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Abstract

The numerical modeling with the diffusive controlled source electromagnetic (CSEM)
method has been used to validate the published results of Ellis et al. (2010a) by first
investigating the validity of effective medium theory for both horizontally layered isotropic
and vertically transverse isotropic (VTI) layered earth. Ellis et al. (2010a) used ’moving
window average method’ to calculate bulk vertical and horizontal resistivities of resistivity
logs, from which they calculated effective anisotropic ratio. The question is if the applica-
tion of their local averaging scheme is valid also for a layered earth. The investigation of
effective medium theory is done in horizontal wavenumber-frequency domain (k−ω) which
allows us to evaluate the influence of propagation and attenuation parts of the complex
vertical wavenumber on the existence and stability of the effective solution for the whole
range of wavenumber, k.

For the layered models considered, the total thickness is held constant while the number of
layers is varied with consequent changes in thickness of the individual layer. Also, reflection
and transmission interactions are both ignored and included. For the horizontally layered
isotropic earth, with only propagation-diffusion term, a stable effective transverse electric
(TE-mode) isotropic conductivity exists from 0.5% of maximum wavenumber irrespective
of the unit thickness of a layer. But with the inclusion of reflection and transmission inter-
actions, the effective skin depth or wavelength has to be sufficiently large compared with
unit thickness of the layered earth for a stable solution to exist at all values of wavenumber,
k. It is noted that effective transverse magnetic (TM-mode) isotropic conductivity is not
the same as that of TE-mode for large wavenumber, k, because of the different limits of
their reflection coefficients at large k.

However, there are no effective vertically transverse isotropic (VTI) parameters which
satisfy the horizontally layered isotropic or VTI layered earth because the effective VTI
parameters are wavenumber, k-dependent, though with approximately constant effective
anisotropic ratio. We conclude that the effective medium theory adopted by Ellis et al.
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(2010a) is not a valid approach for modeling a layered earth, though it may be valid for a
local measurement.
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Chapter 1

Introduction

1-1 Motivation

The motivation for this thesis is the result in the first break technical article written by
Ellis et al. (2010a). They observed that electrical resistivity values (inverse of conductiv-
ities) inferred from the controlled source electromagnetic (CSEM) data are greater than
those measured by well logs (conventional borehole electrical resistivity logs) at the same
location. They attributed this difference to electrical anisotropy because the two methods
used, inline CSEM and borehole logs in undeviated well, basically measure vertical and hor-
izontal resistivities respectively. They also reported that the two other causes of electrical
anisotropy are: thin layering and grain alignment. Whereas the thin layering contributes
little to anisotropy, they used an effective medium model to establish that grain alignment
accounts for a significant proportion of the electrical anisotropy in fine sediments such as
clays and shales. In their resulting presentations, however, they fitted two model curves to
the data distribution and extrapolated in the regions where there were no data. We would
like to validate these results by first investigating effective medium theory.

1-2 Effective Medium theories

A representation of highly heterogeneous subsurface by an accurate effective homogeneous
medium under the quasi-static limit condition is a very useful simplification of under-
determined geophysical problems (Maldovan et al., 2003, Sen & Stoffa, 1995). Hoversten
et al. (2006) noted that effective medium can be used to normalize electromagnetic data
acquired in a region.
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There are several effective medium theories that exist in the literature. Choy (1999) gave a
thorough review of Clausius-Mossotti, Maxwell-Garnett and the Bruggeman effective the-
ories and they are summarized thus: the Clausius-Mossotti effective theory relates macro-
scopic property (e.g. the dielectric constant ǫ) to a microscopic property (e.g. the molecular
polarisability α) which has to be found by full quantum mechanics. The Maxwell-Garnett
effective medium theory assumes a convenient model for the microscopic polarisability α
for an inclusion in a host and hence it is an extension of the Clausius-Mossotti relation to
arbitrary composite systems. However, with Maxwell-Garnett theory, a composite system
is an asymmetric system of the inclusion and the host, hence the Maxwell-Garnett theory
works only when the inclusions are of insignificant percentage of the composite system.
Bruggeman effective theory finds an approximation which treats both the inclusions and
host in a symmetric manner.

The Hashin-Shtrikman upper and lower bounds, (HS)-bounds, (Hashin & Shtrikman,
1962), are the standard reference bounds for effective parameter of macroscopically homo-
geneous and isotropic multiphase materials. Differential effective-medium (DEM) theory
generates several realizations (iterations) from the inclusion of less stiff phase into the ma-
trix of the stiff phase and vice versa to predict the HS-bounds of the effective parameters
(Norris, 1985). Therefore, Sheng (1990) proposed a three-component DEM theory in which
solid grains are consolidated through the presence of third component-cement material to
model the electrical and elastic properties of sedimentary rocks within a unified framework.
Backus (1962) derived the conditions on the elastic coefficients under which an effective
medium can approximate a horizontally layered isotropic medium.

Hashin & Shtrikman (1962) considered only physical property and volume fractions of
various phases of a medium to define their effective property which can fall between the
HS-bounds. Inclusion of geometrical details of how the phases are arranged relative to
each other will predict more precise effective property (Mavko et al., 2003). Spherically
shaped inclusions can only restrict the models to finding effective isotropic parameters
(Zimmerman, 1991), however, to account for electrical anisotropy in porous rocks and
sediment Ellis et al. (2010b) used ellipsoidal inclusions of aspect ratio less than one.

In this report we investigate the effective medium theory for layered earth models using
CSEM methods in the horizontal wavenumber-frequency (k − ω) domain . Two scenarios
will be considered: the first scenario is for isotropic layers while the second scenario is for
vertically transverse isotropic (VTI) layers. Conductivities distributed in the layers will
represent the material properties; and the volume fractions are the fractional thicknesses
of the layers. The additional factors we consider are the interactions at the boundaries
between layers in terms of reflection, transmission and multiple reflections of the electro-
magnetic energy. In this thesis we address the questions of how an effective medium model
can be built based on propagation-diffusion through a layered medium, and what the effect
of reflection and transmission interactions between the thin layers have on this effective
medium model. We use our numerical results to validate the experimental results of Ellis
et al. (2010a).
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1-3 Outline of this thesis

The remainder of this chapter will be used to define basic notations and integral trans-
formations (space and time Fourier transformations). In the last part of this chapter the
basic theories will be discussed and these will cover: Maxwell’s electromagnetic wave equa-
tions decomposed into transverse electric and magnetic fields; vertical transverse isotropy
(VTI); the different components of the electric and magnetic fields in the Green’s tensors
in a homogeneous medium and principles of Controlled Source Electromagnetic (CSEM).
Chapter two is centered on evaluating the effective isotropic and VTI parameters of lay-
ered systems in transmission mode when reflection interactions are ignored. Chapter three
deals with the case when the reflection and transmission interactions are included in the
total electric field propagation. In chapter four, the horizontal electric field by horizontal
electric dipole will be used to invert the effective medium parameters. In chapter five the
results are discussed and conclusions are given.

1-4 Fundamental notations and definitions

Generally, we represent a vectorial quantity with a boldfaced letter. For example, the
position vector is denoted x = xnin, where the repeated lower case subscripts notation
(Einstein convention) represents summation over all possible values of the index. Thus,

xnin =
3

∑

n=1

xnin, (1-1)

where in denotes the unit basis vectors of the right-handed Cartesian reference frame, with
n = 1, 2, 3. In the Einstein convention, Latin subscripts take on the values {1, 2, 3}, repre-
senting vector directions along the three coordinates in space {x1, x2, x3}. Greek subscripts
take on values {1,2} to represent vector directions along the horizontal coordinates only.
We use ∂i to denote partial spatial differentiation with respect to coordinate xi. Similarly,
for time coordinate, t, the partial temporal differentiation is ∂t.

1-5 Fourier transformations

Fourier transformations are used to reduce partial derivatives to algebraic numbers in the
electromagnetic problem of a vertically transverse isotropic (VTI) medium. This is possible
when the properties of the medium are shift invariant in time and/or in one or more spatial
coordinates (de Hoop, 1995).
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1-5-1 Temporal and spatial Fourier transformations

The temporal Fourier transformation of an electric field E(x, t) from space-time domain
to space-frequency domain is defined as:

Ê(x, ω) = E(x, t)
∫ ∞

−∞
exp(−iωt)dt, (1-2)

and its inverse as

E(x, t) =
1

2π
Ê(x, ω)

∫ ∞

∞
exp(iωt)dt, (1-3)

where ω = 2πf is the angular frequency in (rads−1); f is the natural frequency in Hertz,
the imaginary unit i =

√
−1

In a horizontally layered VTI earth model the parameters of the medium are piecewise
constant only along a reference axis, say vertical, z, axis, (Slob et al., 2011). And because
of the shift invariance property in the horizontal plane (x, y), two dimensional spatial
Fourier transformation on time-Fourier transformed electric field Ê(x, ω) is easily done:

Ẽ(kT , z, ω) =
∫ ∞

xT =−∞
Ê(x, ω) exp(−ikαxα)d2xT , (1-4)

where the subscript T denotes the horizontal vector and kα denotes the two components of
the horizontal wavenumber vector.

