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Abstract

Atmospheric entry is a process defined by extremes, from the great velocity at the point of entry to the
high deceleration loads and aerodynamic heating in the lower layers of the atmosphere. In addition to
the vehicle maintaining structural integrity, an equally important aspect of the re-entry mission is safety.
This safety can only be guaranteed if the vehicle is controllable throughout the re-entry process. Mission
design plays a role in adhering to operational and safety requirements in the form of trajectory planning:
the development of a re-entry trajectory wherein the vehicle remains within its operational constraints and
is controllable throughout. The focus of this thesis lies on the design-time trajectory development part
of mission design, i.e., the development and analysis of feasible trajectories under certain requirements
to be flown for a specific mission. The research goal of this thesis is formulated as follows: to what
extent can optimal re-entry trajectories be developed in the design-time phase of mission development
for a winged entry vehicle that provide a maximum-range capability under the objective of minimizing
heat loads and adhering to operational constraints? To answer this question, a mission design tool is
developed in four successive stages: 1) Development of the re-entry simulator, 2) Design of the guidance
algorithm, 3) Development of the mission planner, and 4) Mission planner testing.

The capacity to quickly and reliably simulate re-entry trajectories is paramount to a mission planner.
For this purpose, a simulator was developed with the specific goal of later integration with the mission
planner. Steering is achieved by modulating the vehicle’s attitude in terms of its angle of attack and
bank angle. The guidance profile is based on the specification of attitude commands at specific points in
the trajectory related to the instantaneous energy of the vehicle. The course of an entire trajectory can
be specified by its guidance profile. The purpose of the mission planner is to develop guidance profiles for
trajectories that keep the vehicle within its operational constraints, minimize the heat load, and provide
the largest possible range under these conditions. The objectives of minimum heat load and maximum
range are conflicting. Trajectories with minimum heat load requirements are generally short in duration
with smooth heat flux profiles where the heat flux is maintained close to its constraint value. The total
heat load is minimized by keeping the duration of the re-entry as short as possible. This, however, is
in direct opposition to the objective of maximizing range, where keeping the vehicle aloft for as long as
possible is beneficial. The mission planner develops trajectories by specifying the individual parameters
in this guidance profile by performing multiobjective optimization to determine the combinations of
parameters that result in optimal trajectories in terms of the mission objectives.

The mission planner consistently provides a set of optimal trajectories over a diverse range of objective
values and under the provision that operational constraints are met. Optimal trajectories are determined
based on these conflicting objectives over a range of objective values, wherein the relative priorities of the
objectives are varied. In all cases is the mission planner able to provide trajectories with an extended-
range capability, even when minimizing the heat load is considered the main priority.
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Chapter 1

Introduction

The Earth’s atmosphere is continuously bombarded by objects of various sizes every single day; however,
very few worth mentioning actually end up reaching the surface. The ones that do are charred fragments
of their former selves, and are likely to cause damage due to their extremely high velocity. On February
15th 2013, a meteor exploded in a bright flash above the Chelyabinsk Oblast in Russia; its dispersed
fragments and shockwave damaged over 7,000 buildings and injured over 1,500 people (Popova et al.,
2013). Entering the atmosphere at a speed of 19 km/s, this meteor measuring about 20 m in diameter
possessed enough kinetic energy to rival over twenty ”Little Boy” atomic bombs (Yeomans and Chodas,
2013). For any space mission wherein a return to Earth is required, avoiding a similar fate is far from a
given. Naturally a re-entry vehicle is dissimilar to a ten-thousand ton rock in many ways, but the kinetic
energy it possesses at entry does not lie: over 30 MJ of kinetic energy per kilogram of vehicle makes
the Space Shuttle the energy equivalent of over 650 tons of TNT. Allowing this amount of energy to be
dissipated by the atmosphere alone would be catastrophic.

Returning to Earth in one identifiable piece is, however, not the only concern during a re-entry mission.
Just as for any other part of a space mission, safety is paramount; not only for possible onboard personnel,
but also for people on the ground that may be affected. The vehicle must resist the wear and tear of
its return journey so its (often human) cargo is protected, and land in a predefined safe landing location
in such a way that it does not cause damage to itself or the surrounding environment. It has to follow
a re-entry trajectory wherein its design limits are not breached and the safety of people on the surface
is guaranteed. Achieving this comes down to both vehicle design (e.g., structural integrity, heat shields)
and mission design.

Atmospheric entry is a process defined by extremes. From its great velocity at the point of entry to the
staggering deceleration loads and aerodynamic heating in the lower layers of the atmosphere, a re-entry
vehicle has a lot to contend with on its way home. And just survival is not enough: in addition to
the vehicle (and possible crew) remaining in one identifiable piece throughout the trajectory, an equally
important aspect of the re-entry mission is the safety of anyone or anything on the ground (or in the air)
that may be affected by it. This safety can only be guaranteed if the vehicle is controllable throughout
the re-entry process, allowing it to be steered towards a predefined landing location were it is to arrive
at a specified time.

Re-entry trajectories can take three general forms depending on the properties of the vehicle and the
conditions at entry: ballistic, gliding, and skipping. Ballistic entry trajectories correspond to vehicles
with minimal capacity to generate lift such as capsules; this method of re-entry is the shortest and
incurs the highest loads. Gliding entry is reserved for lifting vehicles such as the Space Shuttle, and is
characterized by a long range and duration with much lower incurred loads. Skipping entry is unique in
the sense that both low-lift and high-lift have the capacity to perform it. Low-lift vehicles require a high
entry velocity associated with e.g., Lunar return, while lifting vehicles are capable of inducing skips even
from low-Earth orbit. The method offers the benefit of extending the re-entry range of the vehicle, in
addition to a large part of the vehicle’s deceleration taking place in the upper layers of the atmosphere
where aerodynamic loading is less severe.

1



2 CHAPTER 1. INTRODUCTION

Mission design plays a role in adhering to operational and safety requirements in the form of trajectory
planning: the development of a re-entry trajectory wherein the vehicle remains within its operational
constraints and is controllable throughout. The distinction is made between design-time trajectory
planning, i.e., the development and analysis of feasible trajectories under certain requirements to be
flown for a specific mission, and on-the-fly trajectory planning which involves the real-time computation
of guidance commands based on the instantaneous state of the vehicle and a nominal reference trajectory.
The focus of this thesis lies on the design-time trajectory development part of mission design. More
specifically, the research goal of this thesis work is formulated as follows:

To what extent can optimal re-entry trajectories be developed in the design-time phase of mission de-
velopment for a winged entry vehicle that provide a maximum-range capability under the objective of
minimizing heat loads and adhering to operational constraints?

To answer this question, a mission design tool is developed in four successive stages:

1. Development of the re-entry simulator
2. Design of the guidance algorithm
3. Development of the mission planner
4. Mission planner testing

The capacity to quickly and reliably simulate re-entry trajectories is paramount to a mission planner.
For this purpose, a simulator was developed with the specific goal of later integration with the mission
planner. The re-entry simulator uses the HORUS reference vehicle model from Mooij (1995). The HORUS
reference vehicle is a Space Shuttle-like winged (i.e., lifting) vehicle capable of both gliding and skipping
flight. Detailed and verified aerodynamic information is available for the vehicle model from Mooij (1995),
as well as simulation data for a reference trajectory developed by Mooij (1998); this data was used to verify
the re-entry simulator. Throughout the course of the simulator’s design, considerable effort was extended
to ensure the reliability of the both the simulator as a whole, and of its individual components. To this
end, many larger verification steps were performed on the whole simulator based on its configuration at
the time, first with very simple models and with each iteration increasing in complexity. The end result is
a simulator capable of simulating the trajectory and all relevant parameters of the HORUS-2B reference
vehicle by implementing a “three-and-a-half” degree-of-freedom flight-dynamic model with the inclusion
of the pitch trim condition.

The vehicle performs an unpowered re-entry, meaning all the forces and moments acting on the vehicle
throughout re-entry are a direct consequence of its instantaneous environment. The forces and moments
acting on the vehicle are either gravitational or aerodynamic in origin; these forces are computed
according to the gravitational field and atmospheric models used. The re-entry simulator makes use
of a central gravity field with an additional J2-term to model the latitudinal gravitational perturbations.
The instantaneous atmospheric properties throughout the re-entry trajectory are computed using an
analytical United States Standard Atmosphere 1976 (US76) atmospheric model. Finally, the Earth is
taken to have a spherical shape.

Steering is achieved by modulating the vehicle’s attitude in terms of its angle of attack and bank angle.
A change in attitude results in a change in the direction and magnitude of the resultant aerodynamic
force acting on the vehicle, causing the vehicle to alter its trajectory. The vehicle’s attitude throughout
the course of the trajectory is defined by a guidance profile. The guidance profile is defined in terms
of a number of control nodes, at which the guided attitude is related to an independent parameter that
indicates the vehicle’s position along its trajectory. This independent parameter is the normalized total
specific energy of the vehicle, which has value 1 at the entry point and 0 when the vehicle has come
to a standstill on the Earth surface. The benefit of using this parameter is that not only are its limit
values independent of the trajectory, but also that it is monotonically decreasing throughout the course
of re-entry; this allows for an unambiguous definition of the guidance profile.

The simulator computes the vehicle’s trajectory by integration of the initial state, which is defined by
its inertial position and velocity components. The state derivative of the vehicle is computed based on
the summation of the gravitational and aerodynamic forces it incurs as a result of its current state; the
commanded attitude angles determine the definition of the aerodynamic force vector in the inertial frame.
In addition to the state variables, the vehicle’s horizontal velocity as well as the heat flux are integrated
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to obtain the total downrange and heat load at the end of the trajectory.

The purpose of the mission planner is to develop trajectories that:

� Keep the vehicle within its operational constraints
� Minimize the heat load
� Provide the largest possible range

The objectives of minimum heat load and maximum range are conflicting. Trajectories with minimum
heat load requirements are generally short in duration with smooth heat flux profiles where the heat flux
is maintained close to its constraint value. The total heat load is minimized by keeping the duration of
the re-entry as short as possible. This, however, is in direct opposition to the objective of maximizing
range, where keeping the vehicle aloft for as long as possible is beneficial. For extended-range trajectories,
the altitude profile may contain a number of lofts or skips of the vehicle; this is beneficial for the total
downrange, but results in an irregular heat flux profile. Large temperature gradients can cause significant
thermal stresses, which are detrimental to the vehicle’s Thermal Protection System (TPS).

The course of an entire trajectory can be specified by its guidance profile. The mission planner develops
trajectories by specifying the individual parameters in this guidance profile. The output must be a
qualitatively good trajectory with regard to both the mission’s objectives and constraints. The mission
objectives are the total downrange Xdr (to maximize) and the total heat load Q (to minimize), whereas
the constraints are related to the heat flux qc and gload. The quality of a certain trajectory in terms
of these parameters is defined quantitatively by the value of the objective function, of which the values
should be minimized. The objective function takes into account not only Xdr, Q and the constraint
parameters, but also the shape of the heat flux profile in terms of the number and magnitude of any
fluctuations.

The final output of the mission planner consists of a set of optimal trajectories with varying characteristics
between minimum heat load performance and maximum range performance. Any trajectory within
this set can be selected depending on the mission specific priorities in terms of heat load and total
downrange.

This text gives an overview of the theory behind the developed mission planner, the design process, as
well as an assessment of the mission planner’s performance. Chapter 2 presents the theory behind the
re-entry problem, as well as the models used in the re-entry simulator. The flight dynamic model as
applied in the mission planner is discussed in Chapter 3. The most prominent numerical methods in use
by the simulator and mission planner are explained in Chapter 4. The development and final design of
the guidance system is discussed in Chapter 5, followed by the presentation of the simulator as a whole
in Chapter 6. The methodologies used by the mission planner to obtain optimal trajectories, as well as
the mission planner design process are discussed in Chapter 7. The evaluation of the mission planner’s
qualities and performance is given in Chapter 8. This text is concluded with Chapter 9 wherein the
overall conclusions of this thesis work are presented, as well as future improvement opportunities.
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Chapter 2

Re-Entry Missions Defined

A re-entry mission is defined in terms of requirements stemming from the trajectory and the mission’s
objectives, as well as constraints based on the re-entry vehicle’s and possible crew’s capacity (Ely, 1966).
The totality of conditions that need to be taken into account in the design of a re-entry mission is often
referred to as the re-entry problem; the aspects of this problem are discussed in Section 2.1. Section 2.2
defines in more technical detail the re-entry environment, as well as the design choices made in modeling
this environment.

2.1 The Re-Entry Problem

The term “problem” may carry a negative connotation in the colloquial sense, but in engineering it
simply means “something to solve”. Such is also the case for designing a re-entry mission, with its many
different aspects and considerations. Atmospheric entry combines the great speeds inherent to spaceflight
with the more down-to-Earth considerations of, e.g., aerodynamics, making it an action characterized
by extremes. The aerodynamic loads and heating a vehicle is subjected to during its return journey are
unmatched by anything on Earth. In the face of these harsh conditions, the vehicle and its trajectory
must de designed in such a way that its own safety – as well as that of people on the ground – is not
compromised, in addition to meeting the mission’s overall goals. This safety consideration encompasses
not only the structural integrity of the vehicle, but also its ability to follow a prescribed trajectory in
a sufficiently accurate manner – even when confronted with unpredictable circumstances. This thesis
focuses largely on the re-entry trajectory, therefore the re-entry problem will mainly be discussed in that
context. The trajectory of a re-entry vehicle is defined in terms of its constraints; from the entry point
to landing, these must continuously be taken into account.

2.1.1 Vehicles

Re-entry vehicles come in many shapes and sizes, but can generally be divided into two categories:
capsules (e.g., the Dragon re-entry capsule) and winged vehicles (e.g., the Space Shuttle). Their defining
characteristic, the lift-to-drag ratio L/D, is related to both size and shape as it defines the amount of
aerodynamic lift the vehicle is capable of producing relative to the aerodynamic drag it incurs. Capsules
have low (L/D < 1) lift-to-drag ratios, whereas winged vehicles have high ones (L/D > 1); an L/D greater
than zero indicates that the vehicle is capable of producing lift. The L/D of a vehicle is directly related
to its response to aerodynamic loads; a vehicle can be steered by altering its aerodynamic profile – and
thus its L/D – by modulating its attitude with respect to the incoming airflow. The L/D of a vehicle gives
an indication of its capability both in terms of possible range, as well as controllability. A vehicle can
utilize aerodynamic loading to exhibit control over its course by adjusting its attitude, and the more lift
it can produce, the more control it has. Therefore winged vehicles with high L/D-ratios are marked by a

5
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Figure 2.1: Re-entry trajectories (Becker, 1961).
Figure 2.2: The re-entry corridor (Chapman,
1959).

higher degree of controllability than low-lift vehicles, allowing for a greater freedom in the specification
of its trajectory.

2.1.2 Trajectories

The path a vehicle can follow through the atmosphere is determined largely by its aerodynamic attributes,
as well as its velocity and flight path angle at entry interface (EI) (referred to as the entry angle). The
flight path angle is denoted by γ and represents the angle between the vehicle’s flight path and the local
horizontal plane. Three characteristic re-entry trajectory types can be distinguished:

Ballistic entry is the simplest and most drastic of the three trajectory types (see trajectory a in Figure
2.1). The vehicle enters the atmosphere with high velocity at a steep entry angle, which remains
(near-) constant throughout the vehicle’s short journey to the ground. Due to the absence of
lift forces, ballistic entry is performed by vehicles with a low (but nonzero) lift-to-drag ratio such
as capsules; capsules are semi-ballistic and are capable of producing some amount of lift – this
is necessary for aerodynamic controllability.. Due to the steepness of the trajectory, the vehicle
reaches the denser layers of the atmosphere at high velocity, where it will experience large g-loads
and a high heating rate.

Gliding entry is characterized by an almost constant shallow entry angle and can only be performed
by vehicles with a high lift-to-drag ratio, such as winged vehicles (see trajectory b in Figure 2.1).
The aerodynamic characteristics of the vehicle allow it to generate a lift force when the atmosphere
is thick enough, keeping it aloft for a much longer time. As a consequence, the vehicle reaches the
denser layers of the atmosphere at a greatly reduced speed and experiences much smaller g-loads
and heating than the ballistic case.

Skipping entry is an entry mechanism wherein the vehicle’s altitude does not monotonically decrease
with time (see trajectory c in Figure 2.1). Instead, the vehicle performs one or more “skips”, which
may or may not take it out of the Earth’s atmosphere again; if the skips are performed within the
atmosphere, they are sometimes referred to as “lofts” instead. This skipping motion can be achieved
without an added propulsive force depending on the vehicle’s aerodynamic properties and velocity,
by both low-L/D and high-L/D vehicles alike. Low-L/D vehicles can achieve a skip if their velocity
is high enough, e.g., after Lunar return (Brunner and Lu, 2008). Winged vehicles are capable
of inducing skip even after entering from low-Earth orbit (LEO). While it seems uncomfortable,
performing one or more skips allows the vehicle to greatly increase its re-entry range, in addition to
segmenting its deceleration and heating phases into smaller parts. During its exo-atmospheric phase,
the vehicle describes a simple ballistic trajectory where it experiences no aerodynamic deceleration
(i.e., no net deceleration) or heating.
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Figure 2.3: Schematic representation of the general altitude progression of skipping, lofting and gliding
trajectories (not to scale).

A schematic representation of the different altitude profiles of these trajectories is shown in Figure 2.3.
A distinction is made between the loft and skip trajectories, though these technically both belong to the
skipping category. The difference lies in whether the vehicle performs an exoatmospheric skip, or remains
within the atmosphere (i.e., lofting). In comparison to the glide trajectory, it can be seen that both
types of skip trajectory have a positive effect on the vehicle’s attainable range; the larger the skip, the
better. Lifting vehicles are thus capable of performing both gliding and skipping entry when returning
from LEO, so for the purpose of maximizing range, skipping entry may be a possibility.

2.1.3 Constraints

The re-entry trajectory that is flown is carefully designed around the mission’s requirements and con-
straints. These constraints stem from the structural integrity requirements of both the vehicle and its
payload (and possible crew), as well as safety considerations concerning people on the ground. If a vehicle
performs a beautiful low-g re-entry with minimal heat load – but nevertheless lands inside a shopping
mall – no-one will be patting the chief engineer on the back. The success of the mission is based on four
basic considerations: aerodynamic capture within the atmosphere, aerodynamic load factor, aerodynamic
heating, and control of the landing point (Graves and Harpold, 1970).

2.1.3.1 Re-Entry Corridor

All constraints imposed on the vehicle can be translated to trajectory constraints, which leads to the
concept of a re-entry corridor. The reentry corridor is defined as “the set of space trajectories for which
aerodynamic capture within the atmosphere of the Earth can be achieved and for which re-entry trajectory
control can be accomplished without violating either flight-crew or vehicle stress limits” (Chapman, 1959).
These limits are defined in terms of g-loads (i.e., deceleration loads) and aerodynamic heat loads.

Entering the atmosphere at an excessively shallow angle – termed overshoot – leads to loss of control over
the trajectory wherein the vehicle is deflected back out of the atmosphere, possibly never to return to
Earth again. Successful aerodynamic capture entails staying below this overshoot boundary. Conversely,
entering the atmosphere too steeply – termed undershoot – causes the vehicle to incur decelerations and
heat loads of unacceptable magnitudes. The overshoot and undershoot boundaries define the absolute
outer limits of the possible re-entry corridor (see Figure 2.2). Remaining within these bounds is far from
a guaranteed successful re-entry, but rather the avoidance of a guaranteed catastrophe. Within these
absolute bounds, operational constraints as well as the specific intended destination of the vehicle greatly
reduce the effective width of the re-entry corridor.
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2.1.3.2 G-Loads

Before entering the atmosphere, an unpowered vehicle’s motion is governed by gravitational forces only
(Loh, 1968). Upon re-entry, the motion becomes affected by aerodynamic forces as well, specifically the
lift force L and drag force D1. The lift force acts normal to the vehicle’s path in the upwards direction,
causing it to stay aloft longer, whereas the drag force acts counter to the vehicle’s direction of motion,
causing it to decelerate. The resultant of these forces translates to an acceleration proportional to the
vehicle’s mass (as per Newton’s 2nd Law). The g-load experienced by the vehicle is simply the magnitude
of this resultant acceleration normalized by the gravitational acceleration at sea-level g0:

ng = 1
mg0

√
L2 +D2 (2.1)

2.1.3.3 Aerodynamic Heating

The aerodynamic heat loads that can be incurred by the vehicle are subject to constraints in two different
manners: the total heat input and the maximum (local) heating rate (Eggers et al., 1957). A re-entry
vehicle enters the atmosphere at high speed, and thus possesses a large amount of kinetic energy (and
a much smaller amount of potential energy). This energy is converted to heat due to friction occurring
between the vehicle’s skin and the surrounding air, causing the vehicle to decelerate. The total heat
input to the vehicle is simply the integral of the heating rate taken over the entire trajectory (Bloom and
Miele, 1962). The heating rate is dependent on the hypersonic aerodynamic properties of the specific
vehicle and is quite complicated to calculate. A useful approximation as developed by Chapman (1960)
is:

qc = c∗RN
n

(
ρ

ρ0

)1−n(
V

V c

)m
(2.2)

where RN is the nose radius of the vehicle, ρ is the atmospheric density (the subscript zero indicates its
value at sea-level), V is the vehicle’s velocity and V c is the circular velocity defined to be 7905.4 m/s.
The exact definitions of the constants c∗ = 1.1097 · 108, n = 0.5 and m = 3.15 is beyond the scope of this
text, and it is sufficient to state that they represent the airflow characteristics around the vehicle.

2.1.4 Mission Heritage

2.2 Environment Modeling

The environment in which an (atmospheric) entry takes place, is defining for the mission. A successful
entry on Mars is completely different from one on Earth, from start to finish. For example, Mars has a
very thin atmosphere compared to the Earth’s, and deceleration and heat loads incurred by the vehicle
are much lower. A vehicle’s motion and its capacity to meet predefined constraints is defined by the loads
it is subjected to. These loads, in turn, are defined by the environment in which the entry occurs. In
the context of re-entry, the environment encompasses three separate aspects of the body on which the
vehicle is to land: its gravitational field, its atmosphere, and its shape. The average celestial body is far
from a perfect sphere in a vacuum, and the Earth is no exception. Its characteristics cannot be described
completely by any number of equations; to successfully simulate a re-entry trajectory, the environmental
properties must be approximated in a sufficiently accurate way using environmental models.

2.2.1 Gravitational Field

A re-entry vehicle is subject to an external force that draws it towards the Earth: the gravitational force.
Newton’s Law of Gravitation states that two point masses which are separated by a vector distance r

1The third aerodynamic force component, the side force S, can be neglected in terms of its contribution to the g-load.
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exert an attractive force FG on each other defined as

FG =
GMm

R2
r̂ (2.3)

where R is the modulus of the vector distance r, and r̂ is the normalized vector distance. G is the
universal gravity constant (G = 6.67259 · 10−11 m3s−2 (Standish, 1995)), and M denotes the mass of the
central body; their product GM is defined as the gravitational parameter µ of the central body. The
gravitational potential of the central body may be written as

U = − µ
R

(2.4)

Equation 2.4 is commonly referred to as the central field model, and is the simplest approximation of a
body’s gravitational potential. The fraction µ/R is called the central field term.

2.2.1.1 Zonal harmonics

The point-mass approximation applied in Newton’s Law of Gravitation is, however, not valid when
calculating the gravitational acceleration due to the Earth as experienced by a re-entry vehicle. When
the second body (in this case, the vehicle) is in such close range of the central body, other factors that
may locally affect the gravitational field of the central body need to be taken into account. For Earth,
the largest cause of deviation from the central field model is its inhomogeneous mass distribution. The
deviation from the central field potential caused by this inhomogeneous mass distribution can be modeled
as a correction term U c(R, τ, θ):

U = − µ
R

+ U c(R, τ , θ) (2.5)

where τ is the longitude, and θ is the co-latitude, ranging from 0◦ for latitude δ = 90◦ to 180◦ for
δ = −90◦.

For Earth, U c takes the form of a series of Legendre polynomials and a spherical harmonic function.
Equation 2.5 can be written as (Vallado, 2001):

U = − µ
R

{
1−

∞∑
`=2

[(
RE
R

)`
J`P

0
` (cos θ) +

∑̀
m=1

(C`m cosmτ + S`m sinmτ)Pm` (cos θ)

]}
(2.6)

When a body of finite size is observed from an infinite distance, it looks like a point mass. This makes
sense, because as R→∞, U c(R, τ , θ)→ 0.

The indices ` and m represent the degree and order of the function, respectively. The zero-th degree
solution simply reduces Equation 2.6 to the central field model in Equation 2.4, making the term J0

equal to unity. The first degree solution corresponds to taking the origin of the system at the center of
mass (c.o.m.) of the central body. The coefficients J1, C1,0, C1,1, S1,0 and S1,1 are all null in this case
(Vallado, 2001). This is the reason the summation indices for ` and m do not start at zero as one would
expect.

The terms J` (m = 0) are zonal harmonic coefficients, and only define the latitudinal distribution of
mass. C`m and S`m are spherical harmonic coefficients which represent sectoral harmonics when ` = m
and tesseral harmonics when ` 6= m 6= 0. Sectoral harmonics define the longitudinal distribution of mass,
whereas tesseral harmonics divide the Earth into latitudinal and longitudinal patches. See Figure 2.4 for
an illustration of zonal, sectoral and tesseral harmonics for a number of degrees and orders. The constants
J`, C`m and S`m are empirically determined using precise measurements of the Earth’s gravitational field
(e.g., by satellites such as GRACE (Foerste et al., 2005)). Their values are constantly being updated as
measurement techniques improve.

The terms Pm` (cos θ) are (associated) Legendre polynomials. A Legendre polynomial P`(x) is an `th

degree polynomial that may be expressed as

P`(x) =
1

2``!

d`

dx`

[(
x2 − 1

)`]
(2.7)
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(a) Zonal (` = 6,m = 0) (b) Sectoral (` = 16,m = 9) (c) Tesseral (` = 9,m = 9)

Figure 2.4: Zonal, sectoral and tesseral harmonics (Lambeck, 1990).

The associated Legendre polynomials Pm` (x) are obtained from P`(x) as

Pm` (x) = (−1)
m (

1− x2
)m

2
dm

dxm
(P`(x)) (2.8)

The expressions for Pm` (cos θ) for 0 ≤ ` ≤ 4 and 0 ≤ m ≤ 4 can be found in, for instance, Stacey and
Davis (2008).

2.2.1.2 Model accuracy

It is convenient to express the gravitational acceleration vector as consisting of a radial component gR, a
longitudinal component gτ and a lateral component gδ:

g = (gR, gτ , gδ)
T

(2.9)

The required accuracy of the gravitational model naturally depends on its application. For the purpose
of re-entry mission planning, the zero-th order central field model is not sufficiently accurate; in the thin,
upper layers of the atmosphere, the gravitational force dominates the motion of the vehicle. Guidance and
navigation systems require a more accurate representation of the gravitational field (Mooij, 2013).

For a rotating Earth, the dependence of the gravitational potential on the longitude τ may be neglected
in the , i.e., the Earth may be assumed to be an ellipsoid with symmetry about its polar axis. In this
case, only the zonal terms contribute to the potential (m = 0) and the gravitational acceleration has no
component out of the meridian plane (i.e., gτ = 0). Equation 2.6 reduces to

U = − µ
R

{
1−

∞∑
`=2

(
RE
R

)`
J`P

0
` (cos θ)

}
(2.10)

and the gravitational acceleration vector gV – the subscript V indicating the vertical reference frame,
see Section 3.1.1 – becomes

gV = (gδ, 0, gR)
T

(2.11)

where gR is the radial and gδ the latitudinal component of g. Additionally, if the equator is taken as a
plane of symmetry, Jn = 0 for all odd values of n.

By far the largest effect on the Earth’s gravitational field is due to J2, i.e., the inhomogeneity in mass
distribution caused by the Earth’s equatorial bulge. The next largest term, J3 (which accounts for the
Earth’s slight pear shape) is three orders of magnitude smaller. For re-entry simulations it is sufficient to
neglect the longitudinal dependency and only include Jn-terms up to a few orders, though generally J2 is
deemed sufficient. For this thesis work, the longitudinal dependence as well as all Jn terms above J2 are
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neglected in the gravitational model. In that case, the gravitational acceleration vector g becomes

g =

gR0
gδ

 =
µ

R2

1− 3
2J2

(
RE
R

)2 (
3 sin2 δ − 1

)
0

−3
(
RE
R

)2
J2 sin δ cos δ

 (2.12)

2.2.2 Atmosphere

In the presence of an atmosphere, a re-entry vehicle experiences two critical aspects in its mission:
aerodynamic forces and aerodynamic heating. For the Earth, the atmosphere becomes the defining
factor for the last leg (approximately below 40 km) of a re-entry mission. Its presence allows for the
vehicle’s trajectory to be controlled by adjusting its aerodynamic profile, as well as the deceleration of
the vehicle to safe landing speeds by converting kinetic energy to heat due to friction (Mooij, 1994).
However, aerodynamic decelerations in excess of 100g can easily occur in uncontrolled re-entries (Regan,
1993); for reference, the g-load limit for human spaceflight is around 3g. Additionally, the vehicle still
possesses such large amounts of kinetic energy in the lower layers of the atmosphere, that the heat loads
incurred due to aerodynamic friction could easily incinerate it in absence of both thermal protection and
an adequate guidance scheme. This navigation system needs to predict the aerodynamic forces on the
vehicle with sufficient accuracy to perform a safe re-entry. Uncertainties and errors in doing so may cause
catastrophic damage.

To determine the aerodynamic forces acting on a re-entry vehicle, an atmospheric model must be used.
The Earth’s atmosphere is dynamic; its defining properties such as temperature and density, as well the
particle densities of its constituents, are constantly changing – primarily due to Solar radiation. Devel-
oping a complete model that encompasses all these changes and accurately represents the atmospheric
conditions at all locations at all times is impossible (Vinh, 1981). Even the most complex and detailed
atmospheric model will always be just that: an approximation. However, many aspects that make the
Earth’s atmosphere so complex are not relevant in the frame of aerodynamic load calculations on a re-
entry vehicle (Mooij, 1997). In fact, the dominating atmospheric factors for aerodynamic accelerations
and heating are fairly simple: the atmospheric density ρ and temperature T . The accurate simulation of
the aerodynamic loads and heating incurred by a vehicle during the re-entry stage thus depends mainly on
being able to reliably and conveniently model the atmospheric density (Marec, 1979). Many atmospheric
models have been developed (and are being developed) for the Earth, with varying complexity. The
distinction is made between standard and reference atmospheres, where accounting temporal variation is
the most important divisor. Reference atmospheres were not considered for this thesis work due being
unnecessarily detailed. A standard atmosphere is a theoretical distribution with altitude of the main
physical properties of the atmosphere (e.g., density, pressure, temperature) that has been established
by international agreement. By design, there is no temporal or spatial (other than altitude) element
involved, as the model is intended to be representative of year-round, mid-latitude conditions.

In this thesis work, the popular US76 was used to model the atmospheric properties. The US76 is
the most commonly used standard atmosphere in aviation and aerospace due to its simplicity and
sufficiently accurate (for most applications) representation of the atmosphere. It is a revised version
of an earlier model, the United States Standard Atmosphere 1962 (US62). The US76 is an analytic
model of atmospheric property variations with altitude, and is based on the interpolation of known
atmospheric values within predefined layers. It can be applied to geometric altitudes from -5 km to up
to 1000 km. The type of interpolation depends on the specific layer. The course of the main atmospheric
properties density, pressure, temperature and speed of sound with altitude is shown in Figure 2.5.

