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A distributed forward–backward algorithm for stochastic generalized
Nash equilibrium seeking

Barbara Franci and Sergio Grammatico

Abstract— We consider the stochastic generalized Nash equi-
librium problem (SGNEP) with expected-value cost functions. In-
spired by Yi and Pavel (Automatica, 2019), we propose a distributed
GNE seeking algorithm based on the preconditioned forward–
backward operator splitting for SGNEP, where, at each iteration,
the expected value of the pseudo-gradient is approximated via
a number of random samples. Our main contribution is to show
almost sure convergence of the proposed algorithm if the pseudo-
gradient mapping is restricted (monotone and) cocoercive.

Index Terms— Stochastic generalized Nash equilibrium
problems, variational inequalities, stochastic approxima-
tion.

I. INTRODUCTION

Generalized Nash equilibrium problems (GNEPs) have recently re-
ceived strong attention from the multi-agent system and control com-
munity [1]–[4]. One reason for this interest is related to the possible
applications that range from economics to engineering and operation
research [2], [5]. In GNEPs, each agent seeks to minimize his own
cost function under some joint feasibility constraints. Namely, both
the cost function and the constraints depend on the strategies chosen
by the other agents. Consequently, the search for a GNE is usually
very difficult. A number of results are available concerning algorithms
and methodologies to solve a GNEP [6]. In the deterministic case,
many algorithm are available to find an equilibrium, both distributed
or semi-decentralized [1], [7], [8]. Among the methodologies to reach
an equilibrium, an effective approach is to seek for a solution of the
associated variational inequality (VI) [6].

To recast a GNEP as a VI, the Karush-Kuhn-Tucker conditions can
be considered to rewrite the problem as a monotone inclusion. The
latter problem can then be solved via operator splitting techniques.
Among others, we focus on the forward–backward (FB) splitting
which leads to one of the simplest and computationally inexpensive
algorithms available [9].

The downside of the FB scheme is that, when directly applied to
GNEPs, it cannot be distributed. On the other hand, when considering
a game-theoretic setup, it is desirable to consider distributed algo-
rithms, in the sense that each agent should only know its local cost
function and its local constraints. For this reason, preconditioning has
been recently introduced in [1], see [10] for a preliminary extension
of this method to the stochastic case.

A stochastic GNEP (SGNEP) is a GNEP where the cost functions
are expected value functions [11]. Such problems arise when there is
some uncertainty, expressed through a random variable with unknown
distribution. SGNEPs are not studied as much as their deterministic
counterpart, despite many practical problems must be modelled with
uncertainty. Among others, in transportation systems, a possible
source of uncertainty is the drivers perception of travel time [12];
in electricity markets, companies produce energy without knowing in
advance the demand [13]. Moreover, any network Cournot game with
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market capacity constraints and uncertain demand can be modelled
as a SGNEP [14], [15]. Due to their wide applicability, SGNEPs have
been studied by the control community as well [16]–[18].

Unfortunately, the pseudo-gradient is usually not directly acces-
sible, for instance due to the need of excessive computations in
performing the expected value. For this reason, in many situations, the
search for an equilibrium relies on samples of the random variable.
Essentially, there are two main methodologies available: sample aver-
age approximation (SAA) and stochastic approximation (SA). In the
SAA approach, one replaces the expected value formulation with the
average over an infinite number of samples of the random variable.
In the SA scheme, each agent can sample only one realization of the
random variable. This approach is less computationally expensive,
but, not surprisingly, it usually requires stronger assumptions on
the problem data [17], [19]. Alternatively, the variance reduced SA
scheme considers the average over an increasing number of samples,
which is possible when there is a huge amount of data available as
in Monte Carlo simulations or machine learning [20].

