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The dynamic response of a double articulated structure to 

non-collinear Airey waves and a steady current is studied for 

various waves and varying current directions. The governing 

equations of motion are derived by Lagrange's method where wave 

and current forces are computed by a modified form of Morison's 

equation which takes account of relative motion of water particles 

with respect to the oscillating structure. The resulting equations 

are highly non-linear and are solved numerically by using a block 

integration method. The computed results predict complex whirling 

oscillations of the structure to non-collinear waves and current. 
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Introduction 

With increasing offshore activity and its extension to 

deeper and rougher waters, such as encountered in the North Sea, 

there is a growing need of cost effective, reliable, light weight 

and easy to install offshore structures for initial development, 

subsequent production and loading purposes. An increasing use of 

mobile systems for storage and loading of oil into attendant 

tankers is to be expected in coming years. This is particularly 

true for oil fields that have a limited production capability or 

are too remote from the refining or terminal points to warrant the 

laying of a pipeline. Mobile loading structures are also used as 

an interim measure during pipeline laying for large fields and, in 

case of pipeline failure, as a back-up system. Typical mobile 

loading and storage systems are: single articulated tower, double 

articulated tower or single point mooring system (S.P.M.), tension 

leg buoy, etc. In spite of their importance, relatively little 

research work has been reported, particularly for articulated systems. 

The present authors[l]have investigated the dynamic response of a 

single articulated tower to waves and current. DyerCZ] studied the 

response of a double articulated loading structure to waves only. 

This paper is concerned with the development of a 

mathematical model of a two-pin articulated offshore loading structure 

subjected to non-collinear ocean waves and a steady current. The 

structure is composed of two parts. The lower part or the riser is 

a long, narrow cylinder attached to the sea bed through a universal 

joint. The upper part consists of a buoyant cylinder or buoy attached 

to the riser through another universal joint. The buoy has a main 

flotation chamber of comparatively large diameter with a small diameter 

cylinder at the top. On top of the buoy lies a deck and other 

attachments. The resultant buoyancy force of the system can be 

changed by varying the ballast loads in the riser and the buoy. 
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The structure is designed so that the upper flotation chamber 

remains submerged. The advantage of this type of structure, apart from 

light weight, lies in the fact that the universal joints permit the S.P.M. 

to move with the water particles rather than resist their motion. The 

system has four degrees of freedom and its equations of motion have been 

derived by Lagrange's method where the wave and current forces are 

evaluated by using a modified form of Morison's equation to take 

account of relative motion of fluid particles with respect to the 

structure. The resulting equations are highly non-linear and analytical 

solutions are not possible. Therefore, numerical solutions based on 

a block integration techniquet 4] are carried out for various cases of 

waves and current. An equivalent set of linear equations is also 

unobtainable for the general case, so that random analysis of the 

problem by spectral methods is not feasible. 

Double articulated structures are designed to allow maximum 

rotations of 17° and 37 from the vertical of the riser and buoy 

sections respectively. This is the case under extreme conditions due 

to the combined action of wind, waves and current forces. It is 

found that the structure investigated in this paper appears to be 

quite stable under the extreme case of 100 year design wave which 

has a period of 17 sec. and height of 30 metres. For non-collinear 

waves and current, a complex whirl ing motion is predicted. 

In the present investigation, the tanker is not attached to 

the S.P.M. The tanker will alter the response but this will depend 

on the size and manner in which it is moored to the S.P.M. The 

present analysis, however, gives very useful information about the 

estimated deflections of the structure, under severe environmental 

forces, which is necessary to determine the survival conditions. 

In moderate sea states, it gives the estimated motion of the system 

relative to an approaching tanker for mooring purposes. 

Description of Problem 

A schematic of the double articulated offshore loading structure 

or a single point mooring system (SPM) is shown in Figure 1, It 

consists of a riser of uniform diameter D, , length £, and a universal 

joint at the bottom end 0, which is fixed to a rigid block at the sea 

bed. The upper part of the structure consists of a buoyant cylinder 

or buoy attached to the riser through a second universal joint at Oj. 
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The buoy has a main chamber of diameter D2 > Diand length £2. 

The upper part of the buoy is also a cylinder of diameter D3 < Dz and 

length £3, On top of this part lies a deck and other attachments. 

