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A B S T R A C T

Electron beams can be reflected by an electrode that is at a more negative potential than the cathode from
which the beam is emitted. We want to design a mirror with a flat mirror electrode where the electrons
are reflected at a plane very close to the electrode. The wave front of an electron can then be shaped when
the mirror contains a surface topography or modulated potential. However, electron beams reflected by flat
electron mirrors are usually characterized by high coefficients of chromatic and spherical aberration. When the
mirror is combined with an electrostatic lens to form a tetrode mirror system, the situation deteriorates even
further. This places a restrictive limit on the maximum aperture angle of the beam, and consequently also limits
the attainable resolution at the image plane. We have numerically studied the dependence of these aberrations
as a function of design parameters of the tetrode mirror consisting of a ground, lens, cap, and mirror electrode,
and limited ourselves to only using flat electrodes with round apertures, at fixed electrode spacing. It turns
out that the third order spherical aberration can be made negative. The negative third order aberration is then
used to partially compensate the positive fifth order aberration. This way, a system configuration is obtained
that, at 2 keV beam energy, provides a diffraction limited resolution of 7.6 nm at an image plane 25 mm
from the mirror at beam semi-angles of 2.3 mrad, enabling an illumination radius of 40 μm at the mirror.
The presented tetrode mirror design could spark innovative use of patterned electron mirrors as phase plates
for electron microscopy in general, and for use as coherent beam splitters in Quantum Electron Microscopy
in particular. An appendix presents a method to calculate the spot size of a focused beam in the presence of
both third and fifth order spherical aberration coefficients, which is also applicable to Scanning (Transmission)
Electron Microscopes with aberration correctors.
1. Introduction

An electron beam is reflected at an equipotential surface, under the
condition that the electric potential matches that of the electron beam
acceleration voltage. Mirror electron microscopy (MEM) [1,2] schemes
revolve around this principle, and derived techniques are mainly ap-
plied in the field of surface physics [3–5]. In one mode of operation,
the specimen is kept at a bias potential that is slightly more negative
than the beam acceleration voltage, so that the equipotential surface
of reflection closely resembles the surface topography or structure of
the specimen. It is the modulation of the reflection field that imprints
a spatial phase distribution in the reflected beam. By imaging the
reflected beam onto a detector the imprinted phase distribution offers
information about the specimen.

The former principle can also be reversed. By carefully sculpting
a topographic pattern into a mirror substrate, the modulation of the
electric field can be controlled. Current research focuses on using
topographically patterned grating mirrors [6] that can act as beam
splitters and recombiners in quantum electron microscopy (QEM) [7].

∗ Corresponding author.

QEM constitutes an interaction-free measurement scheme that is based
on multiple passes through a Mach–Zehnder type interferometer [8].
The grating mirror is then part of an electron resonator [Fig. 1] in
which repetitive reflection of the beam at the mirror allows for the
gradual transition of amplitude between the sample and reference beam
of the interferometer [9].

Electron mirrors are more typically used for the correction of axial
chromatic and spherical aberrations [11]. This can be achieved with
a concave shaped electric field, which can be created for instance by
using an aperture with a radius much larger than the beam envelop as
a mirror electrode. Another approach, for which an analytical solution
to the shape of the electric field can be provided, is realized by making
a cone-shaped indentation in the mirror electrode [12]. The latter is
however more mechanically challenging, when compared to machining
a round aperture.

Unfortunately, (nearly) flat mirror surfaces as found in the linear
QEM resonator are usually characterized by large coefficients of spher-
ical and chromatic aberration. When the mirror is positioned in the
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Fig. 1. Principle and schematic design of a linear QEM resonator. (a) The electron beam enters the cavity through a temporally gated electron mirror. The central beam is
diffracted at the lower mirror element, and the diffracted beam is repeatedly imaged onto the image plane. Based on the system in [7]. (b) Practical design of a linear QEM cavity
that requires no temporal gating of the mirror potential. Instead, a low-voltage electrostatic deflector to the right side of the image plane enables the in-coupling, cycling, and
out-coupling of the beam. Based on a system in [10].
diffraction plane of an imaging system, as is the case for grating mirrors
for QEM, the high aberration coefficients will result in loss of resolution
at the image plane. In an electron resonator system, a second electron
mirror that provides a concave reflection field can correct for these
aberrations [12–15] when positioned in the conjugate plane of the flat
mirror. A schematic design of such system [7,16] is shown in [ Fig. 1].

In principle, the required field shape of the aberration correcting
mirror can be provided by the patterned (first) mirror as well. This
would eliminate the need for the second mirror or the second mirror
could be used for a different purpose. For this, one has to obtain the
shape of the concave equipotential surface of the aberration correcting
mirror at the potential of the patterned mirror. The shape of this
equipotential surface can then be added to any topography that is
already present on the first mirror. Alternatively, when using a mirror
with a modulated potential, the aberration correction can be added as
a radial potential distribution. However, especially when the desired
pattern on the electron’s phase front contains small features, such as the
line pattern for the grating, it seems better to start with an atomically
flat surface at a single potential.

The difficulty of combining spatial frequencies that range over
multiple decades stems from the drop in field modulation in the longitu-
dinal direction, perpendicular to the mirror substrate [6]. In the above
example, the grating pattern for creating diffraction would require a
line profile amplitude in the order of 100 nm, while the profile ampli-
tude for the aberration correction would be in the order of single-digit
nanometers, making it very difficult to fabricate.