One of the first formulations of a stochastic FB algorithm is in [21],
under the assumption of strong monotonicity and Lipschitz continuity
of the mapping involved. In [22] instead, convergence is proved
under cocoercivity and uniform monotonicity. While [21] considers
the SA scheme, the algorithm in [22] is independent on the chosen
approximation scheme. To weaken the assumptions, algorithms more
involved than the FB have been proposed in the literature. For
instance, in a recent paper, [23], the authors propose a forward-
backward-forward (FBF) algorithm that converges to a solution under
the assumption of pseudomonotone pseudo-gradient mapping but
it requires two costly evaluations of the pseudo-gradient mapping.
Alternatively, under the same assumptions, one can consider the ex-
tragradient (EG) method proposed in [20] which takes two projection
steps that can be slow. Therefore, taking weaker assumptions comes
at the price of increasing computational complexity and slowness of
the algorithms.

In this paper, we present the first preconditioned distributed FB
algorithm for SGNEPs and we prove almost sure convergence un-
der restricted cocoercivity of the pseudo-gradient mapping via the
SA scheme with variance reduction. Our technical assumptions are
weaker when compared to the current literature on FB algorithms,
e.g., cocoercivity and uniform monotonicity [22] or even strong
monotonicity [21], [24]. Moreover, compared to a direct application
of the FBF and EG algorithms, ours shows faster convergence in
terms of number of iterations and computational time.

A preliminary study related to this work is presented in [10]. In that
paper, we consider a SGNEP and build a preconditioned FB algorithm
with damping. The algorithm is guaranteed to reach a SGNE if the
pseudo-gradient mapping is strongly monotone and its convergence
follows directly from [22]. Here, we show that the assumption of
uniform monotonicity taken in [22] can be dropped and that restricted
cocoercivity is enough for the analysis and to ensure convergence.

Notation and preliminaries: R denotes the set of real numbers
and R̄ = R ∪ {+∞}. 〈·, ·〉 : Rn × Rn → R denotes the standard
inner product and ‖ · ‖ represents the associated Euclidean norm. We
indicate a (symmetric and) positive definite matrix A, i.e., x>Ax >
0, with A � 0. Given a matrix Φ � 0, we denote the Φ-induced inner
product, 〈x, y〉Φ = 〈Φx, y〉. The associated Φ-induced norm, ‖ · ‖Φ,
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is defined as ‖x‖Φ =
√
〈Φx, x〉. A ⊗ B indicates the Kronecker

product between matrices A and B. 0m indicates the vector with
m entries all equal to 0. Given N vectors x1, . . . , xN ∈ Rn, x :=

col (x1, . . . , xN ) =
[
x>1 , . . . , x

>
N

]>
.

JF = (Id +F )−1 is the resolvent of the operator F : Rn → Rn
where Id indicates the identity operator. The set of fixed points of F
is fix(F ) := {x ∈ Rn | x ∈ F (x)}. For a closed set C ⊆ Rn,
the mapping projC : Rn → C denotes the projection onto C,
i.e., projC(x) = argminy∈C ‖y − x‖. The residual mapping is, in
general, defined as res(xk) = ‖xk − projC(xk −F (xk))‖. Given a
proper, lower semi-continuous, convex function g, the subdifferential
is the operator ∂g(x) := {u ∈ Ω : ∀y ∈ Ω〈y − x, u〉 +
g(x) ≤ g(y)}. The proximal operator is defined as proxg(v) :=

argminu∈Ω{g(u) + 1
2‖u − v‖2} = J∂g(v). ιC is the indicator

function of C, i.e., ιC(x) = 1 if x ∈ C and ιC(x) = +∞
otherwise. The set-valued mapping NC : Rn → Rn denotes the
normal cone operator for the set C, i.e., NC(x) = ∅ if x /∈
C,
{
v ∈ Rn| supz∈C v