The total buoyancy force can be changed by varying the ballast loads 

in the lower and upper parts of the structure which is designed so 

that the main flotation chamber remains below the S.W.L. The 

universal joints at Oi and O2 allow the S.P.M. to move with the water 

particle motion rather than to resist it, 

The instantaneous position of the structure during motion is 

depicted in Figure 2, where the fixed orthogonal reference axes X, 

Y and Z are so chosen that XZ plane is parallel to the sea bed with 

origin at Oj. Another set of orthogonal coordinates x, y and z is 

chosen parallel to X, Y and Z system with a moving origin at O2. 

The instantaneous position of the structure is completely determined 

by four angles 61, 82, IJJ] , ^h- As shown in Figure 2, 61 and ij>i 

determine the position of the riser wherea"? o^ and (î2 determine the 

position of upper part of the structure. The angle 61 is the 

meridianal angle which the axis OiO;;. makes with Y-axis and \l>i is the 

circumferential angle between the planes YO1O2 and YOjZ. The angles 

Ü2,<|̂ 2 are similarly defined for the upper part with reference to the 

coordinate system x, y, z. 

The system is subjected to the simultaneous action of linear 

waves propagating in the X-direction and a steady current of velocity 

V(Y) which may vary with water depth and whose direction makes an 

angle a with the X-axis. In the absence of waves, the system acquires 

a static equilibrium position due to current drag force described by 

angular coordinates (9io , j - a) and (620 , j -a).Under the combined 

action of waves and current, the structure will perform oscillatory 

motion either in or out of the XZ-plane depending on whether the waves 

and current are collinear or non-collinear. 

Static Equilibrium due to Current 

In the present investigation the current is assumed to be steady 

and its velocity to vary with the water depth in a linear manner. The 

current vector V(Y) makes an angle a with the X-axis and has its 

magnitude given by the expression 

V(Y) = \{\o •" ̂ ^ / ^ ) ' (̂) 
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where V is a constant and gives the current speed at the still water 

level (SWL), and 

CO 

3 

V^V , 
0 c 

CO 

V is the current speed at the sea bed; d is the water depth from SWL. 

Under the action of current, the structure is displaced to a 

static equilibrium position determined by two pairs of angular coordinates 

(6io . 7 - ct) and (020 * j ' «). The meridianal angles 9io and 020 are 

given by the following two equations of equilibrium 

- [M(i)h ('^+Mgj^hgj^/2-M^(^£i/2+M (£i+h2/2) + (M(^^+M^^^-M^('^-M^^^+M-^)(Jli+h2)] gsine 

X-1 X/ - -

g 
2C 

p 
h ^ 

-^V^^[M/^T.^M1^) Mf^^Y^ÏÏT^ V''^^3TT^r^[]cose.o 

(2a) 

and 

[M̂ ^̂ h (^+M^^{£2+h ^^)+Mj(Ü2+iïo)-Mf^^£2/2-M^(='^£2+^3/2)] gsinezo 

= ^V^^[M/^Y.^V^Y.^]COSB2O (2b) 

To obtain equations (2), the drag forces in the vertical position of 

the structure have been considered, 

In equations (2a) and (2b) M^^^, i = 1,2,3, are the structural 

masses of the riser, the buoy and the top cylindrical portion, 

respectively; M^^^^, i = 1,2,3 are the masses of fluid displaced by 

these three parts; h^^', i = 1,2,3 are the respective centres of 

gravity; M is the mass of the pin at O2 and the disc above it; Mj is 

deck and swivel mass at the top; M„j, is mass of ballast in the riser 

and hg^ is the height to which the ballast fills itj hi is height of 

pin Oi from the sea bed and h2 is height of pin at 0? ; si'3 is the 
submerged depth of top cylinder ; Ĉ ^ is coefficient of drag and 

Yi,Y2. , Ys are given by the following expressions: 

Yi = V^^V2 -̂ 2V^^3/3+ 6 V 4 . 

Y2 -- (Vj.^ +^2) + (V + •a)M,2/*,, +T^V3 il2Vill^ 
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YB = {V^o + 6(1 +i?.?yj?-i)}' + {V^Q + 3(1 +il2/£i)}6 l'i/^i 

+ 6V3 O j i i ' , 

2 / 0 2 Y. = (V^Q + 3 ) V 2 + 2/3(V^Q + 6)3 l^/^^ +ÏÏV4 l^/lx 

Ys = {V^jj + 3(1 + J l2 / i i i ) ) ' / 2 + 2/3{V^^^ + 3(1 + ^ ^ / ^ O i e / j / ^ i 

+ 3 ' ^ ; V J i l ^ 

where 6 = 3<2.i/d . 

