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Confocal microscopy with a radially polarized
focused beam
PEIWEN MENG,* SILVANIA PEREIRA, AND PAUL URBACH

Optics Research Group, Department of Imaging Physics, Delft University of Technology, Lorentzweg 1,
2628 CJ Delft, Netherlands
*P.Meng@tudelft.nl

Abstract: Rigorous vectorial focusing theory is used to study the imaging of small adjacent
particles with a confocal laser scanning system. We consider radially polarized illumination with
an optimized amplitude distribution and an annular lens to obtain a narrower distribution of the
longitudinal component of the field in focus. A polarization convertor at the detector side is
added to transform radial polarization to linear polarization in order to make the signal detectable
with a single mode fiber.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Many super-resolution microscopes such as STED [1], PALM [2], and STORM [3] have become
very important in science and applications because of their high quality images. While the
applications of these super-resolution microscopy are attractive, there are some disadvantages
like extremely expensive systems, time-consuming data acquisition and choices of fluorescent
dyes, which limit the techniques in some cases. Although the lateral resolution of conventional
confocal imaging systems is limited because of the diffraction limit, confocal microscopy has a
wide range of applications in the biological and medical sciences [4–6], as well as nano-crystal
imaging and spectroscopy [7, 8]. Thus, the development of a cheap and simplified confocal
system combined with super-resolution imaging is very attractive.
The total point spread function (PSF) of the confocal system is determined by both the

excitation PSF and the detection PSF, where the former is related to the focused illumination and
the latter depends on the small pinhole or a fiber in the detector plane [9]. A very small pinhole
which can remove the out of focus information plays an important role in improving both the axial
and lateral resolutions in confocal microscopy. Wilson [10] compares the images theoretically
and experimentally of scatterers using conventional and confocal microscopes. However, only
linearly and circularly polarized beams are considered there. Cylindrical vector beams are
well-established tools in optics because of the applicability of radially polarized beams in several
areas. For example, using radially polarized light, the longitudinal electric component of the
illuminating focused spot can be made small [11–13]. Provided the sample interacts only with
the longitudinal component, higher resolution can be obtained. For a high numerical aperture
(NA) system, and a radially polarized pupil field, the longitudinal component can be enhanced
compared to the transverse component by using an annular aperture in the pupil of the focusing
objective. The latter also results in a tighter focusing spot size of the longitudinal component in
the focal plane [14–16], although this is at the expense of stronger sidelobes which will reduce
the imaging quality. However, annular apertures do not give the largest longitudinal component
in focus. Other pupil filter functions, for example, a BOE [17–20], a parabolic mirror and a
flat diffractive lens [21] are proposed to achieve sharper focal spot sizes and as a consequence,
higher resolution. By shaping the radially polarized pupil field such that the amplitude increases
monotonically in a specific way as function of the pupil radius, the full-width-at-half-maximum
(FWHM) of the intensity of longitudinal component reaches a value that is 15% to 30% lower
than that of the spot of a focused linear polarized pupil field [22]. Spot-size reduction by means of
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focusing the optimized radially polarized light is shown experimentally according to theoretical
productions [23]. However, in a confocal configuration, when strong longitudinal field excites
a longitudinal sensitive sample, for example, a dipole is oriented parallel to the optical axis,
the consequence is that its image with low NA that is formed at the pinhole side has a zero at
the center [24]. In order to make the signal detectable, a polarization convertor placed in the
path of detection plane is proposed to engineer the detection PSF from a doughnut shape to one
with maximum in the center [25]. In the reference [26], good imaging results are achieved with
the confocal microscope together with a polarization convertor experimentally. However, the
theoretical analysis of the entire system is not complete.
In this paper, we present a fully rigorous vectorial theory to describe the whole confocal

imaging process in a high NA system with spatially shaped radially polarized illumination. The
optimized pupil field which maximizes the longitudinal electric field component in the focal
point [22] is compared with the linearly polarized and traditional radially polarized pupil field to
validate that the former one gives higher lateral resolution. The annular pupil field with radially
polarized illumination is also considered. We use two longitudinally oriented electric dipoles at
variable distances as test object. Other orientations can be easily considered. A suitable pinhole
size is chosen before the detector plane to enhance the system performance, and a polarization
convertor is inserted in the collimated optical path before the pinhole to transform the radially
polarized light scattered by the object back to linearly polarized light to optimize the power of
the light after the pinhole.