Thus, it would be much preferable to have a mirror design with a
flat mirror electrode that has no axial aberrations. Earlier, van Aken
et al. suggested that aberrations can be corrected for when a slow
electron beam is transmitted elastically through a flat thin foil [17,18],
at energies well below 1 eV. This requires that the foil is maintained
at a potential that is close to the acceleration voltage of the beam. The
corrective properties are then obtained by a careful choice of the foil
and lens geometry. The geometry of such low-voltage foil corrector
must satisfy the critical condition 𝑠 ≪ 𝑅𝐶 , with 𝑠 the longitudinal
spacing between the foil and the field limiting cap aperture, and 𝑅𝐶
the radius of this aperture.

The low-voltage foil corrector provides for axial aberration cor-
rection and the basic geometry shows close resemblance to a tetrode
2

electron mirror [Fig. 2(a)] that is found in a QEM resonator. For this
reason we believe that it is possible to correct for the combined axial
aberrations of tetrode mirror systems by means of the mechanical
configuration.

In the past, exotic shapes for the lens element apertures were consid-
ered in order to tune the axial aberrations of the tetrode mirror [19,20].
Here, we consider only plane through-hole apertures [Fig. 2(b)], and at
fixed electrode spacing for the lens elements. Modern day lithographic
processes have found their way into the manufacturing of very round
miniature apertures [21], which allows for an easy means of tuning
the aperture radius in a production process. Meanwhile, the axial
separation of the distinct miniature apertures is limited by the available
dimensions of flat spacer elements. For this reason, we only study the
axial aberration properties of tetrode mirror systems for a range of
aperture radii and potentials, at fixed aperture spacing.

We performed a numerical study with the model system that is
shown in [Fig. 2(b)]. It consists of the flat mirror electrode and three
thin plates with apertures. We have a lot of experience with making
electron lens electrodes from silicon wafers using lithography and etch
processes. We are able to etch apertures of typically 0.1 to 1 mm
diameter with a roundness better than 1 μm which we can also align
to within 1 μm.

2. Basic concepts

For the electron resonator design, and for repetitive imaging in
QEM, we require that the image plane coincides with the front focal
plane of the focusing lens of the mirror system. This enables symmetric
ray trajectories that provide the re-imaging of the reflected beam back
onto the sample plane, with 1x magnification [Fig. 2(a)]. As we assume
that the specimen is positioned in a field free region, we need at least
three lens electrodes for the lens design.

The first electrode (that is positioned closest to the sample plane)
provides the boundary to the field free region on the left. Without
at least this one electrode, a symmetric ray trajectory can never be
obtained. The second element performs the lens action. In principle,
the third lens element may be omitted. However, the inclusion of
the third element (positioned closest to the mirror) provides a second
degree of freedom in the electric excitation of the lens that will allow
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Fig. 2. (a) Ray trajectories at 1x magnification and for coinciding object and image (sample) plane. The front focal plane of the lens coincides with these planes. The inset contains
details of the ray trajectories near the Gaussian image plane. (b) Schematic overview of the mechanical configuration of a tetrode electron mirror (rotational symmetric around
the propagation axis), with labels for aperture electrode radii 𝑅 and spacing between the mirror and cap electrode 𝑠. Elements are identified as (green) ground, (red) lens, (blue)
cap, and (purple) mirror electrode. The radial coordinate of the trajectories is magnified by factor 3. Horizontal and vertical axes are not to equal scale. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
to simultaneously alter the strength of the mirror electric field to the
right, while also maintaining the 1x magnification re-imaging onto the
sample plane. We call this third element the ‘cap electrode’.

The ability to tune the linear electric field strength in between
the cap and mirror electrode allows for adjusting the longitudinal
spacing between equipotential planes in front of the mirror [19].
Consequently, this influences the turning points and ray trajectories
for a polychromatic beam and offers a degree of freedom for tuning
the chromatic aberrations of the electron mirror. The object and image
planes coincide with the front focal plane of the lens, thus placing the
mirror electrode in the Fourier plane of the lens. For a 1x magnification,
this necessarily results in a collimated beam at the mirror plane, hence
we refer to the lens as a collimator.

The spot size at the image plane is determined by the semi-angle
of the beam. A spot size contribution due to diffraction is unavoidable,
but is reduced by increasing the beam semi-angle. While a larger beam
semi-angle reduces the diffraction limited spot size, at the same time
the chromatic and spherical spot size contributions will increase. In the
design method that we use in this work, the mechanical configuration
of the tetrode mirror is optimized to allow for a maximum beam
semi-angle, that is still mainly diffraction limited.

3. Numerical methods

Traditionally, aberration coefficients are calculated using aberration
integrals, in the case of mirrors using time dependent perturbation
algorithms instead of position dependent algorithms [22,23]. We shall
rely here on the precision of modern ray trace simulations, as is also
done for instance for the design of modern low-energy and photo-
emission (LEEM/PEEM) microscopes [24], and additionally motivated
by the given, that only axial aberrations and small beam semi-angles
are considered. We performed electron ray trace simulations using the
EOD software package [25–28] and extract aberration coefficients from
the obtained radial coordinates of the ray trajectories at the image
plane after reflection. The analyzed systems contains spatial degrees
of freedom in terms of the radius of the electrode apertures [Fig. 2(b)],
as well as electrical degrees of freedom in terms of the mirror, cap, and
collimator lens potential. In a miniature QEM resonator setup that we
are currently building, the distance between the mirror electrode and
cross-over at the image plane of the system is 25 mm and the simulation
results shown in the following are based on this value.

