 

despite the underlying complexities and non-linearities in the self-healing TBC model, the 

surrogate model is able to fit well to the actual data points. However, it has been observed 

that the adjusted coefficient of determination overpredicts the accuracy of approximation 

[101]. Also, evaluation of residuals and the quality of fit does not indicate how well the trained 

model will perform on new data or unseen sample points.  

 

4.2. LEAVE-ONE-OUT CROSS VALIDATION 

In order to determine the predictive performance of the surrogate model, Leave-one-out 

(LOO) cross validation technique has been implemented. According to this method, initially a 

surrogate model 𝑌̌(~𝑖) is built by training it on all but the 𝑖th sample point. This metamodel is 

then used to predict the value of the original model 𝑌 at the 𝑖th observation and the 

prediction error is evaluated: 

 

 
(𝑖) = 𝑌(𝑠(𝑖)) − 𝑌̌(~𝑖)(𝑠(𝑖)) (4.4) 

 

This process is repeated for all the sample points and the predicted residual sum of squares 

[100] or the leave-one-out cross validation error is calculated as follows: 

 𝐸𝑟𝑟𝐿𝑂𝑂 =
1

𝑁
∑

(𝑖)2
𝑁

𝑖=1

 (4.5) 

 

The LOOCV algorithm has been represented in Figure 4.2. 
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Figure 4.2: Leave-one-out cross validation process 

In order to visualize the advantages of developing a surrogate model with a PCE order = 2, the 

current model (𝑌̌) has been compared with a model developed using a PCE order = 1 (𝑌̌1). 

Initially, LOOCV error has been evaluated for the model 𝑌̌1 considering the same sample 

points that were utilized for training the model 𝑌̌. The following results have been obtained: 

 

𝐸𝑟𝑟𝐿𝑂𝑂(𝑌̌) = 28.9 

𝐸𝑟𝑟𝐿𝑂𝑂(𝑌̌1) = 41.2 

 

However, it can be observed from Table 3.3 that for an oversampling ratio = 2, the number of 

sample points required for a PCE order = 1 and number of input variables = 5 is 12. Hence, as 

an additional verification step, 12 samples have been chosen at random from the initial 

sample space and LOOCV has been performed for those 12 samples. This process is repeated 

until the entire initial sample space has been represented for the case of PCE order = 1. Finally, 

the mean LOOCV error has been evaluated. 

 

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝐿𝑂𝑂(𝑌̌1) = 62.3 

 

From the above results, it can be observed that a surrogate model developed with a PCE order 

= 2 demonstrates a better predictive performance than the one developed with a PCE order 

= 1.
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4.3. TRAINED SURROGATE MODEL 

Equation 4.6 states the final polynomial function derived capturing the direct and coupled 

dependencies of the lifetime on model parameters. 

 

𝑌̌     =    470.53 + 13.73𝑥5 − 1.56𝑥5
2 − 1.19𝑥4 + 0.01𝑥4𝑥5 + 0.01𝑥4

2 − 8.02𝑥3                   

 −3.75𝑥3𝑥5 + 0.05𝑥3𝑥4 + 0.27𝑥3
2 + 23.44𝑥2 − 9.63𝑥2𝑥5 − 0.01𝑥2𝑥4 + 0.12𝑥2𝑥3 

 +0.79𝑥2
2 − 38.14𝑥1 + 4.78𝑥1𝑥5 − 0.01𝑥1𝑥4 + 0.27𝑥1𝑥3 − 0.46𝑥1𝑥2 + 0.53𝑥1

2 

 … (4.6) 

 

In the above equation, 𝑌̌ represents the TBC lifetime in number of computational thermal 

cycles. The input terms are summarized along with their respective considered distributions 

as follows: 

 

𝑥1   = TC/BC interface amplitude  Uniform ~ [15,25] µm 

𝑥2   = Healing particle volume fraction Normal  ~ (7.5,1) % 

𝑥3   = Healing particle diameter Uniform ~ [10,20] µm 

𝑥4   = Mean distance of healing particles from TC/BC interface Uniform ~ [45,80] µm 

𝑥5   = TGO growth coefficient Uniform ~ [2.5,3] 

 

This equation represents the surrogate model generated using the orthogonal polynomials 

derived from the Askey scheme of polynomials [57, 58]. The coefficients in the model have 

been obtained with the help of the method of least squares. This method utilizes the finite 

element model responses at the sampling points obtained using Latin hypercube sampling. 

