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ABSTRACT

The main issues related to passive-source reflection imaging with seismic interferometry are 

inadequate acquisition parameters for sufficient spatial wavefield sampling and vulnerability of 

surface arrays to the dominant influence of the omni-present surface-wave sources. 

Additionally, long recordings provide large data volumes that require robust and efficient 

processing methods. We address these problems by developing a two-step wavefield evaluation 

and detection method (TWEED) of body waves in recorded ambient noise. TWEED evaluates 

the spatio-temporal characteristics of noise recordings by simultaneous analysis of adjacent 

receiver lines. We test our method on synthetic data representing transient ambient-noise 

sources at the surface and in the deeper subsurface. We discriminate between basic types of 

seismic events by using three adjacent receiver lines. Subsequently, we apply TWEED to 600 

hours of ambient noise acquired with ~1000-receiver array deployed over an active 

underground mine in Eastern Finland. We demonstrate detection of body-wave events related 

to mine blasts and other routine mining activities using a representative one-hour noise panel. 

Using TWEED, we successfully detect 1093 body-wave events in the full data set. To increase 

the computational efficiency, we use slowness parameters derived from the first step of 

TWEED as input to a support vector machine (SVM) algorithm. Using this approach, we detect 

94 percent of the TWEED-evaluated body-wave events indicating the possibility to limit the 

illumination analysis to only one step and therefore increase the time efficiency at the price of 

lower detection rate. However, TWEED on a small volume of the recorded data followed by 

SVM on the rest of the data could be efficiently used for a quick and robust (real-time) scanning 

for body-wave energy in large data volumes for subsequent application of seismic 

interferometry for retrieval of reflections. 
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INTRODUCTION

In the last decade, the concept of seismic reflection imaging using ambient noise and seismic 

interferometry (SI) has emerged as a possible alternative for the classical active-source surveys 

(Draganov and Ruigrok, 2015) where utilization of active sources is not feasible or is 

undesirable. In particular, the passive-source SI provides an alternative when the terrain access 

or the budget is limited with regard to using active sources. At the same time, acquisition of 

large-N arrays (i.e., arrays consisting of large number of sensors and short receiver spacing 

compared to the dominant wavelength) is becoming popular in passive seismic experiments for 

long period (large-T) recording of ambient seismic noise (Hansen et al., 2015; Li et al., 2018). 

Some notable examples of deployed large-N arrays include the Long Beach nodal array (Lin et 

al., 2013a), the San Jacinto array (Ben-Zion et al., 2015), the Malargüe array (Ruigrok et al., 

2012; Nishitsuji et al., 2014), the Diablo Canyon (Nakata and Beroza, 2017), and the Mount St. 

Helens array (Hansen et al., 2015).

Large-N arrays create opportunity for 3D reflection imaging in challenging field areas (Ruigrok 

et al., 2012). Similar to other exploration methods, the most interesting part of the wavefield 

for imaging purposes are the reflected body waves, which carry information about the sharp 

impedance contrasts in the subsurface (Brenguier et al., 2016). One way of imaging the Earth’s 

interior using P-waves is SI. To successfully apply SI, one needs body-wave arrivals to be 

present in the recorded noise (Draganov et al., 2013). Unfortunately, body waves present in 

ambient-noise recordings are usually masked by dominant surface waves (Draganov et al., 

2009). Hence, the quality of the retrieved subsurface image strongly depends on how well we 

are able to extract the desired body waves from the ambient noise in the recording area. 

Examples of successful imaging with body-wave SI include reflection imaging in a desert area 

in Libya (Draganov et al., 2009, 2013), a passive seismic experiment for mineral exploration at 
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Lalor Lake, Manitoba (Cheraghi et al., 2015), ambient-noise body-wave tomography at Long 

Beach, California (Lin et al., 2013, Nakata et al., 2015), and S-wave tomography in an 

underground mine (Olivier et al., 2015). Each of these experiments was conducted in different 

terrain and aimed to image different structural targets, yet the inherent processing is based upon 

selective stacking of ambient-noise data. Draganov et al. (2013) and Cheraghi et al. (2015) used 

directional analysis and surface-wave suppression with a band-pass filter for selective stacking, 

while Olivier et al. (2015) directly analyzed the signal-to-noise ratio (S/N) of the desired 

arrivals in the correlated panels. In their ambient-noise body-wave tomography study, Nakata 

et al. (2015) combined selective stacking with coherency filtering. In the following study, we 

develop a robust detection method that identifies body-wave arrivals to serve as input for further 

reflection imaging. Furthermore, we evaluate the quantitative metrics of basic ambient-noise 

source types present in large passive data sets.

Seismic acquisition patterns depend on the aim of the survey. At the exploration scale, one of 

the most common acquisition layouts is the orthogonal one, in which the source and receiver 

lines are more or less perpendicular to each other, with line spacing that usually exceeds 

receiver spacing by an order of magnitude (Meunier, 2011). In this case, the receiver sampling 

in the crossline direction is not adequate to fully resolve the wavelengths typical for an 

exploration seismic survey, which results in aliased wavefields between the receiver lines in 

the case of sparse sources. In such cases, it is difficult to remove scattered surface-wave noise 

from conventional surveys. Spatial aliasing is also a serious problem in many imaging 

techniques (e.g., migration, see Grey et al., 2013) but can be remedied to some extent with, for 

example, data-regularization and interpolation techniques (Trad, 2009).

Insufficient crossline receiver spacing also constitutes a problem in passive seismic experiments 

because it hinders the beamforming analysis (Brenguier et al., 2016) or limits the maximum 

available resolution for imaging with ambient-noise sources (Draganov et al., 2013; Quiros et 
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al., 2017). In this paper, we aim to enhance the 3D imaging potential of already deployed large-

N arrays with sparse crossline receiver sampling by developing an automatic detection of 

seismic body-wave events because in the SI process they contribute to the retrieval of 

reflections.

Using large-N arrays for long passive-recording campaigns creates demand for the development 

of robust and efficient ways to analyze huge ambient-noise data sets (Hansen et al., 2015). 

