
Label-efficient model
selection for

pretrained classifiers
by

Jannes Kasper

Student Name Student Number

Jannes Kasper 5847281

Supervisor: Merve Gürel
Responsible Supervisor: Jan van Gemert
Project Duration: 10.2023 - 07.2024
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Acknowledgement

I would like to thank my supervisor, Merve Gürel, for her guidance and support throughout the process
of completing my master thesis. Her insights and encouragement were invaluable to this work. I also
wish to thank my family and friends for their continuous support and understanding.

i

Abstract

In recent advancements within the field of machine learning (ML), the automation of model develop-
ment and deployment enabled the maintenance of high-quality models in production through continu-
ous retraining, yielding a variety of models for the same problem settings. The fast moving progress
of Large-Language-Models and other research areas let to a spiking interest in ML, expanding applica-
tions and the market for ML models. Researchers, enthusiasts, programming frameworks and major
companies such as Amazon are actively developing and evaluating models for a wide variety of tasks,
thus contributing to the growing number of available pretrained models. These models are accessible
through various platforms, including Huggingface or the AWS Sagemaker program.

The most common cause for retraining of models in production is a distribution shift in the data. Conse-
quently, continuous retraining on changing production data results in a wide variety of models address-
ing the same problem, each with different strengths. Each retraining iteration demands substantial
amounts of labeled data and significant time investment. Given the increasing availability of pretrained
models with distinct strengths and weaknesses, there is strong reason to believe that, instead of re-
training, selecting the most suitable pretrained model can yield sufficient performance. The primary
challenge in the context of model selection is the need for evidence to assess the quality of the models,
and querying labels is the most effective method to address this. Despite the progress in ML research,
the acquisition of labeled data remains a significant challenge. Labeling data is mostly achieved through
human labor, which is a costly, time consuming, and error-prone process. Estimates based on AWS
Mechnical Turk indicate that the expenses of labeling large datasets or complex tasks, such as image
segmentation, can easily reach six figures or more. For instance, labeling the entire ImageNet dataset
with ten workers costs approximately 190.000€. This necessitates minimizing the number of labels
required as evidence for model selection.

The existing literature on model selection primarily focuses on selection of a learning strategy in combi-
nation with its optimal hyperparameters to best fit the data. Although the objective of selecting the best
model for the data remains the same, the setting in this thesis differs significantly. Specifically, the ar-
chitecture and hyperparameters of the models are not relevant in this research, as they are predefined
by the pretrained candidate models. Furthermore, the data used to assess the models is unlabeled,
leading to a discussion on the suitability of alternative methods more closely aligned with this setting,
such as active learning (AL), which focuses on intelligently labeling data points for training.

Given the lack of appropriate methods for this problem, this thesis introduces the Model Picker algo-
rithm as a solution for selecting pretrained classifiers. The algorithm aims to minimize labeling cost by
employing a probabilistic model to adaptively sample the most valuable instances from the unlabeled
data. The informativeness of a data point is estimated using Shannon’s mutual information between
the latent variable, which represents the decision about the true best model, and the unknown labels
of each data point, given the evidence sampled.

The Model Picker algorithm was rigorously evaluated against fundamental baselines such as Query-by-
Committee, Active Comparison of Prediction Models, GALAXY, and QDD which were adapted to the
setting when necessary. This evaluation utilizes a wide variety of well-established datasets, including
up to 114 of different models each for each dataset, such as ImageNet. The results demonstrate that
Model Picker consistently outperforms all baselines by a significant margin, with peak performance that
allows for accuratemodel selection with only 1/4 of the labels needed compared to the next best method.
Additionally, this thesis investigates various methods for efficient optimization of Model Picker’s single
hyperparameter, ϵ, including strategies such as sampling a small subset of data for labeling and gen-
erating a noisy oracle. The proposed framework is intended to serve as a fundamental stepping stone
for future research in the domain of model selection.

The thesis concludes with a discussion on the implications of the findings for the Model Picker algorithm,
as well as for future research in the selection of pretrained classifiers. Furthermore, limitations of

ii

iii

this study are discussed and potential future work to further enhance the Model Picker algorithm is
proposed.

Contents

Abstract ii

Nomenclature vii

1 Introduction 1

2 Background 3
2.1 Model Selection . 3
2.2 Label-Efficient Learning . 4

2.2.1 Active Learning . 4
2.2.2 Semi-Supervised Learning . 6
2.2.3 Ensemble Learning . 6
2.2.4 Weak Supervision . 6

2.3 Main Takeaway . 6

3 Methodology 7
3.1 Model Picker . 7
3.2 Baselines . 10

3.2.1 Query by Committee . 10
3.2.2 Active Comparison of Prediction Models . 11
3.2.3 GALAXY . 12
3.2.4 QDD (Query by Committee with Density and Diversity 12

4 Experiments 14
4.1 Experimental Protocol . 14
4.2 Experimental Setup . 14

4.2.1 Datasets and Model Collection . 14
4.2.2 Evaluation Metrics . 16
4.2.3 Implementation Details . 17

4.3 Hyperparameter Optimization . 17
4.3.1 Hyperparameter Optimization by True Oracle . 17
4.3.2 Hyperparameter Optimization by Subset Sampling 20
4.3.3 Hyperparameter Optimization by Noisy Oracle Estimation 21

4.4 Method Comparison . 24
4.5 Additional Experiments . 28

4.5.1 Distribution Shift . 28
4.5.2 Behavior Research . 30

5 Discussion 31
5.1 Model Picker Behavior . 31
5.2 Hyperparameter Optimization . 32
5.3 Results in Context . 34

6 Conclusion 36

References 37

A Appendix 40

iv

List of Figures

3.1 Model Picker Probabilistic Model . 7

4.1 Hyperparameter Optimization: True Oracle, Part 1 . 18
4.2 Hyperparameter Optimization: True Oracle, Part 2 . 19
4.3 Hyperparameter Optimization: Subset Sampling . 20
4.4 Hyperparameter Optimization: Noisy Oracle Estimation, Part 1 23
4.5 Hyperparameter Optimization: Noisy Oracle Estimation, Part 2 24
4.6 Model Picker vs. Baselines, Part 2 . 26
4.7 Model Picker vs. Baselines, Part 3 . 27
4.8 Model Picker vs. Baselines, Part 4 . 28
4.9 Model Picker Entropy Behavior Experiment . 30

5.1 Reward Ratio . 33

A.1 Dataset Model Accuracy Distribution, Part 1 . 41
A.2 Dataset Model Accuracy Distribution, Part 2 . 42
A.3 Noisy Oracle Estimation Method Comparison . 43
A.4 Hyperparameter Optimization: Wide Grid Search . 45

v

List of Tables

4.1 Dataset Meta Data . 15
4.2 Hyperparameter Optimization: Ground Truth Epsilon . 18
4.3 Noisy Oracle Similarity Comparison . 21
4.4 Noisy Oracle Best Model Similarity Comparison . 21
4.5 Noisy Oracle Estimated Hyperparamter Comparison . 22
4.6 Label Efficiency of Model Picker vs. Baselines . 25
4.7 Method comparison results part 1. The graphs on the left show the success probability

of the methods and the graphs on the right present the 90 percentile return accuracy for
different datasets and budget sizes. 25

4.8 Distribution Shift Example: PACS . 29
4.9 Distribution Shift Example: ImageNet V2 . 29
4.10 Model Picker Information Gain Experiment . 30

A.1 PACS Experiment Training Distributions . 42
A.2 Average Posterior Development Example, ϵ: 0.3 . 44
A.3 Average Posterior Development Example, ϵ: 0.4 . 44
A.4 Average Posterior Development Example, ϵ: 0.49 . 44

vi

Nomenclature

Abbreviations
Abbreviation Definition

AL Active Learning
AWS Amazon Web Services
ML Machine Learning
SSL Semi-Supervised Learning

vii

1
Introduction

In the realm of Machine Learning (ML), the trend towards automation of model development and de-
ployment offers new ways of autonomously maintaining high quality models in production. The contin-
uous retraining of models over time results in an abundance of slightly different quality models for the
same problem setting. With growing interest in ML, particularly due to the recent progress in Large-
Language-Models, the number of possible applications and, consequently, the market for ML models
has increased drastically (AI Index Steering Committee, 2024). Additionally, countless researchers
and hobby programmers train and evaluate their models daily to solve both well-established and novel
problems. If these models are published, they often become part of publicly available model reposito-
ries such as Huggingface1. Major companies, such as Amazon with their AmazonWeb Services (AWS)
program, maintain their own model registry, containing thousands of pre-trained models for divers appli-
cations. Furthermore, popular programming frameworks like PyTorch and Tensorflow offer collections
of pre-trained models.

The primary reason for a decline in performance of a model in production, subsequently leading to
model retraining, is a distribution shift in the data (Sculley et al., 2015). With the growing number of
quality pretrained models available, it becomes increasingly plausible that for a given problem setting,
there exists a pre-trainedmodel that performs sufficiently well for the distribution of the problematic data.
This realisation forms the foundation for the idea of efficient model selection of pre-trained classifiers.
To identify the optimal model given unlabeled data, it is essential to gather evidence. This evidence
can be obtained through various methods, such as unsupervised learning. However, the most effective
and accurate method is to query for labels, making model selection a supervised learning problem with
limited labels. Despite significant progress in ML, labeling data remains a persistent challenge. While
collecting raw data through sensors or other processes can be straightforward, labeling is not. The
labeling process is mostly carried out by humans in regulated processes, making it a very resource-
intensive task. Particularly for more complex tasks like image segmentation or object detection the
labeling process becomes extremely costly, time-consuming and prone to errors. Using the price list
from AWS Sagemaker2 and the assumption to employ five workers in AWS Mechanical Turk for more
reliable predictions, the cost for 100.000 labeled instances can reach from approximately 12.000€ for
image classification tasks up to approximately 426.000€ for image segmentation tasks. To put this into
perspective: popular image classification datasets frequently used in ML include CIFAR-10 with 60.000
samples and 10 classes, and ImageNet with 1.200.000 samples and 1000 classes. The high number of
classes significantly introduces more labeling noise, requiring more workers to achieve reliable results.
Estimating the costs for labeling ImageNet with ten Mechnical Turk workers results in 190.000€. The
retraining iterations in production contribute to the already substantial initial labeling costs required to
develop a model, resulting in ongoing periodic expenses to maintain high performance. This motivates
minimizing the number of labels required as evidence for model selection.

In the literature, ”model selection” is commonly associated with selecting a learning strategy and its
1https://huggingface.co/
2https://aws.amazon.com/de/sagemaker/groundtruth/pricing/

1

https://huggingface.co/

2

hyperparameters expected to best fit the data at hand. However, in the scope of this thesis, model
selection distinctly refers to selecting a pre-trained classifiers from a pool of candidates based on unla-
beled data. Consequently, the hyperparameters and the learning strategies are predefined and don’t
need to optimized. Although the objective of selecting the best model for the data remains the same, the
setting in this thesis differs significantly. The research field of Active Learning (AL) aims to intelligently
query unlabeled samples to optimize training performance, providing valuable insights and baselines
for this research. Model selection, as described in this setting, is a common problem in practice and can
be applied to various applications to determine the best performing model to employ without training.

The model selection process in machine learning involves several key components: a specific prob-
lem domain (e.g. classification of spam emails), a set of pre-trained models designed to address this
particular problem, and a pool of unlabeled data whose distribution is unknown. The challenge is to
identify the model that performs best on the unlabeled data with as few labels as possible. This thesis
introduces the first method in the pool-based model selection setting, named Model Picker, that aims
to solve this problem in a robust and label-efficient manner. The algorithm is tested extensively and
evaluated against fundamental sampling methods in various classification settings, reaching from ex-
treme noise to class imbalance. Model Picker is based on theoretical guarantees and undergoes an
extensive empirical evaluation through a series of experiments. Beyond proposing and evaluating a
competitive solution, this thesis aims to establish a framework for evaluating and testing future model
selection strategies.

The thesis begins with background section, distinguishing this model selection setting from the ones
common in the literature and providing insight about related research. This is followed by the method-
ology chapter, which offers in-depth descriptions of the model selection problem, the Model Picker
algorithm, adapted AL baselines, and the metrics used for evaluation. Next, the experiments and their
results are presented, followed by a discussion. The thesis concludes with a summary of the results,
explaining limitations and future work, and putting the findings into context.

2
Background

2.1. Model Selection
Model selection in machine learning is a pivotal decision-making process that focuses on determining
the learning algorithm and parameter setting that minimize an objective function on given data (Zhou,
2021). According to Ding et al., 2018, model selection can serve two primary purposes: inference,
which aims to identify the best model for understanding the underlying data generation process, and
prediction, which focuses on minimizing the generalization error for future predictions.

When selecting the best learning algorithm and architecture, various approaches exist. Expert knowl-
edge is crucial and often incorporated to limit the search space by defining a selection of algorithms
or algorithm components. In the early stages of model selection, methods such as step wise regres-
sion were introduced to estimate the best regression model for a given problem. Step wise regression
includes techniques like forward selection, backward elimination, and bidirectional elimination, which
sequentially add or remove predictors based on statistical criteria, aiming to balance model complexity
and performance. Today, alongside manual definition of models, advanced automated model architec-
ture frameworks are used, such as Reinforcement Learning (RL) introduced by Baker et al., 2017 or
Evolutionary Algorithms (EA) proposed by Real et al., 2017. Advances in Neural Architecture Search
(NAS), that aims to automate the design of neural networks, resulted in solutions like Differential Archi-
tecture Search (DARTS) introduced by Liu et al., 2019, which efficiently navigates the search space of
neural network components with gradient-based optimization.

To improve the models and prevent fitting, various regularization methods have been proposed. Lasso
(Tibshirani, 1996) and Ridge (Hilt and Seegrist, 1977) regression, commonly referred to as L1 and L2
regularization, add bias to themodel to decrease variance. A combination of both, proposed by Zou and
Hastie, 2005, balances variable selection and regularization, making it effective for handling correlated
predictors. Other common regularization techniques include dropout for neural networks (Srivastava
et al., 2014), early stopping during training (L. Li et al., 2018), and data augmentation (Simard et al.,
2003).

