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Magnetorheological elastomers (MREs) are polymers reinforced by ferromagnetic particles that show mag-
netic dependent behavior. Mixing MREs with reinforcing fibers can create a new class of material so‐
called “MRE composites, MRECs” with additional functionalities and properties. Here, using a Generalized
Maxwell model, we proposed a new magnetic‐dependent rheological model by considering the hysteresis
phenomenon for MREs to predict the dynamic damping responses of MREC plates reinforced by fibers in
the frequency domain. We also investigated the influence of magnetic flux intensity, the volume fraction
of the fiber, the orientation angle of the fibers, the number of layers, as well as the fiber‐to‐matrix stiffness
ratio on the natural frequency, loss factor, and mode shapes of MRECs plates. Our results suggest that
homogenously increasing the elastic properties of the MRECs through the spatial distribution of fibers and
changing the fiber‐to‐matrix stiffness ratio can effectively tailor the dynamic properties of MRECs.
Tailoring these properties can provide additional freedom for the fabrication of 4D‐printed MRE‐based
composites.
1. Introduction

Composite materials with superior material properties and func-
tionalities are the results of the precise placement of their constituents,
namely fiber and matrix [1,2]. Examples are carbon fiber reinforced
concretes with high tensile properties (i.e., low weight‐to‐strength
ratio with remarkable stiffness properties, high flexural strength or
toughness [3]), functionally graded composites with improved interfa-
cial bending strength and their stability investigations [4] and high
thermomechanical behavior [5], multi‐layer composites including
smart cores with excellent dynamic properties [6], and carbon fiber
composites with damping enhancement [7].

The advanced composite materials can be fabricated from smart
materials such as shape memory alloys (SMAs), shape memory poly-
mers (SMPs), piezoelectrics, magneto‐electro‐elastics (MEE), elec-
trorheological (ER) and magnetorheological (MR) materials. Using
these materials can provide additional functionalities to the compos-
ites, such as shape memory effect, reversible cyclic behavior, and mag-
netic or electric dependent behavior [8–14,67]. Among these smart
materials, MR elastomers (MREs), which are polymers reinforced by
ferromagnetic particles [15], have recently gained a great deal of
attention due to their sensitivity to the magnetic fields [16]. MREs
can be used as base materials in 3D printing processes [17], to create
structures with piezoresistivity [18], positive piezoconductivity [19],
and adaptive mounting [20] capabilities. Having ferromagnetic parti-
cles, MREs can be polarized in specific directions parallel to the longi-
tudinal direction of the magnetic field, which can eventually lead to a
hardening phenomenon [15]. Therefore, MREs can exhibit magneto‐
elastic interactions in the presence of damping behaviors. The dependency
of MREs on the magnetic field makes them useful to control the properties
of materials by merely changing the external stimuli (e.g., the amplitude or
direction of the magnetic field). Being activated by an external stimulus
makes MREs an appropriate candidate for 4D printing where a shape‐
shifting of a 3D printed structure under external stimuli overtime is needed
[21–24]. Besides, tuning the elastic properties of MRE composites
(MRECs) provides an excellent opportunity to create materials with func-
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tionally graded stiffnesses useful for several high‐tech industries such as
biomedical or automotive industries.

MREs were first used to test the dynamic characteristics of tunable
adaptive vibration absorbers [25]. The damping properties of polymer‐
based composites in general and MRECs, in particular, can be influ-
enced by dynamic losses. The fabrication process and consequently
the damping response of MRECs can be optimized with respect to
the influences of various parameters, including the magnetic flux
intensity [26], the volume fraction of the magnetic particles, the orien-
tation of the particles, and material properties of the matrix (e.g., using
natural rubber as the matrix [27]). The damping phenomenon can be
started from the matrix, fiber, or from the interphase between the
matrix and fiber [28]. Therefore, the spatial distribution and direction
of magnetic particles (i.e., isotropic or anisotropic orientations) in the
MRECs can also tune the damping properties [29]. For example, it has
been shown that anisotropic MREs exhibit higher modulus degrada-
tion than those with isotropic particle distribution [27,29].