2. Theoretical analysis

In scalar diffraction theory the focal field of a lens is considered without taking into account the
vectorial nature of the light field. However, the scalar method is not valid for optical systems
of high NA that we study in this paper and vectorial theory is needed to describe the field near
the focal plane. Originating from Ignatovsky’s diffraction theory [27], later studied in detail
in [28, 29], the solution is referred as the vectorial Richard-Wolf integral.

Rigorous analysis of vectorial image formation in the confocal system can be found in [9].
In this paper we consider different polarizations and optimized pupil field for the illumination.
Fig. 1(a) shows the configuration of the confocal imaging system. In order to make the whole
analytical process clear, we consider first the focusing spot which illuminates the sample. This
focused spot excites electric dipoles in the sample which are then imaged on the detector. The
imaging of the excited dipoles is studied in subsequent sections. All optical fields that we consider
in this paper are time harmonic with time dependence given by the factor exp(−iωt), where
ω > 0 is the frequency. This factor is omitted from all formulas below.

2.1. Dipole excitation using a focused spot

Figure 1(b) describes the process of focusing the illumination beam by lens L1. This focused
field subsequently excites electric dipoles in the sample. We choose a coordinate system (x, y, z)
with z-axis coinciding with the optical axis and origin at the Gaussian focal point of lens L1
and such that the illuminating beam propagates in the positive z-direction. When focused in a
homogeneous medium with real refractive index n, the electric and magnetic fields in the focal
region of lens L1 can be expanded into plane waves:

Ee(r) = 1
4π2

∬
k⊥≤k0NA1

A(k⊥) exp (ik · r)d2k⊥,

He(r) = 1
4π2

1
ωµ0

∬
k⊥≤k0NA1

k × A(k⊥) exp (ik · r)d2k⊥,
(1)
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Fig. 1. Schematic of the confocal microscope. A beam splitter divides the excitation path
and detection path into two arms. A laser beam is focused onto the sample by a high NA
objective lens L1. The light scattered by the sample is collected by the same objective lens
and focused by a small NA lens onto a pinhole in front of a detector. a) The complete
confocal microscopy system, b) Focusing and dipole excitation, c) Imaging and polarization
conversion.

where ®A(®k) is the vector amplitude of the plane wave with the wave vector ®k = (kx, ky, kz),
k⊥ = (kx, ky) is the part of the wave vector perpendicular to the optical axis, with k⊥ =

√
k2
x + k2

y

its length, kz =
√

k2 − k2
⊥, where k = k0n with k0 = 2π/λ0 with λ0 the wavelength in vacuum.

Note that the transverse wavenumber k⊥ satisfies: 0 ≤ k⊥ ≤ k0NA1, where NA1 = n sin θ(1)max
with θ(1)max the maximum angle between the wave vectors and the positive z direction.

To define the polarizations of the plane waves, we define a positively oriented orthonormal
basis k̂, p̂, ŝ in reciprocal k−space by:

k̂ = kx
k

x̂ +
ky
k

ŷ + kz
k

ẑ,

p̂(k⊥) =
kxkz x̂ + kykz ŷ − (k2

x + k2
y )̂z

k
√

kx2 + ky2
,

ŝ(k⊥) =
−ky x̂ + kx ŷ√

kx2 + ky2
,

(2)

Since the electric field is free of divergence, the vector amplitude A can be written as:

A(k⊥) = Ap(k⊥)̂p(k⊥) + As(k⊥)̂s(k⊥), (3)
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where Ap and As are the components of A on the basis of p̂, ŝ.
The electromagnetic field in focus can be therefore rewritten as:

Ee(r) = 1
4π2

∬
k⊥≤k0NA1

(
App̂ + Aŝs

)
eik·rd2k⊥,

He(r) = 1
4π2

1
ωµ0

∬
k⊥≤k0NA1

(
−Asp̂ + Ap̂s

)
eik·rd2k⊥.

