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Abstract

In this master thesis, the recently introduced Mobile Model Predictive Control (MoMPC)
approach for open water systems with uncertain dynamics is discussed, where there are no
sensors or actuators installed in the system that would allow for a fully automatic operation.
MoMPC is a configuration of Model Predictive Control (MPC) that explicitly incorporates
the role of a mobile operator travelling between the points of interest, i.e., nodes, of the
system as instructed by a remote centralised controller. The operator provides the controller
with up-to-date measurements from the locations visited and acts as the actuator as required
by the remote controller.
In this research, four areas of improvement of MoMPC from literature are explored and some
possible solutions are proposed, resulting in a new method, called Multiple-Action Mobile
Model Predictive Control (MaMoMPC).
First, the MoMPC approach is generalised to open water systems described as a network,
wherein for each node a unique set of actions is possible, e.g., at some nodes only actuation
is possible, while at others both measuring and actuation is possible.
Secondly, in MoMPC, controlling the system is only allowed until a predefined control horizon,
after which there is often still some setpoint water level error present, which is penalised until
the end of the prediction. Cyclic control is proposed to include some simplified estimate of
future control in the MPC optimisation problem past the control horizon, without introducing
extra computational burden. By including cyclic control the future effort to drive the water
levels to the setpoints is better represented in the prediction, improving system performance.
The third area of improvement consists of the consideration of the limitations of the mobile
operators in the optimisation problem. Until now, the human operators were assumed to be
able to work continuously without requiring breaks. An extension that keeps track of the
energy levels of the human operators is proposed, which can be used by the controller to
schedule breaks for the human operators.
Finally, another shortcoming in the MoMPC approaches from literature is the discrepancy
between the predicted state of the system and the actual state. Depending on the number
of operators available the measuring and actuating actions will be sparse in time. Further-
more, the system is subjected to external disturbances and will always have some modelling
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errors. As a result, there is some uncertainty on the predicted state of the system. This
uncertainty about the system can become large when some measurement locations are not
visited regularly. Moreover, the uncertainty about the predicted state of the system may re-
sult in reduced system performance and constraint violations. To ensure the predicted system
state does not drift too far from the actual state, the information gathering capabilities of
the system have to be augmented. To that end, three methods to weigh the measurement
frequency are proposed.

To evaluate, a case study is performed on a realistic numerical model of the Dez main irrigation
canal in Iran. In the first part of the case study, the system performance when adding cyclic
control to the Time Instant Optimisation Mobile Model Predictive Control (TIO-MoMPC)
approach from literature is evaluated. Including cyclic control improved the reference track-
ing performance during a scenario without noise with statistical significance. In the second
part of the case study, noise is added to the numerical model and the MaMoMPC approach
with uncertainty weighing methods and cyclic control is evaluated. The results show that
the addition of the uncertainty weighing methods yields enhanced disturbance rejection and
reference tracking performance.
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“L’acqua che tocchi de’ fiumi è l’ultima di quella che andò e la prima di quella che
viene. Cosí il tempo presente.”

In rivers, the water that you touch is the last of what has passed and the first of
that which comes; so with present time.
— Leonardo da Vinci





Chapter 1

Introduction

The importance of water for sustaining human life cannot be understated. It is rooted in every
day life through drinking, recreation, transport, agriculture, and energy production. Water
systems are available in the form of water bodies such as seas, lakes, and reservoirs which are
connected to natural rivers and man-made canals. The flows of water can be manipulated
through shaping rivers, building canals, and operation of structures, such as pumps and gates.
Local control inputs include filling or draining of water reservoirs and actuation of pumps or
locks. When controlling a large open water system all of these local water systems with their
local control inputs need to be taken into account.

The importance of an efficient water management system is increasing world-wide, in par-
ticular due to higher sea levels, increase of rain during the spring season, and drier sum-
mers. About 70 percent of the freshwater supply is used for irrigation of lands that produce
40 percent of the world’s food [26]. Too high water levels (floods, water spillage) and too low
water levels (decreased crop yield, irrigation issues) should be avoided, while minimising the
cost of the control actions. The evolution of the local water levels depends on what happens
over a much larger region, which can even extend beyond nations. However, water is usually
managed in a relatively small region by local water management organisations. The current
lack of coordination of localised control results in suboptimal water delivery and loss of water.
More efficient water management with less risks and costs can be obtained by coordination
of the local water management actions, and by also including predictions of future rain fall,
future droughts, and future arrival of water flows from other water systems. These predictions
can be based on hydraulic models driven by weather predictions and data from a network of
sensors. This coordination is complex, as some of the local requirements may sometimes be
conflicting, which requires a multi-constraint and multi-objective control task to be solved.
Thus, new intelligent, multi-agent model-based predictive control approaches for water man-
agement have to be developed. In this thesis, the control approaches for open water transport
systems with human operators are investigated. These approaches will need to satisfy the
basic requirements and service levels to perform adequate water management.

Another issue that these approaches will need to overcome is that they cannot rely on a fully
automatic control operation, as it is unrealistic in less developed countries because humans
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are involved in the actuation process, in taking measurements, or in the system dynamics;
in addition, fully automatic control operation is often too expensive. On the other hand,
having fully manual control operation can compromise the performance by limitations of
the operators to oversee the many interacting components of the water system. This gives
incentive in providing a link between modern control methods and human-operated control
systems. A few approaches [28, 37] have been proposed to answer the question of how to
integrate humans into the control problem. However, how to prioritise the locations for the
operators to take measurement, in order to keep track of the state of the open water system,
is still an open question.

1-1 Open water systems

The term open water system covers a broad spectrum of large-scale water systems. Generally,
they are characterised by their large size and consist of multiple interacting bodies of water.
Furthermore, open water systems are subjected to various meteorological influences, which
can have a significant impact due to the vast size of open water systems. Two interesting
open water systems from a control perspective are irrigation canals and drainage systems, as
actuators and sensors are available throughout the systems and the water demands change
over time, while the system is disturbed by external influences. Both irrigation canals and
drainage systems consist of a cascade of water bodies called ‘reaches’, separated by gates and
pumps.

Controlling irrigation canals is of vital importance as the irrigation sector claims about
70 percent of the withdrawals of freshwater worldwide [26]. Irrigation water uses are: reg-
ulating the salinity of the soil, improving the soil texture, and providing enough water for
growing crops. Adequate irrigation can result in crop yields that are two to four times greater
compared to rain-fed farming and it currently provides 40 percent of the worlds food from
approximately 20 percent of all agricultural land [26].

The water from irrigation canals to be delivered has some specifications:

• Accurate delivery of water: to avoid spillage, the right amount of water should arrive
at the right time;

• Flexible water delivery, as the water delivery requirements of the farmers change;

• Safe and robust management of the water, as floods are dangerous and inefficient;

• Low operational costs: managing and maintaining the delivery of water, which is im-
portant from an economical point of view.

To deliver the water to the users a water distribution network with several features is used.
Control structures, such as gates and pumps, are used to control the water flows and thereby
distribute the water over the canal network. There is a wide variety of control structures,
such as sluices, pumps, and weirs. Most sluices and weirs can be categorised as some kind
of overshot gate or undershot gate [29]. Furthermore, the offtake structures of the irrigation
canal network are used for taking the water out of the canal, i.e., onto the land or into specific
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1-2 Automation of open water systems 3

secondary canals. The canal sections located between two control or offtake structures are
called reaches.

For the control structures and offtake structures to function properly they require an upstream
water level that is sufficiently high. There are three ways to obtain a high enough water level:

• Adjusting the upstream flow rate,

• Backing up the water level by use of a downstream control structure,

• Using a combination of the two methods mentioned above.

Meeting these water requirements is not a trivial problem. The water arrives at the offtake
structures with some delay, due to hydrodynamics. Furthermore, the structures cannot be set
completely accurately, since the measurements have limited accuracy and the control struc-
tures are not operated continuously. This results in spillage of water and the supplied water
not matching the demand. If the demand for water was static, this error could be corrected
by simply integrating the mismatch. However, the water requirements are unpredictable due
to environmental factors, such as rainfall, droughts, and the working schedules of the farmers.
Therefore, more sophisticated control methods are needed to meet the water requirements.

1-2 Automation of open water systems

The development of automatic control for open water systems started with registering the
water level using automatic water level sensors. Next, the measurements from multiple sensors
became available at a central location, using communication lines to relay the measurements.
Meanwhile, information on the disturbances such as rain forecasts have become available and
increasingly more accurate. The structures used to guide the water such as pumps and gates
were also automated by electric motors and automatic switching off and on of pumps. When
a water system has advanced to this level of automation, it is capable of being controlled
by a central computer. However, such a system depends heavily on communication lines,
which are prone to failures. For this reason, local control techniques are still used today. In
developing countries, labour is inexpensive, so structures are manually operated by humans
since installing sensors and actuators is too costly.

1-3 Control of open water systems

Although various control techniques have been designed for open water systems, not all of
them have been implemented in practice [14, 19, 32, 38]. Instead, they are tested on accurate
hydrodynamical models to illustrate applicability. In [22], regulation methods for irrigation
canals are classified based on considered variables, logic of control, design method, and field
implementation. A classification based on control theory is also possible [35]:

• Feedforward control: the earliest control implementations were based on feedforward
control, as accurate models were available that could be used for inverse modelling and
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feedback control was not yet a technique known to water control engineers. However,
the standalone feedforward controllers are not able to track setpoints to zero error, as
the inverse model can never be perfectly representative of the water system and the
measurements and expected disturbances have some errors.

• Feedback control: the introduction of feedback control led to the first successful imple-
mentations that were able to regulate water levels close to setpoints, see [22, 23]. In [30],
a simple water level controller is proposed that consists of a proportional-integral-based
controller for feedback control to correct for measured deviations from the setpoint, and
a feedforward controller based on inversion of the dynamic model of the canal system
that uses an estimate of the disturbance to counter the influence of the disturbance on
the water level.

• Optimal control: optimal controllers minimise an objective function using an optimisa-
tion algorithm. In this objective function, weights are assigned to the square of the error
in tracking the reference and to the square of the change in control input. The weights
are chosen by their relative importance and are tuned for optimal performance of the
system. Setting higher weights on the error in reference tracking will result in faster
reference tracking at the cost of increased control input magnitude and frequency of up-
dates. On the other hand, putting more weight on the change in control action results
in the tracking error increasing, but the control actions are applied more smoothly and
with less magnitude. See [44] for a field tested centralised linear-quadratic regulator.

• Heuristic control: in these methods the dynamical behaviour of the water system is
seen as a black box. Examples of these methods are fuzzy-logic control [41], rule-based
control [11], and neural networks [33]. Since the dynamical behaviour of open water
systems has been researched extensively in the last decades, these methods miss out on
system understanding and are not applied to a large extent.

1-3-1 Model-based control

To describe the relationship between the many actuators and sensors of the water system
a model is required. The states of the model as well as the multiple inputs to the water
system, through gates and pumps, are limited by physical constraints. Furthermore, the
water system is also bound to socioeconomic developments, such as changing irrigation de-
mands by farmers. In addition, the dynamics of open water systems typically involve long
time lags. Hence, a more advanced control technique than classical feedforward and feed-
back is required. An advanced control technique capable of dealing with these requirements
is Model Predictive Control (MPC). In MPC, the benefits of the control methods such as
feedforward and feedback control can be used, while also including explicit constraints on the
states and inputs of the system and explicit performance measures.

Over the last two decades, MPC has been successfully implemented in the process industry [5],
power networks [39], and road traffic networks [8]. For water management, MPC has been
shown to be superior to conventional local control techniques like PI control [38].
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1-3-2 Human-operated control

Irrigation canals are used to provide water for food production, drinking, washing, and many
more applications all over the world. Often, the canals are located in harsh environments that
result in wear and tear and thus malfunctioning of operating equipment, which sometimes
even gets stolen by passers-by. For this reason and the fact that equipment can be very
expensive to buy and maintain, the managers of irrigation canals often resort to manual
operation, where one or multiple human operators travel between the gates and adjust gates’
positions based on subjective judgement. The human operator only takes into account local
information about the gate position and water levels; so the resulting performance is far from
the global optimum that could be achieved with central, automatic operation of the whole
system. This motivates the design of control methods that integrate humans as sensors and
actuators. One of the promising methods is Mobile Model Predictive Control (MoMPC)
introduced in [20, 37]. MoMPC is a configuration of MPC that explicitly integrates a human
operator in the control problem. The operator travels between the gates of an irrigation canal
and communicates with the central controller using a mobile device.

1-4 Problem statement

The MoMPC approaches from literature [20, 28, 37] rely on operators to provide the con-
troller with up-to-date measurements from the locations visited and to act as the actuators
as required by the central controller. At every new location the operator visits, he/she com-
municates the new measurements to the control centre, where they are used by the centralised
controller to solve the optimisation problem. The central controller returns the control action
that is to be implemented at the current location and provides the operator with the next
location to travel to and the desired time to reach the destination. In literature [28, 37], this
next location is only based on the cost associated with implementing a control action. How-
ever, taking measurements should have some priority too, since not measuring at locations
for a long time can introduce substantial error between the real and the predicted state. This
may lead to suboptimal operator route choices and can cause instability in the system and
constraint violations. Therefore, the problem statement for this master thesis is:

How to efficiently extend the mobile model predictive control scheme by introducing
methods to prioritise measuring at certain locations of the open water system, in
order to decrease the uncertainty about the systems’ state and increase the closed-
loop reference tracking performance?

1-5 Thesis outline

This master thesis is organised as follows. In Chapter 2, the modelling of open water systems
is discussed in detail and two MPC approaches from literature for controlling an irrigation
canal with human operators are presented. In Chapter 3, a new control algorithm for open
water systems with mobile operators is presented, called Multiple-Action Mobile Model Pre-
dictive Control (MaMoMPC). This new control algorithm allows the controller to decide on
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6 Introduction

what actions to complete at each location visited in the open water system. Furthermore,
‘cyclic control’ is proposed to improve the reference tracking performance of the algorithm.
Moreover, three methods to weigh the measurement frequency at each location are introduced.
After that, an energy recharging framework that ensures the human operators get adequate
breaks is presented. In Chapter 4, the extensions proposed in the MaMoMPC algorithm from
Chapter 3 are tested in a case study. Note that each of these chapters ends with a conclusion.
Finally, in Chapter 5, the conclusions and recommendations are presented.
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Chapter 2

Model Predictive Control of Open
Water Systems

This chapter focusses on two main topics regarding previous work on control of open water
systems. First, the modelling of open water systems is discussed in detail. Secondly, the
Model Predictive Control (MPC) approaches to controlling an irrigation canal with mobile
(human) operators are presented. The Mobile Model Predictive Control (MoMPC) method
is a derivative of MPC; it is assumed that the reader is familiar with the basic concept of
MPC. If the reader is not familiar, a short summary can be found in Appendix A. If more
detailed information about MPC is needed; it is recommended to read [4, 5]. At the end of
the chapter, a conclusion is presented about the modelling of open water systems and the
mobile operator MPC approaches to controlling them.

2-1 Modelling open water systems

The management objective of MPC for open water systems is to keep the water levels as close
to the setpoints as possible. To that end, a suitable model of the relevant processes of the
water system is needed. The models need to be set up to contain the most relevant dynamics
of the water system for this regulating of the water levels. The most relevant processes are
the behaviour of the water movement in the open channel: maintaining certain water levels at
various locations and the water flows that influence these water levels. Control structures are
used to manipulate the water flows, through which the controller can achieve the management
objective. Achieving this objective is not straightforward, as there are varying inflows and
outflows that disturb the water system. By modelling all these parts of the water system
(canal reaches, structures, disturbances, controller) a model predictive controller can predict
the future water levels and flows that are the result of the disturbances and the control actions.

In Section 2-1-1, a simple approach to modelling a canal reach is presented. Next, in
Section 2-1-2, the models of control structures that are commonly used in open water systems
are presented. In Section 2-1-3, a short introduction to the disturbances acting on the open
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8 Model Predictive Control of Open Water Systems

water system is given. Then, in Section 2-1-4, two approaches to incorporating the control
structures in the model of an irrigation canal are presented, respectively a flow control and
a gate control approach. Finally, the shortcomings and advantages of these two modelling
approaches are discussed.

2-1-1 Canal reaches

The flow of water in irrigation canals is driven by gravity. Irrigation canals are cascade-
connected networks with reaches separated by movable gates to transport the water down-
stream to the farmers from a reservoir or pumping station. In Figure 2.1, a schematic drawing
of an irrigation system is depicted.

Figure 2.1: Irrigation system built up out of reaches. The blue arrows indicate offtake flows.

The dynamic behaviour of water flow can be accurately described by the nonlinear De Saint-
Venant partial differential equations [6, 18]. As the discretised De Saint-Venant equations
have a large computational burden, they are difficult to use in real-time applications. Instead,
simplified models are used. One of these simplified models is the Integrator Delay (ID) model,
proposed in [29]. The ID model is based on observations of the dynamics of water movements:
in reaches that are completely affected by backwater (water collecting due to a downstream
structure) and are short enough, resonance can occur. Moreover, the resulting resonance
waves hardly deform when travelling through the reach. On the other hand, when reaches are
long and steep, resonance waves quickly dampen out and the flow of water is not influenced
much by waves bouncing off the structure downstream; therefore, it can be assumed that waves
travel downstream only. Based on these insights in the dynamics of open water a simple model
is formulated: an integrator for the backwater part of the reaches and a time delay for the
wave of water to travel from the upstream part of the reach to the downstream structure.
In Figure 2.2, the physical interpretation of the characteristics of the ID model is depicted.
The model can be described by a discrete-time difference equation for the downstream water
level:

h(k + 1) = h(k) + Ts
As

Qin(k − kdelay)− Ts
As

Qout(k) + Ts
As

Qd(k), (2.1)

where h(k) is the current water level, As is the storage area of the reservoir, Ts is the sampling
time of the model, Qin(k − kdelay) is the delayed flow to the reservoir, Qout(k) is the outflow
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from the reservoir, and Qd(k) is the disturbance inflow to the reservoir due to, e.g., offtakes
or rainfall.

Figure 2.2: Integrator delay model of a single canal reach

Remark. The time between the water level changing at the upstream part of the reach and
the resulting water level change at the downstream of the reach is defined as the delay time.
For a model predictive controller to take into consideration the full effect of the control actions
these delays need to be accounted for. The prediction horizon is usually set as the summed
delay times of all reaches, so that the effect of a control action upstream in the canal on the
water level downstream can be predicted and accounted for.

The ID model captures the basic dynamics, such as the delay time and the basic frequency.
The most beneficial quality of the model is that it is simple; it scales linearly with the number
of reaches. Because of its low computational burden and linearity, the ID model is often used
as internal model in applications of MPC [25, 34]. However, the ID model describes the low
frequency behaviour accurately, but does not include all the resonance modes. Thus, for long,
steep, and shallow irrigation canals the ID model is representative, especially since for these
types of canals the flow conditions, i.e., the discharge rate of the canal, do not have a large
influence on the storage area and flow transport times. However, the fraction Ts

As
and flow

delay time steps kdelay from (2.1) are included in the ID model as constants. Consequently,
a disadvantage is that the model cannot account for the parameter changes when the flow
conditions change significantly. Therefore, the predefined delay time and storage area are only
valid when the canal is operating at certain percentages of the maximum discharge rate. If the
model predictive controller does not take into account the relevant dynamics of the real water
system, the closed-loop control of the open water system can become unstable. In particular,
in the ID model the resonance frequency is not included, which causes a discrepancy between
the internal model and the open water system for certain excitations of the system. As the
canals used in this thesis have steep and long reaches and are operated at high discharge
rates none of these methods are required. However, there are several ways to resolve the
issues of resonance waves playing a dominant role: low-pass filtering [29], time-variant linear
models [35], and higher order models [17, 36, 38].
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10 Model Predictive Control of Open Water Systems

2-1-2 Control structures

The structures need to be modelled as part of the entire water system for them to be included
in the model predictive controllers. The behaviour of the control structures can be described
by analytical discharge relations based on the Bernoulli equation describing the conservation
of energy.

Remark. For controllers with a feedback part, such as PI controllers and model predictive
controllers, modelling errors of the structures do not pose big (instability) problems. This
is because the controller will continue to adjust the gates, until the objective is achieved.
However, as actuation may be sparse in time for the case of humans operating the gates, the
modelling errors of the structures might pose bigger problems.

Overshot gates
An overshot gate is a control structure that backs up water, by forcing water to flow over the
crest of the gate, see Figure 2.3. The energy at the upstream side of the structure is the sum
of two components: the potential energy of the water level above the crest and the kinetic
energy in the velocity of the flow. The kinetic energy at the upstream side is often neglected,
as the velocity is low, due to the large wetted area on the upstream side and measuring the
flow velocity in canal reaches is generally not done.

Figure 2.3: Overshot gate

The flow formula for the overshot gate is expressed as [35]:

Q(k) = 2
3

cw ·Wg

√
2
3

g · (h1(k)− hcr(k))
3
2 , (2.2)

where Q represents the flow (m3/s) over the crest of the structure, cw is a lateral contraction
coefficient that describes the way the stream lines of the flow change in the interaction with
the structure, Wg is the width (m) of the gate, h1 is the upstream water level (m), hcr is the
crest height (m), and k is the time step index.

The flow can be increased or decreased by changing the crest level hcr; the increase or decrease
in flow will then scale with a power 3/2. There is also a natural feedback loop in place: if hcr
is constant and the upstream water level h1 increases, the flow over the crest will increase
more than proportionally, decreasing the upstream water level.

Undershot gates
In an undershot gate, as the name suggests, the water has to flow under the gate; which is
lowered into the water. There are two types of undershot gates: free-flowing and submerged
gates, see Figure 2.4.
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Figure 2.4: Free-flowing (left) and submerged (right) undershot gate

The formula for a free-flowing undershot gate is given by [35]:

Q(k) = cw ·Wg · µg · hg(k)
√

2g · (h1(k)− (hcr + µg · hg(k))), (2.3)

where µg is the contraction coefficient, hcr is the crest level, hg is the gate opening from the
crest level to the bottom of the gate, h1 is the upstream water level, and h2 is the downstream
water level.

An advantage of undershot gates is that they are well suited to control the downstream water
level precisely, as the flow increases less than proportionally with the gate opening. However,
from this scaling factor a disadvantage follows as well: the gate is not well suited to control
the upstream water level.

