
Adaptive Algorithm for Resource Generation in
a Quantum Network

Using a Markov Decision Process Approach to Optimize the

Quantum Resource Generation Algorithm

Ioana-Lisandra Draganescu1

Supervisors: Gayane Vardoyan1, Bethany Davies1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Ioana-Lisandra Draganescu
Final project course: CSE3000 Research Project
Thesis committee: Gayane Vardoyan, Bethany Davies, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Entangled links can be seen as a connection between two parties that persists re-
motely, but whose quality (fidelity) decreases over time. Many quantum applications
rely on having a certain number of simultaneously active entangled links for their exe-
cution. Every application has a characteristic threshold fidelity - the minimum fidelity
a link should have for it to be useful. There are several link generation protocols; a
protocol i generates with probability Pi a link with initial fidelity Fi. Until now, re-
search has focused on generating all links with the same protocol. Therefore, the aim
of this research is to use multiple generation protocols in order to minimize the ex-
pected time needed to reach the desired number of links, and to analyze how this time
changes with regard to the threshold fidelity of the target protocol. We present how
to reach the minimum possible expected time by modelling the problem as a Markov
decision process and determining the optimal sequence of protocols to be used. Then,
we observe that our approach generally performs several orders of magnitude better
than previous research in which all links were generated with the same protocol.

1 Introduction
An entangled link can be seen as a connection between two parties that persists even over
large distances. Given that this connection does not depend on the distance between the
parties, entangled links enable performing operations that cannot be done classically. There-
fore, many quantum applications rely on them. In this paper, we use the terms (quantum)
application and (quantum) target protocol interchangeably; they refer to the protocols that
need the entangled links to function. Generally, quantum applications need a certain mini-
mum number of simultaneously active entangled links to be able to be carried out [1]. The
purpose of a quantum network is to generate these links, which are called, in this context,
quantum resources.

One example of a protocol that relies on entangled links to function is a variation of
Blind Quantum Computation (BQC). BQC is a name that broadly encompasses a set of
protocols that aim to allow a client to perform a computation on one or more quantum
servers without revealing the structure of the computation [2]. More specifically, BQC with
multiple quantum servers requires entangled links shared between the participating servers
[2].

The fidelity of an entangled link is a measure of how close it is to a maximally entangled
state (for example, |ϕ+⟩) [3]. Each target protocol is characterized by a minimum fidelity
that a link can have for it to be useful to the protocol [1]. We will call this minimum value
the threshold fidelity of a protocol. Unfortunately, the fidelity of a link decreases over time
(see Figure 1) and, when it becomes lower than the threshold value, the link should be
discarded, as it is no longer useful [1, 3]. Because the fidelity of a link decreases while it
waits for subsequent links to be generated, producing a certain number of simultaneously
active entangled links with a sufficiently high fidelity can be quite challenging.

1

Figure 1: The fidelity of an entangled link between two parties decreasing over time. Adapted
from B. Davies with permission.

Entangled links can be generated using different quantum resource generation protocols.
Each of these protocols can produce with probability P a new entangled link of fidelity
F , where F and P are values that characterize the protocol. Most of the time, there is a
trade-off between F and P , meaning that there is no protocol that is ideal for all cases [1].
Thus, achieving the desired number of links is not a trivial problem.

Until now, research has focused on generating all of the entangled links needed by a
quantum target protocol using resource generation protocols with identical parameters [1, 3].
This means that all links are generated with the same probability P and have the same initial
fidelity F . In short, an optimal policy is defined as a function that, based on the current
number and quality of links, specifies which resource generation protocol should be used
next in order to reach the desired number of active links as soon as possible. A method
of calculating the optimal policy is presented in [1] - the problem is modeled as a Markov
decision process, and, then, value iteration and policy iteration are used to find the optimal
policy.

In order to determine the optimal policy, we employed a method similar to the one used
in [1]. To detail, we model the problem as a Markov decision process (MDP), and then we
use a value iteration algorithm to calculate the optimal policy. The reason we chose this
approach is that it provides an easy and certain method for computing the optimal policy.