(4)

According to the vectorial diffraction theory [27–29], the plane wave amplitudes Ap, As are
linked to the radial and azimuthal components of the pupil field by:

Ap(k⊥) =
2πi f1√

kkz
Ee,p
ρ (ρp, ϕp), As(k⊥) =

2πi f1√
kkz

Ee,p
ϕ (ρp, ϕp), (5)

where, f1 is the focal distance of the objective lens L1 and ρp, ϕp are polar pupil coordinates
defined by:

ρp = f1
k⊥
k0n

, ρp cos ϕp = − f1
kx
k0n

, ρp sin ϕp = − f1
ky
k0n

, (6)

Note that

cos ϕp = −kx/k⊥, sin ϕp = −ky/k⊥. (7)

Next we consider the focusing of two pupil fields in more details.

2.1.1. Focusing of a linear polarized pupil field

When the pupil field is in all points of the pupil linearly polarized parallel to the x-direction, we
have:

Ee,p
ρ (ρp, ϕp) = g(ρp) cos ϕp, Ee,p

ϕ (ρp, ϕp) = g(ρp) sin ϕp, (8)

where g(ρp) is the amplitude which may be a function of the radius. Using Eq. (7), we get:

Ap(k⊥) =
−2πi f1kx√

kkzk⊥
g(k⊥), As(k⊥) =

−2πi f1ky√
kkzk⊥

g(k⊥), (9)

where for brevity, we have written g(k⊥) instead of g( f1k⊥/k).
We substitute Eq. (9) into Eq. (4) and use the following integrals [30]:∫ 2π

0
cos nφeix cos(φ−ϕ)dφ = 2πinJn(x) cos nϕ,∫ 2π

0
sin nφeix cos(φ−ϕ)dφ = 2πinJn(x) sin nϕ,

(10)

where Jn(x) is the Bessel function of nth order. By using cylindrical coordinates in the focal
region, we then obtain for the electric field in the focal region:

Ee(ρ, ϕ, z) = −i f1
2k3/2

©«
−I00(ρ, z) − I02(ρ, z) cos 2ϕ

−I02(ρ, z) sin 2ϕ

2iI01(ρ, z) cos ϕ

ª®®®®¬
, (11)
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where

I00(ρ, z) =
∫ k0NA1

0
g(k⊥) (k + kz) J0(k⊥ρ)

k⊥√
kz

eikz zdk⊥, (12)

I01(ρ, z) =
∫ k0NA1

0
g(k⊥)k⊥J1(k⊥ρ)

k⊥√
kz

eikz zdk⊥, (13)

I02(ρ, z) =
∫ k0NA1

0
g(k⊥) (k − kz) J2(k⊥ρ)

k⊥√
kz

eikz zdk⊥. (14)

2.1.2. Focusing of a radially polarized pupil field

For a pupil field which is in all points of the pupil polarized in the radial direction, the radial and
azimuthal components of the electric pupil field are given by:

Ee,p
ρ (ρp, ϕp) = g(ρp), Ee,p

ϕ (ρp, ϕp) = 0, (15)

where the amplitude g is a function of the pupil radius. By using Eq.(5), we get for the p- and
s-components of the electric field of the plane waves in the focal region:

Ap(k⊥) =
2πi f1√

kkz
g(k⊥), As(k⊥) = 0, (16)

where (as above) we have written g(k⊥) instead of the formally more correct g ( f1k⊥/k). Then
with Eq. (4) and the integrals of Eq. (10), the electric field in the focal region becomes in terms
of cylindrical coordinates:

Ee(ρ, ϕ, z) = − f1
k3/2

©«
I11(ρ, z) cos ϕ

I11(ρ, z) sin ϕ

iI10(ρ, z)

ª®®®®¬
, (17)

where

I10(ρ, z) =
∫ k0NA1

0
g(k⊥)k⊥J0(k⊥ρ)

k⊥√
kz

eikz zdk⊥, (18)

I11(ρ, z) =
∫ k0NA1

0
g(k⊥)kzJ1(k⊥ρ)

k⊥√
kz

eikz zdk⊥. (19)

We discuss now two special radially polarized pupil fields. The first is the pupil field derived
in [22] which gives the largest possible longitudinal (i.e. z-component) of the electric field
component in the focal point, for a given power P0 in the pupil of the lens. This solution makes
the longitudinal component of the focused electric field quite narrow. It was shown in [22] that
the amplitude of this optimum pupil field is given by:

g(k⊥) = −
k3/2
⊥ k1/2

2πi f1kzΛ
, (20)

where

Λ =

(
π

P0

)1/2 n1/2

λ0

(
ε0
µ0

)1/4 (2
3
−

√
1 − (NA1/n)2 +

1
3

√(
1 − (NA1/n)2

)3
)1/2

, (21)
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By substituting Eq. (20), Eqs. (18) and (19) become:

I10(ρ, z) = −
k1/2

2πi f1Λ

∫ k0NA1

0
J0(k⊥ρ)

k7/2
⊥

k3/2
z

eikz zdk⊥, (22)

I11(ρ, z) = −
k1/2

2πi f1Λ

∫ k0NA1

0
J1(k⊥ρ)

k5/2
⊥

k3/2
z

eikz zdk⊥. (23)

The second choice for the amplitude g of the radially polarized pupil field which gives a narrow
longitudinal component in the focal plane corresponds to an annular pupil:

g(ρp) =
{

1 a − ∆ρp < ρp ≤ a
0 otherwise

, (24)

where a is the radius of the pupil of the lens L1 and ∆ρp is the width of the annular ring. Then
the focal field is obtained by substituting Eq. (24) for g in Eqs. (17)-(19). As we will show in
Section 3, the longitudinal component in the focal plane of the annular pupil is narrower than the
optimized pupil amplitude in Eq. (20) and becomes more narrower for smaller width ∆ρp of
the annular pupil aperture. However, the annular pupil field has the disadvantage that for a very
small annular aperture, there is only little energy in the focal region.

2.2. Imaging without a polarization convertor

Figure 1(c) shows the imaging part of the optical system. In the Born approximation, the focused
field Ei excites a dipole density Pd(rd) at the position rd = (xd, yd, z = 0), where the z = 0 plane
is, as before, assumed to coincide with the focal plane of lens L1. The dipole vector is given by:

Pd =←→α Ee(rd), (25)

where←→α is the electric polarizability. It in general is a tensor, and we assume that the tensor has
principal axis that are parallel to the x, y, z−axis, i.e

←→α =
©«
αxx 0 0

0 αyy 0

0 0 αzz

ª®®®®¬
. (26)

Let Ed be the electric field radiated by this dipole. Its plane wave amplitudes in the entrance
pupil of lens L1, i.e. for z = f1, are given by [31]:

Ad(k⊥) = −
eikz f1

2iε0n2kz
k × (k × Pd), (27)

Hence,

Ad
p (k⊥) =

eikz f1

2iε0n2kz
k2Pd · p̂, Ad

s (k⊥) =
eikz f1

2iε0n2kz
k2Pd · ŝ, (28)

Using Eq. (5) and (6), the radial and azimuthal components of the pupil field are:

Ed,p
ρ (ρp, ϕp) =

√
kkz

2πi f1
Ad
p (k⊥), Ed,p

ϕ (ρp, ϕp) =
√

kkz
2πi f1

Ad
s (k⊥). (29)
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The refocusing by the second lens L2 with focal length f2 yields plane wave amplitudes in
image space which are given by

Ãd
p (k̃⊥) =

2πi f2√
k k̃z

Ed,p
ρ (ρp, ϕp) =

f2
f1

√
kz
k̃z

eikz f1

2iε0n2kz
k2Pd · p̂,

Ãd
s (k̃⊥) =

2πi f2√
k k̃z

Ed,p
ϕ (ρp, ϕp) =

f2
f1

√
kz
k̃z

eikz f1

2iε0n2kz
k2Pd · ŝ,

(30)

with

ρp = f2
k̃⊥
k
, ρp cos ϕp = − f2

k̃x
k
, ρp sin ϕp = − f2

k̃y
k
, (31)

where the wavenumber k = k̃, as the two lenses are in the same medium.
The numerical aperture NA2 of the lens L2 before the detector is smaller than that of the

objective lens L1, but the pupils of both lenses are identical. Hence the focal lengths of the
two lenses are different. This implies the following relationship between the wave vectors of
corresponding plane waves on the object side of lens L1 and the image side of lens L2:

k⊥ =
f2
f1

k̃⊥, kz =
√

k2 − ( f2/ f1)2 k̃2
⊥. (32)

By substituting Eq. (30) into Eq. (4), the electric field in image space becomes:

E(i)(r) = 1
4π2

[∬
k̃⊥≤k0NA2

(
Ãd
p(k̃⊥)̂p(k̃⊥) + Ãd

s (k̃⊥)̂s(k̃⊥)
)

eik̃·rd2 k̃⊥

]
· Pd

=
k2 f2

4πiε0n2 f1

[∬
k̃⊥≤k0NA2

1√
kz k̃z

(
p̂(k̃⊥) ⊗ p̂

(
f2
f1

k̃⊥
)
+ ŝ(k̃⊥) ⊗ ŝ

(
f2
f1

k̃⊥
))

· eikz f1 eik̃·rd2 k̃⊥

]
· Pd,

(33)

where

p̂(k̃⊥) =
1

k2 k̃⊥

©«
k̃x k̃z

k̃y k̃z

−k̃2
⊥

ª®®®®¬
, p̂

(
f2
f1

k̃⊥
)
=

1
k2 k̃⊥

©«
k̃xkz

k̃ykz

− f2
f1

k̃2
⊥

ª®®®®¬
,

ŝ(k̃⊥) = ŝ
(

f2
f1

k̃⊥
)
=

1
k2 k̃⊥

©«
−k̃y

k̃x

0

ª®®®®¬
,

(34)

Using polar coordinates, the field in the image space can be written as:

E (i)x (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
(K0

00 + K0
zz)p

dip
x − 2iK1

⊥z cos ϕpdip
z + (K2

00 − K2
zz)(cos 2ϕpdip

x + sin 2ϕpdip
y )

]
,

E (i)y (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
(K0

00 + K0
zz)p

dip
y − 2iK1

⊥z sin ϕpdip
z + (K2

00 − K2
zz)(sin 2ϕpdip

x − cos 2ϕpdip
y )

]
,

E (i)z (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
2K0
⊥⊥pdip

z − 2iK1
zz(cos ϕpdip

x + sin ϕpdip
y )

]
,

(35)
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where

Kn
00(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

Kn
⊥⊥(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

q⊥⊥(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

Kn
⊥z(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

q⊥z(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

Kn
zz(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

qzz(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

(36)

with k̃⊥ =
√

k̃2
x + k̃2

y , k̃z =
√

k2 − k̃2
⊥, and

q⊥⊥(k̃⊥) =
k⊥ k̃⊥

k2 , q⊥z(k̃⊥) =
k⊥ k̃z

k2 , qzz(k̃⊥) =
kz k̃z
k2 . (37)

We introduced the term ( k̃zk )1/2 to account for an aplanatic lens.