In the past, several computational and experimental studies have
been performed on the vibrational [30], damping [31,32], dynamic
stability [33,34], non‐linear static [35], and torsional dynamic [36]
responses and viscoelastic behavior [37] of composites with an MRE
core. In addition, different phenomenological models have been pro-
posed to simulate the magneto‐mechanical characteristics of MREs
[38–44] where various theoretical models for predicting the magnetic
field‐dependent mechanical properties were used. Besides, MREs have
applications in the fabrication of isolator devices where the effects of
hysteresis are dominated. Several models have been proposed for such
applications in the past [45–47] that are able to predict the hysteresis
behaviors. These models, however, did not take into consideration the
magnetic‐dependent properties of the smart elastomers (i.e., MRE),
and they did not present a general relationship of magnetic‐
dependent parameters such as the model presented in [43]. In addi-
tion, some available models in the literature are complicated and they
cannot be calibrated, and implemented in commercial FEM software
easily such as those presented in [48,49]. The development of such
models requires the implementation of advanced constitutive models.
This enables us to consider several multiphysics aspects into a model
simultaneously. These advanced models also help to properly analyze
and capture the response of the MREs under more complex loading
scenarios. Furthermore, the dynamic analysis of MREs‐based multi‐
layer composite plates has not been investigated before.

Here, using a four‐parameter viscoelastic model (i.e., Generalized
Maxwell model with two branches and an equilibrium branch), a
new constitutive equation for MREs was presented and its application
in predicting the dynamic responses of MREC plates in the frequency
domain was analyzed. Based on the proposed model, the storage and
loss modulus of MREs in terms of magnetic flux intensity were derived.
Fig. 1. The schematics of MRE laminated composite plates made of several layers
(b).

2

We found the parameters of the proposed model in terms of the mag-
netic flux intensity obtained by a nonlinear regularization technique
fitted on the experimental DMA reported in the literature [26]. More-
over, the hysteresis behavior of the MRE composites in different fre-
quencies and magnetic flux intensities were investigated within the
framework of the developed model. Then, based on the the first‐
order shear deformation theory (FSDT), the formulation of the free
vibrational analysis of MRE‐based composite plates derived and solved
using finite elemenet (FE) approach. Also, the verification of the prob-
lem was performed by comparison of FE code and those of commercial
software (i.e., ABAQUS). We also parametrically analyzed the effect of
the magnetic field magnitude, fiber orientation and volume fraction,
and elastic properties of fibers on the free vibration behavior of the
MREC plates.

2. Problem definition

In this study, we assumed thin MRE‐based multi‐layer composite
plates. Therefore, to derive their constitutive equations, we used the
equivalent single layer (ESL) approach combined with the FSDT of
plates [50–53].

2.1. Governing equations of multi-layer MREC plates

We assumed that the multi‐layer composite plate consisted of n lay-
ers (Fig. 1a). Also, because of the negligible thickness of the plate in
comparison with its length and width, the plane stress assumption
was assumed. To drive the equation of motions, the displacement field
based on FSDT, with three degrees of translations (i.e., u0, v0, and w0

which are displacements of the mid‐plane in the directions of x, y,
and z) and two degrees of rotations (i.e., φx and φy which refer to
the rotations with respect to y and x directions) were used. Therefore,
the displacement field in the global coordinate system (x, y, z) can be
presented as [54,55]:

u x; y; zð Þ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

9>=
>;

8><
>: ¼

u0ðx; yÞ
v0ðx; yÞ
w0ðx; yÞ

9>=
>;

8><
>: þ z

φxðx; yÞ
φyðx; yÞ

0

9>=
>;

8><
>: ¼ AZ

u0

v0

w0

φx

φy

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

ð1Þ
in which

AZ ¼
1 0 0 z 0
0 1 0 0 z
0 0 1 0 0

2
64

3
75 ð2Þ
(a). The proposed rheological model of the behavior prediction of the MRECs
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Here, we assumed infinitesimal strains to derive the governing
equations. Therefore, the infinitesimal strain tensor can be expressed
as [56]:

ɛ ¼ 1
2

ruþruT� � ð3Þ

By substituting the displacement field of the FSDT (i.e., Eq. (1)), in
the strain tensor (Eq. (3)), we have:

ɛ ¼ ES1 þ zES2

ES3

� �
ð4Þ

where, ES1,ES2, and ES3 are strain components where ES1 þ zES2 rep-
resents the in‐plane strains (i.e., ɛxx; ɛyy; γxy) and ES3 represents the trans-
verse shear strains (i.e., γxz; γyz) and can be calculated as follows:

ES1 ¼
@
@x 0 0 0 0
0 @

@y 0 0 0
@
@y

@
@x 0 0 0

2
64

3
75

u0

v0

w0

φx

φy

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

;

ES2 ¼
0 0 0 @

@x 0
0 0 0 0 @

@y

0 0 0 @
@y

@
@x

2
64

3
75

u0

v0

w0

φx

φy

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

;

ES3 ¼
0 0 @

@x 1 0
0 0 @

@y 0 1

" # u0

v0

w0

φx

φy

9>>>>>>=
>>>>>>;
: ð5Þ

8>>>>>><
>>>>>>:

The strain tensor for any element can be re‐written in terms of the
displacements once inserting Eq. (5) in Eq. (3). The strain tensor and
displacement field vector are related to each other by means of the
strain interpolation matrix of the elements of the media (known as
B‐matrix). Similar to strain components, the matrix B can be divided
into three sub‐matrices, namely BS1 ,BS2and BS3. The consistent sub‐

matrices can be expressed by:

BS1 ¼ BS1i BS1j :::½ � ¼

@Ni
@x 0 0 0 0 :::

0 @Ni
@y 0 0 0 :::

@Ni
@y

@Ni
@x 0 0 0 :::

2
664

3
775;

BS2 ¼ BS2i BS2j :::½ � ¼
0 0 0 @Ni

@x 0 :::

0 0 0 0 @Ni
@y :::

0 0 0 @Ni
@y

@Ni
@x :::

2
664

3
775;

BS3 ¼ BS3i BS3j :::½ � ¼
0 0 @Ni

@x Ni 0 :::

0 0 @Ni
@y 0 Ni :::

" #
ð6Þ

In the above equation, i, j subscripts denote the node numbers. Ni cor-
responds to the shape function of the ith node of each of the elements. In
this study, the bilinear quadrilateral Q4 elements with the Lagrange
interpolation functions were used. Hence, the shape function of the ele-
ments mentioned above can be expressed in the following form [57]:

N1 ¼ ð1� ξÞð1� ηÞ
N2 ¼ ð1þ ξÞð1� ηÞ
N3 ¼ ð1þ ξÞð1þ ηÞ
N4 ¼ ð1� ξÞð1þ ηÞ

8>>><
>>>:

ð7Þ

in which ξ and η are the local coordinates of the Q4 elements. We
assumed that the composite is made of MRE, which its matrix shows
viscoelastic behaviors. The viscoelastic behavior was calculated using
3

the complex modulus of the composite to include the loss storage mod-
uli. The complex elastic and shear moduli of viscoelastic orthotropic
composites can be expressed as [58]:

E�
1 ¼ E0

1 þ E00
1 i

E�
2 ¼ E0

2 þ E00
2 i

G�
12 ¼ G0

12 þ G00
12 i

G�
13 ¼ G0

13 þ G00
13 i

G�
23 ¼ G0

23 þ G00
23 i

8>>>>>><
>>>>>>:

ð8Þ

where i denotes imaginary unit. Also, subscripts 1, 2, and 3 repre-
sent the longitudinal, transverse in‐plane and transverse out‐of‐plane
directions, respectively. The real part of each complex moduli is
known as storage moduli, while its imaginary part shows loss moduli.
Moreover, E and G indicate elastic modulus and shear modulus,
respectively.

The rigidity matrix, D, which indicates the characteristics of the
composite material, can be defined as [51]:

D� ¼
a� b� 0
b� d� 0
0 0 s�

2
64

3
75 ¼

a0 b0 0
b0 d0 0
0 0 s0

2
64

3
75þ i

a00 b00 0
b00 d00 0
0 0 s00

2
64

3
75 ð9Þ

in which,

a� ¼ a0 þ i a00 ¼ ∑
n

k¼1
ðQ
��
ijÞk½hk � hk�1� ; ði; jÞ ¼ 1; 2;3

b� ¼ b0 þ i b00 ¼ 1
2 ∑

n

k¼1
ðQ
��
ijÞk½h

2
k � h2k�1� ; ði; jÞ ¼ 1;2;3

d� ¼ d0 þ i d00 ¼ 1
3 ∑

n

k¼1
ðQ
��
ijÞk½h

3
k � h3k�1� ; ði; jÞ ¼ 1;2; 3

s� ¼ s0 þ i s00 ¼ κ � ∑
n

k¼1
ðQ
��
ijÞk½hk � hk�1� ; ði; jÞ ¼ 4;5

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

where, κ is the shear correction factor where depends on the geom-
etry and in this paper becuause of assuming a homogeneous section,

κ ¼ 5=6 is considered [2]. The equivalent stiffness tensor (i.e., ðQ
��
ijÞk)

of the kth layer in the fibers’ direction which can be obtained as
follows:

Q
��
ij ¼ T

1
E�1

� υ21
E�2

0 0 0

� υ12
E�1

1
E�2

0 0 0

0 0 1
G�
12

0 0

0 0 0 1
G�
13

0

0 0 0 0 1
G�
23

2
666666664

3
777777775

�1

TT ;

T ¼

cos2 θð Þ sin2 θð Þ �sin 2θð Þ 0 0
sin2 θð Þ cos2 θð Þ sin 2θð Þ 0 0

sin θð Þcos θð Þ �sin θð Þcos θð Þ cos2 θð Þ � sin2 θð Þ 0 0
0 0 0 cos θð Þ sin θð Þ
0 0 0 �sin θð Þ cos θð Þ