For the calculation of spherical (𝐶𝑠3 and 𝐶𝑠5) and chromatic (𝐶𝑐1)
aberration coefficients, the range of cap and lens aperture radius is
varied from 𝑅 = 100 − 500 μm. For a fixed beam energy of 2 keV, the
potential of the cap electrode is varied between −800 V and −1200 V.
3

We expect that the spacing between the cap and mirror electrode must
be small compared to the radius of the cap electrode, similar to the
condition for low-energy foil corrector geometries [17,18], and thus
fixed the electrode spacing to 𝑠 = 100 μm between the mirror and
cap electrode. This implies that a maximum field strength of up to 12
kV/mm is considered, which is slightly above a field strength of 10
kV/mm that is normally considered feasible in an experimental electron
optical setup [29,30]. The spacing between the cap, lens, and ground
electrode is fixed as well at 𝑑 = 500 μm and we only vary the radius of
the various apertures as the latter offers a feasible parameter to control
in (micro)fabrication and lithographic processes.

The calculation of the effect of each geometrical combination (in
terms of aperture radius and cap electrode potential) is performed
by first finding the lens electrode potential that allows to image the
reflected beam back onto the origin. This is achieved through the
following two steps:

1. A series of ray traces is performed with a marginal ray that de-
parts from the object plane under a 4 mrad angle. At fixed mirror
and cap potential, the collimator lens potential is monotonically
increased until the reflected marginal ray is imaged back onto
the image plane. This condition is numerically detected when
two conditions are met:

• The sign of the slope of the reflected marginal ray, at the
image plane, is equal to the sign of the slope of the initial
marginal ray.

• The sign of the radial coordinate at the image plane is
opposite to the former ray trace of lower collimator lens
potential, indicating that the optical axis was crossed for
a collimator lens potential that is higher than that of the
former and smaller than that of the current calculation.

2. A full ray trace simulation is performed with the results of step
1. For determination of the third and fifth order coefficients
of spherical aberration, 9 rays are traced at angles 𝛼 in the
range of 0 through 8 mrad. For the calculation of the chromatic
aberration coefficient, the energy of the 4 mrad ray is varied in
a range of ±2 V.

Because many different geometries need to be analyzed, we built a
MATLAB script that manages the execution of the EOD calculations and
reads the trajectory information.
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3.1. Aberration coefficients and spot size calculation

The spot size of the beam at the Gaussian image plane after re-
flection from the mirror depends on the (aperture) semi-angle (𝛼) of
he beam. For small semi-angles, the spot size is diffraction limited,
hereas at larger semi-angles the spot size is usually dictated by the

hromatic and spherical aberration coefficients of the imaging system.
t is common to describe spot size contributions with the Full Width
FW) of the beam that contains only a Fraction of Current (FC) of
sually 50%. With this definition, the FW50 of the diffraction limited
robe size is given (for an electron wave length 𝜆) by [31],

𝐴50(𝛼) = 0.54𝜆∕𝛼. (1)

The aberration coefficients are obtained from the intersect of the
ay traces with the image plane. For the determination of the chromatic
berration coefficient (𝐶𝑐1), we fit a first order linear polynomial,

(𝛼) =
(

𝐶1 + 𝐶𝑐1
𝛥𝐸
𝐸

)

𝛼. (2)

Here, the coefficient 𝐶1 allows for a defocus of the beam with
ominal energy (𝐸) at the image plane. The deviation of beam energy
s labeled by 𝛥𝐸. From the chromatic aberration coefficient, the FW50
ontribution 𝑑𝐶50 is obtained through [31],

𝐶50 = 0.6𝐶𝐶1
𝛥𝐸𝐹𝑊 50

𝐸
𝛼. (3)

From the numerically obtained ray trajectories, the third (𝐶𝑠3) and
ifth (𝐶𝑠5) order coefficients of spherical aberration are obtained by
itting the necessarily odd polynomial,

(𝛼) = 𝐶1𝛼 + 𝐶𝑠3𝛼
3 + 𝐶𝑠5𝛼

5, (4)

o the resulting data set of beam angle (𝛼) versus image plane intersect
oordinate (𝑦). Unless elsewise specified, we refer to both 𝐶𝑠3 and 𝐶𝑠5
n any mention of spherical aberration (coefficients). The coefficient 𝐶1
orresponds to the defocus of the reflected beam at the image plane. In
Fig. 3] we show an example of fitting the polynomials to the obtained
ay coordinates at the image plane.

We have assessed the accuracy of the numerical ray trace cal-
ulations by analyzing the third and fifth order spherical aberration
oefficients of a diode mirror, at a comparable grid size and interpo-
ation method that we use for the flat mirror calculations. An exact
nalytical result for the diode mirror configuration is given by [13].
e found a relative error of 0.5% for the third order, and −3.8% for

he fifth order coefficient of spherical aberration.
As we stated before, it is common to obtain the effect of spherical

berration coefficients on the spot size in terms of a FW50 contribution.
hen the fifth order coefficient is set to zero, the minimum FW50 is

btained at small defocus 𝐶1 in between the Gaussian image plane and
he image plane of the marginal ray, and given by [31]

𝑆50 = 0.18𝐶𝑠3𝛼
3 when (𝐶𝑠5 = 0). (5)

When the third order coefficient is set to zero, the minimum FW50
s also obtained at a (different) defocus, and is given by [18]

𝑆50 = 0.0463𝐶𝑠5𝛼
5 when (𝐶𝑠3 = 0). (6)

As these results are valid at a different defocus, they cannot be
dded into a single FW50 contribution from spherical aberration. In-
tead, one has to integrate the normalized weighted current 𝑤(𝛼) that
s contained within an infinitesimal angle 𝑑𝛼, in order to find the
W50 (see Appendix for details). This calculation requires the inverse
unction 𝛼 = 𝛼(𝑦) of [Eq. (4)] for which no analytical solution is
vailable, and instead must be solved numerically (see Appendix for
etails in implementing this in MATLAB).