The US76 operates on the basis of a number of assumptions:

� The air behaves as a perfect gas; the pressure p, temperature T , and density ρ at any point in the
atmosphere are related by the equation of state, also known as the perfect gas law:

p =
ρR∗T

M
(2.13)

where M is the molecular weight and R∗ = 8.3144621 J/kg/mole is the universal gas constant.
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Figure 2.5: The US76 plot of geometric altitude against the normalized density, pressure, temperature
and speed of sound.

� The atmosphere is in hydrostatic equilibrium. The hydrostatic equation is

dp = −gρdz (2.14)

� The atmosphere is homogeneous up to an altitude of 80 km.

The US76 is based on the division of the Earth’s atmosphere into a number of layers, or ’strata’, with
similar atmospheric properties. Up to a geometric altitude of z = 86 km (which is equal to a geopotential
altitude of h = 84.8520 km), the atmosphere is split up into strata based on the geopotential altitude;
upwards of z = 86 km, the strata are defined based on the geometric altitude. This discrepancy occurs
because US76 is actually based on an earlier standard atmosphere, namely the US62, which used h as its
altitude variable. The relation between z and h is given by

g0dz = gdh (2.15)

which can be approximated by

z =

∫ h

0

g

g0
dh ≈ R0h

R0 + h
(2.16)

where R0 = 6356.766 km, the Earth’s radius at the latitude where g0 = 9.80665 m/s2. For the sake
of clarity, in this section geopotential kilometers shall be indicated as km′ to distinguish them from
geometric kilometers.

The most important atmospheric properties at a certain altitude that may be calculated using US76
are the temperature T , pressure, p and density ρ. Before these computations are explained, the mean
molecular weight M must be defined.

2.2.2.1 Mean molecular weight

The mean molecular weight M of air is the average of the contributions of all its constituents, and can
be approximated from the molecular weights of He, N2, O2 and Ar:

M = fHeMHe + fN2
MN2

+ fO2
MO2

+ fArMAr (2.17)

The f -terms represent the fractional concentrations of the individual constituents of air. Up to an altitude
of 80 km, the atmosphere is assumed to be completely homogeneous; the fractional concentrations retain
their constant sea-level values, and M is considered constant at M0 = 28.9644 · 10−3 kg/mol. For
geometric altitudes between 80 km and 86 km, M is linearly interpolated using tabulated values of the
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Table 2.1: Reference levels of the temperature-height profile from the surface to 86 km. (NASA, 1976)

i h km′ LM K/km′ TM(h) K

0 0.0 -6.5 linear
1 11.0 0.0 linear
2 20.0 +1.0 linear
3 32.0 +2.8 linear
4 47.0 0.0 linear
5 51.0 -2.8 linear
6 71.0 -2.0 linear
7 84.8520 N/A N/A

i z km LK K/km T (z) K

7 86 0.0 linear
8 91 elliptical
9 110 12.0 linear
10 120 exponential
11 500
12 1000

ratio M/M0, defined at intervals of 0.5 km, ranging from 1.0 at 80 km to 0.999579 at 86 km. These
values are defined such that the boundary conditions at both 80 km and 86 km are met.

M i = M0

(
M i

M0

)
i

(2.18)

Above 86 km, the computation of M is more complex as the assumption of atmospheric homogeneity does
not hold anymore; the number density values of the individual constituents vary differently with altitude.
For this thesis work, the individual number densities is not of interest however; for the precise calculations
the reader is referred to NASA (1976). For practical purposes, tabulated values of M between altitudes
of 86 km and 120 km can be used to interpolate the mean molecular weight.

M = M i + (M i+1 −M i)

(
z − zi

zi+1 − zi

)
(2.19)

Above altitudes of 120 km, M can for all practical purposes be considered zero.

2.2.2.2 Temperature

The temperature-altitude profile boundaries and values up to 86 km are indicated in the first part of
Table 2.1. The use of h instead of z in the model definition at these altitudes makes it necessary to define
the altitude variations of T and M in terms of h. For this purpose, the molecular scale temperature TM
is introduced.

TM = T
M0

M
(2.20)

The molecular temperature TM at a certain geopotential altitude h is simply calculated using the
molecular scale temperature gradient LM :

TM = TM,i + LM,i(h− hi) (2.21)

The conversion to kinetic temperature T follows from Equation 2.20 and the value of the mean molecular
weight M .

Above 86 km, the model is based on the geometric altitude z. The temperature-altitude profile is based
on four successive functions; these are defined in such a way that the first derivative of T with respect
to z is continuous over the entire altitude interval of 86 km to 1000 km. Each function is defined over a
specific altitude region; these regions begin at the base altitudes shown in the second part of Table 2.1.
The functions represent four separate atmospheric conditions.
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Layer 1: 86 - 91 km is isothermal and the gradient dT/dz is equal to zero. The temperature through-
out the layer is simply given by

T = T 7 = 186.8673K

Layer 2: 91 - 110 km has a temperature-altitude function dT/dz in the form of an ellipse:

T = T c +A

√
1−

(
z − z8

a

)2

(2.22)

where T c = 263.1905 K, A = −76.3232 K and a = −19.9429 km. The values of the constants T c,
A and a were obtained from fitting the ellipse equation to the values of T 8 = T 7 = 186.8673 K and
LK8 = LK7 = 0.0 K/km at z8 = 91 km, and T 9 = 240.0 K and LK9 = 12.0 K/km at z9 = 110 km.
The derivation can be found in NASA (1976).

Layer 3: 110 - 120 km has a temperature-altitude function that increases exponentially toward an
asymptote with increasing z.

T = T 9 + LK9(z − z9)

Layer 4: 120 - 100 km contains strata 10 through 12 (see Table 2.1). For the entire layer, T (z) has
the exponential form

T = T∞ − (T∞ − T 10) exp (−λξ)

where

λ =
LK9

T∞ − T 10
= 0.01875

(
km−1

)
ξ = ξ(z) =

(z − z10)(RE + z10)

RE + z
km

T∞ is defined to be 1000 K.

2.2.2.3 Pressure

The method of pressure computation depends on the altitude. From the surface up to a geometric
altitude of 86 km, the argument used is again the geopotential altitude h; for altitudes above 86 km, the
argument is z. p(h) can be determined by integrating another form of the hydrostatic equation (Equation
2.14):

d ln p =
dp

p
= − gM

R∗T
dz (2.23)

The result of this integration takes two forms, depending on the value of the molecular scale temperature
gradient LM (see Table 2.1).

LM,i = 0 : p = pi exp

[
−g0M0(h− hi)

R∗TM,i

]
(2.24a)

LM,i 6= 0 : p = pi

[
TM,i

TM,i + LM,i(h− hi)

] g0M0
R∗LM,i

(2.24b)

The reference value of p for i = 0 is p0 = 101325.0 N/m2, the atmospheric pressure at sea level. The
values of p1 through p6 can be obtained using Equations 2.24a and 2.24b.

Above altitudes of 86 km, the pressure computation is more complex as the assumption of atmospheric
homogeneity does not hold anymore. The argument is the geometric altitude z, and thus the kinetic
temperature T instead of the molecular temperature is used. The expression for p(z) relates the total
pressure p to the sum of all partial pressures due to the individual main atmospheric constituents.

p =
∑

pj =
∑

njkT =

∑
njR

∗T

NA
(2.25)
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Figure 2.6: The (exaggerated) geoid as observed by GOCE, with gravitational undulations (ESA, 2009).

where k = 1.380622 ·10−22 Nm/K is the Boltzmann constant, NA = 6.022169 ·1026 kmol−1 is Avogadro’s
constant and

∑
nj represents the sum of the number densities of the individual gas species at that specific

altitude. The calculations to obtain the number densities nj are complex and beyond the scope of this
text. The logarithms of tabulated values of the total number density N =

∑
nj can be interpolated

linearly to obtain N at a specific altitude:

N = Ni exp

[
(z − zi) ln

(
Ni+1

Ni

zi+1 − zi

)]
(2.26)

The calculation of p then becomes straightforward from Equation 2.25.

2.2.2.4 Density

The air density ρ follows from the obtained values of mean molecular weight M (Equation 2.17),
temperature T (Section 2.2.2.2), and pressure p (2.25) :

ρ =
MpT

R∗
(2.27)

2.2.2.5 Speed of sound

The local speed of sound is then defined by

a =

√
γ
R∗T

M0
=
√
γRT (2.28)

where γ = 1.4 is the ratio of specific heats, and R = 8.314510 (J mole−1 K−1) is the molar gas constant
in air.

2.2.3 Earth Shape

A planetary body is characterized by its shape, size, and rotational rate. The Earth is not a perfect
sphere: it bulges at the equator, is slightly pear-shaped, and actually consists mainly of smaller bumps
and indentations (not to mention mountainous regions and oceanic trenches) (O’Keefe et al., 1959).
This subject was touched upon in Section 2.2.1, where the Earth’s inhomogeneous mass distribution was
discussed in the context of its gravitational field. An exaggerated representation of the geoid2 is shown
in Figure 2.6.

2The equipotential surface that mean sea level follows (Li and Götze, 2001)
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Within this thesis, the Earth is modeled as a rotating sphere. The re-entry simulator has the capacity
to model the Earth as an ellipsoid as well, however the simulation data available from (Mooij, 1998)
was obtained using the spherical-Earth approximation. To allow for easier comparison of results to this
reference trajectory, this spherical-Earth approximation was maintained.



Chapter 3

Flight Dynamics

The flight dynamic model as applied in the design of the re-entry simulator is discussed in this chapter.
Section 3.1 starts with a general definition of the reference frames used in this work, followed by
transformations necessary to switch between these frames. The vehicle state may be described by various
definitions of the state variables; the ones used throughout this thesis as well as their relation to each
other are discussed in Section 3.2. Section 3.3 gives an overview of the external forces and moments
acting on the vehicle as a result of its environment. A small detour follows in Section 3.4, wherein the
nominal Horus-2B vehicle model used throughout this thesis is presented. This chapter is concluded by
a presentation of the equations of motion as applied in this thesis in Section 3.5.

3.1 Reference Frames

The following has been obtained from Mooij (1994). The frames discussed in this chapter are all right-
handed and Cartesian.

3.1.1 Reference Frame Definitions

Inertial Planetocentric Reference Frame

The Inertial Planetocentric Reference Frame (IPRF) FI (XIYIZI) has its origin in the c.o.m. of the
central body around which the vehicle is moving. The OXIYI -plane coincides with the equatorial plane
of the central body. The ZI -axis points North and is coincident with the rotational axis of the central
body. The direction of the XI -axis is determined by the reference meridian, and is defined by the vernal
equinox at J2000. The YI -axis completes the right-handed system.

Rotating Planetocentric Reference Frame

The Rotating Planetocentric Reference Frame (RPRF) FR (XRYRZR) is fixed to the central body and
coincides with FI at J2000. The ZR-axis points north, the XR-axis intersects the equator at zero longitude
and the YR-axis completes the right-handed system.

Body-Fixed Reference Frame

The Body-Fixed Reference Frame (BFRF) FB (XBYBZB) has its origin at the vehicle’s reference point.
Generally this reference point is chosen to be the c.o.m. of the vehicle. If the gravity field is constant
then this point coincides with the center of gravity (c.o.g.) of the vehicle. The reference frame remains
fixed to the vehicle. The ZB axis lies in the plane of symmetry of the vehicle and is positive in downward
direction (for “normal” flight). The XB-axis also lies in the plane of symmetry and is positive in forward

17
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Figure 3.1: Definition of the vertical frame axis system with respect to the rotating planetocentric frame.

direction. Finally, the YB-axis points to the right, perpendicular to the symmetry plane, and completes
the right-handed system.

Vertical Reference Frame

The Vertical Reference Frame (VRF) FV (XV YV ZV ) has the same origin as FB. The ZV -axis points
towards the c.o.m. of the central body, along the radial component of the gravitational acceleration g.
The XV -axis lies in a meridian plane, perpendicular to ZV , and points North. The YV -axis completes the
right-handed system. The XV YV -plane is referred to as the local horizontal plane. N.B.: strictly speaking,
this is only true when the central body is true sphere. A small error is introduced when an elliptical
shape is assumed. Figure 3.2(a) depicts the V -frame axis system with respect to the R-frame.

Trajectory Reference Frame

The Trajectory Reference Frame (TRF) FT (XTYTZT ) can be defined based on the groundspeed or
the airspeed (subscripts TG and TA, respectively), the choice of which affects the definition of the X-
axis. The groundspeed-based XTG points along the velocity vector relative to the R-frame, whereas the
airspeed-based XTA is defined along the velocity vector relative to the atmosphere. These axes are equal
when no wind is present. The FT has the same origin as FB. ZT points downwards in the vertical plane,
and YT completes right-handed system.

Aerodynamic Reference Frame

The groundspeed-airspeed distinction is also made in the definition of the Aerodynamic Reference Frame
(ARF) FA (XAYAZA); the subscripts AG and AA, respectively, are used to make this distinction. In
the groundspeed-based case, XAG is defined along the velocity vector relative to the R-frame, making
it collinear with XTG, whereas the airspeed-based XAA points along the velocity vector relative to the
atmosphere, which makes it collinear with XTA. Again, these X-axes are equal in the absence of wind.
The ZA-axis is collinear with the aerodynamic lift force, but opposite in direction. The YA-axis completes
the right-handed system.

Note that when the vehicle is not banking, the FA- and FT-frames are coincident.

3.1.2 Transformations

The transformation from one (right-handed Cartesian) frame to another can be performed via unit axis-
rotations, directional cosine matrices and Quaternions. Any rotation can be described as a combination
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of a number of unit axis-rotations, in which positive rotations are defined according to the right-
hand rule. A sequence of unit axis-rotations can be represented as a single transformation matrix by
multiplying the individual unit rotation matrices in sequential order. It is important to note that the unit
transformation matrices are all orthonormal (and therefore so are any products between them), meaning
a unit transformation matrix’s inverse is simply its transpose.

The transformation matrices necessary for the conversion between the reference frames defined in the
previous section are listed in Appendix A.1. For the remainder of this text, the influence of wind is
neglected, making the groundspeed-based and airspeed-based variants of the trajectory and aerodynamic
frames equal; these reference frames will simply be designated with the subscripts T and A, respec-
tively.

3.2 State Variables

The state variables of a vehicle give a representation of its instantaneous state with respect to a cer-
tain reference frame. All relevant state variables are discussed in this chapter. Generally, Cartesian
components are preferred for numerical computations as the equations are in a simpler form and can
be numerically integrated faster. However, the benefit of using spherical components is that they are
much more intuitive. Often, the vehicle state will be discussed in terms of its spherical components, even
though Cartesian components are used for the actual computations.

3.2.1 State Variable Definitions

3.2.1.1 Position and Velocity

Position and velocity state variables can be expressed in a number of different notations; in this thesis,
preference is given to Cartesian and spherical components. Other representations such as Kepler elements
are useful when discussing a re-entry vehicle’s state before entry.

Cartesian components

Position and velocity may be expressed with respect to any of the previously mentioned reference frames.
The most practical ones for the purpose of studying re-entry motion are the inertial reference frame FI,
the rotating reference frame FR and the vertical reference frame FV.

For the position, the same p(x, y, z) notation is used for all reference frames, with the frame being
referenced denoted as a subscript (I, R and V , respectively). The velocity components are denoted
differently depending on the choice of reference frame: VI(ẋ, ẏ, ż), VR(u, v, w), and VV(vδ, vτ , vR).
Note that vR is defined as positive in negative ZV direction, i.e., upwards.

Expressing the velocity in FV is intuitive, as it allows the velocity to be interpreted as consisting of a
radial component vR, a longitudinal component vτ , and a lateral component vδ. A useful variation on
this representation stems from aviation: the NED notation. The NED coordinate system is the same as
in FV: XNEDYNEDZNED = XV YV ZV . The components of the position are denoted p(x, y, z), whereas
the velocity components are written as VNED(vN , vE , vD). Note that in contrast to the radial component
of VV, vD is defined as positive downwards, i.e., in the direction of ZNED = ZV , so vD = −vR.

Figure 3.2(a) shows the vertical velocity components with respect to the local horizontal plane; the
orientation of this plane relative to the R-frame was shown in Figure 3.1.

Spherical components

The spherical position and velocity are defined with respect to FR; both consist of a magnitude and two
angle components. The position is denoted p(R, τ, δ), and the velocity as V(V , γ, χ).



20 CHAPTER 3. FLIGHT DYNAMICS

(a) Vertical (b) Spherical

Figure 3.2: Position and velocity components.

R denotes the radial distance between the c.o.m. of the central body (i.e., the reference frame origin)
and the c.o.m. of the vehicle. The longitude τ (−180◦ ≤ τ < 180◦) is the angular distance towards the
East from the Greenwich meridian; it increases towards the East. The latitude δ (−90◦ ≤ δ ≤ 90◦) is the
angular distance from the equator to the North; it is positive in the Northern hemisphere and negative
in the Southern hemisphere.

V is the modulus of the velocity vector V, i.e., the relative velocity. The flight-path angle γ (−90◦ ≤ γ ≤
90◦) is the angle between the local horizontal plane and V; it is negative when the vehicle is descending
(i.e., V lies below the local horizontal) and positive when the vehicle is ascending (i.e., V lies above
the local horizontal). Finally, χ (−180◦ ≤ χ < 180◦) defines the angle between the local North and
the projection of V to the local horizontal plane; it is positive when the vehicle is moving towards the
East (and its value is 90◦ when the vehicle is moving towards the East parallel to the equator). All the
spherical velocity components are defined with respect to the velocity of the vehicle in the rotating frame.
Figure 3.2(b) depicts the spherical position and velocity components with respect to FR.

3.2.1.2 Attitude

The attitude of a vehicle describes the orientation of its body-fixed reference frame FB with respect to
another reference frame. In this thesis, the vehicle’s attitude is described using aerodynamic angles. The
use of Quaternions was deemed unnecessary in the absence of extremely large rotations.

The aerodynamic angles are the angle of attack α, the angle of sideslip β and the bank angle σ. The
angle of attack represents the angle between the vehicle’s velocity vector and its body axis in the vertical
plane (ZBYB), i.e., the up-down orientation of its nose with respect to the trajectory. It is defined on
the range −180◦ ≤ α < 180◦, where a positive angle of attack represents a nose-up attitude. The angle
of sideslip β is the angle between the vehicle’s velocity vector and its body axis in the horizontal plane
(XBYB), i.e., the left-right orientation of its nose with respect to the trajectory. It is defined on the range
−180◦ ≤ β < 180◦, where a positive sideslip angle represents a nose-left attitude. The bank angle σ is the
inclination of the vehicle about its longitudinal axis (XB). It is defined on the range −180◦ ≤ β < 180◦,
where a positive bank angle means an inclination to the right. When the vehicle is not banking, YA = YT .
The aerodynamic angles are illustrated in Figure 3.3.

3.2.2 Transformations

Conversions between Cartesian and spherical components both in terms of position and velocity are given
in Appendix A.2.
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Figure 3.3: Definition of the attitude angles α, β, and σ. The A- and T -reference frames are groundspeed-
based; subscripts have been omitted for clarity. Adapted from (Mooij, 1994).

3.3 External Forces and Moments

The re-entry vehicle is subject to a number of external forces and moments. In this thesis work, the
vehicle is considered unpowered; therefore, only aerodynamic and gravitational forces and moments will
be taken into account.

3.3.1 Aerodynamics

The aerodynamic forces and moments are dependent on the atmospheric density ρ and the airspeed
variables V , α, β and σ. Defining quantities representing the aerodynamic conditions for the vehicle are
the Mach number M and the dynamic pressure q̄:

M =
V

a
(3.1)

q̄ = 1
2ρV

2 (3.2)

where a is the local speed of sound as defined in Equation 2.28.

3.3.1.1 Forces

The aerodynamic forces are defined in the aerodynamic reference frame FA:

FA,A = −

DS
L

 = −

CD q̄SrefCS q̄Sref
CLq̄Sref

 (3.3)

where D, S and L represent the aerodynamic drag, side, and lift force, respectively. These components
are defined in opposite direction to the axes of the FA-frame, hence the need for the minus signs. The
orientation of the aerodynamic force components with respect to the A- and B-frames is shown in Figure
3.4(a). The coefficients CD, CS and CL are the aerodynamic force coefficients – dimensionless quantities
which represent the unique aerodynamic characteristics of the re-entry vehicle. They vary with Mach
number and the aerodynamic angles. These coefficients cannot be computed analytically, but must be
obtained empirically. Models and tabulated values with varying complexity for the relation between these
coefficients, the Mach number and attitude angles exist for a multitude of (reference) re-entry vehicles;
these can be applied in the simulation of the aerodynamic forces.
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(a) Forces (b) Moments

Figure 3.4: Definition of the aerodynamic forces and moments (Mooij, 1994).

3.3.1.2 Moments

In contrast to the aerodynamic forces, the aerodynamic moments are expressed in the B-frame:

MAM,B =

LM
N

 =

 Clq̄SrefbrefCmq̄Srefcref
Cnq̄Srefbref

 (3.4)

where L is the roll moment (rotation about the XB-axis), M is the pitching moment (rotation about the
YB-axis) and N is the yawing moment (rotation about the ZB-axis). The coefficients Cl, Cm and Cn are
aerodynamic moment coefficients, again uniquely defined for a specific re-entry vehicle and dependent on
the Mach number and the aerodynamic angles. For winged vehicles, the reference lengths cref and bref
generally represent the wing span and mean aerodynamic lift chord, respectively.

Depending on where the aerodynamic forces act on the vehicle, they will likely contribute to the aerody-
namic moments. The vehicle’s aerodynamic reference point – or aerodynamic center – is defined as the
point about which the aerodynamic moment is constant. In avionics, it is customary to take this point
as the location of where the aerodynamic force is applied. A force acting on the vehicle’s aerodynamic
reference point causes a contribution to the total aerodynamic moment vector of

MAF,B = rcm × FA,B (3.5)

where rcm is the vector distance between the vehicle’s aerodynamic reference point and its c.o.m. (see
Figure 3.4(b)).

The total aerodynamic moment vector is simply given by the sum

MA = MAM,B + MAF,B (3.6)

3.3.2 Gravity

3.3.2.1 Forces

The gravitational acceleration experienced by the vehicle due to the Earth’s gravitational field was
discussed in Section 2.2.1. For this thesis work, a central field plus J2 gravitational model was used;
the gravitational acceleration vector gV belonging to this model was given by Equation 2.12 and is
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repeated here:

gV =

gR0
gδ

 =
µ

R2

1− 3
2J2

(
RE
R

)2 (
3 sin2 δ − 1

)
0

−3
(
RE
R

)2
J2 sin δ cos δ


When the equations of motion are defined in spherical coordinates (in the R-frame), the components
gR and gδ are already in the right form. However, more often than not a representation in Cartesian
coordinates in the I-frame is preferred to limit computation time. In Cartesian coordinates, g in the
R-frame is given by (Mooij, 1997):

gR =

gxgy
gz

 = − µ

R3


x
{

1 + 3
2J2

(
RE
R

)2 (
1− 5 z

2

R2

)}
y
{

1 + 3
2J2

(
RE
R

)2 (
1− 5 z

2

R2

)}
z
{

1 + 3
2J2

(
RE
R

)2 (
3− 5 z

2

R2

)}
 (3.7)

where R is the radial distance from the vehicle to the c.o.m. of the central body

R =
√
x2
R + y2

R + z2
R (3.8)

The gravitational force experienced by the re-entry vehicle in the I-frame is thus given by

FG,I = CI,RFG,R = mCI,RgR (3.9)

where m is the vehicle’s mass.

3.3.2.2 Moments

Gravitational moments may arise due to differences in the gravity gradient experienced by the vehicle;
these moments are however negligible compared to the aerodynamic moments and are thus not taken
into account.

3.4 Vehicle Model

Once the flight environment models have been defined, the dynamics of the re-entry vehicle under influence
of this environment can be determined. For this purpose, the vehicle itself must be modeled in such a way
that the model sufficiently accurately represents the vehicle’s flight characteristics under the influence of
the environment within the flight interval of interest.

For this thesis work, the choice was made to simulate the vehicle’s trajectory using a ”3 + 1-degree of
freedom (DOF)” flight dynamic model instead of the full 6-DOF representation. The 6-DOF model
takes both translational and rotational motion into account, whereas 3-DOF only involves translational
motion. Defining the vehicle’s attitude angles directly without simulation of the necessary body-axis
rotations gives the same amount of information about the trajectory profile. In addition to simulating
the translational motion, consideration is paid to keeping the vehicle in the trimmed flight condition –
i.e., longitudinally stable – by modulating the body flap deflection angle.

The reference vehicle used for this thesis work is the HORUS-2B (see Figure 3.5(a)); it is a Space Shuttle-
like unpowered winged re-entry vehicle which was designed as a reusable second stage to the Ariane-5.
The choice for the HORUS reference vehicle is twofold: its winged design allows for it to perform skipping
entry even when returning from LEO, and there is a large amount of aerodynamic data available thanks
to studies conducted by MBB (1988) and Mooij (1995). The data used for this thesis was exclusively
obtained from Mooij (1995). In addition, the availability of simulation data of the HORUS-2B’s nominal
re-entry profile from Mooij (1998) was greatly beneficial for verification. The HORUS’s nominal mission
involves atmospheric re-entry at an altitude of 122 km; the re-entry phase ends when the vehicle is within
80 km of the runway. As HORUS is unpowered, steering occurs by modulating its angle of attack α and
bank angle σ; the angle of sideslip β is considered a disturbance and is set to zero.
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(a) HORUS-2B shape (b) HORUS-2B control surfaces

Figure 3.5: HORUS-2B vehicle geometry (Mooij, 1995).

Table 3.1: HORUS-2B vehicle dimensions (Mooij, 1995).

Parameter Value

Total length m 25.0
Wing span m 13.0
Total height m 4.5

Exposed wing area m2 43
Projected fuselage area m2 101
Total plan view area m2 151
Reference area m2 110
Nose radius m 0.8

c.o.m. xcm m 13
Landing mass kg 26,029

3.4.1 Geometry

The shape of the HORUS resembles that of the Space Shuttle; see Figure 3.5(a). Some defining dimensions
of HORUS are shown in Table 3.1. Lengths are measured in the B-frame, of which the origin is located
1 m in front of the vehicle’s nose.

3.4.2 Control surfaces

As control surfaces, the HORUS-2B has two rudders, two elevons, and one body flap. The locations
of these control surfaces are shown in Figure 3.5(b). Each type of control surface effects the main
contribution to the aerodynamic moments about a particular axis. The rudders induce a yawing moment
N about the ZB axis, the ailerons induce a rolling moment L about the XB-axis, and finally the body
flap induces a pitching moment M about the YB-axis. Naturally, deflections of the control surfaces
also contribute to some small degree to moments about the other axes well. In the ”3+1-DOF” flight
dynamic model, only longitudinal (pitching) moments are taken into account; the largest contributor to
these moments by far is the body flap, and therefore the effects of the rudders and elevons are neglected;
elevons become very important at low Mach numbers when trimmed flight cannot be maintained using
the body flap – however, these velocity regimes are not treated in this thesis. As the yawing and rolling
motion are neglected in the flight dynamic model, the (minor) contribution of the body flap to these
motions is not relevant.
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3.4.3 Aerodynamics

The aerodynamic database for the HORUS obtained from Mooij (1995) consists of tabulated values of the
vehicle’s base aerodynamic coefficients as a function of both the angle of attack α and the Mach number
M , and the contributions to the aerodynamic coefficients due to the control surfaces as a function of α,
M , and the control surface deflection angle. These values are interpolated using a bilinear and Lagrange
linear interpolator to obtain the aerodynamic coefficients at a particular flight condition. The tabulated
values of the relevant aerodynamic coefficients (the drag coefficient CD, the lift coefficient CL and the
pitch moment coefficient Cm) for the clean configuration of the vehicle (indicated with subscript ’0’), as
well as the increments to CD, CL and Cm due to the body flap deflection (∆CDb

, ∆CLb and ∆Cmb
,

respectively) can be found in Appendix B.

The database is based on a number of assumptions and simplifications (the legitimacy of these is assumed
to be verified):

� Aeroelastic effects are not included.
� The influence of the Reynolds number on the skin-friction drag is included in the drag coefficient

as averaged skin friction drag along a standard trajectory down to an altitude of 20 km. At lower
altitudes, a drag decrement parameter needs to be included in the computation of the total drag
coefficient.

� The flaps produce no interference effect.

As the vehicle trajectory is simulated to approximately an altitude of 25 km, the altitude-dependent drag
decrement is not taken into account.

The aerodynamic force coefficients of HORUS as applied in this thesis work are thus given by

CD = CD0 + ∆CDb
(3.10a)

CS = 0 (3.10b)

CL = CL0 + ∆CLb (3.10c)

And the aerodynamic moment coefficients:

Cl = 0 (3.11a)

Cm = Cm0 + ∆Cmb
(3.11b)

Cn = 0 (3.11c)

3.5 Equations of Motion

In the re-entry simulator developed for this thesis, the equations of motion were implemented in Cartesian
coordinates in the I-frame. All relevant computed components are transformed to the I-frame before
numerical integration.

3.5.1 Translational Motion

3.5.1.1 Cartesian components

The translational motion of a rigid body of constant mass m with respect to the inertial planetocentric
frame is defined by

dVI

dt
= 1

mFI (3.12a)

drI
dt

= VI (3.12b)
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where rI is the distance to the I-frame’s origin, FI is the total of external forces acting on the body, and
VI is the body’s inertial velocity. Equation 3.12a is called the dynamic equation; it describes the motion
of a body under the influence of external forces in the form of an acceleration vector. Equation 3.12b is
the kinematic equation, which describes the body’s corresponding change in position, i.e., velocity. The
Horus re-entry vehicle can be considered as a rigid body; additionally, the vehicle is unpowered, meaning
it can also be assumed to have constant mass (as it uses no propellant). Therefore Equations 3.12 can
be used to describe the motion of Horus in the I-frame. The Cartesian position and velocity vectors are
denoted

rI = (xI , yI , zI)
T (3.13a)

VI = (ẋI , ẏI , żI)
T (3.13b)

As the re-entry vehicle is unpowered, it experiences only the influence of aerodynamic and gravitational
accelerations; these are defined in Sections 3.3.1-3.3.2. The resultant external force acting on the body
is thus simply the sum of the aerodynamic and gravitational forces:

FI = FA,I + FG,I (3.14)

The dynamic and kinematic equations are thus given by

dVI

dt
= (ẍI , ÿI , z̈I)

T = 1
m (FA,I + FG,I) (3.15a)

drI
dt

= (ẋI , ẏI , żI)
T (3.15b)

The aerodynamic force FA,A is computed in the (airspeed-based) aerodynamic frame, whereas the
gravitational force FG,V is computed in the vertical frame. Both first need to be transformed to the
I-frame to compute FI.