2
6666664

3
7777775

ð11Þ
in which, T is the transformation tensor and θ is the angle between

the fiber and x‐axis. On the other hand, using the principle of the min-
imum potential energy, the elementary mass matrix in the local coor-
dinate can be written as [57]:

m ¼
Z
v
NTAT

ZρAZNdv ¼
Z 1

�1

Z 1

�1
NT

Z h
2

�h
2

AT
ZρAZdz

" #
NdetðJÞdξdη ð12Þ

where, ρ is the density matrix of layers, and det(J) or J (Jacobian)
is the determinant of the Jacobi matrix that maps the local coordinate
to the general one. For the Q4 elements, the Jacobian and parameter N
can be defined as:
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J ¼ det Jð Þ ¼
@u
@ξ

@u
@η

@v
@ξ

@v
@η

" #
; N ¼ ∑

4

i¼1

Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

2
6666664

3
7777775

ð13Þ

The stiffness matrix of the elements of the composite plate can be
defined by separation matrix operation and dividing the elementary
stiffness matrix into five dependent sub‐matrices as follows:
k ¼ kS1S1þkS1S2þkS2S1þkS2S2þkS3S3 ð14Þ

where kS1S1, kS1S2or kS2S1, kS2S2 and kS3S3 are respectively membrane,
coupled membrane and bending, bending and shear stiffness matrices.
The sub‐matrices introduced in Eq. (14) can be defined as below [57]:

kS1S1 ¼
R 1
�1

R 1
�1 B

T
S1a

�BS1Jdξdη

kS1S2 ¼
R 1
�1

R 1
�1 B

T
S1b

�BS2Jdξdη

kS2S2 ¼
R 1
�1

R 1
�1 B

T
S2d

�BS2Jdξdη

kS3S3 ¼
R 1
�1

R 1
�1 B

T
S3s

�BS3Jdξdη

8>>>>><
>>>>>:

ð15Þ

Also, kS2S1equals the transpose of the matrix kS1S1 (i.e., (kS2S1)ij=
(kS1S2)ji).

The integrations over the transformed area (i.e., Eq. (15)), were
computed by means of the well‐known numerical Gaussian integration
technique. The integral, which corresponds to the shear stiffness of the
composite, kS3S3, was computed using the reduced integration to pre-
vent shear self‐locking in the elements, whereas other integrals were
numerically computed.

Finally, the damped dynamic behavior of a free vibration problem
of a viscoelastic composite plate can be expressed as follows:

KR þ iKI � ω�2M
� �

U�f g ¼ 0 ð16Þ
where, KR and KI are the real and imaginary parts of the total ele-

ment stiffness matrix, respectively. Besides, M is the overall mass
matrix of the system, and ω* is the complex eigenfrequency, while
U* is the corresponding mode shape vector. Solving the above eigen-
value problem results in the natural frequency (ω) and loss factor (η)
of the laminate in the following form [59]:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðω�2Þ

p
; η ¼ Imðω�2Þ

Reðω�2Þ ð17Þ

where Re(.) and Im(.) operators show the real and imaginary parts
of the desired complex argument, respectively.

2.2. Derivation of the mechanical behavior of the fiber and MRE

Toobtain the constitutive equationsof theMRECs,firstly,we showed
the dependency of the material properties on the magnetic field. The
novelmodel proposed here is developed based on the experimental data
reported in [26]. We included the time‐dependency of the viscoelastic
properties using a Generalized Maxwell model with two branches and
an equilibrium branch [58]. Finally, the equivalent constitutive equa-
tions were obtained by coupling the recently achieved relations of the
MREandfiber‐reinforced composites (FRCs) using themicromechanical
approaches available in the composites’ literature [60–62].

2.2.1. Constitutive equation of MRE
The 1‐D differential constitutive equation of the rheological model

presented in Fig. 1b can be written as [58]:

p0ɛ þ p1 _ɛ þ p2€ɛ ¼ q0σ þ q1 _σ þ q2€σ ð18Þ
where,

p0 ¼ G1; p1 ¼ μ1 þ μ2 þ μ1
G1
G1 þ μ2

G2
G1

	 

; p2 ¼ μ1μ2

G1
þ μ1μ2

G2
þ μ1μ2

G1G2
G1

	 

;

q0 ¼ 1; q1 ¼ μ1
G1
þ μ2

G2

	 

; q2 ¼ μ1μ2

G1G2

	 

ð19Þ
4

For a given small uniaxial sinusoidal strain input expressed as
ɛ ¼ ɛ0eiωt the stress output can be obtained as σ tð Þ ¼ σ�eiωt . The term σ�

is the complex stress and can be assumed to be in the following form [58]:

σ� ¼ ɛ0E� iωð Þ ð20Þ
in which E* (or G*) is the complex modulus. Decomposition of the

complex modulus, which leads to reaching two real and imaginary
modules, can be written as [58]:

G�ðiωÞ ¼ G0ðiωÞ þ iG00ðiωÞ ð21Þ
Substituting strain input and stress output in Eq. (18) results in the

following relations for the storage and loss moduli of the MRE

G0ðf Þ ¼ G1 þ ∑
n

i¼1
Gi

2πf τið Þ2
1þ 2πf τið Þ2 ; G00ðf Þ ¼ ∑

n

i¼1
Gi

2πf τið Þ
1þ 2πf τið Þ2 ð22Þ

Based on the Generalized Maxwell model used here, one can derive
the simplified forms of storage and loss moduli of the MRE as follow:

G0ðf Þ ¼ G1 þ G1
2πf τ1ð Þ2

1þ 2πf τ1ð Þ2 þ G2
2πf τ2ð Þ2

1þ 2πf τ2ð Þ2 ;

G00ðf Þ ¼ G1
2πf τ1ð Þ

1þ 2πf τ1ð Þ2 þ G2
2πf τ2ð Þ

1þ 2πf τ2ð Þ2
ð23Þ

We aimed here to include the effects of the local magnetic field on
the storage and loss moduli of the MRE. Thus, the following functions
are developed to cover that effect:

τ1 ¼ 1
a1 þ a2Bð Þa3 ; τ2 ¼

1
a4 þ a5Bð Þa6 ; G1 ¼ a7 þ a8Bð Þa9 ;

G2 ¼ a10 þ a11Bð Þa12 ; G1 ¼ a13 þ a14Bð Þ2
1þ a15Bð Þ ð24Þ

In order to determine the ai’s (i = 1,…,15), we fit our model to the
experimental data reported in [26] (Fig. 2, Table 1) where was
obtained from a DMA test in the constant frequency of 5 Hz for a nat-
ural rubber‐based MRE with a Root Mean Square Error (RMSE) of 0.09
and 0.03 for storage modulus and loss factor, respectively. Toward this
aim, an optimization technique (or a nonlinear regularization tech-
nique) based on the nonlinear least‐squares of the objective function
was used. Following this procedure, the best coefficients that can sat-
isfy the identity between the recommended functions and those
achieved from the experimental tests were developed. The following
objective function based on the least‐square principle with weight
parameters of w1 and w2 was defined for the optimization algorithm:

F ¼ ∑
n

i¼1
w1 G0

Modeli � G0
Expi

h i2
þ w1 tan δModelið Þ � tan δExpi

� �� �2� �
ð25Þ

The subscripts “Model” and “Exp” show the result obtained from the
present model and experimental data, respectively. Besides, the hysteric
behavior of the present model was investigated. To this purpose, by substi-
tuting Eqs. (19) and (24) in Eq. (18), and considering a harmonic strain as
an input (i.e., ɛ ¼ ɛ0sin 2πftð Þ), the output stress was calculated. As a result,
the hysteresis loop at different frequencies and magnetic flux intensities
was measured (see Fig. 2c and d). It is noted that ɛ0 was the amplitude
of the applied strain, f was the loading frequency and t was time.

2.2.2. Material properties of the fiber
In this study, the glass fibers are implemented as reinforcing fibers

in the structure of the MR composite. The linear elastic properties of
the glass fibers are listed in Table 2.

2.2.3. Equivalent constitutive equations of the MREC
We used the modified rule of mixture presented by the Halpin‐Tsai

[61,62] to set a homogenization procedure based on the classical the-
ories of the mechanics of material [60]. Based on this approach, the
equivalent density, Poisson’s ratio, and moduli of the MREC can be
expressed by:



Fig. 2. The comparison of the magnetorheological model proposed in this study with the experimental data reported in [26] for the shear storage modulus (a) tan
(δ) or loss modulus (b) and hysteresis loops at different frequencies under a constant magnetic flux intensity of 0.5 T (c) and at different magnetic flux intensity at a
fixed frequency of 5 Hz (d).

Table 1
The material model constants of the proposed
model for the MRE.

Constants Values

a1; a2; a3; a4 1.50, 1.14, 4.26, 4.34
a5; a6; a7; a8 −4.35, −2.71, 1.07, 10.87
a9; a10; a11; a12 0.72, 4.28, 18.41, 0.42
a13; a14; a15 2.59, 4.86, 27.35
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Table 2
The mechanical properties of glass fiber based on the values reported in [66].