These involve: QC methods (McNamara et al., 2009), processing techniques (Bensen et al., 

2007), and different detection methods (Yoon et al., 2015; Li et al., 2018). The latter aim to 

extract portions of the recorded wavefield characterized by common metrics. For ambient-noise 

processing methods some effective solutions are beamforming (Rost and Thomas, 2002), 

illumination diagnosis (Almagro Vidal et al., 2014; Panea et al., 2014), coherency filtering 

(Nakata et al., 2015), selective stacking (Nakata et al. 2015; Olivier et al., 2016), and filtering 

based on singular-value decomposition (SVD, Melo et al., 2013; Moreau et al., 2017). In terms 

of detection methods, some interesting examples include source-scanning algorithms (Kao et 

al., 2004), template matching (Shelly et al., 2007), the STA/LTA technique (Allen, 1978), the 

fuzzy-logic method (Cercone, 1993), and a recently developed local-similarity approach (Li et 

al., 2018) allowing detection of very weak events recorded with large-N arrays.

This distinction between processing and detection methods is somewhat artificial. For instance, 

reflection imaging with passive SI involves suppressing the surface waves, which can be 

achieved using methods emerging from both categories. These can include selecting parts of 

the wavefield using a variety of beamforming methods: plane-wave beamforming (Draganov 

et al., 2013), spherical beamforming (Johnson and Dudgeon, 1993; Roots et al., 2017), double 

beamforming (Nakata et al., 2016; Roux et al., 2016), multi-rate beamforming (Corciulo et al., 

2012), the MUSIC spectral method (Yunhuo et al., 2017), and selective-stacking algorithms 

(Nakata et al., 2015; Olivier et al., 2016). Beamforming combined with other filtering 
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techniques. like SVD, can be used for enhancing the signal-to-noise ratio (SNR) of recorded 

arrivals or to detect the weak seismic events originally obscured by noise (Corciulo et al., 2012). 

Similarly, selective-stacking techniques are essentially detection methods, which, depending 

on the S/N in the desired arrival-time window evaluated on crosscorrelated data, reject the 

unnecessary parts of the ambient-noise wavefield. Therefore, a detection method can also be 

thought of as (1) a processing technique that filters out the undesired parts of the wavefield and 

(2) as a QC method that provides quantitative metrics about the whole data set. An example of 

such a tool is the InterLoc method proposed by Dales et al. (2017), where a beamforming-like 

approach is used to analyze the noise-correlation functions obtained from an underground 

network of receivers to detect seismic events induced by underground mine activity. 

Another effective way to extract body-wave arrivals from ambient-noise recordings is the 

illumination-diagnosis method introduced by Almagro Vidal et al. (2014), which requires 

acquisition with receivers that are sufficiently well spaced in both the inline and crossline 

directions, e.g., having two or more crossing lines with the same or sufficient spacing along the 

lines. This method is closely related to beamforming. In beamforming, the average illumination 

along the receiver array is analyzed, while in illumination diagnosis the analysis is done exactly 

at the location of a virtual source, thus increasing its ability to detect events recorded with a 

selected subset of a seismic array. The illumination-diagnosis method has already been 

successfully applied to ambient-noise recordings (Panea et al., 2014; Cheraghi et al., 2017). 

However, in both cases, two orthogonal receiver lines were available, which allowed for the 

discrimination between body and surface-wave events. In this paper, we investigate the 

possibility of applying illumination diagnosis when the receiver spacing in the crossline 

direction is relatively coarse (i.e., as in conventional land 3D seismic surveys). We propose a 

two-step wavefield evaluation and event detection (TWEED) that is designed to overcome the 

insufficient crossline receiver spacing by simultaneous analysis along several parallel receiver 
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lines. In this sense, TWEED is a new implementation of the illumination-diagnosis method of 

Almagro Vidal et al. (2014) that is less demanding on the acquisition geometry as it does not 

require sufficient sampling in the crossline direction.

While detection of body-wave events is beneficial for imaging with SI, we also identify other 

areas where such detected events might contribute as valuable input, such as microseismic 

imaging (Reshetnikov et al., 2009), reverse vertical seismic profiling using ambient noise 

(Quiros et al., 2017), monitoring mine activity (Dales et al., 2017), and reflection tomography 

(Jousset et al., 2016). In fact, any huge ambient-noise data set can be scanned for the desired 

type of seismic events, when more than one receiver line is available. 

We demonstrate the effectiveness of the TWEED method on both synthetic and field data. The 

field data is one month of continuous ambient-noise recordings from a large-N array deployed 

in the Kylylahti area, Eastern Finland, where an active underground mine is operated by 

Boliden. Furthermore, motivated by the recent examples of effective applications of machine-

learning techniques to ambient-noise data sets (Li et al., 2018) and active-source data in an 

underground mine (Olivier et al., 2018), we investigate the feasibility of machine learning in 

detection of body-wave events. Our aim is to develop an efficient and robust automatic 

detection method; therefore, we examine the possibility of replacing the second step in TWEED 

by a Support Vector Machine (SVM) classifier with the aim to improve the time efficiency of 

the body-wave detection.

First, we introduce the theory underlying our detection method and describe TWEED as an 

extension of the technique introduced by Almagro Vidal et al. (2014) to 3D along separate lines. 

We show the results of applying TWEED on synthetic 3D data simulating two cases of transient 

sources: a source at the surface (generating primarily surface-wave energy) and a source placed 

deeper in the subsurface (giving rise primarily to body-wave energy). By comparing the results 

obtained with our method for these two cases, we show the necessity of the second step in 
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TWEED. Subsequently, we apply our method to the ambient-noise data recorded over the 

Kylylahti mine. We evaluate the detection along three adjacent receiver lines deployed in a 

spatial configuration very similar to the synthetic experiment. In the final section, we test the 

SVM technique on the same data set and compare it to the results obtained with TWEED, with 

the latter considered at as the ground truth in this case. For the SVM, we use slowness values 

obtained exclusively from the first step of TWEED as input features. Finally, based on the 

results obtained using TWEED and SVM, we highlight the potential practical applications for 

both methods.

