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SUMMARY

This paper presents a new feedback model that focuses on the synthesis rather than the analysis of feedback
amplifiers. First, a single-loop synthesis-oriented feedback model is developed that enables the full synthesis
of such amplifiers in a hierarchical and systematic way. This model is subsequently extended to a double-loop
synthesis model, so that also feedback amplifiers with a characteristic input or output impedance—employing
two feedback loops—can be synthesized through the same systematic approach. That these new models are
suitable for synthesis lies in the fact that they map directly to the circuit level, such that the intended, asymp-
totic behavior as well as the various individual contributors to the deviation from this intended behavior, like
finite loop gain, non-ideal input and output impedances of the forward gain block, direct feed-through and
attenuations outside the feedback loop(s), are clearly distinguished and can be assigned to the responsible
sections of the network. For this purpose, the double-loop synthesis model makes the transfers of the two
feedback networks explicitly visible, so that it gives immediate insight in how to design these networks to
get the required signal transfer and characteristic impedance. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many receiver and transceiver systems, a characteristic impedance is required at the input or output
of an amplifier. A very common example is the characteristic input impedance of low-noise amplifiers
in wireless receivers. Also, amplifiers that terminate or drive a surface-acoustic-wave filter require a
specific input or output impedance. In broadband systems, like broadcast radio receivers or multi-band
data transceivers, this characteristic impedance has to be frequency independent over a wide band. One
well-known technique for this is to employ double-loop negative feedback.

When designing a feedback amplifier, the designer usually employs a design method that is based
on the iterative analysis of a (sometimes large) collection of known feedback amplifiers after which
the most suitable topology is tailored: Its circuit parameters are found by solving 1st-order equations
obtained from detailed analysis and, if necessary, iteratively optimized towards the given requirements.
Although this method often seems to be efficient, it requires a relatively high level of experience, while
it bears the risk of missing design solutions that fall outside the designer’s experience window. Also,
the fact that the design starting point is preset by previous examples blocks the full exploitation of new
degrees of freedom in case of unprecedented changes in technology, application, or specifications.

This paper focusses on the full synthesis of double-loop feedback amplifiers. With full synthesis (in
the remainder of this paper called, in short, synthesis), the methodology is meant in which both the
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amplifier topology and circuit parameters are created from scratch in a systematic, non-iterative way,
basically traversing a decision tree by means of explicit design rules and criteria that do not require
complex analyses or calculations [1, 2]. It directly leads the designer to the optimal topology and design
solution, and as early as possible, in the synthesis process, it tells the designer if the given requirement
specifications may be or certainly will not be feasible. This full synthesis approach does not require a
great deal of experience and always keeps the path open towards new solutions, without being biased
by the knowledge of existing designs or common habits that naturally come with experience.

Many feedback models, like the original models of Black [3] and Bode [4], signal flow diagram
models [5, 6], cut-based models [7–10], and two-port network models [11], have been developed to
analyze feedback amplifiers. These models are, however, not suitable for full synthesis for the simple
reason that at the start of this synthesis process there is nothing to be analyzed.

To facilitate full synthesis, the model needs to explicitly show the hierarchy in the synthesis process.
In addition, it should map directly to the circuit level, such that the intended as well as the relevant
unwanted effects that occur in (double-loop) feedback amplifiers are reflected explicitly in the model
and can be assigned to specific sections of the circuit network. As much as possible, it should clearly
show what relevant (circuit related) design aspects are laying ahead when starting the synthesis, so that
the various design criteria, required for synthesis, become apparent to the designer. In fact, as opposed to
an analysis model, a synthesis model cannot and should not be fully circuit topology agnostic, because
it has to guide the designer towards the correct topology.

The asymptotic-gain model, as presented in [1, 12], is considered as a good first step towards this
goal. It has been used to support synthesis [2], but it lacks direct mapping to the circuit level, and in
case of double-loop feedback amplifiers, it partially behaves as a black-box model, not indicating the
presence of two feedback loops. Hence, it is not able to point towards the double-loop feedback-specific
design criteria.

In this paper, the single-loop synthesis model is introduced first, using the asymptotic-gain model
as starting point, such that it optimally suits the requirements imposed by synthesis. Secondly, it is
extended to a double-loop synthesis model that enables the designer to synthesize double-loop feedback
amplifiers in a hierarchical and systematic way, similar to their single-loop counterparts. With the help
of this extended feedback model, the existing structured design methodology [2]—mainly focusing on
the full synthesis of single-loop negative feedback amplifier—is complemented with additional design
criteria for double-loop feedback amplifiers.

Although in principle, the double-loop synthesis model can be extended to three-loop and four-loop
feedback configurations, it has been explicitly limited to double-loop systems with a characteristic
impedance at one port only. Double-loop and triple-loop configurations with characteristic input and
output impedances are not unilateral, causing the input impedance to depend on the load and/or the
output impedance to depend on the source. An impedance mismatch at one side is reflected at the
other port, making these topologies not very suitable for impedance matching purposes. The four-loop
configuration does offer a unilateral amplifier with a characteristic input and output impedance. How-
ever, it is generally not a very practical topology because of its inherent complexity. If a characteristic
impedance is required at both input and output, it is much more practical to cascade two double-loop
amplifiers, each having just one characteristic port.

First, the properties that are required from a hierarchical synthesis model are discussed in Section 2.
Section 3 briefly describes a feedback model that is currently popular for synthesis and explains why
that model is not very suitable for the synthesis of single-loop and double-loop feedback amplifiers.
Section 4 introduces a new single-loop model, including the interpretation of its elements, which fully
suits the purpose of synthesis. Subsequently, from this new model, a double-loop synthesis model is
derived in Section 5. To illustrate the model, Section 6 gives an example of the synthesis of a double-
loop feedback amplifier, as far as it involves the design steps that are specific to double-loop amplifiers.
Conclusions are given at the end.