The right hand side terms in equations (2a), (2b) represent the 

moments of fluid drag acting on the structure. The riser and buoy are 

assumed to be of uniform diameters and constant thickness so that the 

centres of gravity lie at the geometrical centres, i.e. 

hĝ '̂̂  = )i.j/2, i = 1,2,3. 

Furthermore, for current speeds of practical interest V is found to 

be between 2 to 5 knots for the northern North Sea. For these 

current speeds the static displacements Bio «Ö20 will be small so that 

equations (2a) and (2b) yield simple expressiond for these angles on 

substituting 

sinO^Q = e^Q, cosO^Q -- 1, i = 1,2. 

Ihe Dynamic Analysis of Response 

The equations of motion of the structure subjected to non-collinear 

waves and current are derived by the method of Lagrange. It is assumed 

that the structure oscillates as a rigid body which is justified because 

the rigid body displacements are much bigger than the elastic deformations 

of the structure. As such the wave forces are not significantly affected 

by the elastic vibrations of the structure. Any coupling between the 

rigid and elastic modes will result in added complexities in the already 

complex system. However, the bending moments and shear forces can be 

determined from the knowledge of rigid structural response where a 

static analysis can be performed by considering the wave forces at any 
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instant. This procedure should yield all the information needed in 

design. 

To derive the equations, the kinetic energy and potential 

energy are first calculated followed by computation of wave forces. 

Kinetic Energy of the Structure 

As mentioned in the previous section, the instantaneous position 

of the structure is completely determined by two pairs of angular 

coordinates (Bi, ijji), and (B2, ^2)- The position vector of any point 

distance rj from Oj on the riser is 

j:('̂ (r,) = r,[c^('). CyW, Ĉ (')] , (4) 

where Cx^'^, C^"^, C^'^ are direction cosines of the axis O1O2; 

(5) 

c (>) 
^x 

c ('̂  
y 

c (•) 
^z 

= 

= 

= 

sinGisini/Ji , 

COSBi , 

sinsicosil^i . 

Similarly, the position vector of any point on the upper part of the 

structure is 

r(^)(r2) = A'Uu + h2) + r2[c^(^^ C^^^. Ĉ ^̂ *̂ ] ,(6) 

where r2 is the distance from O2; C ̂ ,̂ C ^̂  , C^'' are direction 

cosines of the axis O2O3: 

C^^ = sin02sinij>2 , 

Cy(^ = cosB. , (7) 

C^^ = sin0?cosij;2 . 
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The kinetic energy of the structure is then given as 

T = 
" £i 

mir(^)(ri).r(>)(r,)dri+[ mg r^^Vi) •i:̂ '̂ (r'i)dri+M f(i^£i+*i).rW(£i + ̂ ) 
j'O '0 

^ 'm2r(=^(r2).x^^(r2)dr2+ ^ ' 

P-

m3r(^(r2).r^^(r2)dr2 
Ü5 

+ M^i(^(L2).i(^(L2) (8) 

where L-.2 - üa+^s; mi, m?, ms and mnj are mass densities of the riser, 

the buoy, the cylinder C3 and of ballast per unit length, respectively. 

The dots denote differentiation with respect to time. 

On substituting from equations (6) and (7) into equation (8), 

and after integration, we get 

T = 1 [li(Ói^ + sin^BiiJ^^) + I?(02^ + sin'^e2i(j2^ ) 

+ 2 l 3 ( k i e i 0 2 + V.7ili^2 + k36iljj2 + k4é2li^2 
^ 

(9) 

where 

I . 
,-jtj 

m i r i ^ d r j + 
r^B£ (rl2 rli 

mo„ri=^dri + <̂  m2dr2 + 
0 ^̂ ' Vo h, 

i3dr2 + M^W^i+hz)" 

^ 2 2 

+ Mp(ili + - ^ ) , 

mjrz dr^ + 

L 
r ? 