An interesting case arises when the signs of 𝐶𝑠3 and 𝐶𝑠5 are opposite.
hen, as a function of increasing semi-angle 𝛼, the rays are first found
4

n one side of the optical axis, and at increasing ray angle at the other
ide of the optical axis as well. This effect reduces the growth of the
pherical spot size, and the spot size can be further reduced by setting
he proper defocus of the beam through 𝐶1.

The total spot size is determined by a root-power-sum of its com-
onents, in which the powers are not trivially 2 [32]. However, the
oefficients for the root-power-sum from literature assume only the
resence of a 𝐶𝑠3, and not the 𝐶𝑠5 term when weighting the contribution
f spherical aberration to the total spot size. Since the addition of 𝐶𝑠5

shifts the optimum defocus plane as well, we can no longer rely on the
conventional summing method. Instead, we fall back here to squared
addition of terms, in the absence of a better alternative. The total probe
size of the system is then given by

𝑑𝐹𝑊 50 =
√

𝑑2𝑆50 + 𝑑2𝐶50 + 𝑑2𝐴50. (7)

In the case of a spherical aberration limited spot size, the squared
addition of the spherical and diffraction limited contribution (instead
of the conventional power 4), will then result in an overestimation of
the spot size contribution for these two terms.

4. Design of the tetrode mirror

We have numerically obtained electron ray trajectories for a range
of cap and collimator radii, while using the cap and lens potentials to
obtain 1x magnification. We refer all potentials to ground potential,
which is where the beam energy is 1990 V. The mirror electrode
potential is fixed at −2000 V. We only make use of accelerating lens
potentials as this results in a larger spread of the beam in front of the
mirror electrode, in comparison to when a decelerating lens potential is
used. In principle, an optimization routine could be used to find the best
values for these parameters [28,33], but this approach is not pursued at
this point. The axial aberration coefficients that were obtained through
these calculations are used to determine the FW50 spot size (containing
50% of the current) for each system configuration for a range of semi-
angles, after reflection, and for 1x magnification imaging to the image
plane. From the resulting data set the system configurations that result
in the minimum spot size as a function of semi-angle after reflection
are obtained.

4.1. Coarse parameter sweep

The first design step consists of a coarse parameter sweep across lens
and cap electrode radii, and cap potential. A total of 405 systems [for
configurations, see Table 1] are analyzed during this step. This results
in a large data set that relates the system configuration parameters and
the resulting aberration coefficients.

From the obtained data, it is observed that for the third order
spherical aberration coefficient both positive and negative values are
obtained [Fig. 4(a)]. In the figure, the white line indicates the contour
at which the coefficient equals zero, and negative values are found in
between the two contour lines. We observe that the coefficients mainly
vary as a function of the cap radius, and are less sensitive to changes in
the lens electrode radius. Note that for some configurations, we could
not obtain a 1x magnified reflected beam at the image plane, and these
data points are indicated by the white tiles in the plot.

The data for the fifth order spherical aberration coefficient
[Fig. 4(b)] is mainly positive valued in the studied parameter range,
and shows a decrease as a function of increasing cap radius, with a
local maximum at a cap radius of approximately 300 μm.

For the first order chromatic aberration coefficient we obtained both
positive and negative contributions as well [Fig. 4(c)]. Similar to what
is observed for the spherical aberration coefficients, we notice that
also the chromatic coefficient is more sensitive to the value of the cap
electrode radius rather than the lens electrode radius.

We are looking for the system configuration that allows us to
minimize the spot size at the image plane, after reflection at the flat
mirror. The spherical spot size (due to 𝐶 and 𝐶 ) is minimized by
𝑠3 𝑠5
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Fig. 3. Aberration coefficients are obtained by fitting a necessarily odd valued polynomial (a) for spherical aberration coefficients (𝐶𝑠3 and 𝐶𝑠5) and defocus (𝐶1), through the
intersect of the ray trajectories at the image plane as a function of ray angle [ref. Eq. (4)], and (b) for the chromatic aberration coefficient through the product of 𝛼𝛥𝐸∕𝐸 [ref.
Eq. (2)]. The relative error in (a) is approximately 10%, and larger than that for small (𝛼 ≤ 1 mrad) ray angles.
Fig. 4. Aberration coefficients as a function of the lens and cap electrode radius, at a cap potential of −1000 V. (a) Third order and (b) fifth order spherical aberration coefficient,
and (c) first order chromatic aberration coefficient, obtained from the coarse parameter sweep. White lines indicate (interpolated) zero-contours in the respective data set.
selecting a region in which the two coefficients have opposite signs.
This way, the one coefficient suppresses the influence of the other
coefficient on the increase of spot size for a range of semi-angles (also
see [Fig. 3(a)]), similarly as to how a negative defocus allows one to
partially correct for the spot size degradation due to a positive 𝐶𝑠3 in
electron microscopes. From the shown data, it is observed that a large
region satisfies the criterion of opposite signs.

4.2. Fine parameter sweep

In the second design step, the ray trace calculations are repeated in a
reduced region of the parameter space and at a finer grid step size [for
5

details, see Table 2]. The new parameter space for the cap electrode
radius is based on the observation that both spherical and chromatic
aberrations are near zero in the region, for which 𝑅𝑐𝑎𝑝 ∼ 300 − 400 μm.
For the lens electrode radius, no such distinct selection criteria is
apparent. We selected the region, for which 𝑅𝑙𝑒𝑛𝑠 ∼ 200−300 μm, based
on the observation that the chromatic aberration coefficient increases
at higher lens radii. The aberration coefficients that are obtained at
this stage are shown in [Fig. 5]. A zero-aberration coefficient value
contour line is provided for the third order spherical and the first order
chromatic aberration coefficient (white lines). Only positive values
for the fifth order spherical coefficient are obtained in this reduced
parameter space.
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Fig. 5. Aberration coefficients as a function of the lens and cap electrode radius at −1050 V cap potential. (a) Third order and (b) fifth order spherical aberration coefficient, and
(c) first order chromatic aberration coefficient, obtained from the fine parameter sweep. White lines indicate (interpolated) zero-contours in the respective data set.
Fig. 6. (a) (Contributions to) the best resolution out of all systems, as a function of semi-angle. Indicated are the spherical (blue), chromatic (orange), diffraction (yellow), and
total (purple) FW50 spot size. (b) Global minimum spot size per mechanical configuration. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 1
Overview of system configurations that were analyzed in the numerical study. The
actual used lens potential is interpolated from the data.