This trained model can be used in conjunction with Monte Carlo sampling in order to derive 

the probability density function of the self-healing TBC lifetime. It can also be used to observe 

the relative impact of each of the input variables on the variation in the output or the 

sensitivity indices. Additionally, after determination of the most sensitive input variables, the 

surrogate model can be helpful to obtain the statistical characteristics of the variation of TBC 

lifetime as a function of the sensitive variable while the uncertainties in the remaining 

variables are propagated through the surrogate model. This implies that controlling the value 

of the sensitive variables while designing the self-healing TBCs will help in the determination 

of the reliability of the surrogate model output in the form of standard deviations. 
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4.4. SENSITIVITY ANALYSIS 

In order to obtain the relative contribution of each input variable to the output variance, a 

sensitivity analysis can be carried out using the trained surrogate model. A commonly utilized 

approach to evaluate sensitivity indices is Sobol’s method. Using this method, the output 

variance is decomposed into contributions associated with each of the input variables. 

Suppose the output 𝑌 is a function of input variables (𝑋1, 𝑋2, 𝑋3…𝑋𝑁). To calculate the 

sensitivity index of 𝑋𝑖, the method proposes initially fixing the variable at a particular value 

(𝑋𝑖 = 𝑐𝑖) and then calculating the change in output variance or the conditional variance: 

V𝑋~𝑖(𝑌|𝑋𝑖 = 𝑐𝑖) 

Here, the output variance V𝑋~𝑖 is calculated by considering the uncertainties in all but the 𝑖𝑡ℎ 

input variable. Since 𝑋𝑖 also depicts uncertainty in terms of a distribution of values, a mean of 

the above-mentioned conditional variance is evaluated over the distribution of 𝑋𝑖 in order to 

obtain the expected value: 

E[V𝑋~𝑖(𝑌|𝑋𝑖)] 

Since the conditional variance is calculated over all the input variables other than 𝑋𝑖, it can be 

understood that smaller the expected value of the conditional variance, more sensitive is the 

output response to changes in 𝑋𝑖. Also, according to the law of total variance [102], 

V(𝑌) = E[V(𝑌|𝑋)] + V(E[𝑌|𝑋]) 

 Therefore, 

 V(𝑌) = E[V𝑋~𝑖(𝑌|𝑋𝑖)] + V(E𝑋~𝑖[𝑌|𝑋𝑖]) (4.7) 

 

Dividing both sides of the equation by V(𝑌), 

 1 =
E[V𝑋~𝑖(𝑌|𝑋𝑖)]

V(𝑌)
+
V(E𝑋~𝑖[𝑌|𝑋𝑖])

V(𝑌)
 (4.8) 
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The second term on the RHS of Equation (4.8) is defined as the first order sensitivity index 

which is representative of the influence on the output variance of each input variable taken 

alone [95]. The Chaospy module in Python also provides the total sensitivity indices which 

include the possible interactions of input variables and hence their joint effect towards the 

output variance. Figure 4.3 provides a summary of the obtained sensitivity indices.  