^£2 

L 

m3r2^d r2 + M^L?'' , (10) 

£2 ƒ-? 
m2r2dr2 + msr^dr? + M-j.L2M£i+h2) 

0 ''£2 ' 

As mentioned earlier, the cylinders have uniformly distributed mass, 

which gives ,2 

Ii = |^j(M(')>Mg^-|^)+(M(=^+M(3)+M^)(l+h2/£,)^Mp(U^^)'] l,\ 

£,' ,. L2' L2 £2 ^ £^ 

1 ; t , , )̂ ^ " T £ 7 ^ £l2j ^^ > 
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and 

ki = coseiCOse2Cos(iJ;i-i|^2) + sin0isin62 , 

k2 = sin0isine2cos(i|;i-ij;2) , 
(12) 

ks = cos0iSine2Sin(ij;i-;J;2) . 

ki» = -sin0icos02sin(ij>i-i|^2) • 

The Potential Energy of the Structure 

The displacement of the structure will cause the weight and 

buoyancy forces to do work due to rotations 61 and 62. The change 

in potential energy of the riser is found to be 

V^ =-^M^i^hgW+Mgj^hg^/2 + Mp(£i+h2/2)- M^Whg(^}(l-cosei)g. 

The change in potential energy of the buoy and the deck mass is found 

to be 

V^ = -{M(^^+M(^+M,p-M^^^-M^(^}(£,+h2)(l-cosei)g 

-{M^^hg^^+M(^^h^^^+M^L2-M^(^£2/2-M^('^£2+£3/2)}(l-cose2)g, 

The total potential energy of the structure is thus 

V = -M^(^(l-cosei)g-M^(^(l-cos02)g, (13) 

where 

M^(i) = M('^hg(^)+Mg^hg^/2-M^Whg('UMp(£i+h2/2) 

+ (£i+h2){M^2)+M(a)+M^_M^(2)_M^(3)} ^ p4a) 

M^(^ = M^^hg^^+M^^hg^^^M^L.-M^^^ ^ - M^^^(£2+£^/2). (14b) 

Lguations^ of Motion 

The equations of motion of the structure can now be obtained by 

applying Lagrange's equation 

The four equations thus obtained are 



- 9 -

Ii9i+l3(k]Ö2+k3i|J2) + l3Ki-IiSin0iCOseiii)i2-M^('^gsin0i = Mg'"^, (15a) 

I202+I3(k|0l+k^^(;l)+I3K2-I2sin02COse2i2^-M^^^gsin02 = M ^ % (15b) 

Iisin^eiiiJi+l3(k2i(J2+ku02)+l3K3+2IiSin0iCOseieii|ji = M / ^ , (15c) 

where 

l2sin^e2it'2+l3(k2i|'i+k30i) + l3Kw+2l2Sin02COS0202>l̂ 2 = M ^ ^ , (15d) 

Kj = -cos0isine2cos(ijji-4;2)(é2^+ip2^)+ sin0icos02é2^ 

+ 2cos6]COs62Sin(i|ji-ijj2)Ö2<I'2. (16a) 

Kf = -Sin0icose2cos(ipi-tj^2)(6i^+i' i^)+cos0isin0jèi^ ( löb) 

- 2sineiCos02sin(i|ji-i]j2)öiV] , 

Kg = sin0iSin0?sin(ijJi-i|;2)(S2^+iI'2^)+2sin0iCOs02Cos(ij^i-i|'2)ê2ii'2» 

(16c) 

K̂  = -sineiSinO2Sin(ij;i-ii;2)(cf+iiJi^)+2cos9iSln02COS(i(;i-i|;2)Óiii»i, 

(16d) 

and M„^'', M^^^, M/*^ and M,^^ are the moments of fluid forces on the 

system. The moments MQ^'^ and M„^^ are moments about OiX' and 02)<', 

respectively; M,^^ and M,^^ are the moments about OiY and 02y 

respectively. These moments are derived in the following sections. 

Wave Forces and their Moments 

The wave forces on the structure are derived by applying Morison's 

equationCslmodified to incorporate the relative velocities and 

accelerations of fluid particles with respect to the structural members. 

The diameters of the component cylinders are small compared to wave 

lengths of practical interest thus the non-linear drag forces cannot 

be neglected in the Morison's equation. 

Assuming a potential flow, the velocity components of fluid 

particles can be derived from the potential function 

<l>(X,Y,t) = fM ^°^^^y^;^0 sin{k(X-ct)+x} . (17) 

where H is wave height; 'o , k, c and x denote wave frequency, wave 

number, wave velocity and wave phase, respectively; d is the water 

depth from the mean water level. The wave number, wave frequency 

and wave velocity are related to the wave length L and wave period T 

by the following relations 
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k - 27r/L , 

(i) = 2TT/T , 

c - fl U.H^') , 

where T = ( ^ ) / t a n h ( ^ ) . 