Inverse Fourier transformation of equation (1-4) is:

Ê(xT , z, ω) =
1

4π2

∫ ∞

−∞
Ẽ(kT , z, ω) exp(ikαxα)d2kT , (1-5)

The Fourier transformation on a partial derivative of a function with respect to a spatial
coordinate, x is F t{∂x} = −ikx provided the function is bounded and its value tends to
zero at an infinite limit of the argument.

1-5-2 Levi-Civita tensor

The Levi-Civita symbol ǫijk will be used for the cross product. In three dimensions, the
ǫijk is:

ǫijk =
(j − i)(k − i)(k − j)

2
=

(i − j)(j − k)(k − i)

2
, (1-6)

From (1-6),

ǫijk =











1 for even permutation,
−1 for odd permutation,

0 for repeated indexi=j or j=k or k=i.
(1-7)

For cross product:
(a × b)j = ǫjklakbl = akbl − albk. (1-8)
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Kronecker delta is by definition:

δjk =

{

1 for j=k
0 for j 6= k.

(1-9)

Using the 3D Kronecker delta properties δjk = δkj; δjj = 3 and δjkδkl = δjl

ǫijkǫimn = (δjmδkn − δkmδjn); ǫijkǫijn = (δjjδkn − δkjδjn) = 2δkn; 2δkk = 6

1-6 Theory

1-6-1 Electromagnetic wave equations

Maxwell’s equations

The complete behaviour of the electromagnetic wave, in space-time (x, t) domain, in a
medium can be deduced from the four Maxwell equations:

∇ × E(x, t) + µ∂tH(x, t) = −Jm(x, t), (1-10)

−∇ × H(x, t) + (σ(x) + ε(x)∂t)E(x, t) = −Je(x, t), (1-11)

∇ · D(x, t) = ρ(x, t), (1-12)

∇ · B(x, t) = 0, (1-13)

where the constitutive relations, D = εE and B = µH hold; σ=conductivity (S/m);
ε=permittivity of the medium (F/m); µ=permeability of the medium (H/m); E= Electric
field (V/m); H= Magnetic field (A/m); B= Magnetic flux (T); Jm=magnetic current
(A/m2); Je=electric current (A/m2); D=Displacement current (C/m2)

Transforming equations (1-10) and (1-11) into space-frequency domain using the transform:

∇ × Ê(x, s) + ζ(x, s)Ĥ(x, s) = −Ĵm(x, s), (1-14)

−∇ × Ĥ(x, s) + η(x, s)Ê(x, s) = −Ĵe(x, s), (1-15)

where ζ(x, s) = sµ; and η(x, s) = σ + sε, s = iω. It is observed that if Ê = Ĥ, η = −ζ
and Ĵe = −Ĵm an equivalence principle is established which makes us obtain the same
Maxwell equations. Thus, this equivalence principle allows finding solutions for magnetic
field vector Ĥ(x, s) when the solutions for the electric field vector Ê(x, s) are known.

Using the curl notation defined by the Levi-Civita tensor symbol in equation (1-8) the
different components of equations (1-14) and (1-15), in space-frequency domain, can be
written as:

ǫβλ3∂λÊ3 + ǫβ3α∂3Êα + ζĤβ = −Ĵm
β , (1-16)

ǫ3λβ∂λÊβ + ζĤ3 = −Ĵm
3 , (1-17)

−(ǫα3β∂3Ĥβ + ǫαβ3∂βĤ3) + ηÊα = −Ĵe
β, (1-18)

−ǫ3λβ∂λĤβ + ηÊ3 = −Ĵe
3 . (1-19)
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Transverse Electric and Magnetic field

The transverse electric field, TE-mode, is generated by vertical magnetic dipole source
and it is the part of the electric field that is transverse to an axis of reference, z axis in
our layered earth case, see equation (1-17). Here the vertical electric field does not exist.
Similarly, the transverse magnetic field, TM-mode, is generated by vertical electric dipole
source and it is the part of the magnetic field transverse to the z-axis, see equation (1-19).
The vertical magnetic field does not exist in the TM-mode. From equations (1-16) and
(1-18) it can be observed that both TM and TE-modes are excited by horizontal dipole
sources. Thus with just the TE and TM-modes the whole of the electromagnetic field can
be known.

Vertical Transverse Isotropy (VTI)

Electromagnetic vertical transverse isotropy (VTI) is a form of anisotropy in which the
horizontal and vertical electromagnetic properties of a medium differ. This implies that
isotropy exists only in the plane perpendicular to an axis of symmetry. The axis of symme-
try in the layered case that will be considered in this report is the vertical z axis along which
the medium parameters are piecewise constant. For horizontally layered VTI model the
electromagnetic field can be decomposed into transverse electric (TE) and transverse mag-
netic (TM) modes (Kong, 1972) with the direction of reference being the vertical direction.
Now since the vertical medium parameters, ζ(v), η(v), and horizontal medium parameters,
ζ, η , are distinguishable in a VTI medium and by applying Fourier transformation, on
equation (1-16) to (1-19) the frequency-horizontal wavenumber domain results are:

− ǫβλ3ikλẼ3 + ǫβ3α∂3Ẽα + ζH̃β = −J̃m
β , (1-20)

−ǫ3λβikλẼβ + ζ(v)H̃3 = −J̃m
3 , (1-21)

ǫαλ3ikλH̃3 − ǫα3β∂3H̃β + ηẼα = −J̃e
α, (1-22)

ǫ3λβikλH̃β + η(v)Ẽ3 = −J̃e
3 . (1-23)

The expression for Ẽα from (1-22) is substituted into (1-20) to give:

(ηζδβλ + ǫβ3αǫα3λ∂3∂3)H̃β = −ηJ̃m
β − ǫβ3α∂3J̃

e
α +

ηǫβλ3ikλẼ3 + ǫβ3αǫαλ3ikλ∂3H̃3, (1-24)

which is further simplified to:

(ηζ − ∂3∂3)H̃β = −ηJ̃m
β + ǫβ3α∂3J̃

e
α + ηǫβλ3ikλẼ3 +

ikβ∂3H̃3, (1-25)
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Putting the expression for H̃β from (1-25) into equation (1-23) we have:

η(v)(∂3∂3 − η

η(v)
(kλkλ + ζη(v)))Ẽ3 = ζηJ̃e

3 + ∂3(ikαJ̃e
α − ∂3J̃

e
3)

−ηǫ3λβikλJ̃m
β , (1-26)

noting ǫ3βλkβkλ = 0. Using vertical wavenumber, Γ2 = η

η(v) (κ
2 + γ2), where κ =

√

k2
1 + k2

2

is the horizontal radial wavenumber; and γ =
√

ζη(v) is the wavenumber related to vertical
conductivity and Re(Γ) ≥ 0. Thus equation (1-26) becomes:

η(v)(∂3∂3 − Γ2)Ẽ3 = ζηJ̃e
3 + ∂3(ikαJ̃e

α − ∂3J̃
e
3)

−ηǫ3λβikλJ̃m
β . (1-27)

Equation (1-27) is the wave equation for the vertical electric field strength, Ẽ3, due to point
sources within the volume. Ẽ3 is therefore a multiple of the solution of wave field (Green’s
function, G̃) whose source is the dirac function, with the point sources as the coefficient.
The modified Helmholtz equation gives the wave equation with this dirac source function:

(∂3∂3 − Γ2)G̃ = −δ(x3 − xs
3), (1-28)

where the source position is xs
3 = zs. The solution for G̃ is well known and given by:

G̃(x3 − xs
3) =

exp (−Γ|x3 − xs
3|)

2Γ
. (1-29)

The point sources in equation (1-27) can be defined as multiple of the dirac functions:

{J̃e
r , J̃m

r } = {Îe
r , Îm

r }δ(x3 − xs
3). (1-30)

This definition allows us to write the solution of Ẽ3 in terms of G̃(x3 − xs
3) as in:

η(v)Ẽ3 = (−ζηÎe
3 − ∂3(ikαÎe

α + ∂3Î
e
3) + ηǫ3αβikαÎm

β )G̃(x3 − xs
3).

Carrying out the derivatives in this equation gives:

Ẽ3 = (
Γ

η(v)
sign(x3 − xs

3)ikαÎe
α +

η

η(v)
ǫ3αβikαÎm

β

+
Îe

3

η(v)
[Γ2 − ηζ])G̃(x3 − xs

3), (1-31)

Ẽ3 = (
Γ

η(v)
sign(x3 − xs

3)ikαÎe
α +

η

η(v)
ǫ3αβikαÎm

β

+
ηÎe

3

(η(v))2
[κ2 + γ2 − η(v)ζ])G̃(x3 − xs

3). (1-32)
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With γ2 = η(v)ζ:

Ẽ3 = (
Γ

η(v)
sign(x3 − xs

3)ikαÎe
α +

η

η(v)
ǫ3αβikαÎm

β

+
ηÎe

3

(η(v))2
κ2)G̃(x3 − xs

3) − Îe
3

η(v)
, (1-33)

Ẽ3 = XT M
3 G̃(x3 − xs

3) − Îe
3

η(v)
, (1-34)

where the source factor XT M
3 is:

XT M
3 = (

Γ

η(v)
sign(x3 − xs

3)ikαÎe
α +

η

η(v)
ǫ3αβikαÎm

β +
ηÎe

3

(η(v))2
κ2). (1-35)

The vertical component of the magnetic field (H̃3) can be found using the equivalence
principle, thus:

H̃3 = (
Γ̄

ζ(v)
sign(x3 − xs

3)ikαÎm
α − ζ

ζ(v)
ǫ3αβikαÎe

β

+
ζĨm

3

(ζ(v))2
κ2) ˜̄G(x3 − xs

3) − Îm
3

ζ(v)
, (1-36)

H̃3 = XT E
3

˜̄G(x3 − xs
3) − Îm

3

ζ(v)
. (1-37)

XT E
3 = (

Γ̄

ζ(v)
sign(x3 − xs

3)ikαÎm
α +

ζ

ζ(v)
ǫ3αβikαÎe

β +
ζÎm

3

(ζ(v))2
κ2), (1-38)

with the vertical wavenumber given by: Γ̄ =
√

ζ

ζ(v)

√
κ2 + γ̄2.