2-1-3 Disturbances

Open water systems are significantly influenced by disturbances, due to their vast size and
continuous exposure to uncertain meteorological forces. Disturbances can cause instability in
the system; so having an accurate disturbance model to counter them is important. Some ex-
amples of meteorological disturbances acting on open water systems are rainfall and drought,
while other disturbances are the water withdrawal by the farmers also known as offtakes, and
the inaccuracy of the human operators implementing the control actions. For some of these
disturbances a prediction can be available, e.g., if the people in charge of the open water sys-
tem have agreements with the farmers for the timing and amounts of water withdrawals from
the canal. However, there is some uncertainty on the exact timing and amount of the water
withdrawal. Moreover, rainfall predictions can be included. However, these rainfall predic-
tions are only sufficiently reliable for the short term (about a few hours to a day). Nonetheless,
by including a prediction of the offtake disturbance and rainfall the system performance can
be improved.

2-1-4 Model of an open water system

State space notation for flow control
To be able to directly minimise water level errors in the MPC cost function the water level
state from (2.1) is rewritten to a water level error state:

e(k + 1) = e(k) + Ts
As

Qin(k)− Ts
As

Qout(k)− Ts
As

Qd(k), (2.4)
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12 Model Predictive Control of Open Water Systems

where
e(k) = hSP − h(k), (2.5)

where hSP denotes the water level setpoint.

The actuation of the canals will be sparse in time, due to the required presence of a mobile
operator to operate a gate. Therefore, controlling the increment of control input is preferable;
in order to keep the gate flow constant in between actuation instants. By introducing the
change in error as an additional state, the input can be written in terms of flow increments [35]:

∆e(k + 1) = e(k + 1)− e(k). (2.6)

Inserting (2.4) into (2.6) yields:

∆e(k + 1) = e(k)− e(k − 1) + Ts
As

(Qin(k)−Qin(k − 1))

− Ts
As

(Qout(k)−Qout(k − 1))− Ts
As

(Qd(k)−Qd(k − 1)).

(2.7)

Define:

∆e(k) = e(k)− e(k − 1), (2.8)
∆Qin(k) = Qin(k)−Qin(k − 1), (2.9)

∆Qout(k) = Qout(k)−Qout(k − 1), (2.10)
∆Qd(k) = Qd(k)−Qd(k − 1). (2.11)

Finally, (2.4) and (2.7) can be rewritten in terms of flow increments using (2.8)–(2.11) to
obtain the state space description for a single canal reach:[

e(k + 1)
∆e(k + 1)

]
=

[
1 1
0 1

] [
e(k)

∆e(k)

]
+

[
Ts
As
Ts
As

]
∆Qin(k)

+
[
− Ts

As
− Ts

As

]
∆Qout(k) +

[
− Ts

As
− Ts

As

]
∆Qd(k).

(2.12)

To describe an open water system, several of these canal reaches will need to be connected.
The water flowing from one canal reach to another will have some transport delay time.
That can be included in the system description by introducing water flow transport states.
Consider an example irrigation canal with two reaches, as depicted in Figure 2.5.

The flow transport delay times from the head gate to the first reach and from the second gate
to the second reach are assumed to be, respectively, 800 and 150 seconds. Next, the model
of the system is discretised with a time step of Ts = 300 seconds; the transport delays are
rounded up to, respectively, 3 and 1 time steps.

Next, this example irrigation system can be described by the following state space description:

xex,flow(k + 1) = Aex,flowxex,flow(k) + Bu,ex,flowuex,flow(k) + Bd,ex,flowdex,flow(k), (2.13)
yex,flow(k) = Cex,flow(k), (2.14)
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Figure 2.5: An example irrigation canal consisting of two reaches with an upstream reservoir
providing water to the first reach.

where

xex,flow(k) =



e1(k)
∆e1(k)

∆QHG(k − 1)
e2(k)

∆e2(k)
∆Qc,1(k − 1)
∆Qc,1(k − 2)
∆Qc,1(k − 3)


, Aex,flow =



1 1 Ts
As,1

0 0 0 0 0
0 1 Ts

As,1
0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 Ts

As,2

0 0 0 0 1 0 0 Ts
As,2

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

Bu,ex,flow =



0 − Ts
As,1

0
0 − Ts

As,1
0

1 0 0
0 0 − Ts

As,2

0 0 − Ts
As,2

0 1 0
0 0 0
0 0 0


, Bd,ex,flow =



− Ts
As,1

0
− Ts

As,1
0

0 0
0 − Ts

As,2

0 − Ts
As,1

0 0
0 0
0 0


,

uex,flow(k) =

∆QHG(k)
∆Qc,1(k)
∆Qc,2(k)

 , dex,flow(k) =
[
∆Qd,1
∆Qd,2

]
,

yex,flow =
[
e1(k + 1)
e2(k + 1)

]
, Cex,flow =

[
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

]
,

where the ‘measured’ states are the water level errors. Note that the water levels are actually
measured and are subsequently subtracted from water level setpoint to retrieve the water
level error.
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14 Model Predictive Control of Open Water Systems

State space notation for gate control
The flow-controlled system (2.12) from the previous section assumes that the control flow
through a gate stays constant after actuation of the gate. This assumption only holds if a
local flow controller is available at the gate; if not, then the control flow is dependent on the
upstream water level and the gate opening, as described by (2.3) for an undershot gate.

To include this nonlinear behaviour in the internal model, the undershot gate flow equa-
tion (2.3) needs to be linearised; this can be achieved by applying a first-order Taylor
expansion [35, 42]. The first-order Taylor series expansion around the last known values
of the states, hg(k) and h1(k), is applied to (2.3). The resulting linear equation for undershot
gate free-flow is:

Q(h1 + ∆h1, hg + ∆hg) = Q(h1, hg) + ∆h1
∂Q

∂h1
(h1, hg) + ∆hg

∂Q

∂hg
(h1, hg), (2.15)

where
∂Q

∂h1
= g · cw ·Wg · µg · hg(k)√

2g · (h1(k)− (hcr + µg · hg(k)))
, (2.16)

∂Q

∂hg
= cw ·Wg · µg

√
2g · (h1(k)− (hcr + µg · hg(k)))

−
g · cw ·Wg · µ2

g(hg(k)− hcr)√
2g · (h1(k)− (hcr + µg · hg(k)))

,

(2.17)

where the partial derivatives are coefficients that can be obtained from the last closed-loop
result. Next, by combining (2.4), (2.8), (2.10), and (2.15), the following equation can be
derived:

∆Q(k) = Q(k)−Q(k − 1) = Ce ·∆e(k) + Cu ·∆u(k), (2.18)

where for ease of notation the following definitions are used:

Ce(k) = ∂Q(k)
∂h1(k)

, (2.19)

Cu(k) = ∂Q(k)
∂hg(k)

. (2.20)

Finally, by expressing the control action in terms of the change in gate opening ∆u, a state
space model with linearised gate equations for a single canal reach is obtained:[

e(k + 1)
∆e(k + 1)

]
=

[
1 (1− Ce · Ts

As
)

0 (1− Ce · Ts
As

)

] [
e(k)

∆e(k)

]
+

[
Ts
As
Ts
As

]
∆Qin(k)

+
[
−Cu · Ts

As
−Cu · Ts

As

]
∆u(k) +

[
− Ts

As
− Ts

As

]
∆Qd(k).

(2.21)

Now, the example irrigation system from Figure 2.5 can be described by the following
gate-controlled state space model:

xex,gate(k + 1) = Aex,gatexex,gate(k) + Bu,ex,gateuex,gate(k) + Bd,ex,gatedex,gate(k), (2.22)
yex,gate(k) = Cex,gate(k), (2.23)
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2-1 Modelling open water systems 15

where

xex(k) =



e1(k)
∆e1(k)

∆QHG(k − 1)
e2(k)

∆e2(k)
∆Qc,1(k − 1)
∆Qc,1(k − 2)
∆Qc,1(k − 3)


,

Aex,gate =



1 (1− Ce,1 · Ts
As,1

) Ts
As,1

0 0 0 0 0
0 (1− Ce,1 · Ts

As,1
) Ts

As,1
0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 1 (1− Ce,2 · Ts

As,2
) 0 0 Ts

As,2

0 0 0 0 (1− Ce,2 · Ts
As,1

) 0 0 Ts
As,2

0 Ce,1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

Bu,ex,gate =



0 −Cu,1 · Ts
As,1

0
0 −Cu,1 · Ts

As,1
0

1 0 0
0 0 −Cu,2 · Ts

As,2

0 0 −Cu,2 · Ts
As,2

0 Cu,1 0
0 0 0
0 0 0


, Bd,ex,gate =



− Ts
As,1

0
− Ts

As,1
0

0 0
0 − Ts

As,2

0 − Ts
As,1

0 0
0 0
0 0


,

uex,gate(k) =

∆QHG(k)
∆u1(k)
∆u2(k)

 , dex,gate(k) =
[
∆Qd,1
∆Qd,2

]
,

yex =
[
e1(k + 1)
e2(k + 1)

]
, Cex,gate =

[
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

]
,

where the ‘measured’ states are the water level errors. Note that the water levels are actually
measured and are subsequently subtracted from water level setpoint to get the water level
error.

Comparing gate control to flow control
For some rural irrigation canals there might not be a flow controller present at the gates, due
to the cost and trouble of maintenance. As a result, these gates are likely operated by human
operators. Therefore, it may be beneficial to control the gate opening instead of the gate flow,
due to being able to counter the disturbances more accurately by better anticipation of the
effect of the control action [42]. Moreover, for these types of gates without flow controller the
human operators will need to be instructed what gate settings to implement. Furthermore,
by including gate control in the internal model it is possible to put constraints on the gate
openings and the change of the gate openings [16].
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16 Model Predictive Control of Open Water Systems

In order to compare the difference in water level prediction between the gate-controlled and
flow-controlled internal models, a real irrigation canal is modelled: the west-main irrigation
canal located in Arizona, United States of America. The Arizona west-main canal consists
of eight canal reaches interconnected by seven undershot gates and the water is supplied by
a head gate. Furthermore, the canal has a total length of 10 km and a maximum discharge
capacity of 2.8 m3/s at the head gate. The rest of the parameters of the canal can be
found in Appendix B-2. The canal is discretised with a sampling time step of 240 seconds.
Furthermore, none of the gates (other than the head gate) are equipped with local flow
controllers. An artificial flow control signal is created and converted into gate settings for use
in the gate-controlled model, see Figure 2.6.

Figure 2.6: The control signals in terms of flow and gate opening for the Arizona west-main
canal. Note that the head gate will be flow-controlled in the gate-controlled internal model.

Next, the undershot gate equation (2.3) is linearised for each gate at the start of the simulation
to insert into the gate-controlled model. Then, the trajectories of the water level errors are
computed using open-loop simulations of the flow-controlled model, gate-controlled model,
and nonlinear gate-controlled model. Note that neither disturbances nor noise are added to
the models. The resulting water level error predictions are depicted in Figure 2.7.
The linearised gate-controlled model accurately approximates the nonlinear model for the
first half of the prediction, in the second half the water level predictions start to diverge,
see Figure 2.7. This diverging of the prediction of the linearised gate-controlled model can be
completely attributed to the accumulation of the linearisation error. The effect of water level
on the gate flow is not included in the flow-controlled model. Therefore, the flow-controlled
model wrongfully predicts that the water levels are at rest when the gates are not actuated.
The modelling of the real system will not be perfect. In order to evaluate the effect of the
model imperfections, some white Gaussian noise with a standard deviation of 0.001 m3/s
is added as external disturbance to the nonlinear model, see Figure 2.8. As a result, the
water level predictions of the linearised gate-controlled model diverge faster from that of
the nonlinear gate-controlled model than in Figure 2.7. This emphasises the importance of
accurately capturing the disturbance dynamics acting on the system and measuring frequently.
Note that for reach 8, the nonlinear prediction diverges from the linearised prediction after
just a few time steps, see Figure 2.8. This is troublesome, as there is no gate present at
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2-1 Modelling open water systems 17

Figure 2.7: The predicted water level trajectories of the flow-controlled model, linearised gate-
controlled model, and nonlinear gate-controlled model when the Arizona west-main canal is sub-
jected to the control signal from Figure 2.6.

reach 8 to directly control the water level. The only way to reduce the water level error in
the last reach is by adjusting the flow of the gate at reach 7, which will have some delay
before arriving at reach 8. Moreover, a persistent mismatch in flow and water level error is
to be expected as this is the last reach: the excess water of the upstream reaches, caused
by the linearisation errors, measurement errors, and process noise, will collect here. If this
mismatch is relatively large and forms quickly, it will likely destabilise the model predictive
controller. Therefore, if the last reach does not have a gate its water level errors are not taken
into account in the cost of the optimal control problem, for the purpose of this thesis.

Gate and flow constraints
In the next few paragraphs, we investigate the lower and upper bound on the gate opening and
gate flow that are required to stay within the physical limitations of operating the irrigation
canal, as well as the limitations of the applicability of the nonlinear flow equation (2.3).

Upper bound on the gate openings
In order to determine the upper bound on the gate opening, the effect of the water level and
the gate opening on the gate flow is examined. The second gate of the Dez main canal is
used for illustrative purposes. Accordingly, for a small set of 10 upstream water levels ranging
from no water in the reservoir to a water level above the setpoint (4.63 m), the gate opening
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18 Model Predictive Control of Open Water Systems

Figure 2.8: The predicted water level trajectories of the flow-controlled model, linearised gate-
controlled model, and nonlinear gate-controlled model when the Arizona west-main canal is sub-
jected to the control signal from Figure 2.6, along with white Gaussian noise with a standard
deviation of 0.001 m3/s on the disturbance.

is varied from fully closed to fully opened and the resulting flows are plotted in Figure 2.9.
The gate parameters can be found in Table B-3.

When opening the gate above the water level, the square root term in (2.3) can become
negative and the real part of the flow goes to zero. Therefore, it is unacceptable to allow the
controller to open the gate more than h1(k)−hcr

µg
. Furthermore, the flow decreases after opening

the gate a certain amount and to achieve each flow there are two possible gate openings. This
decrease in flow after exceeding a certain gate opening does not occur in the real setting,
as the water freely flows beneath the gate to the next reach, when the gate is lifted out of
the water. Moreover, when linearising the gate flow in the negative slope part of the curve
the controller will wrongfully assume the gate flow increases by decreasing the gate opening.
For these reasons, it is investigated at what gate opening the maximum flow occurs when
the upstream reservoir water level is constant; in order to constraint the gate opening to this
maximum.

Consider the free-flowing undershot gate equation (2.3). The goal is to find the gate opening
that corresponds to the maximum flow of the function for the water level h1(k) at time step k.
First, the gate crest level, hcr, is subtracted from the relative water level h1(k) to get the
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Figure 2.9: Flow as a function of the gate opening for the second gate of the Dez main canal
for 10 different water levels.

effective water level of the upstream reservoir:

heff(k) = h1(k)− hcr. (2.24)

The water level heff(k) is assumed a constant, that is retrieved from the last closed-loop
result or measurement. To find the maxima of (2.3), the derivative with respect to the
gate opening hg(k) needs to be calculated. This is already accomplished in the gate lineari-
sation part of Section 2-1-4. Next, inserting (2.24) into the partial derivative from (2.17) and
setting equal to zero:

cw ·Wg · µg

√
2g · (heff(k)− µg · hg(k)) =

g · cw ·Wg · µ2
g · hg(k)√

2g · (heff(k)− µg · hg(k)))
. (2.25)

Then, simplifying with the knowledge that cw, Wg, µg, g, and heff(k) are positive constants:

cw ·Wg · µg · (2g · (heff(k)− µg · hg(k))) = g · cw ·Wg · µ2
g · hg(k),

2 · (heff(k)− µg · hg(k)) = µg · hg(k),

hg(k) = 2
3
· heff(k)

µg
.

(2.26)

Now, a second derivative test is needed in order to verify that the points on the line from (2.26)
are maxima. The second derivative of (2.3) is:

∂2Q

∂2hg
= −
√

2
4
·

Wg · cw · g2 · µ2
g · (4heff(k)− 3hg(k) · µg)

(g · (heff(k)− hg(k) · µg))
3
2

. (2.27)

Finally, inserting (2.26) into (2.27):

∂2Q

∂2hg

(
∂Q

∂hg
= 0

)
= −3 ·

√
3√

2
·

Wg · cw · g2 · µ2
g · heff(k)

(g · heff(k))
3
2

. (2.28)
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The second partial derivative from (2.28) is always negative, since a fraction of polynomials
with positive constants is multiplied with a negative constant. Therefore, all the points on
the line from (2.26) are maxima of (2.3), when the water level is assumed a positive constant.

Knowing the second partial derivative is always negative, it can be concluded that the con-
straint on the maximum height of each individual gate depends on the upstream reservoir
water level, the gate crest level, the contraction coefficient, and maximum opening height of
the gate as follows:

hg,max,constraint(k) = min(2
3
· h1(k)− hcr

µg
, hg,max), (2.29)

where hg,max is defined as the physical limitation on the gate opening. These constraints
on the gate opening can be converted to flow constraints for use in flow-controlled MPC by
converting (2.29) to flow using (2.3).

Note that as there may be some discrepancy between the water levels the internal model
predicts and actual water levels, the upper bound should be lowered to be conservative.
Furthermore, the linearisation of the flow curve is a poor approximation when linearising
around the maximum flow region of the curve.

As the constraint in (2.29) depends on the water level in the upstream reservoir of the gate,
it is time-variant. If it is undesirable to include time-variant constraints, due to limitations
on computational resources, it is also possible to set a time-invariant maximum gate opening
constraint for the whole prediction based on information obtained from the last closed-loop
result or measurement. Another option is to use the previous open-loop trajectory to create
a prediction of the time-variant constraints and then extrapolate the last known value of the
predicted constraints until the prediction horizon [35].

Lower bound on gate flow
When a gate is completely closed, the gate flow is zero, see Figure 2.9. However, if the water
level becomes higher than the crest of the weirs besides the gate, see Figure 2.10, then the
weirs plus the gate act as an overshot gate and there is some overshot flow.

Figure 2.10: Front view of an undershot gate and the surrounding weirs in an irrigation canal.

For flow-controlled MPC to account for this, a minimum gate flow constraint can be added.
However, in the case of gate-controlled MPC this is not possible, as the input is in terms of
change of gate opening. A possible solution is to add an extra gate overflow variable to the
description of each reach with a gate, and to set this variable equal to the amount of expected
water overflow or to add the expected overflow to the scheduled disturbance of the downstream
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reach. Another solution is to set the minimum gate opening such that it matches the expected
overflow. However, that comes with an important issue, as the linearised gate equations are
dependent on the upstream water level, which will change gate flow over the prediction as
the upstream water level changes. For the scope of this thesis, the overflow constraint of the
gates are not included as the irrigation canals will not run close to maximum flow capacity
in the experiments.

Upper bound on change in gate opening
The flow through a gate depends non-linearly on the gate opening and the water level, see (2.3)
and Figure 2.9. Before changing gates’ settings, the water level is first measured by the op-
erator. Therefore, the linearisation error of the expected gate flow caused by the discrepancy
between expected water level and actual water level of the upstream reservoir can be ne-
glected. However, if the gate opening is changed by a significant amount the linearisation
will be a poor approximation of the resulting gate flow. This becomes apparent when plot-
ting the nonlinear flow as a function of the gate opening alongside the linear approximation,
see Figure 2.11.

Figure 2.11: In the left subplot, the nonlinear flow and linearised flow as a function of the change
in gate opening are plotted when the water level is at the setpoint and the gate is linearised around
the opening of 0.5m. In the right subplot, the corresponding flow error as a function of the change
in gate opening is plotted. Both of these plots involve the third gate of the Arizona west-main
canal.

The approximation error of the flow will cause an offset on the expected water level error of
the gate the operator is visiting and the flow towards the next gate. To limit these errors,
the change in gate opening needs to be restricted. A possible method for restricting the
change in gate opening is to find the maximum change in gate opening (in both closing,
∆uclose,constraint, and opening directions, ∆uopen,constraint) for each gate that respect some
predefined linearisation error boundary. For example, when setting the maximum flow error
to 20% the resulting maximum change in opening can be found by drawing a horizontal line at
height 20% flow error and finding the intersections with the flow error curve, see Figure 2.12.
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Figure 2.12: For the third gate of the Arizona west-main irrigation canal the lower and upper
bound of the change in gate opening that still respect the 20% flow error tolerance are, respectively,
∆uclose,constraint = −0.2888 m and ∆uopen,constraint = 0.4255 m.

In Figure 2.12, ∆uclose,constraint and ∆uopen,constraint are found by solving:

ϵflow = Cu ·∆uconstraint + Q0 −Qnonlinear
Qnonlinear

, (2.30)

s.t. ∆uconstraint ≥ −hg(k), (2.31)
∆uconstraint ≤ hg,max,constraint − hg(k), (2.32)

where

Q0 = cw ·Wg · µg · hg(k)
√

2g · (h1(k)− (hcr + µg · hg(k))), (2.33)

Qnonlinear = cw ·Wg · µg · hg,∆u(k)
√

2g · (h1(k)− (hcr + µg · hg,∆u(k))), (2.34)

hg,∆u(k) = hg(k) + ∆uconstraint, (2.35)

where ϵflow > 0 is the flow error tolerance (%) and Q0 represents the flow of the gate without
actuation. Furthermore, solving (2.30)–(2.32) for ∆uconstraint will return two unique solutions:
a negative and a positive one. The negative and positive solutions correspond, respectively, to
the variables ∆uclose,constraint and ∆uopening,constraint. Note that (2.30)–(2.32) will always have
two unique solutions, as the horizontal ϵflow line intersects twice with the flow error parabola
when ϵflow > 0.

Next, the change in gate opening of each gate can be limited to the calculated lower and
upper bound for the entire prediction window. Moreover, these bounds can be recalculated
before every MPC iteration using the predicted or measured states of the current time step.
Note that if a gate is actuated more than once in the prediction, the total change in gate
opening of a gate might exceed the allowable linearisation error ϵflow. Nonetheless, as the
gate equation is linearised with every measurement and the model predictive controller only
implements the first control time step of every MPC iteration, the effect on the performance
will likely not be significant. However, if the occurrence of this linearisation error does have
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a significant negative effect on the system performance, a possible solution is to constrain the
sum of changes in gate opening for each gate over the duration of the prediction window. The
investigation of this effect on the performance of the system is not part of the scope of this
thesis.