Drag Forces 

The water pa r t i e le ve loc i ty vector is obtained from the potent ia l 

f unc t ion , equation (17), I t is 

where 

ü(X,Y,t ) = [Ux.Uy.CO"^ , (18) 

TFH cosh k(f+hi) ^ „ . /K / v ^+\ _. \ 
"X ~- T s i n h ( k d ) ^ cos{k(X-ct) + x}. 

•IIH sinhk(Y+h,) ,̂- ru/y r-i-\ ^ i 
^ " T-sTRïïten- -'infMX-ct) +xl. 

The current d i rec t ion makes an angle a with the X-axis, so 

that 

V(Y) ^ [V^, 0, V ^ ] \ 

where V (Y) = |y| cosu, 

\l^i'i) = lyl sina . 

It is assumed that the fluid velocity vectors due to waves and current 

can be added, in which case the resultant particle velocity is given 

by 

ii^(X.Y,t) = [u^+V^, Uy, V ^ ] ^ 

Since the forces on the structure are caused mainly by the fluid 

motion normal to its cylindrical components, the components of resultant 

fluid velocity vector normal to the riser and the buoy parts are 

evaluated. These are given respectively as 

Un^'^(X.Y,t) = A('^u^(X,Y,t), (19a) 

and u^^^(x.y,t) = A(^^u^(x,y,t). (19b) 
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where (X, Y) = •̂ iIĈ '̂̂ , C^^^] , 

(x,y) = (£i+h2)[C^('^, CyW] + r^rC^^^, Cy(^] , 

and A^ ' , i = 1,2 are symmetric matrices of order 3 whose elements 

are 

A„(^) = 1 - (C^(^)}^ , 

A J ^ ) = -c^(^)c^(^-) , 
Apĵ ") = 1 - {Cy(^')}^ , 

Aji) . .c^(i) c^(i), 

A3î ") = 1 - ( c^ ( ^h \ 

where direction cosines C ^^', C '^', C ̂  ' are given in equations (5) 
X y z ^ ^ ^ ' 

and ( 7 ) . 

The ve loc i t ies of the elements of the st ructure distance r j 

from Oi and r; from 0^ are obtained from equations (4) and (6 ) , 

These are 

}L^'\r,) = r , [V , ( ' ^ \l2^'\ \l^^'h\ 
l^'\r2) = Vi(^^£i+h2) + r 2 [ V i ( ^ . V2^^, V , ^ ^ ] ^ 

where 
(i) 

Vi^ ' - cos0.sini|j.9. + sin0.cosi|j.il). , 
1 1 1 1 1^1 

V2^^^ = -s in0 . 0. , 

Vs^ ' = cos9.cosil;.0. - sin0.sinij;.i l j. . 
1 ^1 1 1 ^ v i 

Thus the re la t i ve normal ve loc i t ies of the f l u i d par t i c les 

are found to be 

Vj^(>)(X, Y, t ) = .%^'^(X. Y, t ) - y ^ ' V i ) . (20a) 

VR(=^(X, y , t ) = ^ ^ ^ ( x . y , t ) - y ( ^ ( r 2 ) . 0<r2< L2(20b) 

where L̂ ' ^ «;, + £3 , 
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The non-linear drag forces per unit length of the structure 

are, respectively 

Fp^^(r2) = ^<^OMR'^ \ÏR'^\ .0<r2<£2 (21b) 

FD(^(r2) = J^u^'h^^ 1-̂ R̂ Î ,£2<r2lL2 (21c) 

where p is mass density of water; Cj, is the drag coefficient. 

Forces due to Fluid Inertia 

The acceleration of the fluid particles is given by the vector 

ü(X, Y, t) = [ü^, üy, 0]"^, 

where 

The components of fluid acceleration normal to the structural 

members are computed in the manner of equations (19). Thus the normal 

components of fluid inertia force per unit length of the structure along 

the three parts are given as 

D ^ 
Fj(^^ri) = P ^ ^ C ^ A W U , (22a) 

D ^ 
^I^^(r2) = P T T ^ C ^ A ( = ^ Ü , 0_<r2<£2 (22b) 
" D 2 

Jj(^(r2) = PTT 7p̂  C^ A^^u , £2- r < Li (22c) 

where C is the coefficient of fluid inertia. 
m 

Forces due to Fluid Added Mass 

The acceleration vectors of the elements of the structure whose 

distances from Oi and O2 are ri and r^, respectively, are 

a^^^ri) = ri[ai(>), a,}'K ^,^h\ 

and a(^)(r,) ^ a('^(£,+h2) + r̂  [a, ̂ ^̂ , az^^^ a,^^^^, 



13 

where 
(i) ai = - ( ö - ^ + i|i-^)sin0.sini|j. + 2B.i);.coso.cos4;. + 9.cos9. sinij;. 