 

Figure 4.3: Sensitivity indices 

It can be observed that the TC/BC interface amplitude is the main contributor towards the 

variance in TBC lifetime. This implies that relatively small changes in the value of the 

amplitude will result in a high change in the TBC lifetime. In order to observe how the output 

variance depends on the input variable sensitivity, Figure 4.4 provides the probability density 

functions developed using the TBC lifetime responses from the surrogate model. Two 

scenarios have been compared. The first one considers the uncertainties in all the input 

variables and hence provides a general response PDF. In the second case, the input variable 

having the highest sensitivity index or the interface amplitude has been fixed at its mean value 

while the uncertainties in the rest of input variables have been taken into account.  
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Figure 4.4: Influence of fixing the input variable with the highest sensitivity index 

In order to compare the degree of variance in the two scenarios, the coefficient of variation 

(COV) [45] has been calculated for both cases. COV is also known as the relative standard 

deviation which is defined as the ratio of the standard deviation to the mean value. COV for 

the first case has been found out to be 45% whereas the second case describes a COV of 22%. 

Since the interface amplitude value is the most significant contributor to the output variance, 

fixing its value reduces the dispersion in the TBC lifetime response. This implies that 

incorporating focussed attempts to control the interface amplitude value will help to increase 

the reliability of TBC lifetime results. 

 

4.5. UNCERTAINTY PROPAGATION PLOTS 

In order to visualize how the output changes while a particular input variable is controlled, 

the variation in TBC lifetime is plotted in Figure 4.5 as a function of each variable 𝑋𝑖 while the 

uncertainties in the remaining input variables 𝑋~𝑖  have been propagated through the 

surrogate model. 
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Figure 4.5(a): TBC lifetime vs Interface amplitude 

 

Figure 4.5(b): TBC lifetime vs TGO coefficient 
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Figure 4.5(c): TBC lifetime vs Particle diameter 

 

Figure 4.5(d): TBC lifetime vs Particle volume fraction 
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Figure 4.5(e): TBC lifetime vs Particle mean distance from TC/BC interface 

 

The above of set of figures represents the trend of the response surface generated using the 

Askey scheme of polynomials as mentioned in Table 2.1 with respect to each of the input 

variables. Figure 4.5(a) confirms the result from Figure 4.3 that the TBC lifetime varies the 

most with changes in the interface amplitude value. It also indicates that a decrease in 

interface amplitude value will lead to a gain in TBC lifetime. This observation has also been 

made by several researchers who have carried out two-dimensional as well as three-

dimensional finite element studies to understand the impact of roughness or the TC/BC 

interface topography on damage growth and lifetime of TBCs. Studies have indicated that an 

increase in the value of interfacial waviness or roughness leads to increased magnitude of 

stresses at the TC/TGO and TGO/BC interfaces as well as the TC layer, thus affecting the 

fatigue life of TBCs [104, 105]. It has also been observed that the development of damage as 

a result of thermal cycling is directly proportional to the interface roughness values [87]. This 

implies that in order to predict the TBC lifetime, special efforts need to be taken while 

measuring the value of interface amplitude. Additionally, focus should be given upon 

controlling the feedstock powder size during manufacturing of TBCs to obtain a desirable 

value of interface amplitude.  
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Figure 4.5(b) describes the variation of TBC lifetime as a function of the TGO growth 

coefficient. It can be observed that the expected value of TBC lifetime reduces with an 

increase in the TGO growth coefficient value. Experimental studies have indicated that the 

fracture toughness of the TGO reduces with progression of thermal cycles which paves the 

way for easier crack growth and coalescence [106]. As this reduction in fracture toughness 

will occur at a higher rate for a higher rate of TGO growth, the number of cycles required for 

delamination will reduce, consequently reducing the TBC lifetime. Investigations have also 

indicated the effects of TGO thickness values on stress redistribution and damage growth in 

TBCs [74-77]. Thus, efforts can be implemented in order to reduce the TGO growth rate. It 

has been observed that the TGO growth rate can be controlled by modifying the BC 

manufacturing process [79] or by carrying out a pretreatment of the BC which constrains the 

initiation and growth of cracks between the TC and TGO layers [107].  