Using equation (1-18) the horizontal electric field, Ẽα, can now be obtained in terms of the
vertical electric field Ẽ3 and vertical magnetic field H̃3. By multiplying equation (1-18) by
ikλikα

η
we have

ikλikαẼα = −η−1ikλ[ikαÎe
α − ikαǫα3β∂3H̃β], (1-39)

where ikαǫαλ3ikλH̃3 = 0. Substitution of ǫα3βikαHβ of equation (1-24) into (1-39), H̃β can
be eliminated. Thus equation (1-39) reduces to:

ikλikαẼα = −η−1ikλ[ikαÎe
α − ∂3(η

(v)Ẽ3 + Îe
3)], (1-40)

then both sides of equation (1-21) are multiplied with ǫαβ3ikβ to obtain

ikαikλẼλ − ikλikλẼα = ǫαβ3ikβ(ζ(v)H̃3 + Îm
3 ). (1-41)



1-6 Theory 9

Using equation (1-40) to eliminate ikαikλẼλ from equation (1-41) gives us the horizontal
electric field, Eα:

Ẽα =
ikα

ηκ2
[ikβ Îe

β − ∂3(η
(v)Ẽ3 + Îe

3)] + ǫαβ3
ikβ

κ2
(ζ(v)H̃3 + Îm

3 ). (1-42)

Again using the equivalence principle the horizontal components of the magnetic field H̃α

can be obtained:

H̃α =
ikα

ζκ2
[ikβ Îm

β − ∂3(ζ
(v)H̃3 + Îm

3 )] − ǫαβ3
ikβ

κ2
(η(v)Ẽ3 + Îe

3). (1-43)

Substituting equations (1-33) and (1-36) into equation (1-42), the horizontal electric field
becomes:

Ẽα = XET M
α G̃ + XET E

α
˜̄G, (1-44)

where the TE-mode Green’s function is given by:

˜̄G(x3 − xs
3) =

exp(−Γ̄|x3 − xs
3|)

2Γ̄
, (1-45)

The electric field related TM-mode and TE-mode horizontal source functions are given by:

XET M
α =

ikαikβΓ2Îe
β

ηκ2
+

ikαΓÎe
3sign(x3 − xs

3)

η(v)
+

ikαǫ3λβikλΓÎm
β sign(x3 − xs

3)

κ2
, (1-46)

XET E
α = −ζ

ikαikβ Îe
β + κ2Îe

α

κ2
+

ǫαλ3ikλikβΓ̄Îm
β sign(x3 − xs

3)

κ2
+

ζ

ζ(v)
ǫαβ3ikβ Îm

3 . (1-47)

The electric Green’s tensor can be computed from the combined fields of equations (1-33),
(1-36), (1-42) and (1-43). Hence, the electric Green’s tensor from electric TM and TE
dipole is given by

G̃ee
kr =











(ik1)2Γ2

ηκ2
ik1ik2Γ2

ηκ2 − ik1∂3

η(v)

ik1ik2Γ2

ηκ2
(ik2)2Γ2

ηκ2 − ik2∂3

η(v)

−ik1∂3

η(v)
−ik2∂3

η(v)
−∂3∂3−γ2

η(v)











G̃ +









ζ(ik1)2

κ2 − ζik1ik2

κ2 0

− ζik1ik2

κ2
ζ(ik1)2

κ2 0
0 0 0









˜̄G, (1-48)

and the electric Green’s tensor computed by magnetic TM and TE dipole is:

G̃em
kr =









ik1ik2∂3

κ2 − (ik1)2∂3

κ2 0
(ik2)2∂3

κ2 − ik1ik2∂3

κ2 0

−ηik2

η(v)
ηik1

η(v)
0









G̃ +









− ik1ik2∂3

κ2 − (ik2)2∂3

κ2
ζik2

ζ(v)

(ik1)2∂3

κ2
ik1ik2∂3

κ2
ζik1

ζ(v)

0 0 0









˜̄G, (1-49)

where the first and second superscripts on the Green’s tensor respectively represent the
field type and the source type and the first and second subscripts their corresponding
vector-components. It can be seen that the whole electromagnetic field is known once the
vertical electric and magnetic field components are known. With the equivalence principle
the vertical and horizontal magnetic field can be directly found from vertical and horizontal
electric field. Thus, the whole electromagnetic in the layered earth model can be known
once the vertical electric field is found.
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1-7 Controlled Source Electromagnetic

Controlled source electromagnetic method (CSEM) is in the diffusive limit of the electro-
magnetic wave spectrum with frequency range of 0.1-10 Hz. By diffusion it means the wave
is able to propagate far through lossy (conductive) media at this low-frequency range and
the wave velocity and attenuation (skin depth) are frequency dependent (Løseth et al.,
2006). Consequently, the wavelength in this limit is large which therefore makes CSEM
method a good candidate for defining effective medium. In the diffusive limit of the elec-
tromagnetic wave spectrum (σ >> ωǫ), the vertical wavenumber is given as:

Γ =
√

κ2 + iωµσh, (1-50)

where all the variables retain their usual definitions and Re(Γ) ≥ 0. From now on, we use
k for horizontal wavenumber in place of κ for consistency and convenience except otherwise
noted. The second term under the square root on the right hand side of equation (1-50) is
the diffusion constant. Also in this diffusive limit, the wavenumber related to the vertical
conductivity can be expanded

γ =
√

ζη(v) =
√

iωµσv, (1-51)

= ±(1 + i)

√

ωµσv

2
, (1-52)

= ±(1 + i)

δh

, (1-53)

where
√

i = ± (1+i)√
2

, µ is the permeability of the medium, δh is the horizontal skin depth

related to the vertical conductivity. The skin depth (δ) is defined as the distance over
which the propagating electromagnetic amplitude reduces to 1/e of its initial value. From
equations (1-52) and (1-53), the horizontal skin depth is:

δh =

√

2

µσvω
≈ 503√

σvf
, (1-54)

where µ = µo = 4π ×107 H/m for the permeability of free space and angular frequency ω =
2πf, f=frequency. Similarly, the vertical skin depth related to the horizontal conductivity
is given by:

δv ≈ 503√
σhf

. (1-55)

Whereas an electromagnetic wavelength, λ in air is simply a function of speed of light in
air, c and frequency, which is given by λ = c

f , in a conductive medium it is a function of
the skin depth given by:

λ = 2πδ. (1-56)

In a typical marine CSEM survey or Seabed Logging (SBL) (Eidesmo et al., 2002), the
horizontal electric dipole (HED) source, of finite length, is used to emit low-frequency (0.1-
10 Hz) electromagnetic signals into the surrounding media, and the response is recorded by
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a 2D array of seafloor electric and magnetic field receivers (Løseth et al., 2008, Constable,
2010), see Figure 1-1. Horizontal electric dipole (HED) source is preferred to the vertical
electric dipole (VED) source because both TM and TE-modes are produced with HED
while VED generates only TM-mode and also the field amplitudes produced by HED are
higher than those of VED (Chave & Cox, 1982).

