
Track and Truth Correlation in Military
Simulations: Solution Methods within an

Assignment Problem Framework

Siem van Benthem

Master thesis project in collaboration with TNO
Submitted by Siem van Benthem (4965124) on June 14th, 2024

in fulfillment of the degree of Master Applied Mathematics

Supervised by David de Laat (TU Delft), Paul Eigeman (TNO),
Nicole van Elst (TNO) and Kjeld Broekema (TNO)

Defense on the 26th of June 2024

Applied Mathematics - Discrete Mathematics and Optimization
Delft Institute of Applied Mathematics (DIAM)

Delft University of Technology

TNO department Modelling of Tactical Operations (MTO)
Den Haag Oude Waalsdorperweg

Abstract

Military simulation is essential for modern warfare, providing a virtual environment for training, analysis,
and rehearsal of procedures. Accurate correlation between simulated entities, called tracks, and their radar
detections, called tracks, is crucial for generating reliable data, vital for evaluating military operations and
improving training exercises. However, factors like radar noise, communication errors, and simulation
inaccuracies complicate this correlation. This thesis aims to develop a robust method for correlating sim-
ulated truth entities with corresponding radar tracks in military simulations. The proposed method tackles
challenges such as radar noise and communication errors to improve the reliability and validity of simula-
tion statistics. The research encompasses the theoretical development of three correlation algorithms, one
of which serves as a benchmark for verification. The methods were evaluated across various simulated
scenarios, in which the two correlation methods consistently outperformed the benchmark, particularly in
scenarios with fewer data points.

1

Contents

1 Introduction 4

2 Background on military simulation 6
2.1 Overview of the datalink Link-16 . 7
2.2 Distributed Interactive Simulation . 8

2.2.1 Dead Reckoning . 8
2.3 Joint Project Optic Windmill . 9
2.4 Joint Research on Air Defense Systems . 10

3 Problem description 11
3.1 Properties of a track-truth link . 11

3.1.1 Uniqueness of track detection . 11
3.1.2 Guaranteed truth detection . 12
3.1.3 Uniqueness of truth per observer . 12
3.1.4 Time dependency . 13
3.1.5 Bounded track error . 13

3.2 Mathematical description . 14

4 Assignment Problems 16
4.1 Integral Polyhedra and Total Unimodularity . 16
4.2 Assignment problems . 18

4.2.1 Balanced assignment problem . 18
4.2.2 Unbalanced assignment problem . 21
4.2.3 Bottleneck assignment problem . 21
4.2.4 Lexicographic Bottleneck Assignment problem 22

4.3 Augmenting paths and the Hopcroft-Karp-Karzanov algorithm 23
4.3.1 Augmenting paths and Berge’s theorem . 23
4.3.2 The Hopcroft-Karp-Karzanov algorithm . 24

4.4 Threshold algorithm for bottleneck assignment . 28
4.5 A solution method for lexicographic bottleneck assignment 30
4.6 Ranking solutions of the unbalanced assignment problem 34

4.6.1 Murty’s algorithm . 35
4.6.2 Complexity of Murty’s algorithm . 37

5 Identifying a track-truth link 38
5.1 Identification method . 38

5.1.1 Track and truth selection . 38
5.1.2 Computation of the track-truth link . 39

2

5.2 Motivation for UAP and LexBAP . 41
5.3 Analysis of method in edge cases . 42

5.3.1 No ghost tracks, no undetected truths . 43
5.3.2 At least one ghost track, no undetected truths 43
5.3.3 No ghost tracks, at least one undetected truth 43
5.3.4 At least one ghost track, at least one undetected truth 44
5.3.5 More selected truths than tracks . 44

5.4 Alteration time estimation . 45
5.5 Weight Selection . 47

5.5.1 Distance Weight Profile . 47
5.5.2 Gaussian Weight Profiles . 48

6 Verification of solution method 50
6.1 Greedy method for benchmarking . 50
6.2 Verification through JROADS . 51

6.2.1 Scenario 1: Formation Straight Single Observer 52
6.2.2 Scenario 2: Formation Straight Single Observers Two Swaps 52
6.2.3 Scenario 3: Formation Straight Two Observers 52

6.3 Verification through JPOW . 52

7 Results 54
7.1 Results of JROADS verification . 54

7.1.1 Scenario 1: Formation Straight Single Observer (FSSO) 54
7.1.2 Scenario 2: Formation Straight Single Observer Two Swaps (FSSOTS) 55
7.1.3 Scenario 3: Formation Straight Two Observer (FSTO) 56
7.1.4 Weight Profile comparison . 56
7.1.5 General JROADS results . 56

7.2 Results of JPOW verification . 57

8 Conclusion 58

9 Appendix 60
9.1 Figures Scenario 1 FSSO . 60
9.2 Figures Scenario 2 FSSOTS . 64
9.3 Figures Scenario 3 FSTO . 67
9.4 Tables JPOW Situations . 67

3

1 Introduction

Military simulation is an essential tool in modern warfare, enabling the training, analysis, and rehearsal of
military procedures in a virtual environment. These simulations rely heavily on the accurate modeling and
representation of realistic systems and scenarios, among which are the detection and tracking of entities
by radar systems. The correct correlation of simulated entities, referred to as truths, with their detections
by radar systems, called tracks or perceived truths, is essential for generating reliable data and statistics
for simulation exercises. This data is fundamental for assessing the performance of military operations
and providing insights during and after training exercises.

In a typical military simulation, truth entities represent units’ actual positions and identities within the
simulated environment. Simulated radar systems detect these entities and generate tracks based on the re-
ceived signals. However, various factors complicate the correlation between truth entities and radar tracks.
As proclaimed by experts, radar noise, communication and network errors, datalink protocol faults, and
inherent simulation inaccuracies can lead to discrepancies between the actual positions of entities and the
positions indicated by radar tracks.

The ability to correctly correlate truth entities with radar tracks has significant implications for military
training and operations. Reliable correlation ensures that simulation statistics, such as detection rates,
detection times, and tracking accuracy, reflect true performance. These statistics are vital for evaluating
the effectiveness of strategies and tactics and identifying areas that require improvement.

The primary objective of this thesis is to develop a robust method for correlating simulated truth entities
with the corresponding radar tracks in a military simulation environment. This method will address the
various challenges posed by radar noise, communication errors, and simulation inaccuracies. By achiev-
ing accurate correlation, the proposed method aims to enhance the reliability and validity of the statistics
generated during training exercises.

The scope of this thesis encompasses the theoretical development of the correlation algorithm, its practical
implementation, and the evaluation of its effectiveness in various simulated scenarios. While the focus is
on simulated radar systems, the principles and techniques developed may also apply to real-world radar
systems with appropriate modifications.

At first, Section 2 familiarizes the reader with the required background on military simulation, as well as
the important simulation exercise Joint Project Optic Windmill (JPOW) and simulation environment Joint
Research on Air Defense Systems (JROADS). Subsequently, the problem of identifying a precise track and
truth correlation is modeled using its practice-inspired properties in Section 3. In Section 4, the reader is
introduced to several variations of the assignment problem, which will serve as the mathematical basis of

4

the novel solution method presented in Section 5. Verification of the solution method will be treated in
Section 6, along with the corresponding results. In conclusion, the results are analyzed and reflected upon
in Section 8.

5

2 Background on military simulation

In the modern military, computer-based simulation is an essential methodology aiming to replicate the
complexities of warfare in virtual environments. It harnesses computational algorithms and advanced
modeling techniques to provide soldiers, commanders, and strategic planners with realistic and interac-
tive training experiences. From tactical engagements to strategic decision-making, computer-based sim-
ulations offer a dynamic platform for training skills, testing strategies and capabilities, and enhancing
operational procedures in a risk-free environment.

The evolution of computer-based military simulation traces its roots to the early days of computing, where
basic war games and simple simulations laid the groundwork for more sophisticated applications. With the
improving quality of hardware and software, military simulations have evolved into highly immersive and
realistic training environments. These simulations can range from individual training modules focusing
on specific skills to large-scale operations involving multiple units.

Computer-based military simulation may be categorized into two types. At first, there is a hardware-
in-the-loop simulation (HIL), which incorporates existing hardware in the simulation. The advantage of
HIL-simulation is that real-life operating systems are utilized, therefore creating a more faithful repre-
sentation of live events. Alternatively, all systems and equipment can be modeled digitally, yielding a
simulation environment that does not use any existing systems. Such simulations are not named specifi-
cally, the context should clarify the type of simulation.

At the heart of military simulation lies a diverse array of software platforms and modeling tools. These
technologies enable military organizations to recreate a wide range of battlefield conditions, such as urban
warfare and asymmetric conflicts. By incorporating as many real-life aspects as possible, computer-based
simulations strive to provide trainees with a comprehensive understanding of the complexities and uncer-
tainties inherent in modern warfare.

One of the primary advantages of computer-based military simulation is its scalability and flexibility. Sim-
ulations can be designed to meet the specific training objectives and operational requirements of different
military units, from individual soldiers to the entirety of forces in a conflict. Moreover, simulation-based
experiments and exercises and can be easily modified and updated to reflect changes in tactics and tech-
nologies, ensuring that training remains relevant and up-to-date in an ever-changing environment.

Furthermore, computer-based military simulation offers an attractive alternative to traditional live ex-
ercises. By reducing the need for expensive equipment and logistical support, simulations enable military
organizations to conduct training exercises more frequently and efficiently. Additionally, scenarios that
are impossible to exercise live may be trained through military simulation. Moreover, simulations can be

6

conducted in controlled environments, mitigating risks to personnel and equipment while still providing
realistic training scenarios that challenge participants.

However, the effectiveness of military simulation depends upon the fidelity and accuracy of the underly-
ing models and algorithms. Ensuring that simulations accurately replicate the complexities of real-world
conflicts, remains a key challenge for developers.

2.1 Overview of the datalink Link-16

In military applications, tactical data links (TDL) exist to ensure efficient and secure communication be-
tween allied forces during operations. The most widely used tactical data link by NATO (North Atlantic
Treaty Organization) is Link-16, which started development in the 1970s by the United States Military [7].
This Section aims to explore the properties of Link-16 that are fundamental to the problem presented in
Section 3.

The fundamental of Link-16 is its architecture i.e. the protocols governing data transmission. The ar-
chitecture of Link-16 supports data transmission in a fixed format. Given that a unit will transmit informa-
tion at a designated time, it can choose from a fixed set of messages. These messages are called J-series
messages [7], each of which has several fields to be filled out by the sender. Each of these messages is
labeled as Jx.y, where J dictates the TDL used (Link-16) and x.y the category and sub-category of the
message respectively. For example, the message J3.2 is chosen for the transmission of positional data of
airborne objects, such as enemy fighter jets and helicopters. There are many J-series messages, though the
important ones for this thesis are those containing positional information and track management. These
are summarized in Table 1. In practice, a unit can also send messages that are different from the J-series.
However, for this thesis, these J-series messages are sufficient.

Due to limited capacity on the network, Link-16 enforces regulations on when a unit can transmit or
receive data via the data link. The architecture of Link-16 adopts the principle of Time Division Multiple
Access (TDMA) [7], a simple method allowing a single frequency channel to be used by multiple partic-
ipants. In TDMA, each participant of the network is assigned a set of time slots, during which the unit
can either transmit or receive data. Therefore, all participants consecutively send messages on the same
frequency channel, allowing multiple participants to operate it. Often the time slot allocation is cyclic,
meaning that the sequence of participants will repeat itself.

7

Label Message Title Purpose
J3.2 Air Track Used to exchange information on air tracks.
J3.3 Surface Track Used to exchange information on surface tracks.
J3.4 Subsurface Track Used to exchange information on subsurface tracks.
J3.5 Land Point / Track Used to exchange tactical information on land points and tracks.
J3.6 Space Track Exchanges information on space and ballistic missile tracks.
J7.0 Track Management Transmits information on track management (dropping tracks, identity conflicts, etc.)
J7.2 Correlation Used to resolve dual designation by retaining one track and dropping the other.

Table 1: J-series messages containing positional or management information [7].

2.2 Distributed Interactive Simulation

Distributed Interactive Simulation (DIS) is a simulation (for any type of simulation) infrastructure devel-
oped by IEEE (Institute of Electrical and Electronics Engineers) to simulate realistic and complex virtual
worlds [10]. This infrastructure allows different systems and technologies to be linked together in a sim-
ulation environment. In military simulations, DIS is the architecture of the simulation. Comparable with
Link-16, DIS iteratively sends updates regarding the states of objects in the simulation through Protocol
Data Units (PDUs). These PDUs, similar to J-series messages, have specific structures of fields filled out
based on the entity type. The most crucial type of PDU is the entity state PDU (ePDU), which contains ge-
ographical data such as position, velocity, acceleration, and orientation. An important difference between
Link-16 and DIS is the update frequency, DIS PDUs are generally sent more frequently.

2.2.1 Dead Reckoning

A fundamental aspect of DIS is dead reckoning, which refers to methods and protocols used to accurately
predict the future positions of simulated entities. Each simulated entity has a dead reckoning model (DRM)
that dictates how to estimate its future state. There are a total of eight DRMs, each of which is described by
a three-letter abbreviation. The first letter, either F (Fixed) or R (Rotating), declares whether the orientation
and rotation of the entity should be taken into account in the prediction. The second letter, one of P
(Position) and V (Velocity), discloses if a first or second-order approximation for the position is used. The
last letter, W (World) or B (Body), dictates in which coordinate system the dead reckoning is performed.
The world coordinate system (W) is the general coordinate system used in the simulation and the body
axis is centered at the entity [10]. The two most commonly used DRM models are the Fixed Position
World (FPW) and Fixed Velocity World (FVW) models. The FPW model predicts the future position
using the last known position and velocity. More precisely, the predicted position of an entity with last
known position P0 and velocity V0 at time t0, at time t ≥ t0, is

P = P0 + V0 ∆t, ∆t = t− t0

8

The FVW also takes into account acceleration A0 at t0, computing the future position via

P = P0 + V0 ∆t+
1

2
A0 ∆t2.

These two models are summarized in Table 2.

It is crucial to comprehend the circumstances under which entity state Protocol Data Units (PDUs) are
transmitted. PDUs are transmitted for one of two primary reasons. Firstly, PDUs are sent periodically
based on a predefined period. For instance, if the period is set to exactly one second, a new PDU is dis-
patched every second. Secondly, PDUs are transmitted when a precision threshold for dead reckoning is
violated. If the difference between the predicted position of the entity according to the dead reckoning
model and its actual position exceeds the set threshold, a new PDU is transmitted to update the position.
In summary, whenever a PDU is sent, it is either because the predetermined period has elapsed or because
the threshold for dead reckoning has been surpassed. These mechanisms ensure timely updates of entity
positions and maintain accuracy.

DRM Formula Description

FPW P = P0 + V0 ∆t Constant velocity (or low acceleration) linear motion.

FVW P = P0 + V0 ∆t+ 1
2A0 ∆t2 High speed (e.g., missile) or maneuvering at any speed.

Table 2: Two dead reckoning models used in Distributed Interactive Simulation (DIS) [10].

2.3 Joint Project Optic Windmill

Military simulation serves an especially crucial role in the development, preservation, continuation and
practice of Integrated Air and Missile Defense (IAMD). The NATO Integrated Air and Missile Defence
(NATO IAMD) is the the name given to the collection of assets and systems involved in the defense of
NATO-occupied territory and population from air threats [15]. Naturally, protecting against such threats
can be extremely complex due to the need to coordinate a large number of systems, resulting in numerous
challenges. Military simulation is a powerful tool in exercising these challenges.

Out of all the challenges associated with NATO IAMD, the most significant is the harmonization and
synchronization of all available NATO air-defense units [15]. Fundamental to this challenge is the issue
of interoperability, which is defined to be the capacity of NATO nations to collaborate seamlessly, effi-
ciently, and effectively in pursuit of tactical, operational, and strategic goals [14]. To maintain, review,
and improve the protocols and aspects associated with interoperability, training is required.

The biggest European training event that supports NATO IAMD employing military simulation is the

9

Joint Project Optic Windmill (JPOW). During this HIL simulation exercise, the focus is on interoper-
ability, and in particular the communication and collaboration of various weapon systems [5]. It aims to
practice IAMD protocols on systems in a HIL simulation environment [16]. During JPOW, participants
respond to predetermined IAMD scenarios, that are simulated on a vast computer network connecting all
the participants [5]. Throughout the exercise, the learning objectives of all participants are continuously
monitored and evaluated using the data gathered. The scenarios are designed to exercise specific aspects
of IAMD, which are inspired by potential future real-world threats.

