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Abstract

In the field of Information Retrieval (IR), test collections are an important part of IR system evaluation. When
evaluating IR systems on a test collection, the results may not accurately represent the performance of the
systems on topics not contained in that test collection. Therefore, we want to get a sense of the accuracy
of results on a given test collection. In this thesis, we use an approach that estimates the accuracy of test
collections by estimating rank correlation between the observed and true mean scores of systems. We further
evaluate this approach on new data and develop interval estimators as well. This way we provide a better
sense of confidence on the system evaluation results by accounting for the inherent variability in sampling
topics.
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1
Introduction

Information retrieval (IR) systems can be found in many aspects of our daily life, and is therefore a widely
researched field. Based on predefined search terms, and the importance of the properties of the informa-
tion being retrieved, an IR system returns results in order of usefulness. One of the most common forms of
IR systems are search engines. Based on a given input query, we expect to receive documents containing
information that is relevant to that specific query.

The relevance of the resulting documents that a system returns decides the satisfaction of a user, which is
why an accurate and reliable way of evaluating the results is much needed. One of the prevalent approaches
to this is to use test collections. These collections contain a corpus of documents, a set of topics, and a
set of relevance judgments that indicate what documents are relevant to the topics (Sanderson, 2010). Test
collections aim to form a representation that is as close to real-life usage as possible. Preferably, we would
like to test the systems on all possible documents and topics that can occur. Generally, this means that test
collections aim to be as large as possible, containing as many topics as possible (Voorhees and Buckley, 2002).
However, creating large test collections that span a wide range of topics is expensive. And in the case of an
infinite amount of possible topics, it will not cover all possible data, however large the test collection may be.
Consequently, test collections should be considered to be a sample of the domain of all possible topics.

As one may expect when comparing multiple systems, the level of effectiveness of them will differ. This
difference can be quantified by evaluation measures. These measures evaluate the results IR systems accord-
ing to the evaluation measure criteria, on topics of the desired purpose. The results of this evaluation depend
heavily not only on the topic set size, but also on which topics are used. The performance of an IR system
can be represented as a distribution over topics, which is only known for the topics it has been evaluated on.
Therefore, we do not know its performance on other topics.

1.1. Motivation
The results returned by evaluating as explained above are strongly reliant on the properties of the test collec-
tion, and don’t necessarily represent the general performance of a system. This raises a few questions: how do
we know which system is really the best according to the given measure? and how sure are we about the reliabil-
ity of an evaluation based on a given test collection? These questions motivate research in the measurement
of the reliability of a test collection.

Currently, the reliability of test collections is commonly evaluated through statistical significance testing
(Smucker et al., 2007) (Cormack and Lynam, 2006). Another way to tackle the problem is to estimate the test
collection accuracy, such as with the split-half method (Voorhees and Buckley, 2002).

To evaluate a system, it is run on all the topics in a test collection. The scores of which are averaged to form
the observed mean score of the system for this test collection. If a test collection would contain all possible
topics, the mean observed score would be the system’s true mean score: the system’s theoretical score when
run on a test collection containing all real-life configurations.

A new method has been proposed to simulate data-sets such that the true mean score is known (Urbano,
2016; Urbano and Nagler, 2018). This way, the estimate computed by some estimator can be compared to the
true mean score to gain insight on the reliability of the test collection.

In this thesis we evaluate an extension to an existing approach by Urbano and Marrero (2016) to measure
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2 1. Introduction

the reliability of a test collection. The goal of the extension is to get a sense of the variability the original
approach may have. We hope to further reinforce the measure of reliability of any test collection evaluated
with this approach.

1.2. Thesis outline
The thesis will be of the following structure: in Chapter 2 some background knowledge is presented, and the
problem of measurement of reliability is further elaborated on. In Chapter 3, related work will be reviewed,
and an overview of the foundation of this project will be given. In Chapter 4 we will go over the approach
of this project, and all methods used. In Chapter 5 the evaluation method and its set-up is defined, and
the results shown. The results of the evaluation will be discussed in Chapter 6, and suggestions for further
research are given. Concluding statements and the contribution of this thesis can be found in Chapter 7.



2
Background

2.1. System evaluation
To be able to see how well an IR system would satisfy real users, we want to evaluate them. There are sev-
eral criteria on which evaluation measures will depend. A list of documents returned by an IR system could
be unordered or ranked. The rank of a document could be taken into account when evaluating, for exam-
ple: penalize a system that ranks relevant documents lowly, or the other way around. Systems may put more
importance in retrieving all relevant documents, or instead most retrieved documents being relevant. Docu-
ments may also have dependencies among each other.

Based on these criteria, evaluation measures have been defined. We will explain those that are relevant to
this thesis here.

2.1.1. Precision & Recall
The most fundamental evaluation measures are precision and recall. Precision is a measure that represents
the number of relevant documents retrieved compared to the total number of retrieved documents:

Pr eci si on = #(relevant documents ∩ retrieved documents)

#(retrieved documents)

Recall represents the number of relevant documents retrieved compared to the total number of relevant doc-
uments:

Recal l = #(relevant documents ∩ retrieved documents)

#(relevant documents)

In cases where only the top few retrieved documents matter, evaluation measures such as P@k can be used.
This stands for Precision at k, which considers only the top k retrieved documents, and applies precision as
described above. In this paper, P@10 will be used.

2.1.2. Average Precision (AP)
While precision and recall look at an un-ordened set of documents, average precision (AP) considers a ranked
list of documents. It therefore considers documents with respect to each other. AP calculates precision for all
documents above each relevant document in the ranking:

AP = 1

#(relevant documents)

n∑
i=1

precision of top i documents · r elevance(i )

where r elevance(i ) is a binary function.
This gives us a way of evaluating high versus low ranked elements, which gives us more precise evaluation.