2. PROPERTIES OF A HIERARCHICAL FEEDBACK MODEL

Hierarchy is a key element in the synthesis of feedback amplifiers. It is used to reduce the complexity of
the design process. It basically consists of splitting up the design in two or more parts, one of which is

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
DOI: 10.1002/cta
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mainly responsible for the performance aspect that is considered—the dominant part—and the other(s)
introducing deviations from this dominant behavior—the errors. This enables the designer to find the
best-case behavior with respect to a certain aspect without complex, time consuming calculations, and
quickly judge if this aspect may or will certainly not meet the specifications.

Hierarchy can be created at various design levels, like signal transfer level, noise or distortion level,
or transistor level. For the synthesis model discussed in this paper, we focus on the signal transfer level.
At this level, the feedback amplifier is split up in two parts:

(i) the feedback network, which is (supposed to be) dominant in the behavior of the amplifier; and
(ii) the nullor implementation, where each step towards a more practical circuit implementation of

the nullor generally introduces deviations.

The dominant behavior for which the feedback network is (supposed to be) responsible is called the
asymptotic behavior and is obtained when the loop gain is infinitely large, in other words, when a
nullor is assumed. Generally, the deviations from this asymptotic behavior manifest themselves in two
ways: as an additive error and as a multiplicative error. This is mathematically represented as 𝛿 and 𝜀,
respectively, in

At = At∞ ⋅ 𝜀 + 𝛿 (1)

with At the actual transfer and At∞ the asymptotic transfer. If a nullor is present, 𝜀 is 1 and 𝛿 is zero.
It is this hierarchy that the feedback model needs to make clear explicitly. Hence, the following

properties need to be satisfied:

• The asymptotic behavior and the deviations from it must be distinguished very clearly.

• The transfer of the feedback network must be present in the model explicitly.

• The additive and multiplicative errors must be modeled separately.

3. ASYMPTOTIC-GAIN MODEL

Several models have been developed in the past [1, 3–13]. Although none of them fully complies with
the aforementioned requirements, the asymptotic-gain model, which will be discussed here, is of par-
ticular interest as it matches Eq. (1) and complies with two of the previously given requirements. It
forms the basis of our synthesis-oriented double-loop feedback model—in the remainder of this paper
referred to as synthesis model in short—developed in Section 5.

The asymptotic-gain model, developed in [12] and also derived in [1], is graphically represented by
the diagram of Figure 1. It is mathematically described by

At = At∞
−A𝛽′

1 − A𝛽′
+ 𝜌

1 − A𝛽′
(2)

with

At∞ = 𝜌 − 𝜉𝜈

𝛽′
, (3)

the asymptotic transfer when the gain of the active part A is infinite. Coefficient 𝛽′ is the feedback
factor, 𝜌 is the direct transfer from input to output, and 𝜉 and 𝜈 are measures for the signal attenuation
at the input and output of the active part, respectively.

Although this model makes a clear distinction between the asymptotic transfer At∞—which targets
the ideal transfer—and the additive and multiplicative errors (𝜌∕(1−A𝛽′) and −A𝛽′∕(1−A𝛽′), respec-
tively), it does not model the feedback network explicitly. It seems that 𝛽′ represents the feedback
network, but it does not. Instead, it models the feedback path from Ec to Ei (Figure 1), which contains,
but is not limited to, the transfer of the feedback network. To make a clear distinction between the
feedback factor as used in the original asymptotic-gain model, and the feedback network transfer, in
this paper, the former is designated with 𝛽′, while 𝛽 is strictly reserved for the transfer of the feedback
network.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
DOI: 10.1002/cta



1904 K. VAN HARTINGSVELDT, C. VERHOEVEN AND A. VAN ROERMUND

Figure 1. The asymptotic-gain model, which is not optimally suitable for the purpose of full synthesis.

Figure 2. Synthesis-oriented single-loop feedback model, including input and output attenuations 𝛼i and 𝛼o,
respectively, and direct transfer At0.

4. SYNTHESIS-ORIENTED SINGLE-LOOP FEEDBACK MODEL

Because the original asymptotic-gain model is not suitable for synthesis and does not meet the require-
ments given in Section 2, a new model is derived called the synthesis-oriented single-loop feedback
model (in short: the synthesis model). The transfer of the feedback network 𝛽 is made explicit by just
defining 𝛽 as being this transfer. This new single-loop synthesis model is depicted in Figure 2, where
forward gain A and direct transfer At0 = 𝜌 are identical to the original asymptotic-gain model and the
attenuations inside the loop due the non-ideal input and output impedance of the forward active part
are modeled by 𝛼i and 𝛼o, respectively.‡

From Figure 2, the transfer At can be calculated as

At =
A′

1 − A′𝛽
+

At0

1 − A′𝛽
= At∞

−A′𝛽

1 − A′𝛽
+

At0

1 − A′𝛽
(4)

with A′ = 𝛼iA𝛼o and At∞ = −1∕𝛽 the asymptotic transfer, that is, the transfer when A′𝛽 → ∞. At
this stage, the feedback network transfer 𝛽, as defined in our model, directly determines the asymptotic
transfer At∞. The relation of the feedback network transfer 𝛽 to a required At∞ is made explicit, which
is crucial in the process of amplifier synthesis. Notice that At0 is defined exactly the same as 𝜌 in the
original asymptotic-gain model.

Still missing are the possible attenuations outside the feedback loop (e.g., when a phantom-zero is
created at the input or output), which have been added to the model in Figure 3. It is crucial to model
these source (𝛼s) and load (𝛼l) attenuations explicitly because

(1) it enables the distinction between the feedback network, which is supposed to define the
asymptotic behavior and the error terms (𝛼s and 𝛼l) that degrade this behavior;

(2) in practical double-loop feedback amplifiers, one feedback loop will unavoidably face one of
these attenuations, leading to new design criteria for minimizing its impact on the asymptotic
behavior of such amplifiers.

‡At this state, the model resembles the return-difference model as given in [11], if the forward gain is made equal to
−𝛼iA𝛼o. For synthesis, still, it is key to model 𝛼i and 𝛼o explicitly, as will be explained in Section 4.5.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
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Figure 3. The complete single-loop synthesis model explicitly including all essential blocks for the evolution
towards the double-loop feedback model.