Label Property Range Step Unit

𝑅𝐶 Cap radiusa 100⋯ 500 50 μm
𝑅𝐿 Lens radiusa 100⋯ 500 50 μm
𝑅𝐺 Ground radius 500 – μm
𝑈𝑀 Mirror potential −2000 – V
𝑈𝐶 Cap potentiala −800⋯ − 1200 100 V
𝑈𝐿 Lens potential 1000⋯ 8000 200 V
ℰ Electron beam energy −1990 – V
𝑠 Mirror cap spacing 100 – μm
𝑓 Focal length 25 – mm
𝑡 Electrode thickness 300 – μm

aDenote independent variables, the range of other properties denote practical
limitations in order to provide reasonable field strengths.

The new data set provides more smooth data since the grid reso-
lution is enhanced in comparison to the coarse parameter sweep. It is
6

Table 2
Fine parametric sweep limits and grid step sizes.

Label Property Range Step Unit

𝑅𝐶 Cap radius (*) 300⋯ 400 6.25 μm
𝑅𝐿 Lens radius (*) 200⋯ 300 6.25 μm
𝑈𝐶 Cap potential (*) −900⋯ − 1100 50 V

now clearly observed that a local minimum for which 𝐶𝑠3 < 0 is formed

for cap electrode radii of approximately 330 μm. Larger cap electrode

radii lead to an increase in 𝐶𝑠3, and simultaneously a decrease in 𝐶𝑠5.

Within the new data set, it is visible that the conditions for 𝐶𝑠3 = 0 and

𝐶𝑐1 = 0 coincide within a narrow band. It is thus to be expected that a

minimum spot size will be obtained for 𝑅𝑐𝑎𝑝 ∼ 375 μm, and relatively

independent of the lens electrode radius.
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4.3. Dependence of aberration coefficients on design parameters

The minimum spot size of the tetrode mirror system depends on
the beam semi-angle. For small semi-angles, the spot size is usually
diffraction limited and at larger semi-angles spherical and chromatic
effects will dominate the spot size. We obtained the spot size for all
system configurations that are part of the fine parameter sweep, by
means outlined in Section 3.1.

The calculation is performed for various semi-angles in the range
0.4 ≤ 𝛼 ≤ 6 mrad, at 35 equally logarithmically spaced values. For
each system configuration, the spherical FW50 spot size contribution
is obtained by varying the defocus 𝐶1 [ref. Eq. (4) and Appendix for
details]. The chromatic FW50 spot size contribution (𝑑𝐶50) is obtained
for a nominal beam energy of 2 keV, and a FW50 energy spread of 0.3
eV that we can achieve in experiments with a monochromatized beam
emitted from a Schottky source. This results in a new data set, that
contains the (contributions to the) FW50 spot size of each system, at
each semi-angle.

For each semi-angle, the system configuration that provides the
smallest total FW50 spot size (𝑑𝐹𝑊 50) is obtained from this new data
set. The resulting subset of data is shown in [Fig. 6(a)], and provides
the minimum spot size that can be obtained as a function of beam semi-
angle. From this data, we note that the spot size can be kept diffraction
limited for semi-angles up to 1.5 − 2 mrad. A global minimum FW50
spot size of 𝑑𝐹𝑊 50 = 7.6 nm is found at a semi-angle of 2.3 mrad,
and requires a defocus of 𝐶1 = 3.3 μm. At increasing semi-angles, the
minimum spot size becomes limited by the spherical aberration of the
systems.

The obtained minimum spot size for each mechanical configuration
in terms of lens and cap electrode radius is plotted in [Fig. 6(b)]. From
this data, it is noted that the global minimum spot size is obtained for
a cap electrode radius of 𝑅𝑐𝑎𝑝 = 375 μm, and a lens electrode radius
of 𝑅𝑙𝑒𝑛𝑠 = 250 μm. For the electrical configuration a cap electrode
potential of 𝑈𝑐𝑎𝑝 = −1050 V is found. In order to focus the beam with 1x
magnification onto the sample plane after reflection, a lens potential of
𝑈𝑙𝑒𝑛𝑠 = 3.5 kV was obtained from the EOD calculations. Consequently,
a maximum field strength of 𝐸 = 9.5 kV/mm is present in the tetrode
mirror, which is considered feasible in electron optical setups.

The global minimum spot size that we show in [Fig. 6(b)] seems
to closely follow the zero contour line of the chromatic aberration
coefficient that is plotted in [Fig. 5(c)]. This suggests that the chromatic
aberration has a strong influence on the spot size of the reflected beam
at the image plane, and should be chosen close to zero. After that, the
effect of spherical aberration on the spot size at the image plane can
be balanced by a proper amount of defocus. It should be noted that
the slope of the spherical spot size contribution in [Fig. 6(a)] scales
proportional with 𝛼5. From this we can conclude that the smallest spot
size at the image plane after reflecting on the flat electron mirror is
limited either by diffraction, or by the fifth order aberration coefficient.