2.4 Joint Research on Air Defense Systems

Joint Research on Air Defense Systems (JROADS) is a simulation environment developed by TNO, de-
signed to support the development of solutions to Integrated Air and Missile Defense (IAMD) challenges.
The JROADS library consists of numerous features, among which are faithful representations of air de-
fense and radar systems, accurate modeling of aircraft, user-defined simulation scenarios, and compre-
hensive data link connectivity, to name a few out of many. Due to its diversity of features, JROADS is a
common choice for experimentation, development, and analysis purposes.

10

3 Problem description

This section presents the problem to be addressed in this thesis. First, the problem is introduced within the
context of military simulation, by means of an example. Subsequently, the mathematical modeling of the
structure and entities in the simulation is outlined, leading to the mathematical formulation of the problem.

Let’s illustrate the problem with an example. Imagine a simulation scenario featuring several entities:
a frigate (blue) equipped with radar and an anti-air defense system, and two fighters engaged in a dogfight
(one blue and one red). The colors indicate the faction of the entities, with blue representing friendly
forces and red representing foes. Throughout the scenario, the frigate detects both fighters using its radar
system and engages the enemy fighter with its anti-air defense, intending to destroy it. However, instead
of eliminating the enemy fighter, the frigate’s missiles wrongly destroy the friendly fighter.

Undoubtedly, an error has occurred, though its exact nature remains uncertain. What’s evident is that
there are only two plausible explanations for this outcome. Either the frigate mistakenly identified the
friendly fighter as a foe (and vice versa), or the anti-air system wrongly targeted the friendly fighter due
to a system malfunction. To ascertain which event occurred, we seek to determine whether the first expla-
nation holds true – whether the frigate misidentified the friendly fighter as an enemy.

To answer this question, every reported track in the scenario needs to be assigned to a truth object. We
refer to the collection of all such assignments as a track-truth link. The issue of finding a track-truth
link for a scenario arises frequently in military simulation, predominantly during the analysis of scenarios
containing an error for which faulty detection can be an explanation. An effective method for the determi-
nation of such a matching in these scenarios greatly benefits accurate and thorough analyses by reducing
uncertainty.

3.1 Properties of a track-truth link

To establish an effective mathematical framework for determining a track-truth link, it is crucial to identify
key properties that can serve as foundational assumptions. This section explores several properties of a
track-truth link.

3.1.1 Uniqueness of track detection

The first property concerns the uniqueness of track detection, asserting that each track represents the de-
tection of at most one truth object. This principle originates from the custom in military simulation, where
tracks typically describe a single entity. While it is feasible for a track to correspond to multiple objects,
it is not preferred. It is crucial, in motivating this assumption, to differentiate between two cases: tracks
deliberately reporting multiple truths as one, and those that do not.

11

If a track intentionally represents multiple truths, it is associated with a parameter known as strength, de-
termining the number of entities it represents. Such tracks are employed only when the precise locations
of the entities are irrelevant, providing only a general indication of the cluster’s position. It is reasonable
to presume that no other tracks or truths are in proximity to this cluster; otherwise, they would be included
in the same track with a higher strength. Consequently, associating the track with corresponding truths be-
comes straightforward, and it is unnecessary to consider this in the track-truth link determination process.
Thus, it is safe to assume that each track corresponds to at most one truth in the subsequent methodology.

Alternatively, multiple truths may be incorrectly reported as a strength-one track (or at least a smaller
strength). In such instances, the track-truth link method ideally associates it with all the corresponding
truths. However, this would pose several mathematical challenges, which will be explained at a later stage.
Therefore, in the methodology developed it is assumed that such a track can only correspond to one truth,
ideally being one of the corresponding truths. Regardless of which corresponding truth (assuming it is
one) the track is mapped to, the outcome is neither entirely correct nor false.

Lastly, it is important to acknowledge that not every track necessarily corresponds to a truth object, as
errors in detection can lead to tracks not aligning with an entity. Such tracks are categorized as ghost
tracks.

3.1.2 Guaranteed truth detection

Second is the property of guaranteed truth detection, which claims that every truth entity taken into ac-
count is detected at least once. This assumption is not straightforward as it occurs quite often that truths
are not detected. For example, when the truth’s position is outside of detection range or terrain blocks the
electromagnetic radiation, both resulting in non-detection. However, in the correlation method presented
in Section 5, this property will be beneficial. If a truth is not detected, the non-existence of a track corre-
sponding to the truth implies that there is no need for this truth to be associated with a track. Hence it is
redundant in the track-truth link computation method and we can assume that all truths correspond to at
least one track.

3.1.3 Uniqueness of truth per observer

The third property concerns the uniqueness of truth per observer. In military simulations, it is not un-
common for a single truth to be reported multiple times under different track numbers, despite existing
protocols in tactical data links to prevent this. However, such occurrences are exceptionally rare for a
single observer. Therefore, it is reasonable to assume that no two tracks of the same observer correspond
to the same truth. In the unlikely event that this does occur, the superfluous tracks may be categorized as
ghost tracks.

12

3.1.4 Time dependency

The fourth property is that of time dependency. Essentially, time dependency states that the track-truth
link may change in time. The points in time where the track-truth link changes are called alteration times.
There are two principal reasons why the track-truth link can change, which we list here. Firstly, there
is the occurrence of identity swapping, which is illustrated through an example. Consider two fighters
(red), labeled D1 and D2, flying in formation which are observed by a frigate’s radar system (blue) and
subsequently reported under track numbers T1 and T2, respectively. Initially, the correct track-truth link is
(T1, D1) and (T2, D2). However, if the fighters alter their formation and fly in proximity to one another, it
may confuse the radar system, and it may mistakenly report truth D1 as T2 and D2 as T1. Hence, if such
confusion takes place, the track-truth link is no longer (T1, D1) and (T2, D2), but (T1, D2) and (T2, D1).

Second, there are track correlation and track decorrelation. In the datalink Link-16, correlation is the
general name given to assigning received information to information already existing in the database [7].
Correlation is especially important in processing new track information, for which there exist correlation
protocols preventing (to a certain degree) that no redundant information exists within the data link. Two
such protocols are important for the time dependency of the track-truth link, those of track correlation and
- decorrelation. The track correlation protocol removes duplicate track numbers from the data link if they
represent the same object, which is decided if they are sufficiently similar in terms of position, velocity,
direction etcetera. Conversely, if a track number is believed to no longer accurately represent an entity,
the track decorrelation protocol ensures that the entity is tracked by creating a new track number which
is updated by a distinct observer. The former track number is eventually dropped. Naturally, these two
protocols change the track-truth link by respectively adding and removing track numbers.

3.1.5 Bounded track error

Because radar systems commonly exhibit imperfections, detections are inherently imperfect. Conse-
quently, observations made by an observer regarding a truth object’s position contain errors. The mag-
nitude of these errors can vary across different radar systems, leading to discrepancies in the distances
between observed tracks and actual positions. In certain scenarios, accurately characterizing the distribu-
tion of these errors can be challenging. However, it is feasible to establish a limit or threshold on the errors.
Hence, it is reasonable to assume that the distance between the positions of a track and the corresponding
truth is bounded by a predetermined value. This value depends on the observer reporting the track.

13

3.2 Mathematical description

To formulate the problem of finding a link between track and truth objects, it is necessary to establish
mathematical models for both.

Definition 3.1 (Track and Truth). Let d1 and d2 be integers with d1 ≤ d2 and t ∈ R+

(a) A track is a set χT = {t1, . . . , tk} ⊆ [0, t] together with a function T : χT −→ Rd1 .

(b) A truth D is a continuous function D : [0, t] −→ Rd2 .

We will now justify the definition above. Firstly, the dimensions d1 and d2 of track and truth objects,
dictate the amount of information available about an object. In practice, a track typically contains less
information than a truth object, hence d1 ≤ d2. Secondly, as a truth object is simulated over a time in-
terval [0, t] during which accurate information about it is available, it is reasonable to model truth objects
as real vector-valued functions over this interval. Since tracks represent truth objects only temporarily, it
is natural to model them as sequences of real-valued vectors. From a datalink perspective (Link-16), a
mathematical track corresponds to the collection of tracks reported under the same track number. Occa-
sionally, a single vector in a track is also referred to as a track. This should, however, be clear from the
context.

Throughout this thesis, the most relevant track and truth information is positional data. Therefore, it
is convenient to define a track and truth’s position. Positional data can be registered in many ways, though
in this thesis we adopt the ECEF cartesian coordinate system (Earth-centered, Earth-fixed). The ECEF
coordinate system is obtained by positioning a cartesian coordinate system with its center at the earth’s
center of mass, then aligning the z-axis with the line between the north and south poles and rotating it
along this axis so that the x-axis passes through the prime meridian. As a consequence, the ECEF system
contains the equator in the xy-plane. Now, for a track T and time τ ∈ χ

T , we denote by Tρ(τ) the position
of track T at time τ in the ECEF coordinate system. Similarly, for truth D and time τ ∈ [0, t] we denote
by Dρ(τ) the position of truth D at time τ in the ECEF coordinate system.

Before formalizing the notion of a track-truth link, some more preliminaries are required. Firstly, for a set
of tracks T we can distinguish between the observers, of which there are l, that have reported the tracks.
Specifically, we may partition the track set T into sets T1, . . . , Tl, where Ti consists of the respective tracks
reported by observer i. We refer to the partition {T1, . . . , Tl} as the observer partition. Furthermore, each
observer i has a confusability range Ri, that determines the maximum distance between a truth and a track
of that truth at a single point in time, reported by observer i. Secondly, we define the track-truth graph,
which is the complete bipartite graph G(T ,D) = (V,E) with vertex set V = T ∪ D and E = T × D,
having bipartite sets T andD respectively. We can now define a track-truth link formally. In the definition,
the notation NG(v) denotes the set of all neighbors of v in the graph G.

14

Definition 3.2. Let T = {T1, . . . , Tn} be a set of tracks having observer partition {T1, . . . , Tl}, and
D = {D1, . . . , Dm} a set of truths. The track-truth link is a unique function f : [0, t] −→ 2E satisfying
the following properties, in which G(τ) = (V, f(τ))

(i) |NG(τ)(Ti)| ≤ 1 for all τ ∈ [0, t] and i ∈ [n].

(ii) |NG(τ)(Dj)| ≥ 1 for all τ ∈ [0, t] and j ∈ [m].

(iii) Let i ∈ [l] and τ ∈ [0, t], then NG(τ)(T) ∩NG(τ)(T̃) = ∅ for distinct T, T̃ ∈ Ti

(iv) Let i ∈ [l], T ∈ Ti, τ ∈ χ
T and D ∈ D, then (T,D) ∈ f(τ) =⇒ ∥Tρ(τ)−Dρ(τ)∥ ≤ Ri .

This definition states that the track-truth link is a function that maps each time τ to a set of edges satisfying
properties (i) through (iv). Which correspond to the properties described in Sections 3.1.1 through 3.1.5,
respectively. Essentially, the edges f(τ) for a given time τ ∈ [0, t] determine the assignment of tracks to
truths. An example of a scenario and corresponding track-truth graph and track-truth link can be found in
Figure 1.

A

B
C

1

2

3

(a) Scenario with tracks (blue) and
truths (red) whose correspondence is
displayed by lines.

A

B

C

1

2

3

(b) The track-truth graph corre-
sponding to scenario 1a.

A

B

C

1

2

3

(c) Correct track-truth link corre-
sponding to scenario 1a.

Figure 1: Example of scenario with track and truth entities and corresponding track-truth graph and
link.

15

4 Assignment Problems

4.1 Integral Polyhedra and Total Unimodularity

A fundamental object in combinatorial optimization is an integral polyhedron. Integral polyhedra have
the property that all faces contain an integer point. This property is extremely valuable in integer linear
programming since there is no need for integral constraints, allowing the usage of linear program solvers.
This section explores the concept of total unimodularity, a property of matrices that implies integrality of
polyhedra. This section assumes that the reader is familiar with the basics of polyhedra.

We start with the integer hull operation. For a polyhedron P define its integer hull PI as the convex
hull of all its integral vectors, i.e.

PI = conv{x : x ∈ P, x integral }

A polyhedron P is called integral if it is equal to its integer hull, i.e. P = PI . There are many equivalent
definitions for integral polyhedra, see [18] for a survey. The crucial property of integral polyhedra is the
following result [18].

Theorem 4.1. Let P ⊆ Rn be an integral polyhedron and c ∈ Rn such that z = max{c⊤x : x ∈ P}
exists and is finite. Then there exists an integral vector x ∈ P satisfying c⊤x = z.

This result shows that linear programs with integral polyhedra admit optimal integral solutions, though it
need not be true that all optimal solutions are integral. Since a polyhedron P is completely determined
by linear inequalities Ax ≤ b, it is only natural to contemplate the existence of a property of A and b that
implies integrality of P . Indeed such a result exists and has been known for quite some time. This result
relies on the following property.

Definition 4.2. A matrix A is called totally unimodular if det(B) ∈ {0,±1} for every square submatrix
B of A.

It follows immediately from the definition that a totally unimodular matrix consists only of entries in
{0,±1}. Total unimodularity is preserved by basic matrix operations, as demonstrated by the next result
[18].

16

Lemma 4.3. Let A be a totally unimodular matrix and let B be the matrix obtained from A by either:

(i) permutating the rows or columns

(ii) transposing the matrix

(iii) multiplying a row or column by −1

(iv) adding a row or column with a single nonzero entry, being ±1

(v) adding a row or column from A

Then B is totally unimodular as well.

There exist more operations preserving total unimodularity, though for this thesis these are sufficient. Next
is a fundamental result due to Alan J. Hoffman and Joseph B. Kruskal [8] that guarantees that a polyhedron
is integral.

Theorem 4.4. Let A be a totally unimodular matrix and b an integral vector, then the polyhedron P =

{x : Ax ≤ b} is integral.

Given a linear program with constraint matrix A, integral vector b, and polyhedron P induced by the con-
straints. Ideally, we would like to apply Theorem 4.4 to A to verify whether P is integral. This is possible
if the linear program only has lesser-equal constraints, though if it has greater-equal or equality constraints,
Theorem 4.4 is not sufficient. Naturally, greater-equal and equality constraints can be enforced via lesser-
equal constraints. However, in doing so, the constraint matrix A of the linear program is altered, either by
multiplying a row by minus-one for a greater-equal constraint or by repeating a row and multiplying it by
minus-one as well (yielding a lesser-equal and greater-equal constraint of the same row).

Fortunately, the property of total unimodularity is preserved by both these operations, as demonstrated
by Lemma 4.3. Therefore, if the constraint matrix A of a linear program is totally unimodular, Lemma 4.3
guarantees that there exists a totally unimodular matrix A′ such that P = {x : A′x ≤ b} which is con-
structed from A by multiplying rows by minus-one and repeating rows. We have essentially demonstrated
the following result.

Theorem 4.5. If the constraint matrix of a linear program is totally unimodular, then the polyhedron
induced by these inequalities is integral.

17

4.2 Assignment problems

We illustrate the fundamentals of the assignment problem through an example. Suppose you are the owner
of a new zoo and wish to assign animals from a set A to exhibits from a set B, under the assumption that
no two animals may be assigned to the same exhibit and that the number of exhibits equals the number
of animals. Taking into account the welfare of the animals, you want to assign each animal to a suitable
exhibit. However, some animals are more suited for an exhibit than others (i.e. a polar bear demands a
larger habitat than a frog). To this end, we define a suitability score cab for each pair ab of animal a ∈ A

and exhibit b ∈ B, which defines how appropriate exhibit b is for animal a. Exhibits that greatly mimic the
habitat of animals are given a large suitability score, and vice versa. A suitable choice for an assignment
that maximizes the total welfare of the animals is to choose the set of pairs ab that maximize the sum of
suitability scores.

There are many variations of the assignment problem, four of which will be of main interest to us. Firstly,
the assignment problem sketched above is more explicitly referred to as the balanced assignment prob-
lem, indicating that the sets of animals and exhibits are of equal cardinality (so balanced). Secondly, there
is the unbalanced assignment problem (UAP for brevity) which is identical to the balanced assignment
problem, only that it allows for sets of different cardinality. In our example, this corresponds to assigning
animals fromA to a larger number of exhibitsB. Thirdly, there is the bottleneck assignment problem (BAP
for brevity). The bottleneck assignment problem has identical constraints as the unbalanced assignment
problem, the only difference lies in the objective. Rather than minimizing the sum of suitability scores,
we minimize the maximum suitability score (or maximize the minimum value) of our assignment. Again,
in our example, this means we want to find an assignment of animals to exhibits such that the smallest
suitability score (in our assignment) is maximized. Note that because the bottleneck assignment problem
has identical constraints to the unbalanced assignment problem, it also accounts for sets of different car-
dinality. Lastly, lexicographic bottleneck assignment aims to find a lexicographic minimal solution to the
bottleneck assignment. It may be thought of as a secondary optimization among all feasible solutions to
the bottleneck assignment problem.