Figure 4. Single-loop synthesis model, hierarchically subdivided for synthesis: First, design the asymptotic
part and then focus on the blocks in the error part.

Hence, they are key in the evolution towards a hierarchical double-loop feedback model suitable for
synthesis. Notice that the addition of factor 𝛼l in the model necessitates a rescaling of the direct transfer
block with the same factor to maintain a direct transfer that equals At0.

The asymptotic transfer now becomes

At∞ = 𝛼s𝛼l ⋅
(
−1
𝛽

)
(5)

where 𝛼s and 𝛼l are ideally equal to 1.

As discussed at the beginning of Section 2, hierarchy is crucial for the synthesis of feedback ampli-
fiers. The single-loop synthesis model reflects this hierarchy by its subdivision into the asymptotic part
on one side that is responsible for the asymptotic behavior of the amplifier and the multiplicative and
additive error parts on the other side that represent the deviations from this asymptotic behavior accord-
ing to Eq. (1) (Figure 4). The asymptotic part is designed first, assuming no error terms. If, after this
first design phase, the amplifier does not meet the required specifications, it makes no sense to move to
the more complex design steps that follow. But if it does, the error parts can be designed subsequently,
and the final amplifier design could meet the specifications if the designer managed to keep the error
terms sufficiently low.

To ensure the correct interpretation and circuit mapping of the model elements, a nullor has to be
assumed for the active part of the amplifier when dealing with model elements from the asymptotic
part (𝛽, 𝛼s, and 𝛼l). Likewise, when dealing with model elements from the multiplicative error part
(A, 𝛼i, and 𝛼o), the additive error is assumed to be zero; that is, no direct transfer is present: Es = 0.

In the following sections, the various elements of the model are discussed in more detail, in the order
in which they are dealt with during the synthesis process.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
DOI: 10.1002/cta
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Figure 5. Single-loop synthesis model showing the assignment of the electrical signal quantities: A voltage
and current have been assigned to the input and output branches of the model, respectively, for the example

of a voltage-to-current amplifier.

4.1. Electrical signal quantity assignment

Besides providing hierarchy, this new single-loop synthesis model allows its various model elements to
be directly mapped to the circuit level: Each of them can be assigned to a specific section of the ampli-
fier network to be designed. This is a key property to facilitate the full synthesis of feedback amplifiers,
where these amplifiers can be designed without prior knowledge of existing feedback circuits or topolo-
gies. Because the (ideal) target values for the various model elements is known (𝛽 = 1∕At∞, A → ∞,
𝛼x = 1 with x ∈ {s, i, o, l} and At0 = 0), all related sections of the amplifier network can (and should)
be designed to meet these target values as much as possible.

For this mapping, it is required to assign the quantity of the source to all branches at the input side
of the amplifier model and the quantity of the load to all branches at the output side of the model,
because that is what the synthesized feedback amplifier network is going to be like. For instance, in a
transconductance amplifier, the input side operates in the voltage domain, so voltages are assigned to the
signal branches located on this side, as shown in Figure 5. Likewise, because the output is in the current
domain, currents are assigned to the branches at the output side of the model. A correct assignment
leads to a straightforward mapping of the model elements to specific parts of the circuit network that
is being created and ensures that, for each model element, the correct chain matrix parameter is being
used of the circuit network that represents that element.

4.2. Feedback block 𝛽

Feedback block 𝛽 is the one that would define the asymptotic transfer of the amplifier completely, if
𝛼s = 𝛼l = 1. By definition, it corresponds to the inverse of the corresponding chain matrix parameter of
the feedback network. For example, in the voltage amplifier of Figure 6, the voltage-to-voltage relation
of the feedback network is used. Hence, 𝛽 = −1∕Afb = −Z1∕(Z1 + Z2).§

4.3. Source en load attenuations 𝛼s and 𝛼l

The elements 𝛼s and 𝛼l model the attenuations at the source and load, respectively, that are beyond the
control of the feedback loop. Ideally, they should be one. Smaller values indicate a (possibly significant)
reduction in noise (if 𝛼s < 1) or linearity performance (if 𝛼l < 1) [14] and should be prevented.

Just like with 𝛽, formally, the active part has to be replaced by a nullor when calculating the source
attenuation. Practically, though, 𝛼s can be found as the transfer from the source to the input of the ideal
transactor, with the controlled source of this transactor switched off. The type of transactor has to match
the amplifier input and output quantities.¶ For example, a v→i amplifier requires a voltage-controlled
current source. Likewise, the load attenuation is the transfer from the controlled source of the ideal

§The minus sign is because the output voltage of the feedback network is subtracted from the source voltage.
¶This ensures that 𝛼i = 𝛼o = 1 and At0 = 0, so that the output signal of 𝛼s indeed ends up directly at the input of the
transactor (A).

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
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Figure 6. Interpretation of feedback block 𝛽 in case of a voltage feedback amplifier.

Figure 7. Attenuations outside the feedback loop at the source (a) and load (b), due to, for example, the
implementation of a phantom-zero (frequency compensation) at the input (Zph,s) and output (Zph,l).

transactor to the load, with the signal source turned off. Also, here it is often possible to isolate the
source and load attenuation networks and use their respective chain matrices. Figure 7(a) shows a
voltage division at the source with 𝛼s = v′s∕vs = Zph,s∕(Zph,s + Zs) and Figure 7(b) a similar division at
the load: 𝛼l = vl∕v′l = Zl∕(Zl + Zph,l).

4.4. Gain block A

This element is directly visible as the gain of the active part. It is the inverse of the corresponding chain
matrix parameter: In a voltage amplifier, the inverse of the A-parameter is used (the voltage gain).
The higher this gain, the smaller the additive and multiplicative errors (𝛿 and 𝜀) and the better the
performance of the feedback amplifier.