5. Discussion and conclusion

We obtained geometries for tetrode electron mirror systems with a
flat surface of reflection, that exhibits only small axial aberrations. As
a result, the FW50 spot size at the image after reflection from the flat
mirror surface remains mainly diffraction limited for semi-angles up to
1.5−2 mrad, at a beam energy of 2 keV. The ability to correct for axial
aberrations by means of the tetrode mirror mechanical configuration,
rather than additional optical components, or superimposed mirror
topographies, opens new possibilities for the use of electron mirrors
in general, and for repetitive imaging systems and phase plates in
particular.

The low beam energy (2 keV) in our study allows for the sub-
millimeter dimensions of the aperture radius. The sub-millimeter di-
mensions that are involved allow for lithographic fabrication processes.
The use of lithographic processes allows for the fabrication of very
7
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round apertures, that show virtually no astigmatism when properly
aligned to one another [21]. The alignment of individual lens elec-
trodes can be routinely performed with our in-house built hexapod
aligner [32] to within 500 nm resolution.

In conclusion, a feasible design for a topographically patternable
tetrode electron mirror is described. The axial aberrations of the tetrode
mirror system are minimized through careful analysis of the role of
aperture dimensions of the electrodes. The successful demonstration of
the proposed configuration would enable the integration of a mirror
based electron beam splitter in miniature QEM setups, or reduce the
number of optical components that are needed in existing electron
microscopes thus offering means for increased resolving power.
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Appendix. Spot size as a function of defocus, in the presence of
both third and fifth order spherical aberration coefficients

In this appendix we describe how to obtain the contribution to
the FW50 spot size from spherical aberration in the general case, for
which 𝐶𝑠3, and 𝐶𝑠5 are both non-zero, and may have opposite sign.
The method can be directly extended to include higher orders as well.
This method is not only applicable to our case in which the beam is
reflected by a mirror, but also for the calculation of the probe size in
an aberration corrected SEM or STEM.

We assume a uniform current distribution in the imaging system.
When the image plane coincides with the focal plane of a lens, the
beam (aperture) semi-angle (𝛼) with optical axis at the image plane, the
distance between the principle optical plane of the lens and the image
plane (𝑓 ), and the radial distance from the optical axis at the principle
optical plane of the lens system (ℎ), are related under the small angle
approximation by

ℎ = 𝛼𝑓 . (A.1)

The full current (𝐼) at the principle plane of the lens, as a function of
the beam semi-angle and under the assumption of a uniform (angular)
current distribution 𝛺 is given by

𝐼100(𝛼) = 𝜋(𝛼𝑓 )2𝛺. (A.2)

We can transform this into a normalized current (𝐼), which provides
he current within the reduced semi-angle [0, �̃�], which lies in the range
≤ 𝛼 ≤ �̃�, given by

̂(�̃�) =
( �̃�
𝛼

)2
. (A.3)

Within an infinitesimal emission ring 𝑑𝛼 corresponding to ray angle
�̃�, the contained normalized current is then given by

𝑤(�̃�) ≡ 𝑑𝐼
𝑑�̃�

= 2�̃�
𝛼2

. (A.4)

Here, 𝑤(�̃�) may be regarded as a normalized weight factor, or as the
raction of current that is emitted from an infinitesimal ring.

The intersection coordinate 𝑦𝑆 of a ray at angle �̃� (with 0 ≤ �̃� ≤ 𝛼)
t the image plane, due to defocus, and third and fifth order coefficients
f spherical aberration is given by

(�̃�) = |𝐶 �̃� + 𝐶 �̃�3 + 𝐶 �̃�5| . (A.5)
𝑆 |

|

1 𝑠3 𝑠5 |

|
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When the product 𝐶𝑠3𝐶𝑠5 > 0, i.e., the aberration coefficients are of
equal sign, and with 𝐶1 equal to zero or having the same sign, then the
spherical spot size diameter FW50, containing 50% of the current, is
found by solving for 𝛼1 in

∫

𝛼1

0
𝑤(�̃�)𝑑�̃� = 0.5 ⇒ 𝐹𝑊 50 = 2𝑦𝑆 (𝛼1). (A.6)

The upper limit of integration 𝛼1 is related to 𝑦𝑆 by inverting the
latter for �̃� = 𝑦𝑆 (�̃�)−1, and increasing �̃� until the equality in [Eq. (A.6)]
is satisfied. Inserting the obtained 𝛼1 back into [Eq. (A.5)] then directly
yields the FW50, also see [Fig. A.7(a)].

When either 𝐶1, 𝐶𝑠3, or 𝐶𝑠5 is of opposite sign of the other coef-
ficients, and for sufficiently large coefficients, or at sufficiently large
semi-angle 𝛼, the situation arises at which for increasing ray angle �̃�
the ray first crosses the optical axis at one side of the image plane,
and for increasing ray angle at the other side of the image plane.
Thus, for a given 𝐶𝑠3 and 𝐶𝑠5 of opposite sign, and 𝐶𝑠5 usually but
not necessarily positive, a sufficiently large semi-angle will result in
a region of �̃� for which the spot size will not increase radially outward.
This situation is depicted in [Fig. A.7(b)]. A proper calculation of the
spherical spot size would then require to take into account that the
current that is incident from the higher ray angles �̃� contribute a large
amount of the total current, at a limited increase of spot size. To
take this effect into account in the calculation of the FW50 spot size,
an extension of [Eq. (A.6)] is required that allows for the additional
zero-crossings of 𝑦𝑆 (�̃�) [Eq. (A.5)] at the image plane. As we consider
spherical aberration up to fifth order, in principle we expect up to five
solutions [Fig. A.7(c)] to the inverse problem 𝛼 = 𝛼(𝑦), meaning that
the FW50 (𝐹𝐶 = 0.5) is found by solving the following equality for 𝛼𝑛,
with 𝑛 = 1⋯ 5, and for which 𝑦𝑆 (𝛼1) = ⋯ = 𝑦𝑆 (𝛼5),