Figures 4.5(c), (d) and (e) also agree with the obtained sensitivity indices in such a way that 

there exists less variation in TBC lifetime across the considered ranges of healing particle 

diameter, particle volume fraction and the particle mean distance from TC/BC interface 

respectively. This indicates that for the considered ranges of the values of variables associated 

with healing particles, controlling the manufacturing process may not yield tangible benefits 

in prediction of TBC lifetime. Instead, the number of available healing sites, which is derived 

from the combination of the three above-mentioned variables, determines whether a 

growing crack will be arrested and healed, thus resulting in a subsequent extension of TBC 

lifetime as compared with the TBC without any healing particles. Although the mean distance 

of healing particles from the TC/BC interface does not seem to contribute towards the 

variance in TBC lifetime, it does potentially affect the damage growth characteristics. Figure 

4.6 compares two cases: one in which the mean distance value is near the lower end of its 

considered range and the other in which it is towards the higher end. Two representative 

samples from the simulation sample space have been considered for each of the two cases. 
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(a) Mean distance  50 µm                                   (b) Mean distance  75 µm 

 

Figure 4.6: Comparison of crack growth behaviour for different values of particle 

mean distance 

It can be observed from Figure 4.6(a) that for a lower value of mean distance, the rate of crack 

growth after the first cycle is fairly constant until catastrophic failure occurs. On the other 

hand, Figure 4.6(b) indicates that for a higher value of mean distance, the crack growth rate 

initially increases and stabilizes towards the end until the final failure occurs. This could be 

attributed to the increased number of available healing sites near the TC/BC interface in case 

(a), resulting in steady crack growth, whereas a reduced number of healing sites near the 

TC/BC interface in case (b), resulting in an increasing initial crack growth rate until the total 

crack length is large enough to encounter multiple healing sites which stabilizes the rate of 

crack growth. 

 

4.6. COMPARISON WITH THE BENCHMARK TBC 

In order to estimate how the use of self-healing particles in TBCs affects the expected lifetime 

and the underlying scatter as compared with the case of the conventional TBC without any 

healing particles, a second PCE based surrogate model is developed with the same procedure 

as described in Figure 3.5. This surrogate model considers the TC/BC interface amplitude and 

TGO growth rate as the input uncertain variables which are defined over the same respective 

distributions as that in the surrogate model developed for the self-healing TBC. Equation 4.9 

describes the surrogate model developed for the benchmark case.  
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𝑌̌𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘     =    215.42 − 77.40𝑥2 + 11.65𝑥2
2 − 7.94𝑥1 + 0.61𝑥1𝑥2 + 0.11𝑥1

2          … (4.9) 

 

In the above equation, 𝑌̌𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 represents the lifetime of the benchmark TBC in number of 

computational thermal cycles. The input variables and their respective distributions have 

been summarized as follows: 

𝑥1   = TC/BC interface amplitude  Uniform ~ [15,25] µm 

𝑥2   = TGO growth coefficient Uniform ~ [2.5,3] 

 

In order to evaluate the surrogate model’s goodness of fit and its predictive performance, the 

adjusted coefficient of determination and leave-one-out cross validation error are calculated: 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 0.99 

𝐸𝑟𝑟𝐿𝑂𝑂 = 0.91 

Equation 4.9 has been utilized to acquire the distribution of lifetime for the benchmark TBC. 

Figure 4.7 compares the box plots which are generated using the lifetime realizations of the 

surrogate models generated for the benchmark TBC and the self-healing TBC. 

 

Figure 4.7: Box plot comparison of the lifetime realizations of two surrogate models 
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It has been found that the surrogate model for the benchmark case provides a mean lifetime 

value of 13 computational thermal cycles while describing a coefficient of variation (COV) of 

35 %. On the other hand, the surrogate model for the self-healing TBC depicts a mean lifetime 

value of 29 computational thermal cycles and a COV = 45 %. This indicates that for the 

considered range of values of the input variables, the use of self-healing particles helps to 

improve the expected TBC lifetime value but at the same time leads to increased scatter in 

the thermal fatigue life as compared with the benchmark TBC without any healing particles. 