>(z − x) ≤ 0
}

otherwise.
We now recall some basic properties of operators [9]. A mapping

F : domF ⊆ Rn → Rn is: `-Lipschitz continuous if, for some
` > 0, ‖F (x) − F (y)‖ ≤ `‖x − y‖ for all x, y ∈ Rn; (strictly)
monotone if for all x, y ∈ dom(F ) (x 6= y), 〈F (x)−F (y), x−y〉 ≥
(>) 0; η-strongly monotone if, for η > 0, 〈F (x)− F (y), x− y〉 ≥
η‖x − y‖2 for all x, y ∈ dom(F ); β-cocoercive with β > 0, if for
all x, y ∈ dom(F ), 〈F (x) − F (y), x − y〉 ≥ β‖F (x) − F (y)‖2;
firmly non expansive if for all x, y ∈ dom(F ), ‖F (x)− F (y)‖2 ≤
‖x − y‖2 − ‖(Id − F )(x) − (Id − F )(y)‖2. We use the adjective
“restricted” if a property holds for all (x, y) ∈ dom(F ) × fix(F ).
We note that a strongly monotone and Lipschitz continuous mapping
is also cocoercive and that a firmly nonexpansive operator is also
cocoercive, hence monotone [9, Def. 4.1].

II. STOCHASTIC GENERALIZED NASH EQUILIBRIUM
PROBLEMS

In this section we describe the stochastic generalized Nash equilib-
rium problem (SGNEP), i.e., a collection of optimizations problem
where the cost functions are expected value functions and the agents
are subject to coupling constraints.

We consider a set I = {1, . . . , N} of self-interested agents, each
of them choosing its strategy xi ∈ Rni from its local decision set
Ωi ⊆ Rni . We call x−i = col((xj)j 6=i) the decisions of all the
agents with the exception of i and set n =

∑N
i=1 ni. The aim of

each agent is to minimize its local cost function within its feasible
strategy set. The local cost function of agent i is defined as

Ji(xi,x−i) := Eξi [fi(xi,x−i, ξi(ω))] + gi(xi), (1)

for some measurable function fi : Rn ×Rd → R. The cost function
presents the typical splitting in smooth and non-smooth parts where
the latter is represented by the function gi : Rni → R̄ which can
model not only a local cost, but also local constraints via an additive
indicator function, e.g., gi(xi) = g̃i(xi) + ιΩi(xi).

Assumption 1 (Local cost): For each i ∈ I, the function gi in (1)
is lower semicontinuous and convex, and dom(gi) = Ωi ⊆ Rni is
nonempty, compact and convex. �
The uncertainty in the cost function Ji in (1) is expressed through
the random variable ξi : Ξi → Rd where (Ξ,F ,P) is the probability
space and Ξ = Ξ1 × . . .ΞN . Therefore, the cost function depends
on the local variable xi, on the decision of the other agents x−i
and on the random variable ξi(ω). Eξ represent the mathematical
expectation with respect to the distribution of the random variable

ξ†. We assume that E[fi(x, ξi)] is well defined for all the feasible
x ∈ X .

Assumption 2 (Cost functions convexity): For each i ∈ I and
x−i ∈ X−i the function Ji(·,x−i) is convex and continuously
differentiable. �

Furthermore, we consider games with affine shared constraints
Ax ≤ b. Therefore, the feasible decision set of each agent i ∈ I
is denoted by the set-valued mapping:

Xi(x−i) :=
{
yi ∈ Ωi | Aiyi ≤ b−

∑N
j 6=iAjxj

}
, (2)

where Ai ∈ Rm×n and b ∈ Rm. The set Ωi represents the local
decision set for agent i, while the matrix Ai defines how agent i is
involved in the coupling constraints. The collective feasible set can
be written as

X = {y ∈ Ω | Ay − b ≤ 0m} (3)

where Ω =
∏N
i=1 Ωi and A = [A1, . . . , AN ] ∈ Rm×n. We suppose

that there is no uncertainty in the constraints.
Assumption 3 (Constraint qualification): The set X satisfies

Slater’s constraint qualification. �
The aim of each agent i, given the decision variables of the other
agents x−i, is to choose a strategy xi, that solves its local optimiza-
tion problem, i.e.,

∀i ∈ I :

{
min
xi∈Ωi

Ji (xi,x−i)

s.t. Aixi ≤ b−
∑N
j 6=iAjxj .