The aim of this paper is to determine how the optimal resource generation protocol varies
with the fidelity threshold of a given target protocol, when combining quantum resource
generation protocols with different parameters is allowed. For example, one protocol could
have a higher generation probability but a lower initial fidelity, while another could behave
the exact opposite way. In this case, if two links are needed, it might be optimal to generate
the first link with the second protocol, hoping that it would keep a high enough fidelity
until the second link is generated, and the second link with the first protocol, in order to
maximize the chance of a link to be generated. Thus, allowing the mixing of generation
protocols can lead to even better resource generation policies.

Our main contributions are as follows:

• we model the problem as an MDP;

• we calculate the optimal policy for the case when generating the links with different
protocols is allowed, by using a value iteration algorithm;

• we introduce a heuristic that, in some cases, reaches the desired number of links faster
than generating all of the links with the same protocol.

2

In what follows, we present the background of the problem and some related work in
Section 2. Then, we discuss the methodology in Section 3. Section 4 presents and analyzes
the results, while Section 5 presents the conclusions and offers suggestions for potential
future research directions. Lastly, in Section 6, we reflect on the ethics of the project and
reproducibility of the results.

2 Background and Related Work
In this section, we will present the works that our research builds upon, highlighting the
sections that are the most relevant for our approach. In short, [3] provides a model for the
rate at which the fidelity of a link decreases, while [1] shows how to calculate the expected
time to achieve two simultaneously active links and discusses a trade-off function between
the initial fidelity F and generation probability p of a resource generation protocol.

Due to coupling with the environment, the fidelity of an entangled link decreases with
time [4]. This process is called decoherence [3]. In [3], a model for the decoherence rate of
an entangled link is presented:

F (t) = (F (t−∆t)− 1

4
)e−

∆t
τ +

1

4
, (1)

where ∆t is an arbitrary interval of time and τ characterizes the exponential decay in the
fidelity of an entangled link. Thus, under the assumption that a time step is of length 1
time unit, we can model the decoherence of a link after one time step as follows:

F (t) = (F (t− 1)− 1

4
)e−

1
τ +

1

4
. (2)

Then, from this, we can model the fidelity of a link after m time steps. If we initially have
a link of fidelity F , its fidelity after m time steps in memory would be given by:

F → (F − 1

4
)e−mΓ +

1

4
, (3)

where Γ represents the rate of decoherence in memory. Therefore, by using this equation,
we can calculate how many time steps we can keep a link before having to discard it, or,
in other words, the time-to-live of a link. In Section 3.2 we will provide the details of this
calculation.

A contribution that is particularly useful for our research is the calculation of the ex-
pected time to achieve two simultaneously active entangled links, in the case when these
links are generated using the same protocol [1]. We extend this idea to calculate the expected
time to generate two links when using protocols with different parameters is allowed. Then,
we use the expected time to verify the validity of our approach (described in Subsection 4.1)
in the case of generating two links.

Going back to the approach presented in [1], in order to determine the expected time to
achieve two simultaneously active links, the idea of a time window w is introduced [1]. Then,
the goal of the resource generation protocol is to generate two links within one time window
[1]. The purpose of the window is to ensure that, by the time the second link is generated,
the first one is still active and has a fidelity higher than the threshold. The window size
is therefore directly related to the time-to-live of a link. Given that all links are generated
with the same protocol, they all live for the same number of time steps; this number of time
steps is then equal to the window size.

3

With these in mind, the following formula for the expected time to achieve two simulta-
neously active links generated with only one protocol is derived [1]:

E[T] =
1

p
+

1

p(1− (1− p)w−1)
, (4)

where p is the probability with which our resource generation protocol generates a link.
A similar formula is derived for the case when we can use two different protocols. This
derivation is shown in Section 4.1.