Hyperparameter optimization also plays a major role in a model’s performance. Like the selection of
learning algorithms, hyperparameter optimization heavily depends on initial expert knowledge to reduce
the otherwise potentially infinite search space. Simple brute force solutions like grid search and random
search are still widely used depending on the requirements for the solution (Bergstra and Bengio, 2012).
Variations of grid search, introduced by and Chih-Jen Lin Chih-Wei Hsu, 2008 and Hesterman et al.,
2010, continuously refine their search space according to the results of explored regions. L. Li et al.,
2018 introduced Hyperband, which applies dynamic resource allocation for promising configurations
combined with random search and successive halving to improve computational cost over traditional
random and grid search. Bayesian optimization, discussed by Snoek et al., 2012, utilizes surrogate
models (e.g. Gaussian processes) to provide probabilistic estimates for the objective function and its
uncertainty. Snoek et al., 2015 improved Bayesian optimization by addressing the challenge of scal-
ing Gaussian processes to larger datasets and higher-dimensional hyperparameter settings. Falkner

3

2.2. LABEL-EFFICIENT LEARNING 4

et al., 2018 introduce BOHB, a robust hyperparameter optimization framework at scale, that combines
Bayesian optimization with Hyperband. Additionally many approaches with different surrogate models
(e.g. random forest, tree-structured Parzen estimator) and methods aimed to increase performance
of Bayesian optimization (Klein et al., 2017) have been proposed. Gradient-based optimization tech-
niques, as shown by Chandra et al., 2022, seek the optimal parameter configuration by utilizing gradient
information over the hyperparameter space

Reliable performance estimates are crucial for deciding which learning algorithm to used and how to
parameterize it. Information criteria like the Akaike Information Criterion (AIC) introduced by Akaike,
1973, the Bayesian Information Criterion (BIC) proposed by Schwarz, 1978, and the Deviance Informa-
tion Criterion (DIC) are widely used metrics to estimate the goodness of fit of the model to the data while
penalizing high model complexity. Mallows, 1973 created Mallow‘s Cp for linear regression, assessing
the goodness of fit by comparing the sum of squared errors to the number of parameters. Assessing the
complexity of the models is crucial as overly complex models can lead to overfitting, resulting in poor
generalization performance. Cross-validation (CV) is a predictive paradigm that estimates a model’s
generalizability by dividing the data into training and validation sets multiple times, ensuring a reliable
generalization error estimate given a limited amount of data. The most popular forms are holdout, k-fold
cross-validation and leave-one-out cross-validation (LOOCV), with k-fold cross-validation being more
common in practice due to LOOCS’s computational cost (Piironen and Vehtari, 2017). Another gener-
alization error estimation technique related to CV is bootstrapping, proposed by Johnson, 2001, which
is particularly useful for small datasets or when there is no effective way to split the data. To enhance
computational efficiency in model selection, Domhan et al., 2015 extrapolate the learning curve during
training to early detect noncompetitive models and then skip their full training. Other methods utilize
prior knowledge from previous solved tasks to accelerate learning. Feurer et al., 2018 uses informa-
tion about the hyperparameters of previous runs to warm-start the new hyperparameter search. The
research area of transfer learning aims to utilize weights from already trained models of related tasks
to decrease the work in the target task (Pan and Yang, 2010).

The objective of traditional model selection and model selection of pre-trained classifiers align well, but
the settings differ significantly. The research setting at hand does not include any information about the
models and has no labeled data available, rendering most of the mentioned methods and paradigms
inapplicable. Additionally, there is no need to further optimize the candidate models as they have
already been fine-tuned. Currently, there is very little research focusing on this scenario.

Kossen et al., 2021 present the ”Active Testing” framework, which aims to collect an unbiased and
efficient test set for evaluating trained classifiers. Their focus lies on evaluating a single model as
unbiased and efficient as possible by sampling a high quality test set with help of a surrogate model.
The work of Sawade et al., 2012 aims to compare a pair of pre-trained classifiers by calculating a new
sampling distribution based on relative model risks. Labeling instances according to this distribution
should yield an efficient comparison between the models. An early study of ”Active Model Selection”
was proposed by Madani et al., 2004, which focuses on a model-centric approach (Hawkins et al.,
1987). This means that instead of selecting the best data point to label next, their focus lies on which
model to evaluate next.

2.2. Label-Efficient Learning
Since this thesis focuses on the supervised learning setting with limited labels, it is essential to explore
research areas addressing this challenge. Numerous learning paradigms aim to enhance label effi-
ciency in supervised learning settings. From here onwards, the term ”model selection” refers to the
selection of pre-trained classifiers instead of the traditional model selection process.

2.2.1. Active Learning
Active Learning (AL), a form of experimental design, employs acquisition functions to select a minimal
set of unlabeled data for training. The primary objective is to efficiently train a model with as few labels
as possible while maintaining or enhancing its performance (Herzberg et al., 1972). This methodology
aligns well with model selection despite the differing objectives of training and evaluation. Given that AL
is a well-studied field with numerous proposed solutions, the acquisition functions utilized in AL present
valuable candidates for model selection baselines.

2.2. LABEL-EFFICIENT LEARNING 5

Uncertainty sampling is a commonly used metric for informativeness of a data point in AL. As the
name suggests, the informativeness of a data point is measured by how uncertain a model is regarding
its prediction. The more uncertain a model is, the more the data point is expected to benefit the learning
process Settles, 2010.

One way to calculate uncertainty in a multi class setting is the least confidence measure (Settles,
2010). In the classification setting used in this research, the least confidence metric equals the prob-
ability of the most confident prediction on a data point. Therefore, by sampling data points with the
lowest least confidence score, the algorithm ensures sampling data points with the highest uncertainty.

Confidence margin defines uncertainty as the difference between the first and second highest output
probability Joshi et al., 2009. Minimizing the confidencemargin ensures sampling data points where the
model is most uncertain about its most confident class compared to the second choice. This measure
takes more of the distribution into account compared to the least confidence score.

Entropy is frequently used measure from information theory to calculate uncertainty. It measures the
amount of information needed to describe a distribution (Shannon, 1948). The entropy measure is
applied to the class prediction of the model to calculate an uncertainty value. Sampling the data points
that maximize entropy ensures sampling samples with the highest uncertainty.

Query by Committee (QBC) is a disagreement sampling method (Freund et al., 1997; Seung et al.,
1992). As the name suggests, it uses a committee of models trained on the same dataset but differing
in some way (e.g. hyperparameter, model architecture, training time). The committee members vote
on all data points, with each vote representing the class with the highest prediction probability. The
data points where the models disagree the most become the most valuable. Therefore the highest form
of disagreement occurs when all classes on a data point receive the same number of votes. Various
ways to convert disagreement into a value of informativeness exist, including vote margin and vote
entropy, which are very similar to confidence margin and entropy used in uncertainty, but applied to
the committee votes. Another method is Kullback-Leibler Divergence (KL-Divergence) (McCallum and
Nigam, 1998), used to calculate the difference between two distributions. QBC is particularly suitable
for the Model Selection problem because the set of candidate models to evaluate naturally represents
the committee.

Incorporating Density with uncertainty and disagreement-based sampling methods yields significant
benefits in AL (Ren et al., 2022; Sener and Savarese, 2018). Density sampling methods work in the
input space, ensuring selected samples are representative of the distribution. Since uncertainty and
disagreement sampling operate only in prediction space, they are prone to sampling uninformative out-
liers. Density methods counteract this behavior. Solutions that solely depend on density, like Sener
and Savarese, 2018 and Chitta et al., 2022, treat AL as a Core-set selection problem, aiming to iden-
tify a subset of samples that represent the underlying distribution of the whole dataset. Many other
methods combine density and uncertainty measures to benefit from both (Ash et al., 2020; Kee et al.,
2018; Margatina et al., 2021). For example, the authors of Kee et al., 2018 proposed to enhance QBC
with weighted terms for density and diversity using different similarity measures (e.g. k-NN, cosine
similarity), while the authors of Margatina et al., 2021 define valuable samples as being similar in input
space (representative) and different in prediction space (uncertain). The informativeness of data points
there is based on their k-NN neighborhood (density in input space) and their predictive KL-Divergence
(uncertainty in prediction space).

Other AL methods encompass ideas like expected model change, variance reduction, and estimated
error reduction (Settles and Craven, 2008). Methods calculating the expected model change aim to
maximize the expected effect a data point would have on the model if its label was known. An example
is expected gradient length (EGL) proposed by Settles et al., 2007. The algorithm EPIG proposed by
Smith et al., 2023 selects data points that maximize the information gain about the model parameters.
Established active learning methods like EPIG Smith et al., 2023, BADGE Ash et al., 2020 and BAIT
Ash et al., 2021 sample data points based on metrics derived from model intrinsic parameters such as

2.3. MAIN TAKEAWAY 6

last layer gradients. N. and A., 2001 calculate informativeness by estimating a data points expected
error after training.

Beyond AL, semi-supervised learning, programmatic weak supervision and ensemble learning offer
different ways to improve training under limited labeled data availability.

2.2.2. Semi-Supervised Learning
Semi-supervised learning can be divided into three types: self-training, co-training and boosting (van
Engelen and Hoos, 2020). Self-training uses a model trained on a small labeled dataset to label the
unlabeled data. The model iteratively adds its most confident predictions on the unlabeled data to the
training set to refine itself over time (Yarowsky, 1995). Co-training employs multiple classifiers trained
on different features of the data, using their predictions to label data points independently, allowing the
classifiers to be iteratively retrained (van Engelen and Hoos, 2020). Boosting, similarly to co-training,
leverages a set of classifiers trained to correct the previous classifiers’ mistakes, creating a stronger
composite classifier. Although Boosting can be used in SSL, it is generally categorized as ensemble
learning method.

2.2.3. Ensemble Learning
Ensemble learning utilizes a set of weaker models to form a better one. A famous boosting method
is AdaBoost (Freund et al., 1999), which stands for adaptive boosting. In addition to boosting, there
is bagging (e.g. Random-Forest proposed by Ho, 1995), which trains classifiers on different parts of
the dataset and aggregates their predictions to create a more reliable one, and stacking, which trains
a meta-model that learns to aggregate the weak learners predictions (Pavlyshenko, 2018).

2.2.4. Weak Supervision
Weak supervision is a machine learning technique that generates training data by leveraging multiple
sources of noisy, imprecise, or incomplete labels instead of relying solely on manually labeled datasets.
These sources can include heuristics, domain-specific rules, crowdsourced annotations, or external
databases. The key idea is to use a variety of labeling functions, which are often imperfect, and then
aggregate their outputs to produce a more reliable labeled dataset. This method allows for the efficient
creation of large-scale training data, reducing the need for extensive manual labeling while still enabling
effective model training (Ratner et al., 2020).

2.3. Main Takeaway
The literature review aimed to provide an overview of traditional model selection and existingmethods in
the realm of model selection and label efficiency. Additionally, the goal was to emphasize that traditional
model selection methods do not apply in this setting. Given the limited research in this specific area,
the scope was widened to related research fields to investigate fundamental techniques and asses their
suitability for model selection. AL emerged as most promising source for baseline candidates due to
its query strategies, which align well with the idea of model selection. In particular, the query strategies
in the category of QBC present a good fit for this research. However, AL methods that work directly
with a model, like the ones mentioned under the ”other AL methods” category, are challenging to adapt
because the model selection problem is defined in a model-agnostic way.

The primary insight gained from the literature review for the following research is the lack of focus on
model selection of pretrained classifiers, the major difference to the traditional model selection setting,
and the promising applicability of AL methods through acquisition functions.

3
Methodology

Let M represent a set of k pretrained ML models {m1, . . . ,mk}. Based on an unlabeled data pool
of size n, denoted U = {x1, ..., xn}, and a maximum budget of b, model selection aims to identify the
optimal modelm∗ ∈M with the objective of minimizing the number of labels required. The best model
is the classifier with the highest utility (e.g. classification accuracy) on the data if all the labels were
available. To achieve efficient model selection, methods query the labels of a highly informative subset
L = {(x1, y1), ..., (xb, yb)}, that is expected to yield the most information about identifying the best
model.

Let πb denote a sampling strategy of size b that defines the order of examples to query, then πopt[b]

represents the optimal policy of size b that determines the optimal order of sampling L. It is known
that selecting a set of most informative samples of restricted cardinality is generally NP-Hard (Ko et al.,
1995) and therefore calculating the optimal policy is practically infeasible. Consequently, all methods
employed in this thesis aim to estimate this optimal policy in various ways.

3.1. Model Picker
In order to solve the model selection problem a probabilistic model inspired by Chen et al., 2015 is
defined (see figure 3.1).

Figure 3.1: Probabilistic model to quantify
informativeness of data points. M being the latent
variable representing the best model and ϵ being
the models prediction noise on the unknown label

Yi.

Here, M is the latent variable representing the decision
about the best model, and all Yi stand for a number observ-
able random variables. These random variables represent
the unknown labels and are used to learn the true distribu-
tion of M. An assumption made is that all Yi are indepen-
dent from each other given M but dependent on M and ϵ.
The hyperparameter ϵ models the prediction noise of the
classifiers.

Let the optimal policy πopt[b] be defined as the policy that
achieves the maximal expected mutual information about
M:

πopt[b] = argmaxπ∈Πb
I(M;π) (3.1)

where Πb is the set of policies of size b. The solution proposed in this thesis aims to estimate a policy
πMP [b] so that:

I(M;πMP [b]) ≈ I(M;πopt[b])− δ (3.2)

by employing a greedy adaptive sampling algorithm with near optimal guarantees. Here, δ is a small
number depending on the noise, bounding the mutual information gained by the greedy policy rela-
tive to the optimal one. Chen et al., 2015 show that next to near optimal guarantees for (adaptive-)

7

3.1. MODEL PICKER 8

submodularity and sequential maximization of mutual information, sequential maximization of mutual
information under persistent noise also has near optimal guarantees, given some noise constraint and
a sufficient budget.

Each unlabeled data point in U is represented as a pair U = {(x1, Y1), ..., (xn, Yn)}, where xi is a data
point and Yi is a random variable associated with the unknown label of that data point. The latent
variableM ∈ {m1, ...,mk} incorporates the decision over the best model, given the evidence Lt at time
t. The conditional independence of Yi implies that querying the label of a specific Yi does not directly
effect the other tests but influences them through providing evidence. This evidence effects M, which
in turn affects the other Yi. This relation is clarified when discussing how the value of each data point
is calculated in the following section. The error rate ϵ represents the probability that a model incorrectly
predicts the true label of a data point. Conversely, 1 − ϵ represents the probability of predicting the
correct true label. A higher ϵ indicates increased noise and reduced trust in the model’s predictions

Given Lt, at each sampling step the Model Picker algorithm greedily selects the data point from U t that
provides maximum information about M. Upon querying the label, the data point label pair (xi, yi) is
added to the evidence. The process continues until the budget b is exhausted.

Inspired by Chen et al., 2015, the Model Picker algorithm calculates the information value of unlabeled
data points by computing Shannon’s mutual information between M and each Yi given Lt. Therefor
the optimal data point x∗(t) at time t is given by:

x∗(t) = argmax(xi,Yi)∈Ut
I(M;Yi| Lt) (3.3)

where xi and Yi denote a concrete data point unknown label pair and t = {1, . . . , b}. The maximization
in equation 3.3 identifies the data point whose label, when observed, is expected to provide the most
information aboutM, given the current evidence Lt. Shannon’s mutual information can be rewritten as
the difference in entropy:

I(M;Yi| Lt) = H(M | Lt)−H(M |Yi,Lt) (3.4)

where H(M | Lt) is the uncertainty around M given the evidence until t, and H(M |Yi,Lt) is the uncer-
tainty around M when adding an arbitrary Yi to the evidence.

Since H(M | Lt) is constant over all xi and equation 3.4 is a maximization problem, that part of the term
can be eliminated. Additionally, by removing the minus sign, the maximization turns into a minimization
resulting in:

x∗(t) = argmin(xi,Yi)∈Ut
H(M |Yi,Lt) (3.5)

Here, instead of maximizing the difference in uncertainty, the data point is selected that, through its
estimated information value, yields the lowest uncertainty around M.