2.2. Test Collections
One approach of evaluating IR systems is to run them on test collections. These are large collections of data,
containing as many as possible of the following: documents, topics, and relevance judgments. Queries are

3



4 2. Background

possible search terms real users would search for, which are derived from topics (by systems). Topics are
meant to abstract a user’s real world need. Relevance judgments are manually recorded indicators of how
relevant a document is for a topic or query. The purpose of this is to simulate running the systems on many
possible queries and topics it could be presented with, to test how it would preform on real new data.

The IR systems return what they perceive as the relevant documents for a query, which are then com-
pared to the corresponding recorded relevance judgments. This will give the system a score on how well it
performed on that particular query. Here it becomes clear that repeating this for many different queries will
give the best impression of how good the IR system would be at satisfying real user queries. The more queries
we can run the system on, the better it reflects the system’s true performance. At the same time, creating
a large test collection is expensive, and running a system on a large test collection is computationally ex-
pensive. Therefore, when creating a test collection one must balance making it large enough to cover many
representative topics. But small enough such that it is feasible to create one. There is an entire field of study
dedicated to finding the most effective methods of selecting which documents, queries and topics to include
in a test collection (Sanderson, 2010).



3
Related Work

Using the evaluation measures such as the ones mentioned in the previous chapter, it is possible to quantify
the performance of a system. The reliability of these results can be estimated based on several criteria. These
criteria, and some measures that can be used to compare scores will be discussed in this section. First, the
problem of reliability and accuracy is explained in more detail.

3.1. Test Collection Accuracy
Consider a researcher that wants to evaluate some systems on a test collection. We call the test collection X .
The true mean scores of all the systems (according to some effectiveness measure) will be called µ. Since we
don’t know the true mean scores, the goal is to estimate them as accurately as possible with test collection X .

If we did know the true mean scores µ, we could calculate the accuracy of these estimations by comparing
them to µ. Thus, we define this problem as:

A(X ,µ)

where A expresses accuracy as a function. The accuracy reflects how well the test collection reflects the true
performance of the systems, considering the criterion of A.

Depending on which aspects of the test collection we are interested in, the accuracy function A could con-
sider several criteria. For example: it could consider all systems with equal importance, or put more weight
on the top few. It could consider the absolute difference between system scores, or the relative difference. It
could compare the value of scores, or only consider their sign (negative or positive).

3.2. Measures of Accuracy
We will review a few different measures that calculate the accuracy of a test collection. We can already divide
the measures into two categories: ad-hoc (or data-based) measures, and statistical measures. What separates
the two is the criteria on which they measure accuracy of a test collection X with respect to the true mean
scores µ (Urbano, 2016).

3.2.1. Ad-hoc measures
Ad-hoc measures look at whether systems are swapped with respect to their mean scores in the observed
versus true mean scores. This gives us insight on the overall resemblance of the observed and true mean
scores, and therefore the accuracy.

A way to clearly show swaps is to rank the systems according to their mean scores. Then rank correla-
tion can be computed between the two ranked lists of observed and true mean scores. Two popular rank
correlation measures that will be used in this thesis are Kendall’s τ and τAP . 1

1Under some effectiveness measures, systems are likely to have the same mean score, so different formulations may be used. However,
this goes beyond the scope of this thesis. For the treatment of these cases, the reader is referred to (Kendall, 1948; Urbano and Marrero,
2017)

5



6 3. Related Work

Kendall τ
In 1938, Kendall published a new measure of rank correlation (Kendall, 1938). It is a method to be able to
quantify the similarity between two ranked lists (Sakai and Kando, 2008; Voorhees, 2001). In our case, the
elements in these lists are IR systems. The Kendall τ rank correlation compares an element to each other
element, and records +1 if the pair is in the correct/same relative order, and −1 if it is not. This is done for
each element pair. The total is summed and divided by the maximum score. When pairs are in the same
relative order, they are called a concordant pair, if they are swapped they are called a discordant pair. The
formula for Kendall’s τ is therefore:

τ= #concordant−#discordant
n(n−1)

2

where n is the number of the systems in the rankings. The resulting value ranges from −1 to 1, where 1 is
returned when the rankings are exactly the same, and −1 when they are exactly opposite.

APCorrelation (τAP )
Yilmaz et al. (2008) published an adaptation of Kendall’s τ in 2008 (Yilmaz et al., 2008): AP Correlation - also
known as τAP . The purpose of this adaptation is to put more importance on higher ranked elements. Instead
of comparing each element to any other elements, it only compares each element to other elements ranked
above itself. The result is therefore balanced with a division of the score by (i −1) for the element ranked at i ,
since there are precisely (i −1) elements ranked above it. The resulting formula is as follows:

τAP = 2

(n −1)

n∑
i=2

#concordant(i )

(i −1)
−1

where #concordant(i ) is the total number of elements above i that are in the correct order with respect to i .
τAP also ranges from −1 to 1.

3.2.2. Statistical Measures
One of the major reasons of the popularity of ad-hoc measures such as Kendall τ (Kendall, 1938) and AP cor-
relation (Yilmaz et al., 2008) to evaluate systems is that they provide a clear single effectiveness score, which
is easy to compare. As previously mentioned, test collections are merely an approximation of all documents,
topics and true relevance judgments. Regardless of the effectiveness measure chosen, it is crucial what the
resulting score means and whether it is reliable. For this reason, it is important to look further than the single
effectiveness score.

Statistical measures approach this by considering the variability in the observed mean scores. In statistical
hypothesis testing, a criterion is chosen on which to compare (two) systems (Box et al., 1978; Smucker et al.,
2007). A null hypothesis H0 is defined, which generally states that the means of the systems are the same,
meaning that any difference in resulting scores is caused by random chance. Following this, a significance
level p that is determined based on the set criterion is used to decide whether to reject H0, which occurs when
p is below a certain threshold. When the H0 gets rejected, it provides some evidence that there is a significant
difference between the evaluated systems.