2-2 Mobile MPC

In [20, 37], a novel human-in-the-loop method, MoMPC, is proposed; named after the mobility
of the human operator in the control setting. The authors aim to find a middle ground between
state-of-the-art control methods and human operations. The control system requires regular
actions from the human operator. The human operator has no decision in these actions:
the control system relies on the operator to implement the control actions and to perform
measurements. It is assumed that there are only a few human operators available relative
to the number of subsystems, which implies that both the sensing and actuating processes
have a sparse nature. This will result in reduced performance compared to fully automatic
methods. Controlling the system without the benefits of automated sensors and actuators
that provide regular information and control actions is an interesting challenge for the new
human-involved controller design.

2-2-1 Mobile MPC for irrigation canals

In MoMPC, an operator is employed to travel a sequence of gates to take measurements and
to implement control actions. When an operator arrives at a location, the operator measures
the water level and communicates this to the central controller using a mobile device, which
triggers the central controller. The central controller then uses this measurement to update
the corresponding states of the internal model and computes an optimal schedule of gates
to visit and corresponding control actions to implement and communicates this back to the
mobile device of the operator. In Figure 2.13, the control configuration is depicted.

2-2-1-1 Configuration of Mobile MPC

In a standard centralised model predictive controller, the manipulated variables are optimised
until the control horizon, Nc, to form an optimal control signal. For example, an irrigation
system with three gates with, respectively, the control actions u1(k), u2(k), and u3(k) has the
optimal control signal:

u∗(k : k + Nc) = (u∗
1(k), u∗

2(k), u∗
3(k), u∗

1(k + 1), u∗
2(k + 1), u∗

3(k + 1),
. . . , u∗

1(k + Nc), u∗
2(k + Nc), u∗

3(k + Nc))T .
(2.36)

In MoMPC, the operator travels along some optimal route and only when an operator is
present at a gate and actuating, the corresponding control input of that gate in the control
sequence is non-zero. For example, if there is only one operator, the travel time between each
gate is one time step, and the optimal route turns out to be 3 → 2 → 1, then the output of
MoMPC would be:

u∗(k : k + Nc) = (0, 0, u∗
3(k), 0, 0, 0,︸ ︷︷ ︸

travel time

0, u∗
2(k + 2), 0, 0, 0, 0,︸ ︷︷ ︸

travel time

u∗
1(k + 4), 0, 0)T . (2.37)
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Figure 2.13: Configuration of MoMPC for an irrigation canal

Hence, the non-zero elements of the control sequence determine both the route the operator
must follow and the actions to implement along the route. The times at which an operator
can be present at the gates are constrained by the fact that the operator can only be at one
location at a time, has some travel time between each pair of locations, and requires some
time to implement a control action. As a result, the control sequence has a lot less variables
to be optimised compared to conventional MPC. On the other hand, the computational
burden grows, because many different routes have to be explored and their corresponding
control sequences have to be optimised to evaluate the system performance associated with the
routes considered. Note that this, similar to travelling salesman problems, is a combinatorial
problem. As a result, the search space grows much faster than that of conventional MPC as
an optimal routing problem is introduced into the optimisation problem.

2-2-2 Optimisation problem formulation

The irrigation canal consists of N reaches and of the same number of gates, and can be
described by a linear discrete-time model:

x(k + 1) = Ax(k) + Buu(k) + Bdd(k), (2.38)

where x(k) represents the state, u(k) represents the control input, d(k) represents the external
disturbance input, and A, Bu and Bd are matrices of appropriate dimensions. The state
vector x(k) contains information about the water level in each reach relative to the respective
setpoints at step k and the incoming flows as a result of the control inputs.

Let Np be the prediction horizon, where Nc ≤ Np and let Ns be the number of gates to be
scheduled for the operator at step k starting at the current location icurrent(k) ∈ {1, . . . , N}.
Furthermore, a matrix M ∈ NN×N is defined for the travel time between each location, such
that Mi,i = 0 and Mi,j denotes the travel time between gate i and gate j. Moreover, the
time needed at each gate to implement all the activities is To, which is assumed identical for
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all gates. The human operator interactions with the system are modelled as delayed control
actions in the optimisation problem. According to the authors of [37], this is a simplification
that is justified by the system’s slow and stable dynamics, which mitigates the uncertainty
regarding the precise implementation moment of the control action.

The optimal control problem in MoMPC consists of solving the following the mixed-integer
programming problem at each control time step [20, 28, 37]:

min
Ũ,p(k)

Np−1∑
j=0

(xT (k + j + 1|k)Qx(k + j + 1|k) (2.39)

+ uT (k + j|k)Ru(k + j|k)), (2.40)
s.t. x(k + j + 1|k) ∈ X , for j = 0, . . . , Np − 1, (2.41)

u(k + j|k) ∈ U , for j = 0, . . . , Np − 1, (2.42)
p(k) ∈ Picurrent(k),Ns,To,M (k), (2.43)
a(p(k), k + j|k) ̸= i⇒ ui(k + j|k) = 0, i ∈ {2, . . . , N},

for j = 0, . . . , Np − 1,

(2.44)

x(k + j + 1|k) = Ax(k + j|k) + Buu(k + j|k) + Bdd(k + j|k),
for j = 0, . . . , Np − 1,

(2.45)

where Q is a positive semi-definite weighing matrix and R is a positive definite weighing
matrix, Ũ(k) = (uT (k|k), . . . , uT (k + Np − 1|k))T is the input sequence, with u(k + j|k) =
(u1(k + j|k), . . . , uN (k + j|k))T . The sets X and U are the sets of closed convex operational
constraints on the states and input, respectively. Furthermore, p(k) ∈ NNs denotes the
optimised path at time step k, which is a subset of all paths of length Ns starting from
icurrent, which is the first element of p(k). Moreover, Picurrent(k),Ns,To,M (k) denotes a set of
allowed paths of length Ns that have icurrent as origin, given the duration To and the travel
times M with repetitions allowed. It is important to note that the path variable is defined
in such a way that when the has operator finished the work in one location, he/she is sent to
the next location without delay. In addition, a(p(k), k + j|k), denotes the availability of the
operator at time step k + j when travelling a path p(k). The availability function returns 0
if the operator is available at prediction step k + j, otherwise it returns the location of the
operator. Using the availability function, the input sequence Ũ is determined: the operator
not being available at gate i at step k + j, results in ui(k + j|k) = 0. Otherwise, the input
only has to satisfy the constraints set in (2.42).

2-2-3 Results

The algorithm is tested on a model of the Dez main irrigation canal in Iran. Information
about this irrigation canal can be found in Appendix B-1. In the test case, some noise is
added to the water level measurements, gate positions, and offtake schedule. Furthermore,
the water level measurements of the operators are the only source of information the central
controller has to update the internal model states.

The head gate flow is controlled using standard MPC with a control time step Tc. Thus, the
head gate flow is coordinated with the solution of MoMPC when an operator appears at a
local site at an integer multiple of the control time step Tc.

Master of Science Thesis R.C. Kassing



26 Model Predictive Control of Open Water Systems

The internal model used is the flow-controlled model from Section 2-1-4. Furthermore, when
the operators implement a flow change at the scheduled gates it is assumed that a local flow
controller is present to keep the flow of the gates at this new reference, until updated by
another visit of an operator.

To solve the mixed-integer problem from (2.39)–(2.45), an exhaustive search approach is
performed. The non-zero indices of the control signal are determined by the path that the
operator takes and the times when he/she arrives. By fixing the path the mixed-integer
problem from (2.39)–(2.45) is transformed into a Quadratic Programming (QP) problem.
Next, by looping through all the possible paths an operator can take and calculating the
associated minimum cost of these paths, the global optimum to (2.39)–(2.45) can be found.
However, as the number of possible paths scales with the power Ns, the number of paths and
associated QP problems renders using exhaustive search intractable for large-scale systems
with multiple operators and larger values of Ns.

The proposed MoMPC scheme performs better than the uncoordinated local PI controllers,
but slightly worse than the nominal centralised MPC, which could be regarded an upper
bound on performance [37].

2-3 Mobile TIO-MPC

One of the weaknesses of MoMPC presented in Section 2-2 is that the water levels are not
maintained around the setpoint during the implementation of a control action, which can
result in less effective water offtake flows to the users. There are two limitations that cause
this problem:

1. The open water system is discretised, so the evolution of the system states is only
predicted for whole sampling steps and control actions take place at integer multiples
of the control time step. Therefore, the controller has no knowledge on what happens
in between sampling steps. This can be detrimental to the system performance, as
the flow delays that are assumed in the ID model will likely not match those of the
real open water system. Consequently, the water level deviates temporarily from the
setpoint, until the operator adjusts the gate. For a more in detail explanation about
this disadvantage, we refer to [28].

2. The second limitation arises from the restrictions on the controller on deciding when
the gate should be opened, as the operator travel times are fixed. Accordingly, the only
way for the controller to delay actuation at a certain gate is by sending the operator to
visit other gates first. Therefore, the capabilities of the controller to synchronise with
system dynamics are inadequate.

The first limitation can be reduced by making the sampling and control time steps smaller.
However, the controller is then still not able to consistently synchronise with the arrival of
the water flow, due to the fixed travel times. This gives motivation to develop an improved
algorithm, where the precise time instants of the operator’s action are determined by the
controller and coordinated with the system’s dynamics. In [28], some aspects of Time Instant
Optimisation Model Predictive Control (TIO-MPC) are added to the MoMPC approach,
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which is called Time Instant Optimisation Mobile Model Predictive Control (TIO-MoMPC).
The TIO-MPC approach was first proposed in traffic control [8], and was later applied to
water systems [9, 34]. In TIO-MPC, the allowed number of switches of a discrete element,
e.g., a pump or a gate, over the entire control window is set a priori. Instead of having the
controller decide whether to switch the pump off/on for each time step, the continuous-time
instants of the pre-determined switching are optimised. Therefore, the number of optimisation
variables can be reduced significantly, provided the number of switching instants is low.
However, this is not of much use to MoMPC as the number of switching instants is already
determined through the path (actuation can only take place if an operator is at a gate).
Moreover, the gates are not similar to on/off switching pumps; the gate flow is increased
by opening a gate a certain real-valued amount. The aspect of TIO-MPC that is useful
for MoMPC is the introduction of time instants. These time instants determine when the
operator should measure or actuate at a certain gate, bounded by the minimal travel times
and implementation times. In MoMPC [20, 37], these time instants are fixed to the minimal
time required for travelling and implementation of the control actions. By optimising the
delays on measurements and actuations, through the time instants, the system performance
can be improved, as the actuation actions can be synchronised with the system dynamics. For
this to happen, a continuous-time modelling approach is needed to define the (actuation) time
instants as real-valued. In [28], the details of how this would be achieved are not discussed
and in the case study the algorithm is discretised. In addition to including time delays, the
authors from [28] include a penalty on the number of location changes on a specific path that
the operator needs to take, in order to minimise the workload of the human operator.

2-3-1 Optimisation problem formulation

Using so called continuous sampled-data MPC [15, 21, 31] a continuous-time model of the
system is used, but measurements are taken from the system and new control actions are
applied at consecutive integer multiples of the control time step Tc only (control and sampling
time steps are equal for MoMPC), see Figure 2.14. The operator measures and actuates the
system at integer multiples of the control time step. After taking a measurement at the
continuous activation time ta, the operator communicates the measured state to the model
predictive controller using a mobile device. Next, the model predictive controller predicts the
future states of the system using a continuous-time model, the measurements, and an offtake
schedule. These predictions are used to find the optimal operator schedule that optimises the
state of the system, while taking into account the constraints. Once the optimal schedule is
found, the time instants for the operator to interact with the system are rounded to integer
multiples of the control time step. This is depicted as a C2D (continuous-time to discrete-time)
box in Figure 2.14. Finally, the schedule is communicated to the operator and the operator
implements the first scheduled control action on the system, travels to the next location, and
measures the system states at that next location; in order to close the control loop. By using
a continuous-time model, a more accurate prediction of the effect of actuation can be made
and real-valued optimisation variables can be used.

The continuous-time model of a canal is described by:

ẋc(ta) = Acxc(ta) + Bc,uuc(ta) + Bc,ddc(ta), (2.46)
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Figure 2.14: Schematic illustrating the control scheme used in continuous sampled-data MPC.

where a subscript ‘c’ is added to the variables of the continuous-time model to distinguish
them from the discrete-time model presented in (2.38). Moreover, ta indicates the continuous
activation time at which the operator communicates a measurement of the central controller.
Note that the delay between measuring and subsequent communication to the central is
assumed negligible.

Equivalently to the discrete case, the control input is written as a collection of N elements:

uc(ta) = (uc,1(ta), . . . , uc,N (ta))T , (2.47)

for N reaches with each one gate in the irrigation canal. Furthermore, the path variable is
defined as:

p(ta) = (p1(ta), . . . , pNs(ta))T , pℓ(ta) ∈ {1, . . . , N}, (2.48)

which specifies the sequence of gate indices the operator needs to travel starting from the
origin gate p1(ta) = icurrent. Note that the indices of path variable p(ta) are allowed to
be repeated, as it can be worthwhile to visit certain locations multiple times. To reduce to
computational burden, the search space is reduced by limiting the maximum distance between
consecutive locations:

|pℓ+1(ta)− pℓ(ta)| ≤ Nlimit, for ℓ = 1, . . . , Ns − 1. (2.49)

The time instants when the operator should arrive at the Ns gates to apply the new gate
settings are denoted by:

T(ta) = (T1(ta), . . . , TNs(ta))T , Tℓ(ta) ∈ R, (2.50)

where T1(ta) = ta is fixed, due to the first element of the path always being p1(ta) = icurrent.
Furthermore, the control actions to be implemented by the human operator are denoted:

uoperator(ta) = (uoperator
1 (ta), . . . , uoperator

Ns
(ta))T , uoperator

ℓ (ta) ∈ R, (2.51)
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where uoperator
1 (ta) specifies the actions to be applied at gate icurrent, which are to be de-

termined by the controller at activation time ta. Next, let Nc be the control horizon,
with Nc < Np. The entries of T(ta) and the corresponding entries of uoperator(ta) that
are outside of the control window [ta, ta + NcTc] are not considered for the control signal.
This allows the controller to schedule fewer switching instants than Ns within the prediction.

The path, time instants, and operator actions are used to parameterize the control in-
put Ũc(ta), which denotes the trajectories of the control input uc(ta) for the whole control
window τ ∈ [ta, ta + NcTc]:

uc,i(τ |ta) =
{

uoperator
ℓ (ta)δ(τ − (Tℓ(ta) + Td)) if i = pℓ(ta),

0 otherwise,
(2.52)

where δ denotes the Dirac impulse function, Td ∈ R the time delay between time of measure-
ment and implementation of the control action, and τ ∈ [ta, ta + NcTC] a time instant in the
control window.

Using the path variable p(ta), the number of location changes that are scheduled for the
operator in the control window can be determined. The number of location changes is min-
imised as it is a metric for the amount of workload the operator faces on a predicted path.
Let nNc(ta) denote the number of gates the operator has to visit in the control window. The
number of gates the operators has to visit can be determined by solving a constrained integer
programming problem:

nNc(ta) = arg max
ℓ

ℓ, (2.53)

s.t. Tℓ ≤ ta + NcTc, (2.54)
2 ≤ ℓ ≤ Ns, where ℓ ∈ N. (2.55)

To ensure a minimal state update frequency, it is assumed that nNc(ta) ≥ 2. Consequently,
the additional workload penalty Joperator(ta) is denoted as:

Joperator(ta) =
nNc −1∑

s=1
1ps+1(ta )̸=ps(ta), (2.56)

and serves to minimise the number of location change for the operator. The indicator func-
tion, 1A, is defined as:

1A =
{

1 if A is true,

0 otherwise.
(2.57)

Moreover, the cost function is reformulated for the continuous-time setting:

JMoMPC(ta) =
∫ ta+NpTc

t
(xT

c (τ |ta)Qxc(τ |ta) + uT
c (τ |ta)Ruc(τ |ta))dτ. (2.58)

The optimal control problem that is to be solved at each new location visit of the operator is
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then:

min
p(ta),T(ta),uoperator(ta)

JMoMPC(ta) + wJoperator, (2.59)

s.t. xc(τ |ta) ∈ X , ∀τ ∈ [ta, ta + NpTc], (2.60)
uc(τ |ta) ∈ U , ∀τ ∈ [ta, ta + NpTc], (2.61)
ẋc(ta) = Acxc(τ |ta) + Bc,uuc(τ |ta) + Bc,ddc(τ |ta), ∀τ ∈ [ta, ta + NpTc], (2.62)
Tℓ+1(ta) ≥ Tℓ(ta) + To + Td + Mpℓ(ta),pℓ+1(ta), for ℓ = 1, . . . , Ns − 1, (2.63)
T1(ta) = ta, p1(ta) = icurrent(ta), (2.64)
T2(ta) ≤ ta + NcTc, (2.65)
|pℓ+1(ta)− pℓ(ta)| ≤ Nlimit, for ℓ = 1, . . . , Ns − 1, (2.66)

uc,i(τ |ta) =
{

uoperator
ℓ (ta)δ(τ − (Tℓ(ta) + Td)) if i = pℓ(ta),

0 otherwise,
(2.67)

where w is positive parameter that indicates the relative importance of the workload of the
operator against the system performance JMoMPC. At every new location the operator visits,
he/she communicates the new measurements to the control centre, where they are used by
the controller to solve the optimisation problem (2.59)–(2.67). The controller returns the
control action uoperator

1 (ta), that needs to be implemented at the current location icurrent at
time ta + Td and provides the operator with the next location to travel to and the time T2(ta)
at which the operator is expected to measure at that next location.

2-3-2 Results

The TIO-MoMPC method is evaluated on the same irrigation canal as the MoMPC method
from Section 2-2-3: the Dez main canal in Iran. However, no noise is added to the system
and perfect estimates of the states are assumed to be available at every time step.

The head gate is controlled by standard MPC with control time step Tc and the head
gate flow is coordinated with the solution to the TIO-MoMPC problem. Moreover, the
continuous sampled-data model (2.59)–(2.67) is approximated by the discrete-time, flow-
controlled model from Section 2-1-4, with a control time step of Tc = 5 minutes. Furthermore,
it is assumed that a local flow controller is present at each gate to maintain the gate flow at
the reference value set by the operator.

To solve the mixed-integer nonlinear programming problem (2.59)–(2.67) a Genetic Algorithm
(GA) is used to search through the possible paths and time instants. For TIO-MoMPC,
exhaustive search is intractable as the number of possible routes is very big, due to the
introduction of time instants to the optimisation problem.

The TIO-MoMPC method outperforms the MoMPC method due to the added degree of
freedom of delaying actuation to synchronise with the system dynamics [28]. Moreover, the
workload of the operator is decreased by penalising the number of location changes along the
path of the operator.
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2-4 Conclusions on Model Predictive Control of Open Water Sys-
tems

In the first half of this chapter, the subsystems of open water systems that are part of the
closed-loop or affect the water system at its outer limits have been discussed. The subsystems
have been formalised in mathematical models that are interconnected to be used as internal
models in MPC. Two types of models have been presented and compared: gate-controlled
and flow-controlled ID models. The flow-controlled model is only representative for the water
system, if local flow controllers are available to keep the flow constant in between actuation
instants of the human operator. On the other hand, the gate-controlled model approximates
the nonlinear behaviour of a water system without local flow controllers accurately.

Another important conclusion is that the linear ID model is only representative for a certain
type of open water system, namely those not sensitive to resonance waves, i.e., irrigation
canals with long and steep reaches. Moreover, the accuracy of the ID model depends on
the deviation from the working point; if the flow conditions of the canal change, the internal
model parameters, such as the storage area and delay times, may have a mismatch with the
real system.

The human scheduling approach discussed in Section 2-2 is a potential solution to the irri-
gation problems that developing countries face. The approach is able to schedule multiple
operators to maintain optimal water levels, while both sensing and actuating are sparse. Thus,
no equipment needs to be installed and maintained at the local sites, instead the operator uses
a mobile device. Then, in [28] a continuous-time model is used to more accurately predict the
effect of inputs on the evolution of the water system. Moreover, an extra degree of freedom
is added to MoMPC: the controller can decide at what time the operator should update the
gate settings at a specific location. This allows the controller to schedule the implementation
instants of flow changes such that the arrival of water flow is better synchronised with the
water level dynamics of the canal. As a result, the system performance is improved.

In [28, 37], a mathematical model of the Dez main canal in Iran is used to test the control
algorithms. This irrigation canal has a linear layout, is resistant to resonance waves (long
and steep reaches), and all of its parameters, such as reach dimensions and control structure
characteristics, are available, see Section B-1. Therefore, this irrigation canal will also be
used in the case study of this master thesis.
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Chapter 3

Multiple-Action Mobile Model
Predictive Control

This chapter presents a new control algorithm for open water systems with mobile oper-
ators, called Multiple-Action Mobile Model Predictive Control (MaMoMPC). Similarly to
the previous work from literature presented in Chapter 2, operators interact with the cen-
tral controller by sending measurements and receiving instructions on where to go to next
to measure and implement control actions. The central controller optimises the state of the
system based on the latest information provided by the operators, while taking into account
the constraints. However, in MaMoMPC the operator can perform multiple activities at each
node and the algorithm allows for more activities than just measuring and actuating. Fur-
thermore, cyclic control is included in the optimal control problem to improve the reference
tracking performance of the algorithm. Moreover, it is attempted to account for the limi-
tations caused by the sparse nature of the measuring process by providing incentives to the
controller to measure frequently at all locations in the system. To that end, three methods
are presented to weigh the state uncertainty at each node in the system. Next, an energy
level approach is proposed that keeps track of the fatigue of each operator to ensure the
operators get adequate breaks. Finally, the complete optimisation problem is presented and
a conclusion is presented about the new MaMoMPC algorithm.