4.2.1 Balanced assignment problem

We now formulate this problem concretely in a graph-theoretical sense. Consider a complete bipartite
graph G = (V,E) with bipartite sets V = V1 ∪ V2 with |V1| = |V2| = n. A matching in G is a set
M ⊆ E of edges such that no two edges in M share an endpoint. A matching M in G is of maximum
cardinality if there does not exist a matching of larger cardinality. Let C ∈ Rn×n be the cost matrix that
associates with each edge ij a cost Cij . The objective of the balanced assignment problem is to find a
maximum cardinality matching in G that minimizes (or maximizes) the sum of costs of edges in M , i.e.

argmin
{ ∑

e∈M

ce : M is a maximum cardinality matching of G
}

(1)

18

Depending on the context and nature of the problem, we may write this as a min problem if the exact
solution is not of importance. The assignment problem may be extended to an incomplete bipartite graph
G by assigning sufficiently large (or small) costs to the non-existing edges in G. Sufficiently large, in this
sense, means large enough so that they will not be part of an optimal solution.

We can write the balanced assignment problem as an integer program. With each maximum cardinal-
ity matching M in G we associate a binary matrix X ∈ Rn×n by setting Xij = 1 if ij ∈ M and zero
otherwise. The matrixX may be thought of as an adjacency matrix for bipartite graphs sometimes referred
to as the biadjacency matrix. Since M is a maximum cardinality matching, all row and column sums eval-
uate to 1 exactly, indicating that X is a permutation matrix. On the other hand, every permutation matrix
X ∈ Rn×n corresponds to a maximum cardinality matching in G by selecting the edges ij ∈ E such
that Xij = 1. Hence, we may characterize maximum cardinality matchings with permutation matrices,
leading to the following integer programming formulation

min
X ∈ Rn×n

n∑
i=1

n∑
j=1

CijXij

s.t.

n∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij = 1 j = 1, . . . , n

Xij ∈ {0, 1} i, j = 1, . . . , n

(2)

The appearance of permutations in this context is no coincidence as is demonstrated by the next line of
thought in our example. Rather than assigning n animals to n exhibits, we may view the problem as
assigning each animal uniquely to a number in {1, . . . , n}, ordering them. In this context, we optimize
over all possible orders of the numbers {1, . . . , n}, rather than the explicit assignments. Since the order-
ings of these numbers are identically described by the permutations of size n, we may optimize over all
permutations of this size.

19

As verified in [3], the binary constraint in (2) may be relaxed to Xij ≥ 0 due to total unimodularity. Recall
from Theorem 4.4 that polyhedra which are induced by a totally unimodular matrix and integral vector
are in fact integral. The constraint matrix of (2) is

Aassign =



1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 1 1

1 1 1 1

.

1 1 1 1


It was already verified in [3] that Aassign is totally unimodular. However, their result relied on other results
and for that reason, we supply a self-contained proof.

Lemma 4.6. The matrix Aassign is totally unimodular.

Proof. Let Aassign be of dimension n and let B be a square submatrix of Aassign. We prove the statement
via the definition of total unimodularity and induction on the dimension of B. For the base case, assume
that B consists of a single row and column. Then B = (1), and therefore det(B) = 1. Proceeding with
the induction hypothesis, suppose B has dimension k ≥ 2 and that det(B′) ∈ {0,±1} for all square
submatrices B′ of Aassign with dimension strictly smaller than k. It is easily verified from Aassign that
B must have a column that contains at most one nonzero entry. If B has the zero vector as a column,
then clearly det(B) = 0. Contrarily, if B does not contain the zero vector as a column, then it has a
column with exactly one 1. Now the determinant of B may be expanded over this column, hence it may be
expressed as det(B) = ±det(B′), where B′ is a square submatrix of Aassign consisting of k−1 rows and
columns. By the induction hypothesis, we have that det(B′) ∈ {0,±1}, implying that det(B) ∈ {0,±1}
as well. Therefore, the matrix Aassign is totally unimodular.

Due to Lemma 4.6 and Theorem 4.5, the linear program obtained from (2) by removing the binary con-
straint has an integer optimal solution. Furthermore, if the binary constraints are replaced with constraints
Xij ≥ 0, the row and column-sum constraints would guarantee that Xij ≤ 1 as well. Due to Lemma
4.3, replacing binary constraints with non-negativity constraints will preserve total unimodularity. There-
fore, the linear program with the replaced constraints and integer program (2), share an integral optimal
solution.

20

4.2.2 Unbalanced assignment problem

The unbalanced assignment problem (or UAP for the sake of brevity) is practically identical to the regular
assignment problem, except for the cardinalities of the bipartite set of G, which may take arbitrary sizes,
say |V1| = n and |V2| = m with n ≤ m. The objective of the UAP is to find a maximum cardinality
matching in G that minimizes the total cost, so identical to that of the balanced assignment problem. The
integer programming formulation (2) for the balanced assignment problem may easily be extended to a
formulation of the unbalanced assignment problem by varying the dimensions of matrix X

min
X ∈ Rn×m

n∑
i=1

m∑
j=1

CijXij

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j = 1, . . . ,m

Xij ∈ {0, 1} i = 1, . . . , n j = 1, . . . ,m

(3)

Since the constraint matrix of (3) is identical to that of (2), the binary constraint of the unbalanced assign-
ment problem may also be relaxed to Xij ≥ 0.

In addition to (3), the dual formulation of the unbalanced assignment problem will be of importance.
Using basic duality theory, the dual of (3) with relaxation Xij ≥ 0 can be derived. This is

max

n∑
i=1

ui +

m∑
j=1

vj

s.t. ui + vj ≤ Cij i = 1, . . . , n j = 1, . . . ,m

vj ≤ 0 j = 1, . . . ,m

(4)

4.2.3 Bottleneck assignment problem

The third variant of the assignment problem that will be of interest is the bottleneck assignment problem
(or BAP). The term bottleneck refers to the cost that prevents an increase (or decrease) in the optimal
value of the problem. The constraints of a bottleneck assignment problem are identical to those of the
unbalanced assignment problem. The objective function, however, is the maximal cost of an edge within
the matching. Changing the objective function in formulation (3) leads to the following formulation for

21

the bottleneck assignment problem

min
X ∈ Rn×m

max
i∈[n],j∈[m]

CijXij

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j = 1, . . . ,m

Xij ∈ {0, 1} i = 1, . . . , n j = 1, . . . ,m

(5)

Formulation (5) of the bottleneck assignment problem is not linear due to the objective function. How-
ever, this may be achieved by introducing an artificial variable z, adding the constraints CijXij ≤ z for
i ∈ [n], j ∈ [m] and replacing the current objective function by z. In this case, the property of total
unimodularity of the constraint matrix is lost due to the newly added constraints with real coefficients Cij

for Xij .

Inspection of the objective function shows that the objective value of (5) will be a cost coefficient Cij

for some ij ∈ E. Therefore, the optimal value of the bottleneck assignment problem will be one of the
entries in the cost matrix C. In the balanced case, i.e. n = m, this gives rise to the following elegant
formulation for the bottleneck assignment problem [3]

min
φ∈Sn

max
1≤i≤n

Ciφ(i).

Here Sn denotes the set of permutations of size n, i.e. the symmetric group.

4.2.4 Lexicographic Bottleneck Assignment problem

Lastly, a variation of the bottleneck assignment problem is discussed, called lexicographic bottleneck as-
signment or LexBAP for the sake of brevity. In order to understand LexBAP the notion of the lexicographic
order is required. The lexicographic order for x, y ∈ Rn is defined as

x ≺ y ⇐⇒ ∃k ∈ [n] : xk < yk ∧ xi = yi ∀i ≤ k − 1.

Intuitively, ordering as set according to the lexicographic order is identical to sorting a dictionary in the
natural way (alphabetically). This is expected as the lexicographic order is inspired by the alphabetical
order of dictionaries. Furthermore, the lexicographic order defines a total order on Rn.

The objective of LexBAP is to find a solution to the bottleneck assignment problem that has a lexico-
graphic minimal cost vector. Lexicographic bottleneck may be thought of as a secondary optimization
among all optimal solutions to the bottleneck assignment problem. At present, no integer programming
formulations for LexBAP are known. We do give a more formal description here. For a feasible solution

22

X of (5) (BAP) define c(X) to be a vector consisting of entries Cij for which Xij = 1 that is sorted
decreasingly. The formulation below now describes lexicographic bottleneck assignment, in which the
subscript ⪯ suggests that the objective is to minimize according to the lexicographic order.

min
⪯, X ∈ Rn×m

c(X)

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j = 1, . . . ,m

Xij ∈ {0, 1} i = 1, . . . , n j = 1, . . . ,m

(6)

4.3 Augmenting paths and the Hopcroft-Karp-Karzanov algorithm

4.3.1 Augmenting paths and Berge’s theorem

An important notion in the solution methods for assignment problems is that of an augmenting path. It
was (probably) first introduced by Berge in [2] to derive a criterion for characterizing whether a matching
is of maximum cardinality. Prior to the definition of an augmenting path, we require the notion of a free
vertex. For a matching M of a graph G = (V,E) and a vertex v ∈ V we say v is free with respect to M

if it is not incident to an edge in M .

Definition 4.7. Let M be a matching in graph G = (V,E). An M -augmenting path in G is a path
P = v1 v2 . . . vk such that v1 and vk are free with respect to M and the edges are alternatively in M and
E −M .

The notion introduced by Berge in [2], called an alternating chain, only required that for any two adjacent
edges in the path P , one belongs to M and the other to E −M and not that the start- and endpoints of
the chain are free with respect to M . Augmenting paths allow the construction of matchings of larger
cardinality, as demonstrated by the next lemma.

Lemma 4.8. Let M be a matching and P and M -augmenting path. Then M ′ = M ⊕ P is a matching
as well and |M ′| = |M |+ 1.

Proof. Using the definition of the symmetric difference we have M ′ = (M \ P) ∪ (P \M), which is
the union of two disjoint sets. Since the sets P \M and M \ P are both matchings, it is sufficient to
verify that the edges in these sets do not share a vertex. Suppose such a vertex does exist, then it must
be either the startpoint, endpoint, or an internal vertex (not the start- or endpoint) of P . It cannot be an
internal vertex of P , as all such vertices are adjacent to some edge in M ∩ P , which would contradict
that M is a matching. Additionally, it cannot be the start or endpoint of P as they are free with respect to
M . Therefore such vertices do not exist, hence M ′ is a matching. Now consider the cardinality of M ′.

23

Assume that |M \P | = x, then |P \M | = |M |−x+1 as P is M -augmenting and P \M ⊆ P . Together
this gives

|M ′| = x+ |M | − x+ 1 = |M |+ 1.

Next is Berge’s theorem [2], which is an important result regarding augmenting paths, characterizing
whether a matching is of maximum cardinality. Even though Petersen [17] derived a closely related result
before, it is named after Berge. See [12] for a more detailed description.

Theorem 4.9 (Berge). A matching M in G is of maximum cardinality if and only if there does not exist
an M -augmenting path.

Proof. We argue via contraposition, so assume there exists an M -augmenting path P . Then M ′ = M⊕P
is a matching of larger cardinality. Hence M is not a maximum cardinality matching.
Now assume M is not of maximum cardinality. Thus there exists a matching M ′ of larger cardinality than
M . Now consider the subgraph G′ of G induced by the edges M ⊕M ′. Since M and M ′ are matchings,
every vertex in G′ has degree 1 or 2. The connected components of G′ are exactly cycles of even length
and paths (of arbitrary length) whose edges belong alternatively to M and M ′. Since |M ′| > |M | there
must exist a path P of odd length that has more edges in M ′ than in M . This must be an M -augmenting
path, concluding the proof.

Definition 4.10. For sets A and B the symmetric difference A⊕B is defined as

A⊕B = (A \B) ∪ (B \A)

The symmetric difference operation is commutative and associative, so that we may easily write the sym-
metric difference of multiple sets A1, . . . , Ak as A1 ⊕ A2 ⊕ · · · ⊕ Ak, independent of the order. For
augmenting paths, the symmetric difference may be thought of as choosing the edges in M that are not P
and the edges in P that are not in M .

4.3.2 The Hopcroft-Karp-Karzanov algorithm

The renowned Hopcroft-Karp-Karzanov algorithm or HKK-algorithm for brevity, finds a maximum cardi-
nality matching in an unbalanced bipartite graphG. It was independently discovered by John. E. Hopcroft,
Richard M. Karp [9] and Alexander V. Karzanov [11]. It has, for a long time, been the maximum cardi-
nality matching algorithm with the best worst-case scenario performance of O(m

√
n) for a graph on n

vertices and m edges. This section explains the HKK-algorithm, following the description of Hopcroft
and Karp [9].

24

The HKK-algorithm computes a maximum cardinality matching by iteratively constructing a set PM =

{P1, . . . , Pl} of M -augmenting paths such that: each path in PM is of minimal length (among all the
M -augmenting paths); the paths are vertex disjoint; the set is maximal (in the sense that it is not contained
in another set with the same properties). It then constructs a new matching M̃ of larger cardinality by
computing the symmetric difference with M over the paths in PM i.e

M̃ = M ⊕ P1 ⊕ · · · ⊕ Pl

This indeed gives a matching as the augmenting paths in PM are vertex disjoint. In the next iteration, we
use M = M̃ . The algorithm terminates when there no longer exist M -augmenting paths, hence Berge’s
theorem guarantees that the matching M found by the algorithm is of maximum cardinality. The exact
procedure of the Hopcroft-Karp-Karzanov algorithm is described in Algorithm 1.

Algorithm 1 provides a straightforward method to compute a maximum cardinality matching. It even
computes such a matching for an arbitrary graph. However, the algorithm does not yet specify how to
compute the set of vertex disjoint shortest M -augmenting paths in each iteration. The implementation by
Hopcroft and Karp 1973 achieves this for a bipartite graph G by constructing a new graph Ĝ in which
vertex disjoint paths between free vertices correspond to vertex disjoint shortest M -augmenting paths in
the original graph. It then finds these paths using a depth-first search.

We consider the construction of the graph Ĝ. Let G = (V,E) be bipartite with V = V1 ∪ V2 with
matching M . Firstly, we consider a directed copy Ḡ = (V, Ē) of G such that edges in M are oriented
from V1 to V2 and directions flipped for edges not in M . We define F1 ⊆ V1 and F2 ⊆ V2 to be the sets
of free vertices with respect to M . Initialize L0 = F1 and iteratively construct the sets Li of vertices and

Algorithm 1 Hopcroft-Karp-Karzanov
M ← ∅
while P ̸= ∅ do

P ← ConstructMaximalPaths(G,M)
M ←M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk

return M

procedure ConstructMaximalPaths(G,M)
Construct a maximal set P = {P1, P2, . . . , Pk} such that

(a) the Pi are shortest M -augmenting paths in G;
(b) the Pi are vertex disjoint.

return P

25

Ei of directed edges as

Ei = {(u, v) : uv ∈ Ē, v ∈ Li, u /∈ L0 ∪ · · · ∪ Li}

Li = {u : (u, v) ∈ Ei for some v}

The sets Li and Ei will respectively construct the vertex en edge sets of the graph Ĝ. Now let ∆ =

min{i : Li ∩ F2 ̸= ∅} and construct Ĝ = (V̂ , Ê) with

V̂ = L0 ∪ L1 ∪ · · · ∪ L∆−1 ∪ (L∆ ∩ F2)

Ê = E0 ∪ E1 ∪ · · · ∪ E∆−2 ∪ {(u, v) : v ∈ L∆−1, u ∈ F2}

Intuitively, the directed graph Ĝ can be visualized with layers consisting of vertices L0 through L∆ ∩F2,
with edges between these layers according to E0 through {(u, v) : v ∈ L∆−1, u ∈ F2}. The parameter ∆
equals the length of a shortest M -augmenting path in G, which explains the sets L∆ ∩ F2 rather than L∆

and {(u, v) : v ∈ L∆−1, u ∈ F2} rather than E∆−1, because only M -augmenting paths of this length
are considered. Figure 2 gives an example of a graph G and the construction of Ĝ. We now verify the
claimed properties of the graph Ĝ.

Theorem 4.11. Let G = (V,E) be a bipartite graph and Ĝ defined as above. Let Q̂ be a maximal
set of vertex disjoint directed paths in Ĝ starting at a vertex in F2 and ending at a vertex in F1. Then
the set Q consisting of the undirected variants of paths in Q̂ is a maximal set of vertex disjoint shortest
M -augmenting paths in G.