Since the informativeness of a random variable can not be calculated directly, it is estimated with the
expected entropy of M over all possible classes. Therefore, a hypothetical class is assigned to the
unknown labels Yi and, with that, the rest uncertainty is calculated. Repeating this for all classes and
averaging the outcomes results in an estimate of the data point’s rest uncertainty. Formally, this leads
to:

x∗(t) = argmin(xi,Yi)∈Ut
Ec∈Y∼PcH(M |Yi = c;Lt) (3.6)

where Y is the outcome set of all Yi. Since the input data distribution is unknown, Pc represents the
assumption that the class priors are distributed uniform. Formulating this with entropy (Shannon, 1948)
results in:

x∗(t) = argmin(xi,Yi)∈Ut

∑
c∈Y

1

C

∑
m∈M

p(M = m|Yi = c,Lt) log(p(M = m|Yi = c,Lt)) (3.7)

3.1. MODEL PICKER 9

where C is the number of classes in Y and a uniform prior is assumed forM. The conditional probability
p(M = m|Yi = c;L(t)) represents the confidence in one model given the evidence and the hypothet-
ically assigned class c. This probability is unknown, but by incorporating the probabilistic model (3.1)
this probability can be expressed as:

p(M = m|Yi = c,Lt) = (
1− ϵ

ϵ
)Nm,c = γNm,c (3.8)

where γ is a reward constant directly depending on the hyper parameter ϵ. Let Nm ∈ {0, . . . , t} denote
the number of correct predictions made by the model on the evidence up to time t. Then Nm,c repre-
sents the number of correct predictions up to time t plus the prediction on the hypothetical evidence
c. Consequently, Nm,c can take any value in {0, . . . , t+ 1}. The reward constant γ is derived from the
probabilistic model:

p(M = m|Yi = c,Lt) = (1− ϵ)Nm,c

C−1∑
i=1

(
ϵ

C − 1
)t+1−Nm,c (3.9)

p(M = m|Yi = c,Lt) = (1− ϵ)Nm,cϵt+1−Nm,c (3.10)

p(M = m|Yi = c,Lt) = (
1− ϵ

ϵ
)Nm,cϵt+1 (3.11)

The confidence in one classifierm is represented by the probability of t+1 independent events, based
on the probabilistic model where the unknown labels Yi are considered independent of each other given
M.

Algorithm 1 Model Picker Algorithm Outline
Require: Models: M ̸= {}, Unlabeled pool: U ̸= {},

Budget: 0 ≪ b ≤ n, Classes: Y ̸= {}, Epsilon: 0 ≪
ϵ < 0.5

1: M← uniform distribution of length |M |
2: Lt ← empty evidence {}
3: U t ← U
4: γ ← 1−ϵ

ϵ
5: for t ∈ {0...b− 1} do
6: ut ← {}
7: for x ∈ U t do
8: ux ← 0
9: for c ∈ Y do
10: Mc,x ← rewardModels(M,M, γ, x, c)
11: ux,c ← entropy(Mc,x)
12: ux = ux + ux,c

13: end for
14: ut ← ut ∪ ux

|Y|
15: end for
16: Select x∗ from ut and query label y
17: M← rewardModels(M,M, γ, x∗, y)
18: Remove x∗ from U t and add (x∗, y) to Lt

19: end for

An additional event (t + 1) is considered,
due to the evidence up to time t and the hy-
pothetical evidence Yi = c. These events
can be divided into Nm,c correct predictions,
each with a probability of 1 − ϵ, and t + 1 −
Nm,c false predictions, each with a probabil-
ity of ϵ/(C − 1) per wrong class. Summing
up the uniform probabilities of false predic-
tions for each of the C − 1 wrong classes
in equation 3.9 results in ϵ, leading to equa-
tion 3.10. Next, separating 1/ϵNm,c from
ϵt+1−Nm,c and incorporating it into the brack-
ets results in equation 3.11. Finally, the con-
fidences over all models are combined into a
distribution and therefor normalized. Since
ϵt+1 is a constant, it can be removed from
the term as it has no effect on the result,
leading to equation 3.8.

The algorithm is designed to gradually build
up confidence towards model that per-
formed well based on the accumulated ev-
idence, consequently leading to γ > 1 and
0 ≪ ϵ < 0.5. Equation 3.8 illustrates ϵ in-
fluences the algorithms behavior. When ϵ
is higher (closer to 0.5), γ approaches 1, re-
sulting in minimal reward and little change in
M (indicating low trust in prediction and high noise). Conversely, when ϵ is lower, γ increases, meaning
that rewarding a model significantly impacts M (indicating high trust in prediction and low noise).

Instead of recalculating 3.8 over a model’s full prediction history every time, a more efficient iterative
approach is beneficial:

3.2. BASELINES 10

p(M = m|Yi = c,Lt) ∝ p(M = m| Lt)γ
Pm,c (3.12)

where Pm,c ∈ {0, 1} solely indicates whether the modelm predicted class c on the data point (=1) or not
(=0). Consequently, a model is rewarded with γ when predicting c on xi. How this is applied in Model
Picker is shown in algorithm 1. It outlines the process in the most intuitive form, showing the difference
between calculating the data point values and calculating the posterior after each sampling step.

The two outer for-loops represent a sampling step and iterating over each data point. As described
in equation 3.6, for each data point the algorithm iterates over all possible classes to sum up the
conditional rest uncertainties. Within the inner loop the rewardModels function is crucial. It utilizes
the iterative reward approach to return a hypothetical posterior Mt,c,x by applying equation 3.12 to
all models and normalizing the result. Afterward, the entropy of Mt,c,x is calculated, and the result is
added to the current value of the data point (ux). This process is repeated for all classes. Finally, ux is
normalized and stored in ut, which is the list containing the data point values for this particular sampling
step.

After completing the calculation of all data point values, the data point with the least rest uncertainty
is selected, and its true label y is queried. The true label is then permanently available and used to
calculate the real posterior by again applying the rewardModel function. The difference here lies in the
usage of the true label y instead of a hypothetical class c. To update the evidence for the next sampling
step the new posterior (Mt+1) is stored in Mt. Finally, before moving on to the next sampling step, the
selected sample is removed from U t and added to the Lt.

3.2. Baselines
To benchmark the performance of Model Picker, a variety of baselines was selected from the field of
Active Learning were selected. Commonly used uncertainty measures such as entropy, vote margin
and least confidence could be easily adapted for this setting. ”Active Comparison on prediction Models”
is one of the few baselines found that was designed specifically for model comparison of pretrained
classifiers. Other sampling methods like QDD andGALAXY focus on different problems in Active Learn-
ing, such as sampling higher-representative examples or mitigating class imbalance. In the following
sections, each method is explained in detail.

3.2.1. Query by Committee
Query by Committee (QBC) introduced by Seung et al., 1992, is a suitable baseline for the model
selection problem. In AL, the committee has to be created from different candidate models, where in
this setting, the committee is available through the set of models to compare. QBC operates on the
principle of disagreement to determine which data point to sample. The models’ class predictions are
used to create a vote distribution on each data point. Various uncertainty measures can then be applied
to this vote distribution to measure the value of each data point. The more uncertain the committee is,
the more value a data point has (Kee et al., 2018). Notably, QBC is a non adaptive sampling algorithm,
meaning that the ordering of the samples is defined upfront, and does not change with the collection
of evidence. For ease of explanation, QBC is defined as querying up to b data points that have the
highest uncertainty according to u(x), where the u(x) is defined by the different uncertainty measures.
The vote distribution p(y|x) over all y ∈ Y is given by:

p(y|x) = v(y, x)

k
(3.13)

where v(y, x) is the number of votes a class received on data point x and k is the number of models.

Vote margin is one of the two uncertainty measures most commonly used with QBC:

u(x) = p(y2|x)− p(y∗|x) (3.14)

where p(y∗|x) represents the probability of the most voted class, and p(y2|x) represents the probability
of the runner up. Since QBC is framed as a maximization problem in this context, the ordering of the
two terms needs to be reversed. Consequently, a smaller the gap between the two, indicates a higher
uncertainty, with 0 being minimal uncertainty and 1 being maximal uncertainty.

3.2. BASELINES 11

Vote entropy, another frequently used uncertainty measure with QBC, is defined as:

u(x) = −
∑
y∈Y

p(y|x) log(p(y|x)) (3.15)

This measure calculates the entropy of the vote distribution over all possible outcomes y in the outcome
set Y given x. Entropy ranges from 0 to 1, where 1 indicates maximum uncertainty.

Least confidence is a common uncertainty measure often used independently of QBC. Typically, the
least confidence measure is applied on the output distribution of individual models to assess its uncer-
tainty regarding the prediction. Here it is adapted to the context by applying it to the vote distribution:

u(x) = 1−max
y∈Y

(p(y|x)) (3.16)

As shown in equation 3.16, least confidence is defined as the complement of the highest class proba-
bility according to the votes. Again, the inversion is needed to transform the output to a maximization,
resulting in less confidence being the higher uncertainty score.

3.2.2. Active Comparison of Prediction Models
”Active Comparison of Prediction Models” introduced by Sawade et al., 2012 is a non adaptive sampling
method designed for model comparison of pretrained classifiers. By estimating empirical risks of each
model, the goal is to create an instrumental sampling distribution q∗. Originally created to compare two
models, the authors proposed an extension for multi-model comparison by constructing a mixture of
pairwise-optimal sampling distributions. The resulting distribution assigns higher probabilities to data
points that contain more information about distinguishing the best models based on disagreement and
estimated risks.

To create q∗, the empirical risk estimates for each model are calculated. For a model fj is given by:

R̂[fj] =
1

C

n∑
i=1

∑
y∈Y

p(y, xi)l(fj(xi), y) (3.17)

where n is the number of samples in the unlabeled pool, C the number of classes in Y, and p(y, x) =
p(y|x)p(x). Assuming a uniform distribution for p(x), results in p(x) = 1/n. The authors originally used
the softmax output for each class to estimate p(y|x). Here, p(y|x) is estimated with the vote distribution
of all models, as discussed in the QBC section. The loss function l is defined as zero-one loss:

l(fj(x), y) =

{
1 iffj(x) ̸= y

0 iffj(x) = y
(3.18)

Having calculated R̂[fj] for all models, the delta matrix ∆̂ can be computed by pairwise comparing all
models’ risks R̂[fj]−R̂[fk]. The matrix ∆̂ represents the relative risks, and gives an indication on which
model is preferable. Using ∆̂, q∗j,k is constructed, which is the pairwise-optimal sampling distribution
for the models fj and fk:

q∗j,k(x) =
∑
y∈Y

√
(l(fj(x), y)− l(fk(x), y)− ∆̂j,k)2p(y|x) (3.19)

where ∆̂j,k is the value in the delta matrix comparing the twomodels. Sampling distributions are created
for every pairwise model comparison in ∆̂, resulting inm(m−1) pairwise-optimal sampling distributions.
Finally, the optimal sampling distribution q∗ is then calculated by:

3.2. BASELINES 12

q∗(x) =
1

m(m− 1)

∑
j ̸=k

q∗j,k(x) (3.20)

Using q∗, up to b samples without replacement can be sampled and used for the model selection
process.

3.2.3. GALAXY
GALAXY is an AL algorithm specifically designed to address the issue of class imbalance that often
occurs in real-world datasets. A lot of acquisition functions proposed in AL do not consider the class
distribution, potentially leading to biased or less informative samples Zhang et al., 2022. The GALAXY
algorithm overcomes this challenge by implementing a graph-based method that selects balanced and
uncertain examples for labeling.

For each class, GALAXY constructs a one-versus-all graph where nodes represent data points. The
data points (nodes) are sorted by their class confidence margin and connected to their direct neighbor,
resulting in a linear graph. In this graph, the most uncertain data points are placed at the start, while
the least uncertain data points are at the end. The class confidence margin δy(x) for an instance x in
the class graph y is given by:

δy(x) = p(y|x)−max
y′∈Y

(p(y′|x)) (3.21)

It defines the difference in probability between a class y and the most likely class maxy′∈Y(p(y
′|xi)) for

a data point. Instead of using the softmax output of a single model, again the vote distribution estimate
is used. A significant difference between the AL setting of GALAXY and the implementation used here
is that no new graphs are constructed at each time step t. In AL, this is necessary because the model’s
predictions change after the training step. However, in this setting p(y|x) remains fixed. Additionally,
instead of sampling a batch of examples, one example at a time is sampled, to stay consistent with the
other methods.

GALAXY requires a small initially labeled set of examples which are chosen randomly from the un-
labeled set. All queried examples are marked on each graph, indicating whether they belong to the
graph’s class or not. Using the Dijkstra algorithm, the shortest path between a labeled node belonging
to the class of a graph, and a node belonging to another class is found. This shortest path represents
the region of uncertainty. The midpoint of this path is queried. All graphs get updated with the freshly
queried sample in the same way as with the initial set. This approach continuously reduces the region
of uncertainty, ensuring that samples closer to the true decision boundary are queried.

Different ways exist to decide on which class graph to sample from at each t. The authors propose
sampling from the graph that provides the overall shortest shortest path, thus sampling from the region
closest to the decision boundary. However, the authors of ”Label Bench”Zhang et al., 2024, a paper
comparing different label efficient learning techniques, implemented GALAXY with random selection
of graphs for each sampling step. Implementing random selection comes with a speed advantage
because it avoids calculating the shortest path for all graphs at each time step. The experiments
showed no significant impact on performance, and therefore, random graph selection is used in this
implementation.

3.2.4. QDD (Query by Committee with Density and Diversity
The QDD method is an AL algorithm designed to enhance the efficiency and effectiveness of model
training Kee et al., 2018. This approach incorporates three critical aspects of AL: uncertainty sampling
via QBC, diversity sampling to prevent redundant samples, and density sampling to ensure represen-
tativeness of the selected examples. The method was selected to investigate the potential impact of
input data on the model selection process. Unlike other methods that purely rely on the prediction
space and ignore the input features, QDD takes both into account. Although the uncertainty and den-
sity measures for all data points are calculated upfront, QDD can be classified as an adaptive sampling
algorithm because the diversity measure changes with the selected instances.

3.2. BASELINES 13

The best data point is determined by maximizing a utility function. According to QDD, the most valuable
data point is defined as:

x∗(t) = argmaxx∈Ut
(u(x)) (3.22)

The utility function u(x) assigns a value to the data points and is defined as:

u(x) = (1− γ − β)f(x) + γd(x) + βh(x) (3.23)

Here, f(x) represents the QBC uncertainty measure, d(x) the density measure, and h(x) the diversity
measure for a data point. The variables γ and β are weights that assign importance to the different
terms and therefore γ + β ≤ 1.

The uncertainty measure used in QDD is entropy over models softmax prediction. Again, the softmax
output is substituted with the vote distribution resulting in the entropy measure previously explained in
QBC (see equation 3.15). For the density and diversity measures, a similarity metric is needed. Cosine
similarity is used to compare the features embedded in the last dense layer of a ResNet-18 pretrained
on ImageNet. A matrix is created that pairwise compares all data points, resulting in scores from -1 to
1, with 1 indicating equality, 0 indicating no correlation and -1 indicating maximal inequality.

The density measure d(x) is calculated at the start of the algorithm using k-nearest neighbors (k-NN):

d(x) =
1

k

∑
x′∈Nk,x

CosSim(x, x′) (3.24)

where Nk,x is the set of k examples in the neighborhood of x. The diversity measure h(x) is given as
the minimum distance to all already queried examples:

h(x) = min
x′∈Lt

(CosSim(x, x′)) (3.25)

where Lt is the set of already labeled instances at time t. After each sampling step the diversity has to
be updated because it may have changed due to the new evidence.

4
Experiments

4.1. Experimental Protocol
The objective of this evaluation is to determine the number samples that need to be labeled to reliably
identify the best model across a variety of datasets, as well as to obtain an accurate estimate of gen-
eralization, strengths, and weaknesses of the Model Picker algorithm. To achieve a reliable estimate,
a number of realisations are uniformly sampled from the entire dataset. Unless stated otherwise, 100
realisations, each containing 1000 instances, are sampled across all experiments. This realisation size
ensures a good balance between sampling error and representativeness of the underlying data. Each
realisation is treated as the complete data pool, with its corresponding best ground truth model, thus
running an experiment on a realisation represents running an experiment on the entire dataset. The
results of all realisation experiments are aggregated to the full result. The budget during evaluation is
always set to the realisation pool size, allowing for investigation of the algorithm’s behavior throughout
the entire process. The results give an indication of the budget required in the real setting for a reliable
model selection process.