3-1 Network of an open water system

Consider an arbitrary, uncertain, and large-scale open water system that has multiple opera-
tors that travel between locations in the system to take measurements and implement control
actions. The system can be described by a graph G = (V, E). Here, V is the set of nodes that
can be used to operate and measure the system locally and E is the set of edges of the graph
that can be used by the operators to travel between nodes vi and vj , if there is a direct link,
such that (vi, vj) ∈ E . Furthermore, there are three sets to which each node can belong:

1. Vmeas, the set of nodes where measurements can be taken,
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2. Vcontrol, the set of nodes where control actions can be implemented,

3. and Vcharge, the set of nodes where the human operators can take a break.

Note that the sets are not necessarily disjoint, so each node can belong to multiple sets. This
allows the controller to decide on which types of tasks the operator needs to perform at the
local site.

Remark. The problem of controlling a networked system by operators travelling between the
nodes has similarities to a multiple travelling salesman problem. However, in our case not all
of the nodes need to be visited, nodes can be visited multiple times, and the operators do not
have to return to the origin nodes.

The model of the open water system consisting of Nnode nodes can be described by a continuous-
time state space description:

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) + w(t), (3.1)
y(t) = H(t)x(t) + v(t), (3.2)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm denotes the input, d(t) ∈ Rr denotes the (pre-
dicted or known) exogenous input, w(t) ∈ Rn denotes the unknown process noise, y(t) ∈ Rp(t)

denotes the measured output, and v(t) ∈ Rp(t) is the unknown measurements noise. Further-
more, A, Bu, Bd, and H(t) are system matrices of suitable dimensions. Note that H(t) is
time-varying in the number of rows and the number of entries as the number of measurements
depends on the number of operators sending measurements to the controller at that time.

3-2 Control algorithm

In the Mobile Model Predictive Control (MoMPC) implementation from [20, 37], the arrival
and actuation time instants follow directly from the fixed travelling times between any two
locations. As an improvement, [28] suggested using a time instant approach, inspired by
Time Instant Optimisation Model Predictive Control (TIO-MPC), to synchronise the human
operator’s actions with the system’s dynamics by allowing the controller to optimise the
delays of the actuation instants in the operator schedules. Therefore, introducing TIO-MPC
to MoMPC will increase the computational burden, as two extra optimisation variables are
added for each gate visit (a measuring and an actuation time instant). Moreover, this should
result in improved performance, as the time delays that follow from the time instants can
be set to zero to obtain the minimal travelling time approach from [20, 37]. Note that it is
assumed that there is no delay between taking measurements, sending them to the controller,
and receiving back instruction from the controller.

To define the time instants from (3.7) as real-valued variables a continuous-time model is
used. Similarly to [28], so called sampled-data Model Predictive Control (MPC) [15, 21, 31]
is adopted, in which a continuous-time model of the system is used, but measurements are
taken from the system and new control actions are applied at consecutive sampling times
only. The control schematic and elaboration of this approach can, respectively, be found
in Figure 2.14 and Section 2-3-1. Furthermore, the details of how this continuous sampled-
data MPC would work in practice are not part of this thesis. Accordingly, for the case study
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the continuous sampled-data model is approximated by the gate-controlled version of the
discrete-time models presented in Section 2-1-4.

In the next subsections, a new control algorithm is presented that expands on the Time Instant
Optimisation Mobile Model Predictive Control (TIO-MoMPC) approach from [28]. This new
mobile MPC approach is called MaMoMPC, where for brevity ‘Time Instant Optimisation’ is
omitted from the name. The control algorithm distinguishes itself from [20, 28, 37] by allowing
the controller to schedule more than one action at a node, by including cyclic control, and by
incorporating breaks for the human operators. Furthermore, three methods are proposed to
weigh and reduce the uncertainty about the system’s state in MaMoMPC. In a similar way to
the approaches presented in Chapter 2, the head gate is controlled using conventional MPC
with control time step Tc. Therefore, the head gate flow is coordinated with the solution to
the MaMoMPC problem.

3-2-1 Operator’s schedule

Consider a network with Nop ≥ 1 operators indexed by j ∈ O = {1, . . . , Nop}. Assume that
at the continuous activation time ta some operators take the measurements from their present
location and communicate them to the controller. The controller receives the measurements,
updates the corresponding internal model states, and calculates some optimal schedule and
control actions for each operator, which are communicated back to the operators’ mobile
devices (only to the operators that just measured). Furthermore, also at time ta, the operators
that are not measuring at a location may be involved in some type of activity. An operator
status function for each operator j is defined as:

stj(ta) =
{

1 if operator j is travelling at time ta,

0 otherwise.
(3.3)

It is not possible to communicate with operator that are travelling, so the next scheduled
location of their route is fixed. The operators that are completing activities at a location
are allowed Tfinish time units to finish the activities before travelling to the next gate. The
schedule that is received after measuring can be completely different from the one received
previously.

Next, the path variable pj(ta) for operator j is defined, which contains Ns consecutive indices
of nodes to be visited by the operator:

pj(ta) = (p1,j(ta), . . . , pNs,j(ta)), where pℓ,j(ta) ∈ V. (3.4)

The first node in the path is the current operator position p1,j(ta) = vcurrent if stj(ta) = 0.
Otherwise, if the operator is travelling, stj(ta) = 1, the first node in the path is the node the
operator is travelling to: p1,j(ta) = p2,j(ta,prev), where ta,prev indicates the preceding activation
time of the controller. The elements pℓ,j(ta) of the path variable pj(ta) may appear more than
once in the sequence, as it may be beneficial for an operator j to inspect and/or actuate a
subset of possible locations multiple times. Moreover, for the controller to schedule multiple
activities for one node it is allowed to visit the same node more than once in succession.
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Along with the path an activity schedule is provided to the operator, containing the activities
to complete for each location:

aj(ta) = (a1,j(ta), . . . , aNs,j(ta)), where aℓ,j(ta) ∈ A,

A = {act1, act2, act3},
(3.5)

where

act1 : measure at location,

act2 : operate at location,

act3 : recharge at location.

(3.6)

Depending on the system, any other types of activities can be added to the set of activities A.
Furthermore, the types of activities that can be performed at each scheduled location depend
on the subsets of V the corresponding nodes belongs to. Moreover, the amount of time it
takes to perform the measuring, subsequent communication to the central controller, and
receiving of the control action (if included in the activities for that node) is assumed to be
negligible. The other two activities, implementing a received control action and recharging,
take a certain amount of time to complete. The duration to implement a control action is
assumed to be constant and is denoted by Tcontrol and is predefined. On the other hand, the
duration the operator spends recharging T recharge

j (ta), i.e., having a break, can be dynamic
and depends on his/her energy level and recharging speed, see Section 3-2-5. Note that
for our case, humans are considered and break times are often predefined. However, this
energy recharging is introduced as a general description that can also be used to schedule the
recharging of the (electric) vehicles the operators drive in to travel around the open water
system.

In this thesis, we assume that at every location visited the operator will first measure (if
possible at that location), in order to keep the central controller updated with an accurate
prediction of the system. However, the number of control actions to implement depends on
the activity schedule from (3.5). Therefore, the path and activity schedule are first determined
and subsequently the time instants at which the measuring, actuation, and recharging should
take place. This nested approach will be elaborated on in Section 4-1-4.

The vector of Ns time instants at which operator j should commence the activities at the
consecutive locations of the path pj(ta) is defined as:

Tact
j (ta) = (T act

1,j (ta), . . . , T act
Ns,j(ta)), T act

ℓ,j (ta) ∈ R. (3.7)

Similarly to the first element of the vector pj(ta), if stj(ta) = 0, the first element of the
vector Tact

j (ta) is fixed to the current time: T act
1,j (ta) = ta. Furthermore, if stj(ta) = 1

(operator travelling), the first element of the vector Tact
j (ta) is set to the arrival time of

the operator at the gate it is travelling to. Note that this time cannot be changed, as no
communication is possible with travelling operators.

The Nj,control(ta) control actions to implement (how much to open the gate) are dependent
on operator j’s activity schedule. Moreover, the vector of Nj,control(ta) control actions to be
executed by operator j at the prescribed locations at times T act

ℓ,j (ta), where aℓ,j(ta) = act2 are
denoted by:

uop
j (ta) = (uop

1,j(ta), . . . , uop
Nj,control(ta),j(ta)), where uop

ℓ,j(ta) ∈ R. (3.8)
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The control action to apply at the current position and all the other locations in the path
vector are computed given the most up-to-date measurements provided by the operators.

There is a fixed distance between any pair of nodes vi and vj . For sake of simplicity, the
operators are assumed to travel with a constant speed over the whole open water system.
From the knowledge of the constant speed between each node of the network, the travel time
between each pair of nodes is assumed fixed and can be calculated. This travel time between
pair of nodes (vi, vj) is denoted by Ttravel(vi, vj).

The number of possible paths, activities, and control actions grows exponentially fast with Ns;
in order to limit the computational burden, it is common in MPC to only evaluate the control
variables until a predefined control horizon. After this control horizon the evolution of the
system is still evaluated and included in the objective function. To avoid confusion with the
standard terminology of MPC, the control horizon Nc is split into two definitions: variable
control horizon and fixed control horizon. The variable control horizon, Nc,schedule ≤ Np,
indicates the length of the control time window in which the controller can freely schedule
the operator to visit a maximum of Ns gates to perform activities, see Figure 3.1b. This
means that any entries of Tact

j (ta) that surpass the variable control horizon will be ignored in
the optimisation problem, along with the corresponding entries in pj(ta), aj(ta), and uop

j (ta).
The fixed control horizon indicates the length of the time window, starting at the current time
instant until when the control sequence can have non-zero elements, which is set equal to the
prediction horizon Np for MaMoMPC. In [20, 28, 37], the gate settings were not changed
during the fixed control window. However, in MaMoMPC the non-zero control sequence
elements during the fixed control window are determined by cyclic control, see Section 3-2-3.
Note that the evolution of the system states, e.g., water level errors, is predicted until the
prediction horizon, see Figure 3.1a.

Using the variables pj(ta), aj(ta), Tact
j (ta), and uop

j (ta), for all j ∈ O the control signal Ũ(ta)
is constructed. This Ũ(ta) denotes the trajectories of the control input u(t) for the whole
duration [ta, ta + NpTc] of the control window. As the controller can only freely schedule
the gates to be visited and actuated within the variable control window, the non-zero part
of Ũ(ta) during τ ∈ [ta, ta + Nc,scheduleTc] is defined as:

ui(τ |ta) =
{

uop
ℓ,j(ta)δ(τ − T u

ℓ,j(ta)) if vi = pℓ,j(ta),
0 otherwise,

(3.9)

where δ denotes the Dirac impulse function.

In this thesis, we assume that the operators are able to implement the control actions at the
exact times provided by the controller. In reality, the time of implementation by the operator
includes some uncertainty as it depends on factors such as their workload and fatigue. How-
ever, for systems with slow dynamics the uncertainty in time of control action implementation
may be mitigated. Nevertheless, the operator may have some inaccuracy in implementing the
new settings of the gate, adding some uncertainty to the position and subsequent flow of the
gate. The uncertainty in time of control action implementation will not be addressed in this
thesis, but must not be ignored in real-world applications.
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(a)

(b)

Figure 3.1: The MPC prediction window is split into a variable control window (green) and
a fixed control window (blue). In Figure 3.1b, the predicted operator schedule is depicted; the
controller is free to schedule the operator until the variable control horizon. Furthermore, in
Figure 3.1a the predicted evolution of the water level errors is depicted. Moreover, this evolution
of the water level errors during the whole prediction window is evaluated in the MPC objective
function (3.10).
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3-2-2 State estimation prediction

In the system dynamics from (3.1) and (3.2), noise terms w(t) and v(t) are present. These
noise terms cause the expected states from the internal MPC model to drift from the states
of the real system. Building an observer to estimate the real states is not trivial, as it
must be able to deal with fusing measurements coming from a subset of the operators in
the network obtained at unevenly spaced sampling steps related to operators arriving at the
gates. Moreover, the output/measurement matrix of the system is time-varying, since at
every activation time there may be a different number of operators available at the gates to
take measurements. As a result of having only those sparse measurements from operators
to update the system states, there is some discrepancy between the predicted state of the
system (by the internal model) and the real state of the open water system. Therefore, not
measuring at certain locations for an extended period of time can cause instability in the
system, constraint violation, and reduced system performance.

In this thesis, observers are not considered to estimate the states. Instead, when a water level
measurement is received by the central controller, the corresponding water level error state in
the internal model state vector x(t) (3.1) is directly updated by the unfiltered measurement.
This is based on the assumption that the local measurements will not have much measuring
noise on them. However, not measuring at a location for a prolonged period of time will have a
large effect on the discrepancy between the estimated water level (from the internal model) and
the actual water level of that location, as external influences disturb the system. Therefore,
instead of attempting to built and include a difficult observer in the optimisation problem
the measuring frequency of some parts of system is increased. To ensure the predicted water
level states do not drift too far from the actual states, the information gathering capabilities
of the system will have to be augmented, see Section 3-2-4.

With the internal model state estimates for the whole prediction window, the cost func-
tion JMoMPC that characterises the reference tracking performance of the system is defined.
It is desired to penalise both positive and negative deviations of the error levels and control
inputs. Furthermore, higher deviations should be penalised more than proportionally, to pri-
oritise driving high deviations back to the setpoint. Therefore, a quadratic objective function
is chosen:

JMoMPC(ta) =
∫ ta+NpTc

ta
(x̂T (τ |ta)Qx̂(τ |ta) + uT (τ |ta)Ru(τ |ta))dτ, (3.10)

where Q is a positive semi-definite matrix indicating the weight on the water level errors
and R is a positive definite matrix indicating the weight on the change in flow increment
of the head gate and change in gate opening of the other gates. Note that the objective
function (3.10) is equivalent to those used in [20, 28, 37].

3-2-3 Cyclic control

The model predictive controller uses (3.1) to predict the evolution of the system during the
prediction window. Depending on whether the water system has typically long transport
delays, it is common to compute the control actions for a shorter control window and to
evaluate their impact during the larger prediction window. As open water systems have large
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water transport delays, the control window is indeed often limited, see [14, 37]. However,
not accounting for the possible control that takes place after the control horizon can result
in the controller scheduling paths and control actions that are optimal for the short term,
but detrimental to the long term, closed-loop, performance. Heuristic methods can be used
to bridge the control gap from the end of the control window until the end of the prediction
window. These heuristic methods should preferably not increase the computational burden
significantly, while still providing realistic control after the control horizon. The goal of
introducing these heuristics is to improve the reference tracking performance of the model
predictive controller by inserting some estimates of future inputs in the prediction.

Cyclic control for MoMPC
One such heuristic to include control actions after the control horizon without introducing
extra optimisation parameters is cyclic control. As described in Section 3-2-1 and Figure 3.1,
the controller optimises the control actions during a variable control window. In cyclic control,
the control actions that the operator optimises during the duration of the variable control win-
dow are repeated until the end of the fixed control horizon. Moreover, as the to-be-optimised
control actions are simply repeated no extra computational burden is added. However, in
the case of MoMPC the times at which the control signal is non-zero is determined by the
operator path and the optimal control actions to implement at these locations in the path are
calculated by solving a Quadratic Programming (QP) problem. The cyclic control equivalent
for MaMoMPC is some repetition of an operator path that the controller is likely to schedule
in the fixed control window. This will enlarge the QP problem to solve for each operator path,
as the cyclic path introduces extra control actions to include in the control signal Ũ(ta). How-
ever, QP problems can be solved efficiently by commercially available solvers like CPLEX,
see Appendix C. Furthermore, by writing the cost function (3.10) as a function of input some
optimisation variables can be eliminated to reduce the size of the QP problem [35].

Searching for a cyclic path for linear canals
To find a high-performance path to use as cyclic path the linear, cascaded configuration of
irrigation canals is considered. As described in Section 2-1-1, irrigation canals consist of
multiple reaches that are interconnected by adjustable gates which are used to control the
flow from the upstream reach to the downstream reach. Moreover, the water is supplied by
the head gate and the water flows downstream driven by gravity. Consider an irrigation canal
with eight gates. This canal has a water level error due to water shortage at reach 3, and
there is no water level error present at any of the other gates. Then, the head gate, gate 2,
gate 3, and gate 4 will have to be adjusted in sequence to allow water from the head gate
to supply the required water to reach 3. On the other hand, if reach 3 has a positive excess
of water gate 4 will need to be adjusted along with the remaining downstream gates 5, 7,
and 8 to flush the excess water out of the system. From this we create the hypothesis that to
drive the water levels to the setpoints some combination of ‘downstream’ operator paths can
be used. However, it is not known beforehand which reaches will have a shortage of water
and which will have a surplus. Therefore, visiting each subsequent gate starting from gate 2
until the most downstream gate might be a viable solution. This complete downstream path
will result in each gate being adjusted once and allows for the flushing of excess water and
providing the required water of each reach. Furthermore, as the water flows in the same
direction as the operator travels there is a possibility of synchronising the arrival of the water
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with that of the operator. Moreover, because of the linear shape of the canal this complete
downstream path is the solution to the travelling salesman problem of visiting each gate of the
canal starting from gate 2. Therefore, this downstream path ensures some update frequency.
However, visiting all of the gates is inefficient when only a few gates need to be visited (e.g.,
excess water at the most downstream gate).

To support the hypothesis that downstream operator paths are efficient, the behaviour of
the controller from [28] is studied in a closed-loop simulation without measurement noise or
process noise. The continuous sampled-data model is approximated by a discrete-time model
of the west-main irrigation canal in Arizona, United States of America. More information
about this irrigation canal can be found in Appendix B-2. Furthermore, the sampling and
control time steps are set to 240 seconds and we consider only one operator to be available.
The settings of the model predictive controller are: Np = 60, Nc,schedule = 44, Ns = 5 gates,
Nlimit = 7 gates, To = 0 seconds, Tcontrol = 0 seconds, Tc = 240 seconds, Qerror = 100,
and R∆flow = 0.05. Furthermore, the weighing matrix Q from (3.10) has value Qerror on the
diagonal indices which correspond to water level error states of x(k). Moreover, the weighting
matrix R from (3.10) has value R∆flow on the diagonal. These are representative MPC
settings for the Arizona west-main irrigation canal. To solve the Mixed-Integer Nonlinear
Programming (MINLP) problem Genetic Algorithm (GA) is used with a stopping condition
of 200 seconds of CPU time on the computer described in Section 4-1-4. The initial offtakes
of the system at the start of the simulation are 0.2, 0.4, 0.2, 0.3, 0.3, and 0.2 m3/s at,
respectively, reaches 1–4, 6, and 7. As a test scenario a step of -0.2 m3/s is added to all the
offtake flows after 3 hours. Next, the controller is tested in the closed-loop simulation and
the results are depicted in Figure 3.2.

By scheduling the operator to travel the downstream path, highlighted in red in Figure 3.2c,
all of the gate settings are updated and the water level setpoints are tracked closely. More-
over, as the water flows downstream from the head gate to the last gate, this path is able to
synchronise with the system dynamics (letting part of the delayed incoming flow through for
each gate as the flow arrives). However, as the internal model used in [28] is a flow model
with local flow controllers, this operator routing behaviour may not be representative for a
gate-controlled internal model, which is used in the MaMoMPC algorithm presented in this
chapter. Therefore, the internal flow-controlled model is changed to a gate-controlled one.
Furthermore, the gate equations are linearised at every time step, the local flow controllers
removed, and the plant flows are updated at every time step using the nonlinear flow equa-
tions. Moreover, the states are only updated by measurements of the water levels by the
operators. There will be some mismatch between the linearised predicted flow and the non-
linear flow when adjusting the opening of a gate. Therefore, a constraint is added to restrict
the maximum change in gate opening. Restricting the change in gate opening too much will
result in the controller needing to schedule multiple visits to a gate to change the gates flow
to the desired flow, which is inefficient. On the other hand, allowing the gate opening to be
changed too much results in instability in the system, due to the mismatch in predicted flow
and actual flow. After consideration of this trade-off, the change in gate opening is restricted
to 20% of the maximum gate opening. The MPC settings are identical to those used in the
aforementioned flow-controlled simulation, except for the cost on change in gate opening; that
cost is set to R∆flow = 0.1. The resulting water level errors, gate flows, and operator path are
depicted in Figure 3.3.
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(a)

(b)

(c)

Figure 3.2: To compensate for a scheduled step change on the offtakes the flow-controlled model
predictive controller schedules the operator to travel to certain gates in the canal to adjust the
gates to the desired flows. In Figures 3.2a, 3.2b, and 3.2c, the water level errors, gate flows,
and operator path are depicted, respectively. Highlighted in red in Figure 3.2c is the part of the
operator path during which the largest changes in gate settings are carried out the operator.
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(a)

(b)

(c)

Figure 3.3: To compensate for a scheduled step change on the offtakes the gate-controlled
controller schedules the operator to travel to certain gates in the canal to adjust the gate flows.
In Figures 3.3a, 3.3b, and 3.3c, the water level errors, gate flows, and operator path are depicted,
respectively. The controller schedules the operator to travel to the first four gates first, see the
green highlighted path in Figure 3.3c. Next, the controller schedules the operator to take a route
from the top of the canal downstream adjusting the settings of each subsequent gate, see the red
highlighted path in Figure 3.3c.
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As a result of the small storage area of the first three reaches of the canal, the flows of the
gates of these reaches will have to be adjusted more than those with bigger storage areas
(reach 4, 6, and 7). Because of the constraint on the change in gate opening the controller
is unable update all of the gate openings to the desired settings in one visit. Therefore, the
operator first visits gates 2–5 to adjust the flow by the maximum amount (path in green) and
then visits all the gates (path in red) to achieve the desired flows.

In the gate-controlled system, it is harder to control the water levels to the setpoints, due to
the restrictions on gate change and the linearisation errors of the gates. These effects are not
present in the flow-controlled simulation as the plant and MPC internal model are identical.
Furthermore, note that there is some steady state error for the water level of reach 1. This is
due to the discrepancy between the state of the internal model of the MPC and the nonlinear
model, due to the linearisation errors. Since the water level error of reach 1 is zero in the
internal model, the controller has no incentive to schedule a visit for reach 1. This emphasises
the importance of measuring frequently at every location in the irrigation system.