Proof. We first show that each directed path P̂ in Ĝ that starts in a vertex of F2 and ends at a vertex in
F1, corresponds to a shortest M -augmenting path in G. Let P be the undirected variant of P̂ , then P is a
path in G. Furthermore, the start and endpoint of P are free with respect to M as they belong to F2 and
F1 respectively. Additionally, because the edges in the directed copy Ḡ are oriented according to M , the
edges of P̂ must belong alternatively to M and E −M . Therefore, P is an M -augmenting path in G.
Next, we show that P is in fact a shortest M -augmenting path. Note firstly that vertices from F2 appear
only in the vertex set L∆ ∩ F2 from Ĝ, and that vertices from F1 appear only in L0. Since P̂ starts

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7 0

1

2

3

4

5

6

7

L0 L1 L2 L3

Figure 2: Example of graphs in HKK-algorithm. Left: Example graph G. Center: The converted graph
Ḡ. Right: The final graph Ĝ.

26

and ends with vertices from these sets, the length of path P̂ (and P) is ∆. Now suppose there exists an
M -augmenting path P̃ in G with length k < ∆. Then the directed variant of P̃ is a directed path in Ĝ,
implying either that a vertex of F2 belongs to L∆−k or that a vertex from F1 belongs to Lk (or both). This
is a contradiction, as such vertices appear only in L∆ ∩ F2 and L0 respectively. Hence P is a shortest
M -augmenting path in G.
For the statement, it is sufficient that vertex disjoint directed paths in Ĝ correspond to vertex disjoint paths
in G. Since the vertices of the paths P̂ and P are identical, this is trivial and we are done.

A large portion of the paper [9] is dedicated to the determination of the complexity of Algorithm 1. The
most important result, regarding complexity, is that Algorithm 1 terminates within 2⌊ν(G)⌋ + 2 itera-
tions, where ν(G) is the matching number of the graph G [9]. The construction of Ĝ and the depth-first
search for finding a maximal set of vertex disjoint paths in Ĝ may be achieved in O(n + m) iterations.
Since ν(G) = O(n) and m = O(n2), the complexity of Algorithm 1 is O(n2 1

2). In [1], the method of
Hopcroft and Karp was improved to a complexity of O(n1.5/

√
m log(n)) by using clever data structures

and an adjacency matrix scanning technique due to [4]. Their method provides an improvement of factor
1/
√
log n for dense graphs, where dense is understood as m = Θ(n2).

In [11], Karzanov formulated the procedure as a maximal flow problem. Consider a directed variant
Gdir of G obtained by orienting the edges from V1 to V2, and adding a source s incident to the vertices
in V1 (oriented s to V1) and sink t incident to V2 (oriented V2 to t). Additionally, assign each edge unit
weight. Karzanov observed that finding a maximum cardinality matching in a bipartite graph, is equiva-
lent to finding a maximum st-flow in Gdir. By applying a maximum flow algorithm [6] to Gdir, Karzanov
obtained an algorithm with identical complexity.

27

4.4 Threshold algorithm for bottleneck assignment

In this section a threshold algorithm [3] solving the bottleneck assignment problem is discussed. The al-
gorithm iteratively lowers an upper bound on the optimal value, called the threshold, until there no longer
exist matchings of maximum cardinality.

Recall the bottleneck assignment problem stated in Section 4.2.3, whose formulation is repeated here
for the sake of convenience.

min
X ∈ Rn×m

max
i∈[n],j∈[m]

CijXij

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j = 1, . . . ,m

Xij ≥ 0 i = 1, . . . , n j = 1, . . . ,m

(5)

The objective of the bottleneck assignment problem is to find a maximum cardinality matching M in the
bipartite graph G = (V,E) (with V = V1 ∪ V2, |V1| = n, |V2| = m) that minimizes the maximum edge
cost in the matching, which is dictated by the cost matrix C ∈ Rn×m. We call the optimum value z⋆ of
(5) the bottleneck value for the bottleneck assignment problem with cost matrix C.

A simple yet effective method for solving (5) is to repeatedly decrease an upper bound or threshold on
the entries of C until the graph consisting of edges with cost lower than this threshold no longer contains
a maximum cardinality matching. The smallest threshold for which this graph still contains a maximum
cardinality matching must be the bottleneck value z⋆.

Let us formalize this method into an algorithm. At the start of the algorithm an interval [c0, c1] is ini-
tialized so that z⋆ ∈ [c0, c1]. The value c1 is the threshold value mentioned priorly. Subsequently, a value
c ∈ C⋆ = {Cij : c0 < Cij < c1} is chosen as a contender for z⋆. For this c the threshold graph G[c]

is defined as the graph with vertices V and edges E(G) = {ij ∈ E : Cij ≤ c}. There are now two
cases possible, either G[c] has a maximum cardinality matching or it does not. In the first case, it must
be that c ≥ z⋆. On the other hand, if G[c] does not contain a maximum cardinality matching, it must be
that c ≤ z⋆. In the next iteration, our search space can be narrowed down by either decreasing c1 to c or
increasing c0 to c, depending on whether G[c] has a maximum cardinality matching or not. This process
repeats until the set C⋆ is empty. At this stage, we have either z⋆ = c0 or z⋆ = c1. If G[c0] contains a
maximum cardinality matching, then it follows that z⋆ = c0. Contrarily, if G[c0] does not contain a max-
imum cardinality matching, then z⋆ = c1 as G[c1] does. In order to prevent checking G[c0] for existence
of a maximum cardinality matching, we can keep a set Cchecked of checked values1.

1Note that the only case for which c0 /∈ Cchecked is when c0 equals the initialized value.

28

Let us address some minor details of the threshold algorithm. Firstly, in the initialization of c0 and c1

it is required that z⋆ ∈ [c0, c1]. When no additional information about the bottleneck value is available,
the customary choice is to take the minimal cost and maximal cost of the cost matrix for c0 and c1. Sec-
ondly, it is not yet specified how the algorithm chooses a contender c ∈ C⋆. For this a binary search
approach is adopted, i.e. selecting the median of C⋆ for the contender c in the current iteration. A pseudo-
code version of the threshold algorithm may be found in Algorithm 2. A detailed example is discussed in
[3].

Algorithm 2 Threshold
c0 ← minCij , c1 ← maxCij

C⋆ ← {Cij : c0 < Cij < c1}
Cchecked ← ∅

while C⋆ ̸= ∅ do
c← median(C⋆)

if ContainsMCM(c) then
c1 ← c

else
c0 ← c

Cchecked ← Cchecked ∪ {c}

if c0 ∈ Cchecked then
return c1

else
if ContainsMCM(c0) then

return c1

else
return c0

procedure ContainsMCM(c)
if G[c] contains a maximum cardinality matching then

return True
else

return False

We now turn our attention to the complexity of the threshold algorithm using binary search for a cost

29

matrix C ∈ Rn×m, with n ≥ m. Recall that the complexity of binary search for a set of cardinality nm

is O(log nm), which reduces to O(log n) under the assumption n ≥ m. Given a procedure of complexity
T (n) that checks whether a graph contains a maximum cardinality matching, the overall complexity of
the threshold algorithm is O(T (n) log n). If the Hopcroft-Karp-Karzanov algorithm is used for finding a
maximum cardinality matching, the threshold algorithm yields a complexity of O(n2 1

2 log n). Note that
the complexity remains unchanged in terms of n+m, the total number of vertices.

4.5 A solution method for lexicographic bottleneck assignment

In this section, we discuss a solution method from [19] for the lexicographic bottleneck assignment prob-
lem (LexBAP) introduced in Section 4.2.4. Recall the objective of LexBAP: find a feasible solution to
the bottleneck assignment problem with a lexicographic minimal cost vector. In [19] a solution method
for LexBAP is derived for the balanced case. However, due to their method’s dependency on the linear
programming formulation of the balanced assignment problem and the differences between the formula-
tions for the unbalanced and balanced assignment problem, the method cannot be applied straight away to
the unbalanced case. Therefore, we adapt the method in [19] so that it may be used in the unbalanced case.

We first give an intuitive description of the method. Considering that solutions to LexBAP(C) are so-
lutions to BAP(C) as well, an elementary idea is to order the optimal solutions (cost vectors) of BAP(C)
according to the lexicographic order and then pick the smallest one. This method seems favorable, how-
ever, it does not work well in practice as it is difficult to determine the set of optimal BAP(C) solutions
explicitly. Thus a different approach is considered. Suppose the instance BAP(C) has bottleneck value
z = z⋆. Then the value z must appear a minimal number of times in the cost vector associated with the
optimal solution X⋆ of LexBAP(C) (it appears at least once). The same must hold for the second largest
entry of C after z and the third largest etc. By iteratively performing a simple minimization procedure we
can select the solutions that use each cost entry of C smaller than z a minimal number of times, i.e. the
optimal solutions of LexBAP(C).

Let us proceed in more detail. Firstly, define the matrix D = D[z] ∈ Rn×m as

D[z]ij =

1 if Cij = z

0 else

In order to find solutions that use z a minimal number of times in the cost vector, we can solve an unbal-
anced assignment problem (or balanced in the case n = m) with cost matrix D defined above, together
with some additional constraints in order to avoid selecting indices with a value larger than z. Concretely,
the constraints Xij = 0 are added for every index (i, j) ∈ I, where I is the set of indices for which
Cij > z. For future reasons, the constraints

∑n
i=1 Xij = 1 are added for j ∈ J , where for now J = ∅.

30

The exact formulation of this problem is

min
X ∈ Rn×m

n∑
i=1

m∑
j=1

DijXij

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j /∈ J

n∑
i=1

Xij = 1 j ∈ J

Xij ≥ 0 (i, j) /∈ I

Xij = 0 (i, j) ∈ I

(7)

From hereon problem (7) will be referred to as UAP(D, I,J) where D, I,J are respectively the cost
matrix, index set for constraints Xij = 0 and the column index set for constraints

∑m
i=1 Xij = 1. By

inspection, it is clear that an optimal solution of (7) contains the cost entry z a minimal number of times in
the associated cost vector. Therefore, the set of optimal solutions to (7) contains all the optimal solutions
to LexBAP(C), in addition to other solutions. Similar to the issue with BAP, the set of optimal solutions
of (7) is difficult to characterize. However, duality combined with complementary slackness in linear
programming, can be utilized to characterize the optimal solutions. The dual formulation of (7) is required
for this and reads

max

n∑
i=1

ui +

m∑
j=1

vj

s.t. ui + vj ≤ Dij (i, j) /∈ I

vj ≤ 0 j /∈ J

(8)

We hereon refer to problem (8) as DualUAP(D, I,J). For primal (7) and its dual (8), the complementary
slackness conditions are as follows.

Theorem 4.12 (Complementary slackness). Let X and (u, v) be feasible solutions to UAP(D, I,J) and
DualUAP(D, I,J) respectively. Then X and (u, v) are both optimal if and only if

vj

(
n∑

i=1

Xij − 1

)
= 0, j /∈ J

Xij (Dij − ui − vj) = 0, (i, j) /∈ I

These complementary slackness conditions can be used to derive constraints for optimal solutions of the
primal problem, given an optimal solution to the dual problem. It is easily derived that the complementary

31

slackness conditions are equivalent to

vj < 0 ∧ j /∈ J =⇒
n∑

i=1

Xij = 1

Dij > ui + vj =⇒ Xij = 0

(9)

In other words, for an optimal dual solution (u, v) we can derive what conditions optimal primal solutions
must satisfy. Any feasible primal solution that satisfies the constraints implied in (9), must be optimal.
Every index (i, j) for which vj < 0 and Dij > ui + vj is added to the set I and the column index j

is added to J . These indices prescribe which constraints to add in the subsequent iterations in order to
restrict to optimal solutions.

In the next iteration, we repeat a similar procedure. First, a new value znew is determined by one of two
methods. Either by selecting znew = max{Cij : Cij < z} (the second largest entry of C after z) or by
solving an instance of BAP with cost matrix

C̃[z] =


∞ Cij > z

0 Cij = z

Cij else

The bottleneck value of this instance will be the new value of znew. In the context of the original bottleneck
assignment problem, the value of znew is the smallest second largest value among all cost vectors of opti-
mal BAP solutions. If the second method is adopted, then the indices (i, j) for which z > Cij > znew are
added to I. Then, problem (7) is formulated and its dual is solved. This procedure repeats until z = zmin.
For the smallest z in the cost matrix C, there is no need to solve the dual. Instead, it is more efficient to
solve the primal, since at this stage every optimal solution to (7) is an optimal solution to LexBAP(C).

Interestingly, we can conclude that the solution method in [19] for LexBAP in the balanced case may
also be applied to the unbalanced case. This new extension differs from the original in the complemen-
tary slackness conditions, leading to the addition of new constraints in the dual formulation (column sum
constraints).

32

Algorithm 3 LexBAP
z ← max{Cij : i ∈ [n], j ∈ [m]}
zmin = min{Cij : i ∈ [n], j ∈ [m]}
I ← ∅, J ← ∅

while z ≥ zmin do
D ← D[z]

(u, v)← DualUAP(D, I,J)
for i ∈ [n], j ∈ [m] do

if Dij > ui + vj and v[j] < 0 then
I ← I ∪ {(i, j)}
J ← J ∪ {j}

z ← max{Cij : Cij < z}

D ← D[0]

X⋆ ← UAP(D, I,J)
return X⋆

33

4.6 Ranking solutions of the unbalanced assignment problem

In applications of the unbalanced assignment problem (UAP), it is worthwhile not just to determine the op-
timal solution, but also the ones following it in terms of objective value. Essentially, we wish for a method
that can determine for every integer k a sequence X1, . . . , Xk of solutions to UAP such that X1 = X∗

(optimal solution) and Xi is the next best solution (in terms of objective) after removing X1, . . . , Xi−1.
This section presents a method that ranks an arbitrary number of solutions to the unbalanced assignment
problem, from optimal to less optimal. The method in [13] is only considered for the balanced case, though
it can be easily applied to the unbalanced case.

Initially, recall the unbalanced assignment problem (UAP) introduced in Section 3. Let C ∈ Rn×m

be a cost matrix with n ≥ m, then UAP(C) is formulated as

min
X ∈ Rn×m

n∑
i=1

m∑
j=1

CijXij

s.t.

m∑
j=1

Xij = 1 i = 1, . . . , n

n∑
i=1

Xij ≤ 1 j = 1, . . . ,m

Xij ∈ {0, 1} i = 1, . . . , n j = 1, . . . ,m

(3)

Before discussing the method some terminology is required. Let XC denote the set of feasible integral
solutions to UAP(C), that is all X ∈ Rn×m satisfying constraints (3). Elements of the set XC are also
referred to as assignments. Proceeding with the fundamentals of the ranking method, we start with the
concept of a node. Let {e1, . . . , er} and {f1, . . . , fl} be sets of indices taken from [n] × [m], then the
node induced by these indices is

node{e1, . . . , er; f1, . . . , fl} = {X ∈ XC : Xe1 = 1, . . . , Xer = 1;Xf1 = 0, . . . , Xfl = 0}

Essentially, a node is a set of assignments feasible for UAP(C) containing the edges e1, . . . , er and not
containing the edges f1, . . . , fl. In general, a set of assignments is called a node if there exist sets of
indices inducing it. For the sake of brevity, it is convenient to denote a node by the set of indices inducing
it, that is {e1, . . . , er; f1, . . . , fl}.

Given the node N = {e1, . . . , er; f1, . . . , fl}, we are interested in the minimum cost assignment in N ,
which we denote X∗

N and its objective value by zN . In the case that N is empty, the convenience zN =∞
is adopted. We may determine X∗

N by solving an instance of UAP with cost matrix obtained by selecting
the rows and columns of C that are not fixed by the indices e1, . . . , er, and additionally setting the indices
of forbidden edges f1, . . . , fl to infinity (or sufficiently large). The cost matrix obtained by this procedure
is called the remaining cost matrix at node N . Let us illustrate this procedure by means of an example.

34

Consider the cost matrix

C =



2 4 5 2

3 3 1 6

7 8 0 9

9 2 6 2

1 5 4 1


with node N = {(3, 3), (5, 4); (4, 1), (1, 2)}. In order to determine the minimum cost assignment in N

we set C41 = C12 =∞ and select the submatrix C̃ of C consisting of rows {1, 2, 4} and columns {1, 2},
which is

C̃ =


2 ∞
3 3

∞ 2

 .

The optimal solution of UAP(C̃) is {(1, 1), (3, 2)} which corresponds to the indices {(1, 1), (4, 2)} in C.
Therefore, the minimum cost assignment in N is X∗

N = {(1, 1), (3, 3), (4, 2), (5, 4)} with zN = 5.