4.2. Experimental Setup
The developed software framework can be accessed via the GitHub repository1. It is implemented
in Python, with necessary libraries listed in dedicated requirements files for easy reproducibility. The
model selection experiments primarily utilize Numpy, Scipy and Matplotlib, while tasks related to ma-
chine learning models, such as generating predictions for the datasets, are handled using PyTorch.
Inspired by Zhang et al., 2024, the framework is designed for usability, making the addition of new
methods straight forward. Ideally, this framework will serve as a foundation for evaluation of future
model selection methods.

Depending on the experiments and their anticipated runtime, they were executed either locally or on
the TU-Delft computation cluster2. An Apptainer image was defined for easy deployment on the cluster,
including the minimal requirements to run all experiments.

4.2.1. Datasets and Model Collection
The datasets selected for this research have diverse characteristics and aim to provide insights into
various aspects of the model selection process. Table 4.1 lists all datasets along with additional infor-
mation about their characteristics. The goal was to cover a wide variety of scenarios, from different
accuracy ranges and class imbalance to extreme noisy problems.

For clarification, some scores presented in the overview are only available in the test setting because
here all labels of the test set are available. In production, it is assumed that only little meta data
about the problem is known, and potentially unreliable model accuracy evaluated during training. The

1https://github.com/janneskasper/efficientModelSelection
2https://daic.tudelft.nl/

14

https://github.com/janneskasper/efficientModelSelection
https://daic.tudelft.nl/

4.2. EXPERIMENTAL SETUP 15

Datasets Num. Models Classes Acc. Range Fleiss’ Kappa Disagreement Ratio
Domain Drift 9 6 0.25 - 0.61 0.1168 3600 / 3600 (100.0%)

CIFAR-10 Low 80 10 0.41 - 0.69 0.4231 9926 / 10000 (99.26%)
CIFAR-10 High 80 10 0.55 - 0.92 0.6028 9587 / 10000 (95.87%)

Imagenet 102 1000 0.37 - 0.84 0.6209 42876 / 50000 (85.752%)
Imagenet V2 M-F 114 1000 0.43 - 0.81 0.6712 7780 / 10000 (77.8%)
Imagenet V2 T-0.7 114 1000 0.51 - 0.86 0.7288 7162 / 10000 (71.61%)
Imagenet PyTorch 114 1000 0.55 - 0.87 0.7468 33578 / 50000 (67.15%)

PACS 30 7 0.73 - 0.94 0.7631 5260 / 9991 (52.64%)
Imagenet V2 T-I 114 1000 0.58 - 0.89 0.7678 6588 / 10000 (65.88%)

Emotion Detection 8 4 0.88 - 0.92 0.7807 902 / 5509 (16.37%)

Table 4.1: The table shows meta data and different characteristics for all used datasets ordered by their disagreement (Fleiss’
Kappa) score κ ∈ {−1, . . . , 1} with -1 indicating perfect disagreement and 1 indicating perfect agreement. Accuracy range
describes the classification accuracy from the worst to the best model. Disagreement ratio indicates the ratio of informative

samples where at least one model disagrees with the rest.

accuracy range in table 4.1 represents the worst and best model test accuracy on the test set. The
Fleiss’ Kappa coefficient (κ) (Cohen, 1960) is used to indicate how much the models agree with each
other based on their predictions. This score is used throughout the thesis as indication of noisiness in
the data and models. The Fleiss’ Kappa score has an advantage over a pure percentage agreement
measure because it accounts for the agreement that could occur by chance, thus providing a more
accurate assessment.

κ =
po − pe
1− pe

(4.1)

Where po is the relative observed agreement among models, and pe is the hypothetical probability
of chance agreement. The κ coefficient ranges from -1, indicating perfect disagreement, through 0,
representing agreement by chance, to 1, indicating perfect agreement.

The disagreement ratio shows how many data points are valuable for the model selection process. A
data point is valuable when there is at least one model disagreeing with the rest. A higher kappa score
suggests a greater likelihood of data points where where all models agree, resulting in fewer valuable
samples. The number of models greatly influences the number of valuable samples as well. The fewer
models are used, the more likely samples are produced where all models agree. The model accuracy
distribution (appendix figure A.1,A.2) provides insight into howmanymodels fall within defined accuracy
ranges. A low number of high quality models can indicate an easier model selection problem due to
the lack of valuable candidates.

Creating a dataset in this context refers to using an existing dataset to create a set of class predictions.
This involves training different models on the datasets and using them to make predictions on the test
sets. Different models can vary in architecture, hyper-parameter, or the portions of training data used.
The result is a matrix of n× k class predictions, where n is the number of instances in the test set and
k being the number of models. A corresponding oracle with the correct labels is created as well. The
test sets of the used datasets act as the production data with the unknown distribution. Hence, from
now on when talking about datasets, it implies the combination of the prediction matrix and the oracle.

The dataset collection includes two versions from the popular CIFAR-10 dataset (Krizhevsky, 2009).
One version (CIFAR-10 Low) is noisier, reflected in the lower accuracies of the models. This version
includes less accurate models (max. ≈ 70%), making it challenging for the algorithm to rely on predic-
tions. The second version (CIFAR-10 High) includes predictions from more accurate models, allowing
the algorithm to trust their predictions more.

Next to CIFAR-10, different ImageNet dataset versions were created. ImageNet it is the most com-
petitive image classification benchmark with numerous pre-trained models available. The challenge
with ImageNet is that the test set is not publicly available. To address this, the labeled validation set of
50.000 images was used to create the predictions. For the ImageNet-Pytorch version, all pre-trained
models available on PyTorch (PyTorch, 2024) were used to predict on the ImageNet validation set.

Additionally, the ImageNet-V2 test sets proposed by Recht et al., 2019 were used. These datasets are
standalone test sets for model evaluation purposes, with 10.000 samples each. The goal is to identify

4.2. EXPERIMENTAL SETUP 16

whether the progress on the ImageNet challenge was partly due to models generalizing to ImageNet
itself. The authors tried to mimic the original dataset creation closely and still detected a significant
performance gap in the models on the created test sets, concluding that this gap is mostly caused by a
distribution shift in the data and the selection of more difficult samples. Therefore they proposed three
different test sets of varying difficulty according to their selection frequency metric: ImageNet-V2 Top-
Images (T-I), ImageNet-V2 Threshold-0.7 (T-0.7) and ImageNet-V2 Matched-Frequency (M-F). The
difference in model performance over the different test sets mentioned in the paper was successfully
reproduced in our dataset creation. The decreasing accuracy range shown in table 4.1 reflects similar
behavior, even different models were used. For all three ImageNet V2 versions all available pre-trained
models from PyTorch were used.

To research a very noisy setting, the domain drift dataset was created. The underlying data distribution
is a combination of different distributions. Each model was trained on one of nine distributions, and
the test set is from a different tenth distribution, Resulting in a very noisy dataset with low model per-
formances on the test set. However, this does not necessarily mean that the models performed bad in
their own distribution.

The Emotion Detection (Pillai, 2020) dataset was used to create a dataset with extensive class imbal-
ance. Until now, all datasets have had uniform class distribution. This dataset is extremely imbalanced
towards one class (≈85%), with the other classes sharing the remaining samples, each hovering around
5%.

Lastly, the PACS dataset (D. Li et al., 2017) was used. It is widely used for testing domain adaptation
of models. The PACS dataset includes the a classification problem with seven classes in four different
domains: photo, art, cartoon and sketch. This dataset is ideal for demonstrating how distribution shift or,
in extreme cases, domain drift influences model accuracy and model ranking. Therefore, the dataset
was used to create another test set for model evaluation as well as an example that supports the
motivation for model selection.

4.2.2. Evaluation Metrics
To assess the effectiveness of the different methods used, the evaluation focuses on three core metrics:
success probability, 90 percentile return model accuracy, and initial labeling cost. The three metrics pro-
vide a comprehensive measure for the model selection process, balancing the objectives of accuracy
and label efficiency.

To achieve a robust evaluation of the methods and to compute the success probability, a number of
realisations is generated from the data. A realisation is a uniformly sampled subset from the entire
dataset, large enough to resemble the characteristics of the dataset but small enough to induce some
sampling error. By executing the experiments on all realisations, a reliable performance estimate can
be calculated.

Success Probability quantifies the consistency with which a method identifies the correct best model
across multiple realisations at a certain point in time. It is calculated as the proportion of realisations
where the method selected the optimal model out of all trials:

Success Probability at t =
Number of correct Best Models returned at t

Number Realisations
(4.2)

A high success probability (greater than 80%) at time t indicates that the method is expected to reliably
identify the best model on the underlying dataset.

90 Percentile ReturnModel Accuracy is a robustness measure and refers to the difference between
the ground truth best model’s accuracy and the currently selected best model’s accuracy at time t in
the worst 90% of realisations. Since the true oracle is known in the test setting, the accuracy of each
model for each realisation can be calculated beforehand using classification accuracy:

Model Accuracy =
Number of correct Predictions
Total number of Predictions

(4.3)

4.3. HYPERPARAMETER OPTIMIZATION 17

To calculate the return model accuracy difference in a realisation the overall best models accuracy is
subtracted from the accuracy of the selected best model at time t. The 90 percentile return model
accuracy is the mean of the worst 90% of return model accuracy differences over all realisations. This
measure is a good indication of robustness, as it shows how close the selected model at time t is to the
optimal model in terms of overall performance in non optimal cases. A return model accuracy close to
zero implies that the model chosen at time t has a performance nearly equivalent to the overall model
in this realisation. This knowledge is valuable, since the objective is to balance the labeling cost with
the quality of the returned model.

Labeling Cost measures the efficiency of the whole model selection process in terms of the number
of labels required to achieve a level of performance. This is particularly significant when discussing the
initial labeling cost of Model Picker used for estimating the optimal hyperparameter ϵ. Therefore, the
total labeling cost consists of two parts:

Labeling Cost = Hyperparameter Optimization Labeling Cost+Model Selection Labeling Cost (4.4)

For now the hyperparameter labeling cost for all other baselines is set to 0. Since all methods are
designed tominimize the process labeling cost, it is crucial that the initial labeling cost for Model Picker is
as low as possible, whilemaintaining a good hyper-parameter configuration. It is important to note these
metrics are used to evaluate the model selection methods performance, not the models themselves.
The metric to evaluate the model ranking given the evidence at time t can be chosen separately. In
this implementation the classification accuracy is used as defined in equation 4.3. Other metrics, like
the F1-score, can be applied as well.

4.2.3. Implementation Details
The efficient implementation of Model Picker slightly differs from the algorithm shown in algorithm 1.
Instead of looping over all data points, Numpy’s matrix operations are employed to accelerate the
process. Interestingly, it is more efficient to keep the iteration over the classes compared to adding
another dimension to the matrix operations. Consequently, the algorithm’s performance scales with
number of classes in the dataset. Experiments with datasets containing a lot of classes, such as
ImageNet with 1000 classes, tend to take longer. This is particularly important considering the fact that
grid search, for finding the optimal epsilon, runs the model selection process 100 times for each epsilon.
This results in 1000-2000 model selection processes per experiment (given 10-20 different epsilons).
In addition to using Numpy for speed optimization, realisations are executed in parallel because the
results are independent and are only get combined after all have finished.

4.3. Hyperparameter Optimization
4.3.1. Hyperparameter Optimization by True Oracle
Before comparing Model Picker to the other baselines, it is crucial to properly parameterize the algo-
rithm by finding the optimal value of ϵ for each dataset. The hyperparameter ϵ models the prediction
noise of the classifiers, with higher ϵ values (closer to 0.5) expected for noisy datasets such as Domain
Drift and CIFAR-10 Low, and a lower ϵ expected for datasets with less noise, such as PACS and Emo-
tion Detection. The following results present the hyperparameter optimization based on the ground
truth oracle. This way of optimization is used to investigate the behavior of ϵ across various settings
and serves as a reference for subsequent methods to efficiently learn ϵ without relaying on the true
oracle, since this is not available in the real setting.

To identify the optimal ϵ grid search is used. An initial broad range of ϵ = {0.2, . . . , 0.5} with step size
of 0.025 was defined to get an estimate of the region of interest. For the ImageNet datasets the range
was reduced to ϵ = {0.3, . . . , 0.5} with step size of 0.02 due to high sensitivity to low epsilons. The
results of this wide search can be found in the appendix A.4. From this, the most effective areas were
identified, and a more detailed grid search was conducted. For all datasets the region of interest was
within ϵ = {0.35, 0.41, . . . , 0.49} with a step size of 0.01. For the Domain Drift dataset a wider range of
ϵ = {0.2, 0.21, . . . , 0.49} with step size 0.01 was used because of multiple interesting areas.

Instead of presenting the results of every ϵ configuration, a representative subset was selected for
better visualisation. The results are shown in figure 4.2 and 4.1. The selected configurations include

4.3. HYPERPARAMETER OPTIMIZATION 18

low and high ϵ values as well as a number of well-performing configurations in the middle, one of them
being the optimal ϵ. The different graphs on the left side in figure 4.2 present the success probability
in the y-axis and the sampling time in the x-axis, while the graphs on the right side display the 90
percentile return model accuracy in the y-axis. Despite every experiment being executed with a pool
size and budget of 1000 samples, all graphs focus on the most interesting areas of the results for better
visualisation. Each data sequence in a graph is a differently parameterized Model Picker, running on
the same realisations.

The grid search results reveal different trends. Higher ϵ tend to show a promising start but converge
slowly towards the end. In contrast, lower ϵ need more initialization time but then their confidence in
the models increases rapidly. Another notable observation is that higher ϵ can get stuck in a ”local
optimum” (e.g. Domain Drift, ImageNet V2 T-I, ImageNet), where the success probability drops after
an initial peak. For some datasets, little difference is observed for different ϵ configurations in the good
range (e.g. ImageNet V2 PyTorch, Emotion Detection), which is also confirmed by the return model
accuracy graphs. Generally, the results indicate a close correlation between return model accuracy
and the success probability.

Dataset Epsilon
Domain Drift 0.34

CIFAR-10 Low 0.47
CIFAR-10 High 0.46

ImageNet 0.4
ImageNet V2 M-F 0.44
ImageNet V2 T-0.7 0.42
ImageNet PyTorch 0.43

PACS 0.42
ImageNet V2 T-I 0.4

Emotion Detection 0.42

Table 4.2: The table shows the optimal ϵ configurations for
each dataset based on grid search with ground truth oracle

available.

The results also provide insight into the conse-
quences of selected an ϵ outside the optimal
range. High ϵ, such as 0.48, lead to extreme loss
in convergence speed, as indicated by multiple
graphs in figure 4.2 e.g. the light blue graph in
ImageNet V2 M-F. ImageNet V2 T-0.7 illustrated
well the effect of a low ϵ, resulting in early cut-
off and poor overall performance (dark blue data
with ϵ = 0.35). The data sequence not reaching
the 100% success probability for a long time indi-
cates that Model Picker gets stuck with a wrongly
identified best model in one or more realisations.

Currently, the best ϵ is selected manually. While
the initial phase (<60% success probability) is not
very significant, the primary heuristic is the performance between 60-100% success probability. The ϵ
that reaches this area the fastest and performs best within it is deemed the optimal one. Table 4.2 lists
the best ϵ for each dataset according to this selection procedure. Apart fromDomain Drift and ImageNet,
a slight correlation between data noisiness (sorted from top to bottom) and ϵ value is observable.