Lastly, [1] motivates the usage of a linear trade-off function between the probability P
and fidelity F of a protocol. This trade-off is given by

F = 1− λP , (5)

where λ is the trade-off factor. In our paper, we consider λ = 1, and, thus,

F = 1− P . (6)

3 Methodology and Problem Formulation

3.1 Methodology Background
Reinforcement learning problems are usually defined in terms of an agent and an environ-
ment. As stated in [5], the agent is an entity that makes decisions when prompted by the
environment, with the goal of learning. Then, the environment is defined as everything
outside of the agent. At each moment in time, the environment is in a specific state; all
possible states form the state space. When presented with the current state, the agent se-
lects an available action that takes the environment to the next state; all possible actions
form the action space [5]. In order to facilitate the learning process, the agent is given a
numerical reward based on the action it selected [5]. This way, the agent is encouraged to
learn to make good choices - choices that maximize the reward. Therefore, we can define a
reinforcement learning problem as a tuple (S,A, p, r), where S is the state space, A is the
action space, p : S ×A is the probability function, and r : S ×A×S is the reward function.

A Markov decision process (MDP) is a way of modelling a reinforcement learning problem
that satisfies the Markov property [5]. The Markov property states that the transition to a
new state is only determined by the current state, and not by a series of preceding states
[6]. An example of an MDP can be seen in Figure 2: the state space is S = {S0, S1, S2},
the action space is A = {a0, a1}, the probability function is p : S × A where p((s, a)) is
given by the values on the black arrows, and the reward function is r : S × A × S where
r((S2, a1, S0)) = −1, r((S1, a0, S0)) = +5, and all other values are 0.

4

Figure 2: Example of an MDP [7].

A policy is a mapping from a state to a single action, in the case of deterministic policies,
or to a set of actions, each with a specific probability, in the case of stochastic policies [5].
Given that in the case of an MDP with a finite and countable set of states there always
exists an optimal deterministic policy, we will only consider deterministic policies in this
paper [8, 1]. We define an optimal policy as a policy that maximizes the reward.

In order to determine an optimal policy for a given problem, we could solve the cor-
responding Bellman equation to determine the value of each state. The Bellman equation
relates the value of the current state to the values of its successors [5]. Subsequently, by
beginning with the start node and always following the successor with the highest value,
we could reach a goal state while maximizing the reward. In the general case, the Bellman
equation looks as follows:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)], (7)

where π is the policy, S is the state space, A is the action space, R is the reward set, γ
is the discount rate, s, s′ ∈ S, a ∈ A, r ∈ R [5]. According to [5], the discount rate γ,
0 ≤ γ ≤ 1, determines how strongly the agent takes into account future rewards - at each
step between the current state and a successor state, the reward given by the current state
is multiplied by γ. Thus, the agent will consider only γn−1 times the reward of a state that
will be reached n steps in the future.

3.2 Modelling the Problem
In this subsection, we will model the problem as an MDP. This approach is particularly
useful because it offers a tried-and-tested method of finding an optimal policy - solving the
Bellman equation. In other words, it is possible to model the problem as an MDP with a
finite and countable number of states, which already guarantees us a strategy that yields an
optimal policy. Then, in order to analyze how the optimal policy changes with the threshold

5

fidelity of a target protocol, it would only be needed to change the value of the threshold
fidelity in the model.

In order to define the state space, we first have to analyze the time-to-live of a link. As
mentioned in Section 2, the time-to-live of a link is the number of time steps a link has a
fidelity higher than the threshold. Assuming that the initial fidelity of a link generated with
a given protocol i is Fi and denoting the number of time steps the link can live before it has
to be discarded with mi, we can calculate the value of mi using Equation (3):

(Fi −
1

4
)e−miΓ +

1

4
≥ Fthresh

(Fi −
1

4
)e−miΓ ≥ Fthresh −

1

4

−miΓ ≥ ln
Fthresh − 1

4

Fi − 1
4

mi ≤ −
1

Γ
ln

Fthresh − 1
4

Fi − 1
4

. (8)

From this, we can deduce that a link generated with a protocol i can live at most mi =

⌊− 1
Γ ln

Fthresh− 1
4

Fi− 1
4

⌋ time steps.
As a way of facilitating the modelling of the states, we introduce the concept of fidelity

bins (see Figure 3). The purpose of the bins is to discretize the time-to-live, and, thus, the
fidelity of the links in memory. With this in mind, we set the total number of bins

m = maxi(mi), (9)

and we index the bins starting with 0. Then, if a link is generated with a protocol i, it
would be initially placed in bin m−mi (or m−mi+1, if we start the indexation of the bins
at 1, as shown in Figure 3). At each time step, a link is moved from bin k to bin k + 1; if
k + 1 ≥ m, then this means that the fidelity of the link is below the threshold and the link
is thus discarded.