FA,I = CI,AFA,A (3.16a)

FG,I = CI,VFG,V (3.16b)

Sometimes the motion of the vehicle may need to be defined with respect to the R-frame. For example, the
aerodynamic force FA,A is defined with respect to a moving atmosphere, and is dependent on airspeed-
based quantities such as the angle of attack and Mach number. The groundspeed (which is equal to
airspeed in the absence of wind) is defined with respect to a rotating frame, augmenting the inertial
velocity VI with a term due to the Earth’s rotation. The velocity vector transformation from the I-frame
to the R-frame is given in Equation A.11, and is repeated here:

VR = CR,I (VI − ωcb×rI) (3.17)

With this definition of VR, the dynamic and kinematic equations in the R-frame are simply

dVR

dt
= (u̇, v̇, ẇ)T = 1

m (FA,R + FG,R) (3.18a)

drR
dt

= (u, v, w)T (3.18b)

3.5.1.2 Spherical components

The definition of the equations of motion in spherical components is somewhat easier to interpret in terms
of the physical quantities of the individual components; it highlights individual dependencies between
the state variables. However, they have the large disadvantage of being much more complex and time-
consuming to numerically integrate; therefore for numerical implementations the Cartesian representation
is highly preferable. They will nevertheless be discussed here for the purpose of providing the reader with
some physical insight into the vehicle’s equations of motion.
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The state variables in spherical components were discussed in Section 3.2.1.1. To recap: the position is
defined by a radial distance R, longitude τ and latitude δ, and the (groundspeed-based) velocity by its
magnitude VG, flight-path angle γG and heading χG. The dynamic and kinematic equations are defined
individually for each state variable. Taking into account previously defined assumptions (no side force S,
no longitudinal gravitational acceleration component gτ ), the dynamic equations are given by:

dV

dt
=
FV
m

+ ωcb
2R cos δ (sin γ cos δ − cos γ sin δ cosχ) (3.19a)

1

V̇

dγ

dt
=
F γ
m

+ 2ωcbV cos δ sinχ+
V 2

R
cos γ + ωcb

2R cos δ (cos γ cos δ + sin γ sin δ cosχ) (3.19b)

V cos γ
dχ

dt
=
Fχ
m

+ 2ωcbV (sin δ cos γ − cos δ sin γ cosχ) +
V 2

R
cos2 γ tan δ sinχ+ . . . (3.19c)

ωcb
2R cos δ sin δ sinχ

where the subscript G is dropped for the airspeed variables in favor of readability. The terms including the
rotational rate of the Earth (2ωcb and ωcb

2) represent the Coriolis acceleration and transport acceleration,
respectively, and account for the accelerations incurred due to the vehicle moving in a rotating frame.
The V 2/R-terms represent the influence of the Earth’s curvature (Mooij, 2013). The force magnitudes
FV , F γ and Fχ are defined as:

FV = −D −mgr sin γ −mgδ cos γ cosχ (3.20a)

F γ = L−mgr cos γ −mgr cos γ +mgδ sin γ cosχ (3.20b)

Fχ = −L sinσ +mgδ sinχ (3.20c)

(3.20d)

The kinematic equations are somewhat more straightforward, and are given by

dR

dt
= V sin γ (3.21a)

dτ

dt
=
V sinχ cos γ

R cos δ
(3.21b)

dδ

dt
=
V cosχ cos γ

R
(3.21c)

The spherical equations of motion were used in the verification process of the simulator.

3.5.2 Rotational Motion

As was mentioned in Section 3.4, a ”3+1-DOF” flight dynamic model is used in this thesis. The first three
degrees of freedom obviously represent the translational components of the motion that were discussed in
the previous section. The remaining degree of freedom occurs in the form of a rotation in the longitudinal
direction of the vehicle (i.e., pitch), which is exclusively used to keep the vehicle in a trimmed flight
condition. Therefore the formal definition of the rotational equations of motion (as derived in Mooij
(1994)) is not relevant in this case, and a pseudo-rotational motion equation is defined to account for
maintaining trimmed flight.

To achieve trimmed flight, there must exist a moment equilibrium in the longitudinal direction, i.e., the
total pitch moment must be null. The total pitch moment Cm for the Horus vehicle model is given in
Equation 3.11b as

Cm = Cm0
+ ∆Cmb

where

Cm0
= f(αC ,M) (3.22a)

∆Cmb
= f(δb, αC ,M) (3.22b)
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where the subscript C indicates that the angle αC is commanded by the guidance system. These
relationships are not defined analytically; values of Cm0

and ∆Cmb
given α, M and – in the case of

∆Cmb
, also δb – can be obtained from tables (see Appendix B) using interpolation methods.

From the equilibrium condition Cm = 0 follows that for trimmed flight

∆Cmb
= −Cm0

(3.23)

The only unknown in this inequality is the required body flap deflection angle that makes the equilibrium
condition hold. This angle can be determined by inverse-interpolating the δb values for which ∆Cmb

is
defined to obtain the deflection angle for which ∆Cmb

= −Cm0
holds.



Chapter 4

Numerical Methods

This chapter presents the most prominent numerical methods implemented in the development of the
re-entry simulator as well as the mission planner. Section 4.1 gives an overview of numerical integration
methods. Both polynomial and spline interpolation methods are discussed in Section 4.2. Data search
methods are applied quite often due to many models existing in table form; the methods used in this
thesis work are outlined in Section 4.3. This chapter is concluded with a short explanation of the theory
behind Monte Carlo simulations in Section 4.5.

4.1 Integration

An ordinary differential equation (ODE) of order n is defined as an equation containing a function of one
independent variable x(t) and its derivatives x(i)(t) with i = 0, 1, . . . , n (Press et al., 1989):

x(n) = f
(
t,x′,x′′, . . . ,x(n−1)

)
(4.1)

An ODE is said to be linear when it can be written as a linear combination of the derivatives x(i)(t):

x(n) =

n−1∑
i=0

ai(t)x
(i) + r(t) (4.2)

where ai(t) and r(t) are continuous functions in t. Linear differential equations have exact, closed-form
solutions. However, most practical problems (such as equations of motion) are nonlinear and approximate
solutions must be obtained numerically.

A generic problem defined by ODEs can be rewritten in the form of a set of n coupled first-order differential
equations for the functions xi with (i = 1, 2, . . . , n):

x′i = fi (t, x1, x2, . . . , xn) (4.3)

which allows for all computations to be performed in a single integration step – by including all parameters
in a single array – instead of successively (Noomen, 2011). Integration of an ODE (or set of ODEs) is the
process of solving the initial value problem, wherein all the values of xi are defined at some initial point t0
and must be computed at some final point tf . The initial value problem cannot be solved analytically if
the set of ODEs is nonlinear – which it is, for most practical purposes. Defining an ODE in terms of finite
steps ∆x and ∆t gives an algebraic formula for the change in the function value when x is incremented
by one stepsize ∆t. Taking the limit of ∆t → 0 allows for an approximation of of the solution. Literal
implementation of this procedure is the well-known Euler’s method:

x(t+ ∆t) ≈ x(t) + ∆x where ∆x = ẋ(t)∆t (4.4)

29



30 CHAPTER 4. NUMERICAL METHODS

wherein small increments ∆x are added to x in the form of derivatives multiplied by stepsizes ∆t. While
Euler’s method is not recommended for any practical use, it gives a good indication of the underlying
idea used in practical numerical integration methods (Press et al., 1989). Aspects to keep in mind when
choosing a numerical integration method are (Noomen, 2011):

Truncation error: the error that is made when performing a single integration step (i.e., local error).
Ease of changing stepsize: the stepsize affects the accuracy of the integration result, and should be

externally adjustable.
Speed: efficiency is defined as the number of evaluations for a defined interval, for a given accuracy. A

tradeoff between accuracy and speed must be done, with priorities depending on the application.
Stability: also known as robustness; it gives a measure of how sensitive the end results are to (minor)

changes in the initial conditions.
Error accumulation: the total uncertainty of the problem given all error sources. When a sequence of

calculations subject to rounding error is made, errors may accumulate, sometimes dominating the
calculation.

The most commonly used numerical integration methods are the Runge-Kutta methods. These methods
propagate a solution over an interval by combining the information from several Euler-style steps, and
then using the information obtained to match a Taylor series expansion up to some higher order (Press
et al., 1989). Runge-Kutta methods have the advantage of being relatively computationally simple; they
virtually always succeed and are the go-to method when moderate accuracy is required. The choice to
use Runge-Kutta methods was based on the availability of a verified Runge-Kutta integrator within the
TU Delft Astrodynamics Toolbox (TUDAT) repository (Doornbos, 2014).

4.1.1 Fourth-Order Runge-Kutta

The fourth-order Runge-Kutta (RK4) method – also known as the classical Runge-Kutta – is considered
the workhorse for solving many engineering problems (Press et al., 1989). The process is simple: four
different approximations are made to describe the changes of the parameters during one integration step.
These values are then averaged in a weighted fashion to obtain the solution (Noomen, 2011). It is a
single-step technique, i.e., only the value of xi is used to obtain xi+1 and previous values of x do not
factor into the solution. The RK4 method is defined by the following formulas:

xn+1 = xn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(∆t5) (4.5)

where

k1 = f (tn, xn) ∆t (4.6)

k2 = f
(
tn + ∆t

2 , xn + k1
2

)
∆t (4.7)

k3 = f
(
tn + ∆t

2 , xn + k2
2

)
∆t (4.8)

k4 = f (tn + ∆t, xn + k3) ∆t (4.9)

(4.10)

The four increments k are given by the product of the stepsize ∆t and an estimated slope specified by
the value of the function f at different locations. The weighted average of these increments is ∆x for
that step. The term O(∆t5) represents the truncation error, which is of the order ∆t5. The RK4 method
requires four evaluations of the right-hand side per step ∆t. For Runge-Kutta formulas of orders M higher
than four, more than M function evaluations (though never more than M + 2) are required; therefore
the RK4 is the most ”cost-efficient” of the Runge-Kutta family, explaining its popularity (Press et al.,
1989). The stepsize ∆t is fixed, which means the method is not adaptive to the shape of the derivative
function.

4.1.2 Runge-Kutta-Fehlberg

The benefit of an adaptive-stepsize algorithm is that it does take the shape of the derivative function
into account, and can thus take smaller steps when necessary (increasing accuracy), but also larger steps
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when possible (increasing speed). The algorithm determines the value of ∆t such that the truncation
error is kept below a predefined value for each step; in order to do this, the truncation error must be
estimated with each step.

Adaptive-stepsize Runge-Kutta algorithms are based on the embedded Runge-Kutta formulas originally
developed by Erwin Fehlberg. He discovered a fifth-order Runge-Kutta method requiring six function
evaluations where another combination of the six functions results in a fourth-order method; this method
is commonly referred to as the Runge-Kutta-Fehlberg (RKF45) method (Press et al., 1989). At each
step, it determines whether the proper ∆t is being used by comparing two different approximations
of the solution – obtained using the fifth-order method and the embedded fourth-order formula. The
difference is used as an estimate of the truncation error. If the two approximations are sufficiently close,
the stepsize is deemed correct. If the two values do not agree to a specified accuracy, ∆t is reduced; if the
answers agree to more significant digits than necessary, ∆t is increased Mathews and Fink (2004).

The following intermediate values are defined for each RKF45 step:

k1 = hf(tn, xn)

k2 = hf(tn + a2h, xn + b21k1)

k3 = hf(tn + a3h, xn + b31k1 + b32k2)

k4 = hf(tn + a4h, xn + b41k1 + b42k2 + b43k3)

k5 = hf(tn + a5h, xn + b51k1 + b52k2 + b53k3 + b54k4)

k6 = hf(tn + a6h, xn + b61k1 + b62k2 + b63k3 + b64k4 + b65k5)

(4.11)

The fifth-order solution is given by

xn+i = xn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(∆t6) (4.12)

and the embedded fourth-order formula is

x∗n+i = xn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 +O(∆t5) (4.13)

The constants a, b, c and c∗ have several definitions. The original values as developed by Fehlberg are
given in Table 4.1.

The truncation error estimate is defined as:

ε ≡ xn+1 − x∗n+1 =

6∑
i=1

(ci − c∗i ) ki (4.14)

which scales with ∆t5. If a certain step ∆t produces an error ε, the step ∆t∗ that would have given the
desired accuracy ε∗ can be estimated:

∆t∗ = ∆t

∣∣∣∣ε∗ε
∣∣∣∣ 15 (4.15)

The amount with which to increase/decrease ∆t to achieve the desired accuracy naturally follows.

4.2 Interpolation

4.2.1 Polynomial Interpolation

Lagrange or polynomial interpolation involves fitting a curve defined by an n-th degree polynomial to
n+ 1 points. It has the drawback of being non-local, i.e, changing the value of one data point affects the
shape of the entire curve. It is an adequate method when low-degree polynomials are needed; increasing
the size of the dataset results in highly irregular curves which is generally unwanted.
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Table 4.1: RKF45 parameters as defined by Fehlberg (Fehlberg, 1968).

i ai bij ci c∗i

1 16
135

25
216

2 1
4

1
4

0 0

3 3
8

9
32

9
40

6656
12825

1408
2565

4 12
13

1932
2197

− 7200
2197

7296
2197

28561
56430

2197
4104

5 1 439
216

−8 3680
513

− 845
4104

− 9
50

− 1
5

6 1
2

− 8
27

2 − 3544
2565

1859
4104

− 11
40

2
55

0

j = 1 2 3 4 5

The generalized form of the interpolating polynomial of degree n− 1 through the points yi = f(xi) with
i = 1, . . . , n is given by

y =

n∑
j=1

yj n∏
k=1
k 6=j

xk − x
xk − xj

 = y1
(x2 − x) . . . (xn − x)

(x2 − x1) . . . (xn − x1)
+ · · ·+ yn

(x1 − x) . . . (xn−1 − x)

(x1 − xn) . . . (xn−1 − x1)
(4.16)

Linear interpolation

The commonly used linear interpolation formula is simply Equation 4.16 with n = 2. Given a tabulated
function yi = f(xi) with i = 1, . . . , n, linear interpolation in an interval [xj , xj+1] gives

y = Ayj +Byj+1 (4.17)

with

A ≡ xj+1 − x
xj+1 − xj

(4.18a)

B ≡ x− xj
xj+1 − xj

(4.18b)

Bilinear interpolation

Bilinear interpolation is the application of linear interpolation within a two-dimensional data matrix
defined by the tabulated function zi,j = f(xi, yj). A point P = (x, y) is located within the interval
[(xi, xi+1), (yj , yj+1)] of which the values of z at the four corners Q11 = (xi, yj), Q12 = (xi, yj+1),
Q21 = (xi+1, yj), and Q22 = (xi+1, yj+1) are known. To determine f(P ), two consecutive interpolations
must be performed: one in the x-direction and one in the y-direction. The results of the first interpolation
are the function values at the points R1 = (x, yj) and R2 = (x, yj+1):

f(R1) ≈ f(Q11) · xi+1 − x
xi+1 − xi

+ f(Q21) · x− xi
xi+1 − xi

(4.19a)

f(R2) ≈ f(Q12) · xi+1 − x
xi+1 − xi

+ f(Q22) · x− xi
xi+1 − xi

(4.19b)

What remains is performing a linear interpolation in the y-direction to obtain z = f(x, y):

z ≈ f(R1) · yj+1 − y
yj+1 − yj

+ f(R2) · y − yj
yj+1 − yj

(4.20)

Bilinear interpolation is used in this work to compute the aerodynamic coefficients of HORUS from
tabulated values.
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4.2.2 Spline Interpolation

A spline is defined as a piecewise polynomial. Interpolation using splines involves fitting a multitude of
low-degree polynomials through data points to create a curve fit. The degree of continuity Cn of a spline
refers to how well all the different polynomials fit together. C0-continuity means that the splines are
continuous in position (i.e., they originate/end in the same point), C1 that they are tangent and C2 that
they are continuous in curvature. The degree to which continuity is required depends on the application.
Often, C0 and C1 continuity is sufficient.

Cubic splines

Cubic spline polynomials are the most common; they are the lowest order polynomials that can be used
to interpolate between two points. The goal of cubic spline interpolation is to obtain an interpolation
formula that is smooth in the first derivative, and continuous in the second derivative, both within an
interval and at its boundaries (Press et al., 1989).

Given a tabulated function yi = f(xi) and its tabulated second derivatives y′′i = f ′′(xi), the interpolating
cubic spline over the interval (xj , xj+1) is given by

y = Ayj +Byj+1 + Cy′′j +Dy′′j+1 (4.21)

where A and B were defined in Equations 4.18 and

C ≡ 1
6 (A3 −A)(xj+1 − xj)2 (4.22a)

D ≡ 1
6 (B3 −B)(xj+1 − xj)2 (4.22b)

Hermite splines

A (cubic) Hermite spline is a spline consisting of third-degree polynomials specified by both their values
and first derivatives at the end points of their respective domain intervals. The Hermite interpolating
polynomial for a unit interval (0, 1) with starting point p0 and endpoint p1 with tangents m0 and m1,
respectively, is given by

p(t) = h00(t)p0 + h10(t)m0 + h01(t)p1 + h11(t)m1 (4.23)

where t ∈ [0, 1] and the basis functions h(t) are defined as

h00(t) = 2t3 − 3t2 + 1

h10(t) = t3 − 2t2 + 1

h01(t) = −2t3 + 3t2

h11(t) = t3 − t2

Interpolation on an arbitrary interval (xj , xj+1) then occurs by mapping this interval to the unit interval
through a change of variable:

p(x) = h00(t)pj + h10(t)(xj+1 − xj)mj + h01(t)pj+1 + h11(t)(xj+1 − xj)mj+1 (4.24)

with

t =
x− xj

xj+1 − xj
All that remains is choosing the tangents m. If the tangents for intervals sharing endpoints are equal, the
resulting curve is globally continuously differentiable. Several different methods of choosing the tangents
exist; a cardinal spline is obtained when the tangents are chosen using

mj = (1− c)pj+1 − pj−1

tj+1 − tj−1
(4.25)

where 0 ≤ c ≤ 1 is the tension parameter.

Hermite spline interpolation is used in this work to compute the attitude commands between control
nodes (see Section 5.3.3).
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4.3 Data Search

4.3.1 Binary Search

A binary search/ bisection algorithm finds the position of a specified input value (i.e., the search key)
within an array sorted by key value (either ascending or descending) (Cormen et al., 2009). The algorithm
works on a sorted table by comparing the search key value with the key value of the middle element of
the table, eliminating the half of the table in which the key cannot lie, and then repeating the procedure
iteratively. If the keys match, then a matching element has been found and its index, or position, is
returned. This method will find the right place in about log2 n tries (Press et al., 1989).

4.3.2 Search with Correlated Values

In the event that a large table needs to be searched many times, it is inefficient to perform a binary
search with each consecutive search. Preceding a binary search with a ”hunting” algorithm increases
efficiency. The routine starts with a guessed position in the table, after which it hunts either up or down
in increments of 1, then 2, then 4, etc., until the search key is bracketed. Then it uses bisection to search
the bracketed interval. At worst, this routine is a factor 2 slower than a simple binary search, and at
best a factor log2 n faster (Press et al., 1989).

4.3.3 Nearest Neighbor Search

The nearest neighbor search problem is an optimization problem for finding closest (or most similar)
points. Formally, the problem is defined as follows: given a set S of points in a space M and a query
point q ∈ M , find the closest point in S to q. Closeness is generally defined in terms of a dissimilarity
function: the less similar the objects, the larger the function values.

The simplest nearest neighbor search method to perform a linear search by computing the distance from
the search key to every other key value, and keeping track of the closest match found so far, commonly
referred to as the naive approach. In this thesis work, the nearest neighbor search was conducted by
applying a binary search algorithm.

Data search is applied in this work in the computation of the aerodynamic coefficients of HORUS from
tabulated values.

4.4 Pseudo-Random Number Generation

A Pseudorandom Number Generator (PRNG) is an algorithm that generates a sequence of numbers that
closely resembles the properties of a truly random sequence. The precise philosophy and qualitative
discussion of PRNGs is beyond the scope of this text. However, an essential property of a PRNG is its
seed, a set of initial values upon which the sequence of pseudorandom numbers it generates is based.
Within this work, a PRNG from the C + +-based Boost library called mt19937 (Watanabe, 2010) is
used.

4.5 Monte Carlo Simulation

Monte Carlo is, simply said, the approach of using random numbers to compute something which is not
random (Robert and Casella, 2004). Monte Carlo simulations involve running the same simulation a
large number of times with randomly determined inputs to obtain the probabilistic distribution of or
other information about a problem. Note the distinction between Monte Carlo methods and simulations:
simulation refers to producing random variables with a certain distribution just to look at the simulation
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results, whereas Monte Carlo methods are a tool of quantitative statistical analysis; these are beyond
the scope of this text. Performing a Monte Carlo simulation is especially useful for problems with many
degrees of freedom and nonlinearities, of which the distribution of the outcome cannot be estimated
analytically. The re-entry problem is such a problem, as the outcome is dependent on so many factors
that a reliable estimate of the realm of possibilities for the results is difficult to determine.

The implementation of a Monte Carlo simulation has at its core a PRNG designed to generate a sequence
of random numbers with a uniform distribution; this PRNG is used to produce the random inputs for
the simulations.
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Chapter 5

Guidance and Control Design

For a re-entry mission to be successful, a vehicle has to follow a trajectory within its entry corridor and
reach a prespecified landing location at a certain time. The geometry of the entry corridor is determined
by vehicle and crew/cargo constraints in the form of load and heat limits, as well as the controllability of
the vehicle (see Section 2.1.2). Additional limitations may be imposed based on, e.g., safety considerations
for the surrounding area. To maintain a trajectory within this corridor and to end up in the correct place
at the correct time, the vehicle’s motion must be controlled in some fashion. The system responsible for
this is the vehicle’s Guidance, Navigation and Control (GNC) system. The GNC system in general is
discussed in Section 5.1. The guidance system in the context of the mission planner is discussed in more
detail in Section 5.2. Section 5.3 does the same for the control system.

5.1 GNC Systems

As its name suggests, a GNC system consists of three separate modules. These modules work in tandem
to keep the vehicle on course by issuing steering commands. These commands depend on the vehicle’s
current state compared to its intended (reference) trajectory, as well as mission-specific considerations
such as loading and trajectory constraints. A simplified illustration of the workings of a GNC system is
shown in Figure 5.1. The on-board mission planner determines the state the vehicle should be in based
on its current state in relation to a reference trajectory (Tigges et al., 2006).

Based on the difference between the reference state and the vehicle’s current state, the guidance logic
module determines the resultant force and moment the vehicle needs to be subjected to achieve that state.
The forces and moments acting on the vehicle can be adjusted by modulating guidance parameters, i.e.,
the vehicle’s aerodynamic profile is adjusted by modifying its attitude and – in the case of powered
vehicles – an additional thrust moment can be effected. The guidance system issues a command in the
form of these parameters to the control module.

The control module consists of two separate parts: the abstract control algorithm (i.e., software) and
the physical actuators of the vehicle (i.e., hardware). The control algorithm translates the commands
from the guidance system into commands that can be issued to the actuators, e.g., relating an attitude
command to the control surface deflections necessary to achieve that attitude. These commands are
computed based on vehicle-specific models that define its response to actuator settings. For example, the
HORUS reference vehicle’s aerodynamic response to the body flap deflection angle δb under certain α and
M conditions is tabulated in terms of increments to the aerodynamic coefficients – see Tables B.5 through
B.22. The actuators perform the control commands issued to them, the vehicle experiences a change in
forces and moments and as a result of this continues (hopefully) towards the reference state.

The navigation system again consists of both a hardware and software component: sensors and a state
estimator algorithm, respectively. Sensors are used to measure a number of quantities (e.g., dynamic
pressure) that the state estimator algorithm can use to compute the vehicle’s current state. The
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Figure 5.1: Schematic GNC architecture.

translation of sensor measurement data to information about the vehicle’s state relies on theoretical
and/or empirical models.

The GNC system is susceptible to errors at every interface:

� Computation of guidance commands (guidance algorithm)
� Translation of guidance commands to control commands (control algorithm)
� Performing the control commands (actuators)
� Sensor measurements (sensors)
� Interpretation of sensor measurements (state estimator)

These errors have the risk of propagating throughout the trajectory, as the GNC system is feedback-based.
The extent to which it can mitigate these errors is called the robustness of the system.

In this thesis work, these errors are not modeled, i.e., the GNC system is idealized. Per module, this
means:

Guidance The guidance algorithm computes a guidance command in the form of the attitude angles αC
and σC (the subscript C indicating “commanded”) that accurately reflects the vehicle’s required
response in its current state with respect to the guidance profile. This command is relayed without
error to the control module.

Control The control algorithm translates αC and σC to the corresponding necessary control surface
deflections without error. The actuators perform the control commands perfectly, i.e., αC and σC
as specified by the guidance module is achieved.

Navigation The sensors perform perfect measurements of the parameters required for the computation
of the estimated state. The state estimator interprets these measurements without error and thus
provides the guidance module with the vehicle’s actual current state.

The schematic of this idealized GNC system as applied in this work is shown in Figure 5.2. The control
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Figure 5.2: Schematic idealized GNC architecture.

system issuing guidance commands does not adhere to the definition previously given; however it is shown
as such in the Figure to indicate the one-on-one correspondence of the control module’s

The goal of this thesis work was to design a design-time mission planner for a winged (reference) vehicle
that is capable of developing optimal re-entry trajectories, wherein optimal is defined depending on user
requirements. The preliminary aspect of the planner indicates that these optimal trajectories will be
developed beforehand, e.g., to assess requirements feasibility, and not continuously during the actual re-
entry itself. This has a large impact on the extent of the detail to which individual systems are modeled.
The design choices regarding the entirety of the simulator are discussed in Section 6.1. In this section,
the discussion will be limited to the GNC system; specifically, the navigation system is considered to be
ideal and is not modeled, and will therefore not be discussed. The guidance and control module is of
special importance due to its direct link with the (global) planning process. It was designed in such a way
that it would seamlessly integrate with an – at the time – undefined algorithm, or at the very least would
require little adjustment. The specific architecture of the module is discussed in the next chapter.

5.2 Guidance System

5.2.1 Guidance Variables

A re-entry vehicle’s trajectory can be controlled by changing the magnitude and direction of the resultant
forces and moments acting on the vehicle (Brunner and Lu, 2010). In practice – for unpowered vehicles
– this comes down to altering the aerodynamic forces and moments incurred by the vehicle, as the
gravitational force is not really subject to change. Aerodynamic forces and moments are discussed in
detail in Section 3.3.1. The orientation of the individual force components – and therefore the magnitude
and direction of the aerodynamic force vector FA = [−D,−S,−L]T – is defined in terms of the vehicle’s
aerodynamic characteristics, and the aerodynamic attitude angles: the angle of attack α, the angle of
sideslip β and the bank angle σ. The aerodynamic properties of the HORUS-2B reference vehicle model
used in this thesis are discussed in Section 3.4.

The simplifications applied to the (aerodynamic) vehicle model as well as the flight dynamic model are
directly relevant in defining the guidance variables. The vehicle is assumed to produce no propulsive
force, so thrust moments cannot be induced. The sideslip angle β is considered to be a disturbance and
is set to zero; it only functions as a guidance variable in the sense that it maintains this value throughout
re-entry. In practice, this leads to the guidance variables α and σ. Re-entry guidance has a long history
of modulating α and σ exclusively to define a vehicle’s trajectory. In fact, even for complex vehicles such
as the Space Shuttle the guidance algorithm relied on α and σ as guidance variables, with the addition
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of a lateral logic module for the purpose of minimizing the crossrange error (NASA, 1980).

The angle of attack α has a direct effect on the vehicle’s trajectory profile (Harpold and Graves, 1979).
In terms of the aerodynamic force, α defines the direction of the drag force D – and thus also the lift
force L – acting on the vehicle and together with the Mach number determines the magnitude of the
aerodynamic coefficients CD, CL and Cm, as well as the pitch moment increment ∆Cmb induced by the
body flap (Cox, 1973). The bank angle σ defines the orientation of the lift force L with respect to the
vehicle’s velocity vector, and thus has a prominent effect on the re-entry range (Bairstow, 2006). The
magnitude of σ determines the total re-entry range, and its direction (i.e., positive or negative value of
σ) affects the heading angle χ. The angle of attack α as a guidance variable has the advantage that
the (smaller) effect on the vehicle’s course as a result of modulation occurs faster than for bank angle
changes, which affect the course relatively slowly (Harpold and Graves, 1979).

5.2.2 Constraints

The guidance variables are subject to constraints; these are partly dependent on the vehicle, and partly
design choices. It was already mentioned that the angle of sideslip β is considered null. The remaining
aerodynamic angle constraints for the HORUS-2B reference vehicle are:

0◦ ≤ α ≤ 45◦ (5.1)

−90◦ ≤ σ ≤ 90◦

In the following, only one-sided lateral motion will be considered to limit the optimization search space;
this will not make a difference in terms of aerodynamic loading and will only affect the vehicle’s crossrange.
Therefore the bank angle limits are redefined as

0◦ ≤ σ ≤ 90◦ (5.2)

5.3 Control System

The control system is tasked with translating the guidance commands issued by the guidance logic to
direct commands to the vehicle’s actuators.

5.3.1 Control Variables

In practice, the HORUS-2B’s control surfaces are used to produce the aerodynamic moments to obtain the
commanded attitude, and the control system would command the necessary deflection. However as was
explained in Section 3.4, the flight dynamics of HORUS are modeled as a “3+1-DOF” system, wherein
only translational motion with an additional trim condition is taken into account. As a result, roll and
yaw motion are not considered in the context of flight dynamics and rudder and elevon deflections are
not modeled. Pitch motion is only incorporated for the purpose of nullifying the pitch moment to keep
the vehicle aerodynamically trimmed. Therefore the rotational equations of motion are not incorporated
into the flight dynamic model (as explained in Section 3.5.2).

This leaves the control system in charge of determining the body flap deflection angle δb,trim that results
in an equal and opposite contribution ∆Cmb to the pitch moment Cm currently experienced by the
vehicle as a result of aerodynamic forces. The deflection angle δb,trim is calculated according to the
method described in Section 3.5.2; interpolation is performed using a bilinear interpolator (see Section
4.2.1). The control surface deflections required in order to achieve the guided attitude (α, σ)g are not
calculated by the control system. Instead, the control system is assumed to be ideal in the sense that
it perfectly couples (α, σ)g to the vehicle’s actuators. The attitude angles (α, σ) can therefore also be
considered control variables. This distinction is only semantic in nature, as they are the exact same as
the attitude angles commanded by the guidance system. They will be referred to as guidance variables
for the remainder of this report. The final control variable is the body flap deflection angle δb,trim.
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5.3.2 Constraints

The only additional control variable produced by the control system is the body flap deflection angle δb.
Its limits are given by

− 20◦ ≤ δb ≤ 30◦ (5.3)

The limits to the attitude angles α and σ have already been defined in the previous section.

5.3.3 Node Control

Control of the HORUS re-entry vehicle’s trajectory is achieved using node control (Mooij and Hänninen
(2009), Dijkstra (2012), Dijkstra et al. (2013)). A node is a point along the vehicle’s trajectory where
guidance commands are specified; its position is given in terms of an independent variable. At a node N , a
number of guidance variable values are defined; generally, these are the commanded attitude angles:

Ni = {vi, αC,i, σC,i} with i = 1, . . . , n (5.4)

where n is the number of nodes, vi is the independent variable value at node i, and αC,i and σC,i are the
commanded angle of attack and bank angle at node i, respectively. The guidance matrix Γ containing
the locations and commands at these nodes defines the entirety of the trajectory guidance profile:

Γ =


N1

N2

:
Nn−1

Nn

 =


v1 αC,1 σC,1
v2 αC,2 σC,2
: : :

vn−1 αC,n−1 σC,n−1

vn αC,n σC,n

 (5.5)

Throughout the trajectory, attitude commands are issued based on some algorithm that relates the
vehicle’s state in terms of the independent variable to the defined attitude commands at the control
nodes. A convenient approach is one wherein the guidance system computes attitude commands by
interpolating the values of the two surrounding nodes with respect to the current independent variable
value.