THEORY OF TWEED

A single ambient-noise event can be considered as a group of transient waveforms radiated 

from a localized natural or man-made seismic source (Bormann, 1998). If such sources are 

acting separately in time, they can be effectively recorded and divided into short recording 

segments called panels. Illumination characteristics of a transient source can be studied in a 

virtual common-source panel (van der Neut et al., 2011; Almagro Vidal et al., 2014), which can 

be described as 

, (1)𝐶𝑆(𝒙𝐵,𝒙𝐴,𝑡) =
1

𝑝𝑐(𝑢𝑜𝑏𝑠(𝑥𝐴,𝑥𝑆, ― 𝑡) ∗ 𝑢obs(𝑥𝐵,𝑥𝑆,𝑡))

as if a source were located at receiver  that emits energy within a limited window of angles 𝒙𝐴

to multiple receivers , where ρ and c are the constant mass density and velocity of the medium 𝒙𝐵

at and outside ∂D, respectively; ∗ denotes time convolution; and   is the time-𝑢obs (𝑥𝐴,𝑥𝑆, ― 𝑡)

reversed wavefield observed at  due to a transient source at . The ray parameter of the event 𝒙𝐴 𝑥𝑆

passing through time t=0 s at the location of receiver  (master trace, i.e., the virtual-source 𝑥𝐴

location) provides a measure of the illumination characteristics of the dominant transient source 

captured in a given noise panel. Therefore, this ray parameter is a potential tool to discriminate 

between different types of seismic events, e.g., between surface and body waves. An efficient 
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way to evaluate the ray parameter is the slant-stack transform (Chapman, 1981). In a noise panel 

recorded by a single receiver line, both surface- and body-wave events could be recorded as 

wavefronts with high apparent velocity (see Figure 1a). To distinguish between these two types 

of events, we introduce the TWEED. In the first step, we use the slant-stack transform of field 

, , where  is the ray parameter, x is the offset, and  is the intercept 𝑣 𝑣(𝑝,𝜏) = ∫𝑣(𝑥,𝜏 + 𝑝𝑥)𝑑𝑥 𝑝 𝜏

time at . We evaluate the slant stack at s for each virtual common-source panel :𝑝 = 0 𝜏 = 0 𝐶𝑆

, (2)𝐶𝑆(𝒙𝐴,𝒑) = ∫𝐶𝑆[𝑥𝐵, 𝑥𝐴,𝒑 ∙ (𝑥𝐵 ― 𝑥𝐴)]𝑑𝑥𝐵

where  is the representation of the virtual-source function of the transient source S in the 𝐶𝑆

 domain. Therefore,  describes the dominant ray-parameter contribution from the 𝜏 ― p 𝐶𝑆

transient source to the virtual source located at  and recorded at . Then, a discrimination 𝑥𝐴 𝑥𝐵

test is performed by comparing the dominant ray-parameter value  with the 𝑚𝑎𝑥(‖𝐶𝑠
𝐿(𝑥𝐴,𝒑)‖)

predefined ray-parameter threshold :𝑝𝑙𝑖𝑚𝑖𝑡

,      𝐶𝑆
𝐿(𝒙𝐵,𝒙𝐴,𝑡) = { 0                                                             𝑖𝑓   𝑚𝑎𝑥(‖𝐶𝑠

𝐿(𝑥𝐴,𝒑)‖) > 𝑝𝑙𝑖𝑚𝑖𝑡
1

𝑝𝑐(𝑢𝑜𝑏𝑠′(𝑥𝐴,𝑥𝑆, ― 𝑡) ∗ 𝑢obs(𝑥𝐵,𝑥𝑆,𝑡))   𝑖𝑓   𝑚𝑎𝑥(‖𝐶𝑠
𝐿(𝑥𝐴,𝒑)‖) ≤ 𝑝𝑙𝑖𝑚𝑖𝑡         

(3)

where  is the expected minimum value of the P-wave slowness in the recording area. Note 𝑝𝑙𝑖𝑚𝑖𝑡

that the only difference of the first step of this method and the one introduced by Almagro Vidal 

et al. (2014) is that for a given time period we perform this analysis on noise panels recorded 

simultaneously at several parallel recording lines, indicated by subscript L, instead of a single 

receiver line, hence extending this illumination analysis to 3D surveys along separate lines. 

In the second step, we utilize the observation that a body-wave event arriving at the recording 

array from below should be recorded by several receiver lines with a time difference much 

smaller than that expected for surface waves. In general, this time difference would go to zero 
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as the wavefront approaches the shape of a vertical plane wave. Since we are interested in the 

arrival time of an event, the second step is evaluated on noise panels in the time domain. In this 

step, we scan the noise panels using a sliding time window. We evaluate the ray parameter of 

the dominant event within each time window and determine the event with the highest slant-

stack value for the whole panel. Given the difference of arrival times  for this event from △ 𝑡𝑖

the i-th parallel receiver line, and the distance between them , the apparent slowness  in △ 𝑥𝑖 𝒑𝑐𝑙

the crossline direction is estimated: 

. (4)𝒑𝑐𝑙 =
△ 𝑡𝑖

△ 𝑥𝑖
 

Depending on the predefined body-wave velocity limit, a decision about the type of event is 

made: 

(5)𝑈𝑜𝑏𝑠
𝐿 (𝑡) = { 0          𝑖𝑓 𝒑𝑐1 ∧ 𝒑𝑐2 > 𝑝𝑙𝑖𝑚𝑖𝑡  

𝑢𝑜𝑏𝑠
𝑏𝑜𝑑𝑦     𝑖𝑓 𝒑𝑐1 ∧ 𝒑𝑐2 ≤ 𝑝𝑙𝑖𝑚𝑖𝑡       

,   

where  means logical conjunction (the terms on both sides of the sign must be satisfied to ∧

consider the statement as true),   denotes the noise panel after passing the first step, and 𝑈𝑜𝑏𝑠
𝐿 (𝑡)

 denotes noise panel classified as containing a body-wave event. Note, that we will also 𝑢𝑜𝑏𝑠
𝑏𝑜𝑑𝑦

use the results of TWEED to generate features for an SVM classification, as will be described 

in the section Field-Data Application.

SYNTHETIC TEST

In this section, we present the application of TWEED to synthetic data. We investigate two 

different cases to highlight the relevance of both steps in our method: (1) a surface transient 

source located 1000 m away from the array (case S1) and (2) a transient source located 1000 m 

below the center of the array (case S2). In both cases, the subsurface is homogeneous. Case S1 

represents ambient-noise source located at the surface and oriented in a direction perpendicular 
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to the receiver lines. Because the source is at the surface and the model is homogeneous, the 

source mainly gives rise to surface waves, as diving waves are not present. Thus, this model is 

used to test surface-wave detection. Case S2 represents a transient source which mimics an 

underground mine blast. Because the source is in the subsurface and the model is homogeneous, 

this source gives rise to relatively stronger body waves. Therefore, this case is used to test body-

wave detection. In Figure 1c, we show the modeling setup with the two transient sources for 

which we perform the slowness discrimination. Figure 2 shows the results of TWEED – for 

case S1 in Figure 2a and for case S2 in Figure 2b. The green lines in the picture denote the 

range of scanned ray parameters (we choose values of ±0.8 s/km in order to ensure that all 

expected surface waves are scanned). The red lines denote predefined limits of expected 

slowness values for body waves (0.2 s/km), i.e., any value falling inside this area is 

automatically accepted. The slope of the blue line indicates the value of the picked dominant 

ray parameter . Note that discrimination between the two types of events – body and 𝑝𝑀𝐴𝑋

surface waves – is only possible because the wavefield is recorded at more than one receiver 

line. The summary of the illumination diagnosis performed for both cases is presented in Table 

1. Because of the high apparent velocities picked in the virtual common-source panels, both 

models passed the first step. The discrimination between the two types of waves is possible 

only when we consider the arrival times of the analyzed events. As a result of the second step, 

energy travelling from below the array is distinguished from energy travelling along the surface.