Mechanical parameters The value of the mechanical parameters

E (Elastic modulus) 85 GPa
ν (Poisson’s Ratio) 0.2
ρ (Density) 2500 kg/m3

5

ρ ¼ ϕFρF þ ϕMρM ;

v12 ¼ v21 ¼ v ¼ ϕFvF þ ϕMvM ;

E�
1 ¼ E0

1 þ iE00
1;

E�
2 ¼ E0

2 þ iE00
2;

G�
12 ¼ G0

12 þ iG00
12;

G�
13 ¼ G0

13 þ iG00
13;

G�
23 ¼ G0

23 þ iG00
23;

ð26Þ

In Eq. (26), the orthotropic storage and loss moduli can be defined
as below [61,62]:

E0
1≈g E0

FϕF þ E0
MϕM

� �
; E00

1≈g E00
FϕF þ E00

MϕM

� �
;

E0
2 ¼ E0

M
1þζE2 η

0
E2

ϕF

1�ηE2 ϕF

	 

; E00

2 ¼ E00
M

1þζEη
00
E2

ϕF

1�ηE2 ϕF

	 

;

G0
12 ¼ G0

M
1þζG12 η

0
G12

ϕF

1�η0G12ϕF

	 

; G00

12 ¼ G00
M

1þζG12 η
00
G12

ϕF

1�η00G12ϕF

	 

;

ð27Þ

It should be noted that for the elastic fibers, the relation
E00
F ¼ G00

F ¼ 0 is available. In two above equations, ρ, ϕ, v, E, G and g
are density, volume fraction, Poisson’s ratio, elastic modulus, shear
modulus, and fiber misalignment factor, respectively. The parameter
g varies from 0.9 to 1, and in this study, g = 1 is assumed. The sub-
scripts F, M, 1, 2 indicate the fiber, matrix, longitudinal and transverse
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directions, respectively. Afterward, the superscript 0 and ″ denote the
storage and loss terms, respectively. In addition, η and ζ can be defined
as following [60–62]:

η0E2 ¼
E0F=E

0
M�1

E0F=E
0
MþζE2

; η00E2 ¼
E00F=E

00
M�1

E00F=E
00
MþζE2

; η0G12
¼ G0

F=G
0
M�1

G0
F=G

0
MþζG12

; η00G12
¼ G00

F=G
00
M�1

G00
F=G

00
MþζG12

ζE2 ¼ 2; ζG12
¼ 1þ 40ϕ10

F ; G0
13 ¼ G0

12≈G
0
23; G00

13 ¼ G00
12≈G

00
23

ð28Þ
3. Results and discussions

We used MATLAB (v. R2019a) software to develop our models. The
MREC plates were constructed from multi‐layer glass fibers and MRE
with a dimension of 0.1 × 0.2 × 0.005 m3 (see Fig. 1a). A
clamped‐free‐free‐free boundary condition was assumed for all analy-
ses in this study. It is noteworthy that the whole simulations of the
MRE plate in this study were performed at a fixed frequency of 5 Hz.

We validated the accuracy of our model by comparing the shear
storage modulus and loss modulus obtained from our model with those
of experimental data reported in [26] (Fig. 2). We also compared the
natural frequencies and loss factors obtained from our rheological
model with those of computationally simulated models. For the com-
putational simulations, we used a commercial finite element code
(ABAQUS v.6.17) modeled by 2D‐linear shell elements (S4R) and used
standard explicit solver (Fig. 3a). These comparisons showed a similar
trend among our model, experimental values reported in the literature,
and our finite element results.

We used our models to analyze the effects of the magnetic flux
intensity, glass fiber volume fraction, fiber orientations, number of lay-
ers in composite, and stiffness ratio of fiber to the matrix on the
dynamic response (i.e., natural frequencies, loss factors, and mode
shapes) of the MRECs.
Fig. 3. The effects of the magnetic flux intensity on the natural frequency (a) and lo
equal to 20% with an orientation of θ = 0° at a fixed frequency of 5 Hz. The first

6

In what follows, the concentration will be on the free vibrational
analysis of MREC plates via a new magnetic‐dependent viscoelastic
model in the presence of magnetic fields. However, it is worth men-
tioning that the developed methodology can also be efficiently imple-
mented to extract the transient responses of systems as well as forced
oscillation problems.

3.1. The effect of magnetic flux intensity

We observed that the storage modulus and natural frequency of all
modes of a single‐layer MRE plate with a glass fiber volume fractions
of 20% and with θ = 0° non‐linearly increased by increasing the mag-
netic flux intensity (Figs. 2 and 3a, b). These parameters reached a pla-
teau after a magnetic flux intensity of 0.6 T (Figs. 2 and 3a, b). This can
be due to the fact that increasing the magnetic field intensity increases
the elastic properties (i.e., E1, E2, and G12) of the MRECs without affect-
ing its mass properties, which can consequently increase the natural
frequency of the composite (Fig. 3a). We observed a similar trend
for storage modulus and natural frequency (see Figs. 2a and 3b). As
a result, a comparable trend observed for tan (δ) and loss factor.