CSEM and seismic methods are complementary hydrocarbon exploration tools. While
seismic method is used to delineate the reservoir structures, stratigraphy and the lateral
extent, CSEM method can distinguish between reservoir fluids because of the high resis-
tivity contrasts - usually one to three orders of magnitude apart - between saline reservoir
water and hydrocarbon (Um & Alumbaugh, 2007). This however calls for caution as re-
sistivity contrast is not an exclusive property of fluid (hydrocarbon) but resistors in the
subsurface, hence CSEM interpretation is done in connection with borehole log data (Ade-
pelumi & Falebita, 2011, Ellingsrud et al., 2002). Also, the structural resolution of CSEM
is lower than that of seismic method since the CSEM fields are diffusive, while seismic
fields are wave fields. Furthermore, CSEM is a tool of choice in hydrocarbon exploration
over magnetotelluric method because it is sensitive to both horizontal and vertical con-
ductivity of thin resistive layer (hydrocarbon reservoir) whereas magnetotelluric method
is sensitive to only horizontal conductivity (Um & Alumbaugh, 2007). The amplitude and

Figure 1-1: A typical marine CSEM survey layout. Towed HED source emit low fre-
quency signal which is recorded by the seafloor electric and magnetic field receivers (From
Ikelle & Amundsen (2005))

phase behaviour of an electromagnetic signal as a function of both source-receiver offset
and frequency is shown in Figure 1-2(a) to 1-2(d). The x-component of the electric field
from an x-directed electric source, Exx, is computed with the halfspace explicit code in
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(Slob et al., 2010). A two halfspaces model is considered; the upper halfspace is air and it
is separated from the conductive lower isotropic halfspace (water of 3 S/m conductivity) at
depth z = 0 by an interface. The maximum positive horizontal source-receiver offset used
is 10 km. In Figure 1-2(a), the source is located 960 m in the lower halfspace and receivers
at 1000 m while in Figure 1-2(c), the source is 160 m deep while receivers are at 200 m
depth. Operational frequencies used are 0.1, 0.4, 1.6 and 6.4 Hz. The field amplitude de-
cays at different rates as the source-receiver offset increases. The decay is strongest in the
near offset range and weakest at the far offset range. A phase change marks the beginning
of airwave dominance. It can be seen that the airwave dominates the near offset receivers
for the case where the source and receivers are not deeply buried (2 km for 0.4 Hz, see
Figure 1-2(d)), while it dominates the far offset receivers in the case where the source and
the receivers are buried deep in the lower halfspace (4 km for 0.4 Hz, see Figure 1-2(b)).
Beyond this offset range the phase remains constant. In addition the airwave dominance
starts earlier for higher frequencies because of the small skin depth which leads to higher
attenuation of the signal that makes it fall below the noise level in the near offset range.
Furthermore, airwave amplitude is lower when the source and receivers are deeply buried
than in shallow water because the distance traveled by airwave in the lossy conductive
water is higher when the source and receivers are deeply buried within the lower halfspace.
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Figure 1-2: The logarithm of horizontal electric field generated by horizontal electric
dipole source, Exx, as a function of source-receiver offset, in homogeneous halfspace of
σ = 3 S/m. In (a) source is buried at 960 m while the receivers at 1000 m and in (c) the
source is buried at 160 m while the receivers at 200 m. Their respective phase plots are
shown in (b) and (d)
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Chapter 2

Effective conductivity parameters of
layered systems in

wavenumber-frequency domain

Effective conductivities (isotropic and anisotropic) of a horizontally isotropic layered system
are investigated in this chapter. We model a layered earth in which each of the layers is
isotropic, and invert for the effective isotropic and anisotropic parameters in the horizontal
wavenumber-frequency (k-ω) domain. In the wavenumber domain the vertical wavenumber,
Γ, is a complex parameter with its real part related to attenuation of the wave and the
imaginary part to propagation. Thus, Γ allows for evaluating the dominance of attenuation
over propagation and vice versa.

2-1 Effective conductivity in the propagation-diffusion term

In this section, we will consider only the propagation of the electric field from the source
point to the receivers while neglecting the reflection and transmission interactions between
the layers. The source is located on the surface, while the receivers are at the last interface
of the stack of layers; this is known as the transmission mode. Except otherwise noted
the model set up is: receiver spacing, ∆x = 4.884 m, number of points, N = 4096, maxi-
mum positive horizontal source-receiver offset, xmax = 10 km and maximum wavenumber,
kmax = 0.64324 m−1. Where xmax = ∆xN

2
, kmax = ∆k N

2
, ∆k∆x = 2π

N
, and the range of

wavenumber k = ∆k ∗ i, (i = 1, 2, ..., N
2

).

The layered earth considered is shown in Figure 2-1 in which each of the layers is isotropic
and conductivity values of 0.3 S/m and 1 S/m are distributed in alternating layers. This
set up is similar to a resistor network which can be a series connection, when the same
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current passes through all the resistors, or a parallel connection when the current flows
preferentially in the direction of low resistance (Ellis et al., 2010a). In the DC (direct
current) limit (where angular frequency, ω = 0), these resistors in series and parallel
connections have resultant vertical and horizontal conductivity which are written as

σv
eff = T (

N
∑

m=1

tm

σm

)−1, (2-1)

for series connection; and

σh
eff =

1

T

N
∑

m=1

tmσm, (2-2)

for parallel connection. Where tm is the thickness of the mth resistor; T is the total
thickness of all N resistors in the network; σm is the isotropic conductivity of the individual
resistor; σv

eff and σh
eff are the effective (average) vertical and horizontal conductivities.

Equations (2-1) and (2-2) will be used to estimate the effective theoretical vertical and
horizontal conductivities for an isotropically layered earth. In Figure 2-1 we increase the
number of layers according to 2n, where n = 1, 2, ..., 10, with corresponding decrease in
thicknesses to keep the total thickness T of the model constant. This is to ensure that the
values of the theoretical effective parameters are constant even when the number of layers
changes. Unit thicknesses of odd and even layers for different number of layers are shown
in Table 2-1.

Table 2-1: Unit thickness of odd (todd) and even (teven) layers for different number of
layers shown in Figure 2-1

No of Layers 2 4 8 16 32 64 128 256 512 1024

Unit todd( m) 800 400 200 100 50 25 12.5 6.25 3.125 1.5625
Unit teven( m) 240 120 60 30 15 7.5 3.75 1.875 0.9375 0.46875

2-1-1 Effective Isotropic conductivity from TE-mode vertical wavenum-

ber

Amplitude of the electric field propagated through an isotropically layered earth from the
air-earth interface, without any loss due to reflection, to the receivers placed just below
the last interface is giving as:

e−
∑N

m=1
Γ̄mtm , (2-3)

where Γ̄m is the TE-mode vertical wavenumber for each layer m, N is the total number
of layers; tm, the thickness of each layer. The whole stack of layers can be replaced by
an effective medium with an effective medium parameter, Γ̄eff , such that equation (2-3)
becomes:

e−
∑N

m=1
Γ̄mtm = e−Γ̄eff T , (2-4)



2-1 Effective conductivity in the propagation-diffusion term 17

where Γ̄eff is the effective TE-mode vertical wavenumber for the effective homogeneous and
isotropic medium; T is the effective thickness of the layers. Thus TE-mode wavenumber
can be used to estimate the effective isotropic conductivity, therefore from equation (2-4)
we have:

Γ̄eff =
1

T

N
∑

m=1

Γ̄mtm, (2-5)

where, in the diffusive limit of the electromagnetic spectrum,

Γ̄m =
√

k2 + iωσmµ. (2-6)

Similarly,

Γ̄eff =
√

k2 + iωσeffµ, (2-7)

by putting equations (2-7) into equation (2-5), the effective isotropic conductivity, σeff , is
given by:

σeff =
1

T 2 (
∑N

m=1 Γ̄mtm)2 − k2

iωµ
. (2-8)

Thus an effective conductivity, σeff , can be estimated for every wavenumber value, k in
the range (0 − kmax). This solution is evaluated, for all the different number of layers, at
constant ∆x and kmax and at two different frequencies (0.1 and 10 Hz). Results obtained are
plotted in Figure 2-2. For small wavenumber, k, where the diffusion constant dominates,
at constant magnetic permeability, µ, and angular frequency, ω, the effective isotropic
conductivity (from equation (2-8)) equals:

σeff =
(
∑N

m=1

√
σmtm)

2

T 2
. (2-9)

For large wavenumber, k, the whole model becomes homogenized. This homogenization
occurs when the squared wavenumber, k2 >> ωσmµ, in Γ̄m (see equation (2-6)). At
this limit, Γ̄m becomes real and the medium properties of all the layers are the same,
Γ̄m = k, hence the solution is simply fractional average of the conductivity values in
all the layers. This result agrees with the calculated theoretical value using equation
(2-2). Thus from propagation alone anisotropy exists for small wavenumber, k range while
isotropy exists for large wavenumber, k range where the effective conductivity value changes
from the fractional average of the diffusion constant at zero wavenumber to the fractional
average of the conductivity values at high wavenumber values. When the horizontal offset
xmax is varied, while kmax remains constant, the transition value of wavenumber between
anisotropy and isotropy increases as xmax becomes smaller than vertical offset, T . The
transition value of k also increases when the frequency of transmission is increased, (from
0.1 to 10 Hz), see Figure 2-2. The reason is that at high frequency the diffusion constant
of Γ̄m is larger than the small magnitude of the wavenumber k, hence effective isotropic
conductivity at this range is a function of square root of layers conductivities. The same
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results are found for any number of layers at constant frequency and constant horizontal
offset since interactions due to reflection are neglected.

To know the limit of k values relevant to produce useful signal we calculate effective
amplitude of the TE electric field for a particular effective thickness (T ) using:

ET E
eff = exp(−Γ̄effT ), (2-10)

where Γ̄eff =
√

k2 + iωµσT E
eff is the effective TE vertical wavenumber estimated from the

effective TE isotropic conductivity, σT E
eff . In Figure 2-3 the absolute effective amplitude of

the field at different wavenumber k for both 0.1 and 10 Hz for a 1 km thick layer is shown.
At very small k, frequency effect (from diffusion constant of the Γ̄) is more pronounced
hence amplitude of the fields for 10 Hz is lower than that of 0.1 Hz due to high attenuation
resulting from high frequency. For both frequencies, the amplitudes decrease from zero k
to kmax. In this figure wavenumber-spectrum values up to 0.028 m−1 (4.4% of the kmax)
produce useful signal for a 1 km thick layer. The k-values beyond this are not relevant for
a 1 km thick layer because the magnitude of the effective field at these values are in the
noise range (≤ 10−14 A/m).