Independent variable

The guidance logic couples the guidance variables to a measurable independent quantity. Using time may
seem like a logical solution initially, but in guidance context it is actually quite a meaningless quantity,
e.g., “200 seconds after entry” can mean virtually anything and gives no practical information about
the situation. More importantly, optimization of the guidance profile would then require information
about the re-entry duration corresponding to a specific profile before it is simulated. This problem can
be avoided by defining the guidance profile in terms of an independent quantity of which the initial and
final values are already known for any re-entry trajectory – the vehicle’s total specific energy E, i.e., the
sum of the vehicle’s potential and kinetic energy per unit mass:

E = gh+ 1
2V

2 (5.6)

E is a meaningful quantity as it relates to both the vehicle’s position and velocity, as well as having the
added benefit of being monotonically decreasing over the vehicle’s trajectory, allowing for an unambiguous
definition of the guidance profile. The magnitude of E at entry is easily computed from the vehicle’s
state, and can simply be considered zero at the end of the trajectory – corresponding to a standstill on
the Earth surface. In this thesis work, the values of E that define the guidance profile are normalized with
respect to the value of E at entry – i.e., its highest value – mapping the node locations to the interval of
the normalized total specific energy Ê ∈ [0, 1]:

Ê =
E

Eentry
(5.7)
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NUIN

The positions of the individual nodes can be determined using various techniques; a number of methods
were investigated by Dijkstra (2012) in the context of atmospheric re-entry. His conclusion was that
non-uniform independent node control (NUIN), on top of being easiest to implement, also performed the
best in establishing the guidance logic. In this method, the positions of the nodes and the corresponding
control angles are determined at random, and two nodes have fixed positions at the beginning and end of
the trajectory, respectively. NUIN has the advantage of being relatively computationally ”cheap” when
combined with an optimization process. The conclusions drawn by Dijkstra (2012) led to the choice of
using NUIN as the node definition method in this work. A small difference between this work and the
approach used by Dijkstra (2012) is that in addition to fixing the positions of the initial and final control
nodes, their values are fixed as well. The reasons for this are:

� It greatly decreases the dimension of the optimization problem: for a guidance profile defined by n
nodes, the number of variables to optimize becomes 3(n− 2) instead of 3n.

� The vehicle’s attitude at Ê = 0 – i.e., at standstill – can reasonably be assumed to be neutral, with
αc = σc = 0◦.

� The vehicle’s initial attitude at Ê = 1 can reasonably be assumed to be predefined along with the
initial state due to the general specifications of the mission. Were this not the case, the vehicle’s
actual attitude at entry (assuming it is reasonable) is not defining for the rest of the trajectory per
se, as the influence of aerodynamic loads is much less prominent at such high altitudes.

Guidance profile

The guidance matrix Γ in this thesis work thus has the general form:

Γ =


Ns
N1

:
Nn−2

Nf

 =


Ês αC,s σC,s
Ê1 αC,1 σC,1
: : :

Ên−2 αC,n−2 σC,n−2

Êf αC,f σC,f

 (5.8)

Nodes Ni with i = 1, ..., n − 2 represent the mutable control nodes in a profile defined by a total of n
nodes. The locations and values of the control nodes Ns and Nf are fixed:

Ns = {Ês, αC,s, σC,s} = {1, α0, σ0} (5.9)

Nf = {Êf , αC,f , σC,f} = {0, 0◦, 0◦} (5.10)

where α0 and σ0 represent the angle of attack and bank angle of the vehicle at entry, respectively.
Two additional constraints are imposed on the interval wherein the mutable control nodes Ni may be
placed:

Êmin = 0.1 ≤ Êi ≤ Êmax = 0.98 (5.11)

The values of Êmin = 0.1 and Êmax = 0.98 are based on the consideration of not allowing nodes to
be located too close to the limit values of Ê. The upper limit of 0.98 was chosen to prevent guidance
commands from being issued too early on in the trajectory, where they have little to no effect, whereas
the lower limit of 0.1 is taken to avoid control nodes occurring after the simulation cuts off at an altitude
of 20 km. At such low altitudes, a different guidance logic is needed to steer the vehicle to its final landing
point. Between Ê = 1 and Ê = 0.98, the vehicle’s initial attitude is maintained.

Figure 5.3 shows the generalized definition of the guidance profile in terms of control nodes as used in this
thesis. The figure should be read from left-to-right, as Ê = 1 corresponds to the entry point and Ê = 0
to standstill. Inter-node guidance commands are determined by interpolating between the two nodes
currently “surrounding” the vehicle. This interpolation is performed using Hermite splines (see Section
4.2.2), which results in a guidance profile wherein no discontinuities in either magnitude or first derivative
occur. While the values of the attitude angles αC and σC at a specific control nodes are constrained
according to the vehicle’s capabilities, their interpolated values between control nodes may still exceed
the defined limits. Therefore the guidance algorithm operates on the basis that if the interpolated value
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Figure 5.3: Geometry of the guidance profile as defined by nodes.

0 200 400 600 800 1000 1200 1400
15

20

25

30

35

40

45

Time (s)

A
ng

le
 (

de
g)

α vs. time

 

 
splines
linear

(a) Angle of attack

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

Time (s)

A
ng

le
 (

de
g)

|σ| vs. time

 

 
splines
linear

(b) Bank angle

Figure 5.4: Nominal HORUS guidance profile vs. cubic spline interpolated guidance profile

of an attitude angle would exceed its lower or upper boundary, it returns a commanded attitude angle
equal to this limit value instead.

Nominal reference profile

The nominal HORUS reference guidance profile as defined in Mooij (1998) is specified by seven time-
dependent nodes. Its guidance matrix ΓHORUS, nom is given by:

ΓHORUS, nom =



t1 α1 σ1

t2 α2 σ2

t3 α3 σ3

t4 α4 σ4

t5 α5 σ5

t6 α6 σ6

t7 α7 σ7


=



0 40◦ 0◦

264 40◦ 0◦

290 40◦ 79.6◦

554 40◦ 56.0◦

686 40◦ 59.8◦

924 40◦ 59.8◦

1319 11.5◦ 54◦


(5.12)

The nominal reference profile is computed using linear interpolation; the difference with Hermite spline
interpolation of the same profile is shown in Figure 5.4.
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Chapter 6

Re-Entry Simulator Design

The foundation of a preliminary re-entry mission planner is its capability of simulating a vehicle’s
trajectory through the atmosphere given a certain set of circumstances. The specific design of the
simulator depends on the requirements of the mission planner in terms of e.g., accuracy and speed.
These requirements define the extent of the detail included in individual models and the complexity of
the numerical methods used. The design choices made in the development of the re-entry simulator are
discussed in Section 6.1. The state-space model relating to the problem is presented in Section 6.2. The
software architecture of the simulator in its final form is shown in Section 6.3. Finally, the reliability of
the simulator is demonstrated through verification results in Section 6.4.

6.1 Design Choices

The goal of this thesis work was to develop a design-time mission planner for a winged re-entry vehicle,
with the purpose of designing an optimal trajectory. Optimal in this context first and foremost means
maximizing range while minimizing the heat load, in addition to keeping the vehicle within its design
limits. Due to the amount of factors exhibiting influence on the vehicle – to greater or lesser extent – the
solution space of this optimization has a large dimensionality. The independent variables included in the
simulation thus need to be limited; this must be done in such a way that the mission planner may still
produce sufficiently adequate and reliable results given its specific purpose. In practice, this limitation
of independent variables is included in the choices of the individual models used.

Throughout this text, a number of design choices with respect to the simulator were mentioned. They
are summarized here for clarity.

Environment The gravitational field is central with an added J2-term. The atmospheric model used is
the US76. The Earth shape is modeled as a spheroid.

Flight dynamics There is no wind. The vehicle produces no propulsive force and has a constant mass.
The sideslip angle β is considered a disturbance and is set to zero. As a result, the side force S acting
on the vehicle becomes null. The flight dynamic model is “three-and-a-half-DOF” as it accounts
for the trim condition in addition to the translational motion; rotational motion is neglected.

Vehicle The Horus-2B reference vehicle is used. Its aerodynamic data was obtained from Mooij (1995).
Only the body-flap deflection is taken into account; all aerodynamic moment coefficients not relating
to the pitch moment are neglected, as well as the pitch moment contributions of other control-
surfaces.

45



46 CHAPTER 6. RE-ENTRY SIMULATOR DESIGN

6.2 State Space Model

Reducing the re-entry problem to its essence: during its course through the atmosphere the vehicle is
subject to forces defined by its environment, which in turn define its motion. To simulate the vehicle’s
trajectory, the equations of motion are integrated numerically. For this purpose, they need to be written
in the form of a set of coupled first-order differential equations (see Section 4.1), i.e., as a state-space
model:

ẋ(t) = f(x(t),u(t), t) with x(0) = x0 (6.1)

Here, x is the state vector and u is the input (or control) vector. The dynamic and kinematic equations
for the translational motion of the vehicle with respect to the I-frame were defined in Equation 3.12
as:

dVI

dt
= 1

mFI

drI
dt

= VI

Rewritten in state-space form this gives

x = [VI, rI]
T

= [ẋI , ẏI , żI , xI , yI , zI ]
T

(6.2a)

ẋ = [aI,VI]
T

= [ẍI , ÿI , z̈I , ẋI , ẏI , żI ]
T

(6.2b)

u = FI (6.2c)

with

aI = [ẍI , ÿI , z̈I ]
T

=

[
F x,I
m

,
F y,I
m

,
F z,I
m

]T
(6.3)

As was discussed in Section 3.5.2, the dynamic model of the vehicle is a “three-and-a-half-DOF” configu-
ration wherein the trim condition is taken into account in addition to the translational motion. The body-
flap deflection angle is modulated to nullify the total pitch moment and other aerodynamic moments are
neglected, meaning the equations of rotational motion need not be represented in the state-space.

6.3 Software Architecture

The simulator is developed in C + +. Architecturally, it is divided into a number of code blocks that
individually contribute to the calculation of the state-space. The vehicle is defined at a certain time by its
state, attitude and control-surface (i.e, body-flap) deflection. The state is propagated using a numerical
integration scheme, whereas the attitude and control-surface deflection are a consequence of the guidance
algorithm.

The vehicle position serves as input to the environment module, which determines the instantaneous
environment of the vehicle. The temperature T serves as input for the guidance algorithm (where it
will be used in conjunction with the vehicle’s velocity V to determine the Mach number M), and the
gravitational acceleration g and density ρ are required to calculate the external forces acting on the
vehicle at that time. The environment module makes use of an analytical model in conjunction with
externally defined tabulated values characterizing the US76 atmosphere to obtain g, ρ and T . The
vehicle’s attitude angles α, β and σ are used to determine the aerodynamic forces in conjunction with the
aerodynamic force coefficients as given by the vehicle model for a certain α and δb; these are calculated
using external aerodynamic property tables. Finally, α is implemented in the guidance algorithm module
to calculate the new body-flap deflection angle δb required to maintain trim. Following the guidance
module, the aerodynamic angles as well as the body-flap deflection settings of the vehicle are updated
to their new commanded values. After calculating the external forces in the correct reference frame, the
state derivative is calculated and the state is propagated using a RKF45 integration method.
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Figure 6.1: Flowchart of the environment module.

6.3.1 Environment

A schematic overview of the environment module is shown in Figure 6.1. The environment class is
defined by four attributes: the atmosphere model, the Earth shape, the Earth rotational speed and
the gravitational field. The model used for each attribute is specified at initialization of the environment
class. Three of these attributes are defined as virtual base classes consisting of a number of derived classes
which represent the available models. Environment attribute objects are instantiated upon initialization
of the environment, where the requested models are specified. The environment class can be considered
a “container” of sorts for these properties; any future call to a method or member of an environmental
attribute by an external class occurs through the environment class and not directly.

Atmosphere model The atmosphere model is a virtual base class wherein three derived classes are
defined; each derived class represents a different atmospheric model. The atmospheric properties
temperature T , pressure p, density ρ, and speed of sound a are computed with the altitude h as
input according to the atmospheric model assigned to the environment object:

� Analytical US76: see Section 2.2.2.
� Tabulated US76: cubic spline interpolation (Section 4.2.2) is used to interpolate between

tabulated values of T , p, ρ, and a with h as the independent variable.
� Exponential: p and ρ vary exponentially with altitude (p = p0 exp(− h

h0
) and ρ = ρ0 exp(− h

h0
)),

T is obtained via the ideal gas law given in Equation 2.13 and a follows from Equation 2.28.
The preferred atmosphere model is the analytical US76, which is used to calculate atmospheric
properties at a given altitude given tabulated values of the defining properties per atmospheric
layer (see Section 2.2). However the simulator is also equipped to calculate atmospheric properties
from a tabulated US76 atmosphere using cubic spline interpolation (Section 4.2.2) or a simple
exponential atmosphere model. The exponential atmosphere model is however too inaccurate for
practical use and is only included for verification purposes.
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Figure 6.2: Flowchart of the external forces module.
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Earth shape The Earth shape is a virtual base class consisting of a derived class representing a spheroid
Earth. It contains a single method tasked with returning the vehicle’s altitude h above the surface
given its position vector rI; for a spherical Earth the equation is simply h = R−RE .

Earth rotation The Earth rotation is an environmental property that is defined as either rotating or
non-rotating at initialization of the environment class; the value of the rotational rate ωcb is returned
by the environment class.

Gravitational model The gravitational model is a virtual base class consisting of derived classes
representing the central field model and a spherical harmonic model including the J2-term; it
consists of a single method that returns the gravitational acceleration vector in the V -frame gV

given the vehicle’s radial distance R and latitude δ. The computation is performed using Equation
2.12 for the spherical harmonic model and is simply gV = [0, 0, µ/R2]T for the central field model.

The environment class contains methods to compute the dynamic pressure q̄ and Mach number M
given the vehicle’s state x = [VI, rI]

T . The dynamic pressure is obtained by using rI to obtain ρ from
the atmospheric model and x and t to compute the groundspeed by converting [VI, rI]

T to spherical
coordinates; q̄ follows from Equation 3.2. The Mach number is computed using Equation 3.1 with this
same groundspeed and the local speed of sound a obtained from the atmospheric model given an input
of rI.

6.3.2 External Forces

A schematic overview of the external forces class is shown in Figure 6.2. This class is initialized with
a pointer to an existing environment object. The computation of the external forces relies on the
environmental properties local gravitational acceleration gV and local air density ρ to compute the
gravitational force vector FG,I and aerodynamic force vector FA,A, respectively. In addition, coordinate
frame transformations involving the I-frame require information about the Earth’s rotation, which is also
a property of the environment object.

The flowchart may seem complex at first but that is mainly due to the large number of coordinate
frame transformations that are needed; essentially it only consists of two methods (and a half): the
calculations of FG,I and FA,A, and the conversion of FA,A to FA,I. The gravitational force FG,I is
computed by transforming the input position vector rI to spherical R-coordinates to obtain the vehicle’s
radial distance R and latitude δ which are necessary for the computation of gV. A transformation to the
I frame is performed to obtain gI, the multiplication of which with the vehicle’s mass m gives FG,I. The
aerodynamic force vector FA,A is computed by transforming the input velocity vector V I to spherical R-
coordinates to obtain the groundspeed VG. After also computing the local atmospheric density ρ with rI
as input and given aerodynamic properties of the vehicle (coefficients CD and CL as well as the reference
area Sref ), FA,A is computed according to Equation 3.3. A transformation to the I-frame is performed
to obtain the final output variable FA,I.

6.3.3 Vehicle Model

The vehicle model class is basically a container of information about the vehicle properties. At initial-
ization, tabulated values of the vehicle’s aerodynamic coefficients as a function of angle of attack α,
Mach number M , and – depending on the coefficient – also the body-flap deflection δb are imported from
external data files and stored in matrices. Vectors containing the values of the independent variables
α, M and δb at which the tabulated aerodynamic coefficients occur are also imported, and the vehicle’s
mass m and aerodynamic reference area Sref are defined.

The class computes the aerodynamic coefficients (CD, CS , CL) of Horus given an input of α, M and
δb:

CD = CD0(α,M) + ∆CDb(α,M, δb) (6.4)

CS = 0 (6.5)

CD = CL0(α,M) + ∆CLb(α,M, δb) (6.6)
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Figure 6.3: Flowchart of the vehicle model module.
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Mathematics

Input:

Enorm, Γ, M, qdyn

Output:

αA, σA, δb,trim

Compute 

δb,trim

M, qdyn

Γ, Enorm

δb,trim

αA, σA

Hermite 

spline 

interpolation

αA

Figure 6.4: Flowchart of the guidance module.

Base coefficients The base coefficients CD0 and CL0 are both functions of α and M . Their data
matrices are given in Tables B.2 and B.3, respectively. The values corresponding to a given input
are computed using bilinear interpolation as described in Section 4.2.1.

Increments The body-flap causes an increment in the lift and drag coefficients: ∆CDb and ∆CLb,
respectively. In addition to being dependent on the values of α and M , the magnitude of the
increments is also a function of the deflection angle δb; the tables relating ∆CDb and ∆CLb to α
and M for an array of body-flap deflection angles are given in Tables B.5-B.10 and Tables B.11-B.16,
respectively. Because ∆CDb and ∆CLb are dependent on three variables, two separate interpolations
on the data must be performed. First, a bilinear interpolation with the given values of α and M is
performed on all the data matrices, each representing a particular body-flap deflection angle δbi with
i = 1, . . . , n. An n-length array of the corresponding (∆CDb)i and (∆CLb)i-values is generated;
these arrays are interpolated linearly with independent variable δb to obtain the increment values
for the given α, M , and δb.

Finally, the class also returns the vehicle’s mass m and aerodynamic reference area Sref .

6.3.4 Guidance/Control Module

A schematic overview of the guidance and control module is shown in Figure 6.4. The guidance and
control class is initialized with a vehicle model object that contains all vehicle aerodynamic properties
and methods to compute the aerodynamic coefficients and the body-flap deflection angle δb. The guidance
and control module is given a prespecified (n− 2)× 3 guidance matrix Γ = [Ê,α,σ]:

Γ =


Ê1 α0 σ0

Ê2 α1 σ1

: : :

Ên−1 αn−1 σn−1

 (6.7)

where the guidance variables αC and σC are defined at each node position Ê. This matrix is used by
the guidance module to calculate the guidance and control commands at any instance given an input of
the normalized total specific energy Ê. The computation of the attitude angles αC and σC is therefore
fairly straightforward. Given the input Ê and the guidance matrix Γ, a Hermite spline interpolation is
performed on both α and σ with the independent data vector Ê. To this purpose, the Hermite-spline
interpolation method from the mathematics module is used; this method is based on the procedure
outlined in Section 4.2.2.

The class also contains a method to compute the body-flap deflection angle required for trim. To achieve
trim stability, the body-flap most produce a moment increment equal in magnitude but in opposite
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direction to the base pitch moment coefficient Cm0(α,M). Therefore δb,trim is the body-flap deflection
angle for which ∆Cmb = −Cm0. First, given α and M , Cm0 is computed by performing bilinear
interpolation of Table B.4. The increments ∆Cmb(α,M, δb) are defined in the same manner as ∆CDb
and ∆CLb; see Tables B.17-B.22. Therefore an n-length array of (∆Cmb)i-values is constructed, wherein
each (∆Cmb)i corresponds to a specific body-flap deflection angle δbi. This array is then interpolated
linearly with −Cm0 as the independent variable to obtain δb,trim. Trimmed flight is not performed at
very high altitudes; until the dynamic pressure q̄ experienced by the vehicle reaches 100 N/m2, δb is
constant at 15◦ (Mooij, 1998). In addition, once δb passes the threshold of 20◦ during the course of the
trajectory, this angle of deflection is maintained until the end of the trajectory as the vehicle becomes
untrimmable.

6.3.5 Entry Vehicle

The re-entry vehicle at any given time is defined by its state vector x, attitude vector ψ and body-flap
deflection angle δb:

x = [VI, rI]
T

(6.8a)

ψ = [αA, βA, σA]
T

(6.8b)

δb = f(α,M) (6.8c)

These characteristics are stored in the Entry Vehicle class and are continuously updated with each integra-
tion step (the state x) or guidance command (ψ, δb) (the attitude and body-flap deflection angle).

At initialization, the entry vehicle class is given pointers to existing environment, external forces, guidance
algorithm, and vehicle model objects, along with an initial time, state and attitude and the guidance
matrix Γ as given by Equation 6.7. It is essentially the class that contains all the information and
references to values and methods that the simulator requires to successfully simulate the trajectory. At
the center lies the method that computes the vehicle’s state derivative given the current time and vehicle
state. This state derivative is returned to the simulator where it will be integrated using an RKF45-
algorithm (see Section 4.1.2). In the next iteration, this new state along with the updated time serves as
input for the state derivative computation.

State derivatives are calculated in this method not only for x = [VI, rI]
T

, but also a number of other
parameters whose integral value will become relevant during the optimization process. Therefore a
distinction is made between the vehicle state x and the “appended state” z:

z =



ẋ
ẏ
ż
x
y
z
Q∫
ng

Xdr


, ż =



aI,x
aI,y
aI,z
ẋ
ẏ
ż
qc
ng

VG cos γG


(6.9)

where Q is the total heat supplied to the vehicle per unit area and Xdr represents the vehicle’s downrange.
The g-load ng and heat flux density qc are found using Equations 2.1 and 2.2, respectively.

The method is given an input of the vehicle’s current appended state z and time t, and returns the
state derivative ż. A flowchart of the method’s architecture is shown in Figure 6.5. Throughout the
simulation, the vehicle’s state vector and the current time are stored as class variables in the entry
vehicle class. When the state derivative computation method is called, these variables are updated
with the input xI and t. Before the components of the state derivative vector ẋ can be computed, the
guidance algorithm determines the guidance commands. The vehicle’s attitude ψ and body-flap deflection
angle δb are also class variables, and their values are updated after each call to the guidance algorithm.
Knowing the vehicle’s new attitude, the aerodynamic force vector FA,I and gravitational force vector
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FG,I are computed to form the acceleration vector aI = (FA,I + FG,I)/m. The components of aI are the
derivative values of ṙI.

6.3.6 Problem Properties

The problem properties class is a storage container that gets passed to the simulator containing all
necessary initialization inputs; it is required to make the integration of the simulator with the optimization
process more convenient. It is initialized with1:

� Initial time t0
� Integration stepsize ∆t
� End time tend
� Initial state (rI)0

� Initial attitude ψ0

� Initial body-flap deflection δb,0
� Earth rotation: yes/no
� Type of gravitational field model
� Type of Earth shape model
� Type of atmosphere model

Variables are stored as class variables, and the following objects are initialized:

� Environment
� External forces
� Entry vehicle model
� Guidance algorithm

Pointers to these objects are also stored as class variables.

6.3.7 Simulation

The simulation class is basically an implementation of the state derivative computation; the flowchart
shown in Figure 6.5 gives a good general overview of the global simulator architecture without unnecessary
details.

The simulation class is initialized with a problem properties object. The method performing the simu-
lation takes an additional input of the guidance vector Γ to initialize the entry vehicle. Initial values of
all relevant output variables are computed, and the appended state z is integrated using RKF45. The
output variables should be stored at equal intervals; however, RKF45 is variable-step. To solve this, an
extra loop is implemented that performs a complete variable-stepsize integration between each interval
and stores the final output only, resulting in evenly spaced output data. A flowchart of this integration
process can be seen in Figure 6.6. The output of the simulator method is a data file containing the
following variables of interest between t0 and tend at intervals of ∆t:[

t, xI , yI , zI , ẋI , ẏI , żI , h, τ , δ, V , γ, χ, αC, σC, ng, qc, δb,trim,M, Ê, ∫ ng, Q,X, q̄
]

6.4 Simulator Verification

To conclude that the simulator performs correctly, it is subjected to a verification process, wherein proof
is collected to demonstrate the simulator’s reliability. Verification is not a linear procedure, as errors will
undoubtedly be discovered and code will need to be rewritten. Therefore, it is tantamount to not only test
whether the software works according to plan when it is completely assembled; finding individual errors

1More initialization variables are required but their relevancy only becomes apparent with regard to the optimization
process.
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Figure 6.5: Flowchart of the state derivative computation.
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tsim ≤ tend 

&& 

h > 20 (km)

tRK = tsim 

tRK,end = tsim + Δtsim 

ΔtRK = Δtsim

y

tRK,end - tRK ≤ ε  

Perform integration 

step ΔtRK 

Update step size 

ΔtRK

ΔtRK = tRK,end - 

tRK

|tRK,end - tRK|

≤ |ΔtRK ∙ (1 + ε)|

y

y

tRK = tRK + ΔtRK

nz = zRK

store z(tRK,end)

tsim = tsim + 

Δtsim 
store z(tend)n

n ΔtRK = ΔtRK

Figure 6.6: Flowchart of the integration algorithm.

on such a scale is nearly impossible. The process is therefore divided into two segments: unit verification
and system-level verification. It is stressed that these two segments are not performed sequentially; often
the best-hidden errors come to light during software verification, after which the module containing the
error must be fixed – and verified again to ascertain that no new errors have been included.

6.4.1 Module Verification

The Horus re-entry simulator can be divided into a number of separate modules; most of these were
discussed in Section 6.3:

� Mathematics
– Interpolators: results compared to manual computations, as well as computations performed

built-in Matlab interpolators.
� Reference Frames

– Transformation matrices: matrices for single transformations were created with easy inputs
(e.g., ωcbt = 90◦) of which the results could be manually checked. For multiple transformations,
equivalent matrix multiplications were performed in Matlab and compared.

– Reference frame conversions: Sanity checks using sketches by hand. Matrix multiplications
were performed in Matlab.

– State vector conversions: Sanity checks using sketches by hand. As these computations apply
the already-verified reference frame conversions no further verification was necessary.

� Utilities
– Find minimum/ maximum: applied to sort arrays and compared to arrays sorted in Matlab.
– Calculate mean: compared to computation in Matlab.
– Sort ascending/descending: application of verified minimum/ maximum determination; com-

pared to arrays sorted in Matlab.
� Environment

– Atmosphere models
* Analytical US76 and tabulated US76: a table of atmospheric properties at an array of

altitudes was computed and compared to the tables provided by NASA (1980); these were
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found to match.
– Gravity models

* Central field with J2: the gravitational acceleration vector was computed in both the
V -frame (Equation 2.12) and I-frame (Equation 3.7) and frame conversions were applied
both ways. In addition, the gravitational acceleration calculation from the Tudat software
repository was compared to the values obtained for gI.

– Earth shape models
* Ellipsoid Earth: sanity check with known properties of the Earth.

� External Forces
– Force computations: sanity check.

� Guidance/Control
– Determining commanded attitude: straightforward after verification of interpolation methods.

� Vehicle Model
– Computation of aerodynamic coefficients: reproduction of Tables B.2 - B.22
– Body flap deflection for trim computation: reverse-reproduction of Tables B.17 - B.22 (i.e,

computation of known values of δb given ∆Cm,b, α and M).
� Entry Vehicle

– Calculation qc: sanity check.
– Calculation ng: sanity check.
– State derivative computation: integration was performed on a problem defined by a definite

integral (i.e., sphere of 1 kg falling towards the Earth) and compared. In addition, the state
derivative computation using simplified circumstances was implemented in Matlab using the
spherical translational equations of motion given in Equations 3.19 and 3.21 and integrated
using the built-in ode45 integrator.

6.4.2 Simulator Verification

Once all modules were deemed verified (rightfully or unrightfully so – in which case possible errors would
become apparent during global verification), the simulator itself was tested (and tested...). The first step
in this testing process was already mentioned in the previous section, namely the implementation of the
spherical translational equations of motion given in Equations 3.19 and 3.21.

The simplified model applies the following simplifications to the Horus re-entry simulator:

� The vehicle model has constant aerodynamic coefficients (CD, CS , CL).
� The vehicle remains at a constant attitude.
� The trim condition is not taken into account.
� No guidance is applied; the vehicle’s motion is only subject to its environment.
� The environment is defined by an exponential atmosphere, a central gravity field and a rotating,

spherical Earth.

Trajectories were simulated using the simplified model for the nominal entry condition by integrating
the spherical equations of motion using the built-in ode45 solver (the RKF45 equivalent) in Matlab.
The simplified model was then used in the Horus re-entry simulator with the same initial conditions
and integrator tolerances. The trajectories were found to match, leading to the conclusions that the
integrator could be considered verified, and that the basic parts of the simulator seemed to be working
soundly.

Finally, the simulator in its totality needed to be subjected to some testing to prove its validity. Lacking
real-life validation data, output data from a more sophisticated re-entry simulator developed by E. Mooij
in FORTRAN was used as reference. As this simulator used a very different GNC-system, the attitude
angles found in the reference output data were implemented directly in the Horus re-entry simulator by
expanding the guidance algorithm base class with a time-dependent guidance class. This methodology
of this class is equivalent to that of Ê-dependent one detailed in Section 6.3.4 with the exception of
the independent variable being t. The guidance vector Γ consists of the attitude angles found in the
reference data at the designated times. Using time-dependent guidance in this way has the added benefit
of automatically allowing for a second verification of the Ê-dependent guidance algorithm.
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The reference data was obtained using the following specifications:

� US76
� Spherical, rotating Earth
� Central gravity field with J2

� Initial state:

h = 122 (km), τ = −106.7◦, δ = −22.3◦, VG,0 = 7.4355 (km/s), γ0 = −1.43◦, χ = 70.75◦

� Initial attitude:
αA,0 = 40◦, βA,0 = 0◦, σA,0 = 0◦

The Horus re-entry simulator was run with the same specifications, barring a few differences:

� Rotational motion of the vehicle was not taken into account; this has no effect as the vehicle’s
attitude throughout the trajectory is copied from the reference data and is applied to the vehicle
using time-dependent attitude guidance.

� The elevator deflection δe was not taken into account; this has minimal effect as the elevator is only
used at the very end of the reference trajectory after δb has reached its maximum and trim fight is
not possible.

� The altitude-dependent drag increment ∆CD,h was neglected during computation of the aerody-
namic coefficients; this has no effect as ∆CD,h becomes relevant under an altitude of 20 (km).

The results are shown in Figures 6.7 through 6.12.

The conclusion can be drawn that the Horus re-entry simulator functions correctly. The differences
between the verification and simulation data are so small that it can be faithfully said that the simulator
is verified. The largest discrepancy between the verification and simulation data can be seen in Figure
6.11 representing the g-load versus time. This difference is still well within acceptable bounds, and
can be attributed to the simulation being the solution to an initial value problem: very small errors at
the beginning tend to add up and cause larger deviations. This conclusion is reinforced by deviations
only becoming apparent later on in the trajectory. This deviation could be eliminated by applying very
mindor changes to α and σ. Due to the deviations being minimal and explainable, the simulator can be
considered verified.
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Figure 6.7: Altitude vs. time
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Figure 6.8: Velocity vs. time
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Figure 6.9: h-V diagram
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Figure 6.10: Total specific energy vs. time
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Figure 6.11: g-load vs. time
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Chapter 7

Trajectory Optimization

The complete approach to developing an optimal re-entry trajectory in terms of the mission objectives
and constraints is discussed in this chapter. Section 7.1 gives an overview of the methodology applied in
multiobjective optimization; Section7.1.1 gives a general explanation of multiobjective optimization, Sec-
tion 7.1.2 provides an explanation of the Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) multiobjective optimization algorithm, and Section 7.1.3 details external software used in the
development of the mission planner. Section 7.2 discusses the optimization problem as it relates to the
mission planner in terms of its decision variables (Section 7.2.1)), objectives (Section 7.2.2), constraints
(Section 7.2.3) and the objective function (Section 7.2.4); Section 7.2.5 then gives an indication of the
shape of the problem’s objective space.