∫

𝛼1

0
𝑤(�̃�)𝑑�̃� + ∫

𝛼3

𝛼2
𝑤(�̃�)𝑑�̃� + ∫

𝛼5

𝛼4
𝑤(�̃�)𝑑�̃� = 𝐹𝐶. (A.7)

In order to satisfy this equality for all 𝛼𝑛, the inverse to [Eq. (A.5)]
must be obtained, which contains 5 roots and for which to our knowl-
edge no (practical) analytical solution exists. In the following we out-
line a numerical solution method that allows one to find the 𝐹𝑊 (𝐹𝐶).

A.1. Numerical methods

The problem at hand is two-fold. On the one hand, we require up to
five values for ray angles �̃� that yield equal intersect coordinates when
inserted into [Eq. (A.5)]. On the other hand, we must solve the integral
in [Eq. (A.7)] using these same ray angles as integration boundaries,
while satisfying the equality for the given Fraction of Current (𝐹𝐶). As
the result of the latter calculation depends on the former, it is difficult
to directly obtain the integral boundaries that exactly correspond to the
FW50 case. Therefore, we suggest the following solution strategy:

1. Obtain the FW100 of the beam, for chosen beam semi-angle 𝛼.
2. Obtain the 𝐹𝑊 for a number of 𝐹𝑊 values 0 < 𝐹𝑊 ≤ 𝐹𝑊 100.

• For a given 𝐹𝑊 , obtain the integration boundaries through
the inverse of [Eq. (A.5)].

• Perform the integral in [Eq. (A.7)], to obtain the 𝐹𝐶
related to the 𝐹𝑊 value.

3. Interpolate the obtained data set of 𝐹𝑊 and 𝐹𝐶, in order to
obtain the FW50.

A.1.1. Obtaining the FW100
The FW100 must be obtained first. This is readily performed when

all coefficients are of equal sign. In that case, the FW100 is always
determined by the value of the beam semi-angle, such that 𝐹𝑊 100 =
2×𝑦𝑆 (𝛼). In the more general case, in which the signs of the coefficients
may be oppositely valued, the FW100 may be found at a smaller ray
angle, as can be understood from [Fig. A.7(b)]. From the expression of
8
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ocal disc radius, 𝑦𝑆 (�̃�) = 𝐶1�̃� + 𝐶𝑠3�̃�3 + 𝐶𝑠5�̃�5, one can find the local
axima through differentiation,

𝑑𝑦𝑆
𝑑�̃�

= 𝐶1 + 3𝐶𝑠3�̃�
2 + 5𝐶𝑠5�̃�

4 = 0. (A.8)

Substitution of 𝛽 ≡ �̃�2 enables an analytical solution through the
bc-formula:

=
−3𝐶𝑠3 ±

√

9𝐶2
𝑠3 − 20𝐶1𝐶𝑠5

10𝐶𝑠5
. (A.9)

From this, we obtain �̃� =
√

𝛽, and only keep the real valued
solutions, that satisfy 0 < �̃� ≤ 𝛼. The FW100 is then determined by

hichever term is bigger, from the set
{

𝑦𝑆 (�̃�)
}

(case in [Fig. A.7(b)])
or from the marginal ray 𝑦𝑆 (𝛼) (case in [Fig. A.7(c)]).

Note for the special case where 𝐶𝑠5 = 0, the solution provided by
[Eq. (A.9)] becomes invalid, and instead 𝛽 = −𝐶1∕(3𝐶𝑠3) must be used.

A.1.2. Obtaining the fraction of current (FC)
After having obtained the FW100, an array of 𝐹𝑊 values in the

range 0 < 𝐹𝑊 ≤ 𝐹𝑊 100 is created. We next step through these values,
and obtain the (set of) ray angles 𝛼𝑛 that correspond to the 𝐹𝑊 . This is
performed in MATLAB through the use of the symbolic equation solver,
as outlined in Listing 1.

Listing 1: Numerical inversion solution

% One-time solution for inverse a = a(y)
problem

syms y c1 c3 c5 a;
a_inv_y = solve(y == abs(c1*a + c3*a^3 +

c5*a^5), a);

% Update parameters based on s, to the
inverse problem a = a(y).

copy_a_inv_y = subs(a_inv_y, [c1 c3 c5 y
], [s.Cs1 s.Cs3 s.Cs5 yFC]);

% copy_a_inv_y now contains the
solutions to a, in symbolic roots.

In terms of execution speed, the bottleneck in this process is in
finding the solution to the inverse problem numerically, and by creating
the necessary symbolic variables in MATLAB for each execution of the
subroutine. We noticed that the process can be sped up significantly
through two distinctive methods:

1. Explicit passing along of symbolic variables and the symbolic
solution of the inverse problem as an input argument to the
subroutine.

2. Parallel execution (using MATLABs parfor method) in a high-
core count system, of the for-loop in which the system configu-
rations are looped over.