6

Figure 3: Fidelity bins. Adapted from B. Davies with permission.

Next, we define a state through the number of active links, the bins these links are in,
and the number of links needed to reach a goal state. Denote L to be the desired number
of links. Then, a state is a multiset of size L whose elements are the bins in which all the
active links are, alongside L− x appearances of −1 representing the links still needed to be
generated, where x is the number of active links. The state space is then formally defined
as

S = {{l0, l1, ..., lL−1} | l0, l1, ..., lL−1 ∈ {−1, 0, ...,m− 1}}. (10)

In the context of our problem, we define an action as attempting to generate the next
link with a specific protocol. Thus, if we have n generation protocols, the action space would
be

A = {a0, a1, ..., an−1}, (11)

where ai means attempting to generate the next link with protocol i. Once an action ai
is chosen, it generates a link of fidelity Fi with probability pi, or generates no link with
probability 1 − pi. In both cases, all initially active links should first be moved one bin
further, as described above.

Therefore, we can formally define the probability function the following way. First, for
a clearer definition, we make use of an auxiliary function

f(l) =

−1, if l = −1
l + 1, if l + 1 < m

−1, otherwise
, (12)

7

where l is the bin in which a link is. The function f models the result of the passing of one
time step on a link - it is either moved to the next bin, or is discarded. Then, we define the
space of non-goal states as

S−1 = {s ∈ S | − 1 ∈ s}. (13)

Given that once we reach a goal state no subsequent transition is necessary, we can define the
probability function on S−1. With this in mind, the probability function p : S×S−1×A→
[0, 1] is defined as follows:

p(s′ | s, ai) =

pi, if s′ = {f(l) | l ∈ s}\{−1} ∪ {m−mi}
1− pi, if s′ = {f(l) | l ∈ s}
0, otherwise

,∀s′ ∈ S, s ∈ S−1, ai ∈ A.

(14)
In the case of our problem, an optimal policy is defined as a policy that minimizes the

expected time required to reach a goal state. Therefore, we use an adapted Bellman equation
derived by [3]:

Tπ(s) = 1 +
∑
s′∈S

p(s′|s, π(s))Tπ(s
′), ∀s ∈ S, (15)

where π is the policy we are following and T represents the expected time until reaching a
goal state.

In order to solve the Bellman equation and thus determine the expected time to reach a
goal state from each state, we used a slightly adapted version of the value iteration algorithm
in [5, p. 115], as presented in Algorithm 1. This dynamic programming algorithm guarantees
that the values for the times to reach a goal state will converge to the correct values in an
infinite number of iterations [5, 3]. We thus stop the algorithm once the difference between
iterations does not exceed a very small positive threshold θ, which we set to 10−7.

Algorithm 1 Value Iteration [5]
Initialize array T arbitrarily
repeat

∆← 0
for each s ∈ S do

v ← T (s)
T (s)← mina(1 +

∑
s′∈S p(s′|s, a)T (s′))

∆← max(∆, |v − T (s)|)
end for

until ∆ < θ (a small positive number)
Output a deterministic optimal policy π such that π(s) = argmina(1 +∑

s′∈S p(s′|s, a)T (s′))

4 Experimental Setup and Results

4.1 Analytical Solution for the Two-Links, Two-Protocols Case
As mentioned in Section 2, we used an analytical solution for the two-links, two-protocols
case as an additional check for the validity of our proposed solution. Assume we have two
protocols, with 0 < P0 < P1 < 1 and 1 > F0 > F1 > Fthresh, and that our goal is to have

8

two simultaneously active links. Given that the last link to be generated does not have to
wait for the generation of any subsequent links, its initial fidelity does not matter, as long
as it is higher than the threshold. Therefore, the second link should always be generated
with the protocol with the highest probability (in our case, P1). In other words, when we
have one link in memory, the optimal policy would always suggest using the second protocol.
With these in mind, the expected time to reach a goal state is determined only by the action
we choose when there are no active links in memory (the protocol with which we attempt
to generate the first link).