(4)

When the optimization problems in (4) are simultaneously solved, the
solution concept that we are seeking is that of stochastic generalized
Nash equilibrium (SGNE).

Definition 1: A stochastic generalized Nash equilibrium is a col-
lective strategy x∗ ∈ X such that, for all i ∈ I,

Ji(x∗i ,x
∗
−i) ≤ inf{Ji(y,x∗−i) | y ∈ Xi(x

∗
−i)}. �

In other words, a SGNE is a set of strategies where no agent
can decrease its objective function by unilaterally deviating from its
decision. To guarantee the existence of a SGNE, we make further
assumptions on the cost function.

Assumption 4 (Cost functions measurability): For each i ∈ I and
for each ξ ∈ Ξ, the function fi(·,x−i, ξ) is convex, Lipschitz con-
tinuous, and continuously differentiable. The function fi(xi,x−i, ·)
is measurable and for each x−i, the Lipschitz constant `i(x−i, ξ) is
integrable in ξ. �

While, under Assumptions 1–4, existence of SGNE of the game
is guaranteed by [16, §3.1], uniqueness does not hold in general [16,
§3.2].

Within all the possible Nash equilibria, we focus on those that cor-
responds to the solution set of an appropriate variational inequality.
To this aim, let us define the (pseudo) gradient mapping as

F(x) = col ((E[∇xifi(xi,x−i, ξi)])i∈I) , (5)

where the possibility to exchange the expected value and the gradient
is guaranteed by Assumption 4. Then, the associated SVI reads as

〈F(x∗),x− x∗〉+
∑
i∈I
{gi(xi)− gi(x∗i )} ≥ 0,∀x ∈ X . (6)

Remark 1: Under Assumptions 1–4, the solution set of SVI(X ,F)
is non empty and compact, i.e., SOL(X ,F) 6= ∅ [25, Cor. 2.2.5].

When Assumptions 1–4 hold, any solution of SVI(X ,F) in (6)
is a SGNE of the game in (4), while vice versa does not hold in
general. Indeed, there may be Nash equilibria that are not solution
of the SVI [26, Prop. 12.7]. The SGNE that are also solution of the
associated SVI are called variational equilibria (v-SGNE). Therefore,

†From now on, we use ξ instead of ξ(ω) and E instead of Eξ .
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Algorithm 1 Preconditioned Stochastic Forward–Backward

Initialization: x0
i ∈ Ωi, λ

0
i ∈ Rm≥0, and z0

i ∈ Rm.
Iteration k: Agent i
(1) Receives xkj for all j ∈ N fi , λ

k
j for j ∈ Nλi then updates:

xk+1
i = proxgi [x

k
i − αi(F̂i(x

k
i ,x

k
−i, ξ̄

k
i )−A>i λ

k
i )]

zk+1
i = zki − νi

∑
j∈Nλi

wi,j(λ
k
i − λ

k
j )

(2) Receives zj,k+1 for all j ∈ Nλi then updates:

λk+1
i = projRm+

[
λki + σi

(
Ai(2x

k+1
i − xki )− bi

)
+ σi

∑
j∈Nλi

wi,j

(
2(zk+1

i − zk+1
j )− (zki − z

k
j )
)

− σi
∑
j∈Nλi

wi,j(λ
k
i − λ

k
j )
]

a v-SGNE of the game in (4) is the solution of the SVI(X ,F) in (6)
where F is described in (5) and X is defined in (3).