With the obtained solution (𝛼1,… , 𝛼5) of the inversion problem, the
Fraction of Current (𝐹𝐶) is obtained from the integral of [Eq. (A.7)],
repeated here:

𝐹𝐶 = ∫

𝛼1

0
𝑤(�̃�)𝑑�̃� + ∫

𝛼3

𝛼2
𝑤(�̃�)𝑑�̃� + ∫

𝛼5

𝛼4
𝑤(�̃�)𝑑�̃�. (A.10)

This returns the fraction of current (𝐹𝐶) as a function of increasing
W. The FW50 (𝐹𝐶 = 0.5) is then found through interpolation of the
btained data set of FW and FC values.
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Fig. A.7. Ray trajectory intersect at the image plane as a function of ray angle. The integration domain(s) (left panels) related to the Full Width (FW) containing a Fraction of
Current (FC) (right panels) is shown for three distinct cases. (a) Third order spherical aberration. (b) Third and fifth order coefficient of spherical aberration with opposite sign.
(c) Negative defocus and fifth order spherical aberration coefficient, positive third order coefficient of spherical aberration.
A.1.3. Defocus leading to minimum FW50
In a practical calculation, we assume the values for 𝐶𝑠3 and 𝐶𝑠5

to be given and fixed. However, the defocus value 𝐶1 could be easily
changed in an experimental setup, by adjusting the lens potential. In
order to obtain the minimum spherical contribution to the spot size at
the image plane, the above outlined routines for finding the FW50 must
be repeated at many different defocus values 𝐶1.

To this end, we use a number of values as initial guess for the
optimum defocus. For each of these defocus values, we obtain the
FW50. If it happens that the smallest FW50 is obtained at the first
or last defocus element in the array of guesses, the domain of initial
guess values is extended into the direction of this element. This process
is repeated until a local minimum FW50 is obtained, after which a
refinement of the domain around the local minimum is used to further
improve the calculation result.

A.2. Applications

We will now demonstrate the application of the numerical method
by means of two examples.

A.2.1. Minimize 𝐶𝑠3 effects through defocus of 𝐶1

Example 1. In this example, we assume for now 𝐶𝑠5 = 0, and a positive
value for 𝐶𝑠3, say 𝐶𝑠3 = 1 m, and a beam semi-angle of 𝛼 = 1 mrad.
Initially, the system is not defocused, i.e., 𝐶1 = 0. Then, the FW100 at
the image plane is given by definition by 𝐹𝑊 100 = 2 × 𝑦𝑆 (𝛼) = 2 nm.
This could however be reduced to 0.5𝐶𝑠3𝛼3 = 0.5 nm by defocusing the
beam. This is demonstrated by the blue curve in [Fig. A.8].
9

The minimum FW50 is much smaller, and is given by theory [31]
as 0.18𝐶𝑠3𝛼3, and also requires a defocus of 𝐶1. We obtained the FW50
as a function of defocus as well (orange curve in [Fig. A.8]). The global
minimum is in agreement with the theoretical expectation. From this, it
is confirmed that the spot size blurring due to 𝐶𝑠3 can be compensated
for in part by chosen a negative 𝐶1.

A.2.2. Minimize 𝐶𝑠5 and 𝐶𝑠3 effects through defocus of 𝐶1

Example 2. The results from Example 1 might also be obtained analyt-
ically, and serve as a validation of the method. Analytical difficulties
arise as soon as the third- and fifth order coefficient have opposite
sign. Then, the integral boundaries in [Eq. (A.7)] can no longer be
obtained analytically, and one may be led to the false conclusion that
there exists a semi-angle for which the spherical spot size vanishes
completely. In the following example we obtain the FW100 and FW50
at zero defocus, and compare these results to the FW50 that may be
obtained by obtaining the optimum defocus value, as a function of the
beam semi-angle 𝛼.

For this, we (arbitrarily) choose 𝐶𝑠3 = −1×102 m, and 𝐶𝑠5 = 1×108

m. These parameters yield the special case for which 𝑦𝑆 (𝛼) = 0 at 𝛼 = 1
mrad (at zero defocus), while the Full Width containing (a Fraction of)
the total Current should not vanish at this point, as for ray angles �̃� < 𝛼,
the ray crosses the image plane of-axis.

With the above parameters, the FW100, and FW50 (at zero and
best defocus) are obtained numerically. The results of the calculation
are shown in [Fig. A.9]. The blue dotted line indicates the value of
2 × 𝑦 (𝛼), i.e. full width of the transverse coordinate of the marginal
𝑆
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Fig. A.8. FW50 as a function of 𝐶1 defocus, at a semi-angle of 1 mrad and 𝐶𝑠3 of 1 m. At zero defocus, the obtained FW50 equals 0.5 nm. The global minimum is found at
370 nm defocus, and provides a FW50 of 0.18 nm. Both values are in agreement with the theory. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. A.9. FW100 and FW50 (with and without optimizing the defocus 𝐶1). Function
2 × 𝑦100(𝛼) indicates the full width of a single ray at the given semi-angle value, and
is plotted for reference. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(outermost) ray at the image plane, at zero defocus. The orange dashed
curve represents the FW100, and should satisfy that it equals the global
maximum max(2 × 𝑦𝑆 (𝛼)) in the range [0, 𝛼]. This behavior is indeed
observed in the plot.

More of interest is the behavior of the FW50 spot size diameter
(purple double dashed line), that indicates the diameter of the beam
containing 50% of the current at zero defocus. At increasing semi-angle,
it is observed that the FW50 first increases monotonically. However,
around 𝛼 = 0.9 mrad a local maximum is observed. This is explained
by the decrease of 𝑦𝑆 around this semi-angle, which means that a large
amount of the total current is hardly contributing to the probe size at
this point (also see [Fig. A.7(b)]). This effect extends for semi-angles of
up to approximately 1.35 mrad, after which the fifth order aberration
becomes dominant and the spot size increases rapidly again.

Finally, the yellow curve indicates the FW50 that could be achieved
when properly defocusing the system through 𝐶1. The result indicates
a large reduction in spot size diameter compared to the non-defocused
case.
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