We define Ei to be the expected time to reach a goal state if we attempt to generate the
first link with protocol i. Then, we define

Pfail = (1− P2)
mi−1 (16)

to be the probability to fail generating the second link while the first one is still active. To
detail, 1− P2 is the probability that one attempt fails. If mi − 1 consecutive attempts fail,
then the first link would be discarded before the second link is generated, so the generation
of the second link while the first one is still active fails. Then, the expected time to generate
both links is defined as follows:

Ei =
1

Pi
+ (1− Pfail)

1

P2
+ PfailEi. (17)

The first term of this equation, 1
Pi

, represents the probability to generate the first link with
protocol i. Then, the second term, (1−Pfail)

1
P2

, represents the probability that the second
link is generated while the first one is still active. Lastly, the third term, PfailEi, is a
recursive term meaning that, if we failed to generate the second link while the first one is
still active, we have to start again.

By solving Equation 17, we determine Ei:

Ei =
1

Pi
+ (1− Pfail)

1

P2
+ PfailEi

(1− Pfail)Ei =
1

Pi
+ (1− Pfail)

1

P2

Ei =
1

Pi(1− Pfail)
+

1

P2

Ei =
1

Pi(1− (1− P2)mi−1)
+

1

P2
. (18)

As it can be observed, this equation is very similar to Equation 4. Then, we use the values
of E0 and E1 to determine the protocol with which the optimal policy should choose to
attempt the generation of the first link. Because we want to minimize the expected time
to reach a goal state, if E0 > E1, we attempt to generate the first link with protocol 1;
otherwise, we attempt to generate the first link with protocol 0.

4.2 Experimental Setup
As a means to better analyze the behaviour of the optimal policy, we use two other policies
as a baseline. The first one is a single-protocol policy - at each step, we attempt generation
with the protocol with the highest fidelity. The comparison between our policy and the

9

single-protocol policy is particularly interesting, as the single-protocol policy represents the
current state of research on our topic. The second baseline policy makes use of a heuristic
that we will describe in what follows.

An observation used in the derivation of the heuristic is that, as a rule of thumb, the
first links should be generated with a fidelity that is high enough so that they are not
discarded until all links are generated. Conversely, for the last links a high fidelity is not
as important; instead, a high probability is more valued. Assuming we have n generation
protocols, we first order them decreasingly according to the initial fidelity of a link generated
with them. Then, if we have x active links and we want a total of L links, we sample from
a normal distribution centered at n

Lx with a standard deviation σ = n
L . Finally, we choose

the protocol whose index is the closest to the sampled number. Therefore, if there are fewer
active links, it is more likely to generate the next link with a high fidelity, and if there are
more active links, it is more likely to generate the next link with a high probability.

In order to perform the analysis, we run a Monte Carlo simulation on the optimal policy,
as well as on the baseline policies. In other words, we simulate both policies 10000 times,
we average the results, and we calculate the standard error. Given that this research focuses
on the behaviour of the optimal policy with respect to the fidelity threshold of the target
protocol, we run this simulation for different values of the threshold. In all cases, we begin
with Fthresh = 0.5, and, at each iteration, we increase its value with 0.025. We stop when the
number of fidelity bins determined by the threshold fidelity makes it impossible to generate
all links.

4.3 Case 1: Three Links, Few Bins
In this case, we have seven protocols with probabilities 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4.
According to Equation 6, we have the following respective fidelities: 0.975, 0.95, 0.925, 0.9,
0.8, 0.7, 0.6. Our goal is to generate two simultaneously active links. In this case, we use
the rate of decoherence in memory Γ = 0.1. This value of Γ provides us with relatively few
fidelity bins. Therefore, once the threshold fidelity reaches 0.8, we do not have enough bins
to possibly generate all links (the fidelity of the first link would be below the threshold until
the last one is generated), and therefore we stop the simulation.