4.5. Loop attenuations 𝛼i and 𝛼o

The attenuation factors at the input and output of the active part are due to the non-ideal input and
output impedances (Zi and Zo, respectively) of the nullor implementation. If 𝛼i is less than one, the
(often not very predictable) source impedance influences the loop gain, which for instance could cause
stability problems. Likewise, 𝛼o < 1 causes the load impedance to influence the loop gain. It is these
effects that make them important to be modeled explicitly.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
DOI: 10.1002/cta
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Figure 8. Attenuations inside the feedback loop at the input (left) and output (right) of the active part, due
to a non-ideal input (Zi), respectively, output impedance (Zo) of the nullor implementation. Zs is the source

impedance, Zl the load impedance.

Figure 8 shows these attenuations in a voltage amplifier, where Zi,eq is the equivalent impedance
when looking into the input port of the feedback network and Zo,fb is the output impedance of just
the feedback network. Attenuation 𝛼o is the voltage division at the output of the active part due to a
non-zero Zo and 𝛼i the voltage division at the input due to a finite Zi.

4.6. Direct transfer At0

All elements of the synthesis model are considered to be unilateral. Of course, circuit elements and
electronic networks are generally not. One of the consequences is that a signal from the source can
reach the load even when the controlled source of the active part is turned off. This is called the direct
transfer and is modeled separately as if it is a concentrated effect.

The direct transfer can be determined by switching off the controlled source of the active part (but its
input and output impedances should not be removed) and calculating the transfer from source to load.

Another consequence of the fact that the model elements are unilateral, while the actual circuit is not,
is that the internal nodes of the model do not reflect actual voltages or currents of the circuit network.
This is, however, not required for synthesis. The mapping of the model elements on the circuit level
is applied, while obeying the hierarchical subdivision discussed earlier in this section (e.g., when 𝛼i is
interpreted/mapped, At0 is forced to be zero by keeping the source quantity off).

5. SYNTHESIS-ORIENTED DOUBLE-LOOP FEEDBACK MODEL

So far, a single-loop synthesis model has been presented, which is prepared for extension towards a
double-loop synthesis model. Although a number of mathematical multi-loop feedback models have
been developed [15, 16] they are, again, more suitable for analysis than synthesis. Because the synthesis
model explicitly models the feedback network, it can be extended to a double-loop model that is suitable
for synthesis (and analysis).

5.1. Extension towards double-loop configurations

Conceptually, four double-loop feedback topologies exist: the [V,I]→V, [V,I]→I, V→[V,I], and I→[V,I]
topology. Here, the [V,I] notation indicates a port with a characteristic impedance Zchar, which implies
that at this port the electrical signal quantity can be arbitrarily considered as a voltage or current, which
are mutually related by Zchar.

As an arbitrary vehicle, the [V,I]→I double-loop feedback amplifier, as depicted in Figure 9, is used
to show how the single-loop model is expanded towards a double-loop synthesis model. At the end

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
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Figure 9. Double-loop feedback [V,I]-to-current amplifier. The ideal transformer, used here as current
attenuator in the outer feedback network, and its chain matrix are shown in the corner.

Figure 10. Double-loop synthesis model of a [V,I]-to-current amplifier.

of this section, the double-loop synthesis model is given for feedback amplifiers with a characteristic
output impedance.

Resistor Zf and the ideal transformer both sense the output current and feed it back to the input as a
voltage and current, respectively. This results in a characteristic impedance at the input of Zin = n′Zf ,
with n′ the transformer ratio as defined in Figure 9. Because the only difference with a transconductance
amplifier is the presence of the current feedback transformer, an i→i feedback path is added to the
single-loop synthesis model of a v→i amplifier, as shown in Figure 10. The output current of the i→i
feedback network is transformed via Zs into a Thévenin equivalent voltage so that it can be added to
the source voltage (Figure 11). A finite output impedance of the i→i network will cause an attenuation
𝛼s at the source. The expressions for the various double-loop feedback model elements for the [V,I]→I
amplifier of Figure 9 are given in Table I, and almost all can be found directly from inspection.

If the output quantity of the inner feedback loop was chosen to be a current and that of the outer loop
a voltage, this voltage is transformed across the source impedance and the obtained Norton current is
added to the signal source as shown in Figure 12. As may have become clear, the signal quantity at
the source is assigned such that it matches with the inner loop: If the inner loop has a voltage output,
the source is modeled as a voltage source; if it has a current output, the source is modeled as a current
source.

From the model given in Figure 10, it already becomes clear that two sub-configurations exist for a
[V,I]-to-current amplifier: Either the current-to-current feedback network is placed in the outer feedback
loop, as has been chosen in Figure 10, or the current-to-voltage feedback network is placed in the outer
loop. In other words, there is a choice in the order of the feedback loops. This holds for the other
double-loop feedback configurations as well, of course.

It is important to notice that both error terms 𝛼s and 𝛼l belong to the ‘asymptotic’ class, like in
the single-loop synthesis model (Figure 4). Hence, they are both independent of Zi, Zo or any other
components inside the active part A.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:1901–1919
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Figure 11. Thévenin equivalent of the feedback current iii and the appearance of the source attenuation 𝛼s
due to a finite output impedance Zii of the current feedback network.

Table I. Model parameters of the synthesis-oriented
double-loop feedback model for the [V,I]-to-current ampli-

fier of Figure 9 (approximations hold for n′ ≫ 1).

Asymptotic Multiplicative error Additive error
behavior

𝛽vi = Zf A = G At0 ≈ Zf

Zi+Zs+Zf
×

𝛽ii =
1
n′

𝛼i =
Zi

Zi+Zs+Zf

1
Z′

l +Z′
f [1−Zi∕(n′Zf )]+Zi∕n′

𝛼s = 1 𝛼o ≈ Zo

Zo+Zl+Z′
f

Z′
l = Zo + Zl

𝛼l = 1 Z′
f = Zf ∕∕(Zs + Zi) Z′

f = Zf ∕∕(Zs + Zi)

Figure 12. Norton transformation of feedback voltage vvi and the appearance of source attenuation 𝛼s due to
the current division from Zs and the non-zero output impedance Zvi of the i→v feedback network.