Table 1. Results of TWEED for synthetic and field data. All values are given in km/s.

Case S1 Case S2 Field example 
(scheduled mine blast)

Field example 
(unscheduled mine 
event)

Inline 
velocities

Crossline
velocity

Inline 
velocities

Crossline
velocity

Inline 
velocities

Crossline 
velocity

Inline 
velocities

Crossline 
velocity
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7.4; 
6.3; 
5.4

<5
18.2;
16.2; 
18.2

>5
14.29; 
11.11; 
14.25

>5
13.4; 
10.11; 
12.4

>5

FIELD-DATA APPLICATION

In this section, we apply TWEED to ambient noise recorded by the Kylylahti array. The array 

was deployed in the vicinity of the Kylylahti polymetallic mine in Polvijärvi (Eastern Finland) 

as a part of the COGITO-MIN project. The COGITO-MIN (Cost-effective Geophysical 

Imaging Techniques for supporting Ongoing Mineral exploration in Europe) project tackles in 

particular the cost aspects of mineral exploration by testing various novel seismic exploration 

technologies for high-resolution resource delineation (Koivisto et al. 2018). The Kylylahti array 

(Figure 3) consisted of 994 receiver stations distributed regularly over a 3.5 x 3 km area with 

200 m line spacing and 50 m inline receiver spacing. Each receiver station was equipped with 

a bunched string of six 10-Hz vertical-component geophones and wireless data logger, 

recording noise at 2 ms for 20 hours per day for 30 days, resulting in ~600 hours of passive 

seismic data. 

The survey area is located in the direct vicinity of the Polvijärvi town (population of > 4000) 

providing abundant noise sources for the survey. Two fairly busy state roads cut through the 

whole survey area. The Kylylahti mining area is located to the northwest from a roundabout 

(Figure 3). Access to the mine is along gravel roads, used extensively by hauling trucks. The 

Kylylahti mine was active during the whole recording period. Routine mining activities 

included: drillings (surface and underground), transporting ore and waste rock (surface and 

underground), scaling (underground) and mine ventilation (surface) among others. Other 

sources generating strong energy are the mine blasts, which occurred daily at depths ranging 

from a few hundred meters down to approximately 1000 m.

Page 11 of 44 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12

To test our detection algorithm, we first use only one hour of noise recorded by the Kylylahti 

array. For this test, we select an hour during which a scheduled mine blast took place. We scan 

the data in 10-s-long noise panels overlapping each other by 10%. We use mine blasts to 

benchmark our detection algorithm because they usually exhibit very high amplitudes and the 

times of their occurrence are approximately known. Figure 4 shows a mine blast which was 

detected and Figure 5 shows another body-wave event (not related to a mine blast) detected 

during the same hour. Figures 6a and 6b show the results of applying TWEED to the mine blast 

and the body-wave event not related to the blasting, respectively. The body-wave event shown 

in Figure 5 exhibits lower amplitudes compared to the amplitudes of the mine blast (compare 

with Figure 4). Inspection of the correlated panels of the weaker event (Figure 6b, top row) 

indicates low S/N of the dominant event, as it is barely visible; however, by limiting the analysis 

to around t=0 s, we can effectively determine the slowness of the dominant event. We suspect 

that this event is likely related to the routine mining activities.  Table 1 summarizes the 

evaluated apparent velocities for the two events. Overall, for this hour-long noise panel, we 

detect seven different body-wave events.

In the next step, we run our method on the full data set, i.e., 600 hours of recordings. The 

resulting time distribution of the detected events is presented in Figure 7. Figure 7a presents the 

average distribution of noise sources per hour during one day and Figure 7b shows the number 

of detected events for each day. Both graphs indicate persistent presence of body-wave events 

during the whole recording period. The high activity of noise sources at 5pm local time (see 

Figure 7a) is related to the scheduled mine shooting and the high activity in the evening (5pm 

– 12 pm) is related to mine cleaning after the blast. The lower number of detected events in 

periods when an active seismic survey was done (denoted with grey bars) is due to the fact that 

at those times underground in-mine vertical seismic profiling shots were not performed, to 

avoid interference with the controlled surface shots, while such in-mine shots were performed 
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outside those times. The distribution of body-wave events during the one month of recording 

(see Figure 7b) shows the presence of noise sources for each day of the recording with some 

days exhibiting higher numbers of detected body-wave events. For the whole recording period, 

we detect 1093 events.

SVM applied to the field data

Above, we show results of detecting body-wave events using TWEED. We demonstrate with 

the synthetic example that the second step of the method is necessary to distinguish body-wave 

events from surface waves. The question we pose here is whether we can omit the second 

(computationally costly!) step and still obtain reasonable detections? Towards answering this 

question, we employ an SVM algorithm in a binary seismic-event classification problem (body-

wave vs non-body-wave event). SVM is a supervised machine-learning method based on 

statistical learning theory (Vapnik, 1998). The key idea in this method is to find the line 

(hyperplane) that splits (i.e., classifies) the input-variable space. This hyperplane is learned 

from training data using an optimization procedure that maximizes the distance margin between 

the line and the closest data points. The general procedure is as follows. (1) First, SVM maps 

the input data into the high-dimensional subspace using a nonlinear mapping chosen a-priori. 

The mapping process is performed using a set of functions, known as kernels. (2) Then, the 

hyperplane is selected to best separate the points in the input-variable space by their class. (3) 

Finally, the prediction about class for yet-unclassified data is made based on which side of the 

gap dictated by the hyperplane the data fall into.