2-1-2 Effective Anisotropic conductivities from TM-mode vertical wavenum-

ber

The TM-mode vertical wavenumber will be used to estimate the effective anisotropic con-
ductivity of the model shown in Figure 2-1. In the diffusive limit, the TM-mode vertical
wavenumber related to vertical conductivity is given as:

Γ =

√

σh

σv

k2 + iωσhµ. (2-11)

Equation (2-11) can be cast into matrix-vector form in order to invert the model parame-
ters:

GM = d, (2-12)

where G is a matrix whose row elements contain (k2 iωµ); M is the model parameter
vector of (σh

σv
σh); data, d, is (Γ)2, where Γ = Γ̄m in equation (2-6) since each layer is

isotropic. Here the parameters of anisotropy are averaged over all k values, i.e. effective
solutions are estimated by combining a number of wavenumber, k, to form (r by 2) G
matrix, where r = 2, 3, ..., n, number of wavenumber used. This results into an over-
determined problem hence the need to use least square method for the inversion, where G†

is the complex conjugate transpose, the solution is:

M = (G†G)−1G†d, (2-13)

The layered system considered is still that of Figure 2-1 and the frequency of transmission
is f= 0.1 Hz and maximum positive horizontal offset, xmax = 2.5 km (from N = 1024
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while other parameters remain constant). Effective solutions inverted are shown in Figures
2-4(a) and 2-4(b). With parameters of anisotropy averaged over the first few k, the values of
both σh

eff and σv
eff increase gradually but at different rates but the layered system becomes

homogeneous and isotropic as the parameter of anisotropy includes higher wavenumber,
k, from k = 0.005045m−1. Obviously, at higher average wavenumber, k, the propagation
part of vertical wavenumber becomes negligible, hence effective anisotropic ratio is one.
The same results are obtained for any number of layers since the reflection interactions
are ignored. Figure 2-5 shows the absolute effective amplitude of the field at different
wavenumber k for 0.1 Hz for a 1 km thick layer. The amplitudes decrease from zero k
to kmax. In this figure wavenumber-spectrum values up to 0.03 m−1 (4.7% of the kmax)
produce useful signal for a 1 km thick layer. The k-values beyond this are not relevant for
a 1 km thick layer because the magnitude of the effective field at these values are in the
noise range (≤ 10−14 A/m).

To view unique solutions of the effective horizontal and vertical conductivities, a solution
space plot is made. The objective function that is minimized to find the local minima is:

f =
|d − m|
ǫ + |d| , (2-14)

where d = (Γ)2 is the data and m is the model computed (from a combination of horizontal
and vertical conductivity values), ǫ = 10−30 to stabilize the solution. Logarithm of the error
function between data and model computed is shown in Figures 2-6. The solution space
shows the local minima found for 2.5 km horizontal offset. These optimal local minima
are found by averaging parameters of anisotropy over k values up to 0.003216 m−1 (0.5%
of kmax). At this value of k the optimal horizontal and vertical conductivities are not the
same; thus confirming the existence of anisotropy at very small magnitude of k. However,
as the parameter of anisotropy includes higher wavenumber, k, the whole set up appears
homogeneous and isotropic. Solutions obtained for the different number of layers (with
varying thickness values at fixed horizontal offset) are the same since the interactions at
interfaces between layers are not considered.
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Figure 2-1: Isotropically layered earth with 0.3S/m and 1S/m distributed in alternating
layers to give constant theoretical effective electrical parameters. The source is located
on the surface and the array of receivers at 1040 m. While the total thickness, T , is
constant, the number of layers changes according to 2n, where n = 1, 2, ..., 10; only up to
16 layers are shown.



2-1 Effective conductivity in the propagation-diffusion term 21

0 0.1 0.2 0.3 0.4 0.5

0.43

0.435

0.44

0.445

0.45

0.455

0.46

Wavenumber, k, [1/m]

σ ef
f

T
E
 [S

/m
]

 

 

0.1 Hz
10 Hz

Figure 2-2: σT E
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Figure 2-3: Absolute effective amplitude of TE electric field at relevant k values in the
k-spectrum for 1 km thick layer at frequencies of 0.1 and 10 Hz.
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Figure 2-4: Effective anisotropic parameters from TM vertical wavenumber when only
propagation-diffusion term is considered: (a) shows the inverted effective vertical con-
ductivity and (b) shows the inverted effective horizontal conductivity at different number
of combination of wavenumber, k. Frequency of transmission is 0.1 Hz.
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k-spectrum for 1 km thick layer at frequencies of 0.1 Hz.



2-1 Effective conductivity in the propagation-diffusion term 23

 

 

σ
eff
v  [S/m]

σ ef
f

h
 [S

/m
]

0.44 0.445 0.45 0.455 0.46 0.465 0.47 0.475

0.45

0.455

0.46

0.465

0.47
−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Figure 2-6: Solution space of objective function logarithm in σh
eff and σv

eff plane of a 2
layered system with conductivity distribution as shown in Figure 2-1 for 2.5 km horizontal
offset.



24 Effective conductivity parameters of layered systems in wavenumber-frequency domain



Chapter 3

TE-mode and TM-mode effective
medium parameters including thin layer
reflection and transmission interactions

In this chapter the effects of reflection and transmission interactions on the effective
isotropic and VTI conductivities are investigated, thereafter we consider the model with
some anisotropy in each layer. We also compare the effective TE-mode isotropic conduc-
tivity of isotropically layered system with the effective TM-mode isotropic conductivity.
And lastly, we use the TM-mode vertical wavenumber to find the optimal effective VTI
parameters of a VTI layered earth of varying conductivity contrasts and anisotropic ratios.

3-1 Effective medium parameters from electric field due

to propagation and reflection interactions

3-1-1 Boundary conditions

When an electromagnetic wave propagates through a domain D1, the field experiences a
discontinuity in the medium properties at the interface S separating domains D1 and D2,
see Figure 3-1. The discontinuity is due to the difference in their constitutive parameters.
Boundary conditions are usually imposed to quantify fields in region D2 as a function
of fields in regions D1 and to restrict the discontinuity in the field quantities to finite
magnitude or zero since all physical quantities have bounded magnitudes and energy must
be transferred continuously across an interface. Electromagnetic fields move from region
D1 to D2 when the interface S is traversed along the direction of the unit vector n, which
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is normal to S. To avoid impulsive sources (Dirac) being distributed on the interface S,
two boundary conditions are given:

1. Tangential components of the electric, E, and magnetic, H, fields are continuous
across S

n × E is continuous across S, (3-1)

n × H is continuous across S. (3-2)

2. Normal components of the total electric current and magnetic flux density B are
continuous across S

n.(σ + ε∂t)E is continuous across S, (3-3)

n.B is continuous across S. (3-4)

Figure 3-1: Interface S, normal to the unit vector n, separating domains D1 and D2 of
different electromagnetic properties.

3-1-2 Forward model using TE-mode field

We will use the TE-mode electric field to investigate the conditions and factors which
influence the existence and stability of effective isotropic conductivity for a horizontally
layered isotropic earth model when the reflection and multiple reflection interactions with
the interfaces are included in the propagation of the wave field. In the layered earth model
of Figure 3-2, the TE-mode electric field at any depth z can be measured. The source is
located on the surface and the receivers on the last interface. Material properties, µn, εn

and σn, are distributed in each layer of thickness dn. Depth of interface n, from the surface
is denoted as zn. The upper halfspace is the domain D0, which is the air. The domain
for the layered earth is Dn, while the lower domain, (DN+1), is for the lower halfspace
(basement in this example).
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Figure 3-2: Layered earth with isotropic medium parameters (µn, εn, σn) distributed
in each layer of thickness dn in the domain Dn. The depth to the electric interface is
denoted by zn. The upper halfspace is the air domain D0, and domain DN+1 is the lower
halfspace with medium parameters (µN+1, εN+1, σN+1).

The amplitude of TE-mode electric field at the air-earth interface is given:

E0 = exp(−Γ̄0d
s) + R̄0 exp(−Γ̄0d0), (3-5)

where d0 = z0 the depth of air-earth interface usually taken as zero; ds is the thickness
between source depth and d0. The first term on the right hand side of equation (3-5) is the
direct field from source to the interface (air-earth) while the second term represents the
reflected energy on the interface z0 with R̄0 being the air-earth interface TE-mode global
reflection coefficient. In domain D1, z0 ≤ z ≤ z1, the amplitude of the electric field at any
z is a combination of the downgoing and upgoing wave energy in the domain:

E1 = E+
1 exp(−Γ̄1(z − z0)) + E−

1 exp(−Γ̄1(z1 − z)) (3-6)

where the superscripts, minus and positive signs represent upgoing and downgoing direc-
tions respectively. With the source on the surface, E−

1 is the reflected energy of E+
1 on the

interface z1, hence
E−

1 = E+
1 R̄1 exp(−Γ̄1d1) (3-7)

where d1 = z1 − z0 and R̄1 is the transverse electric (TE) mode global reflection coefficient
at depth z1. Now, equation (3-6) can be re-written as:

E1 = E+
1 (exp(−Γ̄1(z − z0)) + R̄1 exp(−Γ̄1(z1 − z + d1))) (3-8)
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In horizontal wavenumber domain, the boundary conditions stated in equation (3-1) to
(3-4) apply only to the vertical electric field components. Therefore at z = z0, after the
application of boundary condition, stated in (3-1), on the true total field we have the
approximation:

ET E
0 (zo) = ET E

1 (z0), (3-9)

Putting (3-5) and (3-8) into (3-9) we have

E+
1 =

1 + R̄0

1 + R̄1 exp(−2Γ̄1d1)
. (3-10)

A similar derivation for electric field in domain Dn is possible.