It also implies that they both have a (negative) effect on the asymptotic behavior of the amplifier.
Where in single-loop amplifiers both 𝛼s and 𝛼l can be made 1 in a trivial way, one of them will inherently
be smaller than one in double-loop feedback amplifiers, because of the non-ideal output respectively
input impedance of the outer feedback network. A non-unity value for this term results in an error in
the asymptotic signal transfer and asymptotic characteristic impedance of the double-loop feedback
amplifier, which will be discussed in more detail in Sections 5.2 and 5.3, respectively.
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Figure 13. Double-loop synthesis model of a current-to-[V,I] amplifier with current attenuation feedback
network in the output loop.

In case of a double-loop feedback amplifier with a characteristic output impedance, the two feedback
networks have different input quantities, while sharing the same output quantity. Again as example, the
model of an I→[V,I] amplifier with the current feedback network in the outer loop is shown in Figure 13.
Here, the load voltage is transformed into an equivalent Norton current by dividing the load voltage
by Zl, similar to the transformations discussed earlier. If the outer loop was formed by the current-
to-voltage feedback network, the assigned load current il is transformed through Zl into the equivalent
Thévenin voltage.

Also here, the signal quantity at the load is assigned such that it matches with the inner loop: If the
inner loop has a voltage input, the load is modeled as a voltage; if it has a current input, the load is
modeled as a current.

5.2. Signal transfer of double-loop feedback amplifiers

The signal transfer of double-loop feedback systems can be calculated from the double-loop synthe-
sis model. For a [V,I]-to-current amplifier, the asymptotic-gain is calculated by using the model of
Figure 10.

i′l = A′
t0vs + A′[𝛽vii

′
l + 𝛼s(vs + Zs𝛽iii

′
l)
]

(6)

with i′l = il∕𝛼l, A′
t0 = At0∕𝛼l, and A′ = 𝛼iA𝛼o. Rearranging terms results in

il
vs

=
𝛼s𝛼lA

′ + At0

1 − A′(𝛽vi + 𝛼sZs𝛽ii)
. (7)

Now when the effective feedback transfer 𝛽eff is defined as

𝛽eff = 𝛽vi + 𝛼sZs𝛽ii, (8)

Eq. (7) can be rewritten as

At = At∞ ⋅
A′𝛽eff

1 − A′𝛽eff
+

At0

1 − A′𝛽eff
(9)

with

At∞ = 𝛼s𝛼l ⋅
(
− 1
𝛽eff

)
. (10)

Clearly, the transfer of the double-loop feedback amplifier is identical to that of a single-loop amplifier
when 𝛽eff is used instead of 𝛽. The existence of 𝛽eff could already be expected, because a multi-loop
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feedback system has still only one particular loop gain, although distributed across the various feedback
loops. It is 𝛽eff that—together with A′—constitutes the loop gain. For the other double-loop feedback
topologies, 𝛽eff is given in Table II, where 𝛽vi equals the transfer of the i→v feedback network, 𝛽iv the
v→i network, and so on.

5.3. Characteristic impedance

The only reason to synthesize double-loop feedback amplifiers is to create a well-defined input or
output impedance. Although [1, 17] give expressions for the characteristic impedance of double-loop
feedback amplifiers, here it is derived from the ratio of two transfer parameters of the amplifier, which
leads to expressions much more suitable for synthesis. For instance, the asymptotic input impedance
of a [V,I]-to-current amplifier, shown in Figure 14, is found from

Zt∞,s =
vi(s)
ii(s)

||||A→∞
=

il(s)
ii(s)

||||A→∞
⋅

vi(s)
il(s)

||||A→∞
=

At∞,ii

At∞,iv
(11)

with At∞,ii = il∕ii, the asymptotic gain from input current to output current, and At∞,iv = il∕vi, the
asymptotic gain from input voltage to output current. Both At∞,ii and At∞,iv can be expressed in terms
of At∞. If At is defined as il∕vs, these relations are given by

Table II. Effective feedback transfers for the various double-loop feedback topologies.

Characteristic port Non-characteristic quantity Configuration Inner loop At = 𝛽eff =

Input
Voltage [V,I]→V V→V vl∕vs 𝛽vv + 𝛼sZs𝛽iv

V→I vl∕is 𝛽iv + 𝛼sZ
−1
s 𝛽vv

Current [V,I]→I I→V il∕vs 𝛽vi + 𝛼sZs𝛽ii

I→I il∕is 𝛽ii + 𝛼sZ
−1
s 𝛽vi

Output
Voltage V→[V,I] I→V il∕vs 𝛽vi + 𝛼lZl𝛽vv

V→V vl∕vs 𝛽vv + 𝛼lZ
−1
l 𝛽vi

Current I→[V,I] I→I il∕is 𝛽ii + 𝛼lZl𝛽iv

V→I vl∕is 𝛽iv + 𝛼lZ
−1
l 𝛽ii

Figure 14. Input impedance of a feedback amplifier, calculated as the ratio between two transfers At∞,ii(s) =
il(s)∕ii(s)||A→∞ and At∞,iv(s) = il(s)∕vi(s)||A→∞.
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At∞,ii = ZsAt∞
||Zs→∞ = −𝛼l

𝛼sZs

𝛽eff

||||Zs→∞
(12)

At∞,iv = At∞
||Zs=0 = −𝛼l

𝛼s

𝛽eff

||||Zs=0
(13)

where (10) has been used. For the [V,I]-to-current amplifier with the i→v feedback network in the inner
loop and At = il∕vs, the asymptotic input impedance can be written as