Here, we use SVM to classify the input noise panels based on their illumination characteristics 

into either containing a body-wave event or not. As the input features, we select the dominant 

ray parameter of the event passing through time zero at the position of the virtual source in a 

virtual common-source panel ( ) and the mean value of the three ray 𝑝𝑀𝐴𝑋 = 𝑚𝑎𝑥(‖𝐶𝑠
𝐿(𝑥𝐴,𝒑)‖)
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parameters characterized by the three highest values of the slant-stack-transformed virtual 

common-source panel evaluated at t = 0 s ( ), where  denotes the i-th 𝑝𝑀𝐴𝑋 =
1
3∑3

𝑖 = 1𝑝𝑀𝐴𝑋𝑖 𝑝𝑀𝐴𝑋𝑖

highest value of the picked ray parameter. We choose these values because they are obtained 

from the first step of our illumination-diagnosis method. 

Since the whole data set has been already scanned with TWEED, we have data ready to be used 

in SVM. We first evaluate the performance of SVM on a small subset of the data and test it on 

the same hour of noise which served as the benchmark for TWEED in the previous section. As 

mentioned before, we perform noise scanning with TWEED in 10-s long windows with 10% 

overlap, therefore one hour of recorded seismic noise provides 399 separate noise panels as the 

input for SVM. We split the data into training and test sets with the ratio of 0.8, and as the 

kernel function we select the Gaussian function (Smola and Schölkopf, 2004). To focus on the 

influence of parameters derived from the seismic data, the other settings are set to values 

suggested in Pedregosa et al. (2011). Figure 8 shows the results of applying SVM to the 

ambient-noise recordings from the Kylylahti array. We compare the SVM classification against 

the result from TWEED, or in other words, we use the latter as the ground truth. Thus, we 

cannot outperform the result from TWEED in the number of picked body-wave events, but we 

aim to shorten the time for the second step in TWEED by exchanging it for SVM.

The results show that, in general, the model is able to distinguish (see Figure 8a) and predict 

(see Figure 8b) between the two classes of seismic noise panels when provided with their basic 

slowness characteristics – we observe clearly visible binary clustering. The small overlap 

between gray and black points (some gray points falling into the black area and vice versa) 

could be attributed to the fact that surface sources at relatively far distances in the crossline 

direction can be recorded as events with high apparent velocity (see Figure 1a, 2a). Note that 

values displayed in this graph are subjected to feature scaling, which is a conventional step in 

SVM data preprocessing (Pedregosa et al., 2011). To describe our results more quantitatively, 
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we show the confusion matrices (see Figure 9). Confusion matrices show the number of correct 

and incorrect predictions from a machine-learning model. When the model predicts the actual 

class, the sample is listed on the diagonal of the confusion matrix. When the model predicts the 

wrong class, the sample is listed off the diagonal. From the training-set confusion matrices 

presented in Figure 9, we see that from the total of 319 noise recordings, SVM was able to 

correctly predict 303 non-body-wave events and 5 out of the 7 body-wave events. 

A representative example of an incorrect detection obtained with SVM is presented in Figure 

10. It exhibits a high-amplitude surface-wave event originating in the vicinity of the receiver 

lines selected for TWEED. This event manifests itself as sequence of hyperbolic wavefronts 

likely related to road traffic. The reason for its detection is explained by the modeling results 

shown in Figures 1a and 2a. We feed the SVM with slowness parameters obtained from the 

first step of TWEED. For the event presented in Figure 10, the apparent velocities evaluated in 

the correlated panel are relatively high (>5km/s) and thus similar to the P-wave velocity. As we 

see in the inset of Figure 10, a package of hyperbola apexes for this event arrives with a delay 

from one of the lines selected for TWEED to another. Based on the value of this delay, the 

evaluation of the second step of TWEED allows us to label this event as a surface-wave event. 

We use the results derived from the whole recording period (600 hours of ambient-noise 

recordings) to evaluate the performance of SVM with a bigger training set. Before applying 

SVM, we pre-process the data by removing ray parameters with values of 0 as well as values 

that are too high (equal to the high-end limits of the scanning range). Figures 8c and 8d show 

the 2D plots for the training and test sets. In general, we can see that SVM is able to distinguish 

between the two groups of events – body waves and surface waves. The clustering shape visible 

in the results obtained for the hour-long data is sustained. Note that we again compare the SVM 

results against the result from TWEED.
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The evaluation of the SVM model accuracy depends on the choice of the test set, therefore it is 

not very relevant to judge the model performance on only one test. To overcome this problem, 

a cross-validation test is usually performed. In this approach, we split the training set into k 

folds (the default value is 10). We train our model on 9 folds and test it on the remaining fold. 

As a result, we can train our model on 10 different combinations of training and test sets, which 

provides us 10 different model accuracies. Below we show the mean value of these 10 

accuracies and its standard deviation for the SVM performance tested with the two sets of data. 

Table 2. Cross-validation results

Average accuracy Standard deviation

Training set Test set Training set Test set

Small subset 0.963 0.962 0.026000 0.058324

Whole data 0.997 0.997 0.000239 0.000680

The detection results obtained from TWEED were visually inspected for their correctness, 

which justifies our use of them as a ground truth in this study. As we write above, SVM 

provided with labels obtained from the first step of TWEED cannot outperform the full two-

step TWEED in the detection of body-wave events. Figure 8 shows the results obtained with 

SVM using two input features, which were effectively the slowness parameters averaged over 

three recording lines. Instead of averaging, the input features can be obtained from each line 

separately, effectively providing two slowness parameters for each line, i.e., six input features 

instead of two. To investigate how the behavior of SVM could be influenced by another 

selection of input features, we test the SVM using various combinations of those six values. We 

find that the best detection rate can be achieved using four input features, namely:  for  𝑝𝑀𝐴𝑋

each recording line and the  for the central receiver line. Confusion matrices for SVM 𝑝𝑀𝐴𝑋
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provided with those features (Figure 11) indicate that by careful selection of input features the 

detection accuracy of body wave-events is improved by approximately 13 %.