As one expects, statistical tests can cause incorrect conclusions. These errors are classified in two types:
Type I and Type II errors. Type I errors incorrectly reject H0, and are also referred to as false positives. Type II
errors incorrectly fail to reject H0, also referred to as false negatives.

Generalizability Theory (GT)
While based on statistical theory, genaralizability theory (Bodoff and Li, 2007; Shavelson and Webb, 1991)
does not use a null hypothesis on the difference in means of systems. Instead, it considers the variance in a
behavioral measurement - in IR this is often effectiveness scores. GT then dissects this variance, and classifies
it into different facets. In IR, these are characteristics such as system differences and query difficulty. Ideally,
the variance would only come from the difference in systems. This way, it can indicate whether the test
collection is reliable, by looking at the variance of all other characteristics.

Student’s t-test
A popular statistical hypothesis test that is used in Information Retrieval is the t-test. As this measure relies
on assumptions of the underlying distribution, this measure is classified as parametric. For this measure, the
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null hypothesis H0 is that the means of two systems is equal. To do this, it assumes they are random samples
from the same Normal distribution. Because of this assumption, it will have more Type I errors (Sanderson,
2010). However, it has been shown to be a useful statistical significance test in IR regardless (Smucker et al.,
2009).

Wilcoxon test
Another statistical hypothesis test is the Wilcoxon test (Wilcoxon, 1945). For this measure, the null hypthesis
H0 is that both systems have the same distribution. The Wilcoxon test uses the scores of each pair to calculate
a difference, sorts them in an ascending order based on the (absolute) difference, and labels this difference
with − for negative differences, and + for positive differences. Following this, the Wilcoxon test only utilizes
this ranking, and does not look at the difference any further. This makes the Wilcoxon test more efficient
computationally, but does cause of loss of information. This is why this measure is most suitable for gaining
a rough impression of the difference between the two systems.

F-test
There are also methods to test multiple systems at the same time, such as the F-test. This measure analyzes
the differences of means of all populations (of the systems). For this measure, the F-test statistic is used, and
the results for the systems are compared. The F value represents the difference between the mean values of
the systems, and is also used to determine the p value. It quantifies the variability of the populations of the
systems using Analysis of Variance (ANOVA), further assuming that they are normally distributed.

In this case, the null hypothesis states that all systems have the same mean. This is already proven to
be false if at least one system is different. Again, this does not give us a general indication of the difference
between systems.

3.3. Estimation of accuracy
Since we don’t know the true mean scores of the systems (µ), we cannot compute the actual accuracy. Instead,
we will estimate the accuracy of a test collection Â(X ,µ). There are various methods to estimate this, some of
which will be described in this section.

3.3.1. Split-half
A commonly used estimator is the split-half estimator, introduced by Voorhees and Buckley (2002). This
method randomly samples two disjoint subsets of n topics without replacement, and takes the corresponding
scores from the original collection to make subsets X ′ and X ′′. It assumes one subset corresponds to the true
scores (X ′′

T ), and computes the accuracy of X ′ with respect to X ′′:

A(X ′, X ′′
T )

The expected accuracy of a random set is then the mean of the computed accuracy of many such splits A.
By sampling without replacement, the largest each of the samples can be is half of the number of topics nt .
Therefore, it repeats this process for different sample sizes. For example, with nt = 30, it would split and
compare two samples of 5 topics, again for 10, and the maximum 15. Based on the results, it can extrapolate
the mean for nt .

Sanderson and Zobel (2005) proposed to sample with replacement, such that the extrapolation would not
be necessary. In this thesis, we refer to this version of the split-half estimator.

3.4. Foundation of Thesis
Statistical hypothesis testing, and statistical measures in general, make many assumptions about the data. As
an example: the F-test assumption that populations have a normal distribution is not a realistic assumption
in real-life data. Also, using the null hypothesis that two systems (or populations) are the same will be easily
contradicted if the sample size is large enough. Topic variability can also cause random error (Cormack and
Lynam, 2006). Furthermore, Rijsbergen (1979) has found that "there are no known statistical tests applicable
to IR", as they are not suitable to work on IR data. We can see that correlation gives more information.

Urbano (2016) suggested a new method to estimate the test collection accuracy Â. The purpose of their
method is to provide a general idea of how similar the observed ranking of system scores is to the true ranking
of the systems, as a way to estimate the accuracy of the test collection. To do this, they use statistical estima-
tion of the τ and τAP correlations between the observed and true mean scores. The formulas they derived for
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the rank correlation measures τ and τAP are written with Bernoulli random variables called Di j that represent
whether a pair of systems is concordant or discordant.

τ= 1− 4

m(m −1)

m−1∑
i=1

m∑
j=i+1

Di j

τAP = 1− 2

m −1

m−1∑
i=1

m∑
j=i+1

Di j

j −1

Here, it is assumed that the systems are sorted in descending order according to their observed mean score.
To calculate E [τ] and E [τAP ] we need the expected value of Di j : the probability a pair is swapped. Thus:

E [Di j ] = P (µi −µ j < 0) = pi j

Therefore, the correlation between the observed and true mean scores can be expressed with the number
of discordant pairs. In Urbano and Marrero (2016) they further studied the probabilities of each pair being
"swapped" (discordant) by estimating independently with parametric estimators maximum likelihood and
minimum squared quantile deviation, and non-parametric methods resampling and kernel density. These
estimators were compared to the split-half with replacement estimator. These estimators will be explained
in Subsection 4.1.



4
Approach

In this chapter we will discuss the approach taken to better measure the accuracy of test collections.