2.3. Imaging with a polarization convertor

The longitudinal component cannot be easily measured by the detector. Furthermore, at the
center of the detector the radial component is weaker than the longitudinal component. To detect
the longitudinal component, we add a polarization convertor [26] between the collimator lens and
the detector lens, which transforms the radially polarized light into x-polarized light before being
refocused by the detector lens. As only x-polarized light needs to be measured by the detector,
we put a polarizer in front of the detector as seen in Fig. 1(c). Then, the field in image space
after the convertor and the polarizer becomes

E(i),p(ρp, ϕp) = Ed,p
ρ (ρp, ϕp )̂x, (38)

Due to the convertor, the radial and azimuthal components of the field in the entrance pupil of
the second lens become:

E (i),pρ (ρp, ϕp) = Ed,p
ρ (ρp, ϕp) cos φ, E (i),pϕ (ρp, ϕp) = −Ed,p

ρ (ρp, ϕp) sin φ. (39)

The vector amplitudes of the plane waves in image space corresponding to the pupil field have
p- and s- components are given by:

Ãp(k̃⊥) =
2πi f2√

k̃ k̃z
E(i),pρ (ρp, ϕp), Ãs(k̃⊥) =

2πi f2√
k̃ k̃z

E(i),pϕ (ρp, ϕp), (40)
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Substituting Eq. (40) into Eq. (4) and using polar coordinates, finally, gives for the field in
image space can be deduced as:

E (i)x (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
i
2
(K3

zz − K3
z )(cos 3ϕpdip

x + sin 3ϕpdip
y ) −

i
2

K1
zz(3 cos ϕpdip

x + sin ϕpdip
y )

− i
2

K1
z (cos ϕpdip

x + 3 sin ϕpdip
y ) − (K2

⊥z − K2
⊥) cos 2ϕpdip

z + (K0
⊥z + K0

⊥)p
dip
z

]
,

E (i)y (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
i
2
(K3

zz − K3
z )(sin 3ϕpdip

x − cos 3ϕpdip
y ) −

i
2
(K1

zz − K1
z )(sin ϕpdip

x + cos ϕpdip
y )

− (K2
⊥z − K2

⊥) sin 2ϕpdip
z

]
,

E (i)z (ρ, ϕ, z) =
− f2

2ε0n2 f1

[
−K0

z⊥pdip
x + K2

z⊥(cos 2ϕpdip
x + sin 2ϕpdip

y ) + 2iK1
⊥⊥ cos ϕpdip

z

]
,

(41)

where

Kn
z⊥(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

qz⊥(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

Kn
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∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

qz(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

Kn
⊥(ρ, z) =

∫ k0NA2

0

( k̃z
k

)1/2 k̃⊥

k
√

k2 − ( f2/ f1)2 k̃2
⊥

q⊥(k̃⊥)Jn(k̃⊥ρ)eik̃z z · eiz
√
k2−( f2/ f1)2 k̃2

⊥dk̃⊥,

(42)

where

qz⊥(k̃⊥) =
kz k̃⊥

k2 , q⊥(k̃⊥) =
k⊥
k
, qz(k̃⊥) =

kz
k
. (43)

and k⊥ and kz are functions of k̃⊥ given by Eq. (32). Other symbols are shown in Eq. (37).
Again, we introduced the term ( k̃zk )1/2 to account for an aplanatic lens.

3. Numerical results

Through this section, we assume the light withwavelength λ = 500nm. With Eq. (11) and (17), the
focal fields of linearly and radially polarized illumination can be obtained. It follows for Fig. 2 that
the FWHMof the electric energy density | ®E|2 in the focal plane of the radially polarized pupil field,
is slightly smaller than that of a linearly pupil field (FWHMrad

total ≈ 0.72λ, FWHMlin
total ≈ 0.76λ).