Computational cost of TWEED and SVM

The actual computational time depends on the working environment, i.e., computational 

resources. Therefore, in this study we compare the computational time of TWEED and SVM 

using relative values. Running TWEED on the whole data set (600 hours of ambient noise 

recorded by ~1000 receivers) takes around 150% the time of the hybrid approach combining 

the first step of TWEED and SVM with two input features. We consider SVM with two input 

features as a compromise between the accuracy and speed. The hybrid approach with the first 

step of TWEED followed by SVM with four input features (striving for a higher detection 

accuracy compared to just two input features) takes 70% of the time needed for running 

TWEED on the whole data set. Please note that the above values are subjective numbers and 

might be specific for this study. In general, the important factors influencing any detection study 

using the methodology described above would be: (i) computing resources, (ii) ratio of data 

distribution between TWEED and SVM, and (iii) number of input features. These factors will 

likely vary for one case study to another. We argue that using four input features should be a 

reasonable choice for an initial run, because the relatively small increase in computational cost 

(compared to two input features) provides increased accuracy.

DISCUSSION

In this study, we show results of detecting body-wave events based on their slowness 

characteristics. Seismic-event detection naturally forms a binary classification problem. We 

approach this using two methods: an automated thresholding method (TWEED) and SVM. 

Using TWEED, we are able to effectively scan our data and detect ~1000 events distributed 

over 600 hours of ambient-noise recordings from the array of ~1000 sensors. Our method is 
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robust as it requires very limited previous knowledge – just the lowest velocities of presumed 

body-wave events in the recording area need to be known. Secondly, it can be easily adapted to 

other types of events by adjusting the predefined slowness thresholds. By adjusting the range 

of the scanned ray parameters and arrival-time differences of the target events, TWEED can be 

used for detecting noise sources located in areas providing optimal illumination, which could 

be important for selective stacking used in passive SI imaging.

The robustness is also related to applying the simplest form of stacking, which is linear. Even 

though we use this simplest form of slowness-illumination diagnosis (linear slant-stack) more 

sophisticated algorithms can be easily implemented (e.g., hyperbolic, parabolic, etc.). In fact, 

any type of coherent signal considered to be a seismic event could be scanned for by measuring 

its similarity to the specified pattern. 

TWEED showed its effectiveness in detecting both strong body-wave events such as mine 

blasts and weaker body-wave events related to other underground mining activities. As a result 

of analyzing the virtual common-source panels in the first step of TWEED, the detection is 

limited to the strongest transient source acting in a given short time period. For detecting weaker 

sources, the raw noise recordings should be subjected to simple amplitude normalization (e.g., 

trace balancing; Draganov et al., 2007) together with band-pass filtering to enhance the desired 

type of an event (Draganov et al., 2009; Quiros et al., 2016). 

Our method can be used for a variety of different acquisition geometries, provided that at least 

two receiver lines (or approximations of lines) with sufficiently dense (to avoid aliasing) inline 

sampling are available. However, the key requirement for TWEED depends on the ambient-

noise wavefield in the area, i.e., the energy of the seismic events present in the recording area 

should be sufficiently high to be recorded by a few separate receiver lines. 
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One of our primary goals was to develop a real-time data-scanning tool. Imaging body-wave 

reflections using SI requires body-wave events present in the noise recordings (Draganov et al., 

2013). Therefore, having an idea of the body-wave content in our recordings would constitute 

an effective quality-control tool for ambient-noise SI, which can be used, e.g., to determine for 

how long a given array should be deployed. For such an application, the computation time 

becomes a crucial parameter. Even though TWEED is effective, in some cases of clear body-

wave arrivals evaluating both steps might not be desirable due to required computation times. 

We apply an SVM technique to investigate the possibility of bypassing the second step in our 

method, and thus obtain a more time-efficient method. In most cases, slowness values derived 

only from correlated panels contain sufficient information to recognize body-wave events using 

SVM. The results shown for one-hour-long panel indicate that in fact the number of input data 

does not have to be large. 

As shown in many field experiments, surface measurements in areas with human activity are 

usually dominated by near-surface sources (Draganov et al., 2013; Cheraghi et al., 2015; Nakata 

et al., 2015). This means that usually the number of body-wave events is small compared to the 

surface-waves activity. In our case, we observe good performance of SVM providing only 

seven body-wave events and 392 surface-waves panels. This test proves its feasibility for 

ambient-noise measurements done at the surface. It shows also that compared to TWEED, the 

SVM approach is more biased by surface-wave content of the recorded ambient-noise 

wavefield. The results of SVM for the whole data set do not dramatically affect the prediction 

accuracy, so we argue that captured body-wave events manifest themselves with similar ray-

parameter characteristics during the whole recording period. The relatively high detection rate 

for SVM suggests that the choice of input parameters was adequate. On the other hand, the 

overlapping pattern visible in Figure 8c suggests that the SVM performance could be further 

increased. Changing the input features, adjustment of hyper-parameters, and multidimensional 
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scaling with additional input features are potential solutions for improving the SVM 

performance. Our primary objective in applying SVM is to remove the need for the second step 

in TWEED, therefore the choice of input features was limited to ray parameters derived 

exclusively from the first step. While the dominant ray parameter is a natural choice, the average 

of the three highest parameters is somewhat experimental in terms of choice. Its effectiveness 

might be related to the fact that the mine activities generate body-wave events which reach our 

array in the form of several wavefronts appearing as several strong events around time 0 in the 

correlated panels. The lower number of detected body-wave events in comparison to TWEED 

might be acceptable when real-time detection for very long recordings with lower 

computational costs is desirable. 

The virtual common-shot panels in TWEED are derived from correlating the central trace of a 

given noise panel with the complete panel. The user-dependent parameters in TWEED are: (1) 

locations of receiver lines selected for analysis, (2) number of those lines, and (3) location of 

the master trace. If the central receiver is a dead trace or exhibits poor S/N, the adjacent receiver 

could be chosen as a virtual source as well. We recommend selecting a subset of lines which is 

representative for the whole recording array. By this, we mean that events recorded by the 

central lines of the array are more likely to be recorded by the whole array than events recorded 

by peripheral lines chosen only from one side of the array. The number of the chosen receiver 

lines significantly increases the computational cost of the automatic detection; therefore, it 

should be kept as low as possible yet guaranteeing the highest number of correct detections 

while minimizing the false ones. For the Kylylahti array, by means of a trial-and-error approach 

combined with visual inspection of detected panels, we find that three lines is the most optimal 

choice balancing the computational effort and accuracy of detections. The computational 

efficiency could further be increased if the number of receivers per line is reduced. This could 

be done if an initial number of detected events shows that the illumination angles and 
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frequencies of the dominant body-wave events allow inline receiver decimation (e.g., taking 

every second receiver). Such a choice, though, might lead to aliasing of the recorded surface-

wave noise. Thus, opting for an inline receiver decimation should be done after careful 

evaluation of the risks of aliased surface waves against the gains in computation.