Therefore at the interface zN , the electric field, ET E
N+1:

ET E
N+1 = (

N
∏

m=0

(1 + R̄m) exp(−Γ̄mdm)

(1 + R̄m+1 exp(−2Γ̄m+1dm+1))
), (3-11)

where R̄m is the TE-mode global reflection coefficient for each layer m and it is given by
a recursive equation:

R̄m =
r̄m + R̄m+1 exp(−2Γ̄m+1dm+1)

1 + r̄mR̄m+1 exp(−2Γ̄m+1dm+1)
, (3-12)

where R̄N+1=0, since there is only transmission of electric field in the N + 1 layer. Since
the magnetic permeability of the earth materials (µ) is approximately the same as the
magnetic permeability in vacuum, (µ0), the TE local reflection coefficient r̄m is

r̄m =
Γ̄m − Γ̄m+1

Γ̄m + Γ̄m+1

, (3-13)

where Γ̄m =
√

k2 + iωµσh
m, in the diffusive limit of the electromagnetic wave, is the vertical

wavenumber in each layer m and k is the wavenumber.

3-1-3 Effective isotropic medium for the isotropic layered earth with
TE-mode

The overburden (layered earth) of Figure 3-2 can be replaced with an effective isotropic
model with effective conductivity of σeff as illustrated in Figure 3-3. The total thickness,
T of the overburden is held constant and the effective TE-mode electric field is:

ET E
N+1 =

(1 + R̄eff )(1 + R̄0) exp(−Γ̄effT )

(1 + R̄eff exp(−2Γ̄effT ))
, (3-14)

where

R̄0 =
r̄0 + R̄eff exp(−2Γ̄effT )

1 + r̄0R̄eff exp(−2Γ̄effT )
, (3-15)
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r̄0 =
Γ̄0 − Γ̄eff

Γ̄0 + Γ̄eff

, (3-16)

r̄eff =
Γ̄eff − Γ̄N+1

Γ̄eff + Γ̄N+1

, (3-17)

where R̄eff = r̄eff ; R̄eff is the global TE reflection coefficient of the interface separating the
effective medium in domain Deff and domain DN+1, r̄eff is its local reflection coefficient;
R̄0 is the global TE reflection coefficient of the interface between domain D0 and effective
medium domain Deff , and r̄0 is its local reflection coefficient; Γ̄0 and Γ̄eff are the TE
vertical wavenumber for domains D0 and Deff respectively.

Figure 3-3: Effective medium for the model shown in Figure 3-2. µeff , εeff and σeff

are the effective isotropic medium parameters, T effective thickness of the overburden

Figure 3-4 shows the set up of the model. It contains 1040 m thick overburden of sediment
on the infinitely thick basement rock of conductivity, 0.02 S/m. The overburden is split
into different number of layers of 2, 4, 8,..., 1024 layers while the total thickness is held
constant. 0.3 S/m and 1 S/m are distributed into layers in an alternating manner. This
set up is a transmission mode configuration where the source is on the surface and the
receivers are located below the last interface at 1040 m depth. Unit thicknesses of odd and
even layers for different number of layers are shown in Table 2-1.

Data are computed with equation (3-11) and the model with equation (3-14) at two different
frequencies, f= 0.1 Hz and f= 1 Hz and at different values of k within (0−kmax) range. The
effective isotropic conductivity will be inverted by optimizing the error between the model
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and the data. Number of layers (consequently the unit thicknesses) are varied in the usual
sequence to investigate the influence of the reflection on the inverted effective conductivity.
Data at k = 0 is zero in the diffusive approximation because at the air-earth interface the
TE-mode local reflection coefficient is r̄0 = −1, which makes the global reflection in the air
R̄0=-1. With this value substituted into equation (3-11) the whole product becomes zero.
It means that this energy at k = 0 is not useful for inverting the effective solution. At
higher k-values, the propagation part of the vertical wavenumber becomes negligible (i.e.,
the vertical wavenumber is no longer influenced by conductivity), hence Γ̄m = k becomes
real for all the layers. Hence, the inverted solution at this limit is a fractional average
of conductivity values in all the layers, because we are in the regime where the static
approximation is valid, see Figure 3-5 for plot of effective TE isotropic conductivity for
2 and 1024 layers. At very small k, the effective isotropic conductivity deviates more for
number of layers with large unit thickness (as shown in Table 2-1). However, the effective
solution is the same for any number of layers at high magnitude of k, see Figure 3-8(a).

Figure 3-6 shows the absolute effective amplitude of the TE electric field (using equation
(2-10)) at different wavenumber k for 0.1 Hz for a 1 km thick layer. The amplitude variation
with wavenumber is the same for the 2 and 1024 layers because the same frequency is used
and the difference in effective conductivity even at small k is not large enough to cause a
large deviation for a 1 km thick layer. The amplitude decreases from zero k to kmax. In
this figure wavenumber-spectrum values up to 0.028 m−1 are the only relevant k values for
producing useful signal for a 1 km thick layer. The k-values beyond this are not relevant
for a 1 km thick layer because the magnitude of the effective field at these values are in the
noise range (≤ 10−14 A/m)

Absolute TE-mode effective multiple (M) reflection amplitude is also shown in Figure 3-7.
Where effective multiple reflection from equation (3-24) is given as:

M = 1 + R̄eff exp(−2Γ̄effT ) (3-18)

where T is taken to be 1 km thick layer. For this 1 km the effective TE multiple reflection is
approximately unity for all values of k implying that the existence and stability of effective
solutions are independent of the multiple reflections.

To investigate the influence of the magnitude of conductivity contrast between adjacent
layers on the effective isotropic conductivity, the usual distribution is changed. Values
of the effective conductivities are changed by replacing the conductivity distribution of
(0.3 1) S/m in the model with the pairs (0.3 0.5) S/m and (0.3 0.375) S/m at frequency
of transmission of 1 Hz. For the 25% conductivity contrast, (0.3 0.375) S/m, between
adjacent layers, Figure 3-9(a) shows a stable effective conductivity of 0.3173 S/m for all
values of k from 128 to 1024 layers. From Table 2-1, the combined unit thickness of the
periodic (pair of) layers for 128 layers is lu = 16.25 m therefore ratio of effective skin depth

(δeff ) to lu is
δeff

lu
= 55. Where effective skin depth is given by:

δeff ≈ 503
√

σeff f
, (3-19)
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where f= 1 Hz in our case. Figure 3-9(b) shows that for conductivity distribution of
(0.3 0.5) S/m in the layers the stable effective conductivity, 0.34615 S/m, for all values

of k exists from 256 to 1024 layers. For the 256 layers the ratio
δeff

lu
is 105. Also for

conductivity contrast of (0.3 1) the effective conductivity, 0.4615 S/m, exists for all values

of k from 512 to 1024 layers as shown in Figure 3-8(b). The calculated
δeff

lu
is 182.

It is thus established that as the conductivity contrast between adjacent layers increases
the unit thickness in a layered system will have to be reduced with respect to the effective
skin depth for the effective solution to exist at all values of k in this static limit where the
effective conductivity is the fractional average of the conductivity values in all the layers.
For 25% conductivity contrast (e.g., (0.3 0.375) S/m) the unit thickness is at most 1

55
δeff ;

for 66% contrast (e.g., (0.3 0.5) S/m) the unit thickness is at most 1
105

δeff and for very high
conductivity contrast (0.3 1) S/m, (about 231% contrast), the maximum unit thickness is

1
182

δeff .

3-1-4 Effective isotropic medium for the isotropic layered earth with

TM-mode

An isotropic layered earth can also be modeled with the TM-mode field by setting the
anisotropic ratio (σh/σv) of the TM vertical wavenumber, to one. Thus it is also possible
to invert effective TM isotropic conductivity which can be compared with effective TE
isotropic conductivity estimated in the preceding subsection. The general TM-mode elec-
tric field recorded by receivers placed on zN of the layered system in Figure 2-1, similar to
equation (3-11), will be used to produce the data recorded by the receivers. However, the
TM-mode reflection coefficient will now be used. The electric field ET M

N+1 is given by:

ET M
N+1 = (

N
∏

m=0

(1 + Rm) exp(−Γmdm)

(1 + Rm+1 exp(−2Γm+1dm+1))
), (3-20)

where d0 = 0, and Rm is the TM-mode global reflection coefficient for each layer and it is
given by an upward recursive equation:

Rm =
rm + Rm+1 exp(−2Γm+1dm+1)

1 + rmRm+1 exp(−2Γm+1dm+1)
, (3-21)

where RN+1=0; the TM-mode local reflection coefficient rm, in the diffusive limit, is

rm =
σm+1Γm − σmΓm+1

σm+1Γm + σmΓm+1

, (3-22)

where Γm =
√

k2 + iωµσh
m, in the diffusive limit of the electromagnetic wave, is the vertical

wavenumber in each layer m and k is the wavenumber.