10

Figure 4: The behaviour of the optimal, single-protocol, and heuristic policies when our goal
is three simultaneously active links, in the context of relatively few fidelity bins.

The plot in Figure 4 represents the average number of steps needed to reach the goal
state over the 10000 simulations. Then, the error bars represent the standard error of the
number of time steps needed to reach a goal state over the simulations. The zoomed-in
section highlights the difference between the optimal and heuristic policies.

The first observation that can be made is that the graph of the heuristic policy stops
after the threshold fidelity reaches 0.55. The reason behind this is that, for Fthresh = 0.575,
the policy does not reach a goal state in the amount of time that the experiment was run
(more than 6 hours). One possible explanation is that, as the threshold fidelity grows, the
proposed heuristic repeatedly chooses to attempt to generate the next link with a protocol
with an initial fidelity F that does not allow the link to live until all links are generated. In
this case, the heuristic could be adjusted to prevent such situations. On the other hand, it is
important to note that for the values of Fthresh for which the heuristic reaches a goal state,
it does so in significantly less time than the single-protocol policy - tens of steps, instead of
thousands.

One of our main contributions is the calculation of an optimal policy when using different
generation protocols is allowed. When comparing it with the single-case policy, we observe
that the difference in number of steps grows as the threshold fidelity grows. In particular,
for Fthresh = 0.775, the average number of time steps needed to reach a goal state for the
single-protocol policy is approximately 10 times larger than the one for the optimal policy.
Even though the actual difference is larger for larger values of Fthresh, the ratio is larger
for lower values of Fthresh. For example, for Fthresh = 0.65, the optimal policy performs on
average 100 times better than the single-protocol policy. One possible explanation for the

11

ratio being larger for smaller values of Fthresh is that, at that point, more resource generation
protocols produce viable links. Therefore, the optimal policy has more options to choose
from, so a higher chance of lowering the expected time to reach a goal state. On the other
hand, the single-protocol policy is forced to choose the same protocol, which significantly
increases its average time to reach a goal state.

4.4 Case 2: Two Links, Many Bins
In this case, we use the same seven protocols as in Subsection 4.3. The difference is that,
now, our goal is to generate two simultaneously active links, and the value we chose for the
rate of decoherence in memory is Γ = 0.01. This value provides us with a relatively high
number of fidelity bins, which allows us to calculate the policies for fidelity thresholds as
high as 0.95. After the threshold is higher than this value, we do not have sufficient bins to
be able to generate all links, and we thus stop the simulation.

Figure 5: The behaviour of the optimal, single-protocol, and heuristic policies when our goal
is two simultaneously active links, in the context of relatively many fidelity bins.

The plot in Figure 5 represents the average number of steps needed to reach the goal
state over the 10000 simulations. Then, the error bars represent the standard error of the
number of time steps needed to reach a goal state over the simulations. The zoomed-in
section highlights the standard errors in the optimal policy for two values of Fthresh.

The first observation to be made is that, for values of the threshold smaller than or equal
to 0.925, the optimal and heuristic policies perform comparably well on average, and both
perform better than the single-protocol policy. Next, we can observe that, for Fthresh = 0.95,

12

all policies have comparable results. The reason behind this is that, at this point, only the
protocol with F = 0.975 could be used. Therefore, all policies always choose the same
action, and thus perform equally well.

A second observation is that, in general, the standard error is small enough to not be
distinguishable in the figure. For this reason, we showed a close-up of the graph of the
optimal policy, for Fthresh = 0.525 and Fthresh = 0.55. There, we can observe that the
standard error is approximately 0.03. By looking at the graph and seeing that the two
horizontal lines marking the standard error are usually almost overlapping, we can infer
that, in this case, the error is sufficiently small for other values of Fthresh, too.