In our illumination diagnosis, we rely on the ray parameters of events in the noise panels. In 

general, the range of the values seen for the field data can be explained by a source placed 1000 

m below the center of the recording array as shown using the synthetic data. Lower ray-

parameter values for the field data suggest that sources captured by the Kylylahti array are 

distributed at shallower depths (<1000 m). The values of the dominant ray parameters evaluated 

in the first step of the illumination diagnosis would increase with increasing depth of a given 

transient source. Furthermore, if the location of a source acting in a given panel deviates from 

the center of the receiver array, this will be detected via a shift in minimum value of the picked 

ray parameter from the middle receiver line to the peripheral lines taken for analysis. 

Incorporating this knowledge would allow TWEED to also be used for favoring noise sources 

located in the desired stationary-phase areas (Forghani and Snieder, 2010) and, consequently, 

using it as a robust selective-stacking technique commonly used in passive SI processing 

(Draganov et al., 2013; Nakata et al., 2015; Olivier et al., 2016).  

In this study, by using just two simple parameters, we are able to discriminate between two 

basic types of seismic events (body wave or not). However, our method can be modified to scan 

for ambient-noise events of more complex characteristics. It seems viable to be able to provide 

a more precise description of the ambient-noise wavefields by decomposing them into several 

classes of seismic events by utilizing clustering machine-learning techniques or neural 

networks, e.g., Convolutional Neural Networks (CNN). In general, if we expect the passive 

array to be illuminated from several main directions during its recording time, e.g., a mine, a 

crusher, a power plant, a nearby town, a main road, etc., SVM could be the method of choice. 
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If we do not have a priori expectations about the main illumination directions of the passive 

arrays, e.g., area with little or continuously changing anthropogenic noise, we should consider 

other machine-learning techniques. SVM provides relatively good results with a small number 

of input features, so the target seismic waves must be distinguishable by some fundamental 

feature (like ray parameter in this study). In areas with more complex ambient seismic noise, 

random noise of unknown nature might hinder describing coherent seismic events using 

mathematical expressions. Thus, it would be more difficult to choose one feature by which we 

could discriminate between types of waves. Therefore, techniques benefiting from not obvious 

relations between different input features should be considered. A good example of such 

techniques are CNNs which are capable of distinguishing complex shapes in 2D images 

(Krizhevsky et al., 2012). Inspired by the results presented in this study, we recommend two 

different approaches for binary seismic-event detection on large volumes of ambient-noise data: 

(1) application of TWEED for thorough and precise information and extraction of body-wave 

events, and (2) a hybrid approach combining the application of the full TWEED only to a small 

subset of the data (e.g., a few hours of noise) and then the consecutive application of the SVM 

model, trained with this small subset, to the whole (remaining or coming from real-time 

recording) data set. SVM uses ray parameters derived only from virtual common-shot panels 

(i.e., from the first step of TWEED). This approach can be used for a fast QC of recordings to 

provide general metrics about the body-wave content or for real-time evaluation of very large 

and long datasets, rather than extracting every single event. 

CONCLUSIONS

We investigated the feasibility of an automatic illumination-diagnosis method and a machine-

learning approach for binary detection of body-wave events in ambient seismic noise recorded 

by large-number receiver arrays. For this purpose, we developed an automatic two-step 

wavefield evaluation and event detection (TWEED), which is an extension of an illumination-
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diagnosis method introduced previously for crossing lines to 3D seismic surveys with non-

crossing lines. We evaluated the illumination characteristics of noise panels by simultaneous 

analysis along several receiver lines. Because of these characteristics, our method becomes an 

efficient detection tool when geophone arrays with sparse crossline sampling are used (as in 

conventional 3D seismic surveys). Using synthetic data, we demonstrated that our method is 

able to discriminate between two basic seismic event types (body-wave vs surface-wave event). 

We validated our method with ~600 hours of ambient-noise data recorded by a ~1000 receiver 

array deployed over an active underground Kylylahti mine in Eastern Finland. We showed that 

our method is efficient in detecting evident seismic events like mine blasts, but also weaker 

events related to routine underground mining activities.

We also investigated the possibility of decreasing the computational costs required for detecting 

body-wave events by employing a support vector-machine (SVM) technique, using as input 

feature slowness parameters derived from the analysis of correlated noise panels. In this way, 

we effectively limited the analysis to just the first step of TWEED followed by the SVM 

classification. The SVM method performed well and correctly predicted most of the seismic 

events (body and surface waves) in the field data. The good performance achieved with 

relatively few input features suggests that combining the SVM approach with TWEED might 

be a time-efficient solution, since just one hour of the ~600 hours of ambient–noise recordings 

were analyzed before prediction.
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Figure 1. Sketch illustrating the basic concept behind the two-step wavefield evaluation and 

event detection (TWEED). (a) Direct arrivals from sources S1 and S2 recorded at five receivers 

X1 to X5 forming a cross-shaped array. Analysis of arrivals recorded in the crossline direction 

allows for discrimination of the events from S1 and S2 as surface-wave and body-wave events, 

respectively. These events are indistinguishable as such two types in the inline direction. Both 

sources are acting simultaneously and we assume a constant propagation velocity of 5 km/s. (b) 

Configuration of the cross-shaped array formed by the five receivers. (c) Array formed by three 

receiver lines used to provide synthetic data for testing TWEED.

Figure 2. TWEED with synthetic data. Example TWEED evaluations for (a) a surface source 

(case S1) and (b) an underground source (case S2). Virtual common-source panels from the 1st 

step of TWEED (top row) are juxtaposed with the results of the 2nd step (bottom row). Green 

lines indicate the range of scanned slownesses, red lines are the predefined body-wave velocity 

limits, and the blue lines indicate the picked dominant slowness (evaluated in the first step) and 

the time of occurrence of the event (evaluated in second step).  

Figure 3. Layout of the Kylylahti array. Receiver lines used in the study are shown in green.

Figure 4. Scheduled mine event (underground blast) detected with TWEED (as a body-wave 

event). The detected event, recorded by 19 receiver lines, is shown at the top and the relevant 

power spectral density is plotted at the bottom. Green rectangles mark receiver lines selected 

for TWEED. Black rectangles mark the part of the detected event shown in the bottom row in 

Figure 6a.