+ ij;-sin0.cosij;., 

^^' ^ -B.^cos0. - ö.sinB. , 
p 1 1 I 1 

("i) - _/5 2,,:, 2 (Ö- +iî ^̂ )sinĜ cosH'̂  - 20̂ 4'̂ .cos0̂ sin4'. + Ĝ cosÔ -cosT̂ . 

- Ŷ .sinĜ sinH'̂  

The normal forces per unit length of the structure due to fluid 

added mass are given as 

(i) Di ,(i) F^^'^(ri) = -pn - J L y a"'(ri), 

(p) D^ i ' l {Vy) = -pn y~ C^* ^'''{r,) , 0 < r2 < £2 

F (')fr ) PT^T- V 1^'^'^2), £2 < r2<Li 

(23a) 

(23b) 

(23c) 

where C * is the added mass coefficient. 
m 

Substituting into the Morison's equation, 

fn = ^ D ^ f l - ^ ^ A ' 

from equations (21)-(23), the total normal forces per unit length of 

the structural members are obtained as 

(i) 
:n " JLD ^ S.1 iA i - 1.2,3 (24) 

Moments of Wave Forces 

The moments of wave forces, equation (24), about OiX' and OjX' 

are given as 

K^" - { ViWi^^^dri + (£i+h2)[f 'Wi^^dr, + f ̂"''̂  w/^drzl , (1) 

(25a) 

and 

M, (̂  r2W2^^dr2 + 
£2 + £3' 

^£2 
r2W2^')dr2 . (25b) 
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ĵ 
(i) 

14 -

F .V^cosO-sinij;. + F ^̂  ̂ cosB .cosijj. - F /"''sin0.. 
nx J 'J nz J "J 

are the compor 

ny 

and F... (""̂  , F_.,(''), F„_^^) are the components of F„(^^ in X, Y F ^ ' F 
nx ' ny ' nz 

and Z direction respectively 

The moments about OiY and 02y are found to be 

£2 + £3' 

> 

M 

where 

^^ -~ fViVi^'^dri + (£i+h2) [[^'v% 
•'0 •'o 

r2V^2W2, 

r, + i l 
V. 

(̂  'VzVï^^drz + 
r£2 + £3' 

V/*dr2]^ (25c) 

(25d) 
^ 2 

h (i) Fj^)sin0.cos>J.. - F^^-'sin(KSini|.. ^ 'sin() .sinil;. . 

Final Form of Equations of Motion 

The inertial forces due to added mass F.^^' can be divided into 

two parts - one which is dependent on structural accelerations ̂ i »02.i|̂ iand 

ih, and the second part which is a function of structural velocities. 

Substituting from equations (25) into equations (15) and transposing the 

terms containing second order derivatives to the left hand side, the 

final equations of motion are then obtained in the form 

AiPi" + A,2 02" + Aimjj2" = fi(T,o,,Ü2,ih,>l'?.ei',02',i|̂ i',4'2').(26a) 

A i 2 0 l " + A22O2" + Azs'i'l" = f2(T,0l ,02, l |>l ,1 '2 .9i ' ,02 ' , l |^ l ' , l |^2 ' ) , (26b) 

A23 62"+ A33IJJ1" ^ h^^2 = f3 (T ,e , ,92 , l^ l , l )^2 ,6 , ' ,92 ' , l | ' l ' ,<p2 ' ) . (26c) 

Ai4 0 i " + A34 4 î" + A^,,ij;2" = f4( - r ,0 i ,92 , i^ i , ; | ^2 .e i ' ,92 ' ,4 ' i ' . ' i J2 ' ) . (26d) 

in which T= t /T is the non-dimensional time parameter and dashes denote 

der ivat ives wi th respect to 1 ; 

A,, = T, + C^* bii , 

A,2 = (T3+ C^* bi2)k,. 

A,. = (13+ C^* bi2)k3, 

V? 12+ C^* b22 . 