Domain Drift CIFAR-10 Low

Figure 4.1: Grid search result with ground truth oracle available, part 1: The graphs show the success probability of grid search
experiments for Model Picker hyperparameter optimization on all datasets with known labels, given different budget sizes.

4.3. HYPERPARAMETER OPTIMIZATION 19

CIFAR-10 High ImageNet

ImageNet V2 M-F ImageNet V2 T-0.7

ImageNet PyTorch PACS

ImageNet V2 T-I Emotion Detection

Figure 4.2: Grid search result with ground truth oracle available, part 2: The graphs show the success probability of grid search
experiments for Model Picker hyperparameter optimization on all datasets with known labels, given different budget sizes.

4.3. HYPERPARAMETER OPTIMIZATION 20

4.3.2. Hyperparameter Optimization by Subset Sampling
In the previous chapter, ϵ was tuned by using the ground truth oracle. Since this is not available in the
real-world settings, it is essential to find a label-efficient method to learn ϵ without knowing the oracle.
The labeling cost arising from hyperparameter optimization is referred to as the initial labeling cost. This
section focuses on finding a way to minimize this initial labeling cost. The baseline to beat is selecting
a fixed ϵ for all settings. From the results in the previous chapter, an ϵ of 0.43 performs well across all
datasets.

The initial idea was to query the labels of a small, uniformly sampled subset of examples and use
them to estimate an ϵ to use for the entire dataset. This method was tested empirically by running grid
search on different pool sizes, reaching from 50 samples up to 500, to determine how many examples
are needed to identify dataset’s characteristics. The CIFAR-10 High dataset was chosen for this test
due to its significant differences between ϵ configurations, which allows for easier identification of when
a good estimate is reached.

Figure 4.3 shows four different experiments with pool sizes of 50, 100, 300 and 500. Over the course
of these experiments, the dataset characteristics develop gradually. In the smaller pool sizes, lower
ϵ tend to outperform higher ones. Specifically, in the experiments with pool sizes of 50 and 100, the
ϵ configurations are ordered by their value, with lower ϵ performing best. At a pool size of 300, dif-
ferences in the middle part of the algorithm start to become apparent, influencing the ranking of the ϵ
configurations to better reflect the expected behavior.

Poolsize: 50 Poolsize: 100

Poolsize: 300 Poolsize: 500

Figure 4.3: The figures shows the success probability of different grid search results for Model Picker hyperparameter
optimization with subset sampling on the CIFAR-10 High dataset.

4.3. HYPERPARAMETER OPTIMIZATION 21

4.3.3. Hyperparameter Optimization by Noisy Oracle Estimation
An alternative approach is to use model predictions to generate a noisy oracle. With that, an ϵ over all
samples can be estimated. Two different methods to generate the labels were implemented: majority
voting (selecting the class with the highest votes) and sampling a label from the vote distribution created
by the models. This vote distribution is estimated the same way as for QBC (see equation 3.13).

To further enhance the noisy oracle, 50 samples are labeled to improve the estimation. These samples
are selected through three different heuristics: uniformly random sampling, weighted sampling based
on uncertainty measured with entropy over the vote distribution, and directly sampling the 50 most
uncertain instances (ordering).

Table 4.3 compares the similarity between the noisy oracles and ground truth oracle. Table 4.4 illus-
trates how often the best model according to the noisy oracle matches the best model according to the
ground truth oracle. Interestingly, the methods of estimating the noisy oracle through majority voting
and vote distributions have different effects on the best model similarity compared to oracle similarity.
The oracle similarity consistently shows lower percentages for vote distribution. However, for model
similarity, the vote distribution reduces the probability of identifying the best model in datasets such as
CIFAR-10 Low and PACS, whereas for the other datasets, the probability increases.

N-V N-VD E-V-R E-VD-R E-V-W E-VD-W E-V-O E-VD-O
Domain Drift 56.9% 39.9% 59.0% 43.0% 59.2% 43.1% 58.7% 43.9%

CIFAR-10 Low 77.0% 57.5% 78.2% 59.7% 78.6% 60.3% 80.0% 61.5%
CIFAR-10 High 90.0% 74.7% 90.5% 76.0% 90.9% 76.7% 92.3% 78.2%

ImageNet 80.3% 67.4% 81.4% 69.3% 82.0% 70.1% 83.3% 71.6%
ImageNet V2 M-F 74.5% 67.0% 76.1% 69.1% 76.9% 70.1% 78.2% 71.4%
ImageNet V2 T-0.7 82.1% 75.1% 83.3% 76.8% 84.0% 77.7% 84.9% 79.0%
ImageNet PyTorch 83.2% 77.1% 84.4% 78.7% 85.3% 79.8% 86.8% 81.4%

PACS 93.4% 87.2% 94.0% 88.4% 94.4% 88.9% 95.5% 90.2%
ImageNet V2 T-I 85.7% 79.8% 86.7% 81.3% 87.5% 82.2% 88.4% 83.5%

Emotion Detection 91.9% 90.8% 93.5% 92.7% 93.6% 92.9% 94.3% 93.4%

Table 4.3: The table presents the similarity between the ground truth oracle and noisy oracles created with different noisy
oracle estimation methods for 1000 realisations with 1000 samples each. Bold indicates maximum similarity and italic minimal.
N: Noisy Oracle, E: Enhanced Noisy Oracle, V: Majority Voting, VD: Vote Distribution, R: Random, W: Weighted, O: Ordered

N-V N-VD E-V-R E-VD-R E-V-W E-VD-W E-V-O E-VD-O
Domain Drift 0.0% 0.2% 0.0% 0.9% 0.0% 0.9% 0.0% 0.0%

CIFAR-10 Low 14.6% 7.9% 16.8% 9.3% 17.7% 10.9% 20.5% 14.1%
CIFAR-10 High 2.5% 6.4% 5.2% 8.1% 6.4% 14.7% 17.9% 26.8%

ImageNet 5.6% 4.7% 8.1% 9.5% 10.3% 10.9% 15.4% 19.7%
ImageNet V2 M-F 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 2.1%
ImageNet V2 T-0.7 0.0% 0.0% 0.0% 0.1% 0.0% 0.9% 0.2% 4.8%
ImageNet PyTorch 0.0% 0.2% 0.0% 0.4% 0.2% 1.5% 1.2% 5.4%

PACS 24.4% 18.8% 31.2% 26.0% 36.3% 29.1% 47.5% 43.1%
ImageNet V2 T-I 0.0% 0.0% 0.0% 0.6% 0.2% 1.7% 2.4% 10.0%

Emotion Detection 6.7% 16.6% 14.4% 31.2% 17.9% 33.3% 36.1% 44.6%

Table 4.4: The table shows the percentage of times the best model on the ground truth oracle matches the best model on the
different generated noisy oracles, measured across 1000 realisations with 1000 samples each. Bold indicates maximum

similarity. N: Noisy Oracle, E: Enhanced Noisy Oracle, V: Majority Voting, VD: Vote Distribution, R: Random, W: Weighted, O:
Ordered

Figure A.3 in the appendix presents the grid search results based on the different noisy labeling meth-
ods on the example of CIFAR-10 High. Both label generation methods (majority voting and vote distri-
bution) are used alone and paired with each enhancement method, resulting in a total of eight different
results. These are compared to the grid search results with the ground truth oracle. It is evident that
using the noisy oracle, which induces labeling noise into the data, leads to a slightly slower conver-
gence time (≈220 samples vs. ≈300 samples). This observation aligns with the previous noted trend

4.3. HYPERPARAMETER OPTIMIZATION 22

that noisier datasets tend to converge slower. Another notable observation is that despite the varying
results for best model similarity in table 4.4, majority voting estimates the underlying dataset character-
istics more accurately. All graphs on the left side of figure A.3 are visually closer to the ground truth
figure at the top. Conversely, the vote distribution method estimates the cut off caused by the lowest
ϵ configurations (0.35, yellow), which is a crucial indication of too low ϵ configurations. None of the
majority vote approaches succeeded in estimating this behavior.

To investigate how well the noisy oracle estimation techniques generalize to other datasets, the most
promising methods were selected. These include the pure noisy oracle based on majority voting (top
left) and vote distribution (top right), as well as the noisy oracle based on majority voting and vote dis-
tribution with ordered enhancement (bottom left and right). This selection ensures a balance between
the most accurate oracle estimation and a good distribution estimation. Table 4.5 compares the opti-
mal ϵ estimated via the selected methods to the ground truth optimal ϵ. When multiple ϵ configurations
perform equally well, the higher one got selected because it tends to be less likely to cause early cut
off. Estimated ϵ values that deviate by less or equal than one from the ground truth ϵ are marked bold.
The majority vote and the enhanced vote distribution perform best, closely followed by vote distribution,
according the number of times they estimated a valuable epsilon. For the datasets CIFAR-10 Low,
all ImageNet V2 versions and ImageNet PyTorch all methods work well. Significant differences occur
when comparing the estimations the other datasets. Specifically ImageNet, where the most promising
method (N-V) predicts a very low epsilon.

Optimal N-V N-VD E-V-O E-VD-O
Domain Drift 0.34 0.43 0.47 0.46 0.49

CIFAR-10 Low 0.47 0.47 0.45 0.46 0.47
CIFAR-10 High 0.46 0.45 0.41 0.45 0.40

ImageNet 0.4 0.35 0.39 0.35 0.39
ImageNet V2 M-F 0.44 0.43 0.43 0.41 0.45
ImageNet V2 T-0.7 0.42 0.43 0.43 0.43 0.43
ImageNet PyTorch 0.43 0.43 0.43 0.41 0.39

PACS 0.42 0.43 0.42 0.46 0.39
ImageNet V2 T-I 0.4 0.41 0.41 0.43 0.39

Emotion Detection 0.42 0.45 0.46 0.44 0.41
Best found - 7 6 3 6

Table 4.5: The table compares the optimal ground truth ϵ values against the ϵ estimated via generating noisy oracles across all
datasets. Estimated ϵ values that deviate at max by 1 from the ground truth are marked bold. N: Noisy Oracle, E: Enhanced

Noisy Oracle, V: Majority Voting, VD: Vote Distribution, O: Ordered

Using the ϵ values from table 4.5 and the ground truth oracle grid search results from figure 4.2, the
effectiveness of the ϵ estimations can be assessed. Figures 4.4 and 4.5 show how the selected ϵ
configurations directly compare against the fixed baseline of 0.43, according to their performance on
the true oracle grid search.

The results in figure 4.4 show mixed performance of the estimation methods. For CIFAR-10 Low all
estimation methods perform very well, with N-VD and E-VD-O directly predicting the optimal ϵ, which
then also beats the fixed ϵ baseline (blue). For the datasets CIFAR-10 Low, all ImageNet V2 versions
and ImageNet PyTorch all methods work well with little deviation. Significant differences occur when
comparing the estimations on the other datasets. Specifically ImageNet, where the most promising
method (N-V) predicts a very low epsilon, shows a dramatic effect in figure 4.4.

Many optimal ϵ values hover around the 0.43 baseline, making it challenging for the estimators to
outperform the baseline. In the scenarios where there is a significant difference between the static
baseline and the optimal epsilon figure 4.4 shows some benefit through the estimated ϵ.

For CIFAR-10 High both majority vote based approaches (N-V and E-V-O) estimate a very good ϵ that
outperforms the baseline. The vote distribution based approaches estimate underperforming ϵ values.
However, the differences between the top ϵ values in most datasets are minimal, indicating that an
estimated ϵ value that is within ±2 of the optimal one is a reasonably good estimation. This is not the

4.3. HYPERPARAMETER OPTIMIZATION 23

case for datasets such as CIFAR-10, where the performance is greater influenced by little changes in ϵ.
Interesting are the ϵ values predicted for ImageNet, where the majority vote methods lead to relatively
low ϵ values. These estimates (0.35) perform poorly on the ImageNet dataset according to figure 4.4.

Domain Drift CIFAR-10 Low

CIFAR-10 High ImageNet

ImageNet V2 M-F ImageNet V2 T-0.7

Figure 4.4: Noisy oracle estimation evaluation, part 1. The graphs compare the estimated ϵ with the fixed baseline of 0.43 and
optimal ϵ for each dataset. It is used to evaluate the performance of the different noisy oracle ϵ estimation methods.

4.4. METHOD COMPARISON 24

ImageNet PyTorch PACS

ImageNet V2 T-I Emotion Detection

Figure 4.5: Noisy oracle estimation evaluation, part 2. The graphs compare the estimated ϵ with the fixed baseline of 0.43 and
optimal ϵ for each dataset. It is used to evaluate the performance of the different noisy oracle ϵ estimation methods.

4.4. Method Comparison
The primary result of this thesis is the evaluation of the Model Picker algorithm against selected base-
lines, presented in this chapter. For each experiment, Model Picker is parameterized according to the
optimal epsilon configurations identified with the true oracle and then run alongside the other baselines.
The results are shown in figures 4.7-4.8, displaying the success probability and the 90 percentile return
accuracy.

The findings show that Model Picker consistently outperforms all other baselines by a significant margin
after an initial warm-up phase, with the only exception being the Domain Drift scenario. Table 4.6
highlights the difference in number of samples needed to identify the best model with 90% accuracy.
Excluding Domain Drift, the reduction in labels needed when using Model Picker ranges from 2/3 in
CIFAR-10 Low to nearly 1/4 in ImageNet PyTorch, compared to the runner-up method.

In the Domain Drift setting the Model Picker performs close to Random and Active Model Comparison.
This is an important observation as (weighted) disagreement based methods like Model Picker are
known to fail under extreme noise conditions. The poor performance of other disagreement based
baselines validates this statement.

A notable observation regarding the Model Picker behavior in the success probability graphs is the
initialization phase. In most datasets, and particularly in the CIFAR-10 datasets, there exists an initial
period where Model Picker performs equally or worse than the baselines. Once this initial phase is over,
the performance gap rapidly increases. The length of this initial phase varies and tends to be longer
the more noise there is in the dataset. Domain Drift is an exception as it is an extraordinary setting with
extreme noise.

4.4. METHOD COMPARISON 25

Datasets Random Model Picker ACM QBC LC QBC E QBC M GALAXY
Domain Drift 25.6% 44.7% 65.3% 75.5% 88.6% 68.0% 85.0%

CIFAR-10 Low 91.7% 63.0% 84.7% 85.4% 82.5% 86.6% 95.2%
CIFAR-10 High 79.7% 16.3% 37.9% 37.5% 46.8% 37.3% 66.3%

ImageNet 82.0% 19.0% 59.6% 59.7% 60.0% 60.0% 81.4%
ImageNet V2 M-F 73.2% 16.2% 52.2% 53.2% 54.7% 48.4% 73.9%
ImageNet V2 T-0.7 53.3% 11.6% 39.7% 42.1% 28.8% 40.6% 65.6%
ImageNet PyTorch 63.6% 10.9% 42.5% 42.5% 42.4% 37.4% 63.1%

PACS 48.8% 12.6% 41.8% 36.0% 38.2% 38.6% 46.7%
ImageNet V2 T-I 46.2% 10.4% 34.4% 34.6% 35.9% 39.8% 48.9%

Emotion Detection 13.1% 7.3% 12.3% 14.6% 14.4% 14.6% 14.1%

Table 4.6: The table shows the convergence speed of all tested methods to 90% success probability. The percentage
represents the average number of labels needed (max. of 1000) and the winner for each dataset is highlighted bold.

Domain Drift

CIFAR-10 Low

Table 4.7: Method comparison results part 1. The graphs on the left show the success probability of the methods and the
graphs on the right present the 90 percentile return accuracy for different datasets and budget sizes.