4.1. Point estimators
A commonly used method of estimating rank correlation is split-half estimation. However, this method is
proven to be computationally expensive and produces biased estimates when used to estimate τ and τAP (Ur-
bano, 2016). Therefore, we will instead use a statistical estimator for the two rank correlation measures as
proposed by Urbano and Marrero (2016) and as explained in Section 3.4. The formulas for estimating τ and
τAP are as follows:

E(τ) = 1− 4

m(m −1)

m−1∑
i=1

m∑
j=i+1

E [Di j ]

E(τAP ) = 1− 2

m −1

m−1∑
i=1

m∑
j=i+1

E [Di j ]

j −1

where Di j is a Bernoulli random variable that equals 1 when a pair is discordant, and 0 if not. Its expected
value E [Di j ] is the probability that the pair is discordant. In other words: P (µi −µ j < 0). We call this proba-
bility pi j .

Since we do not know the true probability that a pair is discordant, we use estimators. These will estimate
this probability pi j for each pair.

4.1.1. Maximum Likelihood (ML)
The ML estimator assumes a Gaussian distribution for the scores of systems over topics. Then, it uses a likeli-
hood function to maximize likelihood and estimate the pi j s. It estimates the mean µ and standard deviation
σ based on the following formulas:

µ̂= 1

n

∑
Xi

s =
√

1

n −1

∑
(Xi −X )2

where Xi is the difference in effectiveness between a pair of systems for topic i , and X is the mean of all
differences in effectiveness between a pair of systems for each topic. Here, n is the number of topics in the
test collection.

To account for bias, the following bias correction is applied (Holtzman, 1950):

σ̂= s ·
√

(n −1)

2
· Γ

(n−1)
2

Γn
2

This is to make sure that E [σ̂] =σ. According to the central limit theorem, we know that X tends to a normal
distribution. Therefore, we employ a t-distribution and calculate the probability of discordance with the

9



10 4. Approach

following formula:

p = P (µ< 0) ≈ Tn−1

(
−p

n
µ̂

σ̂

)
where Tn−1 is the cdf of the t-distribution with n −1 degrees of freedom.

4.1.2. Minimum Squared Quantile Deviation (MSQD)
Since in ML σ would underestimate the dispersion of the population for small sample sizes, Urbano and
Marrero (2016) suggested a new estimator. This minimizes the squared quantile deviations. In other words:
it considers all quantiles of the distribution uniformly, and thus includes the tails of the distribution which
may not be considered by ML for small sample sizes. The MSQD estimator uses the following estimators:

µ̂= 1

n

∑
Xi

σ̂=
p

2
∑

Xi ·erf−1(2 Ri
n+1 −1)

2
∑

erf−1(2 Ri
n+1 −1)2

where Ri is the rank of topic i .
Since it uses the same estimates µ̂ and σ̂ (though calculated differently), we can again employ a t-distribution

to calculate the probability of discordance.

4.1.3. Resampling (RES)
Since both ML and MSQD assume a Normal distribution, the non-parametric alternative resampling will be
used. It works as follows: we draw a sample of system scores X1

∗...Xn
∗ from the original observations, and

compute the mean for the sample X
∗

. This is replicated T times, such that the distribution of these sample
means converges to the sampling distribution. The fraction of negative sample means is the probability of
discordance:

p = P (µ< 0) ≈ 1

T

∑
I
[

X
∗
i < 0

]
4.1.4. Kernel Density (KD)
The kernel density method estimates the probability of discordance by kernel smoothing. First, we try to fit a
smoothed distribution to the pair of systems. If this isn’t possible (for example, when it is a pair of identical
pairs), we simply use the resampling method again. If it is possible to fit a distribution, we generate new
scores based on this distribution, and calculate the mean of these new scores as sample means. Then, as with
resampling, we count what fraction of the sample means are negative.

4.2. Interval estimates
When building a test collection, the rank correlation measures τ and τAP can be used to decide how many
topics to contain in the test collection. Normally, the number of topics in a test collection would be decided
to be when rank correlation is high enough. Urbano and Marrero (2016) showed that the point estimates are
nearly unbiased, but with some degree of error. Thus, we need some sense of variability of this point estimate.
We do this with interval estimators.

By adding a confidence interval, those building a test collection will be able to take into consideration not
only rank correlation, but also variability when deciding on the number of topics. The confidence interval
can also be used to provide more insight when evaluating systems on an existing test collection.

4.2.1. Calculation of confidence interval
To evaluate how good the chosen measures are at assessing the accuracy of a test collection, we will use them
to make confidence intervals as extensions of the point estimates.

For a random sample X and the parameter of interest θ, we choose a confidence level γ. The confidence
level expresses the probability of θ to be larger than the smallest value in X , and smaller than the largest value
in X . In other words:

γ= P
(
lower(X ) < θ < upper(X )

)
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We choose the parameter of interest θ to be the correlation. Due to the Central Limit Theorem, we assume
the sample distribution will follow a Normal distribution. Because of this assumption, we need the variance
of the estimator. The standard error se(θ) for our case is defined as:

se(θ̂) =
√

V ar (θ̂)

For the confidence interval we calculate:

θ̂± z ·
√

V ar (θ̂)

and thus for example for τ:

τ̂± z ·
√

V ar (τ)

where τ is the point estimate, z is the quantile of a standard normal distribution that corresponds to the
confidence level. In our case, the estimation of the rank correlation (E [τ]) will be our mean, and we need to
find the ± range.