We proceed with an essential node partitioning operation for the ranking algorithm. LetN = {e1, . . . , er; f1, . . . , fl}
be a node and X∗

N = {e1, . . . , er, g1, . . . , gm−r} a corresponding minimum cost assignment. Naturally,
the edges g1, . . . , gm−r are all different from the restricted edges f1, . . . , fl. Consider the nodes

N1 = {e1, . . . , er; f1, . . . , fl, g1}

N2 = {e1, . . . , er, g1; f1, . . . , fl, g2}
...

Nm−r−1 = {e1, . . . , er, g1, . . . , gm−r−2; f1, . . . , fl, gm−r−1}

Now let X ∈ N be an assignment, then X either contains g1 or it does not. If it does not then, X ∈ N1.
If it does, then X either contains g2 as well, or it does not. If it does not, then X ∈ N2, otherwise we
proceed with the next edge. From this procedure it is clear that the sets N1, . . . , Nm−r−1, partition the set
N \{X∗

N}. Note thatX∗
N is not contained in any of these sets, which follows easily from the fact that every

one of these sets restricts an edge from X∗
N . The procedure of constructing the sets N1, . . . , Nm−r−1 is

called partitioning a node by its minimum cost assignment.

4.6.1 Murty’s algorithm

We are now ready for the solution method. Generally, the algorithm iteratively selects the node with the
best optimal solution from a set of nodes and then partitions it according to its optimal solution. This
iteratively selected node will be the next entry in the sequence X1, . . . , Xk.

At first, there is the initialization procedure consisting of the construction of the first set of nodes. The

35

first assignment in the sequence may be determined by solving UAP using any available method. Let
X1 = {e1, . . . , em} be this assignment. Now partition the set XC \ {X1} by its optimal assignment X1,
this gives the nodes

N1 = {e1}

N2 = {e1; e2}
...

Nm−1 = {e1, . . . , em−2; em−1}

Note that the setXC \{X1} is not necessarily a node, hence partitioning it by its minimum cost assignment
is a slight abuse of terminology. These nodes are collected in a set L = {N1, . . . , Nm−1}. Proceeding,
the node with the best optimal objective is selected, that is

N = argmin
M∈L

zM .

Since the nodes in L partition the set XC \ {X1}, it follows that X2 = XN . For the next iteration, the
node N = Ni is partitioned by its optimal assignment XN into the sets Ni1, . . . , Nid. The node Ni is then
removed from L and the nodes Ni1, . . . , Nid are added. This means that in the next iteration the list of
considered nodes is (L∪{Ni1, . . . , Nid}) \ {N}. Note that these nodes partition the set XC \ {X1, X2},
since Ni1, . . . , Nid is a partition of the set Ni \ {X2}. This procedure continues until the k-best solution
has been found. The entire algorithm is summarized in Algorithm 4.

Algorithm 4 Murty
X1 ← UAP(C)
L← PartitionNode(XC \ {X1})
for i = 1, . . . , k do

N ← argminM∈L zM

Xi ← X∗
N

LN ← PartitionNode(N \ {X∗
N})

L← (L ∪ LN) \ {N}

return X1, . . . , Xk

procedure PartitionNode(N)
Let N = {e1, . . . , er; f1, . . . , fl} and X∗

N = {e1, . . . , er, g1, . . . , gm−r}, then
N1 = {e1, . . . , er; f1, . . . , fl, g1}
N2 = {e1, . . . , er, g1; f1, . . . , fl, g2}
...
Nm−r−1 = {e1, . . . , er, g1, . . . , gm−r−2; f1, . . . , fl, gm−r−1}

return {N1, . . . , Nm−r−1}

36

4.6.2 Complexity of Murty’s algorithm

In conclusion, we analyze Murty’s algorithm for complexity. Suppose that UAP(C) for C ∈ Rn×m

can be solved with complexity O
(
f(n,m)

)
. Murty’s algorithm performs k-iterations in each of which

a number of instances of UAP are solved. Assuming that the method keeps track of the minimum cost
assignments of nodes in previous iterations, the number of instances of UAP to be solved is bound by the
maximum cardinality of a partition of a node (by its minimal assignment). The maximum cardinality of
such a partition is m − 1, in the case that there are no fixed edges in the corresponding node. Hence,
each iteration can be resolved in O

(
mf(n,m)

)
, resulting in the overall complexity of O

(
kmf(n,m)

)
. A

review of solution methods for UAP can be found in [3], which shows that state-of-the-art algorithms for
UAP have a complexity of O

(
n3
)
.

37

5 Identifying a track-truth link

Having introduced and modeled the problem of finding a track-truth link for a military simulation sce-
nario, we can now turn to methods that can determine it. A fruitful perspective is to consider the task of
identifying a track-truth link as an optimization problem, in which the objective is to identify a function
f : [0, t] −→ 2E under the constraints that f is a track-truth link, introduced in 3.2. The idea here is that
the optimal solution to the optimization problem coincides with the correct track-truth link. Inspired by
the problem description, a suitable choice for an optimization problem representing the track-truth link
problem is to represent it as an assignment problem (of some sort), introduced in Section 4.2. There are of
course still variations between methods adopting an assignment problem approach, however they share a
similar structure. Throughout this section, we consider a scenario with tracks T = {T1, . . . , Tn}, observer
partition {T1, . . . , Tl}, truths D = {D1, . . . , Dm}, and alteration times {s1, . . . , sk}.

5.1 Identification method

The method starts with three inputs: a primary track T , a confusability range R, and predicted alteration
times s̃1, . . . , s̃k. The primary track should be interpreted as the main track to be correlated. Since it is
often not required to associate every track with its corresponding truth, only tracks that are confusable
(possibly belong the same truth) with the primary track are selected. Simply put, we consider two tracks
to be confusable if they lie within the confusability range R of each other. Since the exact alteration times
are unknown to us, predicted alteration times are given as an argument to the method. The challenge of
predicting alteration times accurately is discussed in Section 5.4.

Since the track-truth link changes at alteration times s1, . . . , sk, it means that the track-truth link is invariant
on each of the k+1 intervals [0, s1], [s1, s2], . . . , [sk, t]. Hence, the track-truth link consists of k+1 sets
of edges, corresponding to the correct track-truth link on each of these intervals. Each of our the methods
presented will perform an optimization procedure on each of the intervals [0, s̃1], [s̃1, ,̃s2], . . . , [s̃k, t]. The
methods performed on each of the intervals will be identical.

5.1.1 Track and truth selection

Suppose that we are currently performing the optimization procedure on the interval [s̃p, s̃p+1]. At first,
tracks are selected, whose indices (in the set T) are collected in the set Ip. Initially, tracks that have been
within the confusability range R of the primary track T at some point in time are selected, that is

i ∈ Ip ⇐⇒ ∃ τ ∈ [s̃p, s̃p+1] ∩ χT : ∥Tρ(τ)− Ti,ρ(τ)∥ ≤ R.

Naturally, a track selected via this procedure might be confusable with a track that is not confusable with
a different selected track. Therefore, the selection procedure is repeated for each of the selected tracks,
proceeding until no new tracks are found. An example of this procedure is presented in Figure 3.

38

Proceeding, the distinct observers that have reported the selected tracks are determined, naming them
O1, . . . , Oh. Note that it is not required that all of the l observers have reported a selected track during
this interval, hence the necessity for h. An optimization procedure is executed separately for each of the h
observers, which is done in consideration of property (iii) of Definition 3.2 (track-truth link). The explicit
reason though will become more clear later. In the following, define Ipq to be the indices of tracks (in T)
reported by observer q in the interval p. Beforehand, truths are selected independently for each observer,
and are collected in a set Jpq . A truth is selected if it has been within the confusability range of a track of
the current observer, at some point in time. That is

j ∈ Jpq ⇐⇒ ∃ i ∈ Ipq ∃ τ ∈ [s̃p, s̃p+1] ∩ χTi
: ∥Ti,ρ(τ)−Dj,ρ(τ)∥ ≤ R.

Now that the tracks and truths have been selected, we can proceed with the optimization procedure.

5.1.2 Computation of the track-truth link

Now that the tracks and truths have been selected, we can proceed with the optimization step. Essen-
tially, the optimization procedure computes an optimal (according to some criterion) maximum cardinal-
ity matching in a subgraph of the track-truth graph. Recall that the track-truth graph (Section 3.2) is the
bipartite graph G(T ,D) with bipartite sets V = T ∪D and edge set E = T ×D. Let Hpq be the subgraph
of G(T ,D) induced by vertices Tpq = {Ti : i ∈ Ipq} and Dpq = {Dj : j ∈ Jpq}. We introduce binary
variables Xij ∈ {0, 1} for i ∈ Ipq and j ∈ Jpq indicating whether track Ti originates from truth Dj .
These variables can now be employed to formulate the optimization procedure.

Firstly, an issue needs to be dealt with regarding the correlation of truths. Property (ii) of a track-truth link
asserts that every truth corresponds to at least one track. However, after the selection procedure, we are
not certain that the selected truths all correspond to a track reported by the current observer Tq . After all,
if two entities are in proximity to one another, both might be reported with tracks of distinct observers.

T1

T2

T3

T1

T2

T3

T1

T2

T3

Figure 3: Example of the track selection procedure for primary track T1. Left: Current entity (red)
is T1, track T2 (unselected are blue) lies within the confusability range and is selected for the next
iteration. Center: Track T3 lies in proximity of current track T2 and is selected, track T1 has already
been selected (orange). Right: All tracks have been selected and the procedure is done.

39

We make assumptions about this matter based on the number of selected tracks and truths. Firstly, in the
case that the number of selected tracks |Tpq| exceeds the number of selected truths |Dpq| for the current
observer, we assume that every truth corresponds to exactly one of the tracks. There are cases in which this
assumption does not hold up, for instance when an abundance of ghost tracks has been selected. However,
this is extremely unlikely. Secondly, in the case that |Tpq| ≤ |Dpq| we assume that each of the tracks
corresponds to exactly one of the selected truths and additionally, that each truth correlates to at most one
track. We formulate our assumptions as a result.

Assumption 5.1. Let Tpq be the tracks andDpq the truths obtained by the selection procedure for observer
q in interval p. If |Tpq| ≥ |Dpq|, then each truth corresponds to exactly one track. If |Tpq| ≤ |Dpq|, then
each track corresponds to exactly one truth and each truth to at most one track.

It is now important to analyze how the properties of a track-truth link and our assumption, convert into
constraints on the Xij . The constraints rely on the number of selected tracks and truths. Initially, we
derive constraints for the case that |Tpq| ≥ |Dpq|. At first, property (i) of a track-truth link asserts that
each track belongs to at most one truth. In terms of constraints, this means that∑

j∈Jpq

Xij ≤ 1, for all i ∈ Ipq.

Then, property (iii) ascertains that distinct tracks reported by the same observer cannot correspond to
the same truth. Additionally, property (ii) states that every truth object corresponds to at least one track.
However, property (ii) does not guarantee that every selected truth object corresponds to a track of the
current observer. Assumption 5.1 is required to derive this result. Together, these two properties imply
that the degree of each truth in Hpq is exactly one, which is the constraint∑

i∈Ipq

Xij = 1, for all j ∈ Jpq.

Together, the constraints for the binary variables Xij are∑
j∈Jpq

Xij ≤ 1, i ∈ Ipq

∑
i∈Ipq

Xij = 1, j ∈ Jpq (10)

Xij ∈ {0, 1}, i ∈ Ipq, j ∈ Jpq

We can now continue with the case |Tpq| ≤ |Dpq|. Property (i) in combination with Assumption 5.1
implies that the degree of each of the selected tracks is exactly one, which is enforced by the constraint∑

j∈Jpq

Xij = 1, for all i ∈ Ipq.

Assumption 5.1 also implies that the degree of each truth is at most one, yielding the constraint∑
i∈Ipq

Xij ≤ 1, for all j ∈ Jpq.

40

The resulting constraints are therefore∑
j∈Jpq

Xij = 1, i ∈ Ipq

∑
i∈Ipq

Xij ≤ 1, j ∈ Jpq (11)

Xij ∈ {0, 1}, i ∈ Ipq, j ∈ Jpq

At this stage, the constraints of our optimization procedure are defined for both cases. Unsurprisingly,
these constraints are exactly the constraints of an assignment problem. All that is left is to specify what
type of assignment problem is considered. For this, two options are proposed, which are an unbalanced as-
signment problem (UAP) and a lexicographic assignment problem (LexBAP). Recall the objectives of both
these problems which are respectively to determine a maximum cardinality matching that: has a minimal
sum of weights (UAP), and has a lexicographically minimal weight vector (LexBAP). Both of these ap-
proaches require a cost matrixC, which will be determined by the weight profiles discussed in Section 5.5.

After the optimization procedures have been performed for the distinct observers of the current inter-
val, all that is left is to combine the results into a prediction for the track-truth link. In each interval, the
set Epq = {(Ti, Dj) : Xij = 1} represents the correlation of tracks reported by observer q in interval
p, with truths. The predicted track-truth link Ep in interval p is now obtained by taking the union over all
observers, that is Ep =

⋃h
q=1 Epq .

5.2 Motivation for UAP and LexBAP

For the optimization part of the track-truth link method, two options were proposed: UAP (3) and LexBAP
(6). These criteria correspond respectively to a solution with a minimal sum of costs and a lexicographi-
cally minimal vector. Naturally, these two options require motivation through practical examples.

The intuition behind the UAP approach lies in minimizing the sum of errors. Given a cost matrix C rep-
resenting errors between the tracks and truths, a logical choice for the track-truth link is the one that has
the smallest sum of errors, i.e. the optimal solution of the unbalanced (or balanced) assignment problem.
In this approach, there is no consideration of a maximum error in the track-truth link. As a consequence,
an optimal track-truth link determined by UAP may contain a high error edge, which is then corrected (in
terms of objective value) by low error edges. Since a high error edge is likely to be wrong, this approach
might be less desirable.

Approaches that do not have this issue are the bottleneck assignment problem (BAP) and its lexicographi-
cal variant LexBAP. In a BAP (5) approach, the maximum error is minimized rather than the sum of errors.
This resolves the issue of compensation in the UAP approach. However, instances of BAP usually have
a large number of optimal solutions as there is no attention to solution behavior below the optimal value.

41

Therefore, a more appropriate method is LexBAP, which sorts the solution lexicographically according to
its weight vector. Naturally, the optimal solution to LexBAP is also an optimal solution to BAP.

Unsurprisingly, it is common that for a given cost matrix C, both UAP(C) and LexBAP(C) yield the
same optimal solution(s). It is interesting for our method to examine cases where the optimal solutions do
not coincide since these are the situations where the choice between UAP and LexBAP matters in deciding
between the right and wrong solutions. In Figure 4 a scenario is presented consisting of tracks T1, T2, T3

and truths D1, D2, D3, assuming no track-truth link as of yet. Assuming that the cost matrix C is con-
structed via distances, i.e. Cij = ∥Ti,ρ −Dj,ρ∥, the instances UAP(C) and LexBAP(C) do not share the
same optimal solution.

D1

D2

D3

T1
T2

T3

Figure 4: Example instance with tracks T1, T2, T3 and truths D1, D2, D3 where UAP (purple, dotted)
and LexBAP (orange, solid) give different solutions when using a cost matrix containing distances as
weights.

5.3 Analysis of method in edge cases

The method for the identification of a track-truth link defined above is theoretically sound. However, due
to imperfections in the assumptions and rare occurrences in the data, there are cases in which the method
does not perform as desired. Here we consider a few cases in which this happens and the associated solu-
tions.

Two main occurrences in data can interfere with the solution method, which are respectively the selection
of ghost tracks and undetected truths in the selection procedure. Recall that ghost tracks are tracks re-
ported by the current observer, which are the result of simulation flaws or errors in detection. Therefore,
ghost tracks do not correspond to any truth objects. Undetected truths, as the name suggests, are truths
for which there does not exist a track of the present observer, that corresponds to it. There are two ex-
planations for undetected truths. Firstly, there is the occurrence in military simulation that when multiple
truths are close together far away from an observer, they are detected as a single track. Secondly, it is
possible that a truth is not detected by any observer, but it is selected since it lies within the confusability

42

range of another track. This differs slightly from detecting multiple truths as one. An explanation for this
is that the truth lies outside the range of the observer, but only barely as the observer has detected an-
other track close to it. It could also be that the truth is obscured by an object (for example another object),
meaning that the electromagnetic radiation cannot reach the entity, thus resulting in the non-detection of it.