This observation regarding the increased scatter in lifetime could potentially be attributed to 

the random distribution and inherent variations in the individual positions of the healing sites 

within the self-healing TBC. Additionally, the coupled effects of the considered input variables 

might affect the TBC lifetime, thus contributing to the scatter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
56  4. RESULTS AND DISCUSSION 

 
 

 

 

 

 

 

 

 



 
 
 

5 
CONCLUSION AND 

RECOMMENDATIONS 
 

Surrogate modelling techniques provide an efficient way of approximating complex and 

deterministic numerical frameworks. These models are able to take into account the 

uncertainties in the input variables that are used to design the underlying framework in order 

to deliver reliable and computationally inexpensive results.  

In this thesis, a surrogate model based on polynomial chaos expansion (PCE) has been 

developed in order to predict the fatigue lifetime of self-healing thermal barrier coatings 

(TBCs) exposed to thermal cycling. A two-dimensional TBC micromechanical model is 

considered in which the response to thermal cyclic effects has been described with the help 

of a cohesive-zone based crack healing model (Ponnusami et al. [89]). TBC design variables 

such as the top coat (TC)/bond coat (BC) interface amplitude value, growth rate of thermally 

grown oxide (TGO) layer, diameter and volume fraction of healing particles as well as the 

mean distance of healing particles from the TC/BC interface have been considered along with 

their respective uncertainties as inputs for the PCE model. 

Latin hypercube sampling has been utilized to derive the experimental design from the input 

variable distribution space. Finite element simulations have been carried out in ABAQUS on 

the basis of the design points. These simulations are post-processed in order to obtain self-

healing TBC lifetimes which are then utilized to train a second order PCE surrogate model. 

This model has been compared with a corresponding first order PCE model which 

demonstrates the better fitting characteristics of the second order PCE. The predictive 

performance of the two models has been compared using the leave-one-out cross validation 

approach, the results of which also favour the second order PCE model. 
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The trained surrogate model is then utilized to obtain the relative contribution of the 

considered input variables to the variance in the TBC lifetime or the sensitivity indices. It has 

been found that the TC/BC interface amplitude is the most significant contributor towards 

the output variance, which is followed by the TGO growth rate. This implies that relatively 

small changes in the value of the interface amplitude will result in large deviations in the TBC 

lifetime. As a result, this calls for special efforts to determine the TC/BC interface amplitude 

value. On the other hand, the variables associated with healing particles have been found to 

demonstrate relatively minor influence towards the variation in TBC lifetime. 

For better visualization of output variation with changes in input variables, TBC lifetime has 

been plotted as a function of each of the input design variables while the uncertainties in the 

rest of the variables is propagated through the surrogate model. These uncertainty 

propagation plots indicate that the expected TBC lifetime reduces with an increase in the 

TC/BC interface amplitude and TGO growth rate values. Therefore, in order to increase the 

TBC lifetime, regulation should be exercised during the manufacturing of self-healing TBCs in 

the form of a control of the powder size and bond coat processing techniques. Even though 

the mean distance of healing particles from the TC/BC interface makes a negligible 

contribution towards the TBC lifetime variation, it does seem to positively affect the damage 

growth characteristics with progression of thermal cycles. 

Another second ordered PCE based model has been developed as a surrogate to the TBC 

micromechanical model without healing particles. A comparison of the lifetime realizations 

generated by the two surrogate models indicates that the incorporation of healing particles 

helps in improving the expected value of the TBC lifetime. However, it also leads to an 

increased amount of scatter in the thermal fatigue life as compared with that of the 

benchmark or the TBC model without any healing particles.  