7.1 Methodology

7.1.1 Multiobjective Optimization

In simple terms, an optimization problem entails finding the best solution from all feasible solutions;
what defines “best” is based on the optimization criteria.

7.1.1.1 Definition

Multiobjective optimization is defined as the problem of finding a set of decision variables in the form of a
decision vector x that optimizes the objective function f(x) (Coello, 1999). A Multiobjective Optimization
Problem (MOP) generally has a global optimum and a multitude of local optima; optimization methods
concerned with finding global optima as opposed to local optima are called global optimization methods.
Mathematically, a MOP is stated as follows:

find: x ∈ Ω

to minimize: f(x)

subject to: g(x) ≥ cineq

h(x) = ceq

(7.1)

or:

min{f(x)|x ∈ Ω} (7.2)

with: g(x) ≥ cineq (7.3)

h(x) = ceq (7.4)

where f(x) is a set of objective functions fi(x) with i = 1, . . . ,m. The elements fi(x) define the
performance criteria of a point x in mathematical terms. Ω represents the decision (or solution) space of

59
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the MOP, which is the set of all possible points x of the problem that satisfy the problem’s constraints.
The objective space F ∈ Rm is the set of objective function values corresponding to Ω, i.e., f : Ω→ Rm
where m is the number of objectives of the problem. The attainable objective set is defined as the set
{f(x)|x ∈ Ω}, i.e., the objective function values corresponding to points x within the solution space. In
most practical problems there is no single solution possible that simultaneously optimizes every objective
fi(x), meaning the objectives are in some degree of conflict with each other; such problems are called
nontrivial. In a nontrivial problem, the concept of Pareto optimality is used to define tradeoff among the
objectives (Zhang and Li, 2007).

7.1.1.2 Pareto optimality

Given two solutions u ∈ Ω and v ∈ Ω with objective function values f(u) ∈ F and f(v) ∈ F , u is said to
dominate v if and only if fi(u) ≤ fi(v) for every i ∈ 1, . . . ,m and fj(u) < fj(v) for at least one index
j ∈ 1, . . . ,m, i.e., the decision vector u has better objective function values than v with respect to at
least one objective, and no worse values with respect to all the other objectives. In other words, any
improvement in a Pareto optimal point in one objective must lead to deterioration in at least one other
objective (Coello, 1999).

A solution is considered Pareto optimal if there exists no other solution in the solution set that it is
dominated by (Fonseca and Fleming, 1995). The set of all Pareto optimal points is called the Pareto set
and the set of all the Pareto optimal objective vectors is the Pareto front (Zhang and Li, 2007). Figure
7.1 illustrates these concepts for a two-dimensional problem, and indicates the best (dominating) and
worst (dominated) solutions with respect to the Pareto front; indifferent solutions are neither dominating
nor dominated.

Very often, since the objectives fi(x) contradict each other, no point in Ω maximizes all of them
simultaneously, and a tradeoff has to be performed based on Pareto optimality. For many practical
problems, an approximation of the Pareto front is needed by a human decision maker choose a final
solution. Most MOPs have many or even infinite Pareto optimal vectors, making it (nearly) impossible
to obtain a complete Pareto front. It is more workable to determine a much smaller number of Pareto
optimal vectors, which are evenly distributed along the Pareto front to get a good idea of the shape
of the Pareto front without drowning in unnecessary data; this is the objective of many multiobjective
optimization algorithms.

7.1.1.3 Evolutionary algorithms

A branch of global optimization algorithms especially capable of solving MOPs is that of evolutionary
algorithms. These algorithms are capable of searching for multiple solutions in parallel – which allows
for a Pareto set to be determined after a single run – as opposed to performing the separate runs in
series (Zitzler and Thiele, 1998). In addition, relatively little knowledge about the problem being solved
is necessary for successful implementation (Zhang and Li, 2007).

An Evolutionary Algorithm (EA) is based on the biological evolution process: it uses natural selection
as the search engine to solve problems (Abraham et al., 2005). The terminology is defined accordingly.
A population is a set of individuals (or candidate solutions) that all carry a unique defining set of
chromosomes. These individuals are evolved over a number of generations to obtain an optimal solution.
The chromosomes determine the fitness of the individual and thus its probability of reproducing. During
reproduction, the chromosomal properties of two individuals are combined to produce a new individual,
allowing for chromosomes resulting in good fitness values to be passed on to the next generation (Dijkstra,
2012). The general schematic of an evolutionary algorithm is shown in Figure 7.2.

7.1.1.4 Discussion

The merits of Multiobjective Optimization Algorithms (MOEA) are discussed in the previous section.
These algorithms are generally Pareto dominance-based; such algorithms generally approximate the
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Figure 7.1: Pareto front of a two-dimensional
optimization problem.
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Figure 7.2: Flowchart of a general evolutionary
algorithm.

Pareto front well when the MOP has two or three objectives, but degrade in performance as the number
of objectives increases, because almost all the solutions are nondominated by each other (Qi et al., 2014).
A MOEA not based on Pareto dominance is the MOEA/D, which offers several advantages over Pareto
dominance-based algorithms in terms of e.g., computational efficiency (Qi et al., 2014).

In terms of the re-entry problem, MOEA/D offers the parallel computation benefit along with its capacity
of handling more than three objectives and is a logical choice. Its performance was compared to Pareto
dominance-based algorithms VEGA and NSGA-II from the Parallel Global Multiobjective Optimizer
(PaGMO) software toolbox (Biscani, 2014) and decidedly produced the best results.

7.1.2 MOEA/D

MOEA/D is a relatively recently developed algorithm by Zhang and Li (2007). It is based on the
decomposition of a MOP into a number of scalar (i.e., single-objective) optimization subproblems and
optimizing them simultaneously. This methodology is based on the fact that a Pareto optimal solution
to a MOP can be defined as the optimal solution of a scalar optimization problem in which the objective
is an aggregation of all the objectives of the MOP (Zhang and Li, 2007). Each subproblem is optimized
by only using information from a number of its neighboring subproblems, resulting in a relatively low
computational complexity compared to other EAs.

7.1.2.1 Decomposition

The approach of combining objectives into a single function is called aggregating functions (Coello, 1999).
Several methods can be found in literature, such as the weighted sum approach, the Tchebycheff approach
and boundary intersection; a discussion of their relative merits is beyond the scope of this text. In this
work, the Tchebycheff approach was used to construct the aggregation functions as this was the standard
approach specified for the MOEA/D algorithm in PaGMO, and therefore the discussion will be limited
to its specific methodology.

A weight vector λ = [λ1, . . . , λm] is defined, of which the components λi ≥ 0 add up to 1. In the
Tchebycheff approach, a number of scalar optimization problems are solved in the form (Zuiani and
Vasile, 2013):

min
x∈Ω
{g(f(x)|λ, z∗)} = min

x∈Ω

(
max

i=1,...,m
{λi|fi(x)− z∗i }

)
(7.5)
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where z∗ = [z∗1 , . . . , z
∗
m] is the reference objective vector whose components are given by

z∗i = min{fi(x)|x ∈ Ω} with i = 1, . . . ,m (7.6)

For each Pareto optimal point x∗ there exists a weight vector λ such that x∗ is the optimal solution of
Equation 7.5; per definition, each of these optimal solutions is a Pareto optimal solution of Equation 7.2
as well (Zhang and Li, 2009). By solving a number of problems in this form with different weight vectors,
different Pareto optimal solutions to the MOP can be obtained.

7.1.2.2 Algorithm

The MOEA/D algorithm takes a set of evenly spread weight vectors λ1, . . . ,λN and a reference point z∗,
and decomposes the MOP given into N scalar optimization subproblems using the Tchebycheff approach
(Zhang and Li, 2007).

The objective function of the jth subproblem is given by

g(f(x)|λj , z∗) = max
i=1,...,m

{λji |fi(x)− z∗i } (7.7)

where λj = [λj1, . . . , λ
j
m]. The algorithm minimizes all these N objective functions simultaneously in a

single run. If λj and λi are close to each other, it follows that the optimal solution of g(f(x)|λj , z∗) is close
to that of g(f(x)|λi, z∗). MOEA/D makes use of this property by using information about the objective
functions’ weight vectors close to λi optimize g(x|λi, z∗) (Zhang and Li, 2007). The set of a number
of closest weight vectors to a specific weight vector λj is called a neighborhood. The neighborhood of
the ith subproblem gi consists of all the subproblems with the weight vectors from the neighborhood
of λi. Only the current solutions to its neighboring subproblems are used to optimize a subproblem in
MOEA/D.

Every iteration of the algorithm wherein a new population is created is called a generation. The population
is composed of the best solution found so far for each subproblem. Within each generation, the following
parameters are maintained by the algorithm:

� The current population P consisting of N points {x1, . . . ,xN | ∈ Ω}, where xi is the current solution
to the ith subproblem gi.

� The fitness vectors {F1, . . . ,FN | ∈ F} where Fi = f(xi) for each i = 1, . . . , N .
� The ideal point vector z = [z1, . . . , zm] containing the best value found so far zj for each objective
fj with i = 1, . . . ,m.

� An external population archive denoted PA that stores all nondominated solutions found during
the search.

The MOEA/D algorithm performs the following steps (Zhang and Li, 2007):
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Step 1: Initialization
1.1 An empty population archive PA is initialized.
1.2 The T neighboring weight vectors are computed for each λi with i =

1, . . . , N by computing their individual Euclidean distances. The set
B(i) = {i1, . . . , iT } is defined for each λi, containing the indices i of these
neighboring weight vectors.

1.3 An initial population P containing the individuals xi with i = 1, . . . , N is
initialized randomly. The fitness vectors Fi = f(xi) are computed for each
individual.

1.4 The ideal point vector z is computed for the initial population P.
Step 2: Update
For i = 1, . . . , N :

2.1 Two indices k and l are selected from the set B(i), defining individuals xi,k

and xi,l as mating partners.
2.2 The offspring y of xi,k and xi,l is produced and evaluated using a genetic

Differential Evolution (DE) operator.
2.3 The ideal point vector zi is updated: for each of its elements j = 1, . . . ,m,

if zij < fj(y), then zj = fj(y).
2.4 The neighboring solutions are updated: for each index k ∈ B(i), if

g(f(y)|λk, z) ≤ g(f(x)|λk, z), then xk = y and Fj = f(y).
2.5 The population archive PA is updated:

� All vectors dominated by f(y) are removed.
� f(y) is added if it is not dominated by any of the vectors in PA.

Step 3: Stopping criteria
When the stopping criteria are satisfied, the algorithm stops and outputs PA.
Otherwise, Step 2 is repeated.

7.1.3 External Software

PaGMO is an open-source software platform developed at European Space Agency (ESA) with the
purpose of solving high-dimensional global optimization problems (Biscani et al., 2010) (Izzo, 2014). The
platform – at its core a C++ library – contains a large number of global and local optimization algorithms
and is designed to be easily extensible due to its object-oriented architecture.

The capability of performing parallel computations is pretty much inherent in every laptop and PC
with a multi-core processor, and is highly beneficial for the efficiency of running optimization processes.
However, parallelizing algorithms is a difficult and time-consuming process, and often beyond the scope
of an average engineer’s capabilities and/or interests. PaGMO provides a generalized version of the island
model – a coarse-grained approach to the parallelization of genetic algorithms – which is applicable to
a multitude of optimization algorithms. This allows for the platform to be used without any inherent
knowledge of parallelization (Biscani et al., 2010).

Optimization within the Horus Mission Planner was achieved by integrating the Horus Re-Entry Simulator
with the PaGMO toolbox. To do this, the specific methodology of PaGMO base components has to be
adhered to.

7.1.3.1 Problem

Any optimization problem implemented in PaGMO needs to derive from the PaGMO problem base class.
This class represents a box-bounded, multiobjective, mixed-integer, constrained optimization problem
defined by (Biscani, 2014):

� The global dimension n, i.e., the number of dimensions of the global search space.
� The dimension of the integral (or combinatorial) part of the problem ni.
� The lower and upper bounds of the global search space, denoted lb and ub, respectively.
� The total number of constraints nc.
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� The number of inequality constraints nic.
� The constraints tolerance (vector) ctol.

The implementation of the re-entry problem in PaGMO in the context of the mission planner is discussed
in Section 7.2.

All derived classes of the problem base class must at least contain the objective function computation
method, here denoted objfun; this method takes as input a decision vector denoted x and returns a
vector of fitnesses, f . The length of the decision vector x defines the total dimension of the problem
n+ni, and the length of the fitness vector f defines the fitness dimension of the problem. The base class
contains a number of other virtual methods that may be reimplemented in derived classes, including a
constraint-computation function that returns a constraint vector c given an input of x.

Section 5.3.3 explains the methodology behind steering the Horus re-entry vehicle. The objective of
the optimization performed in the Horus Preliminary Mission Planner (HPMP) is to find an optimal
trajectory by way of finding the guidance vector Γ that results in an optimal trajectory.

7.1.3.2 Population

An instance of the optimization problem is passed to the PaGMO population class; the created population
is now associated with that specific problem. The PaGMO class contains a set of N individuals (candidate
solutions) defined by [xi, f i, ci,xbest

i, fbest
i, cbest

i] with i = 1, . . . , N , where the vectors with subscript
“best” represent the best values obtained by the individual so far; these best values are analogous to the
concept of the ideal point vector z mentioned in Section 7.1.2. Upon creation, the population is filled
with random decision vectors, the components of which have boundaries defined by the boundary vectors
lb and ub. These random decision vectors are created using a Random Number Generator (RNG); the
seed used in this generator is either assigned by the population class itself, or can be supplied to the class
as a user input.

7.1.3.3 Algorithm

All optimization algorithms implemented in PaGMO derive from the algorithm base class; the one thing
they all have in common is the implementation of the virtual evolve method. This method is at the
core of all optimization algorithms; it takes an instance of the population as input, and performs the
optimization process according to the specific optimization algorithm it is called in reference to.

The algorithms applied in the HPMP are moead (Section 7.1.2) and monte carlo (Section 4.5).

MOEA/D

The PaGMO moead class is, not surprisingly, the implementation of the MOEA/D optimization algo-
rithm. The class is initialized with a number of variables defining the specific parameters of the MOEA/D
algorithm (e.g., the crossover parameter, the method of weight generation etc.); these parameters are
selected in such a way that the optimization algorithm offers a good performance for the problem at
hand. An instance of the population is supplied to the evolve method, which performs the optimization
for gen number of generations according to the method outlined in Section 7.1.2.

Monte Carlo

The PaGMO monte carlo class is very simple; it takes an instance of the population and “evolves” it by
randomly generating a new individual using a PRNG at each iteration and replacing the worst individual
if it happens to be better. This class is used in this thesis to perform Monte Carlo simulations only; the
evolve method is neglected.
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7.2 Optimization Problem

The problem of finding an optimal trajectory or a number of optimal trajectories for atmospheric re-entry
is a multiobjective optimization problem. In addition to developing a trajectory that keeps the vehicle
within its operational and structural constraints, mission-specific goals and priorities defined by the user/
client must be taken into consideration as well. In the design-phase trajectory development considered
in this thesis, these priorities are twofold:

1. Minimizing the heat load
2. Maximizing the (down)range

While achieving maximum range is the defining objective of the mission planner, minimizing the total
heat load incurred by the vehicle during its trajectory is the objective of every re-entry mission. The
mission planner will develop trajectories with maximal range capabilities under the provision that the
total heat load is minimized. The optimization problem must therefore be defined in such a way that
optimization occurs according to both these objectives with regard to their relative importance, as well
as the adherence to operational constraints.

Consistent with the notation used in Section 7.1.1, the MOP for the preliminary design of the Horus
trajectory can be written as:

find: x ∈ Ω

to minimize: f(x) = [−Xdr, Q]

subject to: h(x) ≤ [qc,max, ng,max, |α̇max|, |σ̇max|]
(7.8)

where Xdr is the downrange, Q the total heat load where Q = ∫ qc(t)dt, and the inequality constraints
are given by the maximum heat flux qc,max, the g-load limit ng,max, and the maximum rate of change of
the attitude angles: α̇max and σ̇max. In determining the quality of a trajectory, consideration will also
be paid to the longevity of possible constraint violations in the form of their integrated effects.

7.2.1 Decision Variables

The course of a re-entry trajectory is determined by the steering (i.e., guidance) commands to the vehicle.
The methodology behind generating and interpreting guidance commands was explained Section 5.3.3:
a number of nodes at which given attitude angles are defined are specified in terms of the normalized
specific energy Ê of the vehicle at certain points throughout the trajectory. The guided attitude angles
between these nodes are computed using Hermite spline interpolation each time the guidance system is
called.

The guidance matrix Γ defining the locations Ê = [Ê0, . . . , Ên]T , and attitude commands α(Ê) =
[α0, . . . , αn]T and σ(Ê) = [σ0, . . . , σn]T , with n being the number of mutable nodes in the trajectory is
of the form

Γ =


Ns
N1

:
Nn−1

Nf

 =



Ês αs σs
Ê0 α0 σ0

Ê1 α1 σ1

: : :

Ên−1 αn−1 σn−1

Êf αf σf


(7.9)

Note that the initial and final nodes – Ns and Nf , respectively – as well as the values of the commanded
attitude angles αC and σC are pre-specified and are thus not contained in the mutable node set; the
reasoning behind this was explained in Section 5.3.3. The total number of nodes specifying the attitude
guidance is thus n+ 2.

The guidance profile of the vehicle is thus completely shaped by the guidance matrix Γ. By specifying the
guidance matrix, the course of the re-entry trajectory is defined as well. The relative shapes of α-guidance
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Figure 7.3: Guidance profile shapes defined by four, six, eight and ten nodes.

profiles defined by a certain number of nodes as computed by Hermite spline interpolation are shown in
Figure 7.3. The guidance matrices corresponding to these profiles are:

Γ4 =


Ns
N1

N2

Nf

 =


0.0 0◦

0.1 45◦

0.9 5◦

0.98 40◦

 , Γ6 =


Ns
N1

N2

N3

N4

Nf

 =


0.0 0◦

0.1 25◦

0.2 35◦

0.6 5◦

0.9 20◦

0.98 40◦



Γ8 =



Ns
N1

N2

N3

N4

N5

N6

Nf


=



0.0 0◦

0.1 40◦

0.2 30◦

0.6 35◦

0.65 15◦

0.8 5◦

0.9 20◦

0.98 40◦


, Γ10 =



Ns
N1

N2

N3

N4

N5

N6

N7

N8

Nf


=



0.0 0◦

0.1 30◦

0.2 15◦

0.3 30◦

0.5 45◦

0.6 15◦

0.65 45◦

0.8 20◦

0.9 35◦

0.98 40◦


Figure 7.3 shows that the variety in guidance profile and thus trajectory shape greatly increases with
the number of (mutable) nodes. In terms of locating an optimal trajectory, this is beneficial as it allows
for greater guidance profile variety. However, the dimension of the solution space Ωn of the optimization
problem OPn scales as:

dim Ωn = 3(n− 2) (7.10)

In other words, for optimal solutions to be found for trajectories defined by more nodes, more iterations of
the optimization algorithm are required. The tradeoff to be made is that generally it can be expected for
more-node guidance profiles to lead to better trajectories due to the larger amount of controllability.

The task of the optimization algorithm in the larger context of the mission planner is to find the guidance
profile defined by Γ that results in an optimal trajectory according to the optimization objectives. The
dimension of the optimization problem is given by the number of decision variables in the problem
definition, i.e., the length of the decision vector x belonging to an individual. The 3(n − 2) decision
variables of an optimization problem OPn are the individual components of Γ:

x =
[
Ê1, . . . , Ên−2, α1, . . . , αn−2, σ1, . . . , σn−2

]
(7.11)
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The timely success of the optimization algorithm is dependent on the number of decision variables;
too many cause the solution space to become incredibly large, which drastically increases the difficulty
of finding the global optimum. The preliminary trajectory planning method developed in this thesis
investigates trajectories defined by four, six, eight and ten nodes; the corresponding optimization problems
are denoted OP4, OP6, OP8, and OP10, and the dimensions of their solution spaces are:

dim Ω4 = 6

dim Ω6 = 12

dim Ω8 = 18

dim Ω10 = 24

(7.12)

The lower and upper boundary constraints lb and ub that define the intervals wherein the values of each
decision variable must lie, are given by

lb = [Êmin, . . . , Êmin, αmin, . . . , αmin, σmin, . . . , σmin] (7.13a)

ub = [Êmax, . . . , Êmax, αmax, . . . , αmax, σmax, . . . , σmax] (7.13b)

Note that dim lb = dim ub = dim x = 3(n− 2).

7.2.2 Problem Objectives

The mission planner has two primary objectives: the maximization of the vehicle’s downrange and the
minimization of the total heat load incurred by the vehicle during the course of its trajectory. However,
an optimal trajectory in terms of one objective is very different from a trajectory that is optimal in terms
of the other; in fact, these objectives are conflicting.

Minimum heat load A trajectory of which the only concern is to minimize the heat load will generally
take the form of a gliding entry trajectory. The total heat load supplied to the vehicle is simply the
integral of the heat flux over the duration of the entry; in such a trajectory the total heat load is
minimized by performing the entry in as short a time as possible without exceeding the operational
constraints. This results in a smooth heat flux profile where the heat flux magnitude is maintained
right below its constraint value for the majority of the trajectory. Performing the entry in less time
would cause the vehicle to exceed its heat flux constraints, whereas a slower entry would incur a
higher total heat load due to its longer duration.

Maximum range When trying to achieve maximum range, the vehicle must stay in the air for as long
as possible. To this purpose, the duration of the re-entry must be maximized without exceeding
the operational constraints. It is therefore not necessary for the heat flux to remain close to its
constraint value throughout the trajectory; this leads to the allowance for a more irregular heat flux
profile and therefore also for a skip trajectory. A skip trajectory per definition has a fluctuating
heat flux profile: going in the upwards direction during re-entry both slows down the vehicle and
takes it to a less-dense atmosphere – both of which have the effect of decreasing the heat flux. After
the vehicle has reached a peak and continues downwards, its velocity and the atmospheric density
increase again, causing the heat flux to increase as well. When optimizing for maximum range,
attention must be paid to the rate of change of the heat flux caused by these fluctuations, as well
as the amount of heating cycles; a too-quick increase in qc or too many heat flux peaks can cause
damage to the vehicle’s TPS.

Figure 7.2.2 shows the difference between a heating-optimal and a range-optimal trajectory1. In addition,
the nominal trajectory of Horus as defined in Mooij (1998) is shown in comparison2. The difference in

1These trajectories were computed using the MOEA/D algorithm with a population of 20 over 100 generations and a
two-dimensional objective function with a parameter relating to either the range or the total heat load and a parameter
relating to the rates of change of the attitude angles. A more detailed discussion of these parameters is provided in Sections
7.2.3 and 7.2.4.

2Simulation data for the nominal HORUS trajectory was obtained from Mooij (2014). Data for the heat flux profile
was not available; therefore it was computed by simulating the trajectory with the linearly interpolated reference guidance
profile from 5.12. The resulting heat flux profile was verified with the heat flux profile plot from (Mooij, 1998)
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altitude profiles enforces that it is indeed beneficial for the range to follow a skipping trajectory. The
consequence of these skips in terms of the vehicle’s velocity can be seen in Figure 7.4(b); the vehicle
decelerates slower which allows it to stay aloft longer. The heat flux fluctuations corresponding to
these skips become apparent in Figure 7.4(d). The extent to which these fluctuations are to be allowed
depends on the maximum heat flux rate q̇c the TPS of the vehicle can withstand. It is apparent that
the nominal Horus reference trajectory was determined with minimizing the heat load Q as the primary
objective.

The largest conflicts in determining an optimal trajectory that meets both the maximum range and
minimum heat load objectives thus are:

� Minimum vs. maximum entry duration
� Smooth heat flux profile vs. (likely) fluctuating heat flux profile

Ideal would be to find a trajectory that provides a feasible compromise between the two. Section 7.1.1.2
discussed the concept of Pareto optimality. Given a certain Pareto set, the solution that represents the
best compromise between these two conflicting objectives is the one that is closest to a certain ideal; this
ideal is defined as the “utopia point”. The location of the utopia point p∗ is the point specified by the
lowest f1 and f2 values in the Pareto set:

p∗ = (p∗1, p
∗
2)) = (min(f1), min(f2)) (7.14)

where f1 and f2 are vectors containing the f1 and f2 values of all the points in the Pareto set.
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Table 7.1: Horus operational constraints.

Constraint Value

Max. heat flux cqc 500 kW/m2

Max. g-load cng 3 ( - )
Max. g-load rate cdng/dt 0.25 s−1

Max. α-rate c|dα/dt| 5 deg/s
Max. σ-rate c|dσ/dt| 15 deg/s
Max. Tw gradient c|dTw/dt| 35 K/s

7.2.3 Constraint Handling

7.2.3.1 Optimization boundaries

The boundary constraints specified in Equation 7.13 define the magnitude of the entire solution space Ω.
The limits of the decision variables Ê, αC and σC are specified in the lb and ub vectors:

lb = {Êmin, αmin, σmin} = {0.1, 0◦, 0◦}
ub = {Êmax, αmax, σmax} = {0.98, 45◦, 90◦}

The choice of the limit values Êmin = 0.1 and Êmax = 0.98 was discussed in Section 5.3.3. The limits
to the attitude angles are based on the limits used in the Space Shuttle guidance profile (Harpold and
Graves, 1979) and the nominal Horus guidance profile (Mooij, 1998). The lower limit to the bank angle,
σmin = 0◦ is the only deviation from these profiles; in this work, σC is taken to represent an absolute
value of the bank angle in the interval [−90◦, 90◦]. The relevance of the sign of σC is limited to the
lateral component of the vehicle’s motion; bank reversals (i.e., maintaining the bank angle magnitude
but modulating its sign) are a common method of limiting the crossrange error during entry (Saraf et al.,
2004). The direction of σC has no effect on the magnitude of the aerodynamic forces acting on the vehicle,
nor on the final downrange Xdr, which is simple the integrated value of V cos γ over the re-entry time. It
was decided that as the goal of the mission planner is to maximize downrange and not to target a specific
location – and therefore there is no crossrange error to compute – to only optimize for the absolute value
of σC as this leads to a smaller solution space, allowing the optimization algorithm to find an optimal
solution more efficiently.

7.2.3.2 Operational constraints

Additional limitations are imposed on the problem in the form of operational constraints, which define
the attainable subset of the total solution space Ω. The operational constraints are defined based on
vehicle and crew capacities; for the re-entry problem considered in this thesis, these are given in Table
7.1. All operational constraints are in the form of inequality constraints.

The maximum heat flux constraint cqc refers to the maximum local heat flux at the nose of the vehicle
(with radius RN = 0.8 m2, see Table 3.1) as computed by Equation 2.2:

qc = c∗RN
n

(
ρ

ρ0

)1−n(
V

V c

)m
The value of cqc = 500 kW/m2 is based on the nominally defined heat flux constraint of 530 kW/m2

(Mooij, 1998). The g-load constraint of nng = 3 is taken from the g-load constraint defined for the
Space Shuttle entry (Harpold and Graves, 1979) and can be considered representative for the case when
the vehicle has human occupants. The maximum g-load rate dng/dt was added as an extra measure to
increase the comfort of the crew; its value is taken such that a change in ng of 1g0 may occur during four
seconds at its fastest. The rates of change of the attitude angles are taken from literature for the Horus
reference vehicle (Mooij, 1998). The maximum rate of change of the wall temperature of the vehicle
c|dT/dt| is taken to be 35 K/s (Mooij, 2014).



70 CHAPTER 7. TRAJECTORY OPTIMIZATION

The mission planner utilizes the MOEA/D-algorithm provided by PaGMO (see Section 7.1.3). This
algorithm does not offer a built-in constraint handling method. To incorporate the operational constraints
into the problem, two options were considered: either write and add a constraint handling method to
the existing MOEA/D-algorithm in PaGMO, or incorporate the constraints into the calculation of the
objective function using penalty functions. The drawback of imposing hard constraints is that it effectively
turns the solution space Ω into Swiss cheese, especially in a highly nonlinear problem such as atmospheric
re-entry, thereby drastically hindering the search for a global optimum (Dijkstra, 2012). Therefore the
choice was made to handle constraints by defining penalty functions based on a method developed by
Feoktistov (2006).

Penalty functions are created for each operational constraint, relating the magnitudes of parameters
to a penalty value p that will be added as an increment to the objective function. Because of the
difference in units and magnitudes of the penalty parameters (e.g., cqc = 500 kW/m2 and cng = 3),
their corresponding penalty functions must be defined in such a way that the resulting penalty values
are comparable in magnitude. This is done by normalizing the parameter penalty computation with
its corresponding constraint value. In general, the penalty parameters only have nonzero values when
constraints are exceeded; the operational constraints are defined in such a way that sustained flight
within these constraints is considered safe. Minimizing constrained parameters within these bounds is
unnecessary and deteriorates the performance of the optimization algorithm with regard to its primary
objectives. One exception is made for a component of the heat flux penalty; the reason for this is explained
in the following section.

Heat flux

The heat flux is directly related to an objective parameter: it is the derivative of the heat load Q. In
addition to its integral value over the whole trajectory, the heat flux profile of a trajectory is defining for
its feasibility and optimality. The heat flux penalty function pqc is the sum of three components:

pqc = pqc,1 + pqc,2 + pqc,3 (7.15)

1) Maximum heat flux qc,max should stay below its constraint value cqc . If the constraint is exceeded,
the integral value of the heat flux excess over the duration of the constraint violation should be as
low as possible.

pqc,1 =

{
0 if qc,max ≤ cqc
qc,max

cqc
+ ∆pqc if qc,max > cqc

(7.16a)

where ∆pqc(t) =

∑n
i=1

∫ tf,i
t0,i

(qc(t)− cqc)idt∫ tf
t0
cqcdt

(7.16b)

where n is the number of violations and the interval tf,i − t0,i is the duration of each violation.
The numerators are a summation of the areas under the curves of the parameters as a function of
time minus the area under the constant constraint value for the same time periods, i.e., the areas
representing the actual excess only. The denominator is the constraint value integrated over the
entire time duration of the trajectory.