The inclusion of ghost tracks and undetected truths may interfere with the track-truth link computation
method because the method enforces the computation of a maximum cardinality matching for each ob-
server. As a consequence, the track-truth link computed by our method may contain undesirable edges.
An undesirable edge is an edge between a ghost track and a detected truth or between a non-ghost track
and an undetected truth. To analyze how the selection of unwanted tracks and truths affects the solutions
computed by our method, a case distinction between the inclusion of ghost tracks and/or undetected truths
is required. In the case distinction, we assume that the confusability range of the method is sufficiently
large, that is R ≥ max{R1, . . . , Rl}.

5.3.1 No ghost tracks, no undetected truths

Suppose for the first case that no ghost track or undetected truths are included in the selection process.
Under the assumption that the confusability range of the method is at least as large as the confusability
range of the present observer, we can conclude from property (iv) of a track-truth link (bounded track
error) that the number of select tracks is equal to the number of selected truths. Naturally, this means that
our method does not enforce undesirable edges.

5.3.2 At least one ghost track, no undetected truths

If there exists at least one selected ghost track, and there are no undetected truths, it is evident that the
number of selected tracks is strictly larger than the number of selected truths. Again, this is under the
assumption that the confusability range is chosen sufficiently large. In this case, the solution method
computes a matching of cardinality equal to the number of selected truths. Naturally, it is desired that
the proposed track-truth link does not include a ghost track in one of its edges. Annoyingly, this is of
course a feasible outcome. Nevertheless, this outcome is unexpected and the method does not enforce the
correlation of a ghost track with a detected truth.

5.3.3 No ghost tracks, at least one undetected truth

In the case of no ghost tracks and at least one undetected truth, the number of selected tracks is strictly
smaller than the number of selected truths. Therefore, our method employs its alternate formulation to
compute the track-truth link for the current observer. Similar to the last case, it is feasible that the method
computes a track-truth link that contains an undetected truth in one of its edges. However, this is unex-
pected and the method does not enforce an edge containing an undetected truth.

43

5.3.4 At least one ghost track, at least one undetected truth

The last case to consider is that the selection procedure has included at least one ghost track and at least
one undetected truth. In this case, it cannot be said that the number of tracks is strictly larger, smaller, or
equal to the number of selected truths. For the sake of our analysis define the numbers tpq of non-ghost
tracks, gpq of ghost tracks, dpq of detected truths (for which there exists a track), and upq of undetected
truths. Naturally, the cardinalities of tracks and truths correspond to the sums, that is tpq + gpq = |Ipq|
and dpq + upq = |Jpq|.

Under the assumptions made above, it is guaranteed that an undesirable edge is included in the track-truth
link computed by our method. Moreover, the number of such edges is equal to min{gpq, upq}. To see this,
first assume that |Ipq| ≥ |Jpq|. This means that the cardinality of the track-truth link is tpq + gpq , thus
yielding gpq undesirable edges. Contrarily, if |Ipq| ≤ |Jpq|, the number of undesirable edges is upq . Since
the confusability range is sufficiently large, property (iv) of a track-truth link guarantees that tpq = dpq .
Thus, it follows that the number of undesirable edges is min{gpq, upq}.

5.3.5 More selected truths than tracks

As prescribed in the method, the assumptions and theory guarantee that the number of truths |Jpq| in a
scenario is smaller or equal to the number of tracks |Ipq|. There are however cases, where this assumption
does not hold up. Firstly, there is the occurrence in military simulation that when multiple truths are close
together far away from the observer, they are detected as a single track. When this happens, the number
of selected truths likely exceeds the number of tracks. Secondly, it is possible that truths are not detected
by any observer, but they are selected since they lie within the confusability range of another track. This
differs slightly from detecting multiple truths as one. An explanation for this is that the truth lies outside
the range of the observer, but only barely as the observer has detected another track close to it. It could also
be that the truth is obscured by an object (for example another object), meaning that the electromagnetic
radiation cannot reach the entity, thus resulting in the non-detection of it.

Whenever our method has selected more truths than tracks, we can be certain that one of these two issues
has occurred. Our current assumptions of the track-truth link do not account for this situation. Hence, it
is important to remedy the associated consequences the best we can. In the case that |Jpq| ≤ |Ipq|, it is
clear that the system of equations (10) no longer has solutions. Fortunately, this issue may be resolved by

44

altering constraints (10), into ∑
j∈Jpq

Xij = 1, i ∈ Ipq

∑
i∈Ipq

Xij ≤ 1, j ∈ Jpq (12)

Xij ∈ {0, 1}, i ∈ Ipq, j ∈ Jpq

For the rest, the method stays the same. One can view this change in constraints as mapping truths to
tracks, rather than tracks to truths. The resulting set of edges now contains every track in Tpq exactly once,
and every truth in Dpq at most once.

5.4 Alteration time estimation

One of the properties of a track-truth link is time-dependency, see Section 3.1 for a review. At certain mo-
ments during a scenario, the track-truth link may alter from one to another. We may recall from Section
3.1, that there were three main explanations for a change in the track-truth link: identity swapping, track
correlation, and track decorrelation. These time points were previously introduced as alteration times.
Since our solution method partitions the scenario time according to the alteration times, they must be es-
timated as accurately as possible. This section deals with this challenge.

At first, we consider estimating alteration times caused by track correlation. In its simplest form track
correlation removes a track from the datalink if two tracks represent the same entity. The exact protocols
determining the similarity of the tracks are confidential, though they are dependent on several proper-
ties such as position, velocity, and track quality (accuracy). When a datalink participant presumes two
such tracks exist, he requests a correlation of the two via the J-series message J3.2 (correlation) over the
datalink. If this request is accepted, one of the two tracks is dropped.

We elaborate on track correlation via an example. Consider a scenario containing a single fighter (red)
labeled as D, and two frigates equipped with radar, labeled O1 and O2. Both frigates O1 and O2 are
reporting fighter D under tracks T1 and T2 respectively. At a certain stage, the correlation protocol con-
cludes that T1 and T2 both represent the same entity. As a consequence, track T1 is kept and T2 is dropped.

In the case of an alteration due to track correlation, we may approximate the alteration time using J-series
messages. In Link-16, a J7.0 message (track management) is transmitted over the data link whenever a
track is dropped. Since this message is transmitted at the same time (or shortly after), the receive time of
this J-series message is a precise approximation of the alteration time. Therefore, they may determine the
alteration times corresponding to track correlation.

45

Second, the estimation of alteration times due to track decorrelation is discussed. Track decorrelation
can be perceived as the opposite of track correlation. To synchronize all the radar images of observers
in a scenario, the observers compare local tracks with the tracks available on the datalink. Similar to the
protocols in track correlation, there are protocols that determine whether local tracks correspond to tracks
on the datalink. If a local track is correlated to a datalink track, nothing happens. On the other hand, if
the observer has a local track for which there are no datalink tracks, the observer creates a new track and
transmits it on the datalink.

There are two cases for the transmission of a new track. At first, there is the most probable explana-
tion, which is that the entity (or entities) represented by the track has not been detected until this point.
Alternatively, an entity may be no longer be tracked accurately by a different observer, due to range, sim-
ulation errors, or other reasons. At this point, the synchronization protocols of one observer may decide
that a local track and datalink track (representing the same entity), are not the same. As a consequence,
the observer creates a new track and transmits it on the datalink.

In both cases, the track-truth link is altered by the addition of a new track. Fortunately, the estimation
of the corresponding alteration times is straightforward. Similar to track correlation, sending times of
J-series messages can be employed to determine when the alteration has occurred. The J-series messages
in question, are those containing positional information, which are the J3.x messages.

Thirdly, the estimation of alteration times due to identity swapping is treated. Recall that identity swapping
is the alteration of the track-truth link obtained by swapping the correlated tracks of two truths. Identity
swapping is caused primarily by radar noise, which causes difficulties in the distinction between the two
entities. Out of the three causes of track-truth link alteration, identity swapping is the most challenging in
determining the alteration time. What makes the swap times assessment so difficult, is that there are no
reports (in the form of J-series or other) pertaining to the occurrence of an identity swap. Additionally,
in analyzing scenario data, one can only conclude that a swap has occurred after some considerable time,
making accurate estimation especially difficult.

A consequence of these factors is that accurate identity swap time estimation is nearly impossible. How-
ever, it is possible to determine a time interval in which the swap occurs. In practice, it is customary to
determine the track-truth link at a time using visual inspection in a simulation data player, in which track
and truth data are shown simultaneously over time. Annoyingly, this is not possible at all times due to
discrepancies in track and truth positions. Therefore, the best we can do is determine by visual inspection
the two times at which the respective track-truth links were believed to be correct, resulting in an interval in
which the swap time is contained. Consequently, we can make a guess based on these interval boundaries,
for example, the average of the two boundaries.

46

5.5 Weight Selection

Modeling track-truth linking as an assignment problem (of some sort) it is necessary to decide on what
weight is chosen for an edge between track T and truth D. Most important for the motivation and selection
of a weight profile is what joint properties of track T and truth D govern if T corresponds to D. This sec-
tion describes and motivates a collection of reasonable weight profiles, which is a method for computing
weights, for the track-truth linking problem.

Initially, a framework is suggested for the weight profiles. Let T = {T1, . . . , Tn} andD = {D1, . . . , Dm}
be the set of tracks and truths respectively. Given that a track Ti corresponds to truth Dj , it is natural to
model Ti as a noisy observation of Dj . In other words, given that Ti ∼ Dj there exists a random variable
Wij such that

Ti,ρ = Dj,ρ +Wij .

At this stage, no assumptions are made about both the distribution of the Wij and the possible dependence
between them. The weight profiles discussed in this section make assumptions about the distribution of
Wij and independence and exploit it to accurately assess the likelihood that track and truth correspond to
one another. The modeling assumption made above is easily justified by the errors made by radar systems
and communications (which can be unpredictable).

5.5.1 Distance Weight Profile

An especially simple weight profile is the Distance Weight Profile (DW). The DW-profile assumes two
things, the first of which is that all the Wij are independent and identically distributed. The assumption of
independence is rather strong as there is no reason why distinct instances of errors of radar detections and
network errors influence one another. The identical distribution of the Wij is a reasonable assumption for
equal radar and network systems. Since distinct systems may have different noise profiles, this assumption
will be weaker in scenarios with multiple types of radar. The second assumption is that

E[Wij] = E[Ti,ρ −Dj,ρ] = 0, Ti ∼ Dj

which is based on the assumption that corresponding track and truth are expected to lie close together.
Naturally, this assumption is strong as radar systems are designed to asses location as accurately as possi-
ble.

Using these assumptions a reasonable weight can be determined. According to the law of large numbers
(the weak version suffices here), the sample mean of a sequence of independent identically distributed
random variables converges to the expected value of the distribution (in probability). In the context of
track T and truth D, given that T has time sequence t1, . . . , tk, this is exactly

1

k

k∑
i=1

Tρ(ti)−Dρ(ti) −−→ 0, in probability

47

Therefore, a natural choice for weights is the norm of the sample mean of the differences between the track
and truth, hence the weight function for the DW-profile is chosen as

C(T,D) =

∥∥∥∥∥1k
k∑

i=1

Tρ(ti)−Dρ(ti)

∥∥∥∥∥ .
Since the number k of observations varies from track to track, it is of importance here. Otherwise, it could
be discarded.

5.5.2 Gaussian Weight Profiles

The second and third profiles for weights are the Gaussian Weight Density (GW-D) and Gaussian Weight
CDF (GW-CDF) profiles, which assume a multivariate Gaussian distribution on the random variable Wij .
Additionally, this profile assumes that the noise variables Wij are independent and identically distributed
and that E[Wij] = 0, as in the DW profile. The assumption that the noise follows a Gaussian distribution
is a classical one that finds its roots in the central limit theorem.

We review the relevant properties of the multivariate Gaussian distribution. Let X = (X1, . . . , Xl) ∼
N(µ,Σ) be a random variable following the Gaussian distribution with mean µ and positive semi-definite
covariance matrix Σ. The covariance matrix Σ collects the covariances of the random variables Xi via
Σij = Cov(Xi, Xj). The probability density function of the multivariate Gaussian distribution is

ϕ(x) =
1√

(2π)l|Σ|
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Here |Σ| denotes the determinant of Σ. The cumulative distribution is obtained by integrating the density

Φ(x) = P (X ≤ x) =
1√

(2π)l|Σ|

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xk

−∞
exp

(
−1

2
(y − µ)⊤Σ−1(y − µ)

)
dy.

There are no closed-form expressions for the distribution function, though it can be estimated via numer-
ical integration.

Given that the noise terms Wij follow a Gaussian distribution, a weight can be determined that exploits
this property. A reasonable choice for the weight between tracks T and truth D is the probability of ob-
serving Tρ −Dρ under the assumption that Tρ −Dρ ∼ N(0,Σ). If track T has been reported multiple
times, using the mean of observations is beneficial. Computing this probability seems convenient, how-
ever, there are two difficulties at play here. Firstly, the covariance matrix is unknown to us, implying that
computing exact probabilities according to the underlying Gaussian distribution is impossible. Secondly,
since we are dealing with a continuous distribution, the probability of observing exactly Tρ −Dρ is zero.

Let us resolve these issues. In the following suppose that track T has been observed at times t1, . . . , tk
and that Ti = T (ti) and Di = D(ti). Additionally, denote by Tρ − Dρ the average of the differences

48

T1,ρ−D1,ρ, . . . , Tk,ρ−Dk,ρ. To resolve the issue of the unknown covariance matrix, it seems attractive to
employ estimation theory to obtain an estimate for Σ. However, to estimate Σ, the correct track-truth link
is required. Therefore, estimation is not a feasible option. How unpleasant it may be, an educated guess
of Σ might be the best result achievable. In practice, noise-information of the respective radar systems
is known, allowing for an accurate guess of Σ. In the future, denote by Q the educated guess of Σ. The
second issue can be resolved by either applying a density or distribution function approach. In the density
approach, a Gaussian density function is evaluated at T ρ−Dρ, which gives an adequate prediction of the
likelihood that the observations are samples from N(0,Σ). Using the density function in this manner is
common in estimation theory, where the density serves as the likelihood function [20]. Alternatively, the
distribution function approach employs the probability of observing a more extreme result than Tρ −Dρ

as an indicator, which is a customary method in hypothesis testing [20].

In the density approach (GW-D), the probability density function of a Gaussian distribution is evaluated
at the sample mean of the track and truth observations. The distribution of the sample mean of Gaussian
random variables has reduced variance due to multiple observations. Specifically, the sample mean of k
observations from distribution N(0,Σ) has distribution N(0,Σ/k). The density of the latter is evaluated
at T ρ −Dρ, which is exactly

ϕ
(
T ρ −Dρ

)
=

1√
(2π)l|Σ|

exp

(
−k

2

(
T ρ −Dρ

)⊤
Σ−1

(
T ρ −Dρ

))
.

For the weights, the estimator Q required as Σ is unknown. Furthermore, the scalar multiplying the
exponential is superfluous as all weights are multiplied by the same value. In a maximization approach,
the weight for track T and truth D will then be

C(T,D) = exp

(
−k

2

(
T ρ −Dρ

)⊤
Q−1

(
T ρ −Dρ

))
.

In the distribution function approach (GW-CDF), the probability of observing a more extreme result is
computed. As in the density approach, the sample mean is employed here to improve accuracy. Let
us clarify what is meant by a more extreme result. Let X be an l-dimensional real random vector with
expectation E[X] = µ and x ∈ Rl. Then x− µ lies in one of the 2l orthants, hence there exists a vector
ε ∈ {−1, 1}l such that εi (xi − µi) ≤ 0 for all i = 1, . . . , l. The probability of observing a more extreme
result than x for X is

P (X1 ≤ ε1x1, X2 ≤ ε2x2, . . . , Xl ≤ εlxl)

In the one-dimensional case (l = 1), this is exactly P (X ≤ x) if x ≤ µ and P (X ≥ x) if x ≥ µ. Denote
by pX(x) the probability of observing for X a more extreme result than x. Under the assumption that X
follows a Gaussian distribution, the Gaussian distribution function is employed to compute pX(x). The
weight for track T and truth D in a maximization approach is then

C(T,D) = pX(T ρ −Dρ), X ∼ N(0,Σ)

For a minimization approach, we can obtain weights by replacing each weight by its reciprocal.

49

6 Verification of solution method

Any theoretically derived method requires verification via testing, as is the case with the track-truth link
method described in Section 5. This section establishes the framework for the verification and describes
the verification method.