4.2.2. Variance of Kendall τ correlation
We can derive the formula for V ar (τ) from the original formula for τ:

τ= 1− 4

n(n −1)

n−1∑
i=1

n∑
j=i+1

Di j

for n systems.
We use the basic property V ar (aX ) = a2V ar (X ) to get:

V ar (τ) =V ar (1)+
(

4

n(n −1)

)2

V ar

(
n−1∑
i=1

n∑
j=i+1

Di j

)

Since we know V ar (1) = 0, we are left with:

V ar (τ) =
(

4

n(n −1)

)2

V ar

(
n−1∑
i=1

n∑
j=i+1

Di j

)

Variance is computed for pairs of pairs. Therefore, we use the following general rule for N random variables
Y :

V ar
( N∑

i=1
Yi

)
=

N∑
i ,k=1

Cov(Yi ,Y j )

In our case, each Yi is a random variable Di j . We get:

V ar (τ) =
(

4

n(n −1)

)2 n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

Cov(Di j ,Dkl )

Then expanding with the formula Cov(Xi , X j ) = E [Xi X j ]−E [Xi ]E [X j ] to get:

V ar (τ) =
(

4

n(n −1)

)2 n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

(
E [Di j Dkl ]−E [Di j ]E [Dkl ]

)
Since we know the expected value of Di j is the probability that systems i and j are swapped, thus: E [Di j ] =
P (µi −µ j < 0) = pi j . We apply this to the formula:

V ar (τ) =
(

4

n(n −1)

)2 n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

(
E [Di j Dkl ]−pi j pkl

)
The last term we still need is E [Di j Dkl ]. This is the probability of both pairs of systems being swapped at the
same time.
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4.2.3. Variance of AP correlation
Again, the formula for the variance of τAP we will based on its original formula:

τAP = 1− 2

n −1

n−1∑
i=1

n∑
j=i+1

Di j

j −1

Using the property V ar (aX ) = a2V ar (X ) again:

V ar (τAP ) =V ar (1)+
(

2

n −1

)2

V ar

(
n−1∑
i=1

n∑
j=i+1

Di j

j −1

)

Knowing V ar (1) = 0, we are left with:

V ar (τAP ) =
(

2

n −1

)2

V ar

(
n−1∑
i=1

n∑
j=i+1

Di j

j −1

)

We use the general formula:

V ar
( N∑

i=1
ai Yi

)
=

N∑
i ,k=1

ai a j Cov(Yi ,Y j )

to get:

V ar (τAP ) =
(

2

n −1

)2 n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

(
1

( j −1)(l −1)
Cov(Di j ,Dkl )

)
Finally we use Cov(Xi , X j ) = E [Xi X j ]−E [Xi ]E [X j ] to finally get:

V ar (τAP ) =
(

2

n −1

)2 n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

(
1

( j −1)(l −1)
(E [Di j Dkl ]−pi j pkl )

)

4.2.4. Efficiency
It is clear that many combinations need to be calculated for a significant number of systems. Because of this,
we will sample the number of pairs of pairs for which E [Di j Dkl ] will be calculated. Since going over four loops
would take too much computational power, and we will not be calculating E [Di j Dkl ] for all pairs of pairs, we
have to think of a smarter way of calculating V ar (τ) and V ar (τAP ). While we are sampling E [Di j Dkl ], we will
calculate all E [Di j ].

All the terms within the four sums will be separated. We will call the sum of E [Di j ]E [Dkl ] for all pairs of

pairs X1, since we calculate all E [Di j ] there will be n(n−1)
2 of these terms. Since E [Di j ] = E [Di j Di j ], we will

calculate each E [Di j Dkl ] when it is the same pair (i = k and j = l ). This term will be called X2, and we will

also have n(n−1)
2 of them. We will calculate a sample of E [Di j Dkl ] in the case of a different pair, which will be

called X3. This term therefore needs to be normalized by:

X ′
3 =

X3

sample size
· n(n −1)

2

We make sure there are no identical pairs in X3. (In the case of τAP each pair of pairs will be divided by its j
and l while summed into X3.) This way we can simply sum as follows:

X1 +X ′
3 −X2

and replace in the formula to get:

V ar (τAP ) =
(

2

n −1

)2

(X1 +X ′
3 −X2)

4.3. Variance
The pairs of systems are dependent of each other. Therefore, to calculate the variance of two pairs of systems,
we must also calculate E [Di j Dkl ]: the expectation that both pairs are discordant at the same time. We will
need to adapt the estimators mentioned above to be able to calculate the covariances of dependent pairs of
pairs.
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4.3.1. Maximum Likelihood
Since we are looking at pairs of pairs of systems, we will need to employ a bivariate t-distribution. For this
distribution, we need the mean and standard deviation of the difference in effectiveness of both pairs, as
well as their correlation. The mean and standard deviation of the pairs are calculated the same way as in
Subsection 4.1.1

4.3.2. MSQD
Just like for ML, we will employ a bivariate t-distribution. Again, we will compute the mean and standard de-
viation of the difference in effectiveness for both pairs of systems. We compute these with the same formulae
as in Subsection 4.1.2. In addition, we also compute the correlation, as for ML.

4.3.3. Resampling
After going over all possible pairs and computing the probability of discordance for each of them, we will
go over the sample of pairs of pairs. For each of them, we will do the following many times: we will sample
scores and compute sample means. Then, we will record whether both pairs are discordant. Note that since
the pairs are dependent, we cannot sample scores separately. Instead, we will sample topics, such that the
sampled scores will be from the same topic for both pairs.





5
Evaluation

Using the extended approach described in the previous chapter, we aim to provide a sense of variability of the
estimators used to measure the accuracy of test collections. In this chapter, we will describe the experimental
set-up, and evaluate our estimations and confidence intervals.

On each data-set, with several topic set sizes, we will estimate the τ and τAP correlations with each of our
estimators. To evaluate these point estimates, we will compute their error and bias.

To get a sense of variability of the point estimates, the estimators will also estimate several intervals at
different confidence levels. To evaluate the intervals, their coverage will be compared to the nominal coverage
of the confidence level. The coverage is calculated by counting how many intervals contain the true mean.