4.4. METHOD COMPARISON 26

CIFAR-10 High

ImageNet

ImageNet V2 M-F

Figure 4.6: Method comparison results part 2. The graphs on the left show the success probability of the methods and the
graphs on the right present the 90 percentile return accuracy for different datasets and budget sizes.

4.4. METHOD COMPARISON 27

ImageNet V2 T0.7

ImageNet PyTorch

PACS

Figure 4.7: Method comparison results part 3. The graphs on the left show the success probability of the methods and the
graphs on the right present the 90 percentile return accuracy for different datasets and budget sizes.

4.5. ADDITIONAL EXPERIMENTS 28

ImageNet V T-I

Emotion Detection

Figure 4.8: Method comparison results part 4. The graphs on the left show the success probability of the methods and the
graphs on the right present the 90 percentile return accuracy for different datasets and budget sizes.

4.5. Additional Experiments
In this section the results of minor experiments are presented with the goal to explain different obser-
vation made in the experiments of the previous chapters. These results become relevant later in the
discussion when explaining the behavior of Model Picker.

4.5.1. Distribution Shift
The goal of this chapter is to demonstrate how the model ranking and performance can be influenced
by distribution shift.

To investigate this, the PACS dataset was used. It encompasses four distinct domains (art, cartoon,
sketch, photo) for the same classification problem. Three different model architectures — ResNet-
18, Efficient-Net-B0, and MobileNet-V3 — were trained on ten different dataset distributions. These
distributions were created by randomly mixing the training data from the four domains, resulting in
training sets of 4000 samples each. Each model was initialized with PyTorch ImageNet weights and
then fine tuned for 20 epochs, vielding a total of 30 different models. The test set was created by
combining the test data from all four domains. Due to varying numbers of examples available per
domain, the test distribution consists of 20% art, 24% cartoon, 39% sketch, and 17% photo. The
discrepancy between the training distributions and the test distribution serves as an artificially induced
distribution shift. Table 4.8 presents the models’ validation (left) and test accuracy (right) scores. The
training distributions for the models are detailed in the appendix A.1.

4.5. ADDITIONAL EXPERIMENTS 29

Efficientnet-b0 Mobilenet-v3 Resnet18 Efficientnet-b0 Mobilenet-v3 Resnet18
90.92% 93.25% 98.67% 86.23% 88.65% 92.7%
91.58% 93.17% 98.83% 87.36% 89.43% 93.58%
90.83% 93.67% 98.92% 87.37% 90.29% 94.26%
91.75% 93.83% 98.83% 86.28% 89.26% 92.61%
95.17% 96.08% 99.75% 78.1% 83.27% 89.0%
93.25% 96.5% 99.17% 79.69% 82.85% 87.18%
87.5% 91.25% 98.17% 83.82% 87.65% 92.87%
93.83% 96.58% 99.17% 73.03% 79.75% 84.8%
90.25% 93.33% 98.83% 85.31% 88.68% 92.86%
86.58% 90.25% 94.33% 86.73% 89.47% 93.82%

Table 4.8: The table highlights the difference in validation accuracy (left) and ranking of three different model architectures
trained on ten different data distributions, compared with the test accuracy and ranking on the PACS test set (right). The best
performance within a model architecture is marked bold. On the right side, the best model according to the left is marked italic.

Models V2 T-0.7 V2 M-F PyTorch V2 T-I
ViT_H_14 86.66% (1) 81.06% (1) 86.98% (1) 89.01% (1)

RegNet_Y_128GF 85.88% (2) 80.39% (2) 86.67% (2) 88.16% (3)
ViT_L_16 85.67% (3) 80.36% (3) 86.52% (3) 88.24% (2)

RegNet_Y_32GF 84.58% (4) 78.24% (4) 85.35% (4) 87.25% (4)
RegNet_Y_16GF 83.75% (5) 77.49% (5) 84.52% (6) 86.83% (5)
RegNet_Y_128GF 83.57% (6) 77.03% (7) 84.54% (5) 86.15% (8)
EfficientNet_V2_L 83.39% (7) 76.77% (8) 84.32% (7) 86.57% (6)

ViT_H_14 83.31% (8) 77.38% (6) 84.17% (8) 86.39% (7)

Table 4.9: The table shows the test accuracy of the PyTorch model collection over all ImageNet V2 test sets and ImageNet
validation set. Additionally to the accuracy, the overall ranking of the model is added for comparison. Despite significant

differences in accuracy the model ranking only changes marginally.

The training and test scores in table 4.8 indicate that the ResNet-18 model generally outperforms the
other architectures. However, a more significant observation is the overall drop in accuracy across all
models and change in the best model ranking due to distribution shift. Selecting the model based on the
highest training accuracy for testing (ResNet-18 from row five) would result in a loss of approximately
5% accuracy compared to selecting the best model on the test distribution (italic versus bold in the
right). This discrepancy is even more extreme for the EfficientNet-B0 and MobileNet-V3 architectures,
where the difference there reaches up to approximately 10%.

In addition to the PACS experiment, the model ranking over the different ImageNet datasets was in-
vestigated. The creators of the ImageNet V2 test sets noted that, despite their efforts to replicate the
ImageNet process, the difference in accuracy between the test sets has to be caused by a distribution
shift. The results in table 4.9 show the ranking of the top models across the different ImageNet V2 test
sets. While the models’ accuracies vary a significantly, which is a sign of distribution shift, the model
ranking remains consistent.

4.5. ADDITIONAL EXPERIMENTS 30

4.5.2. Behavior Research

Figure 4.9: This graph illustrates the Model
Picker behavior over time assuming one

model is always correct (red) and one model
is always wrong (blue). The black graph is
the entropy of the belief at time t and the
green graph is the entropy of the posterior
at time t. The dotted vertical line marks the

point where rewarding a good model
reduces uncertainty less than rewarding a

bad model increases it.

Uniform Threshold Confident Extreme
Agree,3,2,1 0.00071 0.00496 0.00254 -0.00335
Agree,2,1,1 0.0007 -0.0009 -0.00273 -0.00414
Agree,2,2,1 0.0007 0.00423 0.00217 -0.00294
Agree,1,1,1 0.00067 -0.00173 -0.00293 -0.00363

Random,3,2,1 0.01106 0.00312 0.00124 -0.00363
Random,2,1,1 0.0111 -0.00258 -0.00388 -0.00428
Random,2,2,1 0.01094 0.00217 0.00086 -0.00318
Random,1,1,1 0.01098 -0.00343 -0.00414 -0.00381

Table 4.10: The table shows the information gained (difference in uncertainty,
before and after) from different data points (rows) given different beliefs (columns).
A higher number means a more informative example. The focus hereby lies on the

prediction of the top 3 out of 80 models and explaining the impact of different
confidence levels in Model Picker. The 3 highest confidences in each column are:
Uniform: [...,0.0125,0.0125,0.0125], Threshold: [...,0.07,0.33,0.37], Confident:

[...,0.05,0.49,0.28], Extreme: [...,0.02,0.77,0.12]. Predictions are manually chosen
to show different disagreement levels. The other models either agree on class 0 or

have randomly generated predictions.

Figure 4.9 illustrates a toy example with two models and two classes, showing how the entropy of
the prior and posterior develops over time based on the models’ rewards. The x-axis represents the
evolution of the belief over time, and the y-axis represents the uncertainty. In this examples, all data
points have true labels of class 0. The first model always predicts 0, and the second model always
predicts 1. The black graph represents the belief H(M | Lt) at each iteration t. Model Picker estimates
the informativeness of a data point over all classes, resulting here in two partial results, one for each
class (red=0, blue=1). Aggregating these partial estimations results in the total estimate (green). The
green graph represents the expected uncertainty H(M |Yi,Lt) calculated as defined in Model Picker.
In this handcrafted example, the first model is always correct and thus, after each sampling step, it
gets rewarded with a constant factor of 1.5 (epsilon of 0.4). The key observation from this experiment
is marked by the vertical dotted line. This line indicates the point where the expected uncertainty of
sampling any data point surpasses the uncertainty around the belief at that time.

The results of table 4.10 show this behavior in the context of a real example. Different scenarios are
compared with the goal of showing when and why the algorithm converges. Each cell in the table
displays the estimated information gain for a data point (row) given some belief (column). The infor-
mation gain is hereby calculated with H(M | Lt) −H(M |Yi,Lt), representing the estimated difference
in uncertainty before and after observing the data point’s label. This way of presenting the results is
easier to read than showing the absolute estimated uncertainty values (H(M |Yi,Lt)). The row titles
explain what kind of data point is evaluated: Agree,3,2,1 means that the worst 77 models agree on
class 0 and the best three models voted 3,2 and 1. Random,3,2,1 means that the worst 77 models
votes are generated randomly between 0 and 9 (CIFAR-10 classes) and the top 3 models voted 3,2
and 1. Comparing the upper and lower part of the first column reveals that given uniform belief, the
information gain with more disagreement (bottom 4 rows). The belief used in the next column is aver-
aged over all realisations in a real experiment with CIFAR-10 High, at the point of convergence. This
resulted in a distribution of [. . . , 0.07, 0.33, 0.37], with the other 77 models each having a confidence of
less than 0.03. This column indicates that, given this weighting, some data points have negative infor-
mativeness. These data points have the characteristic that the top two models agree. Furthermore,
despite numerical differences between the ”rest agreeing” and ”rest random” data points, the same
negative informativeness is observed. For the last two columns the belief was altered to create an
extreme confidence towards one model, leading to the result that in the last column no data point is
considered beneficial anymore.

5
Discussion

The discussion starts with a detailed analysis of the behavior observed in the Model Picker algorithm.
This is followed by the interpretation and analysis of the ϵ optimization results. Finally, all results are
put into context to give insight about their implications for the initial research problem.

5.1. Model Picker Behavior
The Model Picker algorithm clearly outperforms all baseline methods across all datasets (exceptt for
Domain Drift) in terms of labels needed to identify the best model with 90% to 100% certainty. In the
case of Domain Drift, although Model Picker does not outperform all baselines, it demonstrates signifi-
cant improvement over the traditional disagreement-basedmethods, indicating high level of robustness.
Given that Domain Drift is an extremely noisy setting, probabilistic sampling methods such as Random
and Active Model Comparison (AMC) tend to be superior. In contrast, disagreement-based sampling
methods struggle such settings, as the disagreement often stems from high noise rather than being
an indication of informativeness. Consequently, relying solely on disagreement can be misleading and
results in suboptimal performance. However, with an appropriate ϵ configuration, Model Picker keeps
up with the distribution-based sampling methods (Random, AMC). The performance of Model Picker
observed in Domain Drift should not be generalized to all datasets, as it only serves to explore the
behavior of the algorithm under extreme noise conditions.

Regarding the general behavior, an observation that stands out is that the performance gap between
Model Picker and the baselines does not consistently appear from the beginning, but rather develops
rapidly at a certain point during the process. This can be explained by the two phases of the Model
Picker algorithm. Initially, the algorithm engages in an exploration phase, during which it seeks to iden-
tify models that are likely to perform well. In this phase, the algorithm rewards models for correctly pre-
dicting data points selected through disagreement-based sampling. Model Picker samples data points
solely based on disagreement as long as there is uniform belief across models. The results presented
in the first column (”Uniform”) of figure 4.10 illustrate the estimated informativeness assigned to differ-
ent data points. Its evident that higher disagreement correlates with greater estimated information gain.
During the exploration phase, extreme confidence in a single models is rare, maintaining a relatively
uniform belief. This gradual build-up of confidence occurs because even the best models occasionally
make mistakes on the high-disagreement samples. Over time, as the algorithm continues to sample
disagreeing instances, poorly performing models are progressively ruled out (losing confidence), while
high-performing candidates prevail (=high confidence).

Once a few models perform well consecutively, the algorithm progressively increases confidence in
them, leading to greater weights of their predictions. As this confidence grows, the sampling strategy
prioritizes samples that can effectively distinguish among these best model candidates. This phase is
the exploitation phase. Consequently, the duration of the initial exploration phase, and thus the period
during which Model Picker performs similarly to or worse than the baselines, depends on how quickly a
good selection of candidate models is identified. The effect of this confidence weighing of the models’

31

5.2. HYPERPARAMETER OPTIMIZATION 32

predictions can be observed in the second column (”Threshold”) of table 4.10, where only data points
on which the best models disagree are considered valuable (positive values).

Model Picker converges when there are no more valuable data points in the unlabeled set that can
further distinguish the best model candidates. In other words, once there is sufficient high confidence
in a small subset of models, there is no data point on which these models disagree. This again can be
observed in the results presented in table 4.10. During the exploitation phase, the algorithm focuses on
distinguishing between a few high-performing models, resulting in a very limited number of data points
where these models disagree. Consequently, once all these instances are sampled, the algorithm is
left with data points that may contain some information, but no the information to further distinguish the
best models candidates. In table 4.10, that corresponds to the algorithm being left with data points that
all have negative values, indicating agreement among the best models. At this point, the algorithm is
converged. Due to the estimation of p(M = m|Yi = c| Lt) being based on ϵ, the speed of convergence
is directly influenced by ϵ as well. A lower ϵ, which corresponds to a higher reward γ leads to more
aggressive commitment once good models candidates are identified.

The results also demonstrate the effects of poor parametrization. If ϵ is set too low, it can lead to early
convergence in some realisations, causing the success probability to plateau before reaching 100%
(see figure 4.2). This occurs because the algorithm reaches a high level of confidence without sampling
sufficient evidence. Early in the process, confidence in some models become disproportionately high,
leading the algorithm to prioritize only the data points, where these models disagree. Once these few
data points are sampled and the confidence in the same models remains high, the algorithm converges
prematurely, failing to obtain a comprehensive estimate of the entire model space. The algorithm
assumes that it found the correct model and subsequently samples data points that do not change
the current belief, resulting in the flat line until the end, visible in some of the grid search results. In a
production setting, the algorithm terminates once it reaches this state and returns the model deemed
best to this point in time. Consequently, if this early convergence occurs during production, the returned
model might not be the optimal one. Therefore, it is crucial to avoid a too low ϵ configuration.

An ϵ that is set too high leads to slow convergence because data points are sampled that are not
selected precise enough. In terms of confidence, this means that even in the later stages, the belief
is rather uniformly distributed, allowing disagreement among less interesting models to have too much
influence on the selection process. While this approach is beneficial at the beginning to obtain a broader
estimate and therefore to avoid early convergence, it is detrimental when it comes to accelerating the
convergence time. Once the algorithm has identified a selection of good candidate models, it should
prioritize sampling data points that help distinguish these. In table A.2, A.3 and A.4 in the appendix, the
evolution of belief over time with different ϵ is presented. Comparing these configurations, it is evident
that an ϵ of 0.49 has significantly less confidence in the best models in the last steps than the lower
ϵ. As discussed previously, the closer the belief is to a uniform distribution, the more Model Picker
behaves like disagreement methods, which perform well initially but converge slowly.

Lastly, the phenomenon of ”negative information gain” observed in table 4.10 needs to be explained.
According to mutual information as defined by Shannon, 1948, information gain cannot be negative.
So why does it appear to be the case here? This discrepancy occurs from the method used to estimate
the informativeness of a data point across all classes, and the fact it this is only an estimation. A data
points expected informativeness is calculated by rewarding models (p(M = m|Yi = c, L(t))) and by
calculating the entropy based on the resulting distribution for each class. The estimation over each class
means that each model, regardless of what class it predicted, is rewarded exactly once. The graph
in figure 4.9 illustrates that there is a threshold where rewarding a high-confidence model decreases
uncertainty less than rewarding a low-confidence model increases uncertainty. Since the estimations
for each class are summed up, the estimated rest uncertainty can be higher than the uncertainty about
the belief at that time. Table 4.10 confirms this in a more realistic setting, as the last column shows that
every data point is considered non valuable (negative) due to extreme confidence in one model.