2) Maximum temperature gradient dTw/dt should stay below its constraint value cdTw/dt. The
wall temperature gradient is computed by applying thermal equilibrium between the aerodynamic
heat flux qc and the radiative heat flux at the wall qrad:

qc = qrad = εσBT
4
w (7.17)

where ε = 0.8 is the emissivity and σB = 5.667 · 10−8 W/m2/K4 is Boltzmann’s constant. This
gives for the relation between dTw/dt and dqc/dt:

dqc
dt

= 4εσBT
3
w

dTw
dt

(7.18)

Computing Tw,max is computed as the maximum temperature gradient corresponding to Taking
the temperature and therefore the gradient value at the maximum allowed heat flux Therefore

cdqc/dt = 4cdTw/dt
4

√
εσBc3qc ≈ 20 kW/m2/s (7.19)
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The heat flux value in the equation was taken to be cqc to ensure that cdqc/dt is not under-
estimated. It is preferred to have a trajectory with a relatively smooth heat flux profile, i.e.,
fluctuations are allowed but the heat gradient should not approach the vehicle’s limits. Therefore
to avoid unnecessarily fluctuating heat flux profiles, cdqc/dt is set at 10 kW/m2/s. The penalty
function for the wall temperature gradient dTw/dt is given by:

pqc,2 =

{
0 if (dTw/dt)max ≤ cdTw/dt
(dTw/dt)max

cdTw/dt
if (dTw/dt)max > cdTw/dt

(7.20)

3) Fluctuations pqc,3 is the only penalty parameter that always has a nonzero value (with the exception
of trajectories that have only one heat flux peak), not only when a certain limit is exceeded. The
reason for this is simply that the amount of peaks is not subject to any predefined constraint,
though optimally the combined effect of their magnitudes and frequency should be minimized.
A completely smooth heat flux profile is not required per se due to conflict with the range max-
imization objective (see Section 7.2.2), but a profile with too many fluctuations is considered
disadvantageous to the vehicle’s TPS, so it is taken into account in the penalty function to encourage
the creation of trajectories with the most range with minimal fluctuations. The second component
of this penalty function is the magnitude of the peaks in the heat flux profile – drastic fluctuations
in the heat flux profile may damage the vehicle’s TPS and should be avoided.
The number of peaks and valleys npv is determined by counting the number of sign changes in dqc/dt
over the trajectory. To avoid small irrelevant fluctuations from interfering with the computation,
only sustained sign changes that last over 100 s are taken into account. The individual fluctuation
magnitudes |∆q| between the peaks and valleys in the profile (excluding the initial and final peaks)
are summed, and divided by the number of fluctuations nf−2 between these peaks; the final penalty
value is obtained by dividing the total by cqc .

pqc,3 =

∑
|∆q|/(npv − 2)

cqc
(7.21)

G-load

The g-load penalty png, consists of two components: one with regard to its maximum value, and one for
the rate of change:

png = png,1 + png,2 (7.22)

The first component png,1 is analogous to pqc,1:

png,1 =

{
0 if ng,max ≤ cng
ng,max

cng
+ ∆png if ng,max > cng

(7.23a)

where ∆png (t) =

∑n
i=1

∫ tf,i
t0,i

(ng(t)− cng )idt∫ tf
t0
cngdt

(7.23b)

The second component png,2 is given by:

png,2 =

{
0 if ṅg,max ≤ c|dng/dt|
ṅg,max

c|dng/dt|
+ ∆png if ṅg,max > c|dng/dt|

(7.24)

where ṅgmax = max
(
ṅg,max, |ṅg,min|

)
(7.25)
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Attitude rates

The penalties for exceeding the attitude rate constraints c|dα/dt| and c|dσ/dt| are dependent on the
magnitude of the constraint violation only. They are given by:

p|dα/dt| =

{
0 if α̇max ≤ c|dα/dt|
α̇max

c|dα/dt|
if α̇max > c|dα/dt|

where α̇max = max (α̇max, |α̇min|) (7.26a)

p|dσ/dt| =

{
0 if σ̇max ≤ c|dσ/dt|
σ̇max

c|dσ/dt|
if σ̇max > c|dσ/dt|

where σ̇max = max (σ̇max, |σ̇min|) (7.26b)

Note that the constraints defining the maximum rates of change of the attitude angles are absolute
values.

7.2.4 Objective Function

The objective function f(x) computes the fitness of an individual xi with regard to the optimization
objectives. The primary purpose of the mission planner is to find minimal-heat-load trajectories that
provide an extended range, while adhering to boundary and operational constraints. Therefore the
defining parameters in the objective function are the total downrange Xdr and the total heat load Q. The
individual contributions of these parameters to the objective function are defined as “reward functions”:

rXdr = − Xdr

πRE
(7.27a)

rQ =
Q∫ tf

t0
cqcdt

(7.27b)

Similarly to the penalty functions, the objective values are normalized to make their magnitudes compa-
rable as well. The downrange Xdr is divided by half the Earth’s circumference, and the heat load Q by
the integral of the heat flux constraint over the duration of the trajectory. Note that the objective is to
minimize the values of the objective function; therefore the negative range −Xdr is used in rXdr .

These form the basis of the objective function. The inclusion of the operational constraints in the
objective function requires a balance between the importance of the specific constraint parameter in
relation to the problem objectives. While algorithms such as MOEA/D are highly capable of solving
complex multidimensional problems, making the objective space too large could make the algorithm not
see the wood for the trees, as it were – greatly degrading its performance. Simply defining each operational
constraint violation as a parameter to be minimized is not wise. The objective function should be defined
in such a way that:

� The priorities in terms of what is expected of the solution are clear and are reasonably represented.
� The impact of the magnitudes of constrained parameters on the objective function is proportional

to their relative importance to the overall solution.
� The above should be achieved with the lowest possible amount of objectives.

The defining parameters of the quality of a solution are of course the range Xdr and the heat load
Q; these are defined as two separate objectives as values to be maximized and minimized, respectively.
The penalties for the heat flux cqc and the g-load cng are added to both these objective components to
ensure that even if these primary objectives are weighted with respect to each other, the adherence to
the constraints represented by these parameters is not neglected.

In addition the heat flux penalty pqc is included in both these objectives. The ng-constraint is relatively
easily adhered to during the trajectory as a consequence of range maximization, and is not considered
an optimization objective on its own; therefore its contribution to the objective function remains in the
form of its penalty function values. The penalties relating to the attitude angle constraints are defined as
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Table 7.2: Penalty and objective function values for the HORUS reference trajectory.

Penalty

Heat flux

pqc 1.65
pqc,1 0.00

pqc,2 1.38

pqc,3 0.27

G-load
png 0.00
png,1 0.00

png,2 0.00

Alpha-rate p|dα/dt| 0.00

Sigma-rate p|dσ/dt| 0.00

Reward

Range rXdr -0.34
Heat load rQ 0.58

Fitness

Objective
f1 -0.07
f2 0.85
f3 0.00

a single objective; their importance relative to each other can be assumed to be the same. The objective
function is given by:

f(x) =

f1(x)
f2(x)
f3(x)

 (7.28)

where

f1 = rXdr + pqc + png (7.29a)

f2 = rQ + pqc + png (7.29b)

f3 = p|dα/dt| + p|dσ/dt| (7.29c)

The penalty and objective values for the HORUS reference trajectory are shown in Table 7.2 to give an
indication of the magnitudes of the different components of the objective function.

7.2.5 Objective Space

To obtain a general indication of the re-entry problem’s objective space, a Monte Carlo simulation with
a population of 14,000 individuals generated with a uniform distribution was performed for each control-
node problem – i.e., OP4, OP6, OP8 and OP10 – and the solutions aggregated. The result is the scatter
plot indicating the expected shape and dimensions of the solution space shown in Figures 7.4 and 7.5; the
asterix indicates the objective values of the HORUS reference trajectory. A number of initial conclusions
can be drawn:

� Improvements in terms of both downrange Xdr and total heat load Q are possible with respect to the
reference trajectory. In addition, a lerge number of solutions exist which represent an inprovement
in terms of one of these objectives. It should be noted that the Figures 7.4 and 7.5 give no indication
of whether an individual solution meets the mission’s objective constraints. It is likely that solutions
with Qtot < Qref with a short range exceed the heat flux constraint, for instance.

� The objective space is orders of magnitude larger in every dimension than the attainable objective
space, i.e., the region where the operational constraints are satisfied. This means that finding a
global optimum is difficult as the algorithm is likely to converge on a local optimum. In terms of
practicality, this need not be a problem as for preliminary mission design purposes close-to-optimal
solutions may be satisfactory.
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Figure 7.4: Monte Carlo simulation of the re-entry problem in terms of -range vs. maximum heat flux.

� The minimum attainable heat load approaches a limit of 3 kJ/m2 (Figures 7.4(f) and 7.5(b)).
� The minimum ng,max approaches a limit of 1 (Figure 7.5(b)).

Were it the case that all these attainable solutions were clustered around a global minimum, solving the
re-entry MOP would be a simple task. However as it turns out, the set of solutions corresponding to the
attainable objective space is widely distributed (see e.g., the different guidance profiles in Figures 8.3(a)
and 8.3(a) which result in very similar-looking trajectories). The best approach for determining not only
sufficiently good but near-optimal preliminary trajectories in such a solution space can be either one
or both of two polar opposites: the highly capable and robust Multiobjective Optimization Algorithm
(MOAD) found in the MOEA/D-algorithm, or a fully heuristic approach in the form of a large number of
Monte Carlo simulations. In The following chapter, both approaches are evaluated for mission planning,
as well as two multi-step methods consisting of one or both of these approaches.
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Figure 7.5: Monte Carlo simulation of the re-entry problem in terms of maximum g-load vs. maximum
heat flux.
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Chapter 8

Mission Planner Design and
Testing

8.1 Design

The mission planner strives to determine a number of optimal trajectories in terms of the mission
objectives minimal heat load and maximum range within its operational constraints. Ideally, these
trajectories are somewhat varied in their performance with respect to these two primary objectives while
meeting all mission requirements, i.e., they are all objectively “good” trajectories but are varied in their
degree of optimality with regards to the primary objectives. In other words, the mission planner should
determine trajectory solutions with a distributed Pareto set with regards to the objectives f1 and f2 as
defined in Section 7.2.4 (Equation 7.29). This allows the user some agency in choosing the trajectory to
meet their specific needs.

The design of the mission planner relies on the integration of the HORUS re-entry simulator (see Chapter
6) with the open-source optimization library PaGMO. The simulator was developed such that it is suitable
for integration at the top level, allowing the mission planner to treat it as a “black box” that is fed
decision variables and returns objective values when called. Optimization algorithms need to perform a
certain number of evaluations of the objective function – which translates to running an entire trajectory
simulation – per iteration, reinforcing both the necessity of efficient code and early convergence on a
solution. Due to the highly irregular solution space, a concrete choice in terms of the approach to
obtaining optimal trajectories was left up in the air thus far; no final design choices in this regard could
be made without empirically determining the best option. Therefore four different approaches towards
mission planning were developed and a tradeoff was performed to determine which approach gives the
best performance according to a number of criteria; see Section 8.2.6.

Throughout the design process, the nominal mission defined for HORUS was used as the test case. The
conditions at entry are given in Table 8.1.

Within the mission planner, the HORUS re-entry simulator is integrated with the PaGMO library to
provide the foundation for the objective function evaluations. The PaGMO-framework was discussed in
the general sense in Section 7.1.3.

The basis of any optimization problem implemented in PaGMO is its unique problem class, containing the
method that performs the evaluation of the objective function for a specific individual. The optimization
problems {OP4,OP6,OP8,OP10} associated with the mission planner are implemented as derived classes
of the PaGMO problem base class, and can be linked to both the Monte Carlo and MOEA/D algorithms
provided by PaGMO.

The mission planner problems {OP4,OP6,OP8,OP10} are initialized with:

� The PaGMO problem base class variables lb, ub, n, ni, nc, nic and ctol (see Section 7.1.3.1).

77
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Table 8.1: Nominal initial conditions.
Initial parameter Value

Vehicle state

Altitude h0 122 km
Longitude τ0 −106.7 deg
Latitude δ0 −22.3 deg
Velocity V 0 7.4355 (km/s)
Flightpath angle γ0 −1.43 deg
Heading angle χ0 70.75 deg

Vehicle attitude

Angle of attack α0 40 deg
Angle of sideslip β0 0 deg
Bank angle σ0 0 deg

– lb and ub, both with dimn, are defined according to Equation 7.13:

lb = [Êmin,αmin,σmin] with {Êmin, αmin, σmin} = {0.1, 0◦, 0◦}
ub = [Êmax,αmax,σmax] with {Êmax, αmax, σmax} = {0.98, 45◦, 90◦}

– The global dimension of the problem n = 3 × (m − 2) where m is the number of mutable
control nodes Ni(Êi) with i = 1, . . . ,m defines the length of the decision vector x.

– The problems have no integral part and constraints are handled via penalty functions, so
ni = nc = nic = ctol = 0.

� A pointer to an instance of the problem properties (Section 6.3.6). In addition to the simulation
variables, the problem properties class contains the operational constraint parameters as defined in
Table 7.1.

The method to evaluate the objective function calls the simulator with a decision vector x and the
pointer to the problem properties; the simulator returns the parameters necessary to implement Equation
7.29.

8.2 Approach

The mission planner is modular in nature, allowing for customization of the planning approach based
on the user’s needs. The software is developed with four built-in alternative methodologies, the choice
of which can be user-specified. The motivation for this customizability is to allow for the comparison of
the performance of vastly different approaches in the context of finding optimal re-entry trajectories for
a problem defined by a highly irregular objective space. Due to the modularity of the code, methods can
be combined and staggered in different ways, and additions can be easily implemented if the framework
is followed.

As mentioned in the beginning of Section 8.1, different approaches with regard to determining the best
solution were developed and implemented as it was not possible to predict with any certainty whether
a heuristic or deterministic approach (or both) would be the most promising. Four methodologies were
developed in two separate categories: single and dual approach.

Single approach The mission planner solutions are generated using one method only.
� mp MC uses Monte Carlo simulations only. The method configuration is specified by one

parameter, namely the population size np for the Monte Carlo simulations associated with
each OP – therefore, during each run of mp MC, 4np solutions are generated. The mp MC
method will form the baseline to which the other methods will be compared, as it is by far
the easiest to implement; if the other methods provide no noticeable benefit to Monte Carlo
simulations, the search space is likely highly nonlinear.
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� mp MOEA/D uses the MOEA/D optimization algorithm only. The configuration is specified
by the population size np and number of generations (i.e., iterations) ng of the MOEA/D
algorithm. After each run, 4np solutions are output by the method in the form of the
aggregated final populations of each separate OP.

Dual approach Two approaches are used in tandem, wherein the solutions of the first specify the begin
conditions of the second. The purpose of this approach is to perform a targeted search within the
specific area in the solution space where a Pareto-optimal solution has been found, in case a better
solution is located close-by. The Pareto set generated by the first method is used to define the
targeted solution spaces wherein the second part of the method will continue the search:

1. From the Pareto set, a number ndv of solutions closest to the utopia point of the set are
selected.

2. The decision vectors belonging to these solutions are used to generate “targeted” solution
spaces around these solutions by adding and subtracting some value from each decision vector
component to form the boundary of the new solution. A user-specified vector of “deltas” with
dim(n) defines the size of the new solution space for each variable:

∆x =
[
∆Ê,∆α,∆σ

]
(8.1)

So the new boundaries are:

lbi,new =

{
xi −∆xi if xi −∆xi > lbi

lbi if xi −∆xi ≤ lbi
(8.2)

ubi,new =

{
xi + ∆xi if xi + ∆xi < ubi

ubi if xi + ∆xi ≥ ubi
(8.3)

with i = 1, . . . , n.
A targeted search using Monte Carlo simulations (TMC) – specified by np,TMC – is then performed
in each new targeted solution space to try to find better solutions than the ones provided by the
first part.

� mp MOEA/D-TMC uses the MOEA/D optimization algorithm to generate solutions within
the first part. The Pareto set of the final aggregated population of size 4np (i.e., the sum of
the final populations obtained for each OP) is computed, and a number ndv of solutions closest
to the utopia point of that set are selected to create the new targeted solution spaces for the
TMC.

� mp MC-TMC Monte Carlo simulations are used in the first part as well, to generate the
solutions that the TMC will continue with.

In each case, the mission planner will output solutions in three categories:

t all the entire final population.
t pareto the Pareto set of the final population t all.
t ideal a user-specified number k of Pareto-ideal (as defined in Section 7.2.2) solutions. The ideal

solutions are computed by defining a Pareto utopia point with respect to f1 and f2 and finding the
k closest points. The solutions corresponding to these points are returned.

8.2.1 Performance

Each approach is defined by a set of parameters that influence the quality of the obtained solutions:

� mp MC:
1. population size np

� mp MOEA/D:
1. population size np

2. number of generations (i.e., iterations) ng

� mp MOEA/D-TMC:
1. MOEA/D population size np,MOEA/D
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Figure 8.1: mp MC Pareto set with increasing np.
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Figure 8.2: mp MC Pareto set objective values with increasing np.
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2. number of generations (i.e., iterations) ng

3. number of decision vectors ndv

4. components of the delta-vector ∆x = [∆Ê,∆α,∆σ]
5. targeted Monte Carlo population size np,TMC

� mp MC-TMC:
1. Monte Carlo population size np,MC

2. number of generations (i.e., iterations) ng

3. number of decision vectors ndv

4. components of the delta-vector ∆x = [∆Ê,∆α,∆σ]
5. targeted Monte Carlo population size np,TMC

The parameters of influence on the performance of the dual methods are not all independent of each other;
three factors can be defined that independently influence the performance of a dual method:

1. The relative allocation of function evaluations to the first and second part of the method defined
by the ratio r:

r =
neval,1

neval,2
(8.4)

2. The number of decision vectors ndv provided by the first part from which the targeted solution
spaces for the TMC’s in the second part are generated

3. The size of the targeted solution spaces belonging to each decision vector, i.e., the components of
∆x

For a dual method to be considered useful, the results it generates should have better objective values
than the starting points found by the first part. Factors independently influencing the performance of a
dual method are the ratio r, the number of decision vectors ndv and the delta-vector ∆x. The effect of
each of these factors is evaluated separately for both dual methods:

1. Effect of r: configurations are defined with constant ndv = 5 and ∆ = [0.1, 5◦, 10◦] while r takes
the values of r = {3, 1, 1

3}.
2. Effect of ∆: configurations are defined with constant r = 1 and ndv = 5 while ∆ takes the values

of:

∆ = [0.01, 0.5◦, 1◦]

∆ = [0.05, 2.5◦, 5◦]

∆ = [0.15, 7.5◦, 15◦]

∆ = [0.20, 10◦, 20◦]

3. Effect of ndv: configurations are defined with constant r = 1 and ∆ = [0.1, 5◦, 10◦] while ndv

takes the values of r = {3, 5, 7}.

The parameters should be selected such that the method is capable of delivering its best performance. To
this purpose, the influence of the parameter selection on each method was investigated. A baseline was
established based on the number of evaluations neval performed during one run of the mission planner
at neval = 40, 000, i.e., 10,000 evaluations per OP. An evaluation is defined as a single computation of
the objective function, i.e., simulation of a trajectory. For the evaluation of these methods, the mission
planner was initialized with the initial conditions of the HORUS reference trajectory as shown in Table
8.1.

8.2.2 mp MC

Neglecting the influence of the random seed, the performance of mp MC is solely dependent on the
population size np, which is corresponds one-to-one to the number of performed evaluations. The total
number of function evaluations performed during a run of mp MC is thus:

neval,MC = 4np,MC (8.5)

The configuration that corresponds to the baseline of neval = 40, 000 is mp MC(p10,000) – the population
size is defined per OP.
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Figure 8.3: Best mp MC trajectory profiles.

8.2.2.1 Pareto fitness

Figure 8.1 shows the Pareto set – in terms of {f1, f2} as defined in Equation 7.29 – corresponding
to mp MC(p10,000), as well as the Pareto sets of smaller and larger Monte Carlo populations for
comparison. The Monte Carlo simulations used to generate these populations were initialized with the
same random seed1 to eliminate its influence on the relative performances; this causes the overlap between
the Pareto sets. The dots indicating the Pareto sets of each mp MC configuration are different sizes to
avoid solutions being hidden due to this overlap. In addition, Figure 8.2 shows the corresponding objective
values of the individuals in the Pareto set; these do not correspond one-on-one with the objective fitness
values, as the fitness values are computed based on also the adherence to operational constraints – see
Equation 7.29.

An increase in np has a positive effect on the objective fitnesses of the solutions in the population’s
Pareto set. A larger population generated at random2 gives a larger probability of finding a solution with
better objective values, so the initial improvements come as no surprise. However, no improvement to the
Pareto set occurs from np = 10, 000 onwards through np = 14, 000. This is coupled to a sudden decrease
in the size of the Pareto set to just a single point, which is likely the consequence of the Monte Carlo
simulation finding an exceptionally good solution which pushes all the other points out of the Pareto
set. Increasing the population size to 14,000 does not lead to the generation of any better solutions than
this one solution, leading to the same Pareto set being maintained. Likely this point is close to a local

11843629728
2N.B. With a uniform distribution, as no information is known about the distribution.
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Figure 8.4: mp MOEA/D Pareto convergence.

optimum, meaning a better solution is probably located very close by; as individuals are generated at
random using a uniform distribution, the likelihood of a point being generated with a decision vector
both very close to such a Pareto point and in the right direction is very small. Herein lies the benefit
of applying an optimization algorithm to such a problem, which instead of heuristically determining the
next point, bases it on the solutions obtained thus far. It should be noted that this occurrence and the
population size at which it occurs is highly dependent on the random seed used to initialize the Monte
Carlo simulations; e.g., the Pareto set belonging to np = 10, 000 with random seed 340397439 consists of
five individuals.

8.2.2.2 Trajectory profiles

The trajectory profiles for a number of parameters corresponding to the best solution (in terms of its
proximity to the Pareto utopia point) determined by mp MC for each np are shown in Figure 8.3 in
comparison to the HORUS reference trajectory from (Mooij, 1998). Note that some trajectory profiles are
hidden as they are equal to the best profile within (an) other population(s). The solutions obtained by
Monte Carlo simulations are adequate in terms of the operational constraints of the problem (see Figure
8.3(d)), but cannot be considered “good” re-entry trajectories in the context of the mission objectives
– mainly due to the generally large heat flux fluctuations. In comparison to the reference trajectory,
the largest differences occur in the total duration of the trajectory (and thus also the total downrange),
as well as the shape of the heat flux profile. The HORUS reference trajectory is based on minimum
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heat-load objective with no additional objective in terms of the total downrange – therefore the reference
trajectory is similar to the minimum-heat-load trajectory discussed in Section 7.2.4: short in duration
with qc maintained close to cqc and very few fluctuations in the heat flux profile. The total heat load
incurred during the mp MC-generated trajectories is thus much larger, as can be seen from the areas
under the respective profiles.

The solutions generated by mp MC represent either merely seemingly adequate (e.g, mp MC(p10,000))
or unacceptable (e.g, for mp MC(p2,000) through mp MC(p8,000)) trajectories. mp MC in these
configurations does not represent an adequate approach to re-entry mission planning, and likely will offer
little improvement with increased population size. The dual method mp MC-TMC was developed to
determine whether a staggered heuristic approach would provide better results.

8.2.3 mp MOEA/D

The factor that influences the performance of the single method mp MOEA/D is the selection of the
number of iterations ng versus the population size np for a certain neval. It was determined that, given
a population size of np, the MOEA/D-algorithm performs a number of function evaluations in the order
of ∼ 2.5np per generation. Therefore the total number of function evaluations performed per run of
mp MOEA/D is taken to be – taking the creation of the initial population into account:

neval,MOEA/D = 4np,MOEA/D(1 + 2ng) (8.6)

Due to the weight generation method used in the MOEA/D-algorithm Zhang and Li (2009), the pop-
ulation size np is not freely selectable as it depends on the objective dimension of the problem. For
dim(f) = 3, possible population sizes are

np =

(
H + dim(f)− 1

dim(f)− 1

)
= {. . . , 15 28, 36, 45, 66, 78, 91, . . . } (8.7)

where H is an integer value.

To provide an indication of the influence of the np/ ng-ratio for a given number of function evaluations
on the performance of the method, four combinations were selected that each correspond to neval =
40, 000:

� mp MOEA/D(p28, g178) where np/ng ≈ 0.16
� mp MOEA/D(p45, g111) where np/ng ≈ 0.41
� mp MOEA/D(p66, g75) where np/ng ≈ 0.88
� mp MOEA/D(p91, g54) where np/ng ≈ 1.69

8.2.3.1 Pareto fitness

Figure 8.5 shows the Pareto sets of the selected mp MOEA/D(np, ng)’s at intermediate populations.
Notably the Pareto sets seem to approach a certain limit with increasing iterations, i.e., they are
converging. The rate of convergence is an indicator of the quality of an optimization algorithm, as
a faster convergence typically corresponds to a greater efficiency. mp MOEA/D(p45, g111) has the
highest rate of convergence, and it can be seen from Figure 8.4(b) that from generation 75 onwards the
change in the Pareto front is minimal. This indicates that the algorithm has converged on an optimum,
i.e., has found a solution. The remaining mp MOEA/D(np, ng)’s are less converged at their final
iteration, meaning additional iterations will likely yield slightly different (and objectively better) Pareto
sets. Furthermore, the Pareto sets belonging to the larger populations of 66 and 91 are quite unevenly
distributed, which is not preferable.

Figure 8.5 shows the Pareto sets of the final populations belonging to the mp MOEA/D(np, np)
configurations side-by-side for comparison. In addition, Figure 8.6 shows the corresponding objective
values of the individuals in the Pareto set; these do not correspond one-on-one with the objective fitness
values, as the fitness values are computed based on also the adherence to operational constraints – see
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Figure 8.7: Best mp MOEA/D trajectory profiles.
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Equation 7.29. The mp MOEA/D(p45, g111) configuration provides the best objective fitness values,
whereas mp MOEA/D(p28, g178) results in a slightly larger and Pareto set with a somewhat larger
spread. The Pareto sets belonging to the larger populations are less consistent in shape and provide
poorer objective values than the Pareto sets of the smaller populations. This is due to the algorithm not
having converged on a solution within the allotted amount of iterations. From the convergence of the
Pareto sets as well as the wuality of the results, it can be concluded that for the mission planner, an
mp MOEA/D configuration where np/ng is close to 0.5 is likely the most beneficial.

8.2.3.2 Trajectory profiles

The best trajectory profiles obtained by mp MOEA/D for each {np, np} are shown in Figure 8.7, as well
as the HORUS reference trajectory from (Mooij, 1998). Again, these trajectories represent the solutions
closest to the unweighted utopia point of each Pareto set. It can be seen that mp MOEA/D provides
decidedly better solutions than mp MC for the same neval. The first and foremost deciding factor in the
dominance of these trajectories over those obtained by mp MC is the smoothness of the heat flux profile
(Figure 8.7(e)), as fewer qc fluctuations means less wear and tear on the vehicle’s TPS. The preference
for this smoothness was specified in the problem’s objective function in the form of the penalty functions
pqc,2 and pqc,3; see Equations 7.20 and 7.21, respectively. In addition to maintaining a relatively constant
qc throughout the trajectory, the magnitude of this constant qc remains as low as possible to allow the
vehicle to fly a longer range (Equation 7.27a) while keeping the total heat load to a minimum (Equation
7.27b).

Note the similarity in the guidance profiles of the reference trajectory and the trajectories produced by
mp MOEA/D. If the mission planner were given a specified range equal to that of the reference profile,
the output trajectory would be almost the same as the reference trajectory. In its current configuration,
the mission planner has a bias towards maximizing the downrange, which can be seen in the bank angle
profile in Figure 8.7(b) – after an initial large bank angle, σC is kept low to minimize the deceleration
and maintain altitude longer. If range maximization were not included in the objectives, a bank angle
profile closer to that of the reference trajectory would be generated.

The large initial bank angle σC serves to keep the magnitude of the initial/maximum peak of qc below
or at cqc . The guidance profiles begin to deviate once the denser atmosphere is reached at an altitude of
around 70 km. The reference trajectory, based on minimizing Q, maintains a near-constant bank angle
of σC = 60◦ to achieve quick deceleration of the vehicle (while maintaining ng ≤ cng ) to minimize the
duration of the re-entry; this can be seen in Figure 8.7(f). The mp MOEA/D guidance profiles are
generated with both minimal Q as well as maximum Xdr in mind; there is no benefit to minimizing the
duration of the re-entry, as this would occur at the cost of the downrange. It is more beneficial in that
case to maintain altitude and decelerate slowly, as is evidenced by Figure 8.7(c) and 8.7(d). The altitude
profiles of the mp MOEA/D trajectories all have the same general shape, wherein the vehicle is kept in
the upper layers of the denser atmosphere (50 km - 80 km) for a longer period, and deceleration occurs
slowly and gradually. The effect on the g-load profile in comparison to the more sudden deceleration in
the reference trajectory can be seen in Figure 8.7(f). The velocity profiles in Figure 8.7(d) also show this
more gradual deceleration. This slower deceleration at higher altitude is achieved by maintaining a low
σC after the initial maximum-σC (Figure 8.7(b)).

8.2.4 mp MOEA/D-TMC

The total number of function evaluations performed during one run of mp MOEA/D-TMC is:

neval = 4np,MOEA/D(1 + 2ng) + ndvnp,MC (8.8)

1. Effect of r For ratios r = {3, 1, 1
3}, mp MOEA/D-TMC-configurations are defined for MOEA/D

populations of np,MOEA/D = {15, 28, 45, 66}. The number of generations ng corresponding to each
population size np,MOEA/D is given by:

ng =
1

2

(
rndvnp,MC

4np,MOEA/D
− 1

)
(8.9)
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Figure 8.8: Effects of r on the Pareto set of mp MOEA/D-TMC.

The number of decision vectors and the delta-vector are kept constant at ndv = 5 and ∆ =
[0.1, 5◦, 10◦], respectively. The results are shown in Figure 8.8 for the different mp MOEA/D-
TMC-configurations. The asterixes represent the starting values generated by the MOEA/D part
of the method, i.e., the ndv = 5 closest solutions to the utopia point of the Pareto set. The dots
represent the Pareto sets generated by the corresponding TMC part.
In none of the evaluated cases does consistent improvement upon the MOEA/D results occur due
to the application of TMC. The overall trend seems to be that allocating more than half of the
function evaluations towards the TMC part – i.e., r < 1 is beneficial for the achieved results,
or at least not detrimental in terms of objective values. This occurs because sufficient random
solutions need to be generated by the TMC part to find a solution better than the one generated by
MOEA/D within the constrained solution space. If not enough function evaluations are allocated,
only worse solutions will likely be found, leading to worse results than the starting points provided by
MOEA/D. Therefore to benefit from supplementing the MOEA/D algorithm with targeted Monte
Carlo simulations, the function evaluations need to be allocated such that the new constrained
solution space based on the MOEA/D results and ∆ can be searched sufficiently. If this is not
possible, benefit can likely be obtained from decreasing the size of ∆.

2. Effect of ∆ The resulting Pareto sets of configurations with varied delta-vectors and np,MOEA/D =
{15, 28, 45, 66} with corresponding ng’s are shown in 8.9. It can be observed that in none of the
configurations does any (relevant) improvement occur; in fact, generally the TMC method results in
a decrease in the solution quality with respect to the starting points. The mp MOEA/D-TMC
methods with the smallest delta-vector of ∆ = [0.01, 0.5◦, 1◦] consistently provide qualitatively
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Figure 8.9: Effects of ∆ on the Pareto set of mp MOEA/D-TMC.

equivalent or somewhat better solutions to the starting points. In general, an increase in the size of
∆ corresponds to a decrease in the quality of the solutions with respect to the starting points. It was
already mentioned in the previous section that for the additional TMC part to have any positive
effect, it needs to be defined in such a way that the targeted solution space can be sufficiently
searched by the Monte Carlo method. Therefore both an increase in the population size of TMC,
as well as a decrease of the size of the targeted solution space, has a beneficial effect on the quality
of the TMC’s results – bearing in mind that taking the solution space too small is disadvantageous
due to the exclusion of too many possible solutions.

3. Effect of ndv To observe the effect of changing the number of decision vectors ndv, configurations
are defined with r = 1 and ∆ = [0.1, 5◦, 10◦] for np,MOEA/D = {15, 28, 45, 66}. The Pareto
sets of these configurations with corresponding ng’s and np,TMC’s are shown in 8.10. Generally the
solutions provided by the mp MOEA/D-TMC method improve with decreasing ndv, i.e., with
increasing TMC-evaluations per solution space for a constant ratio r. This observation corresponds
to the previous ones, where it was noted that for an adequate result to be achieved, sufficient Monte
Carlo simulations needed to be performed per targeted solution space. The overall trend can be
observed where decreasing ndv (and thus increasing np,TMC) has a beneficial effect on the objective
fitnesses of the Pareto set. More can be gained in terms of the quality of the solutions in the Pareto
set by generating more random individuals over a smaller number of search spaces than with less
individuals spread over a larger number of search spaces of the same size. The size of np,TMC is
therefore relatively more important for the performance of mp MOEA/D-TMC than ndv.
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Figure 8.10: Effects of ndv on the Pareto set of mp MOEA/D-TMC.