5.1. Data
To be able to evaluate our estimation of the correlation coefficients, we need to know what the true mean
scores of the systems are. This, of course, is simply not possible for any existing test collection, so we instead
resort to simulation. In particular, we will follow the stochastic simulation method proposed by Urbano and
Nagler (2018)1. In essence, this method builds a generative model M of the joint distribution of system scores,
such that we can simulate evaluation scores of the same systems but on new, random topics. Among others,
the model M contains the true distribution of each system, so we know beforehand their true mean scores
and, therefore, the expected value of the simulated data. This data is realistic by fitting the model M from
previous existing data. The model adheres to real evaluation data by using a mixture of parametric and non-
parametric techniques to fit them. In this thesis, the existing data that the models will be fit on are the TREC
Web ad hoc collections from 2010 and 2011 (Clarke et al., 2010, 2011). These test collections contain 76 and
58 systems respectively.

In summary, for a given TREC run we can obtain the topic by system matrix X of scores with some eval-
uation measure. This matrix is used to fit the model M , which encodes the true mean scores µ. We note that
this is not a model of the existing TREC systems, but a model of some hypothetical systems that behave like
them. From the model we can then simulate a new matrix of scores X ′ with a certain number of topics, and
by construction we know that the expected value for some system s is precisely µs . We can estimate the cor-
relation between the observed results X ′ and the true scores µ, that is, Â(X ′), and because we know µ from
the model we can assess how good our estimate is by comparing it to A(X ′,µ).

For this experiment, different numbers of topics will be used. It is crucial for the experiment to be able to
see the difference in performance based on the number of topics used, as part of our evaluation is: how many
topics are ideal?. The set sizes that will be used are 20 to 100, in increments of 20.

5.2. Baseline
We will compare our estimators to the widely used split-half estimator explained in Subsection 3.3.1. For
the point estimates, this estimator samples two sets of topics with replacement from the original data, and
computes the τ and τAP correlations on those topics. It does this T times, such that the point estimate is the
mean of the T computed correlations.

1https://cran.r-project.org/package=simIReff
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The interval of the point estimate is the observed interval of the T computed correlations (between samples),
calculated using empirical quantiles.

5.3. Evaluation of point estimates
To evaluate our estimates τ̂ and τ̂AP , we plot their error and bias for different topic set sizes. We calculate
those by comparing to the actual values τ and τAP , which are known to us through the simulation. We there-
fore use the following formulae:

er r or ( f A) = E
[|Â(X )− A(X ,µ)|]

bi as( f A) = E
[

Â(X )− A(X ,µ)
]

Error is the expected absolute difference between the point estimate and the true rank correlation. Bias rep-
resents the tendency of the point estimate: if it tends to overestimate or underestimate the rank correlation.
Therefore it is calculated as the expected difference between the point estimate and the true rank correlation.
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Figure 5.1: Error of τ (left) and τAP (right) for all 4 data-sets
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Figure 5.2: Bias of τ (left) and τAP (right) for all 4 data-sets
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In Figure 5.1 we see that the split-half estimator always has a high error. The three proposed estimators
have similar error. For the usual topic set size of 50 the three proposed estimators is around 0.02−0.03 for τ,
and 0.03−0.04 for τAP . Thus, all have higher error for τAP . We can see that they have higher error for smaller
topic sizes. Resampling especially has a higher error for small topic sizes on the P@10 data-sets. In general,
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the error of all estimators is higher for the P@10 data-sets at 50 topics.

In Figure 5.2 we see that the split-half estimator always has a large negative bias. The three proposed
estimators are more biased for smaller topic sets. With larger topic sizes they all tend to 0 bias. We see that
resampling always decreases from a positive bias. Resampling always has the highest bias, followed by MSQD,
followed by ML. For the P@10 data-sets, the bias of the estimators relative to each other is larger.

5.4. Evaluation of interval estimates

To compute interval estimates, we need to compute the variance. Since all pairs of pairs are dependent, we

need to calculate the covariance for all of them. The total number of pairs of pairs is n2(n−1)2

4 , which would
take very long to compute. Therefore, we will instead sample a number of pairs of pairs. Since we are not
calculating all, the result will be normalized accordingly as mentioned in Subsection 4.2.4.

5.4.1. Assumptions

Due to time constraint for this project, we will need to make some assumptions.

Within the calculation of V ar (τ) and V ar (τAP ) the only term that causes variability is E [Di j Dkl ] (for
different pairs, so i 6= k or j 6= l ). With respect to σsample (V ar ), there should not be much difference in
variability for each estimator within this term. In other words: the whole V ar (τ) is larger or smaller, but the
variability stays around the same. Thus, the experiment will be conducted with only one estimator.

While conducting the experiment, it became clear that the magnitude of the term described above de-
pends most on the number of topics. While the number of systems does affect variability, its effect is not
nearly as much as the number of topics.

5.4.2. Sample size experiment

The sample size of covariance terms to be calculated in the final experiment will significantly affect the re-
sults. Therefore, it is crucial to choose an appropriate amount: large enough to get accurate results, but small
enough to compute in a reasonable amount of time. We will conduct an experiment to find a satisfying num-
ber.

Using an experiment designing tool, we will compute 600 number of trials, with possible duplicates, of
parameter combinations. More specifically, the effectiveness measures used in simulation, for topic set sizes
20, 40, 60, 80 and 100. All these parameters can affect the number of samples needed. A data simulation of
sufficient size will be chosen to be used for all the trials, to be able to better compare variability. All estimators
will run on the chosen data for 42 different sample sizes: 500 to 19500 in increments of 500, and 20000 to 30000
in increments of 5000. These numbers are chosen based on some previous experiments pointing towards the
10000−20000 range being appropriate, therefore we want more data-points in that range. Both V ar (τ) and
V ar (τAP ) will be calculated, as the rank correlation measure can also affect the sample size. This experiment
will be run on all effectiveness measures.