5.2. Hyperparameter Optimization
The results of the ϵ optimization studies confirm the significance of the hyperparameter. Even when
different configurations appear similar at first, as observed in datasets like ImageNet and Emotion

5.2. HYPERPARAMETER OPTIMIZATION 33

Detection, comparing them along the y-axis (success probability) reveals significant variations in per-
formance. Optimally, an ϵ should be selected that achieves a high success probability as quickly as
possible. Therefore, optimizing ϵ is crucial due to the limited budget and unknown distribution in the
production setting.

The similarity in convergence time across the different ϵ within a good range suggests the existence
of a valuable subset of samples that leads to identifying the best model. The grid search results of
CIFAR-10 High show this well, as all good ϵ configurations are able to identify this subset, leading to
similar convergence times. The difference lies in in the ordering of the data points, which is influenced
by ϵ.

Conceptually, ϵmodels the prediction noise of themodels, providing an indication about how trustworthy
the predictions are. It was expected that the optimal ϵ for noisy datasets (e.g. CIFAR-10 Low and
Domain Drift) would be higher than for datasets with less noise (e.g. Emotion Detection and ImageNet
V2). The results demonstrate some correlation between dataset noisiness and ϵ (see table 4.2), but
this correlation is less significant than expected. Interestingly, the Domain Drift dataset suggests the
opposite trend: a relatively low ϵ outperforms higher options in a very noisy setting.

Figure 5.1: The graph shows how much a
probability actually increases (y-axis) in a
distribution of different sizes (x-axis) when

multiplied by a constant factor (red line = 1.5). The
actual reward converges towards the constant

reward with unlimited distribution size.

This indicates that the optimal ϵ is influenced by additional
factors. Due to normalization, the number of models di-
rectly impacts the actual reward a model receives (see fig-
ure 5.1). Furthermore, it makes a significant difference how
the best models perform on the high disagreement samples.
If these models continuously make mistakes on the initial
samples, the algorithm accumulates these errors by trust-
ing potentially suboptimal models and subsequently sam-
pling based on this misinformation. Although good models
will eventually prevail with a sufficient number of samples,
regaining confidence in them takes time. The difference in
dataset characteristics are best observed when comparing
the CIFAR-10 datasets and the ImageNet versions. The
disagreement levels in CIFAR-10 High and ImageNet are
similar, as reflected by the length of the exploration phase.
However, the impact of ϵ in ImageNet is much less com-
pared to CIFAR-10 High. These observations make it chal-
lenging to chose an optimal ϵ based on information avail-
able beforehand, such as prediction noise and the number
of models.

Although ϵ significantly impacts the performance of Model Picker, using extra resources to estimate
must be justified. To evaluate this, a fixed ϵ of 0.43 was selected as a baseline, as it performs reasonably
well across all datasets according to the grid search results in figure 4.2. The experiments for optimizing
ϵ were not entirely conclusive. Estimating an optimal ϵ by randomly sampling a small subset of queries
proved to be too expensive. The experiments indicate that approximately 30% of labels are required
to obtain a reliable estimate for the underlying distribution. This would nearly double the total labeling
cost, given that Model Picker typically only needs around 20-30% of labels to identify the best model.

Using noisy oracles for ϵ estimation was expected to be effective, particularly in settings with numerous
models and high accuracies, where the resulting noisy oracle should closely approximate the ground
truth oracle. Interestingly, the similarity between oracles does not necessarily translate to the quality of
the distribution estimate. This can be observed by comparing the results from table 4.3 and 4.4. Noisy
oracles created via majority voting appear to be more similar to the ground truth than those created from
a vote distribution. Conversely, several cases in table 4.4 show that the ground truth best model was
identified more frequently by the less similar noisy oracle. Despite some noisy oracles being able to
estimate the true best model directly from the labels with up to 50% (e.g. PACS and Emotion Detection
in table 4.4), it is not accurate and reliable enough to be directly used for model selection. The grid
search results of different noisy oracles further support this finding as the noisy oracles created with
majority voting fail to estimate some of the datasets characteristics. A notable example is shown in
figure A.3, where the majority voting oracle fails to identify the lower limit for ϵ, as indicated by early

5.3. RESULTS IN CONTEXT 34

convergence in several of the other graphs.

This can be explained by overfitting. Using majority voting to determine the noisy labels negelects the
confidence scores across all classes. This can lead to a loss of information and cause the algorithm
to overfit to the noisy consensus instead of the underlying data distribution. This issue becomes more
prominent with datasets like ImageNet , which has 1000 classes. More classes introducemore potential
disagreement and noise, which is more information that is neglected when relying solely on majority
voting. Despite this potential deficiencies of majority voting, the left graphs in figure A.3 show that
majority voting results are visually closer to the ground truth results in most variations compared to the
graphs on the right, which are generated by sampling from a vote distribution.

Table 4.5 demonstrates that for each tested dataset, at least one estimation method identified the
optimal or near optimal ϵ. When selecting the optimal ϵ, there were instances where the differences
between the top configurations were marginally small. To address this, the highest ϵwithin such a group
was chosen to minimize the risk of selecting a too-low ϵ that could cause early convergence. The last
row of table 4.5 indicates that majority voting estimates the most settings accurately.

Figure 4.4 shows how well the estimated ϵ values compare to the fixed baseline of 0.43. Some esti-
mated ϵ outperform the static parametrization as they match the optimal ϵ, while others perform worse.
Notably, in the CIFAR-10 settings, where the optimal ϵ is significantly higher than 0.43, the estimation
methods provide good estimations.

The research on ϵ optimization concludes that learning ϵ can be beneficial in certain cases. Although
majority voting performed well in terms of the number of correct estimated ϵ values, its inability to
estimate the lower bounds for ϵ is a significant drawback. The results on ImageNet, shown in figure
4.4, illustrate how this limitation can severely impact the performance. Given the variance in the optimal
ϵ when repeating experiments on the same dataset, the number of correct ϵ predictions becomes less
relevant. More important is whether the estimation method captures the dataset’s characteristics as
accurately as possible and estimates an ϵ in the right region, even if it is not themost optimal one. Model
Picker has shown that it still performs well with ϵ values that are deviate by 0.1 or 0.2 from the optimum
as long as it avoids to aggressive rewards. The enhanced vote distribution estimation method best
achieves this balance. Although it can be argued that using 50 labels improves the process compared
to a fixed ϵ, this is not necessarily justified under the objective of label efficiency. However, using
the vote distribution as standalone estimator is not accurate enough. The enhanced vote distribution
method demonstrates potential in ϵ estimation. Alternatively, a stepwise fixed ϵ can be used, such as:

ϵ =

{
0.45 if κ score < 0.6
0.43 if κ score > 0.6

(5.1)

where some measure of disagreement, such as Fleiss’ Kappa (κ) score, is used to estimate the noisi-
ness of the data.

5.3. Results in Context
The Model Picker algorithm is currently the first method that was explicitly designed for the model se-
lection setting, and it was therefore expected to outperform non-specialized baselines. Adapting more
advanced baselines from Active Learning (AL) proved challenging, as most of them rely on information
retrieved from a model to train.

Overall, the results show that given the correct parametrization, Model Picker is able to reliably and
efficiently identify the best model. This is particularly useful in the Auto-ML setting, as it could provide
can potentially reduce the number of retraining cycles with very little labeling cost. Even if the model
selection process does not return a model that satisfies the performance requirements, the labeled
data points are not wasted. Selected based on disagreement, these data points can still serve as
valuable training samples due to their elevated difficulty. Other applications like labeling companies
or platforms offering pretrained model collections can also benefit of a reliable and efficient model
selection algorithm.

The results indicate that model selection is not always a valuable process. In the case of ImageNet
V2, the authors have shown that a distribution shift between training data (ImageNet) and their test

5.3. RESULTS IN CONTEXT 35

data (ImageNet V2 test sets) significantly impacts models performance but has little to no effect on the
model ranking. Therefore, it is reasonable to assume that model selection is particularly beneficial when
models are trained on different distributions, leading to different strengths and weaknesses. Since all
models in the ImageNet comparison case were trained on the same data, this benefit was not observed
(see table 4.9). Conversely, the PACS experiment clearly supports the importance of model selection
(see figure 4.8), as the models with the highest validation accuracy during training (up to 99%) do
not necessarily perform best on different test distributions. In production, the most common cause of
retraining is distribution shift in the data. This implies that, despite some uncertainty, the effectiveness
of model selection is very likely. Therefore, it is valuable to have an algorithm that can efficiently perform
model selection in a model agnostic setting with information about the underlying distribution.

6
Conclusion

This thesis revolved around the development and evaluation of a strategy for model selection of pre-
trained classifiers. The primary focus was to introduce a method, named Model Picker, that is able to
reliably and efficiently identify the best model given an unknown data distribution and to emphasize the
importance of model selection as part of the growing machine learning ecosystem.

The developed framework was designed to be a foundation for assess the performance of future meth-
ods across Model Picker and the included baselines. Rigorous experiments demonstrated that Model
Picker not only optimizes the use of labeling budget but also maintains robust performance across vari-
ous settings with different class distributions and noise levels. Especially, the good performance under
sever noise is positive outcome as disagreement based methods, such as Model Picker, are known
for bad performance in such settings. To establish a reliable benchmark for Model Picker and future
methods, the most significant image classification datasets as well as fundamental sampling methods
such as Query-by-Committee were employed.

In most scenarios, Model Picker successfully identified the best model with over 90% accuracy while
only using 20-30% of possible labels. Compared to the baselines, this represents a fraction of 1/3 to
1/4 of the labels needed. However, achieving these performances requires careful hyperparameter
tuning according to the test data distribution. This proved be more challenging than anticipated, as the
optimal epsilon is dependent on the underlying data distribution as well as other factors. Consequently,
obtaining a good epsilon necessitates a good estimate of the data distribution, which is difficult without
additional labeling cost. The solution developed to address this generates noisy oracles on which the
hyperparameter can be estimated. While the resulting estimate is sufficiently accurate to select a good
epsilon, it does not achieve the level of precision necessary for reliable model selection. Although the
noisy oracle methods estimated well in some cases, a stepwise fixed epsilon appears to offer more
promising results, especially considering label and computation efficiency.

While the results are favorable for the problem settings selected for this thesis, the limitations of this
research offer potential for future research. The baselines used for evaluation are well known, but not
amongst the most advanced sampling techniques. Given the limited research specifically focused on
model selection, incorporating more sophisticated strategies from related fields like Active Learning
would result in major modifications to the algorithm. Such modifications would undermine the objective
of establishing a fundamental baseline for Model Picker. Although, adapting or recreating such ad-
vanced strategies could yield more competitive baselines and a better assessment. Another limitation
is the focus on image classification. Expanding the research to large-language-models or regression
problems would be a valuable extension, given their widespread use in production.

In conclusion the research shows that model selection can provide valuable insight on relative model
performances and the method developed solves the problem in a reliable and efficient manner. With a
little extra work, model selection as well as Model Picker can be used in various settings reaching from
Auto-ML to pre-trained model providers to efficiently employ the best model.

36

References

AI Index Steering Committee, S. U. (2024). Ai index report 2024 [Accessed: 2024-07-07]. https://aiindex.
stanford.edu/report/2024

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. https :
//api.semanticscholar.org/CorpusID:64903870

and Chih-Jen Lin Chih-Wei Hsu, C.-C. C. (2008). A practical guide to support vector classification. BJU
international, 101.

Ash, J. T., Goel, S., Krishnamurthy, A., & Kakade, S. (2021). Gone fishing: Neural active learning with
fisher embeddings. Advances in Neural Information Processing Systems, 11.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., & Agarwal, A. (2020). Deep batch active learning
by diverse, uncertain gradient lower bounds. 8th International Conference on Learning Repre-
sentations, ICLR 2020.

Baker, B., Gupta, O., Naik, N., & Raskar, R. (2017). Designing neural network architectures using
reinforcement learning. 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13.

Chandra, K., Xie, A., Ragan-Kelley, J., & Meijer, E. (2022). Gradient descent: The ultimate optimizer.
Advances in Neural Information Processing Systems, 35.

Chen, Y., Hassani, S. H., Karbasi, A., & Krause, A. (2015). Sequential information maximization: When
is greedy near-optimal? Journal of Machine Learning Research, 40.

Chitta, K., Alvarez, J. M., Haussmann, E., & Farabet, C. (2022). Training data subset search with en-
semble active learning. IEEE Transactions on Intelligent Transportation Systems, 23. https :
//doi.org/10.1109/TITS.2021.3133268

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Mea-
surement, 20. https://doi.org/10.1177/001316446002000104

Ding, J., Tarokh, V., & Yang, Y. (2018). Model selection techniques: An overview. IEEE Signal Process-
ing Magazine, 35. https://doi.org/10.1109/MSP.2018.2867638

Domhan, T., Springenberg, J. T., & Hutter, F. (2015). Speeding up automatic hyperparameter opti-
mization of deep neural networks by extrapolation of learning curves. IJCAI International Joint
Conference on Artificial Intelligence, 2015-January.

Falkner, S., Klein, A., & Hutter, F. (2018). Bohb: Robust and efficient hyperparameter optimization at
scale. 35th International Conference on Machine Learning, ICML 2018, 4.

Feurer, M., Letham, B., & Bakshy, E. (2018). Scalable meta-learning for bayesian optimization. Stat.
Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-Japanese Society

For Artificial Intelligence, 14(771-780), 1612.
Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling using the query by com-

mittee algorithm. Machine Learning, 28. https://doi.org/10.1023/a:1007330508534
Hawkins, A. S., Berry, D. A., & Fristedt, B. (1987). Bandit problems-sequential allocation of experiments.

The Statistician, 36. https://doi.org/10.2307/2988286
Herzberg, A. M., Wynn, H. P., Fedorov, V. V., Studden, W. J., & Klimko, E. M. (1972). Theory of optimal

experiments. Biometrika, 59. https://doi.org/10.2307/2334826
Hesterman, J. Y., Caucci, L., Kupinski, M. A., Barrett, H. H., & Furenlid, L. R. (2010). Maximum-likelihood

estimation with a contracting-grid search algorithm. IEEE Transactions on Nuclear Science, 57.
https://doi.org/10.1109/TNS.2010.2045898

Hilt, D. E., & Seegrist, D. W. (1977). Ridge: A computer program for calculating ridge regression esti-
mates. https://api.semanticscholar.org/CorpusID:106850190

Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on Document
Analysis and Recognition, 1, 278–282 vol.1. https://doi.org/10.1109/ICDAR.1995.598994

37

https://aiindex.stanford.edu/report/2024
https://aiindex.stanford.edu/report/2024
https://api.semanticscholar.org/CorpusID:64903870
https://api.semanticscholar.org/CorpusID:64903870
https://doi.org/10.1109/TITS.2021.3133268
https://doi.org/10.1109/TITS.2021.3133268
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1109/MSP.2018.2867638
https://doi.org/10.1023/a:1007330508534
https://doi.org/10.2307/2988286
https://doi.org/10.2307/2334826
https://doi.org/10.1109/TNS.2010.2045898
https://api.semanticscholar.org/CorpusID:106850190
https://doi.org/10.1109/ICDAR.1995.598994

REFERENCES 38

Johnson, R. W. (2001). An introduction to the bootstrap. Teaching Statistics, 23. https:/ /doi.org/10.
1111/1467-9639.00050

Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification.
2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. https://doi.
org/10.1109/CVPRW.2009.5206627

Kee, S., del Castillo, E., & Runger, G. (2018). Query-by-committee improvement with diversity and
density in batch active learning. Information Sciences, 454-455. https://doi.org/10.1016/j.ins.
2018.05.014

Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2017). Fast bayesian optimization of machine
learning hyperparameters on large datasets. Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS 2017.