We also compared the first three‐mode shapes of the MREC
(Fig. 3c) when being subjected to 0.2 T magnetic flux intensity. The
mode shapes were independent of the applied magnetic flux intensity.
This can be explained by the fact that increasing the magnetic flux
intensity simultaneously increased the elastic moduli of the composite
in two orthogonal directions (i.e.,E1; E2), which, as a result, did not
influence the overall mode shapes.

Considering the hysteresis effects in our models, we observed a
counter‐clockwise change of the hysteresis loop when increasing the
values of frequency and magnetic flux intensity (Fig. 2c and d). These
results suggested that under higher values of frequency and flux iten-
ss factor (b) of a single-layer MREC with a constant glass fiber volume fraction
three mode shapes of the MREC at a magnetic flux intensity of 0.2 T (c).
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sity, MRE compoistes could become stiffer. This is in agreement with
the results of the other studies [39].

3.2. The effects of the volume fraction of glass fibers

In composites, the volume fraction of fibers has a significant effect
on the behavior of the material. To analyze the impact of glass fiber
volume fraction on the dynamic response of MRE composites, we
changed the volume fraction of the glass fibers in a single‐layer MREC
with θ = 0° at a constant magnetic flux intensity (B = 0.5 T).

Increasing the volume fraction of glass fibers can stiffen the MRECs.
This non‐linearly increased the natural frequency of the plate (Fig. 4a).
Contrary to the natural frequencies, the loss factor decreased by
increasing the fiber volume fraction (Fig. 4b). This shows, changing
the volume fraction of fibers can tune the properties of the MRECs
inversely.

The glass fiber volume fraction did not have a significant influence
on the first two‐mode shapes of the MREC plates (Fig. 4c and d). The
third mode shape, however, changed when MRE plates with different
fiber volume fractions (i.e., 0% and 40%) were compared (Fig. 4c and
d).
a. b

c.

d.

Fig. 4. The effects of glass fiber volume fractions on the natural frequency (a), loss f
θ = 0° at a magnetic flux intensity of 0.5 T and at a fixed frequency of 5 Hz. The
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3.3. The effect of the fiber orientations

We also studied the dynamic response of fiber orientations in a
single‐layer SMPC plate under a constant magnetic flux intensity of
0.5 T and a glass fiber volume fractions of 20%. When the fibers were
aligned with the x‐axis (i.e., the orientation angle of θ = 0°), the over-
all stiffness of the composite plate was maximum. Therefore, the nat-
ural frequency was highest in this configuration (Fig. 5a). Changing
the orientation of the fibers to 45°, and 90° decreased the natural fre-
quency of the plate (Fig. 5a). The fiber orientation had an inverse
effect on the loss factor as fibers with the orientation of 90° showed
the highest damping capacity.

The orientation of fibers with 0°, 90° did not change the first two‐
mode shapes of MREC (Fig. 5c–e). However, it affected the first two‐
mode shapes of composite with 45° fiber orientation (Fig. 5c–e, right,
and middle subfigures). That is because the variation of the fibers’ ori-
entation could change the elastic stiffness of MREC in orthogonal
directions. Interestingly, the third mode shape of the composite with
different fiber orientation resulted in entirely different mode shapes
(Fig. 5c–e, left subfigures).
 

.

actor (b), and mode shapes (c, d) of a single-layer MREC with an orientation of
glass fiber volume fraction in (c) and (d) were respectively 0% and 40%.



a. b.

c.

d.

e.

Fig. 5. The effects of the glass fiber orientation (i.e., θ = 0°, 45°, 90°) on the natural frequency (a) and loss factor (b) of a single-layer MREC with a glass fiber
volume fraction of 20% at a magnetic flux intensity of 0.5 T and at a fixed frequency of 5 Hz. Different mode shapes were obtained for fiber orientation of 0° (c),
45° (d), and 90° (e).
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3.4. The effects of the number of layers and fiber orientation in each layer

One way to homogeneously enhance the mechanical properties of
the MRE is to make composites from layers with different fiber orien-
tations. Here we considered a two‐layer MREC plate with four differ-
ent lay‐up designs, namely; −45° +45°, 0°–90°, 0°–0° and 90°–90°
fiber orientations at a magnetic flux intensity of 0.5 T and a glass fiber
volume fractions of 20%. Each layer had an equal thickness of
0.0025 m.