Remark. Although the downstream routing behaviour has been observed in this section using
a single scenario on the Arizona west-main canal, the same route scheduling behaviour is
found when controlling the Dez main canal (also in the operator routes in the case study
results presented in Chapter 4) and throughout the experiments performed during this thesis.
The main reason for choosing the Arizona west-main canal is that the search space is much
smaller, as there are only six gates the operator can visit. This will make it easier for the
controller to find more optimal solutions and illustrate the use of the downstream path.

To summarise and extend on the aforementioned properties of the downstream path:

• All the gates are visited; the operator starts at the top of the canal (gate 2) and visits
each subsequent downstream gate. This allows for the controller to adjust the settings
of all the gates. However, visiting all the gates in the complete downstream path may be
inefficient, as some gates may not require actuation depending on the water shortages
and surpluses of the reaches.

• The downstream path is the solution to the travelling salesman problem of starting at
gate 2, visiting all the other gates once, and returning to gate 2. Therefore, it is the
optimal time-efficient solution of visiting all the gates when starting at gate 2.

• The TIO-MoMPC algorithm is observed to schedule (partial) downstream paths to
update the gate flows to compensate for a change in offtake flows. This behaviour is
observed in both the gate-controlled and flow-controlled modelling approach.

• The downstream path can be used to update all of the gate flows, while synchronising
with the water flowing downstream that originates from the head gate.

Because of these properties the downstream path is used in the cyclic path definitions in the
next paragraphs.

Formalising the cyclic path
The number of times the cyclic path can be travelled after the variable control horizon depends
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on the fixed control horizon, the number of operators, travel time of the operators between
each pair of gates, and the number of gates to visit in the path. Furthermore, it may not be
necessary to visit every gate of the downstream path. Therefore, optimisation variables can
be added that indicate at which gate the cyclic path should start and at which downstream
gate to end the cyclic path at. Moreover, optimisation variables can be added that indicate
the start of each repetition of the cyclic path. This allows the controller to synchronise the
start of each cyclic path with the flow changes in the offtake schedule. Then the controller
can update the flow of each gate to meet the changed offtake flows.

First, which part of the downstream path to schedule for a cyclic path for each operator j
has to be determined:

pcycle
j (ta) = (vstart

j (ta), . . . , vend
j (ta)), where pcycle(ta) ∈ NNcycle

node , (3.11)

where N cycle
node is the number of nodes in path pcycle

j (ta), vstart
j (ta) and vend

j (ta) are optimisa-
tion variables that indicate, respectively, the starting node index and ending node index of
the cyclic path for each operator to travel. Accordingly, every node with an index between
vstart

j (ta) and vend
j (ta) is visited subsequently starting from the lowest node index (correspond-

ing to the most upstream location) until the one with the highest node index (corresponding
to the most downstream location). Furthermore, the number of nodes to visit in each cy-
cle N cycle

node for operator j is equal to:

N cycle
node = vend

j (ta)− vstart
j (ta) + 1. (3.12)

To ensure a downstream path is created and that the cyclic path consists of more than one
location visit a constraint is created:

vend
j (ta) > vstart

j (ta). (3.13)

Next, the number of cyclic paths, Ncycle, to schedule for each operator during the fixed control
horizon is established. Then, the initiation time instants of the cyclic paths for operator j
are:

Tcycle
j (ta) = (T cycle

1,j (ta), . . . , T cycle
Ncycle,j(ta)), where T cycle

i,j (ta) ∈ R, (3.14)

subject to the constraints:

T cycle
i,j (ta) > Tc,schedule, for z = 1, . . . , Ncycle, (3.15)

T cycle
i+1,j(ta) ≥ T cycle

i,j (ta) +
vend

j (ta)−1∑
i=vstart

j (ta)
(Ttravel(vi, vi+1) + Tfinish + Tcontrol)

+ Ttravel(vend
j (ta), vstart

j (ta)), for i = 1, . . . , Ncycle − 1.

(3.16)

The constraint (3.16) ensures that operator j has enough time to finish the whole cyclic path
and return to the top of the canal. Next, the path that operator j travels after the operator
schedule horizon is:

pcyclic
j = (pcycle

j (ta), . . . , pcycle
j (ta)︸ ︷︷ ︸

Ncycle elements

). (3.17)
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Furthermore, the time instants at which operator j actuates the pcyclic
j gates are:

Tact,cyclic
j (ta) = (T act,cyclic

1,j (ta), . . . , T act,cyclic
Ncycle

node ·Ncycle,j
(ta)),

= (T cycle
1,j (ta) + Tcum, . . . , T cycle

Ncycle,j(ta) + Tcum), where T act,cyclic
ℓ,j (ta) ∈ R,

(3.18)

where

Tcum =


0

Td,1
...

Td,vend
j (ta)−1


T

, Td,k =
k∑

i=1
(Ttravel(vi, vi+1) + (k − 1) · (Tcontrol + Tfinish)). (3.19)

Moreover, the control actions to apply at the time instants are:

uop,cyclic
j (ta) = (uop,cyclic

1,j (ta), . . . , uop,cyclic
Ncycle

node ·Ncycle,j
(ta)), where uop,cyclic

ℓ,j (ta) ∈ R,

for ℓ = 1, . . . , Nnode ·Ncycle.

(3.20)

Finally, (3.17), (3.18), and (3.20) can be used to construct the trajectories of the control
input during the fixed control window. This results in the following relationship for τ ∈
[Nc,scheduleTc, NpTc]:

ucyclic
i (τ |ta) =

{
uop,cyclic

ℓ,j (ta)δ(τ − T act,cyclic
ℓ,j (ta)) if vi = pcycle

ℓ (ta) and vi ∈ Vcontrol,

0 otherwise,
(3.21)

where δ denotes the Dirac impulse function. Since in (3.21) τ is only defined until the fixed
control horizon, the entries of Tact,cycle

j (ta) (and corresponding inputs in uop,cyclic
j (ta)) that

exceed the fixed control horizon are simply ignored in the optimisation problem. This provides
the model predictive controller with the freedom of removing cyclic paths or parts of cyclic
paths to decrease the open-loop cost. Finally, the control signal from (3.9) is appended
with (3.21) to include cyclic control in the control input trajectory Ũ(ta) of the control
algorithm.

Finding cyclic paths for complex open water systems
For cascaded open water systems forming a single canal like the Arizona west-main irrigation
canal in the United States of America and the Dez main canal in Iran, the optimal cyclic path
is found in this section by looking at the travelling salesman solution in terms of minimising
the operator travel time to visit all the gates and by examining the closed-loop MPC behaviour
to a scheduled step on the offtake flows. However, this cyclic path may not hold up when
multiple operators are involved and the network is more complex, i.e., the irrigation canal
diverges into multiple small canals, as finding near optimal solutions using TIO-MoMPC is
then much harder (the search space is much bigger).

For more complex and large scale systems it might be beneficial to limit each operator to a
certain working region; in order to reduce the search space and to avoid sending operators
on paths with large travel times. The cyclic paths of these more complex water systems
will likely still consist of having the operator travel along with the water flow, visiting each
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consecutive downstream gate. As this allows for synchronisation with the system dynamics
and adjusting the flow of each gate. However, as the canals split, extra operators might be
needed for each fork of the canal to visit each downstream gate, depending on the quantity
and speed of the water flow in each fork.

3-2-4 Uncertainty weighing methods

Depending on the number of operators available, the measuring and actuating actions will
be sparse in time. Furthermore, the system is subjected to noise and will always have some
modelling errors. As a result, there is some uncertainty on the predictions of the system states.
This uncertainty about the system states can grow large when the locations are not visited
sufficiently regularly. Moreover, the uncertainty about the expected system state may result
in reduced system performance and constraint violation. To ensure the expected state does
not drift too far from the actual state, the information gathering capabilities of the system
have to be augmented. Three methods to assign some weight to the network uncertainty are
proposed:

• Static measurement attraction using the time elapsed since the last measurement, where
each measurement node is equally attractive.

• Static measurement attraction using the time elapsed since the last measurement, where
measurement nodes can have different attraction levels. Furthermore, a soft constraint
is added on the maximum attraction level of the nodes.

• Having the operators always travel a cyclic path to ensure a certain update frequency
at each gate.

Static measurement attraction using the time elapsed since the last measurement
Measuring regularly at every location in the system can be achieved by making nodes that have
not been measured for some time more ‘attractive’ [7]. To that end, for each measurement
node vi ∈ Vmeas the time of last measurement tlast

i (τ |ta) is tracked. This is used to retrieve
the time elapsed since the last measurement T elapsed

i (τ |ta), which is then multiplied with a
certain factor αloc,i to get an attraction level for each reach i. This attraction level is included
in the objective function for τ = [ta, ta + Nc,scheduleTc]:

Jmeas(ta) =
|Vmeas|∑

i=1

∫ ta+Nc,scheduleTc

ta
αloc,iT

elapsed
i (τ |ta)dτ, (3.22)

where

T elapsed
i (τ |ta) =

{
0 if τ = T act

ℓ,j , pℓ,j(ta) = vi, and aℓ,j(ta) = act1,

τ − tlast
i (τ |ta) otherwise,

(3.23)

where tlast
i (τ |ta) is initialised as tlast

i (0|0) = 0 and is updated to tlast
i (τ |ta) = τ whenever

for any j, τ = T act
ℓ,j (ta), pℓ,j(ta) = vi, and aℓ,j(ta) = act1; otherwise the previously assigned

value of tlast
i (τ |ta) is kept. Moreover, at every new activation of the controller the initial
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value of tlast
i (ta|ta) is updated with the last measurement time from the previous activation:

tlast
i (ta|ta) ← tlast

i (ta|ta,prev), in which ta,prev denotes the time of the activation immediately
before.

The factor αloc will determine the prioritisation of scheduling certain locations of the system.
There are many possible ways to choose αloc and methods to update the factor after each
MPC iteration. However, for the purpose of this thesis, the αloc values will stay constant
during both the MPC prediction and the closed-loop simulations.

Consider the case that the system is at rest. If the system is at rest the controller should not
schedule delays as there are no flows to synchronise with. Moreover, the nodes purely used
for actuation are not visited as no actuation is needed. In other words, cost function (3.10)
is negligible compared to cost function (3.22). The controller will then fully commit to min-
imising the time since last measurement multiplied by αloc for each reach. As time since last
measurement is penalised quadratically due to the integral, the controller will likely schedule
the operators to visit the reaches with the highest attraction levels first. If the factors αloc
are the same for every reach the update frequency of each reach should be approximately the
same (due to the quadratic penalty). If one of the reaches has a factor αloc twice as big as the
other reaches, it will result in it being visited approximately twice as often as the attraction
level increases twice as fast. Using this deduction the factors αloc can be determined based
on the relative preferred update frequency.

By adding this new measurement attraction objective function (3.22) to the reference tracking
objective function from (3.10) a new objective function is defined:

JMoMPC(ta) + w · Jmeas(ta) (3.24)

where w indicates the relative weight of minimising measurement attraction versus minimising
the water level errors and control input.

Remark. It is difficult to assign weight w in (3.24). Clearly, the system performance can
be improved by having a better estimate of the (future) state of the system. Nonetheless,
quantifying this trade-off between (3.10) and (3.22) is difficult, if not impossible as the value
of measuring depends on many stochastic processes acting on the system, and measuring only
improves the reference tracking performance indirectly. However, the Pareto front between
the measurement attractiveness and the combined input and error cost could be investigated
to offer some more insight in the trade-off for system performance.

Method I: each node equally attractive
This is the most basic attraction method that ensures all water level states in the system are
updated equally frequently. The factor αloc is equal for all reaches:

αloc,i = η, ∀ i, (3.25)

where η > 0. This method ensures all the nodes in Vmeas are measured equally regularly.

Method II: measurement attraction based on system knowledge
If information about the system is available regarding local dynamics or disturbances, the
local sites that are more prone to external influences or those that require more actuation
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in the system can be prioritised. For example, consider an irrigation canal with two reaches
and two gates. The first gate has an offtake right before it that is known to withdraw water
unscheduled from the reach, while the second gate has no offtakes or other external influences
acting on it. In that case, the system performance can be improved by measuring at the first
gate more often, i.e., increase αloc,1 relative to αloc,2, as the uncertainty of the first gate is
higher than that of the second gate.

From the system dynamics, it follows that the water level error due to an external flow
disturbance on a reach is determined by the storage area of a reach, see (2.4). If a reach has
a small storage area relative to the other reaches, it will get higher water level errors than
reaches with bigger storage areas for the same (disturbance) flow. So from expert knowledge
on the expected disturbance and process noise at each gate, the storage area of each gate and
relative location of the reaches in the canal αloc can be determined for each location.

In addition to including measurement attraction directly into the objective function, a con-
straint on the upper bound of the time elapsed since the last measurement is added for
Method II. This has some similarities to sensor scheduling, see [3, 40]. Consider the con-
straint:

T elapsed
i (τ |ta) ≤ UBtime, (3.26)

where UBtime is an upper bound on the time elapsed since the last measurement. This
constraint will ensure that the nodes have to be visited within a certain period. Without this
constraint the controller may decide to delay the measurement to achieve a better open-loop
objective value. However, if the bound is chosen too strict, it may result in infeasibility.
Therefore, the constraint is implemented as a soft constraint. Nonetheless, choosing the
bound violation penalty too strict may still result in poor scheduling behaviour, as it will
force the controller to send the operator to visit the gate with the largest soft constraint
violation each time, disregarding system performance. Choosing the bound too loose will
result in it having no effect on the system performance, as there is already incentive through
the objective function (3.22) to visit locations regularly.

Method III: fixing the path to the cyclic path
The cyclic downstream path from Section 3-2-3 visits all the gates with the same frequency,
which results in frequent state updates of all the system water levels. Moreover, the delay of
the flows can be synchronised with the arrival of the operator. Therefore, the third method
is to set the path schedule pj(ta) equal to the cyclic path for each operator. However, the
controller can still decide on the activities and implementation times for each location in the
path. So, measurement attractiveness is still added in the objective function to ensure that
the controller does not schedule long delays as that may result in not measuring frequently
enough at each location, which can have a negative effect on the system performance. Another
advantage of this method is that by fixing the path the search space of the controller is reduced
significantly, allowing the controller to evaluate more permutations of the activity schedule
for the fixed cyclic path.

3-2-5 Operator’s energy level

Consider an energy level cj(τ |ta) that represents the tiredness of operator j, the maximum
energy level being 100% and no minimum. This energy level drains as the operator trav-
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els between nodes, performs activities at these nodes, and waits at the nodes for instruc-
tions. Human operators are used to operate the canal; therefore, each node is a recharge
node (Vcharge = V), as humans can just eat a sandwich in their vehicles. The rate at which
the energy level depletes or recharges at every time τ ∈ [ta, ta + Nc,scheduleTc] is defined as:

ċj(τ |ta) =



ċj,travel if T act
ℓ,j − Ttravel(pℓ−1,j(ta), pℓ,j(ta)) ≤ τ ≤ T act

ℓ,j ,

ċj,control if T act
ℓ,j ≤ τ ≤ T act

ℓ,j + Tcontrol and aℓ,j(ta) = act2,

ċj,recharge if cj(τ |ta) < 100%, T act
ℓ,j ≤ τ ≤ T act

ℓ,j + Tj,recharge(ta),
and aℓ,j(ta) = act3,

0 if cj(τ |ta) = 100%,

ċj,idle otherwise,

(3.27)

where ċj,control > 0, ċj,recharge < 0, ċj,travel > 0, and ċj,idle > 0; all of which can be person-
alised for each operator, i.e., the discharge rate for travelling can be set higher than that of
implementing a control action at a node.

Using the (dis)charge rates ċj(τ |ta) the operator energy level trajectory over the variable
control window τ ∈ [ta, ta + Nc,scheduleTc] can be calculated:

cj(τ |ta) = cj(ta|ta)−
∫ τ

ta
ċj(τint|ta)dτint, (3.28)

where cj(ta|ta) is the energy level of the operator at the activation time. The energy level of
each operator is initialised as cj(ta|ta) = 100% at the start of the first measurement by the
operator. In subsequent activations of the controller, the energy level at the start of the MPC
iteration is set equal to the prediction from the previous activation cj(ta|ta)← cj(ta|ta,prev).

Adding a cost on the energy level of the operator to the objective function is undesirable, as
it is difficult to assign a meaningful weight to it: how much system performance is gained by
scheduling a break for an operator? However, not allowing for breaks for the operators will
violate the European Union human working rights provisions [2]:

1. Duration of the break
Recital 5 of the Directive [1] states that rest periods, to which breaks pertain, must
be expressed in units of time, i.e., in days, hours and/or fractions thereof, and
that workers must be granted ‘adequate’ breaks.

The Commission therefore considers that the rest breaks to which workers must
be entitled must be clearly defined in units of time and that, although the duration
of the break must be defined by collective agreement or national legislation, exces-
sively short breaks would be contrary to the Directive’s provisions.

2. Timing of the break
Similarly, although the Directive [1] leaves it to collective agreements or legislation
to define the terms under which the break is granted, the break should effectively
allow workers to rest during their working day where the latter is longer than 6
hours. Its timing should therefore be adapted to the workers’ schedule and it should
take place at the latest after 6 hours.
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Moreover, exhausted operators may be less accurate in implementing the scheduled actions
and the operators may become less agreeable, over time, to follow the controller’s instructions.
Therefore, a lower bound is added on the energy level of each operator:

cj(τ |ta) ≥ cmin,constraint, ∀τ ∈ [ta, ta + Nc,scheduleTc]. (3.29)

This is enforced as a hard constraint, which will ensure the controller schedules breaks for
the operators. Note that infeasibility will not occur, as the human operator is able to take a
break at any location and the operators always arrive on the scheduled time (operator delays
are not considered in this thesis).

The Nj,charge(ta) times the operator recharges depends on each operator j’s activity schedule.
Furthermore, the vector of Nj,charge(ta) recharging durations to be followed by operator j at
the prescribed locations at times T act

ℓ,j (ta) where aℓ,j(ta) = act3 are denoted by:

Trecharge
j (ta) = (T recharge

1,j (ta), . . . , T recharge
Nj,charge(ta),j(ta)), where T recharge

r ,j (ta) ∈ R, (3.30)

where the recharge times T recharge
r ,j (ta) are bounded by:

0 ≤ T recharge
r ,j (ta) ≤

100%− cj(T act3
r ,j (ta))

ċj,recharge
,

for r = 1, . . . , Nj,charge(ta),
(3.31)

where T act3
r ,j (ta) is the time instant when the r th recharging is to be initiated.

Remark. To limit the number of optimisation variables, extra constraints can be added to the
recharging of the operators. Instead of having the controller decide on how much and when
to recharge the operator, the operator is recharged to 100% whenever his/her charge is lower
than some predefined threshold (the operators that are travelling while hitting this threshold
commence their break when they arrive at the scheduled location). Furthermore, this way
of scheduling breaks for the operator more closely resembles the real-world scenario in which
human workers have constraints for how long they can be active until requiring a break (by
law).

Remark. In this thesis, we only consider human operators. However, consider the case that
the operators drive in (electric) vehicles. Then, these vehicles will need to be recharged or
refuelled during the operation of the canal. The energy recharging formulation presented in
this section can then be used to include the recharging or refuelling of these vehicles in the
optimal scheduling problem.
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3-3 Optimisation problem formulation

Whenever the controller is activated, by receiving a measurement from the operator, the
following optimal control problem is solved:

min
Ũ(ta)

JMoMPC(ta) + w · Jmeas(ta), (3.32)

subject to:
x̂(τ |ta) ∈ X , ∀τ ∈ [ta, ta + NpTc], (3.33)
uop

ℓ,j(ta) ∈ U , for ℓ = 1, . . . , Nj,control, j ∈ O, (3.34)

T act
ℓ+1,j ≥



T act
ℓ,j if pℓ+1,j = pℓ,j and aℓ,j = act1,

T act
ℓ,j + Tcontrol if pℓ+1,j = pℓ,j and aℓ,j = act2,

T act
ℓ,j + Trecharge if pℓ+1,j = pℓ,j and aℓ,j = act3,

T act
ℓ,j + Ttravel if pℓ+1,j ̸= pℓ,j and aℓ,j = act1,

T act
ℓ,j + Ttravel + Tcontrol if pℓ+1,j ̸= pℓ,j and aℓ,j = act2,

T act
ℓ,j + Ttravel + Trecharge if pℓ+1,j ̸= pℓ,j and aℓ,j = act3,

for ℓ = 1, . . . , Ns − 1, pℓ,j ∈ V, j ∈ O,

(3.35)

aact
1,j = act1, if stj(ta) = 0, (3.36)

aact
ℓ+1,j = act1, if pℓ+1,j ̸= pℓ,j and pℓ+1,j ∈ Vmeas, for ℓ = 1, . . . , Ns − 1, j ∈ O, (3.37)

T act
ℓ,j < Nc,scheduleTc only for the first occurrence of ℓ > 1,

where pℓ,j ̸= p1,j and aact
ℓ,j = act1,

(3.38)

aℓ,j ̸=


act1 if pℓ,j /∈ Vmeas,

act2 if pℓ,j /∈ Vcontrol,

act3 if pℓ,j /∈ Vcharge,

for ℓ = 1, . . . , Ns, pℓ,j ∈ V, j ∈ O,

(3.39)

system equations: (3.1) and (3.2), (3.40)
schedule definitions: (3.3)–(3.9), (3.41)
objective function definitions: (3.10) and (3.22)–(3.26), (3.42)
cyclic path definitions: (3.11)–(3.21), (3.43)
and energy level definitions: (3.27)–(3.31), (3.44)

where, for conciseness, the activation time dependence (ta) is excluded from the constraints,
Ttravel(pℓ+1,j , pℓ,j)+Tfinish is reduced to Ttravel, and T recharge

r ,j (ta) to Trecharge. Furthermore, w is
a positive weighing parameter and X and U are closed convex constraints on, respectively, the
states and the inputs. See (2.29)–(2.32) for the constraints on the input. Constraint (3.35)
ensures that the controller respects the minimal travel time between locations and allows the
operator time to finish the scheduled activities. Constraints (3.36) and (3.37) require that
the operators first measure at a location before performing other activities. Furthermore,
constraint (3.38) enforces that the controller is updated with a new measurement from each
operator within the variable control window. Finally, constraint (3.39) checks for each activity
in the schedule whether the activity is allowed at the scheduled location.
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3-4 Solving the optimisation problem

The optimisation problem (3.32)–(3.44) is a MINLP problem with many nonlinear (equality)
constraints. Because of these nonlinear constraints generic MINLP problem solvers have
difficulty in finding feasible solutions. Therefore, one of the most suitable solvers is a GA,
wherein the constraints can be taken into account directly within the fitness function and
permutations, crossover, and mutation of the population, so that the population of the genetic
algorithm is and remains feasible and the solver does not get stuck in infeasible regions.
Furthermore, the search space of the optimisation problem can be greatly reduced by limiting
the number of allowed scheduled activities at the nodes and the number of activities in
set A. By limiting the activities to only measuring and actuating at each node to once per
visit (in that order) and ignoring the measurement attraction and energy level equations the
optimisation problem is reduced to that of [28]. Moreover, by fixing the time instants to the
minimal travel and completion times of the activities the algorithm from [20, 37] is obtained.