Ko, C.-W., Lee, J., & Queyranne, M. (1995). An exact algorithm for maximum entropy sampling. Oper-
ations Research, 43. https://doi.org/10.1287/opre.43.4.684

Kossen, J., Farquhar, S., Gal, Y., & Rainforth, T. (2021). Active testing: Sample-efficient model evalu-
ation. Proceedings of Machine Learning Research, 139.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. … Science Department,
University of Toronto, Tech. … https://doi.org/10.1.1.222.9220

Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2017). Deeper, broader and artier domain general-
ization. Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A novel bandit-
based approach to hyperparameter optimization. Journal of Machine Learning Research, 18.

Liu, H., Simonyan, K., & Yang, Y. (2019). Darts: Differentiable architecture search. 7th International
Conference on Learning Representations, ICLR 2019.

Madani, O., Lizotte, D. J., & Greiner, R. (2004). Active model selection. Strategies.
Mallows, C. L. (1973). Some comments on cp. Technometrics, 15(4), 661–675. Retrieved July 6, 2024,

from http://www.jstor.org/stable/1267380
Margatina, K., Vernikos, G., Barrault, L., & Aletras, N. (2021). Active learning by acquiring contrastive

examples. EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, Proceedings. https://doi.org/10.18653/v1/2021.emnlp-main.51

McCallum, A., & Nigam, K. (1998). Employing em and pool-based active learning for text classification.
Proceedings of the Fifteenth International Conference on Machine Learning.

N., R., & A., M. (2001). Toward optimal active learning through sampling estimation of error reduction.
Proceedings of 18th International Conference on Machine Learning, ICML.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. 2018 IEEE second
international conference on data stream mining & processing (DSMP), 255–258.

Piironen, J., & Vehtari, A. (2017). Comparison of bayesian predictive methods for model selection.
Statistics and Computing, 27. https://doi.org/10.1007/s11222-016-9649-y

Pillai, A. (2020). Emotion detection fer dataset [Accessed: 2024-05-29].
PyTorch. (2024). Pytorch: An imperative style, high-performance deep learning library [Accessed: 2024-

05-09]. https://pytorch.org
Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2020). Snorkel: Rapid training data

creation with weak supervision. VLDB Journal, 29. https://doi.org/10.1007/s00778-019-00552-
1

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., & Kurakin, A. (2017). Large-
scale evolution of image classifiers. 34th International Conference on Machine Learning, ICML
2017, 6.

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do imagenet classifiers generalize to ima-
genet? Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
2019-June.

Ren, P., Xiao, Y., Chang, X., Huang, P. Y., Li, Z., Gupta, B. B., Chen, X., & Wang, X. (2022). A survey
of deep active learning. https://doi.org/10.1145/3472291

Sawade, C., Landwehr, N., & Scheffer, T. (2012). Active comparison of prediction models. Advances in
Neural Information Processing Systems, 3.

https://doi.org/10.1111/1467-9639.00050
https://doi.org/10.1111/1467-9639.00050
https://doi.org/10.1109/CVPRW.2009.5206627
https://doi.org/10.1109/CVPRW.2009.5206627
https://doi.org/10.1016/j.ins.2018.05.014
https://doi.org/10.1016/j.ins.2018.05.014
https://doi.org/10.1287/opre.43.4.684
https://doi.org/10.1.1.222.9220
http://www.jstor.org/stable/1267380
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1007/s11222-016-9649-y
https://pytorch.org
https://doi.org/10.1007/s00778-019-00552-1
https://doi.org/10.1007/s00778-019-00552-1
https://doi.org/10.1145/3472291

REFERENCES 39

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Retrieved July 6, 2024, from http://www.jstor.org/stable/2958889

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo,
J. F., & Dennison, D. (2015). Hidden technical debt in machine learning systems. Advances in
Neural Information Processing Systems, 2015-January.

Sener, O., & Savarese, S. (2018). Active learning for convolutional neural networks: A core-set ap-
proach. 6th International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings.

Settles, B. (2010). Active learning literature survey. Machine Learning, 15. https://doi.org/10.1.1.167.
4245

Settles, B., & Craven, M. (2008). An analysis of active learning strategies for sequence labeling tasks.
EMNLP 2008 - 2008 Conference on Empirical Methods in Natural Language Processing, Pro-
ceedings of the Conference: A Meeting of SIGDAT, a Special Interest Group of the ACL. https:
//doi.org/10.3115/1613715.1613855

Settles, B., Craven, M., & Ray, S. (2007). Multiple-instance active learning. In J. Platt, D. Koller, Y.
Singer, & S. Roweis (Eds.), Advances in neural information processing systems (Vol. 20). Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2007/file/a1519de5b5d
44b31a01de013b9b51a80-Paper.pdf

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee. Proceedings of the Fifth
Annual ACM Workshop on Computational Learning Theory. https://doi.org/10.1145/130385.
130417

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks
applied to visual document analysis. Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, 2003-January. https : / / doi . org / 10 . 1109 / ICDAR . 2003 .
1227801

Smith, F. B., Kirsch, A., Farquhar, S., Gal, Y., Foster, A., & Rainforth, T. (2023). Prediction-oriented
bayesian active learning. Proceedings of Machine Learning Research, 206.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning
algorithms. Advances in Neural Information Processing Systems, 4.

Snoek, J., Ripped, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M. M. A., Prabhat, &
Adams, R. P. (2015). Scalable bayesian optimization using deep neural networks. 32nd Inter-
national Conference on Machine Learning, ICML 2015, 3.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58. https: / /doi .org/10.1111/ j .2517- 6161.1996.
tb02080.x

van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning,
109. https://doi.org/10.1007/s10994-019-05855-6

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics, 1995-June. https:
//doi.org/10.3115/981658.981684

Zhang, J., Chen, Y., Canal, G., Mussmann, S., Das, A. M., Bhatt, G., Zhu, Y., Bilmes, J., Du, S. S.,
Jamieson, K., & Nowak, R. D. (2024). Labelbench: A comprehensive framework for bench-
marking adaptive label-efficient learning.

Zhang, J., Katz-Samuels, J., & Nowak, R. (2022). Galaxy: Graph-based active learning at the extreme.
Proceedings of Machine Learning Research, 162.

Zhou, Z.-H. (2021). Model selection and evaluation. In Machine learning (pp. 25–55). Springer Singa-
pore. https://doi.org/10.1007/978-981-15-1967-3_2

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society. Series B: Statistical Methodology, 67. https://doi.org/10.1111/j.1467-
9868.2005.00503.x

http://www.jstor.org/stable/2958889
https://doi.org/10.1.1.167.4245
https://doi.org/10.1.1.167.4245
https://doi.org/10.3115/1613715.1613855
https://doi.org/10.3115/1613715.1613855
https://proceedings.neurips.cc/paper_files/paper/2007/file/a1519de5b5d44b31a01de013b9b51a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/a1519de5b5d44b31a01de013b9b51a80-Paper.pdf
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.1007/978-981-15-1967-3_2
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

A
Appendix

40

41

Domain Drift CIFAR-10 Low

CIFAR-10 High ImageNet

ImageNet V2 M-F ImageNet V2 T-0.7

Figure A.1: Dataset model accuracy distribution part 1. The histograms show the distribution of models per accuracy bracket.
More models in the highest blocks indicate a more competitive model selection setup.

42

ImageNet PyTorch PACS

ImageNet V2 T-I Emotion Detection

Figure A.2: Dataset model accuracy distribution part 2. The histograms show the distribution of models per accuracy bracket.
More models in the highest blocks indicate a more competitive model selection setup.

Art Cartoon Photo Sketch
Distribution 0 12% 27% 30% 31%
Distribution 1 23% 30% 25% 22%
Distribution 2 28% 34% 31% 8%
Distribution 3 28% 18% 18% 35%
Distribution 4 44% 7% 4% 45%
Distribution 5 68% 19% 2% 10%
Distribution 6 6% 37% 51% 6%
Distribution 7 59% 4% 4% 33%
Distribution 8 28% 5% 45% 21%
Distribution 9 26% 39% 34% 1%

Table A.1: The table shows the randomly generated data distributions used for training the different PACS models. Each of the
3 model architectures was trained on each distribution resulting in the 30 models.

43

Figure A.3: The graphs show grid search results of different noisy oracle hyperparameter estimations based on CIFAR-10
High. On top is the original result using the ground truth oracle. The left column displays majority voting and the right column
uses vote distribution. The vertical order is: pure noisy oracle, randomly enhanced noisy oracle, weighted enhanced noisy

oracles and ordered noisy oracle. The focuses lies on visual similarity between the estimates and the ground truth at the top.

44

t 10 9 8 7 6 5 4 3 2 1
10 0.0182 0.0225 0.0259 0.0277 0.0386 0.0409 0.0306 0.0368 0.0415 0.0643
30 0.0258 0.0306 0.0466 0.0314 0.0377 0.0536 0.0483 0.0521 0.1057 0.1017
50 0.0283 0.0295 0.0469 0.0393 0.0343 0.0531 0.0489 0.0703 0.1603 0.1448
70 0.0272 0.0303 0.0604 0.0437 0.0419 0.0493 0.0453 0.0822 0.1851 0.1663
90 0.0257 0.0328 0.0541 0.0404 0.0389 0.0561 0.057 0.0856 0.2023 0.1922
110 0.0172 0.0291 0.0509 0.0345 0.036 0.0546 0.0479 0.081 0.2311 0.2402
130 0.0194 0.0246 0.0516 0.0259 0.0299 0.0446 0.0422 0.0723 0.2481 0.3034
150 0.0149 0.0234 0.0409 0.0232 0.0241 0.0418 0.0317 0.0765 0.2448 0.3561
170 0.013 0.0176 0.0375 0.0197 0.0242 0.0333 0.0285 0.0755 0.2638 0.378
190 0.0117 0.0159 0.0345 0.0173 0.0216 0.0308 0.0251 0.0693 0.2836 0.3905
210 0.0119 0.0147 0.0299 0.0174 0.0184 0.0291 0.0245 0.0624 0.2946 0.4019
230 0.0119 0.0147 0.0299 0.0174 0.0184 0.0291 0.0245 0.0624 0.2947 0.402
250 0.0119 0.0147 0.0298 0.0174 0.0184 0.0291 0.0245 0.0624 0.2947 0.4022

Table A.2: This table shows the average posterior development over time on the example of CIFAR-10 High experiment with
an epsilon of 0.3. Each row represents the confidence values for the top 10 models at the sample time t.

t 10 9 8 7 6 5 4 3 2 1
10 0.0186 0.0194 0.0245 0.022 0.0278 0.0285 0.0234 0.0223 0.0251 0.0358
30 0.025 0.0265 0.0387 0.0257 0.0275 0.0352 0.0358 0.0391 0.0697 0.0809
50 0.0315 0.033 0.0493 0.0319 0.0338 0.0453 0.0449 0.0574 0.1001 0.0987
70 0.0326 0.0352 0.0587 0.0344 0.0388 0.0529 0.0495 0.0738 0.1209 0.1205
90 0.0342 0.0385 0.0608 0.0369 0.0416 0.0569 0.0532 0.0885 0.1328 0.137
110 0.0327 0.0397 0.0637 0.0312 0.0416 0.0588 0.0508 0.0958 0.1416 0.1599
130 0.0341 0.0384 0.0627 0.0301 0.041 0.0609 0.0478 0.0951 0.1461 0.2007
150 0.0321 0.035 0.0607 0.0271 0.0398 0.0548 0.0456 0.092 0.1656 0.2439
170 0.025 0.0297 0.0462 0.0266 0.03 0.0453 0.0379 0.0801 0.202 0.3048
190 0.0221 0.0254 0.0362 0.024 0.0281 0.0387 0.0322 0.0744 0.2188 0.3432
210 0.0215 0.0246 0.0344 0.0224 0.026 0.0339 0.0308 0.0733 0.2274 0.3524
230 0.0216 0.0246 0.0331 0.0218 0.0255 0.0333 0.0304 0.0739 0.2293 0.3535
250 0.0216 0.0246 0.0331 0.0218 0.0255 0.0333 0.0304 0.0739 0.2293 0.3535

Table A.3: This table shows the average posterior development over time on the example of CIFAR-10 High experiment with
an epsilon of 0.4. Each row represents the confidence values for the top 10 models at the sample time t.

t 10 9 8 7 6 5 4 3 2 1
10 0.0133 0.0134 0.0136 0.0134 0.0139 0.0142 0.0135 0.0139 0.0135 0.0142
30 0.0148 0.0149 0.0161 0.0157 0.0162 0.017 0.0151 0.0166 0.017 0.0186
50 0.0163 0.0161 0.0184 0.0176 0.0176 0.0195 0.0172 0.0203 0.0208 0.0236
70 0.0177 0.0175 0.0206 0.0197 0.0196 0.0217 0.0192 0.0243 0.0258 0.0293
90 0.0185 0.0184 0.0235 0.0221 0.0215 0.0241 0.021 0.0285 0.0312 0.0348
110 0.0195 0.0194 0.0265 0.0234 0.0235 0.0269 0.0226 0.0326 0.0363 0.0407
130 0.0199 0.0198 0.0297 0.0244 0.0251 0.0299 0.0238 0.0378 0.0415 0.0475
150 0.0208 0.0208 0.0312 0.0249 0.0265 0.0308 0.0252 0.043 0.046 0.0531
170 0.0215 0.0217 0.0332 0.0266 0.0282 0.0327 0.0271 0.0476 0.0517 0.0586
190 0.0225 0.0227 0.0352 0.0285 0.0301 0.0341 0.0298 0.0521 0.0575 0.0651
210 0.0236 0.0235 0.0366 0.03 0.0314 0.0359 0.0323 0.0555 0.0648 0.0732
230 0.0247 0.0247 0.0379 0.0317 0.0324 0.0374 0.0344 0.0582 0.0723 0.0829
250 0.0254 0.0256 0.0379 0.0329 0.033 0.0382 0.0361 0.0607 0.0818 0.0944

Table A.4: This table shows the average posterior development over time on the example of CIFAR-10 High experiment with
an epsilon of 0.49. Each row represents the confidence values for the top 10 models at the sample time t.

45

Figure A.4: The graphs show the success probability of the wide grid search results on all datasets including all configurations.

	Abstract
	Nomenclature
	Introduction
	Background
	Model Selection
	Label-Efficient Learning
	Active Learning
	Semi-Supervised Learning
	Ensemble Learning
	Weak Supervision

	Main Takeaway

	Methodology
	Model Picker
	Baselines
	Query by Committee
	Active Comparison of Prediction Models
	GALAXY
	QDD (Query by Committee with Density and Diversity

	Experiments
	Experimental Protocol
	Experimental Setup
	Datasets and Model Collection
	Evaluation Metrics
	Implementation Details

	Hyperparameter Optimization
	Hyperparameter Optimization by True Oracle
	Hyperparameter Optimization by Subset Sampling
	Hyperparameter Optimization by Noisy Oracle Estimation

	Method Comparison
	Additional Experiments
	Distribution Shift
	Behavior Research

	Discussion
	Model Picker Behavior
	Hyperparameter Optimization
	Results in Context

	Conclusion
	References
	Appendix