Zt∞,s =
𝛽vi∕𝛼s + Zs𝛽ii

||Zs=0

𝛽vi∕(𝛼sZs) + 𝛽ii
||Zs→∞

=
𝛽vi

𝛽ii
∕∕Zii (14)

where it should be noticed that 𝛼l is independent of Zs and 𝛼sZs|Zs→∞ = Zii is the output impedance of the
outer feedback network, that is, the current-to-current feedback network (recall that 𝛼s = Zii∕(Zs +Zii);
see also Figure 11). If the output impedance of the outer feedback network were ideal, error term 𝛼s

would be one and the asymptotic input impedance would equal the ratio of the transfers of the two
feedback loops. Similar results can be found for the input impedances of the three other double-loop
feedback amplifier topologies with a characteristic input impedance, as well for the output impedances
of the topologies with a characteristic output impedance. The asymptotic input (output) impedances of
these various double-loop feedback amplifiers are listed in Table III. Zt∞ always equals the ratio of the
two feedback loops plus some series or parallel error due to the non-ideal output (input) impedance of
the outer feedback loop. If the outer loop is connected in parallel with the characteristic input (output)
port, its output (input) impedance shunts this port, resulting in a Zt of the form (𝛽1∕𝛽2)∕∕Zfb. An outer
feedback loop that is connected in series will have its output (input) impedance in series with the
characteristic input (output) port, Zt = (𝛽1∕𝛽2) + Zfb. The expressions for Zt∞ in Table III are generic
expressions, independent of the implementation of the feedback networks.

When the expressions for 𝛽eff from Table II and Zt∞ are combined and substituted in (10), the last
column of Table III is obtained. This shows the (not very surprising) fact that At∞ equals the transfer
of the single-loop amplifier, using only the inner feedback loop, multiplied with the voltage or current
division at the characteristic port due to Zt∞ and the source or load impedance.

Table III. Asymptotic characteristic impedances and gains for all double-loop feedback topologies.

Characteristic port Non-characteristic quantity Inner loop Zt∞ = At∞ =

Input
Voltage V→V (𝛽vv∕𝛽iv)∕∕Ziv − 1

𝛽vv

Zt∞
Zt∞+Zs

𝛼l

V→I (𝛽vv∕𝛽iv) + Zvv − 1

𝛽iv

Zs

Zt∞+Zs
𝛼l

Current I→V (𝛽vi∕𝛽ii)∕∕Zii − 1

𝛽vi

Zt∞
Zt∞+Zs

𝛼l

I→I (𝛽vi∕𝛽ii) + Zvi − 1

𝛽ii

Zs

Zt∞+Zs
𝛼l

Output
Voltage I→V (𝛽vi∕𝛽vv)∕∕Zvv − 1

𝛽vi

Zt∞
Zt∞+Zl

𝛼s

V→V (𝛽vi∕𝛽vv) + Zvi − 1

𝛽vv

Zl

Zt∞+Zl
𝛼s

Current I→I (𝛽ii∕𝛽iv)∕∕Ziv − 1

𝛽ii

Zt∞
Zt∞+Zl

𝛼s

V→I (𝛽ii∕𝛽iv) + Zii − 1

𝛽iv

Zl

Zt∞+Zl
𝛼s
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5.4. Properties under matched-impedance condition

In the specific but very common case that the asymptotic port impedance Zt∞ equals the source (load)
impedance Zs (Zl), a simple relation between the two feedback loops can be found. The [V,I]-to-current
amplifier of Figure 9 is taken as example. Similar results can be found for the other amplifier types.

The inner loop gain is found from Figure 10 and given by

Linner = A′𝛽vi (15)

with A′ = 𝛼iA𝛼o. The outer loop gain is found as

Louter = A′𝛽iiZs𝛼s. (16)

Assuming that Zt∞ = Zs and using the third row of Table III, the following relation is obtained:

Zs =
𝛽viZii

𝛽vi + 𝛽iiZii
⇔ 𝛽vi = 𝛽ii

ZiiZs

Zii − Zs
(17)

with Zii the output impedance of the i → i feedback network in the outer loop. Now recall that the
attenuation at the source equals 𝛼s = Zii∕(Zii + Zs). Substituting this in (17) yields

𝛽vi = 𝛽iiZs

𝛼s

2𝛼s − 1
orLouter = Linner(2𝛼s − 1). (18)

When the output impedance of the outer feedback loop is negligible with respect to the source
impedance (𝛼s ≈ 1), the inner loop gain is approximately equal to the outer loop gain. Under the
impedance matched condition, the total loop gain is now found as

L = A′𝛽eff = 2𝛼sLinner ≈ 2Linner. (19)

Eqs (18) and (19) hold for all [V,I]-to-current and [V,I]-to-voltage amplifiers, while replacing 𝛼s by 𝛼l

gives the two relations for all voltage- or current-to-[V,I] amplifiers.
When the asymptotic input impedance of the [V,I]→I amplifier equals the source impedance, Eq. (18)

can be substituted into Eq. (8), which gives 𝛽eff = 2𝛽vi𝛼s. Irrespective of the double-loop feedback
amplifier topology, this relation can be generalized to

𝛽eff = 2𝛽inner𝛼s,l (20)

where 𝛼s has to be used when considering a characteristic input impedance and 𝛼l in case of a
characteristic output impedance. This simplifies the asymptotic transfer Eq. (10) to

At∞ = − 1
2𝛽inner

(21)

assuming the attenuation at the non-characteristic port is unity.
This result is not a surprise (see also the last column in Table III), because a source impedance

matched double-loop feedback amplifier will have exactly half the source voltage across its input ter-
minals, while the inner feedback loop defines the relation between this input voltage and the output
quantity. Likewise, a load impedance matched amplifier will generate exactly half its output Thévenin
voltage or Norton current at the load, while the inner feedback loop defines the relation between this
Thévenin voltage/Norton current and the input quantity.
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6. EXAMPLE OF DOUBLE-LOOP SYNTHESIS MODEL AND ITS APPLICATION

To demonstrate the application of the developed double-loop synthesis model, a design example of a
double-loop feedback amplifier is given here. Arbitrarily, an amplifier is chosen with a characteristic
input impedance of Zchar,in = 50 Ω and a voltage output, that is, a [V,I]→V amplifier. The voltage
gain |Av| = |vl∕vs| is 10. The source impedance is Rs = 50 Ω; the load impedance equals Rl∕∕Cl =
10 kΩ∕∕200 fF. The signal frequency band is from 1 to 10 GHz.