The MaMoMPC algorithm presented in this chapter contains both integer (e.g., paths and
activities) and real-valued (e.g., time instants) optimisation variables. All of these optimi-
sation variables together result in a control signal that has some effect on the water levels
and flows of the system. The path and activity schedule determine the number of switching
instants at which each gate opening can be altered. Furthermore, the control inputs and time
instants, respectively, determine the magnitude and timing of the gate openings. In [8, 9, 34],
TIO-MPC was used to convert a mixed-integer problem into a real-valued problem. This re-
duces the computational burden by defining a priori how many switching instants take place
and allows the controller to determine the precise time instant to switch a control structure
on/off. However, this is not as straightforward for our control algorithm as the number of
switching instants of each gate depends on the path and activity schedule. Moreover, at
a switching instant a gate is not turned on/off, but opened by a to-be-optimised amount.
Furthermore, although the time instants can be defined as real-valued by utilising continuous
sampled-data MPC the optimisation problem is still of the mixed-integer type as the path
and activity schedule consist of integer optimisation variables.

3-5 Conclusions on Multiple-Action Mobile Model Predictive Con-
trol

In this chapter, the MaMoMPC algorithm for open water systems with mobile operators have
been presented. The operator schedule from previous work [28] has been extended with an
activity schedule, which can contain any type of activity depending on the specifications of
the open water system.

Unlike previous work, MaMoMPC only requires water level measurements and does not as-
sume that flow controllers are present to keep the flow at each gate constant between actuation
times. Moreover, the water level measurements are directly used to update the knowledge
about the system. A linearised gate-controlled model has been included to make more accu-
rate predictions about the evolution of the system states.

Next, cyclic control, a heuristic to provide realistic control after the control horizon, has been
presented. By including cyclic control the controller has some prediction on what gates the
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operator will visit in the future, improving closed-loop performance. A candidate cyclic path
has been found that consists of the operator following the water from the head gate to the
downstream, adjusting each consecutive gate. Then, a formalisation of cyclic control has been
presented, in which some optimisation variables have been introduced.

After that, the information gathering capabilities of the controller have been enhanced by
making measurements at certain locations in the open water system more attractive. This
has been achieved by keeping track of the time elapsed since the last measurement at each
location and multiplying this with some attraction factor that can be adjusted based on the
prioritisation of some locations in the system. Three methods to weight the uncertainty of
the state of measurement locations in MaMoMPC have been presented.

Then, tracking the energy level of each operator has been proposed. This energy level rep-
resents the fatigue of the operator, caused by working on the open water system. The lower
the energy level the higher the fatigue of the operator. By allowing breaks for the operator
and having the controller schedule them the system performance can be improved, as well as
the well-being of the human operators.

Finally, the optimisation problem of MaMoMPC has been presented. The problem is an
MINLP problem with nonlinear constraints, which is difficult to solve. Likely some simplifi-
cations and assumptions will need to be made to make the algorithm tractable for real-world
applications. However, the presented MaMoMPC approach applies to a general class of open
water systems and can be simplified based on the specificities of the application.
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Chapter 4

Case Study: Cyclic Control and
Uncertainty Weighing Methods

In this chapter, a case study on the Dez main irrigation canal is performed to analyse some of
the features of the proposed Multiple-Action Mobile Model Predictive Control (MaMoMPC)
algorithm. The case study is split into two parts: part I (no noise acting on the system)
and part II (noise acting on parts of the system). Part I focusses on investigating the effect
of cyclic control from Section 3-2-3 on the reference tracking performance. No uncertainty
weighing method are added to this first part of the case study. Therefore, adding noise can
result in instability as the discrepancy between the predicted states and real system states can
become too large. Accordingly, the case study is split in a part with noise and a part without
noise. Part II of the case study investigates the effect of including the network uncertainty
weighing methods from Section 3-2-4 on the performance of the system. In part II, noise
is added to the offtake schedules, offtake flows, measurements, and control actions. Note
that the irrigation canal, corresponding model, initial conditions, and offtake schedules are
identical for both parts of the case study.

In Section 4-1, the settings of the case study are elaborated on. First, the Dez irrigation
canal and its corresponding (internal) model that are used in the case study are presented.
Then, the assumptions that are made to simplify the algorithm from Chapter 3 are discussed.
Furthermore, the constraints, offtake schedules, and initial (operator) settings of the canal are
presented. Next, the solver for the resulting Mixed-Integer Nonlinear Programming (MINLP)
optimisation problem is presented. The a posteriori cost functions that are used to compare
the performance are then presented along with the statistical methods used for the compar-
isons. The noiseless part of the case study about cyclic control can be found in Section 4-2
and the second part of the case study about measurement uncertainty in Section 4-3. Finally,
conclusions are presented about the settings and simplifications used for MaMoMPC and the
case study presented in this chapter.
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4-1 Case study and MaMoMPC details

4-1-1 Dez main irrigation canal, Iran

The Dez irrigation canal is located in the south-west of Iran, near the city of Dezful. It was
designed to transport water from the large dam on the Dez river to the irrigated areas in the
north of Khuzestan province. For this thesis, the 45 km long section of the west-main canal
is considered, which consists of 13 reaches with a head gate maximum discharge capacity
of 157 m3/s. All of the information about the hydraulic structures and dimensions of the
canal have been acquired from the water authority of the Khuzestan Province [14, 37] and
can be found in Appendix B-1.

Control structures
The head gate of the canal can be operated continuously and is assumed to follow the reference
flow set by the model predictive controller without error. In reality, the other gates, located
at the end of each canal reach, have local flow controllers present. However, for the scope
of this thesis, the local flow controllers are removed, as this more closely resembles a rural
irrigation canal for which the managing authority of the canal would not have the resources
available to either install and maintain local flow controllers or to equip the canal with sensors
and actuators (other than the head gate).
The last reach of the Dez main irrigation canal does not have a control gate present. As dis-
cussed at the end of Section 2-1-4, this can result in instability problems; due to linearisation
errors and process noise. Therefore, the last reach is not considered in the Model Predictive
Control (MPC) formulation nor in the case study.

Mathematical model
The Dez main irrigation canal is modelled by interconnecting the reaches using the nonlinear
undershot gate equation (2.3) and the Integrator Delay (ID) modelling approach; the gate
parameters, ID parameters, and reach dimensions can be found in Appendix B-1. For the
internal model of MaMoMPC the gate equations are linearised, resulting in the linear gate-
controlled model from Section 2-1-4.
The nonlinear water dynamics of the irrigation canal are included neither in the internal
model nor in the plant model. When an irrigation canal has short or flat reaches and is
operated at low discharge rates, resonance waves form and have a substantial influence on
the system dynamics. This can result in a mismatch between the model and real system,
and the closed-loop system can become unstable. However, the Dez main irrigation canal
consists of long and steep reaches and the canal will be operated at medium discharge rates,
see Section 4-1-5. Therefore, no actions need to be taken to attenuate possible resonance
waves [14]. However, should such action be required several methods are proposed in [35] to
deal with the resonance wave problem.
When a water level measurement is received by the central controller, the corresponding water
level error state in the internal model is directly updated by the unfiltered measurement.
Moreover, at the start of each MPC iteration the gate linearisation coefficients used in the
internal model are recomputed using the internal (estimated) water level errors of each reach
at the current time step.
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4-1-2 MaMoMPC settings

The MaMoMPC algorithm presented in the previous chapter is very general. Information
about the irrigation canal is assumed to be available to simplify the resulting model predictive
controller and to make it more tractable:

• Recharging for operators is not considered in the case study; there are only two pos-
sible operator activities on the irrigation canal: measuring and actuating. Moreover,
the last reach is not considered as it has no gate (see Section 2-1-4 for the explana-
tion). Therefore, the operator can measure and actuate at every reach in the canal,
Vmeas = Vcontrol = V.

• The continuous sampled-data model (3.32)–(3.44) is approximated by the discrete-
time flow-controlled model from Section 2-1-4 using sampling and control time steps
of Tc = 300 seconds.

• With each gate visit the operator will first measure the water level, send the measure-
ment to the controller, and receive back the control action to apply at the present gate
and the next gate to travel to. Note that if the computational time required for the
central controller is small compared to the speed of system dynamics (time it takes for
water to flow from reach to reach), this always makes sense. Therefore, the notation
presented in Chapter 3 can be simplified. Note that the controller can schedule the
operator to measure the same node again. Then, the operator will have to measure
again at the designated time and subsequently implement the received control action.

These simplifications result in the MaMoMPC algorithm being reduced to the Time Instant
Optimisation Mobile Model Predictive Control (TIO-MoMPC) algorithm from [28] (without
the operator workload cost), but with the addition of cyclic control and uncertainty weighing
methods.

Moreover, some constraints are set on the input (change in gate opening for gates 2–12, change
in discharge rate for the head gate):

• The maximum change in gate opening is set to 20% of the maximum gate opening for
each actuation occurrence.

• The maximum and minimum water flow references of the head gate are set to respec-
tively, 157 m3/s and 0 m3/s.

• The maximum gate opening of gate i (m) is set to:

max
(

min
(

0.9 · 2
3
· h1,i(k)− hcr,i

µg,i
, hg,max,i

)
, hg,i(k)

)
(4.1)

where k is the current time step and i is the gate index. This constraint is based
on the constraint formulation from (2.29). Furthermore, the constant 0.9 is to have
a 10% margin on the linearisation error of the flow curve, see Section 2-1-4. Moreover,
the max function is to ensure feasibility when the current gate opening exceeds the
constraint for the next MPC iteration.

• The minimum gate opening of each gate is set to 0 m.
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4-1-3 Operator settings

Two operators are available to operate the canal. One of the operators starts with measuring
at the top of the canal, i.e., at the second gate, while the other one starts measuring at the
bottom of the canal, i.e., gate 13. Furthermore, the working areas of both of the operators
consist of all of the gates. Moreover, the operators are assumed to travel with a constant
speed of 30 km/h between all locations. There are two main arguments for choosing two
operators:

• The first reason is to investigate the closed-loop scheduling behaviour when multiple
operators are available that can travel to every position in the canal. In [37], the
operator working areas are split. Therefore, it is interesting to investigate what the
operator paths will look like when the operators have no restrictions on their working
area.

• The size of the search space increases rapidly with the number of operators. If the search
space is very large, it may be difficult for the MINLP solver to find close to optimal
results within the allocated CPU time. Therefore, the number of operators will need to
be limited.

4-1-4 Optimisation problem solver

To solve the MINLP problem a hierarchical two-layer approach is used as shown in Figure 4.1.
The top layer consists of a mixed-integer Genetic Algorithm (GA) [24] in which the genomes
of the individuals encode the path schedule of each operator and the corresponding time in-
stants of the measuring and actuation activities. First, a population is created that satisfies
the constraints (3.33)–(3.44), see Algorithm 1. Then, the fitness of each individual is calcu-
lated by evaluating the fitness function for each genome in the population. With the path
and corresponding actuation instants fixed by the genome, a Quadratic Programming (QP)
problem is solved to find the optimal inputs for the actuation instants. Using this optimal
control signal the water level errors of the system are predicted and a water level error and
input cost are calculated. Moreover, by keeping track of the time elapsed since the last mea-
surement the network uncertainty cost can be calculated as well. Finally, the cost on input,
water level errors, and network uncertainty is weighed and summed for each individual and
communicated to the GA solver. The GA utilises these fitness values of the population to
create a new population, wherein the genome of some individuals is randomly mutated and
new children are made by combining the genomes of the parents from the previous population.
The fitness of new and mutated individuals is then calculated and the population for the next
generation is created. This is repeated until some stopping condition is reached.

All of the simulations are performed using MATLAB R2017b with IBM ILOG CPLEX Opti-
misation Studio V12.7.1 to solve the QP problems on a 64-bit Linux computer with 64GB RAM
and eight Intel Xeon CPU-E5-1620 v3 @3.50GHz processors. Note that MATLAB has its
own QP solver. However, the CPLEX QP solver is approximately 4 times faster on aver-
age than MATLAB’s QP solver for a set of 10000 representative problems, see Figure C.2
in Appendix C.
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Figure 4.1: Schematic of the GA approach used to solve the optimisation problem.

The standard integer GA solver from MATLAB requires a lot of computational resources to
create a feasible initial population, due to the many nonlinear (equality) constraints. More-
over, when creating new populations by use of mutation and crossover functions the con-
straints are often violated; resulting over time in populations consisting of mostly infeasible
individuals. Therefore, a custom population creation, mutation, and crossover function has
been written in MATLAB, see Appendix D.

In the case study, the GA stopping conditions are: lowest cost did not decrease in five
subsequent generations or the CPU time exceeds 200 seconds. The 200 seconds is chosen to
evaluate a large part of the search space, while still being able to run enough simulations
during the thesis to have significance in the results. Furthermore, 200 seconds is less than the
sampling time. Therefore, 200 seconds is a realistic time in which the solver needs to solve
the MINLP problem in the real implementation. If the lowest cost did not decrease over five
generations, the GA is restarted with the top 10% of the previous GA population and the
rest of the population is newly generated using the population creation function. Moreover,
the time that was spent in the previous GA iteration is subtracted from the 200 seconds CPU
time limit.

4-1-5 Offtake schedules

At the start of the simulation the head gate supplies a water flow of 76.325 m3/s to the canal.
This means the canal initially runs at 48% of its maximum flow capacity. Therefore, the
medium-flow ID model parameters from Table B-2 are used for the case study.

At the end of every reach an offtake structure is present that withdraws water at a certain dis-
charge rate. A disturbance is added on all these offtake flows after five hours, see Figure 4.2.
This offtake schedule is representative for the Dez main irrigation canal and is retrieved
from [28, 37]. After five hours the canal runs at 58% of the maximum discharge rate capac-
ity. Therefore, the ID model parameters for medium flow are representative for the whole
simulation.
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Figure 4.2: Offtake profile used in the case study.

4-1-6 Method used for comparison

To compare the performance of the approaches in the case study, the controllers run several
simulations in which the system is disturbed by the offtake schedule from Section 4-1-5. The
simulations of part I and part II of the case study are run, respectively, 10 times and 15 times.
Moreover, the performance is quantified by defining an a posteriori cost for the closed-loop
simulation result. This a posteriori reference tracking cost is the same as the discrete-time
version of objective function (3.10) applied over the duration of simulation:

Jxu =
Nf∑

k=1
(xT (k)Qx(k) + uT (k)Ru(k)) (4.2)

where Nf = 288 indicates the total number of simulation steps, corresponding to 24 hours for
the case study. The weighing matrix Q is set to 100 for the diagonal indices corresponding to
water level errors; the rest of the entries of Q are zero. Furthermore, the weighing matrix R
is set to 0.01 for the diagonal indices corresponding to the weight on the flow change of the
head gate and set to 0.1 on the other diagonal indices, which correspond to the weight on
gate opening changes; the rest of the entries of R are zero.

A statistical test is performed to compare the a posteriori costs of the different approaches.
The tests of the case study will have a small sample size of 10 to 15 simulation results.
Moreover, it is unknown and difficult to guess beforehand how the results of the simulations
will be distributed. Therefore, it is decided to perform a two-sample Welch test [43]. This
test is used to test the hypothesis that two populations have equal means or, alternatively,
that one of the population means is greater than or equal to the other. Moreover, it is a
version of the student’s t-test that assumes that the two populations are normally distributed
with unequal variances and unequal sample sizes [43]. However, the two-sample Welch test
can deal with small sample sizes and has robustness properties against non-normality of the
distribution of the data [12, 13, 27]. The null hypothesis used for the case study is that the
a posteriori performance of one of the methods has a mean greater than or equal to the mean
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of the a posteriori performance of one of the other methods. Furthermore, the one-tailed
significance level has been set to 0.05.

4-2 Case study part I: cyclic control

In Section 3-2-3, cyclic control has been proposed to improve the setpoint tracking perfor-
mance of MaMoMPC. There are many optimisation variables for the cyclic path of each
operator that need to be optimised during each MPC iteration. This will result in a very
large search space, which requires long solving times for the GA solver to converge. If the
search space is disproportionately large relative to the allowed solving time, the uncertainty
on the solution found by the stochastic GA is large too, e.g., if you let GA optimise the exact
same scenario 10 times you can get 10 completely different performances. That is problematic
for the case study as the goal is to compare the performance of the methods for a certain
scenario within a reasonable simulation time. Therefore, all of the optimisation variables of
the cyclic path are fixed beforehand so the GA solver only has to evaluate operator sched-
ules. The performance of the MaMoMPC gate-controlled controller with cyclic control, but
without uncertainty weighing methods, is compared to the performance of the TIO-MoMPC
method from [28] (the internal model of [28] is changed to a gate-controlled equivalent).

The MaMoMPC and TIO-MoMPC settings for this case study are: Np = 84, Nc,schedule = 36,
Ns = 8 gates, Nlimit = 12 gates, To = 0 seconds, Tc = 300 seconds. The number of gates
in the operator schedule Ns = 8 is chosen such that controller is likely to consider all of
the gates (12 in total) within the variable control window (two operators corresponds to
a maximum of 16 gate visits within the variable control window). The variable control
horizon Nc,schedule = 36 corresponds to 3 hours and is chosen such that it exceeds the maximum
travelling time between nodes (21 time steps), while still having a margin for the controller to
schedule a few other gate visits. Moreover, the variable control horizon is chosen large enough
to fit many of the possible path schedules consisting of Ns = 8 gates (58.1% of them to be
exact). The prediction horizon, Np = 84, corresponds to 7 hours and is chosen such that two
complete downstream paths can be completed in the fixed control horizon, see Figure 4.3.
Finally, a sampling and control time step of 300 seconds are typical for the Dez main irrigation
canal, see [14, 28, 37].

4-2-1 Fixing the cyclic paths

Each of the operators performs one cyclic path after the variable control horizon. Furthermore,
both of these cyclic paths consist of visiting all of the 12 reaches and the arrival and subsequent
actuation at the gates is synchronised with the incoming flow if possible (note that this is not
possible if it takes the operator longer to travel to the location than it takes for the water to
flow there). Moreover, the start of the cyclic path of the first operator is delayed by the time
it takes for the water to flow from the head gate to gate 2. Furthermore, the second operator
starts when the first operator is at approximately half of its cyclic route. The cyclic paths
the operators take after the variable control horizon are depicted in Figure 4.3. Note that
this fixing of the cyclic paths will result in some loss of optimality. However, it still provides
the controller with a prediction of what routes the operators travel after the variable control
horizon, while not introducing much extra computational burden.
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Figure 4.3: The operator routes after the variable control horizon are estimated by the fixed paths
depicted in the fixed control window. Furthermore, the activation time step ka is the discrete-time
variant of the activation time ta.

4-2-2 Simulation issues

As mentioned throughout the chapters: instability can occur when the discrepancy between
the predicted states and the actual systems’ states becomes too big. In this first part of
the case study, the internal model is the linearised gate-controlled model and the connected
‘real model’, i.e., the plant, an ID model with nonlinear flow equation (2.3) to interconnect
the reaches. Therefore, there will be some discrepancy between the internal model and the
plant (after actuation). As long as the algorithm visits every reach frequently this is not
necessarily an issue, as the corresponding model state are updated by the measurements and
the controller schedules a change in the gate flows accordingly. Moreover, in the offtake
schedule a flow change is scheduled for each offtake at the end of the reaches, so the controller
will eventually schedule an operator to change gate settings at those locations at least once.
However, after 10-12 hours in the simulation, the internal model error states of some reaches
are zero and thus the controller will no longer schedule operator visits for those reaches. If
there is a flow mismatch at a gate that is no longer visited, the discrepancy between predicted
and actual states will keep growing over time, resulting in instability.

To still be able to use the simulations for comparison, the a posteriori cost (4.2) is only
evaluated for 10 hours (Nf = 120), in which no instability occurred in any of the simulations.
Moreover, at the 10 hour mark the steady state errors were close to zero. Consequently, the
first 10 hours of the simulations are representative of the controllers’ performances.

4-2-3 Results

The simulations have been run 10 times for both of the methods: MaMoMPC with cyclic
control and TIO-MoMPC, see the beeswarm plot (point distributions where horizontal jitter
has been added to the data points to avoid overlap) in Figure 4.4. Outliers have been defined
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as data points outside the ±2.7 times standard deviation interval, i.e., 99.3 percent coverage,
if the data are normally distributed. Furthermore, the outliers have been omitted from the
statistical tests.

Figure 4.4: Beeswarm plot of the a posteriori reference tracking cost Jxu obtained from 10
simulations of each of the approach.