In contrast, the FWHM of the squared modulus of the longitudinal component corresponding to
the radially polarized pupil field (FWHMrad

long = 0.48λ), is much smaller than the FWHM of | ®E|
in the case of a linearly polarized pupil field. Thus, the polarization state of the light strongly
influences the size of the focused spot in the case of high NA. If the sample is sensitive only to
the longitudinal component of the focal spot, then the use of radially polarized light can result in
a substantial improvement in resolution.
Figure 3 shows the comparison of the squared amplitude of the longitudinal component of

the focal spots obtained in the case of radially polarized illumination with full aperture, annular
aperture and optimized radially polarized illumination, as described in Eqs. (17)-(24). The
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optimized pupil field has FWHM which is 5.4% smaller than that of the full aperture constant
pupil field. The FWHM of the squared amplitude of the longitudinal component obtained by
focusing a radially polarized beam using a ring mask function (with radius 90% of the total pupil)
is even smaller than the above two cases. However, the expanding side lobes in the annular case
is larger than for the full aperture and the optimized case. But the energy in the focal region is of
course much weaker in the annular case.

We use expressions Eq. (35) and (41) (with/without a polarization convertor) to compute
the normalized detector signal. In order to make full use of the longitudinal component, the
electric dipole is set along the z-axis. A small pinhole is taken into consideration in the confocal
system [32]. The criterion for choosing a suitable pinhole size is to make an aperture giving 50%
of the maximum intensity [33].

As is indicated in Fig. 1, we detect the intensity with a single-pixel camera at the focal point
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Fig. 2. Profiles of the squared amplitude of the longitudinal and transverse components
and total energy density | ®E|2 in the focal plane in the case of a pupil field that is linearly
polarized in the x− direction (a) and a pupil field that is radially polarized (b). The focusing
lens has NA=0.9. The plots are normalized to the on-axis peak values.

of the detector lens, which is located at r = (0, 0, 0). However, if we assume purely longitudinal
dipole excitation, then without polarization conversion, the intensity at the focal point is a local
minimum, meaning that very little intensity is detected. To solve this problem, we propose to
use a polarization convertor in the pupil of the lens L2 to change the radially polarized light to
linearly polarized light, which in the focal plane will result in an intensity distribution with its
maximum at the focal point. The intensity at the detector plane can be obtained by Eq. (41).
Figure 4 shows the final signal along the x axis when the pinhole is set before the detector and
the dipole is scanned in the x-y plane at the object plane. Note that because of the use of the
polarization convertor, the original radial polarization is turned into linear polarization and thus
the "transversal" component in Fig. 4 corresponds to the contribution of the radially polarized
light emitted by the dipole.

To validate that the system has the advantage of higher resolution, two dipoles close to
each other need to be analyzed with the above theory. Figure 5 shows the cross sections of
the detected intensity when two dipoles that are parallel are scanned by a focused spot. The
polarization of the illumination is taken as either linear, radial or optimized radial as shown in
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Fig. 3. Profiles of the squared amplitudes of the longitudinal components of the exciting spot
in the focal plane in the case of radially polarized illumination with full aperture, annular
aperture and optimized radially polarized pupil field. The plots are normalized to their
on-axis maxima.
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Fig. 4. Profiles of the intensities at the detector plane with a polarization convertor and a
small pinhole with radius r = 0.18µm which is 0.36λ in terms of wavelength. The system
is composed of: a high NA1 = 0.9 focusing objective lens and a low NA2 = 0.3 lens for
detection. For illumination, radially polarized light of wavelength λ = 500nm is used. The
focal field can be seen in Eq. (17). The dipole is set rigidly along the z−axis direction (only
αzz is relevant). The plots are normalized to on-axis maxima.
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Fig. 5. Profiles of the detected intensities as function of scanning distance of two separated
dipoles for different kinds of illumination and for several distances between the dipoles. The
system is composed of two lenses with NA1 = 0.9, and NA2 = 0.3 and is illuminated by light
with a wavelength of λ = 500nm. The illumination is either linearly, radially or optimized
radially polarized. The two dipoles are set along the x axis for the linear polarization and
along the z axis for the other radially polarized cases. A polarization convertor is added in
the case of radially polarized excitation. Four different distances between the dipoles are
chosen: d=0.8λ (red line), d=0.6λ (black line), d=0.4λ (yellow line), and d=0.36λ (blue
line). The plots are normalized to the on-axis peak intensity.