In sum, the research carried out in this thesis demonstrates the benefit of implementing a 

surrogate model for developing robust designs for TBCs. The research findings point towards 

the necessity of an additional layer of analysis over the conventional deterministic 

approaches in order to estimate the reliability of the results and hence draw informed 

conclusions. Furthermore, it also paves the way for exploration of other input variables which 

could possess uncertainness in their values. For example, in this project the material 

properties have been considered to be constant. However, an uncertainty in the material 

properties might affect the stress redistribution and growth of damage within the TBC and 

hence affect the thermal fatigue lifetime. As a result, this provides a scope for uncertainty 

quantification and sensitivity analysis by considering material properties as input variables for 

PCE. Since there are no specific guidelines for choosing the order of PCE other than the 

practical limitations of computational resources, there are possibilities to investigate the 

surrogate model performance for higher orders.  
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Nonetheless, as can be observed from Table 3.3, increasing the PCE order leads to an 

increased number of PCE coefficients and hence a larger experimental design sample space. 

In such a scenario, sparse polynomial chaos expansions could be explored which facilitate the 

detection of significant PCE coefficients [108]. As a result, the number of required sample 

points is reduced. This reduced number of finite element simulations can also promote the 

development and utilization of a three-dimensional TBC micromechanical model as a black 

box for uncertainty quantification using surrogate modelling. 
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APPENDIX-A 

ANALYSIS OF COMPUTATIONAL DURATIONS 

 

A considerable number of runs of the finite element model is required to obtain the data 

points for training the surrogate model. It is known from Section 3.2.3 that the considered 

order of PCE and the number of input variables lead to a total of 42 sample points. As a result, 

42 simulations have to be run in order to obtain the corresponding TBC lifetimes. Since 

carrying out a finite element simulation is computationally expensive, it becomes necessary 

to efficiently utilize the available resources.  

In order to reduce the total run time, ABAQUS provides the alternative of parallel execution 

of simulations and analyses. This can be achieved by utilizing multiple processors for solving 

the task at hand. For instance, the total number of elements within the finite element model 

will be evenly distributed and assigned to each of the processors which will then perform the 

operations in parallel. This helps in reducing the total execution time. However, since the 

divided elements belong to different domains within the model which may share common 

boundaries, it is necessary to ensure communication between these domains in order to pass 

information.  

Also, computational efforts are required to combine the results obtained by running the task 

in parallel. As a result, the total execution time consists of the computation time as well as 

the time required for communication between processors [103]. Therefore, an optimum 

number of processors needs to be determined to ensure efficient numerical computation. 

Figure A.1 provides a summary of computational times as a function of number of processors 

(𝑛𝑝) used to perform finite element simulations on a particular self-healing TBC sample.  
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Figure A.1: Summary of computational durations 

Here, the elapsed time is representative of the sum of times taken by all the increments in 

the simulation until failure of the TBC. The wallclock time indicates the actual time taken by 

the code to run during each increment as measured by a stopwatch. The total CPU time is the 

sum of the user time or the amount of time taken by the processor to run the desired code 

and system time which is the time taken by the processor to work on the code-related 

functions or additional system calls. In addition to these durations, the total execution time 

consists of the time taken to write and update the ABAQUS model and state files which can 

be utilized for restarting an analysis as well as the time taken for performing convergence 

checks for equilibrium after every increment. Figure A.1 indicates that while adhering to 

computational constraints, the number of simultaneously running simulations can be 

optimized for reducing the overall time taken for completing 42 simulations. For example, the 

total execution time for 𝑛𝑝 = 12 is only slightly lesser than that for 𝑛𝑝 = 6. This means that 

instead of running one job with 𝑛𝑝 = 12, two jobs can be run simultaneously with 𝑛𝑝 = 6. 

Additionally, by taking into consideration the amount of data generated for each simulation 

and the constraints on the available computational memory, it has been found that 𝑛𝑝 = 6 

provides the most efficient recourse for the parallel execution of simulations. 
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