Figure 5. Event likely related to underground mine activity (other than mine blasts) detected 

with TWEED (as a body-wave event). The detected event recorded by 19 receiver lines is 

shown at the top and the relevant power spectral density is plotted at the bottom. Green 

rectangles mark receiver lines selected for TWEED. Black rectangles mark the part of the 

detected event shown in the bottom row in Figure 6b.
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Figure 6. Performance of TWEED for the two events related to underground mine activity: (a) 

scheduled mine blast shown in Figure 4 and (b) possibly routine mining activity shown in 

Figure 5. The result of TWEED is presented in the same manner as in Figure 2.

Figure 7. Time distribution of body-wave events detected with TWEED. (a) The average 

number of detected events per hour during a recording day. (b) The number of detected events 

for each day of recording. Gray bars indicate periods when active-source shooting also took 

place at the surface, the lighter color denotes the passive recordings. Local time is used.

Figure 8. Performance of the SVM in detection of body-wave events using input features 

derived from the first step of TWEED. Two examples are shown: for one hour of ambient-noise 

recordings (a, b) and using the whole recorded data set (c,d). For both cases, the SVM 

performance is shown for the training set (a,c) and the test set (b,d). For display purposes values 

for both axes are normalized. The color of the dots indicate results obtained from TWEED and 

the shaded regions are those determined by the SVM.

Figure 9. Confusion matrices for the results presented in Figure 8 for the training set (a,c) and 

the test set (b,d). Diagonal numbers (darker colors) denote the number of correct predictions, 

while incorrect predictions are listed off diagonal (lighter colors). Values in brackets denote the 

total number of events in a given subset. Numbers 0 and 1 denote surface-wave and body-wave 

events, respectively.

Figure 10. Event incorrectly detected by SVM. The detected event recorded by 19 receiver 

lines is shown at the top and the relevant power spectral density is plotted at the bottom. The 

inset shows the zoomed parts along the three receiver lines selected for TWEED and indicated 

with black rectangles.   

Figure 11. Confusion matrices for the SVM results obtained with two (a, c) and four input 

features (b, d). Diagonal numbers (darker colors) denote the number of correct predictions, 
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while incorrect predictions are listed off diagonal (lighter colors). For both cases, the SVM 

performance is shown for the training set (a,b) and the test set (c,d). Values in brackets denote 

the total number of events in a given subset. Numbers 0 and 1 denote surface-wave and body-

wave events, respectively.
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Figure 1. Sketch illustrating the basic concept behind the two-step wavefield evaluation and 

event detection (TWEED). (a) Direct arrivals from sources S1 and S2 recorded at five receivers 

X1 to X5 forming a cross-shaped array. Analysis of arrivals recorded in the crossline direction 

allows for discrimination of the events from S1 and S2 as surface-wave and body-wave events, 

respectively. These events are indistinguishable as such two types in the inline direction. Both 

sources are acting simultaneously and we assume a constant propagation velocity of 5 km/s. (b) 

Configuration of the cross-shaped array formed by the five receivers. (c) Array formed by three 

receiver lines used to provide synthetic data for testing TWEED.
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Figure 2. TWEED with synthetic data. Example TWEED evaluations for (a) a surface source 

(case S1) and (b) an underground source (case S2). Virtual common-source panels from the 1st 

step of TWEED (top row) are juxtaposed with the results of the 2nd step (bottom row). Green 

lines indicate the range of scanned slownesses, red lines are the predefined body-wave velocity 

limits, and the blue lines indicate the picked dominant slowness (evaluated in the first step) and 

the time of occurrence of the event (evaluated in second step).  
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Figure 3. Layout of the Kylylahti array. Receiver lines used in the study are shown in green.
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Figure 4. Scheduled mine event (underground blast) detected with TWEED (as a body-wave 

event). The detected event, recorded by 19 receiver lines, is shown at the top and the relevant 

power spectral density is plotted at the bottom. Green rectangles mark receiver lines selected 

for TWEED. Black rectangles mark the part of the detected event shown in the bottom row in 

Figure 6a.
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Figure 5. Event likely related to underground mine activity (other than mine blasts) detected 

with TWEED (as a body-wave event). The detected event recorded by 19 receiver lines is 

shown at the top and the relevant power spectral density is plotted at the bottom. Green 

rectangles mark receiver lines selected for TWEED. Black rectangles mark the part of the 

detected event shown in the bottom row in Figure 6b.
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Figure 6. Performance of TWEED for the two events related to underground mine activity: (a) 

scheduled mine blast shown in Figure 4 and (b) possibly routine mining activity shown in 

Figure 5. The result of TWEED is presented in the same manner as in Figure 2.
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Figure 7. Time distribution of body-wave events detected with TWEED. (a) The average 

number of detected events per hour during a recording day. (b) The number of detected events 

for each day of recording. Gray bars indicate periods when active-source shooting also took 

place at the surface, the lighter color denotes the passive recordings. Local time is used.
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Figure 8. Performance of the SVM in detection of body-wave events using input features 

derived from the first step of TWEED. Two examples are shown: for one hour of ambient-noise 

recordings (a, b) and using the whole recorded data set (c,d). For both cases, the SVM 

performance is shown for the training set (a,c) and the test set (b,d). For display purposes values 

for both axes are normalized. The color of the dots indicate results obtained from TWEED and 

the shaded regions are those determined by the SVM.
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Figure 9. Confusion matrices for the results presented in Figure 8 for the training set (a,c) and 

the test set (b,d). Diagonal numbers (darker colors) denote the number of correct predictions, 

while incorrect predictions are listed off diagonal (lighter colors). Values in brackets denote the 

total number of events in a given subset. Numbers 0 and 1 denote surface-wave and body-wave 

events, respectively.
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Figure 10. Event incorrectly detected by SVM. The detected event recorded by 19 receiver 

lines is shown at the top and the relevant power spectral density is plotted at the bottom. The 

inset shows the zoomed parts along the three receiver lines selected for TWEED and indicated 

with black rectangles.   
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Figure 11. Confusion matrices for the SVM results obtained with two (a, c) and four input 

features (b, d). Diagonal numbers (darker colors) denote the number of correct predictions, 

while incorrect predictions are listed off diagonal (lighter colors). For both cases, the SVM 

performance is shown for the training set (a,b) and the test set (c,d). Values in brackets denote 

the total number of events in a given subset. Numbers 0 and 1 denote surface-wave and body-

wave events, respectively.

Page 44 of 44GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