A23 = ( I 3 + C^* b , 2 ) k , , 

A,3 = ( i i + C^* b iOs in^ j , , 

A3. = (T3+ C^* bi^k2 , 

A , , = (T2+ C^* bz^sin^Oz ; 
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( I l , l 2 , l 3 ) = ( I l , l 2 , l 3 ) / ( M f ^ ^ ) £ l ' ) ; 

^" - I"" w i r ^72(17 i 7 a ^ ' ^ £ i ^ • 

b - ^èK^^\ D3^Li^ £ 2 ^ l , l ^ ^l^^ 

>̂2 " 2Ü?T? '^ D?^!?^ £ ? ) P ' ^ £,^ ' 

h - l ^ ^ ' z ' D3%Li^ _ £ 2 \ \ . 

f i ( T , . , . ) = - ^ m.(^- I3K, + IiSin6iCOs9iiJ;'i'+ - \ y f ! - s i n 9 i , 
M^(i)£i^^ M^W£i ^> 

2 ,x _. _ M ^^ -.2 
-L-v- m)^- I3K2 + l 2 s i n B 2 C O s e 2 4 ' 2 ^ + — - n — f — s i n 9 2 , 
^{^^2 0 M^^'^£i *' i 

f2(T,.,, ) 
M 

f3(i, .,. ) = - ^ - m ^ - Ï3K3 - 2IiSinOiCOsB,e',tp,' , 

T,.(i, ... ) = - ^ m/^- T3K.,- 2l2sin02COSÜ2B;i(;; , 

where m^^'^, m„^^, m ^^ and m ^̂  are the same as given in equations (25) 
0 9 i|; lp 

but without 0i" ,02*' , i^i"and ^2" terms; kj, 1̂ 2. 1̂ 3 and J.^ are the same 

as given in equations (16) but real time derivatives are replaced by 

non-dimensional time derivatives. 

The initial conditions of the problem are 

9i(0)= 0io,B,(O)= 020.01(0)= 0, 9^(0)= 0, 

and 

1̂ 1 (0) = -J - a., .|;2(0)= I - (X, <|̂ 1(0>= 0, ii;^(0)= 0. 

Equations (26) are coupled, highly non-linear equations with time 

dependent coefficients and as such a closed form solution is not possible. 

Furthermore, these equations cannot be linearised in either least square 

sense or otherwise due to presence of angles iĵi and tj;?. Thus random 

analysis by spectral methods is not possible. Again due to the complex 

form of these equations, analytical investigation into stability of the 

system is not feasible. In fact singularities will occur in the solution 

when either 0i br 92 is of the order of zero,This is due to the form of 

coefficients Asjand A41, . 
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Results and Discussion 

As was pointed out in the previous section, the analytical solution 

of equations (26) is not possible due to their non-linear nature. If the 

forces due to current were to be ignored, the system would reduce to 

one of two degrees of freedom which can then be linearised if a further 

assumption of small displacements is made, A spectral approach would then 

enable the random response of the structure to be obtained which is the 

object of a separate study by the authors. In the present case, however, 

numerical solutions of the system are obtained by a 4th order block 

integration method using two block points [4], By this method, displacements 

and velocities at two points ti - to + At and tz = to + 2At, where At 

is the time step, are simultaneously computed if initial conditions in 

terms of displacements and velocities are prescribed at t = to . The 

accelerations at t2 are also obtained as a bi-product. The local 

truncation errors at t2 are of the order of (At)^ and at ti they are of the 

order of (At)'' . However, the lower local accuracy at ti does not affect 

subsequent computations since only values at t? are required for the 

next set of block points. Most results given in this paper were computed 

with (At/T) = 0,02 and 0,01. The system is quite stable but singularities 

can occur if either 9i or 02 tend to zero. This happens in the general 

case only due to the form of the coefficients as pointed out in the last 

section. 

If the current direction is not orthogonal to the direction of wave 

propagation, the wave length is modified due to the increase or decrease 

in wave velocity since the wave period remains constant. The modified wave 

length L' is given by 

L' = L(l + V^/c) , 

or 

*• V g L tanh(kd)J 

A maximum of 4.5 per cent change in wave length occurred in the 

present study, 
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The natural undamped frequencies of the S.P.M, are obtained from 

equations (15 a,b) by assuming linear undamped motions with small 

displacements in XY-plane. Ignoring non-linear terms and writing 

tĵi =^2=-^ . i)^ = '^^ = 0, sin9^. = 0̂ ., cosB^ = 1, for i = 1, 2 

and kj = 1, the following equations of free oscillations are obtained. 

Cn 01 + Ci2 02 - C13I 01 = 0, 

Ci2 01 + C22 02 - C23f 02 = 0 , 

where 

Cn = Ti + Cĵ *bii , 

C12 = T3 + Cm*biz , 

c,3 = M^('VM^('^£,, 

C?2 = Tz + C *b22 , 

. C23 = M^('VMf^^^£i. 