The corresponding synthesis model is depicted in Figure 15, where, to start with, the voltage-
to-voltage feedback network 𝛽vv has been placed in the inner feedback path and the voltage-to-current
network 𝛽iv in the outer feedback path. Considering the relatively low Zchar,in, it is likely that, because
of the finite, non-zero output impedances of the feedback networks (Zo,iv and Zo,vv resp.), Zchar,in will
be degraded more by a series connected outer network than by a parallel connected outer network at
the amplifier input (Section 5.3). This choice will be re-assessed in step 3 of Section 6.1. This synthesis
model is used now as design target for the double-loop feedback amplifier.

After the source and load signal quantities have been identified and assigned to the branches in
the model, the synthesis of the feedback amplifier consists of two parts: the design of the asymptotic
behavior and the design of the nullor approximation. In the following two sections, they will be dealt
with to an extend that is relevant for the topic of double-loop feedback amplifiers.

6.1. Design of the asymptotic behavior

The design of the asymptotic behavior consists of three consecutive design steps:

(i) design of the amplifier topology;
(ii) design of the feedback networks; and

(iii) design of the asymptotic error terms.

Hereafter, they will be discussed in this order.

6.1.1. Design of the amplifier topology: hook-up of the feedback networks. The first step in the design
of the asymptotic behavior of the amplifier is to correctly hook-up the two feedback networks to the
active part, source, and load. According to the synthesis model, both 𝛽vv and 𝛽iv networks need to sense
the load voltage (𝛼l = 1 at this stage), which implies they have to be connected in parallel to the
load, while they have to add to the input signal in voltage and current respectively, requiring a series
respectively parallel connection to the source.

6.1.2. Design of the feedback networks: 𝛽vv and 𝛽iv. The second step is the design of the first two
asymptotic blocks 𝛽vv, 𝛽iv, while assuming that the two other—two error terms 𝛼s and 𝛼l—are still at

Figure 15. Synthesis model of a [V,I]-to-voltage amplifier with the voltage-to-voltage feedback network in
the inner feedback path.
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Figure 16. Model of a pair of coupled inductors L1 and L2 with coupling factor k, where Lp = L1, Ls =
L2(1− k2), and n′ = 1

k

√
L1∕L2. This transformer is used as example voltage feedback network, because it is

closest to the optimal non-energic and linear ideal transformer 4 (located inside the dashed box).

their target value 1 at this stage. The asymptotic input impedance Zt∞ now equals the ratio of the two
feedback network transfers (Section 5.3), viz.,

Zt∞ =
𝛽vv

𝛽iv
= Zchar,in, (22)

and the asymptotic transfer At∞ (voltage gain) is readily found from the synthesis model in Figure 15 as

At∞ =
vl

vs

||||A→∞
= −

𝛼s𝛼l

𝛽eff
= −

𝛼s𝛼l

𝛽vv + 𝛽ivZs𝛼s
= − 1

2𝛽vv
(23)

assuming a matched input impedance Zchar,in = Zs, as required. Together with Eq. (22) and |Av| = 10,
this leads to 𝛽vv = 1∕20 and 𝛽iv =1 mS.

Ideally, the feedback networks need to be accurate, linear, and non-energic,‖ like an ideal transformer
and gyrator. For this conceptual example, the closest practical approximations of them are selected,
which are still linear and accurate: A pair of coupled inductors** for 𝛽vv, of which a 1st-order model,
associated model parameters and voltage transfer 1∕Afb are given in Figure 16, and a resistor Rf for
𝛽iv. This results in a required effective voltage attenuation of the transformer of n′ = 1∕𝛽vv = 20 and a
feedback resistor value of Rf = 1∕𝛽iv = 1 kΩ.

6.1.3. Design of the asymptotic error terms: source and load attenuation 𝛼s and 𝛼l. Source attenuation
𝛼s—one of the two error terms in the asymptotic behavior—has to be made unity to make sure that
neither At∞ nor Zt∞ is negatively affected, as already pointed out at the end of Section 5. Given the
chosen feedback network implementations and loop order, this can only be achieved by adding an ideal
current follower at the output of the 𝛽iv network. To prevent the additional complexity, it is decided to
omit this follower. As a consequence, the non-ideal output impedance of the outer feedback network
Zo,iv = Rf causes 𝛼s to be smaller than 1:

𝛼s =
Zo,iv

Zo,iv + Rs
=

Rf

Rf + Rs
= 0.95. (24)

Now that the feedback networks have been implemented, the currently selected loop order has to be
re-evaluated to see if it indeed leads to a value of 𝛼s closest to 1. With the 𝛽iv network in the outer loop,
the voltage attenuation at the source is 0.95 as given by Eq. (24). If the loops were exchanged, 𝛼s would
become a current attenuation factor that equals

𝛼s =
Rs

Rs + Rs2 + sLs + (Rs1∕∕sLp)∕n′2 ≈
Rs

Rs + Rs2 + sLs
, (25)

the magnitude of which, given the transformer model parameters listed in Figure 16, varies between
0.87 and 0.92 over the specified frequency band. The initially chosen loop order results in the smallest
aggravation of At∞ and Zt∞, and hence, it is the optimal order of the feedback loops. On top of this,

‖Non-energic implies that the noise performance and power efficiency are not degraded by these networks [1].
**If concessions have to be made to silicon area, a smaller implementation like resistive or active feedback may be required

with an inherent reduction in noise and/or linearity performance of the amplifier as a consequence.
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because 𝛼s is frequency independent, it is possible to compensate for its impact on Zt∞ by just increasing
the feedback resistor to 1.05 kΩ:

Zt∞ =
𝛽vv

𝛽iv
∕∕Rf =

Rf

n′ ∕∕Rf = Rs ⇔ Rf = Rs(n′ + 1) = 1.05 kΩ. (26)

What load attenuation 𝛼l is concerned, there is no reason to make it smaller than 1 at this stage of
the design. A non-unity value makes At∞ depend on the (often inaccurate) load impedance, which is
undesired.