In none of the configurations evaluated thus far does the additional TMC actually provide consistently
better solutions than the ones represented by the starting points. Overall, the Pareto sets obtained from
mp MOEA/D-MC are qualitatively less than those generated by mp MOEA/D-MC for the same
number of function evaluations, both in objective fitness and in magnitude.

8.2.5 mp MC-TMC

The performance of the mp MC-TMC-method depends on the Monte Carlo population size np,MC, the

number of decision vectors ndv, the components of the delta-vector ∆x = [∆Ê,∆α,∆σ], and the targeted
Monte Carlo population size np,TMC. The total number of function evaluations performed during one
run of mp MC-TMC is:

neval = 4np,MC + ndvnp,TMC (8.10)

1. Effect of r mp MC(np,MC)-TMC(np,TMC)-configurations are defined for the ratios r = {3, 1, 1
3},

with constant ndv = 5 and ∆ = [0.1, 5◦, 10◦]. The results of these r-configurations – i.e.,
mp MC(p2,500)-TMC(p6,000), mp MC(p5,000)-TMC(p4,000), and mp MC(p7,500)-
TMC(p2,000) – are shown in 8.8. The asterixes represent the fitness values of the decision vectors
passed on to the TMC part of the method; these are the ndv = 5 closest solutions to the utopia
point of the Pareto set generated by the preceding Monte Carlo simulations. The dots represent
the Pareto sets generated by the corresponding TMC part.
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In all cases does the addition of the TMC part offer an improvement on the initial Monte Carlo
results. The most improvement is achieved with higher r-ratios, i.e., more TMC evaluations, which
corresponds to the observations made with regard to the effect of r on MOEA/D-TMC. Also
consistent with the MOEA/D-TMC is the effect of the size of ∆: the smaller ∆ is for an equal
number of TMC-evaluations, the greater the probability of finding a better solution than the one
provided by the first part of the method.

2. Effect of ∆ Three test cases in which r = 1 and ndv = 5 were kept constant and ∆ was varied were
investigated; the results are shown in Figure 8.11(b). The observations correspond to those made
for the same test for MOEA/D-TMC: taking ∆ smaller gives better results as it increases the
probability of finding a good solution within the targeted solution space. It should be noted that
this effect does not continue indefinitely; taking ∆ too small is detrimental to the quality of the
solution it does not leave enough opportunity for TMC to find a good solution is the solution space
is too constrained.

3. Effect of ndv To observe the effect of changing the number of decision vectors ndv = {3, 5, 7},
configurations are defined with r = 1 and ∆ = [0.1, 5◦, 10◦] for np,MC = 5, 000. The Pareto sets
of these configurations with corresponding np,TMC’s are shown in 8.11(c). The results are fairly
equivalent, though for the cases tested better results were achieved for a higher ndv.

8.2.6 Tradeoff

The four methodologies mp MC, mp MOEA/D, mp MC-TMC and mp MOEA/D-TMC were
evaluated on their relative merits to select a single one of them for further testing and development. The
following selection criteria were taken into account:

Quality of results The output must represent feasible and smooth trajectories that adhere to both
boundary and operational constraints. Sudden changes or jumps in control parameters or the
vehicle state are not acceptable.

Number of results The number of feasible trajectories generated by a method is defined as the tra-
jectories from the final Pareto set that adhere to both boundary and operational constraints. The
idea is that the user can choose any trajectory from this set that meets their specific preferences
regarding the mission; a large amount of possibilities to choose from is preferred.

Variety of results Preference is given to an output representing a wide array of solutions, i.e., a broad
and evenly-spaced Pareto set.

Computational speed/ efficiency While the mission planner is developed as a preliminary mission
planner and therefore almost-instantaneous answers are not of the essence, efficiency is always
strived for.

Ease of implementation All else being equal, preference is given to the programmatically simpler
algorithm.

Evaluated cases

To fairly evaluate the methodologies’ performances with respect to each other, the basis of comparison is
taken to be the result in terms of the Pareto set achieved after an equal number of function evaluations
(i.e., calculations of the objective function). The baseline is defined at neval = 40, 000. Table 8.2 shows
the cases evaluated in the tradeoff. A number of computationally equivalent cases were chosen to evaluate
in the tradeoff; these are given in Table 8.2. The dual-approach methods are all defined on the basis of
r = 1/1, ndv = 5, and [∆Ê,∆α,∆σ]T = [0.1, 5.0◦, 10.0◦]T .

Conclusions

The Pareto sets for these evaluated cases in terms of the primary objectives f1 and f2 (as defined in
Equation 7.29) are shown in Figure 8.12. This figure indicates the presence of very clear and diverse
Pareto fronts being obtainable in terms of f1 (relating to the range) and f2 (relating to the heat load).
The third objective, f3, which is related to the attitude rate constraints, was found to have a zero-value
for all member of the Pareto sets determined by all four methodologies (f3 is the summation of the
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Table 8.2: Mission planner methodology tradeoff: evaluated cases.

Method Parameters

np,MC np,TMC np,MOEA/D ng ndv

mp MC 10, 000

mp MOEA/D 15 133
28 71
45 44
66 30

mp MC-TMC 5, 000 4, 000 5

mp MOEA/D-TMC 4, 000 28 178
4, 000 45 111
4, 000 66 75
4, 000 91 54

attitude rate penalty functions, which only have a nonzero value when their respective constraints are
exceeded.); the Pareto fronts in relation to f3 are therefore not shown.

The methodologies’ individual performances in terms of the tradeoff criteria are shown in Table 8.3:

1. Quality of results
2. Variety of results
3. Number of results
4. Computational speed/ efficiency
5. Ease of implementation

It becomes apparent that the methods that make use of the MOEA/D-algorithm provide better per-
formance than the methods that rely on heuristics only. A surprising outcome is the degree to which
mp MOEA/D outperforms the other methods. It was expected that the staggered approach of mp -
MOEA/D-TMC would have the best performance due to combining the strength of the MOEA/D-
algorithm with the heuristic Monte Carlo, allowing for the possibility of locating a slightly better optimum
if the MOEA/D-algorithm happens to have converged on a local minimum; this was however not the
case in comparison to mp MOEA/D. In general, it can be concluded that for methods involving
the MOEA/D-algorithm, function evaluations allocated to the MOEA/D-algorithm always give more
“bang for the buck” over the range of np–ng combinations considered; this can be extrapolated to
be true for the general case, assuming the population size and the number of generations are chosen
realistically. While mp MOEA/D-TMC results in solutions with better objective values than mp MC,
the size of the resulting Pareto sets is unacceptably small when larger MOEA/D populations (with less
generations) are used. While mp MOEA/D-TMC(p15, g133) and mp MOEA/D-TMC(p28, g71)
provide a definite improvement to mp MC, none of its outcomes manage to outperform the single-
approach mp MOEA/D in any of the categories, which defeats the purpose of the existence of the
mp MOEA/D-TMC method entirely.

In general for the MOEA/D-algorithm, it seems that in this case the combinations of smaller population
sizes with a greater amount of generations seem to result in more consistent Pareto sets. This is also
the case for the staggered approach mp MOEA/D-TMC. mp MOEA/D(p45, g75) provides the most
preferable outcome both in terms of Pareto set size, as well as variety and the quality of the results.

In the case of the second dual approach, mp MC-TMC, some improvement in objective values can be
achieved by staggering the search for solutions in the form of basing the solution space used in the second
search on the results from the first. However, this comes at the cost of the size of the Pareto set. For the
case evaluated, the resulting Pareto set is unacceptably small. However the actual benefit may be heavily
dependent on the tuning of the defining parameters of the method in terms of allocation of population
sizes and the number of separate solution spaces evaluated by the second part. Due to the much better
performance provided by mp MOEA/D, and therefore the minimal chance of approaching the same
quality of results in any meaningful way, the choice was made to not evaluate the effects of tuning the
mp MC-TMC-parameters further.



8.2. APPROACH 95

Table 8.3: Mission planner methodology tradeoff: scoring.

Method Tradeoff criterion

1 2 3 4 5

mp MC −− − 7 +− ++
np = 10, 000

mp MOEA/D
+ ++ 28 ++ −

np = 21, ng = 178

mp MOEA/D
++ ++ 31 ++ −

np = 45, ng = 111

mp MOEA/D
+ + 23 ++ −

np = 66, ng = 75

mp MOEA/D
+ + 24 ++ −

np = 91, ng = 54

mp MC-TMC − +− 4 −− +
np,1 = 5, 000, np,2 = 4, 000

mp MOEA/D-TMC
+ − 17 + −np,1 = 15, ng = 133,

np,2 = 4, 000
mp MOEA/D-TMC

+ − 10 + −np,1 = 28, ng = 71,
np,2 = 4, 000
mp MOEA/D-TMC

+− − 3 + −np,1 = 45, ng = 44,
np,2 = 4, 000
mp MOEA/D-TMC

− − 3 + −np,1 = 66, ng = 30,
np,2 = 4, 000

The choice for continuing with mp MOEA/D is therefore self-evident; specifically, mp MOEA/D(p45,
g111) will be used in the remainder of this text to give an indication of the mission planner outputs.
Note that the method’s low “ease of implementation” score in Table 8.3 is based on the complexity of the
algorithm itself; applying it after integration with the PaGMO-library is simple as PaGMO algorithms
are standardized quite well.
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Figure 8.13: mp MOEA/D(p45, g111) output trajectories – trajectory profiles.
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Table 8.4: Trajectory guidance parameters for mp MOEA/D(p45, g 111) output trajectories.

Trajectory #N Parameter Values

f1 min 6
Ê [0.98, 0.95, 0.85, 0.47, 0.11, 0.10]

α [40◦, 45◦, 45◦, 45◦, 37◦, 0◦]

σ [0◦, 71◦, 66◦, 0◦, 9◦, 0◦]

f∗ 6
Ê [0.98, 0.95, 0.92, 0.68, 0.11 0.10]

α [40◦, 45◦, 35◦, 40◦, 26◦, 0◦]

σ [0◦, 57◦, 67◦, 0◦, 14◦, 0◦]

f2 min 6
Ê [0.98, 0.95, 0.92, 0.65, 0.12 0.10]

α [40◦, 45◦, 31◦, 29◦, 22◦, 0◦]

σ [0◦, 64◦, 67◦, 8◦, 6◦, 0◦]

f∗ 7
t [0, 264, 290, 554 , 686, 924, 1319]

α [40◦, 40◦, 40◦, 40◦, 40◦, 40◦, 11.5◦]

σ [0◦, 0◦, 79.6◦, 56.0◦, 59.8◦, 59.0◦, 54◦]

8.3 Output

Figures 8.13(a) through 8.13(f) give an indication of the output of mp MOEA/D(p45, g111) in compar-
ison to the reference trajectory. In addition the optimal trajectory f∗ as determined by its proximity to
the Pareto utopia point, the two Pareto extremes corresponding to f1,min and f2,min are plotted to indicate
the breadth of the Pareto set. Again, it can be observed that the mission planner is range-dominated in
its outputs; the guidance profiles shown in Figures 8.13(a) and 8.13(b) correspond to trajectories with
the maximum-range objective (even the f2,min-trajectory). This is apparent from the shape of the bank
angle guidance profile in comparison to the profile of the reference trajectory; the commanded bank
angle in the trajectories determined by the mission planner is kept low after the initial peak to minimize
deceleration, as opposed to the reference bank angle profile where a higher σC is maintain precisely to
accomplish this deceleration. If the objective of the mission planner were specified in terms of a specific
landing location with a range equal to that of the reference trajectory – while maintaining the minimum
heat load objective – the guidance profile would have the same shape as the reference guidance profile
and the trajectory generated by the mission planner would be near-equal.

It can be seen that the f2,min trajectory – corresponding to the heat load objective – favors the general
shape of the HORUS reference trajectory. This is to be expected as the reference trajectory is defined
with a minimum heat load objective. The difference in the shape of the respective heat flux profiles
belonging to the f2,min and reference trajectories can be attributed to the penalty parameters pqc,2 and
pqc,3 included in the mission planner’s problem definition, due to which fluctuations in the heat flux
profile are discouraged.

Table 8.4 indicates the guidance parameters of the three trajectories shown in the figures, as well as the
guidance profile of the HORUS reference trajectory. All three output trajectories are solutions to the
OP6 problem, i.e., they are defined by six control nodes. In fact, the entire Pareto set as obtained by
mp MOEA/D(p45, g111) contains only six-node solutions. This does not mean that the best guidance
profile is always defined by six nodes, however. The problem dimension scales with 3(n − 2) where n
is the number of nodes, meaning OP6 has a problem dimension of 12. For the optimization algorithm
to converge on an optimal solution for a problem defined by more nodes – i.e., with more dimensions –
a larger number of iterations are required. Therefore the solutions for OP8 and OP10 are qualitatively
less than those of OP6 for the specific mp MOEA/D(p45, g111) configuration, and not in general;
e.g., the Pareto set of mp MOEA/D(p28, g178) consists of exclusively of eight-node and ten-node
solutions.

The mission planner trajectories are compared to the HORUS reference trajectory based on the mission



98 CHAPTER 8. MISSION PLANNER DESIGN AND TESTING

Table 8.5: Trajectory results for mp MOEA/D(p45, g 111) output trajectories.

Objective Constraint

Xdr km Xtot km Q kWs/m2 qc,max

kW/m2
ng,max

(-)

∆ ∆ ∆

f1 min 10, 313 +51% 15, 904 +44% 5.82 · 105 +60% 498 1.3

f∗ 9, 291 +36% 13, 170 +19% 4.41 · 105 +21% 466 2.1

f2 min 7, 115 +4% 10, 519 −5% 3.16 · 105 −14% 477 1.2

Reference 6, 832 – 11, 053 – 3.66 · 105 – 496 1.9
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Figure 8.14: mp MOEA/D(p45, g111) output trajectories – heading profiles.

objectives and constraint parameters defined in this work. Any qualitative assessments of the mission
planner output with respect to the HORUS reference trajectory are only made with regard to these pa-
rameters, and disregard additional merits of the reference trajectory as these form no basis of comparison
with the mission planner solutions. Therefore when a trajectory is deemed qualitatively better or worse
than the reference trajectory, this statement only refers to the quality of the trajectory in terms of the
parameters shown in Table 8.5.

Table 8.5 shows the results of the output trajectories in terms of the objectives range X and heat load Q,
as well as the constraint parameters heat flux qc and g-load ng in comparison to the HORUS reference
trajectory. The percentage difference between the selected output trajectories and the reference trajectory
is shown for the objective parameters as well. It can be seen that the trajectories determined by the
mission planner indeed provide an increase in downrange with respect to the reference trajectory. It
should be noted that throughout the HORUS reference trajectory, bank angle modulation is applied
to minimize the crossrange error; this is not done in the trajectories generated by the mission planner.
This difference is apparent in the heading profiles of the respective trajectories, as can be seen in Figure
8.14. During the course of the reference trajectory, a “zig-zag” motion is performed as a consequence
of the bank angle changing sign; due to this motion, the vehicle’s total range Xtot is much larger than
its downrange Xdr would suggest. The mission planner’s objectives are defined in terms of maximizing
the total downrange of the trajectory only, and the crossrange isn’t taken into account. Bank angle
modulation isn’t performed in the reference trajectories (as the bank angle commands σC are absolute
values), meaning this zig-zag motion does not occur either. For the range comparison between the mission
output trajectories and the Horus reference trajectory to have any meaning, the total (absolute) ranges
covered by each are shown as well; these are indicated as Xtot in Table 8.5.

The optimal trajectory, as well as the f1,min trajectory, both provide an increase in total range Xtot with
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respect to the HORUS reference trajectory – 44% and 19%, respectively. However, this occurs at the
cost of an increased total heat load, in the case of the f1,min trajectory even 60%. Whether this increase
is acceptable depends on the specific vehicle used for the mission, however it can be assumed that a 60%
increase in the total heat load in comparison to the reference trajectory is too much for the trajectory to
be considered feasible.

In terms of the total heat load Q, the f2,min trajectory provides a 14% decrease in comparison to
the reference trajectory, at the cost of 5% of the total range. This trajectory can be considered an
improvement on the reference trajectory – in terms of the specific mission objectives defined in this work
– as the benefit to be gained in terms of Q from flying this trajectory surpasses the (relative) cost in X.
The division of the Pareto set in terms of whether a trajectory provides a relative benefit to the reference
HORUS trajectory is likely situated at or around the solution closest to the utopia point. Depending
on the mission objectives and constraints, a trajectory can be selected from the Pareto set from in
between the solutions f∗ and f2,min that provides the Xdr-Q combination most attractive to the mission
at hand. The trajectories in this set provide a percentage benefit in terms of one objective to the reference
trajectory that is larger than or equal to the percentage cost in terms of the other objective3.

The conclusion can be drawn that the mission planner is capable of generating trajectories of equivalent
or higher (in terms of the mission objectives defined in this work) quality to the reference trajectory.
Not all solutions in the Pareto set generated by the mission planner may be feasible, as evidenced by
the large heat load incurred by trajectory f1. The solutions situated in between the ideal point f∗ and
minimum f2-point represent a better set of solutions from which a selection can be made based on the
user’s preference in terms of Xdr-Q.

8.4 Repeatability

The MOEA/D-algorithm uses a PRNG both in the production of the initial population and the creation
of new individuals by mutation. A PRNG is an algorithm that generates a sequence of numbers that
closely resembles the properties of a truly random sequence. The precise philosophy and qualitative
discussion of PRNGs is beyond the scope of this text. However, an essential property of a PRNG is its
seed, a set of initial values upon which the sequence of pseudorandom numbers it generates is based.
The PRNG used by the PaGMO library and thus also by the MOEA/D algorithm returns an unsigned
integer in the (0, 232−1) range. It applies a PRNG from the C + +-based Boost library called mt19937
(Watanabe, 2010).

The value of the seed directly affects the outcome of the optimization algorithm. For this purpose it is
important to be aware of the specific seed used to obtain a result in order to be able to reproduce it.
The value of a scientific result and the conclusions drawn from it is only as good as its reproducibility;
otherwise it may have been a random stroke of luck or completely made up. The random seed used by
MOEA/D is defined at initialization of the algorithm; it may be specified by the user or in absence of
this specification, obtains one from the PaGMO library.

Specifying the same seed at initialization always leads to the same resulting trajectories. If no seed is
provided, PaGMO initializes an algorithm with a different seed each time. During the course of the
development of the mission planner a large multitude of runs and evaluations and different configurations
were performed with very consistent results, demonstrating that the mission planner’s reliability is
independent of the value of the random seed. In this section, the trajectory profiles are shown for
the obtained results in Figures 8.15 through 8.17 for the mp MOEA/D(p45, g111) setup used in the
previous section, initialized with three different random seeds: 1067772492, 2974347890, and 3495998042.
The figures show the five best trajectories determined by the mission planner for each.

The influence of the random seed on the profiles of the optimization variables αC and σC is the most notice-
able, as evidenced by Figure 8.15. This difference is quite minimal, and the results of the mission planner
are consistently similar independently of the random seed used to initialize the optimization.

3N.B. based on the total range Xtot of the trajectory, not the actual mission objective Xdr
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(a) Angle of attack v. time
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Figure 8.15: Best mp MOEA/D trajectories for different random seeds – attitude profiles.
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(b) Velocity v. time

Figure 8.16: Best mp MOEA/D trajectories for different random seeds – altitude and velocity profiles.
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(a) Heat flux v. time
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Figure 8.17: Best mp MOEA/D trajectories for different random seeds – heat flux and g-load profiles.
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Table 8.6: Perturbed parameters used for sensitivity analysis.

−∆ reference +∆

Initial conditions

Altitude h0 km 116 122 128
Velocity V 0 km/s 7.0637 7.4355 7.8073
Flight path angle γ0 (deg) -1.36 -1.43 -1.50

Initial attitude

Angle of attack α0 (deg) 35 40 45
Bank angle σ0 (deg) - 0 5, 10

Operational constraints

Heat flux qc,max kW/m2 450 500 550

8.5 Sensitivity Analysis

Sensitivity analysis is “the study of how the uncertainty in the output of a mathematical model or
system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs”
(Saltelli and Ratto, 2008). A sensitivity analysis is also conducted on the mission planner using the same
mp MOEA/D(p45, g11) setup as before. Three main reasons for this analysis are:

� Ascertain the robustness of the mission planner
� Identify weaknesses of the mission planner
� Identify the influence of certain parameters on the course of the re-entry trajectory and the general

re-entry problem

The nominal initial conditions as defined in Table 8.1 were perturbed parameter-for-parameter to identify
specific relationships between inputs and outputs, as well as the specific causes of certain weaknesses of
the mission planner that may be brought to light. In addition to perturbing the initial conditions, the
main operational constraints cng and cqc as defined in Table 7.1 were perturbed to observe the effect on
the mission planner. A summary of the perturbed parameters is given in Table 8.6. The ∆ perturbation
magnitude for each parameter is taken to be 5% of the reference parameter value; as the bank angle is
an absolute value, σ0 is perturbed by +0.05σ0 and +0.10σ0 instead.

In the following section, the trajectory profiles of parameters are shown for each perturbed parameter set
wherein the effect of the perturbed parameter is the most notable. The additional figures are included
in Appendix C. While the g-load parameter ng is considered defining for the mission, the g-load profiles
are also delegated to the Appendix unless the cng constraint is breached or a parameter perturbation has
some other notable consequence.

8.5.1 Initial Conditions

8.5.1.1 Initial states

The effects on the best solution determined by the mission planner caused by perturbation of the initial
altitude h0 by plus or minus 0.05h0 = 6 km are shown in Figure 8.18. The perturbation has no notable
effect on the quality of the mission planner’s output. Small lofts occur in the altitude progression of the
trajectories corresponding to both perturbations, which lead to the slightly fluctuating heat flux profiles,
as well as longer ranges. These lofts are the consequence of the smaller initial bank angle commands
given in both the +∆h and −∆h trajectories.

The effects of perturbing the initial velocity V 0 by plus or minus 0.05V 0 = 0.3718 km/s are shown in
Figures 8.19 and 8.20. The most notable consequence of this perturbation is the exoatmospheric skip
that results from an increase of just 5% in the initial velocity V 0. The size of this skip can be mitigated
by entering the atmosphere at a steeper angle γ0; however in the case of the mission planner γ0 is not an
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Figure 8.18: Sensitivity analysis – effect of h0 perturbation.
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(a) Angle of attack v. time
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(b) Bank angle v. time
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(d) Velocity v. time
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Figure 8.19: Sensitivity analysis – effect of V 0 perturbation.
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Figure 8.20: Sensitivity analysis – effect of V 0 perturbation cont’d.

optimization variable. The mission planner has problems with finding a good trajectory in this case. The
likely cause is that the mission planner is not specifically equipped to handle the exoatmospheric phase of
the trajectory, wherein guidance commands are ineffective due to the lack of atmosphere. Figure 8.19(e)
shows that the vehicle re-enters the atmosphere at an extremely steep angle γ ≈ 12◦, which the mission
planner cannot recover from. The guidance profile during the first atmospheric phase during such an
entry must be specified such that it its exit conditions lead to suitable entry conditions at the second
entry, as the vehicle cannot be controlled during the ballistic phase. The optimization objectives do not
take this possibility into account, causing the guidance system to generate futile guidance commands
during the ballistic phase as well, not leaving enough control nodes after the second entry to allow for a
suitable guidance profile. Likely the optimization algorithm would eventually converge on a fairly good
solution, however a large number of iterations would probably be necessary before this happens. An
possibility for improvement of the mission planner is to explicitly incorporate the capability of handling
exoatmospheric skips. In general, it can be stated that the mission planner in its current configuration
is sensitive to increases in the initial velocity.

The effects of perturbing the initial flight path angle γ0 by plus or minus 0.05γ0 are shown in Figure
8.21. While the shape of the re-entry trajectory is generally quite sensitive to γ0, the mission planner
deals very well with this perturbation in finding a good guidance profile (Figures 8.22 and 8.23) to keep
the vehicle within operational constraints while maintaining a smooth heat flux profile (Figure 8.21(d))
and maximizing range. It can be stated that the mission planner is not sensitive to small perturbations
in the initial flight path angle.

8.5.1.2 Initial attitude

In addition to the initial state, the initial attitude angles α0 and σ0 were also perturbed; α0 by plus or
minus 2.5◦ which corresponds to a perturbation of approximately 5% of its reference value, and σ0 with
plus 5◦ or 10◦ – as σC is an absolute value. The effects of these perturbations can be seen in Figure 8.22.
The decrease in α0 results in a tendency toward a loft in the trajectory, which is responsible for larger
heat flux fluctuation and a longer range and thus a larger total heat load. The mission planner is capable
of handling the α0-perturbation and generating feasible trajectories, though it should be noted that the
attitude guidance profiles are somewhat erratic in the case of the lower α0.

The effects of perturbing the initial bank angle σ0 are shown in Figures 8.23. The expectation was that
increasing σ0 would result in a tendency to loft, which is indeed observable for the larger perturbation of
∆σ0 = 10◦. The consequence of this loft on the heat flux profile is similar (though much less extreme)
to the effect observed in 8.20(a); altitude fluctuations lead to fluctuations in the heat flux profile. Likely
a large-enough σ0 would eventually lead to an exoatmospheric skip. In general, the mission planner is



8.5. SENSITIVITY ANALYSIS 105

0 500 1000 1500 2000

0

10

20

30

40

50

60

Time (s)

A
ng

le
 o

f a
tta

ck
 (

de
g)

mp_MOEA/D(45, 111) SA best trajectories − α re. ∆γ

 

 
−∆γ
+∆γ
∆ = 0

(a) Angle of attack v. time

0 500 1000 1500 2000

0

10

20

30

40

50

60

70

80

90

Time (s)

B
an

k 
an

gl
e 

(d
eg

)

mp_MOEA/D(45, 111) SA best trajectories − σ re. ∆γ

 

 
−∆γ
+∆γ
∆ = 0

(b) Bank angle v. time

0 500 1000 1500 2000
0

20

40

60

80

100

120

Time (s)

A
lti

tu
de

 (
km

)

mp_MOEA/D(45, 111) SA best trajectories − h re. ∆γ

 

 
−∆γ
+∆γ
∆ = 0

(c) Altitude v. time

0 500 1000 1500 2000
0

100

200

300

400

500

600

Time (s)

H
ea

t f
lu

x 
(k

w
/m

2 )

mp_MOEA/D(45, 111) SA best trajectories − q
c,max

 re. ∆γ

 

 
−∆γ
+∆γ
∆ = 0

(d) Heat flux v. time

Figure 8.21: Sensitivity analysis – effect of γ0 perturbation.

capable of handing the σ0 perturbations.
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Figure 8.22: Sensitivity analysis – effect of α0 perturbation.
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(b) Bank angle v. time
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(c) Altitude v. time
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Figure 8.23: Sensitivity analysis – effect of σ0 perturbation.



108 CHAPTER 8. MISSION PLANNER DESIGN AND TESTING

0 500 1000 1500 2000
0

100

200

300

400

500

600

Time (s)

H
ea

t f
lu

x 
(k

w
/m

2 )

mp_MOEA/D(45, 111) SA best trajectories − q
c,max

 re. ∆n
g,max

 

 
−∆n

g,max

+∆n
g,max

∆ = 0

(a) Heat flux v. time

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Time (s)

G
−

lo
ad

 (
−

)

mp_MOEA/D(45, 111) SA best trajectories − n
g,max

 re. ∆n
g,max

 

 
−∆n

g,max

+∆n
g,max

∆ = 0

(b) g-load v. time

Figure 8.24: Sensitivity analysis – effect of cng perturbation.

0 500 1000 1500 2000
0

100

200

300

400

500

600

Time (s)

H
ea

t f
lu

x 
(k

w
/m

2 )

mp_MOEA/D(45, 111) SA best trajectories − q
c,max

 re. ∆q
c,max

 

 
−∆q

c,max

+∆q
c,max

∆ = 0

(a) Heat flux v. time

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Time (s)

G
−

lo
ad

 (
−

)

mp_MOEA/D(45, 111) SA best trajectories − n
g,max

 re. ∆q
c,max

 

 
−∆q

c,max

+∆q
c,max

∆ = 0

(b) g-load v. time

Figure 8.25: Sensitivity analysis – effect of cqc perturbation.



Chapter 9

Conclusions and
Recommendations

The focus of this thesis is the development of a tool for the purpose of the design-time production of
optimal trajectories given a specific set of requirements.

The main question of this thesis work is formulated as:

To what extent can optimal re-entry trajectories be developed in the design-phase of mission development
for a winged entry vehicle that provide a maximum-range capability under the objective of minimizing the
heat load and adhering to operational constraints?

The approach to answering this question consisted of four identifiable separate segments:

1. Development of the re-entry simulator
2. Design of the guidance algorithm
3. Development of the mission planner
4. Mission planner testing

Before anything else, the mission planner relies on its capability of accurately and efficiently simulating
re-entry trajectories. The re-entry simulator uses the HORUS reference vehicle model from Mooij (1995).
The HORUS reference vehicle is a Space Shuttle-like winged (i.e., lifting) vehicle capable of both gliding
and skipping flight. Detailed and verified aerodynamic information is available for the vehicle model from
Mooij (1995), as well as simulation data for a reference trajectory developed by Mooij (1998); this data
was used to verify the re-entry simulator.

The vehicle performs an unpowered re-entry, meaning all the forces and moments acting on the vehicle
throughout re-entry are a direct consequence of its instantaneous environment. The forces and moments
acting on the vehicle are either gravitational or aerodynamic in origin; these forces are computed
according to the gravitational field and atmospheric models used. The re-entry simulator makes use
of a central gravity field with an additional J2-term to model the latitudinal gravitational perturbations.
The instantaneous atmospheric properties throughout the re-entry trajectory are computed using an
analytical US76 atmospheric model. Finally, the Earth is taken to have a spherical shape.

The HORUS Re-Entry Simulator was developed with the specific goal of top-level integration with the
mission planner in mind. During its development, steps were taken continuously to verify the reliability
of both individual code modules as well as the overall output produced by the simulator. These global
verification steps were applied from the ground up throughout the entire course of the simulator’s
development, first relying on highly simplified models representing the Apollo capsule, and with each
iteration adding a level of complexity. The final result is a simulator capable of simulating the trajectory
of HORUS with “three-and-a-half” degrees of freedom, i.e., the translational motion with the addition of
keeping the vehicle in an aerodynamically trimmed state.

The vehicle is steered by modulating its attitude in terms of its angle of attack and bank angle. A change
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in attitude results in a change in the direction and magnitude of the resultant aerodynamic force acting
on the vehicle, causing the vehicle to alter its trajectory. The vehicle’s attitude throughout the course of
the trajectory is defined by a guidance profile that relates the commanded angle of attack αC and bank
angle σC to an independent parameter that indicates the vehicle’s position along its trajectory. This
independent parameter is the normalized total specific energy of the vehicle Ê, which has value 1 at the
entry point and 0 when the vehicle has come to a standstill on the Earth surface. The benefit of Ê is that
not only are its limit values independent of the trajectory, but also that it is monotonically decreasing
throughout the course of re-entry; this allows for an unambiguous definition of the guidance profile. The
guidance profile is defined in terms of a number of control nodes, at which the guidance angles αC and
σC are specifically related to a value of Ê. Between these control nodes, the values of the attitude angles
are obtained by Hermite spline interpolation of the attitude values at the two surrounding nodes. The
guidance system also computes the corresponding body flap deflection angle δb required for the vehicle to
maintain trim stability for the commanded αC. The vehicle’s control system is assumed to be ideal, i.e.,
guidance commands are carried out by the vehicle exactly as specified by the guidance system.