From the beeswarm plot in Figure 4.4 it becomes clear that the a posteriori cost of TIO-MoMPC
has a larger spread than that of MaMoMPC. Moreover, note that four of the simulation results
were identical for MaMoMPC.
To compare the means of the two methods a two-sample Welch test is used [43]. The null hy-
pothesis used is that the mean of MaMoMPC is greater than or equal to that of TIO-MoMPC.
The test statistic t is computed as:

t = ḡ1 − ḡ2√
s2

1
n1

+ s2
2

n2

= −4.3762, (4.3)

where ḡi is the mean, si is the standard deviation, and ni is the sample size of group i ∈ {1, 2}
(group 1 corresponds to MaMoMPC and group 2 to TIO-MoMPC). Next, the number of
degrees of freedom are calculated:

df =
( s2

1
n1

+ s2
2

n2
)2

1
n1−1( s2

1
n1

)2 + 1
n2−1( s2

2
n2

)2
= 9.7373. (4.4)

Finally, using the student’s t cumulative distribution function, the test statistic, and the
degrees of freedom the (one-tailed) statistical significance is calculated as 7.38× 10−4 < 0.05.
Therefore, we can reject the null hypothesis that the mean of MaMoMPC is greater than that
of TIO-MoMPC. In other words, the mean a posteriori cost of MaMoMPC with cyclic control
is smaller than that of TIO-MoMPC with statistical significance. Furthermore, the average
a posteriori cost for MaMoMPC with cyclic control was approximately 3.5 times lower than
that of TIO-MoMPC.
The settings and algorithm of MaMoMPC and TIO-MoMPC for this first part of the case
study are identical, except for the inclusion of cyclic control. Therefore, we can conclude that
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including this particular cyclic path improves the a posteriori reference tracking performance
with statistical significance. Nonetheless, the performance is evaluated on a single disturbance
scenario, while using certain MPC settings and a heuristic solving approach, i.e., a GA, which
is given limited CPU time. Note that the offtake schedule used this case study is also used in
previous literature [28, 37] for the same canal. However, to verify our results the algorithms
(and cyclic path) should be evaluated using other disturbance scenarios and different irrigation
canals.

As the simulations use a single disturbance set the spread of the results is due to the stochastic
nature of the GA solver. Therefore, a valid question is whether the difference in performance
of the two methods can be attributed to the performance of the solver (whether the solver is
biased towards one of the methods). The GA solver is able to evaluate the cost of approxi-
mately 40000 and 55000 solutions to the MINLP problem for MaMoMPC and TIO-MoMPC,
respectively, during the 200 seconds of CPU time. This difference in the number of cost
evaluations can be attributed to the enlarged QP problem when including cyclic control, see
Appendix C. Accordingly, even though more solutions to the MINLP problem are evaluated
for TIO-MoMPC, MaMoMPC performs better. Note that it is intractable to go through all
the possible operator schedules (approximately 1018). Therefore, it is difficult if not impos-
sible to say how much of the performance difference is due to the difference in method and
how much can be attributed to the behaviour of the solver.

4-3 Case study part II: network uncertainty minimisation

In Section 3-2-4, three network uncertainty weighing methods are proposed to decrease the
discrepancy between the estimated water levels (from the internal model) and the actual
water level of the reaches in the canal. In this case study, the proposed uncertainty weighing
methods are combined with the cyclic control MaMoMPC approach from Section 4-1-2 to
create four uncertainty weighing approaches:

• Method A: MaMoMPC with static measurement attraction using the time elapsed since
the last measurement, where each measurement node is equally attractive. This is the
most simple, measurement attraction method. If no knowledge is available about the
disturbances acting on the system, it makes sense to just set the attraction factors equal
for all locations. Therefore, the attraction factor αloc is set equal to 1 for all reaches.

• Method B: MaMoMPC with static measurement attraction using the time elapsed since
the last measurement, where measurement nodes can have different attraction factors.
For this method the knowledge about the system, external disturbances, and offtake
schedule is used to assign an individual αloc,i for each reach i. The offtake flow and the
offtake flow change at reach 4 is much bigger than that at the other reaches. This
means that gate 5 will have to be adjusted more drastically than the other gates,
which increases the linearisation errors as was discussed in Section 2-1-4. Moreover, the
standard deviation of the noise on the offtake flow at reach 4 is bigger than that of the
noise at the other reaches. However, these extra uncertainties do not only influence reach
4, but also the surrounding reaches. The upstream gate at reach 3 is used to offset the
water level errors at reach 4 and the linearisation errors at gate 5 will result in water level
errors at reach 5. Based on this knowledge, the update frequency of reaches 3, 4, and 5 is

R.C. Kassing Master of Science Thesis



4-3 Case study part II: network uncertainty minimisation 65

set 50% higher than that of the other reaches. Note that the αloc values are normalised,
so that

∑12
i=1 αloc,i = 12 for both methods A and B; in order to not alter the weight on

the time elapsed since the last measurement (3.22) relative to the weight on input and
errors (3.10). Furthermore, a soft constraint (3.26) is added on the update frequency:

T elapsed
i (k) ≤

{
6000 seconds if i ∈ {3, 4, 5},
9000 seconds else,

for k ∈ {ka, ka + 1, . . . , ka + Nc,schedule}.

(4.5)

• Method C: MaMoMPC in which the path schedule is fixed to a downstream cyclic path
to ensure a certain update frequency at each gate. The optimiser still has the freedom
to optimise measuring and actuation instants to improve system performance. In this
method, the path pj(t) is defined beforehand, as the downstream path of visiting all the
gates subsequently starting from gate 2 and ending at gate 12. However, the measuring
and actuation time instants are still optimisation variables. This gives the controller the
freedom to still delay measurements and actuations to synchronise better with incoming
flows or scheduled changes in offtakes. However, the delays are detrimental to the
measurement frequency. Therefore, the measurement attractiveness cost (3.22) is still
included in the cost function of this method. Although the operator paths are known
beforehand for the whole prediction horizon, the location visits that exceed the variable
control horizon are removed from the optimisation problem. This allows for a more fair
comparison with the other methods.

• Method D: a version of MaMoMPC in which the path and time instants are fixed based
on a downstream path beforehand. Method D restricts the freedom of the controller
even more than method C by freezing the measurement and actuation time instants to
the minimal time required that follows from the travel time between locations. This
results in fixed paths, fixed time instants, and fixed activity schedules; so the top-
layer GA solver has nothing to optimise. The only optimisation required is that of the
control inputs the operators have to implement at the locations in the fixed path. To
compute the optimal control inputs a QP problem needs to be solved, which can be done
efficiently. Therefore, the required solving time for this solver is negligible compared
to the other methods. Note that because a single disturbance set is used for all of the
simulations and no stochastic solver is involved in method D, this method only requires
a single simulation (the solver is deterministic).

These four methods are compared to each other and to method E: MaMoMPC with cyclic
control from Section 4-1-2 without measurement attraction methods (so the controller solely
schedules operators to track the water level setpoints). However, as uncertainties act on
several parts of the system the predicted water levels can diverge from the actual water levels
over time. If this results in a negative water level or too high water level (higher than the
maximum gate opening), the nonlinear undershot flow equation from (2.3) no longer holds
and the simulation will be terminated. Method E is used to evaluate the system performance
when no measurement attraction methods are included, while the system is subjected to
external disturbances.

The MaMoMPC and TIO-MoMPC settings for this case study are: Np = 84, Nc,schedule = 36,
Ns = 8 gates, Nlimit = 12 gates, To = 0 seconds, Tc = 300 seconds. The number of gates

Master of Science Thesis R.C. Kassing



66 Case Study: Cyclic Control and Uncertainty Weighing Methods

in the operator schedule Ns = 8 is chosen such that controller is likely to consider all of
the gates (12 in total) within the variable control window (two operators corresponds to
a maximum of 16 gate visits within the variable control window). The variable control
horizon Nc,schedule = 36 corresponds to 3 hours and is chosen such that it exceeds the maximum
travelling time between nodes (21 time steps), while still having a margin for the controller
to schedule a few other gate visits. Moreover, the variable control horizon is chosen such that
more than half of the possible operator paths (58.1% of the possible paths to be exact) fit in
variable control window (assuming no delays are added). The prediction horizon, Np = 84,
corresponds to 7 hours and is chosen such that two complete downstream paths can be
completed in the fixed control horizon, see Figure 4.3. Finally, a sampling and control time
step of 300 seconds are typical for the Dez main irrigation canal, see [14, 28, 37].

4-3-1 Process noise

The reason for introducing uncertainty weighing methods is to decrease the uncertainty on the
water level predictions, thus improving closed-loop reference tracking. Therefore, to evaluate
whether the proposed methods actually reduce the uncertainty, some noise is inserted in the
simulations. Zero-mean Gaussian noise has been added to the water-level measurements,
control gate positions (when an operator changes the settings), and timing of implementing
the offtake flow changes with a standard deviation of 0.01 m, 0.001 m, and 900 seconds,
respectively. The same noise characteristics are also used in the case study of [37]. Moreover,
zero-mean Gaussian noise is added to the offtake flows: 0.005 m3/s on the offtake of reach 4
and 0.001 m3/s on all the other offtakes. The uncertainty on the offtake of reach 4 is set
higher, because it has a significantly higher offtake flow than the other reaches. To reduce
the uncertainty on the simulation results exactly the same disturbance set is used for each
simulation.

4-3-2 Measurement frequency cost

The a posteriori reference tracking cost from (4.2) does not provide insight into the controllers
succession in measuring frequently at the reaches. Therefore, a second a posteriori cost
function is created. This second a posteriori cost function is the same as the discrete-time
version of objective function (3.22) applied over the duration of simulation:

Jmf =
12∑

i=1

Nf∑
k=1

(αloc,iT
elapsed
i (k)) (4.6)

where Nf (set to 288) indicates the total number of simulation steps, corresponding to 24 hours
for the case study.

4-3-3 Results

The simulations have been run 15 times for methods A, B, C, and E. Method D only requires
one simulation as the outcome is deterministic (GA is not used and a single disturbance
set is used for each simulation). The resulting a posteriori reference tracking cost Jxu has
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been depicted in the logarithmic beeswarm plot in Figure 4.5. Furthermore, the resulting
a posteriori measurement frequency cost Jmf has been depicted in the beeswarm plot in
Figure 4.6. Note that five of the simulations of method E were terminated, due to negative
water levels or too high water levels. These five simulations have been omitted from the
statistical tests, as well as the beeswarm plots. Outliers have been defined as data points
outside the ±2.7 times standard deviation interval, i.e., 99.3 percent coverage, if the data are
normally distributed. Furthermore, the outliers are omitted from the statistical tests.

Figure 4.5: Logarithmic beeswarm plot of the a posteriori reference tracking cost Jxu obtained
from 15 simulations of the five methods.

Figure 4.6: Beeswarm plot of the a posteriori measurement frequency cost Jmf obtained from
15 simulations of the five methods.

As method D produces deterministic results no statistical test is performed to compare it to
other methods. Nonetheless, both of the a posteriori costs of method D are lower than the
means of the a posteriori costs of all the other methods. Furthermore, only one simulation
of method A resulted in a lower Jxu cost and method D had the lowest Jmf cost of all the
simulations performed. The a posteriori costs of each of the methods (other than method D)
have been compared to that of the other ones using the two-sample Welch test [43]. The
resulting probabilities of accepting the null hypothesis (one of the methods in the most left
column has a greater mean a posteriori cost than one of the methods in the top row) for Jxu
and Jmf can, respectively, be found in Tables 4-1 and 4-2.
All of the methods that included an uncertainty weighing method were able to track the
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Table 4-1: Probabilities of accepting the null hypothesis for each method pair for the
a posteriori cost Jxu. Note the symmetry along the diagonal: changing the order of the com-
parison affects the sign of the results, but does not affect the magnitude of the results.

Method A B C E
A – 0.0023 0.9027 0.0016
B 0.9977 – 0.9985 0.0029
C 0.0973 0.0015 – 0.0015
E 0.9984 0.9971 0.9985 –

Table 4-2: Probabilities of accepting the null hypothesis for each method pair for the
a posteriori cost Jmf. Note the symmetry along the diagonal: changing the order of the com-
parison affects the sign of the results, but does not affect the magnitude of the results.

Method A B C E
A – 6.73×10−12 1.00 4.80×10−4

B 1.00 – 1.00 1.40×10−3

C 4.85×10−5 7.68×10−13 – 3.33×10−4

E 1.00 1.00 1.00 –

water level setpoints without destabilising the system. In five of the simulations, in which the
system is controlled by method E, instability occurred and the simulations were terminated.
This emphasises the importance of including some sort of uncertainty weighing method to
control the stochastic system to the setpoints.

Method A performed significantly (significance level 0.0023 < 0.05) better on both a posteriori
costs than method B. An explanation is that the choice of attraction factors was suboptimal
in method B; the system performance decreased because some parts of the open water system
were not measured and actuated frequently enough. However, the assigned attraction factors
and thresholds used in method B did not have the desired effect: reaches 3, 4, and 5 were only
measured 30.42± 6.7% more often than the other reaches over all 15 simulations (so not 50%
more, as was intended). This is likely because the controller decided to delay measuring at
reaches 3, 4, and 5 to reduce the water level error at one of the other reaches. These results
show that the system is sensitive to the choice of local attraction factors and makes a trade-
off between measuring and reference tracking. Moreover, the total number of measurements
per simulation was about 8% (12 measurements) lower for method B compared to method A
(significance level 0.001 < 0.05). This suggests that increasing the measurement frequency at
reaches 3, 4, and 5 comes at the cost of less efficient operator routing.

For both of the a posteriori costs method C results in a significantly better performance than
method B (significance level 0.0015 < 0.05 for Jxu and significance level 7.68× 10−13 < 0.05
for Jmf). Moreover, method C has a significantly lower mean a posteriori measurement fre-
quency cost than method B (significance level 4.85 × 10−5 < 0.05), but not a lower mean
a posteriori reference tracking cost (significance level 0.0973 � 0.05). An explanation is that
the cyclic path used is the same path as the one that method C schedules for the operators
(although the algorithm can decide to delay measurement and actuation activities). There-
fore, the prediction of the control actions in the fixed control window is more accurate for
method C than for methods A and B, explaining the difference in performance. To verify this
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several simulations using different cyclic control paths could be performed.

The most heuristic method, method D, had the lowest a posteriori costs of all the methods.
This is unexpected as the controller has more possibilities/freedom to reduce the open-loop
cost through tuning the operators’ schedules in the other methods. We provide four possible
explanations why the most heuristic method performs the best:

• The variable control horizon is set to small relative to the prediction horizon. When
examining the open-loop costs in a similar way to the a posteriori costs from (4.2)
and (4.6) the open-loop costs found during simulations of method D are indeed higher
than that of the other methods. Therefore, although the open-loop cost improves by
allowing the controller to decide on more parameters of the schedule, the closed-loop
(a posteriori) cost is worse. We believe that this is due to the open-loop cost not being
representative of the system performance, as a result of the MPC settings. Methods A,
B, C, and E minimise the open-loop cost by tuning the operator schedule during the
variable control window. If the variable control horizon is chosen too short (relative to
the prediction horizon), the controllers will tend towards selecting operator schedules
that focus on reducing the biggest errors during the variable control window as quickly
as possible to minimise the accumulating water level error cost over the longer prediction
window. This results in suboptimal ‘aggressive’ control, wherein the controller wrong-
fully assumes that control is no longer possible after the variable control horizon. This
would explain why the open-loop cost of method D is worse than the other methods
while its closed-loop performance is better.

• Cyclic control is included in all of the methods in part II of the case study to provide the
controllers with some estimate of the future control actions. Nonetheless, this estimate
is the most accurate for method D, as that method actually schedules the cyclic operator
path. Methods A, B, and E, do not actually schedule cyclic paths in the closed-loop,
due to the moving horizon approach of MPC. However, in method D the operators are
forced to always take the same route (identical to the cyclic path). Therefore, the cyclic
control that is used is a much better estimate for method D than for any of the other
methods, explaining the difference in performance. To verify this several simulations
using different cyclic control paths could be performed.

• The introduction of the delays decreases the measurement frequency, which increases
the network uncertainty. This explanation is related to the limitations of the variable
control window and number of gates to schedule for each operator during this time win-
dow. Methods A, B, C, and E optimise the operator schedule during the variable control
window; in this operator schedule some delays can be added to the actuation and mea-
surement activities to synchronise gate openings with the system dynamics to improve
(open-loop) performance. However, each scheduled delay will result in the measurement
frequency of the locations going down compared to method D (which has no delays).
Moreover, the uncertainty about the states of the system grows over time. Therefore,
methods A, B, C, and E will have a larger discrepancy between the predicted and actual
systems’ states decreasing the system performance compared to method D. To verify
this explanation, the possibility of delaying actuation and measurement activities could
be removed from the methods.
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• A final explanation is that the solver is unable to find adequate solutions for methods
A, B, C, and E. However, seeing that the open-loop cost is already lower for all of
the methods (compared to method D) this seems unlikely. Nonetheless, this could be
verified by repeating the simulations with more allocated CPU time for each MPC
iteration and monitoring the open-loop costs and the a posteriori costs.

These explanations or a combination of them provide some perspective on why method D
performs the best. More research and simulations are needed to gain a better understanding of
the performances and (dis)advantages of the various uncertainty weighing methods proposed.

4-4 Conclusions on Case Study: Cyclic Control and Uncertainty
Weighing Methods

In this chapter, the MaMoMPC algorithm has been adjusted for the Dez main irrigation
canal in Iran. The continuous sampled-data model has been approximated by the discrete-
time flow-controlled model from the Chapter 3 using a sampling and control time step of 300
seconds. Moreover, some assumptions and simplifications have been made on the order of
activities, types of activities, and number of operators. However, energy recharging has not
been considered in this chapter. A custom GA solver has been used to find solutions to the
MINLP problem. Furthermore, the performance of the algorithms has been tested by using a
representative offtake schedule from previous literature [28, 37] and comparing the algorithm
performance on two a posteriori cost functions. A two-part case study has been presented.

The first part of the case study focussed on the effect on the reference tracking perfor-
mance of including cyclic control in MaMoMPC and compared the performance to that of
TIO-MoMPC. Accordingly, the cyclic path the operator takes is fixed and not subject to
optimisation. This has been done in order to reduce the uncertainty on the results, by reduc-
ing the search space of the MINLP problem. The results show that MaMoMPC with cyclic
control has statistically significant better performance (significance level 7.38× 10−4 < 0.05)
than TIO-MoMPC for the deterministic offtake schedule scenario of this case study. Note that
the scheduled paths of the operators match the downstream path computed in Section 3-2-3,
which supports the use of this downstream path as cyclic path.

In part II of the case study, four methods to weigh the measurement uncertainty have been
compared to each other and to MaMoMPC without such measurement uncertainty method.
For this second part of the case study, a second a posteriori cost has been introduced to weigh
the measurement frequency performance. Moreover, process noise has been introduced to
have a more realistic scenario and to compare the performance of the different uncertainty
weighing methods. The results show that all of the uncertainty weighing methods proposed
have better measurement frequency and reference tracking performance than not including
such a method (significance level 5.30×10−4 < 0.05). Moreover, the choice of the measurement
attraction factor αloc has a large influence on the system performance. The best performing
method is a heuristic that schedules the operators to visit all of the reaches subsequently
using the downstream path and minimal travelling times. Some explanations are given as
to why the heuristic method outperforms the methods that provide the controller with more
freedom.

R.C. Kassing Master of Science Thesis



Chapter 5

Conclusions and Recommendations

In this chapter, the conclusions and recommendations derived from the research presented in
this thesis are given.

5-1 Conclusions

This thesis extends the work in [20, 28, 37] by proposing a more general algorithm, called
Multiple-Action Mobile Model Predictive Control (MaMoMPC), see Chapter 3. In MaMoMPC,
activity schedules, cyclic control, uncertainty weighing methods, and energy levels have been
proposed to efficiently extend the control scheme from [28] and prioritise measuring at certain
locations of the open water system, while taking into account the breaks of human operators.
Moreover, MaMoMPC takes a more realistic approach towards modelling the open water sys-
tems, as operators only measure the water levels of the reaches and no local flow controllers
are assumed to be available at each gate to maintain the flow at a reference value set by
the human operator. The MaMoMPC optimisation problem in its most general form is very
difficult to solve due to the many integer optimisation variables and nonlinear constraints.
The optimisation problem can be reduced using knowledge about the system it is applied to;
e.g., for some irrigation canals there may be only two activities: measuring and actuation.
Therefore, the usefulness of MaMoMPC mostly comes from its ability to reduce the control
problem to fit the characteristics of the open water system it is applied to.

The MaMoMPC algorithm has been evaluated on a case study of the Dez main canal. In
the first part of the case study, the effect of including cyclic control has been tested. The
controller with cyclic control has an a posteriori cost that is 3.5× lower than that of the
same controller without cyclic control. In the second part of the case study, the uncertainty
weighing methods are tested on simulations with stochastic disturbances. The results show
that including the uncertainty weighing methods significantly improves the a posteriori cost,
by measuring frequently at all locations in the canal the prediction of the internal model
becomes more accurate and as a result, the reference tracking performance of the system
improves.
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By keeping track of the energy levels of the operators the controller is able to account for the
breaks of the operators and adjust the operator schedules accordingly. This is an important
aspect of the real setting in which humans will require breaks (by law). Moreover, the energy
level framework presented in Section 3-2-5 can be used to keep track of the charge or remaining
fuel of the vehicles that the operators use to travel to the different locations. This gives the
controller the possibility to schedule recharging/refuelling activities for the vehicles while
taking into account system performance. The energy level framework is not implemented in
the case study.

5-2 Recommendations

Although the results of MaMoMPC are promising, various challenges remain. To begin with,
humans are modelled solely as delays in the control problem; so more human-related aspects,
such as inaccuracies in the following and implementation of the orders received from the cen-
tral controller, will need be added to the control design. Moreover, the resulting impact of
having this uncertainty about the times at which the human operators actually implement
their activities on the performance and stability is an important issue that needs to be con-
sidered. To verify the performance of cyclic control more research is needed, in which cyclic
control is tested on more realistic (dynamical) offtake schedules with realistic external dis-
turbances. Furthermore, the uncertainty weighing methods proposed in this thesis were very
basic and assigning attraction factors to indicate which location are more important to visit
than others is non-trivial and requires more research. In the next sections, recommendations
are given on a few other areas of research that are worth investigating in future work.

5-2-1 Are time delays worth the added complexity?

In [28], it was proposed to introduce time delays to the measuring and actuation activities
to allow the controller to synchronise opening the gates with the system dynamics. However,
the superiority of the algorithm from [28] over that of [20, 37] was shown using a noiseless
scenario in which the plant and the internal model were identical. In this thesis, stochastic
disturbances have been introduced to the system, which caused the predicted states to drift
quickly from the actual states. Therefore, not measuring for a prolonged period of time will
harm the system performance and may result in constraint violations. Does the increase of
performance through synchronisation with the system dynamics outweigh the decreased fre-
quency of measuring and actuating of the system? Looking at the results from Section 4-3-3,
the heuristic method without time delays had the lowest a posteriori costs, suggesting that by
removing the delays the performance increases. Note that by removing the time delays from
the optimisation problem, the size of the search space can be decreased significantly, as well
as the number of nonlinear constraints. However, synchronisation of the opening of the gates
with system dynamics may be very important for the real system. Therefore, simulations
need to be performed on more realistic mathematical models to test whether time delays
improve the system performance significantly.
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5-2-2 Is measuring only water levels enough?