In theory, verification of the track-truth link method is quite simple: compare the track-truth link pre-
dicted by our method with the correct one for some military simulation scenarios. The scenarios used
for verification should reflect those for which the method is designed, and should therefore be chosen (or
designed) by experts who would apply the method in their line of work. An example of a valid verifica-
tion scenario favored by experts is those exercised during the Joint Project Optic Windmill (JPOW) of the
year 2023. Unfortunately, the underlying track-truth link is not monitored here and there are no methods
capable of doing so accurately. As a consequence, our method can not be verified accurately through a
comparison of the real and predicted track-truth links. The most reliable method for extracting the track-
truth link from these scenarios is via visual inspection.

Alternatively, the method can be verified using the simulation environment JROADS (Joint Research on
Air Defense Systems). Different from other military simulations, all systems and entities involved are
simulated in the same environment. Consequently, the track-truth link can be monitored accurately for the
duration of a scenario. Since JROADS is under development, it lacks some features and protocols that are
required for tracking entities authentically (as it would in HIL-simulations or live situations). Since the
inaccuracy of a track is predominantly determined by these features and protocols, the noise of a track and
the corresponding truth generated by JROADS can not be as authentic as desired. JROADS does allow for
simple noise profiles, which can be specified by the user. Additionally, JROADS controls the occurrence
of identity swaps, by allowing the user to specify the quantity of swaps and when they occur (exact times
or random).

Despite the tracking merits of JROADS, verification here is viable. In verification with JROADS, a con-
stant diagonal Gaussian noise profile is assumed on the track noise (not to be mistaken with the Gaussian
weight profile). Specifically, the position of a single track of a truth D is generated according to the
three-dimensional Gaussian distribution N(D,σI), for some specified σ ≥ 0.

6.1 Greedy method for benchmarking

To assess the quality of the methods presented, it is convenient to define a straightforward heuristic for
the problem. The results produced by this heuristic, which we call the greedy method, will serve as a
benchmark for the performance of our methods.

Recall that the solution methods for the track-truth link perform an optimization procedure for each ob-

50

server that has reported a track in the current interval. The optimization procedure consists of solving
either an instance of UAP or LexBAP, both having the same set of feasible solutions. The greedy method
computes a feasible solution by repeatedly adding the minimum cost edge in the graph, so that the col-
lected set of edges in each iteration is a matching.

More explicitly, given a cost matrix C ∈ Rn×m with n ≤ m, the greedy method first selects the minimum
entry Cij in the cost matrix and fixes the associated binary Xij variable to one. To prevent chosen entries
in the same row or column in future iterations, the entire row and column (with the chosen entries’ indices)
are fixed to infinity. In the next iteration, the selection procedure is then repeated for the adjusted cost ma-
trix. This procedure is repeated until n entries have been selected. The greedy method is summarized in
Figure 5, in which 0n×m denotes the zero-padded matrix of dimension n×m. It is easily verified that the
greedy method computes a maximum cardinality matching in linear time (updating an array is constant
time).

Algorithm 5 Greedy matching

X ← 0n×m

for k = 1, . . . , n do
(i, j)← argmin{Cpq : p ∈ [n], q ∈ [m]}
Xij ← 1

C ← UpdateCostMatrix(C, i, j)

return X

procedure UpdateCostMatrix(C, i, j)
for k = 1, . . . , n do

Ckj ←∞

for k = 1, . . . ,m do
Cik ←∞

return C

6.2 Verification through JROADS

Verification via JROADs will be done via several scenarios each of which exercises difficulties that the
method should account for. These difficulties include proximity formation flying, multi-track reporting
by multiple observers, and identity swapping. The exact descriptions of the scenarios are given below.
Each of the scenarios is also repeated for different noise levels of σ, which are also described in these
descriptions.

51

6.2.1 Scenario 1: Formation Straight Single Observer

This scenario consists of five enemy fighters flying straight in a V-formation heading north during the
entire scenario. There is a single frigate equipped with radar, reporting tracks of these entities. The
duration of the scenario is six hundred seconds, throughout which no identity swaps occur. The scenario
is executed 10 000 times for each of the noise levels σ ∈ {2500, 5000, 7500, 10 000, 20 000}. All three
methods UAP, Greedy, and LexBAP are applied to this scenario with the distance weight (DW) profile.
The duration of the scenario is ten minutes.

6.2.2 Scenario 2: Formation Straight Single Observers Two Swaps

This scenario is similar to Scenario 1, except for the occurrence of two identity swaps. The swap times
are generated randomly from a uniform distribution, though accounting for a minimum separation time
between consecutive swaps. The separation time between the randomly generated swap times is thirty
seconds, meaning that there are at least thirty seconds between the two swaps. The noise levels are σ ∈
{2000, 2500, 3750, 5000}, each of which is simulated 10 000 times. The methods UAP and Greedy are
applied to these scenarios, with the distance weight (DW) profile.

6.2.3 Scenario 3: Formation Straight Two Observers

This scenario is again similar to Scenario 1, though instead there are two frigates equipped with radar,
rather than one. In this scenario the issue of multi-track reporting occurs, meaning that the two frigates
will both report the entities. This method is repeated 10 000 times with the noise level σ = 3750. Again,
the methods UAP and Greedy are applied to these scenarios with the distance weight (DW) profile.

6.3 Verification through JPOW

JPOW scenarios contain a large number of entities (both track and truth). Therefore, for the verification
through JPOW, several situations from a scenario are selected which should reflect the difficulties of track
and truth correlation. To achieve this, all situations have been assessed by an expert if they correctly
represent these difficulties. The situations used for testing are briefly described in Table 3. Following
confidentiality protocols regarding JPOW, these descriptions are not specific. To each of the situations,
we apply the methods UAP, Greedy, and LexBAP, with a confusability range of R = 3000 and an arbitrary
primary track out of the continuously existing tracks of the situation.

52

Situation Intervals Description
1 8 Formation of 4 fighters making a turn.
2 8 Formation of 6 fighters.
3 1 Pair of 2 helicopters in proximity flying straight.
4 1 Booster and warhead of ballistic missile.
5 3 Pair of 2 fighters in proximity.
6 1 Formation of 4 fighters flying straight.
7 2 Formation of 4 aircraft flying straight.
8 1 Formation of 3 helicopters.

Table 3: Description of JPOW situations for verification.

53

7 Results

This section presents the results of the verification described in Section 6. The results of the verification
through JROADS are treated first, after which we continue with the verification through JPOW. The ob-
jective of the verification is to assess the performance of the presented methods in comparison with the
Greedy method (as a benchmark).

7.1 Results of JROADS verification

The results of the methods in each of the three JROADS scenarios are first treated separately. Consequently,
the results of the distinct scenarios are compared.

7.1.1 Scenario 1: Formation Straight Single Observer (FSSO)

The results of the methods applied to Scenario 1 FSSO are presented in Figures 5 through 8 (correspond-
ing to the noise levels). Each of these figures shows histograms of the accuracies of each of the methods
Greedy, LexBAP, and UAP, comparing them for each of the four noise levels. Additionally, the average
accuracy over all the simulations is included. For an overview of the accuracies of the individual methods,
Figures 9 through 11 show a histogram of accuracies of each of the noise level, including average accuracy
as well.

For the noise level of σ = 2500, all of the three methods have almost identical performance, yielding
the same average accuracy (rounded) of 0.99. When increasing the noise level to σ = 5000 we observe
a decrease in average accuracies for all three methods. Here, UAP has the highest average accuracy of
0.89, followed by LexBAP (0.87) and Greedy (0.79). Moreover, the decrease for the Greedy method (of
0.20) is roughly twice as large as that of UAP (of 0.10) and LexBAP (of 0.12). Upon increasing the noise
level even further to σ = 7500, the order of highest average accuracies remains the same. Similar to the
previous noise level, a decrease of 0.20 (in average accuracy) is observed for the Greedy method. The
decrease in UAP (0.18) and LexBAP (0.18) have increased concerning the prior noise level (0.10 and 0.12

respectively). In the final noise level with σ = 10 000 average accuracy order remains the same. The
average accuracies decrease further, yielding almost identical differences (concerning the previous level)
of 0.12 (Greedy), 0.13 (LexBAP), and 0.13 (UAP).

From these results, we may derive that the difference between the average accuracies of the LexBAP and
UAP methods is the same for the last three noise levels, with a value of 0.02. Furthermore, the percentage
of simulations where these two methods give different results is at most 3.36% (for the last noise level),
demonstrating that both methods have a similar distribution of accuracies. Therefore, it can be deduced
that both LexBAP and UAP perform equivalently in Scenario 1 FSSO.

54

Most likely, the similarity of performance of the LexBAP and UAP methods is caused by the likeness in
the objective of these methods. Recall that LexBAP and UAP methods aim to minimize the maximum
cost edge and the sum of edge costs, respectively. Naturally, by minimizing the maximum of edge costs,
the sum of edge costs is also reduced greatly. Specifically, the sum of edge costs in an optimal solution
is at most the optimal value times the number of edges. On the other hand, minimizing the sum of edge
costs frequently reduces the maximum cost of a selected edge, though no effective upper bound can be
guaranteed on it.

Comparing UAP to the Greedy method, we observe identical average accuracies for the first noise level
and differences 0.10, 0.12, and 0.11 for the last three noise levels, in favor of UAP. Additionally, UAP
predicts the track-truth link with greater or equal accuracy than Greedy with percentages 99.9 %, 95.7%,
89.9%, and 85.6% in each of the four noise levels. Together, it is evident that UAP outperforms Greedy
in Scenario 1 FSSO. Similar results are obtained for LexBAP, implying that LexBAP outperforms Greedy
as well.

7.1.2 Scenario 2: Formation Straight Single Observer Two Swaps (FSSOTS)

Results for Scenario 2 FSSOTS are illustrated in Figures 13 through 16, with each figure corresponding to
a different noise level. These figures include boxplots representing the average accuracies of the Greedy
and UAP methods over the three intervals in each simulation run. Additionally, an overall average, called
the interval average, is provided. Individual overviews for each method are shown in Figures 17 and 18.

At the first noise level (σ = 2000), both methods have similar interval averages, with UAP at 0.64 and
Greedy at 0.61. The average accuracies of UAP are more centralized than those of Greedy, as indicated
by their interquartile ranges (IQR) of 0.06 and 0.13, respectively. The third quartiles for both methods
are identical at 0.66. At the second noise level (σ = 2500), the interval average difference between the
methods increases slightly to 0.05 in favor of UAP. The IQR for UAP is 0.13, smaller than Greedy’s 0.22,
with the third quartile remaining equal.

At the third noise level (σ = 3750), UAP and Greedy have interval averages of 0.53 and 0.46, respectively.
The IQRs are 0.14 for UAP and 0.20 for Greedy, with the third quartile for Greedy (0.53) being lower than
that for UAP (0.60). At the highest noise level, the interval averages decrease further to 0.45 (UAP) and
0.38 (Greedy), with both methods having an IQR of 0.20.

The consistently smaller IQR for UAP compared to Greedy indicates that UAP’s average accuracies are
more centralized. Furthermore, the first and third quartiles for UAP are consistently higher than those for
Greedy. These results imply that UAP generally achieves higher and more consistent average accuracies
than Greedy. Across all noise levels, UAP’s interval average surpasses that of Greedy, leading to the

55

conclusion that UAP outperforms Greedy in Scenario 2 FSSOTS.

7.1.3 Scenario 3: Formation Straight Two Observer (FSTO)

Figure 19 compares the UAP and Greedy methods in the form of a histogram of accuracies. In this sce-
nario, UAP and Greedy perform with an average of 0.97 and 0.92, respectively. Out of all the simulation
runs, UAP predicts the track-truth link with accuracy larger or equal to Greedy 97.7% percent of the time.
Together, it is derived that UAP outperforms Greedy in Scenario 3 FSTO.

7.1.4 Weight Profile comparison

The final part of the JROADS results involves comparing the weight profiles discussed in Section 5.5.
Three weight profiles were considered: Distance Weight (DW), Gaussian Weight Density (GW-D), and
Gaussian Weight CDF (GW-CDF). To compare them, the UAP method was applied to Scenario 1 FSSO
(σ = 5000) using cost matrices constructed from these three weight profiles. Figure 20 shows a histogram
of the accuracies for each weight profile.

Among the three variants, the DW profile most frequently predicts the correct track-truth link, achieving
an accuracy of 74.21% in the simulations. This is followed by the GW-D profile with 73.85% accuracy
and the GW-CDF profile with 71.93% accuracy. The average accuracies differ by at most 0.01 among
the three methods. Based on these results, the DW profile performs slightly better than both Gaussian
weight profiles, though the difference is minimal. This outcome is unexpected, given that the discrepancy
between track and truth positions follows an actual Gaussian distribution in these simulations.

The equivalent performance of the three methods is not surprising. For any track T and truth D, the three
functions computing the corresponding cost matrix entry increase with the norm of the average differences∥∥Tρ −Dρ

∥∥. Consequently, similar behavior among the methods is expected.

7.1.5 General JROADS results

By combining the results of the individual scenarios, we can make general statements regarding the effec-
tiveness of the presented methods.

When comparing the accuracies of the methods in Scenario 1 (FSSO) and Scenario 2 (FSSOTS), it is ev-
ident that the performance in Scenario 2 is significantly worse. For a noise level of σ = 2500, both UAP
and Greedy attain higher average accuracies in FSSO (both 0.99) than in FSSOTS, where they achieve
accuracies of 0.61 and 0.56, respectively. Similarly, for a noise level of σ = 5000, UAP and Greedy in
FSSO achieve accuracies of 0.89 and 0.79, respectively, compared to 0.45 and 0.38 in FSSOTS.

56

This performance gap between the two scenarios can be explained by the difference in the number of data
points available. In FSSO, the methods can utilize all transmitted track and truth data. Conversely, in FS-
SOTS, the scenario is divided into three intervals, resulting in fewer data points for computing each of the
three track-truth links. A larger sample size enhances the accuracy of the cost matrix, thus it is expected
that the performance in FSSO would be superior to that in FSSOTS.

Comparing the performance of the methods in Scenarios 2 (FSSOTS) and 3 (FSTO) demonstrates that
the methods handle the presence of multiple observers and swaps effectively, provided there are sufficient
data points. The reduced performance in FSSOTS compared to FSSO was due to the reduction in data
points. In FSTO, the methods UAP and Greedy exhibit similar performance to that observed in FSSO.
Furthermore, there are no other reasons to believe that the method cannot handle track-truth link alteration
and multiple observers, based on the JROADS simulations.

7.2 Results of JPOW verification

The results of the three methods for each of the JROADS situations are presented in Tables 4 through 8,
where the single-interval situations are combined in a single table. Table 6 contains the accuracies of the
single interval situations. Tables 4, 5, 7, and 8 contain the accuracies for the multi-interval situations, as
well as the average accuracy.

In each of the situations, the three methods have almost identical accuracies. In situations 3 through 8,
the accuracies are identical. In the first interval of situation 1, LexBAP performs with an accuracy of 2

3 ,
whereas UAP and Greedy both have an accuracy of zero. Since the accuracies are identical in the other
intervals of situation 1, LexBAP yields a higher average accuracy of 0.91, than UAP (0.82) and Greedy
(0.82). In all except one of the intervals of situation 2, the accuracies of the three methods are again
identical. In interval 6, LexBAP has an accuracy of 5

6 , whereas UAP and Greedy have an accuracy of 1.
Therefore, LexBAP has a smaller average accuracy here of 0.79, compared to UAP and Greedy (both 0.81).

In the JPOW situations, we observe the identical performance of UAP and Greedy, and a similar behavior
of LexBAP. The accuracies of LexBAP vary from UAP and Greedy in only two intervals. Most likely,
the instances corresponding to these intervals were similar to the one in Figure 4, though the exact reason
was not analyzed. From the results, we conclude that UAP and Greedy have equal performance in the
JPOW situations. There is not enough data to reliably assess the performance of LexBAP in comparison
to Greedy and UAP.

57

8 Conclusion

The results presented in this thesis focus on evaluating three methods: Greedy, LexBAP, and UAP, against
each other in various simulation scenarios using JROADS and JPOW data. The primary objective was to
assess these methods’ performance in predicting track-truth links, with the Greedy method serving as a
benchmark.

In Scenario 1 FSSO, all methods initially achieve high accuracies, though with UAP consistently outper-
forming Greedy and LexBAP across increasing noise levels. LexBAP shows similar performance to UAP,
though slightly worse. The similarity in performance between LexBAP and UAP can be explained by their
similar objectives of minimizing maximum cost and sum of edge costs, respectively.

In Scenario 2 FSSOTS, UAP consistently achieves higher and more centralized average accuracies com-
pared to Greedy across varying noise levels. The smaller interquartile range (IQR) for UAP indicates a
more stable performance, which suggests that UAP performs better than Greedy in handling track-truth
link alterations. Additionally, it shows that UAP copes better with a smaller number of data points.