The simulator computes the vehicle’s trajectory by integration of the initial state, which is defined by
its inertial position and velocity components. The state derivative of the vehicle is computed based on
the summation of the gravitational and aerodynamic forces it incurs as a result of its current state; the
commanded attitude angles αC and σC determine the definition of the aerodynamic force vector in the
inertial frame. In addition to the state variables, the vehicle’s horizontal velocity as well as the heat flux
are integrated to obtain the total downrange and heat load at the end of the trajectory.

The purpose of the mission planner is to develop trajectories that:

� Keep the vehicle within its operational constraints
� Minimize the heat load
� Provide the largest possible range

The objectives of minimum heat load and maximum range are conflicting. Trajectories with minimum
heat load requirements are generally short in duration with smooth heat flux profiles where the heat flux
is maintained close to its constraint value. The total heat load is minimized by keeping the duration of
the re-entry as short as possible. This, however, is in direct opposition to the objective of maximizing
range, where keeping the vehicle aloft for as long as possible is beneficial. For extended-range trajectories,
the altitude profile may contain a number of lofts or skips of the vehicle; this is beneficial for the total
downrange, but results in an irregular heat flux profile. Large temperature gradients can cause significant
thermal stresses, which are detrimental to the vehicle;’s TPS

The course of an entire trajectory can be specified by its guidance profile. The mission planner develops
trajectories by specifying the parameters Ê, αC, and σC in this guidance profile. Guidance profiles
specified by four, six, eight and ten nodes are generated (denoted OP4, OP6, OP8 and OP10, respectively),
of which the first and last node are predefined. The output must be a qualitatively good trajectory with
regard to both the mission’s objectives and constraints. The mission objectives are the total downrange
Xdr (to maximize) and the total heat load Q (to minimize), whereas the constraints are related to the
heat flux qc and gload, as well as the rates of change of the attitude angles. The quality of a certain
trajectory in terms of these parameters is defined quantitatively by the value of the objective function,
of which the values should be minimized. The objective function takes into account not only Xdr, Q
and the constraint parameters, but also the shape of the heat flux profile in terms of the number and
magnitude of any fluctuations.

The final output of the mission planner consists of a set of candidate trajectories, its Pareto set, and
an optimal trajectory based on its objective values’ proximity to the Pareto utopia point. This set of
candidate trajectories can be generated by four separate approaches, two of which use only a single
method, and two of which apply methods in tandem to obtain a set of solutions. The dual methods are
based on the consideration that any solution found by either a heuristic (i.e., Monte Carlo) or deterministic
(i.e., an optimization algorithm) method may represent a local optimum, and a better optimum may be
located close by.

� mp MC uses Monte Carlo simulations to generate solutions for each OP in tandem. The separate
populations are aggregated to determine the final output.
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� mp MOEA/D uses the MOEA/D optimization algorithm only for each OP in tandem. The
separate populations are aggregated to determine the final output.

� mp MOEA/D-TMC uses the MOEA/D optimization algorithm to generate a number of candi-
date solutions. Targeted solution spaces are defined around each candidate solution, within which
a targeted Monte Carlo simulation is performed to identify any better points.

� mp MC-TMC uses Monte Carlo simulations to generate a number of candidate solutions. Tar-
geted solution spaces are defined around each candidate solution, within which a targeted Monte
Carlo simulation is performed to identify any better points.

Each approach is defined by a number of parameters; the influence of these parameters on the respective
outcomes was evaluated to determine the best configuration for each separate method. The outputs of
the methods were evaluated in a tradeoff with respect to each other, from which was concluded that
mp MOEA/D outperforms the other methods by a large margin. Therefore the decision was made to
continue the development of the mission planner with the mp MOEA/D method.

The mission planner in its final configuration was evaluated in three gradations:

� The quality of results with respect to the reference trajectory
� The repeatability of obtained results and sensitivity to random seeds
� Its sensitivity to perturbations in the initial condition

Quality of results The trajectories obtained by the mission planner given the reference initial condition
were evaluated for the configuration mp-MOEA/D(p45, g111). The optimal trajectory as well
the two extremes of the Pareto set were shown and compared to the HORUS reference trajectory
to indicate the breadth of possible solutions. From the progression of the defining trajectory
parameters throughout these trajectories can be concluded that the results produced by the mission
planner in this configuration are qualitatively good and meet expectations with regard to both
objective performance as well as adherence to constraints. The mp MOEA/D outputs were
further evaluated in comparison to the HORUS reference trajectory:

� Minimum heat load: The trajectory corresponding to the Pareto extreme with the lowest heat
load objective is similar to the reference trajectory. It has a slightly longer duration and a
lower total heat load due to a differently-shaped heat flux profile. The reference trajectory’s
heat flux profile has two small peaks, whereas the minimum-heat-load trajectory determined
by the mission planner has one initial peak of the same magnitude, after which the heat flux
consistently decreases throughout the remainder of the trajectory. The definition of the mission
planner’s objective function takes into account the number and magnitude of fluctuations in
the heat flux profile as parameters to minimize, causing the preference for smooth heat flux
profiles. This minimum-heat-load trajectory results in a 14% decrease in the total heat load
in comparison to the reference trajectory at the cost of 5% of the total range flown. Taking
only the optimization objective of downrange into account, the minimum heat load trajectory
generated by the mission planner actually provides a 5% increase to the reference downrange.

� Optimal: The optimal trajectory as determined by the mission planner has a significantly
longer duration than the reference trajectory. The consequence of this longer duration is a
20% increase in the total range flown with respect to the reference trajectory. This increase
in duration however comes at the cost of a 20% increase in the total heat load. Whether this
is acceptable depends on the vehicle specifications and the mission requirements.

� Maximum range: The maximum range trajectory determined by the mission planner provides
a 45% increase in the total range flown at the cost of an increase of 60% in the total heat
load. If such a range is required, the TPS of the vehicle needs to be designed to withstand
this increased heat load.

It seems that the Pareto set is split at the optimal point in terms of whether a solution provides
a benefit over the reference trajectory (i.e., percentage benefit to one objective is greater than the
percentage cost to the other) or not. The mission planner outputs corresponding to this part of
the Pareto set provide a relative improvement on the reference trajectory in terms of either one or
the other mission objective (i.e., minimum heat or maximum range). The half of the Pareto set
corresponding to better range-objective values are characterized by an increased heat load due to
the duration of the re-entry. Should such a range be required, the increased heat load needs to be
taken into account in the design of the vehicle’s TPS.
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In general, it can be concluded that the mission planner is capable of generating a range of
trajectories with good downrange and heat load properties; the best trajectory within this range
depends on the specific priorities of the mission. In comparison to the reference trajectory, the
mission planner results offer an improvement either in terms of a lower heat load or an increase in
total range, where the cost to one objective is decidedly smaller than the benefit generated for the
other.

Repeatability The repeatability of a result is as important as the result itself in terms of solidifying its
scientific legitimacy. To this order the random seeds used by the MOEA/D-algorithm during each
optimization run were obtained. The repeatability of the results generated by the mission planner
was established. In addition, the results were shown to be consistent in quality for initializations
with different random seeds.

Sensitivity The sensitivity of the mission planner was analyzed in terms of parameters relating to
the initial condition – both the state and attitude – of the vehicle. The mission planner offers a
good performance in the handling of perturbations to the initial condition, with the exception of
an increase in the initial velocity that resulted in an exo-atmospheric skip. Guidance commands
have no effect during an exo-atmospheric phase, which means that the guidance profile should be
designed such that the vehicle has exit conditions that lead to a reasonable set of entry conditions.
The mission planner does not take this into account, which has two consequences: futile guidance
commands are issued during the exo-atmospheric phase due to which insufficient nodes are “left
over” to control the vehicle after the second entry point, and the conditions at the second entry
point – specifically the flight path angle – were too extreme in the investigated trajectory for the
mission planner to generate an adequate guidance profile for. It is probable that a larger number of
iterations might allow for the algorithm to determine a guidance profile that corresponds to these
conditions, however within the allotted amount of evaluations this was not the case. A possibility
for improvement in this respect would be to specify for the mission planner to not issue any guidance
commands during the exo-atmospheric phase. This would likely decrease the solution space enough
for a guidance profile to be found that leads to favorable second-entry conditions.
The mission planner offers a good performance with regard to the other perturbed parameters, both
relating to the initial condition as well as the initial attitude.

To answer the research question: To what extent can optimal re-entry trajectories be developed in the
design-time phase of mission development for a winged entry vehicle that provide a maximum-range
capability under the objective of minimizing the heat load and adhering to operational constraints? –
it is definitely possible to achieve extended-range capabilities for trajectories defined by minimum heat
load. Despite the inherently conflicting objectives of minimum heat load and maximum range, a good
range of solutions are generated by the mission planner that offer a varied selection in terms of trajectory
downrange and heat load properties. Long re-entry durations generally lead to a relatively higher heat
load simply because of the time spent incurring heat flux, though all solutions offer good characteristics in
terms of the profiles of both heat flux and the g-load. This increased heat load must be taen into account
in the design of the vehicle’s TPS, should such an extended-range trajectory be preferred. A subset of
the mission planner output trajectories represent an improvement to the HORUS reference trajectory –
in terms of the mission objectives as defined in this thesis, and disregarding any additional merits of the
reference trajectory that do not form a basis for comparison. Therefore it can be concluded that the
mission planner is capable of generating feasible and qualitatively good re-entry trajectories that provide
a maximum range capability under the objective of minimizing the heat load.

Recommendations

Recommendations for future work are:

Lateral guidance Inclusion of a lateral guidance capability by bank angle modulation would allow
for the vehicle to be steered to a specific location – or in the general case of range-maximization
without a specific destination – fly a trajectory with a defined heading profile. The guidance profile
as generated by the optimization algorithm can in this case still be defined in terms of the absolute
bank angle only, as bank angle modulation is based on changing the sign – and not the magnitude
– of the bank angle to adjust the vehicle’s heading.

Skip capability Including the capability of managing an exo-atmospheric skip into the mission planner
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relates to the generation of a guidance profile that leads the vehicle to a certain exit condition that
results in a favorable second-entry condition. In addition, the optimization algorithm should be
defined as such that guidance profiles are created wherein no guidance commands are issued during
the exo-atmospheric phase, as these are a “waste” of control nodes.

Thrust The guidance system could be adjusted to provide a thrust command in addition to the attitude
commands; this could be utilized to induce skips and lofts in the trajectory that result in additional
range. The time of occurrence of the thrust command would then be defined as an additional
optimization variable.

Tracking The mission planner could be extended with a tracking capability wherein guidance commands
are issued based on following a predefined (optimal) reference trajectory. This capability can be
implemented as a part of an on-board real-time mission planner that generates commands during
the re-entry based on the vehicle’s instantaneous state in relation to this reference trajectory.

On-board re-optimization The on-board real-time mission planner can also be supplemented with an
algorithm that generates guidance commands based on an optimal trajectory computed in relation
to the vehicle’s instantaneous state.
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Appendix A

Transformations

A.1 Reference Frame Transformations

For the purpose of readability, ’c’ will be used as abbreviation for cosine and ’s’ for sine.

Rotating (Planetocentric) to Inertial (Planetocentric) Frame

CI,R = C3(−ωcbt)

=

cωcbt −sωcbt 0
sωcbt cωcbt 0

0 0 1

 (A.1)

Vertical to Rotating (Planetocentric) Frame

CR,V = C3(−τ)C2(π2 + δ)

=

−cτsτ −sτ −cτcδ
−sτsδ cτ −sτcδ

cδ 0 −sδ

 (A.2)

Trajectory to Vertical Frame

CV,T = C3(−χ)C2(−γ)

=

cχcγ −sχ cχsγ
sχcγ cχ sχsγ
−sγ 0 cγ

 (A.3)

Aerodynamic to Trajectory Frame

CT,A = C1(σ)

=

1 0 0
0 cσ sσ
0 −sσ cσ

 (A.4)
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Body to Aerodynamic Frame

CA,B = C3(β)C2(−α)

=

 cαcβ sβ sαcβ
−cαsβ cβ −sαsβ
−sα 0 cα

 (A.5)

Aerodynamic to Vertical Frame

CV,A = CV,TCT,A

= C3(−χ)C2(−γ)C1(−σ)
(A.6)

Vertical to Inertial (Planetocentric) Frame

CI,V = CI,RCR,V

= C3(−ωcbt)C3(−τ)C2(π2 + δ) = C3(−τ̄)C2(π2 + δ)
(A.7)

defining the celestial longitude τ̄ = τ + ωcbt.

Aerodynamic to Rotating (Planetocentric) Frame

CR,A = CR,VCV,A

= C3(−τ)C2(π2 + δ)C3(−χ)C2(−γ)C1(σ)
(A.8)

Body to Rotating (Planetocentric) Frame

CR,B = CR,VCV,ACA,B

= C3(−τ)C2(π2 + δ)C3(−χ)C2(−γ)C1(σ)C3(β)C2(−α)
(A.9)

A.2 Coordinate Transformations

Conversions between Cartesian and spherical components both in terms of position and velocity are given
in

A.2.1 Cartesian to Spherical

The relation between the Cartesian position in FI and FR is given by

XR = CR,IXI (A.10)

The transformation matrix CR,I is simply the inverse (and transpose) of CI,R as defined in Equation
A.1. The result is

xR = cos(ωcb · t · xI) + sin(ωcb · t · yI)
yR = − sin(ωcb · t · xI) + cos(ωcb · t · yI)
zR = zI

Before performing the same transformation on the inertial velocity VI, an extra step must be taken to
account for the Earth’s rotation:

VR = CR,I (VI − ωcb×rI) (A.11)
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The Cartesian position (as defined in FR) can then be converted to the spherical position using

R =
√
x2
R + y2

R + z2
R (A.12a)

τ = arctan

(
yR
xR

)
(A.12b)

δ = arcsin

(
zR√

x2
R + y2

R + z2
R

)
(A.12c)

The spherical velocity V (which is the modulus of the groundspeed vector VG) is easily obtained:

V =
√
u2 + v2 + w2 (A.13)

The flight path angle γ and heading χ are calculated by first transforming the Cartesian velocity VR to
the vertical frame FV.

VV = CV,RVR (A.14)

where CV,R is the inverse of CR,V, given in Equation A.2. The vector sum of the components vx and
vy is equal to the projection of V G in the local horizontal plane. The direction angles then follow:

γG = arccos

(√
v2
δ + v2

τ

V G

)
(A.15)

χG = arctan

(
vy
vx

)
(A.16)

A.2.2 Spherical to Cartesian

The spherical position coordinates can be converted to FR-referenced Cartesian coordinates as follows:

xR = R cos δ cos τ (A.17a)

yR = R cos δ sin τ (A.17b)

zR = R sin δ (A.17c)

These equations are the inverse of the Equations A.12.

As the vector sum of the Cartesian velocity components vx and vy is equal to the projection of V G in
the local horizontal plane, the Cartesian velocity components follow from

vx = V G cos γG cosχG (A.18a)

vy = V G cos γG sinχG (A.18b)

vz = −V G sin γG (A.18c)

VR is then computed using
VR = CR,VVV (A.19)

where CR,V is given by A.2.
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Appendix B

Horus Aerodynamic Data

Table B.1: Range of vehicle parameters and aerodynamic variables.

α (◦) M (-) δb (◦)

0 1.2 -20
5 1.5 -10
10 2 0
15 3 10
20 5 20
25 10 30
30 20
35
40
45

Table B.2: Drag coefficient clean configuration CD0
(α,M).

α, M 1.2 1.5 2 3 5 10 20

0 0.10 0.09 0.08 0.07 0.07 0.07 0.05

5 0.12 0.10 0.09 0.08 0.07 0.07 0.05

10 0.20 0.14 0.12 0.10 0.09 0.08 0.06

15 0.33 0.23 0.18 0.15 0.14 0.12 0.09

20 0.52 0.36 0.29 0.23 0.20 0.18 0.14

25 0.77 0.54 0.42 0.35 0.31 0.29 0.24

30 1.08 0.77 0.60 0.51 0.45 0.42 0.36

35 1.08 1.03 0.82 0.69 0.63 0.60 0.52

40 1.08 1.32 1.07 0.90 0.82 0.79 0.70

45 1.08 1.32 1.33 1.21 1.05 1.02 0.92
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Table B.3: Lift coefficient clean configuration CL0
(α,M).

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.02 -0.02 -0.03 -0.04 -0.04 -0.05 -0.05

5 0.27 0.16 0.10 0.06 0.05 0.03 0.01

10 0.56 0.36 0.26 0.19 0.14 0.12 0.07

15 0.86 0.57 0.42 0.33 0.26 0.23 0.16

20 1.17 0.79 0.60 0.48 0.40 0.36 0.28

25 1.17 1.01 0.78 0.62 0.54 0.50 0.40

30 1.17 1.21 0.94 0.77 0.68 0.63 0.53

35 1.17 1.38 1.08 0.90 0.80 0.75 0.66

40 1.17 1.38 1.20 1.01 0.91 0.86 0.77

45 1.17 1.38 1.28 1.08 0.99 0.95 0.85

Table B.4: Pitch moment coefficient clean configuration Cm0(α,M).

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.020 -0.016 -0.013 -0.011 -0.010 -0.010 -0.007

5 -0.051 -0.028 -0.016 -0.008 -0.004 -0.001 0.001

10 -0.067 -0.033 -0.016 -0.004 0.003 0.007 0.008

15 -0.079 -0.036 -0.014 0.000 0.008 0.012 0.014

20 -0.086 -0.038 -0.013 0.003 0.012 0.016 0.017

25 -0.092 -0.038 -0.012 0.005 0.013 0.017 0.018

30 -0.095 -0.039 -0.011 0.005 0.013 0.016 0.018

35 -0.099 -0.040 -0.012 0.004 0.011 0.014 0.017

40 -0.103 -0.042 -0.014 0.002 0.009 0.010 0.014

45 -0.107 -0.045 -0.017 -0.002 0.005 0.006 0.010

Table B.5: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = −20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.040 0.021 0.011 0.006 0.002 0.000 0.000

5 0.030 0.016 0.009 0.004 0.001 0.000 0.000

10 0.018 0.010 0.006 0.003 0.001 0.000 0.000

15 0.008 0.004 0.002 0.001 0.000 -0.001 -0.001

20 0.000 -0.001 -0.002 -0.002 -0.002 -0.003 -0.002

25 -0.005 -0.006 -0.006 -0.006 -0.006 -0.006 -0.004

30 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.009

35 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.016

40 -0.026 -0.025 -0.025 -0.025 -0.025 -0.025 -0.023

45 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.031
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Table B.6: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = −10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.016 0.009 0.005 0.003 0.001 0.000 0.000

5 0.010 0.006 0.003 0.002 0.000 0.000 0.000

10 0.004 0.002 0.001 0.000 0.000 0.000 0.000

15 0.000 -0.001 0.000 -0.001 -0.001 -0.001 -0.001

20 -0.003 -0.003 -0.002 -0.002 -0.002 -0.003 -0.002

25 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004

30 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.007

35 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.011

40 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.016

45 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.020

Table B.7: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = 0◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000

40 0.000 0.000 0.000 0.000 0.000 0.000 0.000

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table B.8: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = 10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.005 -0.003 -0.002 -0.001 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.016 0.002 0.002 0.002 0.002 0.002 0.002

15 0.005 0.005 0.005 0.005 0.005 0.005 0.004

20 0.009 0.009 0.009 0.009 0.009 0.009 0.008

25 0.013 0.013 0.013 0.013 0.013 0.013 0.012

30 0.018 0.018 0.017 0.017 0.017 0.017 0.016

35 0.022 0.022 0.022 0.022 0.022 0.022 0.021

40 0.026 0.026 0.026 0.026 0.026 0.026 0.025

45 0.029 0.029 0.030 0.030 0.030 0.030 0.029
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Table B.9: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = 20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.003 0.000 0.000 0.001 0.002 0.002 0.002

5 0.004 0.005 0.005 0.005 0.005 0.005 0.004

10 0.002 0.011 0.011 0.011 0.011 0.011 0.009

15 0.018 0.018 0.018 0.018 0.018 0.018 0.015

20 0.027 0.027 0.027 0.027 0.027 0.027 0.024

25 0.037 0.036 0.036 0.036 0.036 0.036 0.033

30 0.046 0.045 0.045 0.045 0.045 0.045 0.043

35 0.053 0.053 0.053 0.053 0.053 0.053 0.051

40 0.060 0.060 0.060 0.060 0.060 0.060 0.059

45 0.065 0.065 0.065 0.065 0.065 0.065 0.065

Table B.10: Drag increment due to body flap ∆CDb
(α,M, δb) for δb = 30◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.005 0.008 0.008 0.009 0.010 0.010 0.008

5 0.017 0.017 0.017 0.017 0.017 0.017 0.015

10 0.028 0.028 0.028 0.028 0.028 0.028 0.024

15 0.040 0.040 0.040 0.040 0.040 0.040 0.036

20 0.053 0.053 0.053 0.053 0.053 0.053 0.049

25 0.067 0.066 0.066 0.066 0.066 0.066 0.062

30 0.078 0.078 0.078 0.078 0.078 0.078 0.076

35 0.089 0.089 0.089 0.089 0.089 0.089 0.086

40 0.096 0.096 0.096 0.096 0.096 0.096 0.095

45 0.100 0.100 0.100 0.100 0.100 0.100 0.100

Table B.11: Lift increment due to body flap ∆CLb(α,M, δb) for δb = −20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.054 -0.032 -0.016 -0.006 -0.002 0.000 0.000

5 -0.070 -0.037 -0.021 -0.010 -0.003 -0.001 0.000

10 -0.067 -0.037 -0.022 -0.012 -0.006 -0.002 -0.001

15 -0.053 -0.032 -0.021 -0.013 -0.009 -0.006 -0.003

20 -0.037 -0.026 -0.021 -0.016 -0.014 -0.012 -0.007

25 -0.023 -0.021 -0.020 -0.020 -0.020 -0.019 -0.014

30 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.021

35 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.026

40 -0.031 -0.031 -0.031 -0.031 -0.031 -0.030 -0.030

45 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030
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Table B.12: Lift increment due to body flap ∆CLb(α,M, δb) for δb = −10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.036 -0.019 -0.011 -0.005 -0.002 0.000 0.000

5 -0.039 -0.021 -0.012 -0.006 -0.003 -0.001 0.000

10 -0.033 -0.020 -0.012 -0.007 -0.004 -0.002 -0.001

15 -0.016 -0.011 -0.009 -0.007 -0.006 -0.005 -0.003

20 -0.010 -0.010 -0.010 -0.009 -0.010 -0.009 -0.007

25 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.011

30 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.014

35 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.016

40 -0.017 -0.017 -0.017 -0.017 -0.017 -0.016 -0.017

45 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016

Table B.13: Lift increment due to body flap ∆CLb(α,M, δb) for δb = 0◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000

40 0.000 0.000 0.000 0.000 0.000 0.000 0.000

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table B.14: Lift increment due to body flap ∆CLb(α,M, δb) for δb = 10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.034 0.020 0.012 0.007 0.004 0.002 0.000

5 0.017 0.012 0.010 0.008 0.006 0.005 0.002

10 0.010 0.010 0.010 0.010 0.009 0.010 0.007

15 0.013 0.013 0.013 0.014 0.013 0.013 0.011

20 0.016 0.016 0.016 0.016 0.016 0.017 0.015

25 0.017 0.018 0.017 0.018 0.018 0.018 0.016

30 0.018 0.018 0.018 0.018 0.018 0.019 0.018

35 0.017 0.018 0.017 0.018 0.017 0.018 0.018

40 0.015 0.015 0.015 0.016 0.015 0.016 0.015

45 0.011 0.011 0.011 0.011 0.011 0.011 0.012
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Table B.15: Lift increment due to body flap ∆CLb(α,M, δb) for δb = 20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.044 0.030 0.022 0.017 0.013 0.011 0.004

5 0.032 0.026 0.023 0.021 0.020 0.020 0.014

10 0.027 0.027 0.026 0.026 0.026 0.026 0.021

15 0.032 0.032 0.032 0.033 0.032 0.032 0.029

20 0.035 0.036 0.036 0.036 0.036 0.036 0.033

25 0.037 0.037 0.037 0.037 0.037 0.037 0.036

30 0.034 0.035 0.035 0.035 0.035 0.035 0.035

35 0.030 0.031 0.031 0.032 0.031 0.031 0.032

40 0.023 0.024 0.024 0.024 0.024 0.022 0.026

45 0.013 0.014 0.014 0.015 0.014 0.015 0.017

Table B.16: Lift increment due to body flap ∆CLb(α,M, δb) for δb = 30◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.060 0.046 0.039 0.033 0.030 0.028 0.021

5 0.050 0.045 0.041 0.040 0.038 0.037 0.031

10 0.046 0.047 0.046 0.046 0.046 0.046 0.041

15 0.052 0.052 0.052 0.052 0.052 0.052 0.047

20 0.053 0.053 0.053 0.053 0.053 0.054 0.052

25 0.052 0.052 0.052 0.052 0.052 0.052 0.051

30 0.046 0.046 0.046 0.046 0.046 0.046 0.047

35 0.036 0.037 0.037 0.037 0.037 0.037 0.039

40 0.024 0.024 0.024 0.024 0.024 0.023 0.027

45 0.008 0.008 0.008 0.009 0.008 0.010 0.012

Table B.17: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = −20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.0191 0.0094 0.0048 0.0017 0.0003 0.0000 0.0000

5 0.0179 0.0109 0.0058 0.0025 0.0007 0.0000 0.0000

10 0.0167 0.0111 0.0065 0.0034 0.0013 0.0003 0.0000

15 0.0154 0.0092 0.0060 0.0039 0.0027 0.0017 0.0007

20 0.0109 0.0077 0.0061 0.0049 0.0041 0.0037 0.0020

25 0.0073 0.0068 0.0066 0.0065 0.0065 0.0061 0.0044

30 0.0087 0.0087 0.0089 0.0089 0.0089 0.0089 0.0075

35 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0099

40 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0123

45 0.0152 0.0150 0.0150 0.0160 0.0150 0.0150 0.0143
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Table B.18: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = −10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.0109 0.0056 0.0029 0.0012 0.0003 0.0000 0.0000

5 0.0118 0.0065 0.0034 0.0017 0.0007 0.0000 0.0000

10 0.0102 0.0058 0.0036 0.0020 0.0010 0.0003 0.0000

15 0.0049 0.0036 0.0025 0.0022 0.0017 0.0013 0.0007

20 0.0031 0.0031 0.0031 0.0029 0.0031 0.0031 0.0020

25 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0034

30 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0051

35 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0061

40 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0075

45 0.0087 0.0085 0.0087 0.0089 0.0085 0.0089 0.0085

Table B.19: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = 0◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.20: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = 10◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.0120 -0.0070 -0.0046 -0.0028 -0.0017 -0.0014 0.0000

5 -0.0065 -0.0046 -0.0038 -0.0029 -0.0024 -0.0024 -0.0014

10 -0.0041 -0.0038 -0.0038 -0.0038 -0.0038 -0.0038 -0.0028

15 -0.0053 -0.0051 -0.0055 -0.0053 -0.0055 -0.0055 -0.0045

20 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 -0.0062

25 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0075

30 -0.0094 -0.0094 -0.0094 -0.0094 -0.0092 -0.0096 -0.0086

35 -0.0103 -0.0103 -0.0103 -0.0103 -0.0103 -0.0103 -0.0099

40 -0.0108 -0.0108 -0.0108 -0.0110 -0.0110 -0.0110 -0.0106

45 -0.0110 -0.0111 -0.0111 -0.0113 -0.0110 -0.0110 -0.0113
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Table B.21: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = 20◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.0157 -0.0106 -0.0084 -0.0065 -0.0051 -0.0048 -0.0031

5 -0.0116 -0.0098 -0.0089 -0.0082 -0.0075 -0.0075 -0.0055

10 -0.0108 -0.0106 -0.0106 -0.0104 -0.0106 -0.0106 -0.0089

15 -0.0133 -0.0135 -0.0135 -0.0135 -0.0133 -0.0137 -0.0120

20 -0.0163 -0.0164 -0.0164 -0.0164 -0.0164 -0.0164 -0.0151

25 -0.0185 -0.0186 -0.0185 -0.0186 -0.0185 -0.0185 -0.0174

30 -0.0202 -0.0205 -0.0204 -0.0205 -0.0205 -0.0205 -0.0195

35 -0.0215 -0.0217 -0.0215 -0.0215 -0.0215 -0.0219 -0.0212

40 -0.0224 -0.0224 -0.0224 -0.0226 -0.0222 -0.0226 -0.0222

45 -0.0217 -0.0226 -0.0224 -0.0226 -0.0222 -0.0226 -0.0229

Table B.22: Pitch moment increment due to body flap ∆Cmb
(α,M, δb) for δb = 30◦.

α, M 1.2 1.5 2 3 5 10 20

1.2 1.5 2 3 5 10 20

0 -0.0217 -0.0169 -0.0147 -0.0128 -0.0116 -0.0113 -0.0086

5 -0.0195 -0.0174 -0.0166 -0.0159 -0.0151 -0.0154 -0.0127

10 -0.0195 -0.0195 -0.0195 -0.0195 -0.0192 -0.0195 -0.0168

15 -0.0234 -0.0234 -0.0236 -0.0233 -0.0236 -0.0236 -0.0215

20 -0.0267 -0.0270 -0.0267 -0.0268 -0.0267 -0.0270 -0.0253

25 -0.0292 -0.0294 -0.0294 -0.0296 -0.0294 -0.0294 -0.0284

30 -0.0315 -0.0316 -0.0315 -0.0318 -0.0315 -0.0318 -0.0308

35 -0.0325 -0.0328 -0.0325 -0.0328 -0.0325 -0.0328 -0.0325

40 -0.0330 -0.0332 -0.0330 -0.0332 -0.0332 -0.0332 -0.0335

45 -0.0321 -0.0325 -0.0323 -0.0325 -0.0321 -0.0325 -0.0332
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Figure C.1: Sensitivity analysis – effect of h0 perturbation.
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Figure C.2: Sensitivity analysis – effect of γ0 perturbation.
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Figure C.3: Sensitivity analysis – effect of α0 perturbation.



132 APPENDIX C. SENSITIVITY ANALYSIS

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8

Time (s)

V
el

oc
ity

 (
km

/s
)

mp_MOEA/D(45, 111) SA best trajectories − V re. ∆σ

 

 
−∆σ
+∆σ
∆ = 0

(a) Velocity v. time

0 500 1000 1500 2000

−15

−10

−5

0

5

Time (s)

F
lig

ht
 p

at
h 

an
gl

e 
(d

eg
)

mp_MOEA/D(45, 111) SA best trajectories − γ re. ∆σ

 

 
−∆σ
+∆σ
∆ = 0

(b) Flight path angle v. time

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 e
ne

rg
y 

(−
)

mp_MOEA/D(45, 111) SA best trajectories − E re. ∆σ

 

 
−∆σ
+∆σ
∆ = 0

(c) Normalized energy v. time

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Time (s)

G
−

lo
ad

 (
−

)

mp_MOEA/D(45, 111) SA best trajectories − n
g,max

 re. ∆σ

 

 
−∆σ
+∆σ
∆ = 0

(d) g-load v. time

Figure C.4: Sensitivity analysis – effect of σ0 perturbation.
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Figure C.5: Sensitivity analysis – effect of cng perturbation.
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Figure C.6: Sensitivity analysis – effect of cqc perturbation.
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