Such an implementation resulted in a broader range of natural fre-
quencies and loss factors in different modes of deformations (Fig. 6a
and b). For example, the natural frequency and loss factor of the third
mode of deformation of the composite with 0°–90° layers reached its
maximum values (Fig. 6a and b). This can be used as an alternative
design strategy to tailor the dynamic properties (i.e., damping capacity
and frequency) of MRECs.
8

We also compared the mode shapes of bi‐layer composites with
fiber orientation of 0° 0° and 45° 45° with those bi‐layer composites
with + 45°, −45° (Fig. 6c–e). Changing the orientation of the fibers
in each layer changed the amplitude of the deformation of the first
mode (Fig. 6c–e, left subfigures) and shape of deformations of the sec-
ond and third mode of deformations (Fig. 6c–e, middle and right
subfigures).

3.5. The influence of fiber to the matrix stiffness ratio

We varied the stiffness ratio of fiber to the matrix (i.e., EF=EM =
1–1000) while assuming a fixed volume fraction of fibers (5%) and
magnetic flux intensity (0.5 T). Increasing the EF=EM non‐linearly
increased the natural frequency (Fig. 7a) and inversely decreased
the loss factor (Fig. 7b) of the first and second deformation modes
of MRECs. That is because increasing the stiffness ratio will enhance



a. b.

c.

d.

e.

Fig. 6. The effects of glass fiber orientation on the natural frequency (a) and loss factor (b) of bi-layer MREC with a glass fiber volume fraction of 20% at a
magnetic flux intensity of 0.5 T and at a fixed frequency of 5 Hz. The first three mode shapes of MREC plates for cases with a bi-layer MREC with fiber orientations
of 0° 0° (c), 45° 45° (d) and + 45° −45° (e).
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the overall (or equivalent) stiffness of the MREC. The same trend
was observed for the third mode of deformation until when 2.5
order of magnitude stiffer properties for the fiber was chosen
(Fig. 7).

4. Conclusion

In the present study, we proposed a new magnetorheological model
(i.e., a magnetic‐dependent Generalized Maxwell rheological model)
for MREs by considering their hysteresis behavior. We presented the
material parameters in terms of magnetic flux intensity explicitly
unlike, other models [43] with a straightforward approach in calibrat-
ing and implementing the present model in addition to what proposed
in other literature [48,49]. Then, we used the proposed model for
single‐ and multi‐layer MREC plates and evaluated the effects of the
9

composite properties and magnetic field on their dynamic responses
in the frequency domain.

MRECs showed strength enhancement when being exposed to a
magnetic field with higher magnetic flux intensity. Therefore, by
merely changing the magnitude of the magnetic field, one can effec-
tively tune the natural frequency, loss factors, and mode shapes of
the composite. These properties can also be tailored by a rational dis-
tribution of the fiber orientations, fiber volume fraction, and fiber‐to‐
matrix stiffness ratios. We summarized some of the highlights of the
present study as follows:

- Increasing the magnetic field could lead to an increase in the stor-
age modulus of the MRE plates. This could consequently increase
the values of natural frequencies similar to storage modulus and
changing loss factors similar to tan (δ).



Fig. 7. The effects of the fiber to matrix stiffness ratio (i.e., EF=EM) on the natural frequency (a) and loss factor (b) of a single-layer MREC with a glass fiber volume
fraction of 5% at a magnetic flux intensity of 0.5 T and at a fixed frequency of 5 Hz.
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- The volume fraction of the glass fibers in the MRE composite could
effectively tune its damping behavior. This could intensify the val-
ues of the natural frequency and lessen the loss factor of the MRE
plate.

- Increasing the fiber orientations from 0° to 90° resulted in a softer
MREC, and eventually, decreased the MRE's natural frequencies.
Also, the loss factor increased because of its inverse relationship
with the natural frequency.

- The number of layers and the orientation of the fibers in each ply
could significantly change the natural frequency, loss factor, and
mode shapes of the MRE plate.

- Increasing the fiber‐to‐matrix stiffness ratio caused a nonlinear
increase in the natural frequency corresponding to the decrease
of the loss factor of the MRE plate.

These properties can be used in the rational design of 4D printed
structures where the specific shape of deformation overtime is expected.
Such MRE materials can also provide more freedom for the designer to
create materials with new functionalities and properties.

Also, it should be pointed out that the proposed model can be used
once it is aimed to control the amplitude of any arbitrary system’s fluc-
tuation. Indeed, the magnetically responsive constitutive behaviors of
such smart composites empower the designer to make the best gain
from the tunable rheological features of such materials to control the
vibration amplitude of the system without using any other controller,
as reported in the open literature [63–65].
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