Effective TM isotropic conductivity (σT M
eff ) is inverted for conductivity distribution of (0.3

1) S/m in Figure 3-4 to investigate if solutions are the same with σT E
eff values. Figure 3-10(a)
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shows the σT M
eff at different wavenumber k values. For all the different number of layers,

σT M
eff is approximately the same at k ≈ 0 but with increasing deviation as k increases and at

sufficiently large k the solution becomes constant. Higher magnitude of effective solutions
are found for thin layers (from 8 to 1024) than for 2 and 4 layers. A zoom in on the value
of σT M

eff at k ≈ 0 in Figure 3-10(b) shows that

σT M
eff = σT E

eff (3-23)

The reason for the differences in σT E
eff and σT M

eff may be due to the different sensitivities of
the TE and TM-modes. The other reason is that for large values of k when Γ ≈ k the TM-
mode local reflection coefficient is equal to the DC electric reflection coefficient, while the
local TE-mode reflection coefficient is zero for those large k values. This leads to different
effective medium conductivity values between the TE-mode and TM-mode results.

Figure 3-11 shows the absolute effective TM amplitude (using equation similar to equation
(2-10) but with the effective TM vertical wavenumber) of the field at different wavenumber
k for 0.1 Hz for a 1 km thick layer. The amplitude variation with wavenumber is the same
for all the different number of layers because even at small values of k the the differences
between the effective solution for different layers are negligible. The amplitude decreases
from zero k to kmax. In this figure, wavenumber-spectrum values up to 0.028 m−1 are the
only relevant k values for producing useful signal for a 1 km thick layer. The k-values
beyond this are not relevant for a 1 km thick layer because the magnitude of the effective
field at these values are in the noise range (≤ 10−14 A/m)
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Figure 3-4: Isotropically layered overburden with 0.3 S/m and 1 S/m distributed in alter-
nating layers to give constant theoretical effective electrical parameters. The basement
is infinitely thick with conductivity of 0.02 S/m. The source is located on the surface
and the array of receivers at 1040 m. While the total thickness is constant, the number
of layers (from LHS to RHS) increases from 2 to 4 8 and 16 .
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Figure 3-6: Absolute effective amplitude of TE electric field at relevant k values in the
k-spectrum for 1 km thick layer at frequencies of 0.1 Hz for both 2 and 1024 layers.
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Figure 3-7: Absolute effective multiple amplitude of TE electric field at relevant k values
in the k-spectrum for 1 km thick layer at frequencies of 0.1 Hz for both 2 and 1024 layers.
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Figure 3-8: Variation of σT E
eff at small magnitude of wavenumber, k, for different number

of layers where (a) is for frequency, f= 0.1 Hz and (b) at f= 1 Hz when reflection and
transmission interactions with layers boundaries are included.
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Figure 3-9: σT E
eff estimated for all layers of different conductivity distributions, (a)

(0.3 0.375), and (b) (0.3 0.5) in Figure 3-4 in the horizontally layered isotropic medium
at f= 1 Hz with the inclusion of reflection and transmission interactions.
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Figure 3-10: (a) Effective TM isotropic conductivity (σT M
eff ) for different number of

layers with conductivity distributions (0.3 1) S/m, at f= 0.1 Hz when the reflection
and transmission interactions are included. The zoom-in (b) shows σT M

eff = σT E
eff only at

k ≈ 0.



3-1 Effective medium parameters from electric field due to propagation and reflection interactions 37

0.005 0.01 0.015 0.02 0.025 0.03

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wavenumber, k, [1/m]

|E
T

M
|[A

/m
]

 

 

Figure 3-11: Absolute effective amplitude of TM electric field at relevant k values in the
k-spectrum for 1 km thick layer at frequencies of 0.1 Hz for both all the different number
of layers
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3-1-5 Effective VTI medium for the isotropic layered earth: Model

The overburden (isotropic layered earth) of Figure 3-2 can be replaced with an effective
anisotropic model with effective VTI parameters σv

eff and σh
eff . The total thickness, T of

the overburden is held constant and the effective electric field is:

ET M
N+1 =

(1 + Reff )(1 + R0) exp(−ΓeffT )

(1 + Reff exp(−2ΓeffT ))
, (3-24)

where

R0 =
r0 + Reff exp(−2ΓeffT )

1 + r0Reff exp(−2ΓeffT )
, (3-25)

r0 =
σN+1Γ0 − σ0Γeff

σN+1Γ0 + σ0Γeff

= 1, (3-26)

reff =
σN+1Γeff − σh

effΓN+1

σN+1Γeff + σh
effΓN+1

, (3-27)

Γeff =

√

√

√

√

σh
eff

σv
eff

k2 + iωµσh
eff , (3-28)

ΓN+1 =
√

k2 + iωµσN+1 (3-29)

where Reff = reff ; Reff is the global TM reflection coefficient of the interface separating
the effective medium in domain Dn and domain DN+1, reff is its local reflection coefficient;
R0 is the global TM reflection coefficient of the interface between domain D0 and effective
medium domain Dn, and r0 is its local reflection coefficient; Γ0 and Γeff are the TM vertical
wavenumber for domains D0 and Dn respectively.

The effective VTI property of layered earth in Figure 3-4 are found by optimizing the
error between equations (3-20) and (3-24). Effective VTI conductivities, for 2 layers at
10 Hz, are shown in Figure 3-12(a). These effective VTI conductivities fluctuate as the k
changes. At very small magnitude of wavenumber the effective medium is anisotropic while
at high wavenumber the medium becomes isotropic (Figure 3-12(b)). Similar solutions and
fluctuations are found at all frequencies in the range of (0.1 − 10) Hz.

3-1-6 Effective VTI medium of a VTI layered earth

In this subsection some anisotropy will be included in each of the layers in Figure 3-4. The
conductivity contrast between layers will also be varied to quantify how much influence
this has on the overall solution. The frequency of transmission is 0.1 Hz. Firstly, effective
horizontal and vertical conductivities are inverted for a VTI layered earth with uniform
anisotropic ratio (σv/σh = 2.58) in each layer. This set up is to model the shale formations
as reported in the (Ellis et al., 2010a). Figure 3-13(a) shows the plot of the solution.
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Figure 3-12: (a) Effective VTI parameters and (b) effective VTI anisotropic ratio for
horizontally stratified isotropic 2 layers at f= 10 Hz.

The effective parameters fluctuate highly at different wavenumber k (which may be due
to the anisotropy) but the effective anisotropic ratio remains more or less constant at
high wavenumber k. The value of the inverted anisotropic ratio approaches the value of
average anisotropic ratio of 2.58, see Figure 3-13(b). Secondly, (0.3 0.35) S/m and (0.3
1) S/m conductivity distributions are alternated between layers and equal anisotropic ratio
is included in each of these layers according to the published results in the (Ellis et al.,
2010a). The anisotropic ratio used is 2.58. Figure 3-14(a) to 3-14(d) show solution space
plots of the effective VTI parameters for 2 and 1024 layers at 0.1 Hz for (0.3 0.35) S/m
conductivity distribution. From these figures, it is established that the different effective
solutions exist at different values of k, though the anisotropic ratio remains approximately
constant, (2.58), at large k. Lastly, we re-distribute non-uniform anisotropy into adjacent
layers according to the published data of (Ellis et al., 2010a). The anisotropic ratio in
odd and even layers are 2.58 and 3.23 respectively. Figure 3-15(a) further establishes that
there is no existence of unique effective VTI conductivities even for large k. Moreover, the
effective anisotropic ratio reduces as the wavenumber k increases, see Figure 3-15(b).
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Figure 3-13: (a) Inverted effective horizontal and vertical conductivities and (b) the
effective anisotropic ratio for 2 layers with conductivity distribution of (0.3 0.35)S/m
and a uniform anisotropic ratio distribution of σv/σh = 2.58 in each layer; the frequency
of transmission is 0.1 Hz.
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Figure 3-14: Solution space of objective function logarithm in σh
eff and σv

eff plane of VTI
2 and 1024 layered system with conductivity distribution (0.3 0.35) S/m in alternating
layers. Solutions at 50% of kmax for (a) 2 and (c) 1024 layers differ from solutions at
60% of kmax for (b) 2 and (d) 1024 layers.
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Figure 3-15: (a) Inverted effective horizontal and vertical conductivities and (b) the
effective anisotropic ratio for 2 layers with conductivity distribution of (0.3 0.35)S/m
and with the inclusion of non-uniform anisotropic ratio of σv/σh of 2.58 and 3.23 in odd
and even layer respectively; the frequency of transmission is 0.1 Hz.