Eq. (11) and (17)-(24). For linearly x-polarized illumination (diamond dot line), the dipoles are
set along the x-axis (only αxx is relevant). If we want to roughly distinguish the two dipoles,
the distance between them should be larger than 0.6λ according to the Rayleigh criterion. This
value is approaching the diffraction limit 0.61 λ

NA . However, for normal radial illumination (solid
line), radial illumination with a ring mask (dashed line) and optimized radial illumination (dot
line), with the dipoles set along the z-axis (only αzz is relevant), the smallest distance at which
they can be distinguished is reduced to 0.4λ. Meanwhile, the optimized one gives more obvious
contrast than the normal radial case and the radial annular case gives the highest contrast. Even
when the distance between the two dipoles decreases to 0.36λ, it can be seen that for the radial
excitation with a ring mask and optimized radially polarized excitation, the two dipoles can be
distinguished better than for the other two focused spots. Moreover, at this distance, note that in
the case of linear polarization, the dipoles cannot be resolved.
The visibility as a function of d/λ can be seen in Fig. 6. Here the visibility is defined as:

visibility =
Imax − Imin

Imax + Imin
. (44)

Here Imax is the normalized intensity which equals 1 and Imin is the value of the intensity at
r = (0, 0, 0) as shown in Fig. 5. When d/λ > 1.2, for the four cases, the two dipoles can be
resolved very well. When 0.2 < d/λ < 1.2, it is clearly seen that the visibility value of linear
excitation is smaller than the other three cases, which means the worst resolution. While the
visibility value of radial excitation with the annular objective is the highest in this range. When
0.2 < d/λ < 0.3, the resolution of the system is almost the same for the three radially polarized
light excitation cases. When d/λ < 0.2, the dipoles can not be resolved any more in all cases
because of the diffraction limit. This property of visibility agrees well with Fig. 5.
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Fig. 6. Profiles of the visibility as a function of the d/λ for the four cases of pupil fields.
The system is the same as shown in Fig. 5.

4. Conclusion

To conclude, we present a complete vectorial theoretical analysis to describe the whole imaging
process of the high NA confocal system from the illumination point to the imaging plane. Strong
longitudinal component as well as shaper focal spots are achieved by comparing the linear
(FWHMlin

total ≈ 0.76λ) and radial (FWHMrad
total ≈ 0.72λ) polarization pupil fields. In order to

obtain the higher resolution, we apply an optimized pupil field with an amplitude distribution
that varies monotonically in the radial direction, which provides 5.4% tighter focused spot for
NA = 0.9 than the full aperture constant pupil field. Additionally, the condition of radially
polarized illumination with an annular objective lens is also considered to provide the smallest
focal spot size, although at the expense of expanding side lobes.
Four kinds of focused spots are used to scan two parallel longitudinal dipoles with variable

distances in the objective plane. In order to efficiently detect the field scattered by the longitudinally
oriented dipoles, we insert a radial to linear polarization convertor before the pinhole. From our
analysis, we show that for a pinhole in front of the detector with radius 0.36λ, by using a radial
pupil field with the an annular lens to excite the dipoles, a distance of 0.36λ can be resolved,
i.e., beyond the diffraction limit. The proposed method is easy to apply to other pupil fields and
helpful to analyze confocal systems. The experiment can be conducted on the basis of the theory
and simulated results with different samples to validate the superiority of the optimized radially
polarized illumination combined with the confocal system.
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