The MaMoMPC algorithm uses solely measurements of the water levels to control the system.
In the case study, this information has been shown to be sufficient to track the water level
setpoints. However, this will have to be evaluated on more realistic models of the irrigation
canal, such as a nonlinear SOBEK [10] model that uses the De Saint-Venant equations to
model the open water system. Moreover, the effect of meteorological disturbances, such as
rainfall, on the system performance and stability will have to evaluated.

Note that whenever the height of a gate is changed by an operator (including some operator
error), the linearised coefficients of that gate in the internal model are updated using the
actual gate height; this is done in order to prevent opening the gate past its limits and in
order to reduce the linearisation error. In reality, the exact gate height is not known until an
operator measures it and communicates it to the central controller. The effect this assumption
has on the performance (and feasibility) of the system must be investigated.

If water level measurements are not sufficient to control the open water system, we recommend
investigating the effect of including measurements of the local water flow. The nonlinear
undershot gate flow equation (2.3) is linearised for use in the linear internal model. Therefore,
when the height of a gate is changed there is some error between the expected flow of the
internal model and the actual flow of the plant. Moreover, external disturbances will act on
the system that affect the water flow, e.g., rainfall and unexpected changes in offtake flows.
By having more accurate estimates/measurements of the water flow available, the prediction
of the water levels is more accurate. Additionally, it is interesting to investigate whether
measuring the flows yields enough information to regulate the water level of the last reach
(where no gate is present) to the setpoint.

In this thesis, we have assumed the standard deviation of the (measurement) noise acting on
the system to be relatively small, allowing us to use the operator measurements directly to
update the predicted systems’ state. However, if the small noise assumption does not hold, an
observer can be built to estimate the system states. Nonetheless, building such an observer is
challenging in this case, as it must be able to deal with fusing measurements coming from a
subset of the operators in the open water system, that have been obtained at unevenly spaced
sampling steps related to operators arriving at the gates.

5-2-3 How to improve the reliability of the controller?

Another challenging topic is the feasibility of solving the optimisation problem for certain real-
time applications. In the case study, the a posteriori performance results had some spread
on them, which was to be expected as the Genetic Algorithm (GA) solver uses a stochastic
approach to sample solutions. However, the magnitude of the spread on results is likely due
to the size and complexity of the search space being too large to adequately sample within
the allocated solving time of the algorithm. Assigning more time to the controller will help,
but may not be possible in the real-time control setting of the open water system. Therefore,
it is interesting to investigate what happens to the spread of the results when the search space
complexity and size are reduced. We recommend investigating the effect on the (spread of)
performance when reducing the size of the search space by adding
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• constraints on paths. As observed in the case study in Section 3-2-3 and throughout ex-
periments, the controllers tend to schedule the operators to travel (partial) downstream
paths. These paths allow for synchronisation of the opening of the gates with the arrival
of the flow, and for efficiently adjusting the necessary gates. With this knowledge, the
size of the search space can be reduced significantly, by imposing some rules on what is
a ‘valid’ path. For example, a valid path could be defined as one that contains at least
a partial downstream path of three locations. In that case, 4 → 3 → 2 → 12 is valid,
but 3→ 5→ 1→ 6 is not. By adding these rules on what is a valid path the size of the
search space can be reduced without overly affecting the control performance.

• The size of the search space can also by reduced by reducing the operator working
areas. The number of possible paths (without considering delays) to schedule for an
operator j scales as wNs

j , where wj is the number of gates operator j is allowed to work
at and Ns the number of gates to schedule for each operator in each Model Predictive
Control (MPC) iteration. By limiting the working areas, the number of possible paths
can be reduced drastically. However, assigning optimal operator working areas is not
straightforward, as the division of the operators depends on the desired frequency of
measuring and actuation, which is hard to estimate and time dependent.

Moreover, as discussed in Section 5-2-1, by removing the time delays from the optimisation
problem the size of the search space can be decreased significantly, as well as the number of
nonlinear constraints.

5-2-4 Is distributed control required for larger systems?

If the open water system is very large or branches into many smaller canals, it is likely to
be intractable to control with a central controller using the approaches from [20, 28, 37] and
would require distributed control. However, the cyclic control heuristics proposed in this
thesis might offer a simple solution. Consider a complex/large irrigation canal that is divided
in linear sections. Moreover, for each of these sections an operator is assigned that travels
along a cyclic (downstream) path to regulate the water flow of that particular section. By
choosing the cyclic paths such that the presence of an operator and the arrival of water flow
are synchronised the complete irrigation canal can be regulated efficiently. This would only
require solving a Quadratic Programming (QP) problem during each MPC iteration, which
can be done computationally efficient, see Appendix C.
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Appendix A

Model Predictive Control

Model Predictive Control (MPC), which is also known as receding-horizon control or moving-
horizon control is a model-based online optimal control approach. MPC is not a specific
control strategy, but more of a design methodology. This design methodology contains the
following components:

• Internal model: explicit use of a process model to predict the evolution of the system
states and outputs over time, as a result of the inputs, the disturbances, and the past
states.

• Objective function: this function describes the quality of the control input to the system
over the prediction window. It is build up from giving weighted penalties to certain
(future) states, inputs, and/or outputs of the system. All weighted penalties together,
which are often conflicting, form the objective function.

• Constraints: these put bounds on the solution space of the controller. These limitations
can be due to physical limitations of the system, such as pump capacity, or operational
specifications, such as the water level within a reach.

• Optimisation: calculation of a control signal that minimises a certain objective function,
while taking the constraints into account.

• Receding horizon: control the system in a receding strategy: only the first control action
is implemented; the prediction horizon is shifted one time step to the future and the
optimisation problem is reformulated and solved.

In Figure A.1, the MPC strategy is illustrated. New information about the process becomes
available and a MPC iteration is started at activation time step ka, in order to find an optimal
control action to achieve the desired system state:

1. The evolution of the outputs are predicted during a prediction window, using the internal
model. The predicted outputs y(ka + k|ka) for k = 1, . . . , Np, depend on the known
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Figure A.1: MPC strategy

past inputs and outputs, and the future control actions u(ka + k|ka) for k = 0, . . . , Nc,
during the control window, where Np represents the prediction horizon and Nc the
control horizon.

2. The optimal future control signals are calculated by minimising the objective function,
that penalises the reference tracking error r(k)− y(k) and the control effort u(k).

3. The optimal control action at the current time u(ka|ka) is applied to the process and
the remainder of the control signal is discarded.
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Appendix B

Irrigation Canals Parameters

In this appendix, the layout, control structures, and canal parameters are presented for the
Dez main irrigation canal in Iran and the Arizona west-main irrigation canal in the United
States of America in, respectively, Sections B-1 and B-2. Moreover, some background infor-
mation is given on their location and their use.
As discussed in Section 2-1-2, the flow through the gates is dependent on the water level of
the upstream reservoir. To mitigate this dependency the gates of the Dez main canal and
Arizona west-main canal are equipped with local flow controllers which control the opening of
the gate in order to maintain the water flow at the reference value. If the local flow controller
control loops are fast enough, the water levels of the upstream reaches do not have an effect
on the downstream water flow and water levels [29]. The only unintended coupling of the
adjacent reaches is then through the constraints on the minimum and maximum flow each
gate can supply, as this still depends on the upstream water level of each gate. However,
for rural irrigation canals this local flow control equipment may not always be available or is
not adequately maintained. Therefore, for some parts of this thesis the flow controllers are
dismissed in order to have a more realistic representation of rural irrigation canals.

B-1 Dez main irrigation canal, Iran

The Dez irrigation canal is located in the south-west of Iran, near the city of Dezful. It was
designed to transport water from the large dam on the Dez river to the irrigated areas in the
north of Khuzestan province. For this thesis, the 45 km long section of the west-main canal is
considered, which consists of 13 reaches. Furthermore, the head gate has a maximum discharge
capacity of 157 m3/s. All of the information about the hydraulic structures and dimensions
of the canal have been acquired from the water authority of the Khuzestan Province [14, 37].

B-1-1 Layout

The west-main Dez canal consists of 13 long and steep reaches in series that stretch a total
of 45 km, see Figure B.1. The dimensions of the reaches and their water level setpoints can
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be found in Table B-1. Furthermore, the surface area of the backwater part and the delay
time of the uniform flow part that are used in the Integrator Delay (ID) model are dependent
on the discharge rate the canal is operating in. These ID parameters have been identified
for 10% (low flow), 50% (medium flow), and 80% (high flow) of the maximum discharge rate
of the west-main Dez canal, see Table B-2.

Figure B.1: Longitudinal profile of the west-main Dez canal.

Table B-1: reach dimensions and water level setpoints of the west-main Dez canal.

Reach Length [m] Width (bottom) [m] Channel depth [m] Setpoint [m+MSL]
1 6219 12 4.62 115.05
2 1933 12 4.62 112.80
3 3718 10 3.75 110.17
4 3906 10 3.75 108.62
5 2934 5 3.66 103.11
6 4670 5 3.66 101.20
7 3110 5 3.66 97.70
8 2240 5 3.66 95.95
9 3405 5 3.49 93.10
10 3820 5 3.15 90.42
11 2520 4 2.89 89.25
12 2874 4 2.68 86.80
13 2468 4 2.68 83.30

B-1-2 Control structures

At the downstream side of every reach a so called check structure, i.e., gate, is located that
can be controlled, except for the last reach. All of the check structures are free-flowing
undershot gates. Moreover, offtake structures are located at certain locations in the reaches
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Table B-2: reach discharge dependent characteristics of the west-main Dez canal.

Reach Low flow Medium flow High flow
Surface area Delay time Surface area Delay time Surface area Delay time
(×105) [m2] [s] (×105) [m2] [s] (×105) [m2] [s]

1 3.3415 1080 6.1851 900 0.9318 660
2 0.7376 120 0.9143 60 1.0952 60
3 1.8687 660 0.6041 540 0.8554 360
4 4.7051 720 1.062 540 3.7060 60
5 1.5237 240 1.8141 180 1.7095 360
6 0.6056 720 1.9239 660 0.7786 720
7 0.8390 540 0.8935 540 0.6661 420
8 0.7556 360 1.0595 360 0.8904 360
9 1.0049 420 1.3072 360 0.8671 360
10 1.8355 240 0.4290 540 0.4897 600
11 0.3492 300 0.3673 480 0.4032 240
12 0.4087 660 0.3971 540 0.3820 600
13 0.2971 420 0.3044 480 0.3884 420

for farmers to withdraw water from for irrigation. In this thesis, the offtake structures are
not modelled. Instead, the farmers are assumed to just withdrawal water at certain flow rate
from the downstream end of each reach. The check structure characteristics can be found
in Table B-3. Note that the head gate is not modelled, as it is assumed there is a local flow
controller present to follow the reference value set by the model predictive controller.

Table B-3: check structure characteristics of the west-main Dez canal.

Gate Gate crest Gate width Maximum Contraction Lateral contraction
elevation [m] gate opening coefficient coefficient
[m+MSL] [m] [-] [-]

2 110.42 14.4 4.00 0.78 1
3 110.38 22.0 3.78 0.78 1
4 106.42 13.5 5.12 0.78 1
5 106.42 15.5 3.57 0.78 1
6 99.86 7.4 4.72 0.78 1
7 97.95 7.4 4.27 0.78 1
8 94.45 7.4 4.27 0.78 1
9 92.70 6.8 4.02 0.78 1
10 89.85 6.0 4.27 0.78 1
11 87.17 5.6 4.25 0.78 1
12 87.00 6.8 4.25 0.78 1
13 84.55 6.0 3.25 0.78 1
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B-2 Arizona west-main canal, United States of America

The Maricopa-Stanfield Irrigation and Drainage District is situated south of Phoenix, Ari-
zona, United States of America. It was established in 1962 to provide irrigation water for
agricultural use and provides the required water for almost 87000 acres. One of the main
canals for this district is the Santa Rosa canal. For this thesis the 10 km long section of the
west-main canal part of the Santa Rosa canal is considered, which consists of eight reaches in
series. Furthermore, the head gate has a maximum discharge capacity of 2.8 m3/s. All of the
information about the hydraulic structures and dimensions of the canal have been acquired
from [29, 35, 42].

B-2-1 Layout

The Arizona west-main canal is a steep canal consisting of eight reaches with a total elevation
drop of 40m over a total length of 10 km, see Figure B.2. The dimensions of the reaches and
their water level setpoints can be found in Table B-4. Furthermore, the surface area of the
backwater part and the delay time of the uniform flow part that are used in the ID model
are dependent on the discharge rate the canal is operating in. These ID parameters have
been identified for 10% (low flow), 50% (medium flow), and 80% (high flow) of the maximum
discharge rate of the west-main canal, see Table B-5.

Figure B.2: Longitudinal profile of the west-main canal in Arizona.

The backwater surface area of reach 5 is relatively small compared to the other reaches,
see Table B-5. Consequently, it is much more sensitive to flow disturbances and other ex-
ternal influences. A local high performance PI controller is available at gate 6, so any flow
manipulation is passed almost unaffected [35]. Therefore, reach 5 can be viewed as a transport
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Table B-4: reach dimensions and water level setpoints of the west-main canal in Arizona.

Reach Length [m] Width (bottom) [m] Channel depth [m] Setpoint [m+MSL]
1 118 1.22 1.22 416.23
2 1203 1.22 1.22 406.53
3 423 1.22 1.22 403.42
4 809 1.22 1.22 399.07
5 1954 1.22 1.22 -
6 1669 1.22 1.22 385.53
7 1617 0.61 1.22 381.20
8 1691 0.61 1.22 376.78

Table B-5: reach discharge dependent characteristics of the west-main canal in Arizona.

Reach Low flow Medium flow High flow
Surface area Delay time Surface area Delay time Surface area Delay time
(×103) [m2] [s] (×103) [m2] [s] (×103) [m2] [s]

1 0.397 0 0.379 0 0.343 0
2 0.653 534 0.600 360 0.450 288
3 0.503 120 0.493 90 0.240 78
4 1.630 162 1.621 72 1.506 60
5 0.171 1152 0.240 828 0.248 702
6 1.614 792 1.385 648 0.878 540
7 2.000 540 1.385 576 1.266 504
8 1.241 1008 1.319 954 1.263 720

reach to convey water towards reach 6. In the model predictive controller, reaches 5 and 6
are considered to be combined into one reach with a storage area equal to the storage area of
reach 6 and a delay time equal to the summation of the delay times of reaches 5 and 6.

B-2-2 Control structures

At the downstream side of every reach a so called check structure, i.e., gate, is located that
can be controlled, except for the last reach. All of the check structures are free-flowing
undershot gates. Moreover, offtake structures are located at certain locations in the reaches
for farmers to withdraw water from for irrigation. In this thesis, the offtake structures are
not modelled. Instead, the farmers are assumed to just withdrawal water at certain flow rate
from the downstream end of each reach. The check structure characteristics can be found
in Table B-6. Note that the head gate is not modelled, as it is assumed there is a local flow
controller present to follow the reference value set by the model predictive controller.
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Table B-6: check structure characteristics of the west-main canal in Arizona.

Gate Gate crest Gate width Maximum Contraction Lateral contraction
elevation [m] gate opening coefficient coefficient
[m+MSL] [m] [-] [-]

2 415.30 1.524 0.991 0.661 1
3 405.60 1.524 0.991 0.662 1
4 402.57 1.524 0.914 0.666 1
5 398.07 1.219 1.067 0.659 1
7 384.75 1.219 0.838 0.654 1
8 380.34 0.610 0.914 0.695 1
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Appendix C

Quadratic Programming Problem
Solving

As mentioned multiple times throughout the thesis report the Mixed-Integer Nonlinear Pro-
gramming (MINLP) can be reduced to a Quadratic Programming (QP) by choosing a schedule
for each operator. This ‘choosing’ of the schedules is done in [28] using a Genetic Algo-
rithm (GA) and in [37] with an exhaustive search in order to find solutions to the global
MINLP problem. Therefore, a large number of QP problems need to be solved to find good
solutions to the MINLP problem. Moreover, the number of schedules that can be evaluated
per unit of time heavily depends on the solving time of the QP problems. Accordingly, intro-
ducing cyclic control increases the solving time of the QP problems. To investigate how much
cyclic control increases the QP problem solving times, 10000 operator schedules are generated
for the offtake scenario from Section 4-1-5 and the resulting QP problems are solved with and
without the fixed cyclic control from Figure 4.3 in Section 4-2-1. Furthermore, the Model
Predictive Control (MPC) settings and algorithm are those used in the first case study, see
Section 4-2. Moreover, IBM ILOG CPLEX Optimisation Studio V12.7.1 is used to solve all
the QP problems. The resulting solving times are depicted in the violin plots in Figure C.1.
Cyclic control increased the QP solving time by a factor 1.5 on average. As a result, the
number of schedules that can be evaluated using the GA solver per unit of time is decreased
by roughly a third. Note that although cyclic control increases the solve time by half, this
extra computational burden is negligible compared to the increase in computational burden of
the global MINLP problem when enlarging the number of gates in the operator schedule Ns.

Using the same aforementioned settings the solving time of MATLABs QP solver is compared
to that of the CPLEX QP solver for a set of 10000 representative problems. The CPLEX QP
solver is approximately 4 times faster on average than MATLAB’s QP solver for a set of 10000
representative problems, see the violin plots in Figure C.2.
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Figure C.1: Violin plots for the solving times of 10000 representative QP problems with cyclic
control and without cyclic control. The surface area of both of the distributions is equal; the
width of the distribution indicates the relative number of data points at that particular calculation
time. Furthermore, the green square indicates the median and the red cross the mean.

Figure C.2: Violin plots for the solving times of 10000 representative QP problems with MAT-
LAB’s QP solver and CPLEX’ QP solver. The surface area of both of the distributions is equal; the
width of the distribution indicates the relative number of data points at that particular calculation
time. Furthermore, the green square indicates the median and the red cross the mean.
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Appendix D

Genetic Algorithm Functions

The creation function from Algorithm 1 is used to create the initial population. In this
thesis, the settings: popsize = 5000, nprev = 500, ndelay = 1500, Ns = 8, and n = 2
are used. Note that two complete downstream paths are included in the population, one
without delays and one with delays that synchronise the operator arrival with the arrival of
the water flow. These downstream paths are added to ensure the selected path at the end of
the Model Predictive Control (MPC) iteration performs at least as good as the downstream
path. Once an initial population is created the cost of the individuals in the population is
evaluated and a new population is created using the mutation function from Algorithm 2 and
the crossover function from Algorithm 3. The mutation, crossover, and elite fractions have
been set to 15%, 80%, 5%, respectively, for all simulations performed during the thesis.
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input : population size psize, number of operators n, operator paths scheduled by the
previous MPC iteration pathprev, current operator positions pos, number of
paths that are generated using the previously scheduled paths nprev, number of
paths that get random delays added to them ndelay

output: Population pop
for i← 1 to psize do

if i ≤ nprev then
// Append on the previously scheduled operator path
path ← [pathprev randpath(1)];
// No delays are added to these operator paths
delays ← 0;

else if i == nprev + 1 then
// Schedule downstream path
path ← downstreampath(pos);
// No delays are added to these operator paths
delays ← 0;

else if i == nprev + 2 then
// Schedule downstream path
path ← downstreampath(pos);
Delays are added to the downstream operator paths to synchronise the actuation
with the water flow;

else
// Generate a random path
path ← randpath(Ns);
if i ≤ nprev + 2 + ndelay then

Random delays are added, similar to the mutation function;
else

// No delays are added to these operator paths
delays ← 0;

end
end
pop(i) ← createschedule(path,delays)

end
Algorithm 1: Function used to create a population for use in the custom GA
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input : parents p1 and p2, number of operators n, number of gates in route Ns
output: child that contains parts of the operator schedules from both parents p1 and p2
for j ← 1 to n do

// Retrieve schedule of operator j from both parents
s1 ← p1(j);
s2 ← p2(j);
// Generate a random number that indicates how much each parent

contributes to the genome of the child
ncont ← randi(Ns −1);
// Create combined operator schedule from the genome of the parents
child(j) ← [s1(1 : ncont), s2(ncont + 1 : end)];
// Check if the operator schedule violates the minimum travelling time
if infeasible(child(j)) then

// Repair the operator schedule by adjusting the time instants
child(j) ← repair(child(j));

end
end

Algorithm 2: Mutation function used for the custom GA
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input : parent p, number of operators n, number of gates in route Ns
output: child that is a mutated copy of a parent p
// Randomly select one of the operators
j ← randi(n);
// Select the schedule of operator j
s ← p(j);
// Select a time instant to delay
ind ← randi(Ns · 2 + 1);
// Select a (uniform) random number between 0 and 100
roll ← randi(100);
if roll ≤ 10 then

// Reset the delay of the time instant to zero
s ← reset(s);

else if roll ≤ 25 then
// Add one time step of delay
s(ind) ← s(ind) + 1;

else if roll ≤ 35 then
s(ind) ← s(ind) + 2;

else if roll ≤ 45 then
s(ind) ← s(ind) + 3;

else if roll ≤ 50 then
s(ind) ← s(ind) + 4;

else
// Switch two random gates in the schedule
s ← switch(s);
// Check if the operator schedule violates the minimum travelling time
if infeasible(s) then

// Repair the operator schedule by adjusting the time instants
s ← repair(s);

end
end
// Create mutated child
child ← p;
child(j) ← s;

Algorithm 3: Crossover function used for the custom GA
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List of Acronyms

GA Genetic Algorithm

ID Integrator Delay

MaMoMPC Multiple-Action Mobile Model Predictive Control

MINLP Mixed-Integer Nonlinear Programming

MoMPC Mobile Model Predictive Control

MPC Model Predictive Control

QP Quadratic Programming

TIO-MoMPC Time Instant Optimisation Mobile Model Predictive Control

TIO-MPC Time Instant Optimisation Model Predictive Control
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