In FSTO, UAP again outperforms Greedy with higher average accuracies, demonstrating its effectiveness
in scenarios involving multiple observers. Comparing different weight profiles (DW, GW-D, GW-CDF)
using the UAP method in FSSO (σ = 5000), the DW profile shows marginally better accuracy than Gaus-
sian weight profiles, despite the Gaussian distribution on the track-truth error.

Across scenarios, the performance of methods varies. FSSO consistently yields higher accuracies com-
pared to FSSOTS, which is likely caused by the availability of more data points. The methods generally
handle multiple observers and track-truth link alterations effectively when the number of data points is suf-
ficient. In JPOW situations, UAP and Greedy exhibit identical accuracies across the situations. LexBAP
shows similar performance to UAP and Greedy in most intervals, with minor variations in a few cases.

Based on the results obtained from JROADS and JPOW verifications, several conclusions can be drawn
regarding the performance of the Greedy, LexBAP, and UAP methods. Firstly, UAP consistently outper-
forms Greedy, regardless of the scenario or situation. UAP outperforms LexBAP as well (except for one
JPOW interval), though only by a slight margin.

Secondly, the performance of UAP and Greedy is greatly affected by the number of data points available,
though UAP is less sensitive to it than Greedy. Most likely, the same can be said for LexBAP, though due
to the time-demanding factor of the simulations, data for LexBAP was not obtained. In future work, it will
be valuable to investigate weight profiles for the current framework, that perform with high accuracy even
with a limited amount of track-truth data. Such weight profiles would be incredibly valuable in track-truth

58

correlation, as the performance of the current methods would increase in scenarios with a quickly altering
track-truth link.

One potential approach for developing such a weight profile is to incorporate an entity’s velocity and
acceleration. Initially, this might seem redundant, as entities in close proximity for the duration of a
scenario will likely have similar velocities and accelerations, as otherwise, their positions would diverge.
However, this relationship becomes less true over shorter intervals.

59

9 Appendix

9.1 Figures Scenario 1 FSSO

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y Greedy (0.99)
LexBAP (0.99)

UAP (0.99)

Figure 5: Histogram of accuracies and averages comparing Greedy, LexBAP, and UAP in Scenario 1
FSSO (σ = 2500, 10 000 runs)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y Greedy (0.79)
LexBAP (0.87)

UAP (0.89)

Figure 6: Histogram of accuracies and averages comparing Greedy, LexBAP, and UAP in Scenario 1
FSSO (σ = 5000, 10 000 runs)

60

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y Greedy (0.59)
LexBAP (0.69)

UAP (0.71)

Figure 7: Histogram of accuracies and averages comparing Greedy, LexBAP, and UAP in Scenario 1
FSSO (σ = 7500, 10 000 runs)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y Greedy (0.47)
LexBAP (0.56)

UAP (0.58)

Figure 8: Histogram of accuracies and averages comparing Greedy, LexBAP, and UAP in Scenario 1
FSSO (σ = 10 000, 10 000 runs)

61

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y σ = 10 000 (0.47)

σ = 7500 (0.59)

σ = 5000 (0.79)

σ = 2500 (0.99)

Figure 9: Histogram of accuracies for Greedy applied to Scenario 1 FSSO for distinct noise levels
(10 000 runs)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y σ = 10 000 (0.56)

σ = 7500 (0.69)

σ = 5000 (0.87)

σ = 2500 (0.99)

Figure 10: Histogram of accuracies for LexBAP applied to Scenario 1 FSSO for distinct noise levels
(10 000 runs)

62

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y σ = 10 000 (0.58)

σ = 7500 (0.71)

σ = 5000 (0.89)

σ = 2500 (0.99)

Figure 11: Histogram of accuracies for UAP applied to Scenario 1 FSSO for distinct noise levels
(10 000 runs)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y GW-CDF (0.88)
GW-D (0.89)
DW (0.89)

Figure 12: Histogram of accuracies and averages comparing the Distance (DW), Gaussian Density
(GW-D), and Gaussian CDF (GW-CDF) weight profiles in Scenario 1 FSSO (σ = 5000, 10 000 runs)
with UAP method

63

9.2 Figures Scenario 2 FSSOTS

UAP (0.64) Greedy (0.61)

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

ie
s

Figure 13: Accuracy comparison of UAP and Greedy methods applied to Scenario 2 FSSOTS (σ =

2000, 10000 runs)

UAP (0.61) Greedy (0.56)

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

ie
s

Figure 14: Accuracy comparison of UAP and Greedy methods applied to Scenario 2 FSSOTS (σ =

2500, 10000 runs)

64

UAP (0.53) Greedy (0.46)

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

ie
s

Figure 15: Accuracy comparison of UAP and Greedy methods applied to Scenario 2 FSSOTS (σ =

3750, 10000 runs)

UAP (0.45) Greedy (0.38)

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

ie
s

Figure 16: Accuracy comparison of UAP and Greedy methods applied to Scenario 2 FSSOTS (σ =

5000, 10000 runs)

65

2000 (0.61) 2500 (0.56) 3750 (0.46) 5000 (0.38)

0

0.2

0.4

0.6

0.8

1

Noise levels (σ)

A
cc

ur
ac

ie
sG

re
ed

y

Figure 17: Boxplot of accuracies of Greedy method applied to Scenario 2 FSSOTS with different noise
levels.

2000 (0.64) 2500 (0.61) 3750 (0.53) 5000 (0.45)

0

0.2

0.4

0.6

0.8

1

Noise levels (σ)

A
cc

ur
ac

ie
sU

A
P

Figure 18: Boxplot of accuracies of UAP method applied to Scenario 2 FSSOTS with different noise
levels (for σ = 2000 the median coincides with the third quartile).

66

9.3 Figures Scenario 3 FSTO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y

UAP (0.97)
Greedy (0.92)

Figure 19: Histogram of accuracies for UAP and Greedy applied to Scenario 3 FSTO (σ =

3750, 10 000 runs)

9.4 Tables JPOW Situations

Interval UAP Greedy LexBAP
1 0 0 2

3

2 3
4

3
4

3
4

3 1 1 1
4 1 1 1
5 1 1 1
6 5

6
5
6

5
6

7 1 1 1
8 1 1 1

Average 0.82 0.82 0.91

Table 4: Accuracies of methods UAP, Greedy, and LexBAP on JPOW situation 1.

67

Interval UAP Greedy LexBAP
1 0 0 0
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 5

6

7 4
5

4
5

4
5

8 2
3

2
3

2
3

Average 0.81 0.81 0.79

Table 5: Accuracies of methods UAP, Greedy, and LexBAP on JPOW situation 2.

Situation UAP Greedy LexBAP
3 1 1 1
4 1 1 1
6 1 1 1
8 1 1 1

Table 6: Accuracies of methods UAP, Greedy, and LexBAP on single-interval JPOW situations
(3,4,6,8).

Interval UAP Greedy LexBAP
1 1 1 1
2 1

2
1
2

1
2

3 1 1 1
Average 0.83 0.83 0.83

Table 7: Accuracies of methods UAP, Greedy, and LexBAP on JPOW situation 5.

Interval UAP Greedy LexBAP
1 4

5
4
5

4
5

2 1 1 1
Average 0.9 0.9 0.9

Table 8: Accuracies of methods UAP, Greedy, and LexBAP on JPOW situation 7.

68

References

[1] H. Alt et al. “Computing a maximum cardinality matching in a bipartite graph in timeO(n1.5
√

m/ log n)”.
In: Inform. Process. Lett. 37.4 (1991), pp. 237–240. issn: 0020-0190,1872-6119. doi: 10.1016/
0020-0190(91)90195-N. url: https://doi.org/10.1016/0020-0190(91)90195-N.

[2] Claude Berge. “Two theorems in graph theory”. In: Proc. Nat. Acad. Sci. U.S.A. 43 (1957), pp. 842–
844. issn: 0027-8424. doi: 10.1073/pnas.43.9.842. url: https://doi.org/10.1073/
pnas.43.9.842.

[3] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 2009, pp. xx+382. isbn: 978-0-898716-
63-4. doi: 10.1137/1.9780898717754. url: https://doi.org/10.1137/1.9780898717754.

[4] Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorn. “Can a maximum flow be computed in
o(nm) time?” In: Automata, languages and programming (Coventry, 1990). Vol. 443. Lecture
Notes in Comput. Sci. Springer, New York, 1990, pp. 235–248. isbn: 0-387-52826-1. doi: 10.
1007/BFb0032035. url: https://doi.org/10.1007/BFb0032035.

[5] Defensie. “JPOW: Europa’s grootste lucht- en raketverdedigingsoefening”. In: (2023). url: https:
//magazines.defensie.nl/defensiekrant/2023/11/02_jpow_11.

[6] E. A. Dinic. “An algorithm for the solution of the problem of maximal flow in a network with power
estimation”. In: Dokl. Akad. Nauk SSSR 194 (1970), pp. 754–757. issn: 0002-3264.

[7] Northrop Grumman. Understanding voice and data link networking. Ed. by Daniel Akers. 2014.

[8] A. J. Hoffman and J. B. Kruskal. “Integral boundary points of convex polyhedra”. In: Linear in-
equalities and related systems. Vol. no. 38. Ann. of Math. Stud. Princeton Univ. Press, Princeton,
NJ, 1956, pp. 223–246.

[9] John E. Hopcroft and Richard M. Karp. “An n5/2 algorithm for maximum matchings in bipartite
graphs”. In: SIAM J. Comput. 2 (1973), pp. 225–231. issn: 0097-5397. doi: 10.1137/0202019.
url: https://doi.org/10.1137/0202019.

[10] IEEE. “IEEE Standard for Distributed Interactive Simulation–Application Protocols”. In: IEEE Std
1278.1-2012 (Revision of IEEE Std 1278.1-1995) (2012), pp. 1–747. doi: 10.1109/IEEESTD.
2012.6387564.

[11] Alexander V Karzanov. “An exact estimate of an algorithm for finding a maximum flow, applied to
the problem on representatives”. In: Problems in Cybernetics 5 (1973), pp. 66–70.

[12] Henry Martyn Mulder. “Julius Petersen’s theory of regular graphs”. In: vol. 100. 1-3. Special vol-
ume to mark the centennial of Julius Petersen’s “Die Theorie der regulären Graphs”, Part I. 1992,
pp. 157–175. doi: 10.1016/0012-365X(92)90639-W. url: https://doi.org/10.1016/
0012-365X(92)90639-W.

69

https://doi.org/10.1016/0020-0190(91)90195-N
https://doi.org/10.1016/0020-0190(91)90195-N
https://doi.org/10.1016/0020-0190(91)90195-N
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1137/1.9780898717754
https://doi.org/10.1137/1.9780898717754
https://doi.org/10.1007/BFb0032035
https://doi.org/10.1007/BFb0032035
https://doi.org/10.1007/BFb0032035
https://magazines.defensie.nl/defensiekrant/2023/11/02_jpow_11
https://magazines.defensie.nl/defensiekrant/2023/11/02_jpow_11
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1109/IEEESTD.2012.6387564
https://doi.org/10.1109/IEEESTD.2012.6387564
https://doi.org/10.1016/0012-365X(92)90639-W
https://doi.org/10.1016/0012-365X(92)90639-W
https://doi.org/10.1016/0012-365X(92)90639-W

[13] Katta G. Murty. “Letter to the Editor—An Algorithm for Ranking all the Assignments in Order of
Increasing Cost”. In: Operations Research 16.3 (1968), pp. 682–687. doi: 10.1287/opre.16.
3.682. eprint: https://doi.org/10.1287/opre.16.3.682. url: https://doi.org/10.
1287/opre.16.3.682.

[14] NATO. “Interoperability: connecting forces”. In: (2023). url: https://www.nato.int/cps/
en/natohq/topics_84112.htm.

[15] NATO. “NATO Integrated Air and Missile Defence”. In: (2023). url: https://www.nato.int/
cps/ie/natohq/topics_8206.htm.

[16] Allied Air Command Public Affairs Office. “LARGEST EUROPEAN INTEGRATED AIR AND
MISSILE DEFENCE EXERCISE ENDS”. In: (2023). url: https://ac.nato.int/archive/
2023/JPOW23_ends.

[17] Julius Petersen. “Die Theorie der regulären graphs”. In: Acta Math. 15.1 (1891), pp. 193–220.
issn: 0001-5962,1871-2509. doi: 10.1007/BF02392606. url: https://doi.org/10.1007/
BF02392606.

[18] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in Dis-
crete Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1986,
pp. xii+471. isbn: 0-471-90854-1.

[19] P. T. Sokkalingam and Y. P. Aneja. “Lexicographic bottleneck combinatorial problems”. In: Oper.
Res. Lett. 23.1-2 (1998), pp. 27–33. issn: 0167-6377,1872-7468. doi: 10.1016/S0167-6377(98)
00028-5. url: https://doi.org/10.1016/S0167-6377(98)00028-5.

[20] A. van der Vaart, M. Jonker, and F. Bijma. An Introduction to Mathematical Statistics. Amsterdam
University Press, 2017. isbn: 9789048536115. url: https://books.google.nl/books?id=
KMokDwAAQBAJ.

70

https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1287/opre.16.3.682
https://www.nato.int/cps/en/natohq/topics_84112.htm
https://www.nato.int/cps/en/natohq/topics_84112.htm
https://www.nato.int/cps/ie/natohq/topics_8206.htm
https://www.nato.int/cps/ie/natohq/topics_8206.htm
https://ac.nato.int/archive/2023/JPOW23_ends
https://ac.nato.int/archive/2023/JPOW23_ends
https://doi.org/10.1007/BF02392606
https://doi.org/10.1007/BF02392606
https://doi.org/10.1007/BF02392606
https://doi.org/10.1016/S0167-6377(98)00028-5
https://doi.org/10.1016/S0167-6377(98)00028-5
https://doi.org/10.1016/S0167-6377(98)00028-5
https://books.google.nl/books?id=KMokDwAAQBAJ
https://books.google.nl/books?id=KMokDwAAQBAJ

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Accuracy

Fr
eq

ue
nc

y GW-CDF (0.88)
GW-D (0.89)
DW (0.89)

Figure 20: Histogram of accuracies and averages comparing the Distance (DW), Gaussian Density
(GW-D), and Gaussian CDF (GW-CDF) weight profiles in Scenario 1 FSSO (σ = 5000, 10 000 runs)
with UAP method

71

	Introduction
	Background on military simulation
	Overview of the datalink Link-16
	Distributed Interactive Simulation
	Dead Reckoning

	Joint Project Optic Windmill
	Joint Research on Air Defense Systems

	Problem description
	Properties of a track-truth link
	Uniqueness of track detection
	Guaranteed truth detection
	Uniqueness of truth per observer
	Time dependency
	Bounded track error

	Mathematical description

	Assignment Problems
	Integral Polyhedra and Total Unimodularity
	Assignment problems
	Balanced assignment problem
	Unbalanced assignment problem
	Bottleneck assignment problem
	Lexicographic Bottleneck Assignment problem

	Augmenting paths and the Hopcroft-Karp-Karzanov algorithm
	Augmenting paths and Berge's theorem
	The Hopcroft-Karp-Karzanov algorithm

	Threshold algorithm for bottleneck assignment
	A solution method for lexicographic bottleneck assignment
	Ranking solutions of the unbalanced assignment problem
	Murty's algorithm
	Complexity of Murty's algorithm

	Identifying a track-truth link
	Identification method
	Track and truth selection
	Computation of the track-truth link

	Motivation for UAP and LexBAP
	Analysis of method in edge cases
	No ghost tracks, no undetected truths
	At least one ghost track, no undetected truths
	No ghost tracks, at least one undetected truth
	At least one ghost track, at least one undetected truth
	More selected truths than tracks

	Alteration time estimation
	Weight Selection
	Distance Weight Profile
	Gaussian Weight Profiles

	Verification of solution method
	Greedy method for benchmarking
	Verification through JROADS
	Scenario 1: Formation Straight Single Observer
	Scenario 2: Formation Straight Single Observers Two Swaps
	Scenario 3: Formation Straight Two Observers

	Verification through JPOW

	Results
	Results of JROADS verification
	Scenario 1: Formation Straight Single Observer (FSSO)
	Scenario 2: Formation Straight Single Observer Two Swaps (FSSOTS)
	Scenario 3: Formation Straight Two Observer (FSTO)
	Weight Profile comparison
	General JROADS results

	Results of JPOW verification

	Conclusion
	Appendix
	Figures Scenario 1 FSSO
	Figures Scenario 2 FSSOTS
	Figures Scenario 3 FSTO
	Tables JPOW Situations