Now the feedback topology as well as all transfers of the asymptotic blocks have been designed, the
final asymptotic gain and input impedance equations can be found as

At∞ =
vl

vs
= −

𝛼s𝛼l

𝛽eff
= −

𝛼s𝛼l

𝛽vv + 𝛽ivZs𝛼s
= −n′

2
⋅

1 + sLp∕Rs1

n′∕(2n′ + 2) + sLp∕Rs1

𝜔≫Rs1∕Lp

≈ −n′

2
(27)

Zt∞ =
𝛽vv

𝛽iv
∕∕Rf =

Rf

n′ + 1
⋅

sLp∕Rs1

n′∕(n′ + 1) + sLp∕Rs1

𝜔≫Rs1∕Lp

≈
Rf

n′ + 1
. (28)

The pole Lp∕Rs1 in Zt∞ can be canceled with a zero in Rf by placing a small capacitor Cf =
1

n′Rs

Lp

Rs1
=

2.7 pF in series with Rf .
At this stage, the asymptotic behavior of the amplifier has been design. The aforementioned design

steps have led to the amplifier schematic shown in Figure 17.

6.2. Design of the nullor approximation

What remains to be designed is the implementation of the nullor approximation—the active part—
which basically involves the design of A, 𝛼i, and 𝛼o. Most design steps are not different from single-loop
feedback amplifiers, apart from one: the design of phantom zeroes as frequency compensation method.
For this reason, the implementation of the active part is assumed to be given (Figure 18), so that the
focus can be on the phantom zero compensation.††

Figure 17. Schematic diagram of the transformer feedback [V,I]-to-voltage amplifier that fully defines its
asymptotic behavior.

Figure 18. Schematic diagram of the transformer feedback [V,I]-to-voltage amplifier with the small-signal
implementation of the active part.

††Phantom zero compensation is chosen here as frequency compensation technique, because it does not reduce the loop
gain at higher frequencies, as opposed to pole-splitting (Miller compensation), resistive board-banding, and dominant
pole compensation. Hence, it does not (significantly) degrade the input impedance or linearity [18].
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Figure 19. Simulated small-signal behavior: transfer magnitude and phase (a) and input matching (b). Leg-
end: (I) no frequency compensation, (II) phantom zero in both feedback networks, (III) phantom zero in
outer network only, and (IV) phantom zero in both feedback networks, but skewed to compensate for the

high-frequency roll-off of the loop gain.

Figure 20. Schematic diagram of the complete transformer feedback [V,I]-to-voltage amplifier including
the phantom-zero implementation corresponding to trace (IV) of Figure 19. In practice, the phantom-zero

transformer can be combined with the main feedback transformer without any area penalty.

Trace (I) in Figure 19 shows the transfer magnitude‡‡ and phase (a) and the input matching (b)
of the uncompensated amplifier: It is clearly unstable. From a pole-zero analysis, it is found that a
phantom zero at 10.5 GHz is required to get a maximally flat magnitude response. From the synthesis
model in Figure 15, it becomes immediately clear that a phantom zero in the feedback path has to be
implemented in both feedback networks, because only then will a zero be present in 𝛽eff = 𝛽vv +𝛽ivZs𝛼s
and will Zt∞ ≈ 𝛽vv∕𝛽iv be unaffected. Trace (II) in Figure 19(a) and (b) is the result of the frequency
compensated amplifier.

If a zero was placed in only one of the two networks, the other loop would bypass this zero and, given
the fact that 𝛽vv ≈ 𝛽ivZs𝛼s, shift it to a two times higher frequency, making it two times less effective.
On top of this, a pole or zero becomes apparent in Zt∞ ≈ 𝛽vv∕𝛽iv, which degrades the input matching
significantly. This is clearly observed in Figure 19(a) and (b) trace (III).

With a zero present in both 𝛽vv and 𝛽iv, it is possible to deliberately shift the resulting pole and zero
in Zt∞ apart, such that the increase or decrease of Zt∞ due to the frequency roll-off of the loop gain can
be (partly) counteracted, while maintaining the zero location in 𝛽eff . The result is shown in trace (IV),
where the maximum frequency for which the input matching is better than −10 dB has moved up from
7.3 to 9.5 GHz.

In general, a phantom zero can also be implemented by adding a pole in 𝛼s or 𝛼l. A pole in 𝛼s (i.e.,
at the characteristic side of the amplifier) will deteriorate Zt∞ in a similar way as having phantom

‡‡Notice that the transfer magnitude is 1.5 dB less than the expected 26 dB. This is because the mid-band loop-gain
magnitude is no more than 5.3 dB, which results in an error (Eq. (9)) in the transfer of 20log [5.8∕(1+5.8)] = −1.5 dB.
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zero implemented in only one feedback network. And a pole in 𝛼l (i.e., at the non-characteristic side)
will bring the attenuation further away from unity. Hence, a phantom zero implementation in the two
feedback paths is strongly preferred.

The resulting circuit schematic is depicted in Figure 20, where the phantom zero component values
are given in the table.

7. CONCLUSION

A new synthesis-oriented feedback model has been derived that is suitable for the full synthesis of
single-loop feedback amplifiers. It directly maps to the circuit level of feedback amplifiers: The individ-
ual model elements, each representing an important design aspect, can be assigned to specific sections
of the circuit. The model not only visualizes the hierarchy in the design process but also points to
fundamental design criteria, both key for the process of full synthesis.

Based on this model, a synthesis-oriented double-loop feedback model has been developed, which
describes the two feedback loops explicitly and enables the full synthesis of double-loop feedback
amplifiers in a structured and systematic way. It models the errors made by non-ideal feedback net-
works, which creates the path to additional design criteria that are specific for double-loop feedback
amplifiers. With this model, the relations between the loop gain and the gains of the two individual
loops are easily found, as well as the relation between the feedback network characteristics and the
characteristic input or output impedance of the amplifier.
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