5 Conclusions and Future Work
In conclusion, we first determined an optimal policy for generating a number of links using
multiple protocols. This policy specifies with which resource generation protocol to generate
a link based on the current state of the memory. Then, we introduced a heuristic that we
used as a baseline to compare our optimal policy against, alongside the single-protocol policy.
By analyzing the results, we observed that, as the threshold decreases, the optimal policy
usually performs much better than the single-protocol policy. A secondary observation we
made is that the heuristic usually performs comparably well to the optimal policy; however,
in some cases, it does not manage to reach a goal state within a very large time frame.

One limitation of our study is that it was not tested in practice. Therefore, we suggest
that future research focuses on using the findings of this paper in practical applications.
This way, any practical limitations that this study did not consider could be discovered.
Alternatively, practical benefits that were not envisioned at the moment when this study
was carried could be found. Additionally, the heuristic could be improved to avoid situations
in which it does not reach a goal state.

6 Responsible Research
To begin with, this research does not rely on the usage of any data sets. Therefore, the
privacy of the people who provided data or the validity of the data are not concerns in our
case. Given this, in the context of responsible research, we are mainly concerned with the
principles of honesty and reproducibility.

The meaning of honesty includes "reporting the research process accurately" and "re-
fraining from presenting results more favourably or unfavourably than they actually are" [9,
p. 13]. To ensure the honesty of our research, we aimed to report the process and the results
as accurately as possible. First of all, we included error bars in both graphs in Section 4,
which provide the necessary context for fully understanding the results. Second of all, we
did not omit mentioning the cases in which the proposed heuristic performs poorly (see
Subsection 4.3).

Transparency refers to, among other things, ensuring the clarity of "how results were
achieved" [9, p. 13]. In this regard, we provide a link to the GitLab repository that contains
the code used to produce the results in the Data Availability section. The code has proper
and thorough documentation. Moreover, the high-level descriptions of the problem model
and value iteration algorithm are presented in Section 3.

Lastly, it is important to mention that this research has a potential positive impact on
the field of data privacy. As mentioned in Section 1, one application that uses entangled

13

links is a variation of Blind Quantum Computation [2]. This application allows a client
to perform a computation on several quantum servers, without revealing the content or
structure of the computation [2].

Data Availability
The GitLab repository that contains the code used to calculate the optimal policy and
perform the experiments can be found at https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Vardoyan_Davies/idraganescu-Adaptive-algorithm-for-resource-generation-in-a-q.

References
[1] B. Davies, T. Beauchamp, G. Vardoyan, and S. Wehner, “Tools for the analysis of quan-

tum protocols requiring state generation within a time window,” IEEE Transactions on
Quantum Engineering, 2024.

[2] J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum
computing and related protocols,” npj Quantum Information, vol. 3, no. 1, p. 23, 2017.

[3] Á. G. Iñesta, G. Vardoyan, L. Scavuzzo, and S. Wehner, “Optimal entanglement distri-
bution policies in homogeneous repeater chains with cutoffs,” npj Quantum Information,
vol. 9, no. 1, p. 46, 2023.

[4] L. Chirolli and G. Burkard, “Decoherence in solid-state qubits,” Advances in Physics,
vol. 57, no. 3, pp. 225–285, 2008.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[6] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and
management science, vol. 2, pp. 331–434, 1990.

[7] “Markov decision process.” en.wikipedia.org. Accessed: May 24, 2024. [Online.] Available:
https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg.

[8] C. Szepesvári, Algorithms for reinforcement learning. Springer nature, 2022.

[9] “Netherlands Code of Conduct for Research Integrity.” https://doi.org/10.17026/
dans-2cj-nvwu, 2018.

14

https://doi.org/10.17026/dans-2cj-nvwu
https://doi.org/10.17026/dans-2cj-nvwu

	Introduction
	Background and Related Work
	Methodology and Problem Formulation
	Methodology Background
	Modelling the Problem

	Experimental Setup and Results
	Analytical Solution for the Two-Links, Two-Protocols Case
	Experimental Setup
	Case 1: Three Links, Few Bins
	Case 2: Two Links, Many Bins

	Conclusions and Future Work
	Responsible Research