We plot the results of all possible numbers of systems for the given combination of effectiveness measure
and rank correlation method. An example of a graph can be seen in 5.3. When plotting the results, we fit a
model to the data-points. The actual observations are plotted as points, and predictions based on the model
are shown as lines. To decide an appropriate sample number, we draw a vertical line for each number of topics
where the decrease in variability (y-axis) is smaller than 10e−4. The chosen sample size is also displayed next
to each number of topics in the legend.
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Figure 5.3: Sample size experiment results for AP with VartauAP and n_s=60
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5.4.3. Interval estimates
With the variance of τ and τAP , we will compute confidence intervals according to Subsection 4.2.1. To eval-
uate the confidence intervals around our point estimates τ̂ and τ̂AP we will compute the fraction of intervals
that contain the true correlation. Then we can compare this actual coverage to the nominal coverage of the
chosen confidence level, and by this evaluate how well it measures the variability. We do this for the confi-
dence levels 60%, 80%, 90%, 95% and 99%.
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Figure 5.4: Fraction of intervals containing the true mean for τ for all 4 estimators on the AP-based data-sets. The dashed lines represent
the nominal coverage of each confidence level.
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Figure 5.5: Fraction of intervals containing the true mean for τ for all 4 estimators on the P@10-based data-sets. The dashed lines
represent the nominal coverage of each confidence level.
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Figure 5.6: Fraction of intervals containing the true mean for τAP for all 4 estimators on the AP-based data-sets. The dashed lines
represent the nominal coverage of each confidence level. Notice the y-axis is different for the SH estimator.
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Figure 5.7: Fraction of intervals containing the true mean for τAP for all 4 estimators on the P@10-based data-sets. The dashed lines
represent the nominal coverage of each confidence level. Notice the y-axis is different for the SH estimator.
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In all figures we see that the split-half estimator never even comes close to the nominal coverage of the
confidence levels. The proposed estimators tend to cover more than the nominal coverage for confidence
levels under 99%. Resampling is more consistent than ML and MSQD, however seems to perform worst for
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τAP on the P@10 data-sets, as can be seen in Figure 5.7.
The coverage of ML and MSQD tend to decrease with larger topic sets in all situations, but more so for

t au (see Figures 5.4 and 5.5). Figure 5.6 we see that ML and MSQD seem to overestimate the most, for τ the
AP data-sets. Otherwise, there does not seem to be a significant difference across collections or measures.

As an additional evaluation of the confidence intervals, we compare the variance of the true rank cor-
relations τ and τAP to the mean of our computed variances for each estimator. (Considering the split-half
estimator has already shown to be very far off from the nominal coverage, we will exclude it from this evalua-
tion.)

Figure 5.8: Estimated vs true variability
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(b) Estimated vs true variability of MSQD
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(c) Estimated vs true variability of Resampling
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Here we see that resampling estimates the variance quite accurately for τ. In all other cases, the estimated
variance is higher than the true variance.





6
Discussion

In this chapter we will discuss the results from the previous chapter. Based on the observations made, we will
provide possible explanations for the behavior of the estimators. Then, some future improvements will be
suggested.

6.1. Discussion of results
From the results, we want to derive what behavior to expect when using this approach on other test collec-
tions. As we will see in this discussion, several aspects of test collections could affect results. As an example,
in this project we will see different consequences of using Average Precision or P@10 in the simulation of data.
However, all original test collections used are from the TREC web collections. An aspect that could effect re-
sults is the type of task of the test collection. Therefore, we will compare our results to the results of Urbano
and Marrero (2016), where TREC adhoc test collections are used.

6.1.1. Error
We see that the proposed estimators perform similarly when it comes to error. For the usual topic size of 50,
the error of the estimators being 0.02−0.03 and 0.03−0.04 (for τ and τAP respectively) is acceptable, as in
(Urbano and Marrero, 2016). However we can see that the error still decreases to about 0.01 when increasing
the topic set size to 100. This could be an argument to increase the usual topic size.

The split-half estimator always has a significantly higher error than all other estimators. This is likely
because while split-half considers one half a sample and the other the truth, it does not actually compute the
correlation between a sample and the truth. It actually computes the correlation between two samples.

The error is higher for the estimation of τAP . This is likely due to the weight it gives higher ranked systems.
Therefore, if an estimator misclassifies a swap high in the ranking, it will be penalized more, which can result
in a higher error overall. We can also see that the error is higher for smaller topic set sizes. This is because
there is larger variability in the rankings when there aren’t many topics.

The reason resampling has high errors on the P@10 datasets for small topic set sizes is likely that it does
not assume a distribution. Since it does not assume a distribution, those topic set sizes are so small that
resampling does not take into account part of the true distribution.

Compared to the results by Urbano and Marrero (2016), we obtained similar results: the split-half esti-
mator has a significantly higher error, the other estimators behave similarly to each other and have approxi-
mately the same error for 50 topics, and they have higher error with small topic set sizes (such as 20). However,
in their results, for small topic set sizes resampling generally has a higher error, below which we see ML, and
MSQD, which generally has the lowest error. In our case, they are not always in that order.

Considering this, we see the result may be different for other test collections for small topic set sizes.
Therefore, when building a new test collection, we recommend at least the usual 50 topics. Otherwise, these
estimators will behave roughly the same as in our results.

6.1.2. Bias
Just as the error, the bias is much larger for the split-half estimator compared to the other estimators. This
again is due to the reason that is explained above. Its bias is negative, which means the estimator overesti-
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mates the number of swaps in the ranking.
All other estimators are more biased for smaller topic set sizes, again caused by the variability of the ranking.

We can see that the bias of the three estimators generally tends to 0. Also, the bias of each estimator still
becomes significantly smaller after the usual 50 topics, which again suggests to increase it.

In our results, there is no estimator that is strictly better or worse than another. In the results of Urbano
and Marrero (2016) resampling always had a larger bias than the other proposed estimators. This could be
due to resampling being a less suitable estimator for the adhoc test collections, likely due to it not assuming
any distribution. As explained before, the distribution of means tends to Normal, which gives an advantage
to ML and MSQD. Moreover, all estimators have a positive bias, unlike in our results.