The two natural sway frequencies are given by 

00̂  = -^{(Cl3C22 + C23 Cil ) - U^l /(Ciẑ  - cu C22) 

where 

U - (Ci3 C2Z ~ C23 C n ) + 4C]3 C23 C] 2 . 

The structural data used in the computations is representative of 

a typical double articulated structure designed for use in water depths 

of around 160 metres. The data is as follows; 

Di/£, = D.i/£i = 0.025; D2/£| - 0.04; 

£2/£i = 0,4 ; £3/£i - 0.2; d/£, = 1.60.; 

hg^/£i = 0,4 ; hi/£i = 0.06; h2/£i = 0.02; 

M(I)/M^(I) ,, 0.3040 ; M^^/M^^^^ = 0.1169 ; M^^/M^^^^ = 0.0609; 

Mg^/M^(') - °-^^ ' V^f^'^ ^ 0.0012 ; M^/M^^^^ = 0.038. • 
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The following values of current and wave data were used 

Cj. = 0.6, 1.0 ; C = 2.0 ; C* = 1.0 ; u IT, m 

\ = [V^V£ig]^ - 0.035 ; V^ = 0.0 ; 

L/£i = 4,0, 1.0 ; H/£I = 0.3, 0,1 , 

The length of the riser of a typical S.P.M. is about 100 metres. 

For £i = 100 metres, the above data represents a structure for which the 

diameters of the riser, the buoyant chamber and the top cylinder are 

2.5 m, 4,0 m and 2,5 m, respectively. The corresponding water depth is 

160 metres. For this structure, the natural sway frequencies, from 

equation (27), are found to be 0.229 and 0.703 rad/sec with time periods of 

27.45 and 8.94 sec. respectively. The combination L/£i = 4.0 and 

H/i) = 0.3 represents a wave of period 16 sec and height of 30 metres. 
This case henceforth will be referred to as the 'design wave' case. 

The response histories were computed for trains of three waves. 

The wave and current forces were computed at the displaced position of the 

structure in all cases. For comparison, however, response histories in 

some cases were also computed with wave forces evaluated at the undisplaced 

position. These are shown by broken lines in Figures 3-8. 

The results in Figures 3-8 illustrate the effects of varying values 

of Cp. and the wave parameters. The superimposition of current on waves 

modifies the response characteristics. It is observed that it is not 

merely the superimposition of a static response due to current on the 

oscillatory response due to waves. The modification of wave length due 

to current changes the wave forces on the structure also. The superimposition 

of current is expected to modify values of Cj, which will also change with 

the varying direction of the current. But no data is at present available 

which could be used. Therefore the values of C^ were not changed in the 

computations. In fact for a greater accuracy, values of Cr. which depend 

on water depth, wave frequency, Keulegn-Carpenter number and surface 

roughness should be used [5] , but information in respect of structures 

subjected to real ocean waves is not readily available. After all the sea 

is highly random in its behaviour so the effort at obtaining more precise 

values in a deterministic case may not be worth the time involved in such 

a work. 
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Figures 3-5, describe the response of structure to collinear 

waves and current. The sway response X/£i of the point Oj are plotted 

in Figures 3a-5a, whereas displacements t/l•^ of the top from the Y-axis are 

plotted in Figures 3b-5b, In these diagrams, the broken lines depict the 

response histories when the wave and current forces on the structure are 

calculated in the undisturbed position. The solid lines depict the 

response obtained for the cases where the forces are computed in the 

instantaneous position of the structure. The response histories 

corresponding to non-collinear waves and current are plotted in Figures 

6-8. 

Referring to the response curves, it is observed that the structure 

oscillates almost at the wave frequency but with a small phase lag. The 

effect of the non-collinear current is to perturb the sway motion in the 

direction of current which results in the three dimensional complex 

whirling oscillations of the structure as shown in Figures 6-8. As 

expected the non-collinear current flow causes a reduction in the maximum 

swaying displacement which is a minimum for orthogonal waves and current. 

In the present investigation, maximum sway angles 0i = 14° and 02 = 18° 

were obtained for the case of collinear waves and current both moving in 

the same direction. 

Since the natural sway periods of the S.P.M. are 27.45 and 8.94 

seconds respectively, it can be seen that in a fully developed sea state 

the response can occur in both modes as the wave spectrum will contain 

significant energy at these periods. 
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