Chapter 4

Effective TE and TM conductivities
from horizontal electric field due to

horizontal dipole source

In this chapter we invert for both effective TE conductivity and effective TM conductivity
from the horizontal electric field due to horizontal electric dipole Exx. This modeling is
the same as the one done in chapter three but now with the consideration of orientation of
the field. This is possible because from equation (1-42) it is seen that Exx contains both
TM-mode field (Ez) and TE-mode field (Hz) which is re-written here as:

Exx = − ikx

ηκ2
∂zηvEzx +

ikyζv

κ2
Hzx, (4-1)

In this section we use lower case Latin subscript to denote layer numbers and the depth
-coordinate in space is now denoted as z = x3 to avoid confusion of notation assignments.
The layered earth considered is similar to the one in the preceding chapter with homo-
geneous upper domain D0 defined by z < 0; domain Dn which contains layers of finite
thickness defined by zn−1 < z < zn for n = 1, 2, 3, ..., N and the lower half space domain
DN+1 defined by z > zN+1. The source occupies the domain Ds. For layers below the
source layer, s < n ≤ N + 1, the TM-mode electric field amplitude at N + 1 is given as:

Ezx;N+1 = A+
N+1W

d
n , (4-2)

where the downgoing propagator inside each layer n is W d
n = exp(−Γn(z − zn)) and the

downgoing electric field at N + 1 layer is A+
N+1 and it is given by:

A+
N+1 =

ηv
s+1

ηv
N+1

A+
s+1

N+1
∏

m=s+2

(1 + R+
m−1) exp(−Γm−1dm−1)

1 + R+
m exp(−2Γmdm)

, (4-3)
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and
∂zEzx;N+1 = −ΓN+1A

+
N+1 exp(−ΓN+1(z − zn)), (4-4)

The field just below the source layer is A+
s+1 and it is given by

A+
s+1 =

ηv
s

ηv
s+1

XT M(z = 0)(1 + R+
s )(1 − R−

s ) exp(−Γsds)

1 + (1 − R+
s R−

s exp(−2Γsds)) exp(−2Γs+1ds+1)
, (4-5)

with source function XT M = ikx

2ηv
s
, equation (4-5) becomes:

A+
s+1 =

ikx

2ηv
s+1

(1 + R+
s )(1 − R−

s ) exp(−Γsds)

(1 − R+
s R−

s exp(−2Γsds)) exp(−2Γs+1ds+1)
, (4-6)

Putting equations (4-6) into (4-3) and then into (4-2) we have:

ET M =
(ikx)2

2ηN+1κ2
ΓN+1 exp(−ΓN+1(z − zN))

(1 + R+
s )(1 − R−

s ) exp(−Γsds)

(1 − R+
s R−

s exp(−2Γsds)) exp(−2Γs+1ds+1)
N+1
∏

m=s+2

(1 + R+
m−1) exp(−Γm−1dm−1)

1 + R+
m exp(−2Γmdm)

.(4-7)

Equation (4-7) can also be written as:

ET M = −(cos(ϕ))2

2σN+1

ΓN+1
(1 + R+

s )(1 − R−
s ) exp(−Γsds)

(1 − R+
s R−

s exp (−2Γsds))(1 + R+
s+1 exp(−2Γs+1ds+1))

N+1
∏

m=s+2

(1 + R+
m−1) exp(−Γm−1dm−1)

1 + R+
m exp(−2Γmdm)

, (4-8)

where kx = κ cos(ϕ), ϕ is the propagation angle between κ and kx; the TM global reflection
coefficient is recursively defined as:

R±
n =

r±
n + R±

n±1 exp(−2Γn±1dn±1)

1 + r±
n R±

n±1 exp(−2Γn±1dn±1)
, (4-9)

with the local reflection coefficients given as:

r±
n =

ηn±1Γn − ηnΓn±1

ηn±1Γn + ηnΓn±1

(4-10)

The TE-mode electric field (ET E) is found in a similar way but with TE-mode source
function (XT E). Following the principle of equivalence: ζ = −η; Je = −Jm, XT E can be
written from XT M as XT E = −iky

2ΓT E
s

and with this we have:

ET E =
(iky)2

2Γ̄sκ2
ζN+1

ηv
s

ηv
N+1

exp(−Γ̄N+1(z − zN))
(1 + R̄+

s )(1 + R̄−
s ) exp(−Γ̄sds)

(1 − R̄+
s R̄−

s )(1 + R̄+
s+1 exp(−2Γ̄s+1ds+1))

N+1
∏

m=s+2

(1 + R̄+
m−1) exp(−Γ̄m−1dm−1)

1 + R̄+
m exp(−2Γ̄mdm)

,(4-11)
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Equation (4-11) can also be written as:

ET E = −(sin(ϕ))2

2Γ̄s

ζs

(1 + R̄+
s )(1 + R̄−

s ) exp(−Γ̄sds)

(1 − R̄+
s R̄−

s )(1 + R̄+
s+1 exp(−2Γ̄s+1ds+1))

N+1
∏

m=s+2

(1 + R̄+
m−1) exp(−Γ̄m−1dm−1)

1 + R̄+
m exp(−2Γ̄mdm)

, (4-12)

where ky = κ sin(ϕ), ϕ is the propagation angle between κ and kx; the TE global reflection
coefficient is recursively defined as:

R̄±
n =

r̄±
n + R̄±

n±1 exp(−2Γ̄n±1dn±1)

1 + r̄±
n R̄±

n±1 exp(−2Γ̄n±1dn±1)
, (4-13)

with the local reflection coefficients is given as:

r̄±
n =

ζn±1Γ̄n − ζnΓ̄n±1

ζn±1Γ̄n + ζnΓ̄n±1

(4-14)

For an effective medium, the effective TM and TE electric amplitudes are:

ET M
eff = −(cos(ϕ))2

2σN+1

ΓN+1

(1 + R+
eff )(1 − R−

eff ) exp(−Γsds)

1 − R+
effR−

eff exp (−2ΓeffT )
, (4-15)

ET E
eff = −(sin(ϕ))2

2Γ̄s

ζs

(1 + R̄+
eff )(1 + R̄−

eff ) exp(−Γ̄sds)

1 − R̄+
eff R̄−

eff exp (−2Γ̄effT )
, (4-16)

where Reff = Rs and Γs = Γeff have been used for the effective medium to avoid mix-up
of terms with the layered earth and RN+1 = R̄N+1 = 0.

The error between the data and the model is minimized to find unique effective TE (σT E
eff )

and TM (σT M
eff ) conductivities but there is no existence of such unique solutions. Several

local minima exist for different pairs of TE and TM conductivities. It is worth noting that
in chapter three that the unique values were found for the individual (σT E

eff ) and (σT M
eff )

when the two modes were separated. The reason for the directional influence on finding
unique (σT E

eff ) and TM (σT M
eff ) is not investigated in this report but would be an interesting

research work to do.
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Chapter 5

Conclusion

In an attempt to quantify the degree of anisotropy caused by layering in sediments Ellis
et al. (2010a) adopted the ’moving window average method’ to find the bulk vertical and
horizontal resistivities of some resistivity logs from undeviated wells. They used equations
(2-1) and (2-2) for calculating the bulk vertical and horizontal resistivities respectively
within a window height of T (20-200 m); where conductivity of each layer is the inverse
of resistivity. The ratio of the bulk vertical and bulk horizontal resistivity is the bulk
anisotropic ratio.

To validate the published results of Ellis et al. (2010a), we have used the controlled source
electromagnetic (CSEM) method, in the horizontal wavenumber-frequency domain (k−ω),
to investigate the effective medium theory for horizontally layered isotropic and vertically
transverse isotropic (VTI) layered earth. It has been shown in this report that although
there exists an effective isotropic conductivity for isotropic layered earth with or without
the reflection and transmission interactions between layers, there are no effective VTI
conductivities for horizontally layered isotropic and VTI layered earth.

Without reflection and transmission interactions, the homogenization of the layered earth
is controlled by the magnitude of wavenumber, k over that of the diffusion constant of
the vertical wavenumber, Γ. For small wavenumber, k, the effective conductivity is a
function of square root of conductivity of each layer. At about 0.5% of the maximum
wavenumber kmax, the dominance of k results in the homogenization of the layered system
and therefore the effective isotropic conductivity becomes a fractional average of the layers
conductivities, irrespective of the unit thickness of the layers. Thus anisotropy exists
for small k and isotropy exists at large magnitude of wavenumber, k (k = 0.5% of kmax

) because the diffusion constant of the vertical wavenumber, Γ is negligible. With the
inclusion of reflection and transmission interactions in the layered system, effective isotropic
conductivity exists only for very thin layering, where the effective skin depth or wavelength
is large compared to the unit thickness in a layered system. Under these conditions, these
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results are in good agreement with the ’moving window average method’ of (Ellis et al.,
2010a) for finding only the bulk horizontal resistivity of resistivity logs from undeviated
wells. It is important to know that effective isotropic TM and effective isotropic TE are
equal only at very small magnitude of wavenumber, k but at large k the solutions are quite
different due to the different limits of their reflection coefficients.

However, our numerical results show that the inverted effective VTI conductivities for
horizontally layered isotropic and VTI layered earth are not stable within the range of
wavenumber k. The solutions are k-dependent with different values at different wavenum-
ber, k. The effective anisotropic ratio is also influenced by the conductivity contrasts
between adjacent layers and the magnitude of anisotropy in each of the layers. From these
results and observations, it implies that the ’moving window average method’ adopted by
Ellis et al. (2010a) is not a valid approach for modeling a layered earth, though it may be
valid for a local measurement.

.
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