However, we can see that resampling does always have a positive bias. This means that it is underestimat-
ing the probability of a discordance. This could be since it does not assume a distribution, and therefore may
neglect part of a distribution simply because the samples did not contain it.

Considering this, we see that the test collection may significantly influence the sign of an estimator’s bias.
However, there is no significant difference in how large the bias is. Therefore resampling will likely have the
largest bias on other test collections.

6.1.3. Confidence intervals
As we can see in Figure 5.8, the estimators generally overestimate the variance. Because of this, the confi-
dence intervals are larger than they should be. This leads to more intervals including the true mean, and
therefore estimators’ coverage being higher than the nominal coverage, as we can see in all interval results
(Figures 5.4, 5.5, 5.6 and 5.7). This is likely due to calculating only a sample of covariances, and so it may see
a larger variance in the estimates than when calculating all.

Another reason why the confidence intervals are less accurate is that they depend on the performance of
the estimator’s error and bias. Since the center of the interval is the point estimate, depending on its error
and bias, the confidence interval will shift entirely.

This also explains why the split-half estimator performs much worse than the rest: because it had such
high error and large bias, the entire confidence interval shifts, which makes it unlikely to contain the true
mean.

We see that the coverage of ML and MSQD is less for larger topic set sizes. This is because the distribution
that it assumes is not the true distribution, and the distribution becomes more narrow with larger topic set
sizes. This leads to less confidence intervals containing the true mean. Since resampling does not assume a
distribution, it is the most consistent estimator.

The reason why ML and MSQD overestimate more for τ on the AP data-sets could be since, unlike the
others, they assume a (Normal) distribution, and the AP effectiveness measure the data is based on is (near)
continuous.

Since the confidence intervals are estimates, rather than their coverage being very close to the nominal
coverage, we expect to get a sense of the variability of each estimator and correlation. Therefore, even though
they generally overestimate the variance, they give useful insight when considered together with the error
and bias.

6.2. Future improvements
In this project, we have only explored a small part of an approach to measure the reliability of test collections.
To get a better insight of this approach as a solution to the problem of reliability, we suggest future research
on this topic to focus on the following.

6.2.1. Estimators
We see that estimators behave differently when compared in this approach. Depending on the test collection
being evaluated, another estimator may have smaller error and bias, and more accurate confidence intervals,
which would give better insight on the reliability. Therefore, more estimators should be compared.

6.2.2. Sampling
In the calculation of V ar (τAP ), the covariance of each pair of pairs is weighted by the ranking of the pairs.
Therefore, we lose some accuracy by sampling randomly and normalizing. As discussed, this leads to over-
estimating the coverage of the confidence intervals. Ideally, we would compute the covariance of all pairs of
pairs. Another possible improvement could be to sample systematically, according to the system rankings.
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6.2.3. Data sets
Since estimators behave differently on different test collections, it would be beneficial to evaluate as many as
possible with this method. By covering more types of test collections, we would be able to more confidently
predict the expected results of this approach on any given test collection.

Specifically, using simulated data based on different effectiveness measures. The properties of the effec-
tiveness measures can have a significant effect depending on which estimator is used, as we have seen with
the AP and P@10 data-sets. Therefore, trying more may yield different results, giving more insight on what
kind of results to expect when using this approach on any given test collection.

6.2.4. Another scenario
This type of approach can also be used for a different scenario than we have explored in this thesis. Imagine
instead of evaluating an existing test collection, a researcher is building a new test collection. He wants to
evaluate a number of systems on this collection. To be able to ensure some level of accuracy of the evaluation,
he wants know what number of topics would be suitable. For this scenario, we want to know how accurate a
hypothetical test collection is expected to be.





7
Conclusion

Since system evaluation in the field of information retrieval relies heavily on test collections, it is important to
be able to evaluate the reliability of test collections and the results obtained when using them. Current meth-
ods that aim to solve this problem make many assumptions, which limit them in representing the reliability
accurately.

In this report we provide an extension to an approach to provide insight on a test collection’s reliability
by comparing the observed mean scores of systems to their true mean scores. To be able to do this, the
original approach uses simulation to create datasets for which the true distribution is known. Then, it can
use estimators to compute point estimates for rank correlations τ̂ and τ̂AP between the observed ranking and
the true ranking. To evaluate the point estimates, their error and bias can be computed by comparing them
to the true τ and τAP . When evaluating the bias, we expected all estimators to have a positive bias according
to Urbano and Marrero (2016). However, this was not the case, suggesting the collection has significant effect
on the bias of a point estimate. Another prevalent result is that the widely used split-half estimator performs
very badly compared to the other estimators, which can be seen both in error and in bias. For large enough
topic set sizes, the performance of all three proposed estimators is similar and satisfactory for both error and
bias. We note that they still improve significantly with more than the usual 50 topics, suggesting a larger
number may improve IR system evaluation results on test collections.

7.1. Contribution
Point estimates provide limited insight on the reliability of a test collection. We have seen here and in the
paper by Urbano and Marrero (2016) that the estimators have some degree of error. Therefore, to go along
with these point estimates, we compute the variance of the rank correlations. With this variance, we can
estimate a confidence interval to express the variability of a given estimator. In general, we saw that the
estimators generally overestimate the variance, and thus the coverage of their confidence intervals is higher
than the nominal coverage. Most likely, this is due to computing only a sample of covariances, which are used
to calculate the variance.

Along with this, we used different test collections and effectiveness measures. With this, we were able to
compare the same estimators on them, and see where the results are most influenced by them. We found that
the two estimators that assume a Normal distribution (ML and MSQD) overestimate most on the AP data-sets.

In this thesis, we have provided an extension toward a method of measuring the reliability of any test
collection.
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