Now, we recast the SGNEP as a monotone inclusion. For each
agent i ∈ I, let the Lagrangian function be Li (x, λi) :=
Ji (xi,x−i) + gi (xi) + λ>i (Ax − b), where λi ∈ Rm≥0 is the
dual variable associated with the coupling constraints. The collective
decision x∗ is a v-SGNE of the game in (4) if and only if the
following Karush-Kuhn-Tucker (KKT) conditions are satisfied:

∀i ∈ I :

{
0 ∈ E[∇xifi(x

∗
i ,x
∗
−i, ξi)] +NΩi (x∗i ) +A>i λ,

0 ∈ (Ax∗ − b) + NRm≥0
(λ∗).

(7)
In (7), λi = λ for all i ∈ I, namely, all the agents agree on the same
dual variable, see [27, Thm. 3.1], [28, Thm. 3.1].

III. STOCHASTIC PRECONDITIONED
FORWARD-BACKWARD ALGORITHM

In the following sections, we design a stochastic counterpart of
[1, Alg. 1] (Algorithm 1). First, we describe the preconditioning
procedure that leads to the distributed iterations presented in Algo-
rithm 1. Therein, xki , zki and λki are the state variables of agent i at
iteration k, while ξki is a vector of i.i.d. random variables that agent i
may use to approximate its pseudo-gradient mapping with a random
approximation F̂ , defined later in this section.

Remark 2: If the local cost function gi is the indicator function,
we can use the projection on the local feasible set Ωi, instead of the
proximal operator [9, Ex. 12.25]. �

We suppose that each agent i only knows its local data, i.e., Ωi,
Ai and bi. Moreover, each agent has access to a pool of samples of
the random variable and is able to compute, given the strategies of
the other agents x−i, E[∇xifi(xi,x−i, ξ)] (or an approximation, as
introduced later in this section). Since the cost function is affected by
the other agents strategies, we call N fi the set of agents interacting
with i. Specifically, j ∈ N fi if the function fi(xi,x−i) explicitly
depends on xj .

We let the local copy of the dual variable be shared through the
dual variables graph, Gλ = (I, Eλ). Along with the dual variable,
the agents share on Gλ a copy of the auxiliary variables zi ∈ Rm.
The role of z = col(z1, . . . , zN ) is to force consensus, since this
is the configuration that we are seeking. The set of edges Eλ is
given by: (i, j) ∈ Eλ if player i can receive {λj , zj} from player
j. The neighbouring agents in Gλ form a set Nλi = {j ∈ I :

(i, j) ∈ Eλ} for all i ∈ I. In this way, each agent control his own
decision variable, a local copy of the dual variable and of the auxiliary
variable, and has access to the other agents variables through the
graphs.

Assumption 5 (Graph connectivity): The dual-variable graph Gλ

is undirected and connected. �
We call W ∈ RN×N the weighted adjacency matrix of Gλ.

Then, by letting di =
∑N
j=1 wi,j and D = diag{d1, . . . , dN}, the

associated Laplacian is the matrix L = D−W . Moreover, it follows
from Assumption 5 that L = L>.

Rewriting the KKT conditions in (7) in compact form as

0 ∈ T (x,λ) :=

[
G(x) + F(x) +A>λ
NRm≥0

(λ)− (Ax− b)

]
(8)

where T : X × Rm≥0 ⇒ Rn × Rm is a set-valued mapping and
G(x) = col(∂g1(x1), . . . , ∂gN (xN )), it follows that the v-SGNEs
correspond to the zeros of the mapping T .

In the remaining part of this section, we split T into the sum of
two operators A and B that satisfy specific properties. The advantage
of this technique is that the zeros of the mapping A+B correspond
to the fixed point of a specific operator depending on both A and B,
as exploited in [1], [7]. Such a scheme is known as forward backward
(FB) splitting [9, §26.5]. In fact, it holds that, for any matrix Φ � 0,
ω ∈ zer(A+ B) if and only if

ω = (Id + Φ−1B)−1 ◦ (Id− Φ−1A)(ω).

Specifically, the operator T in (8) can be written as a summation of
the two operators

A :

[
x
λ

]
7→
[

F(x)
b

]
B :

[
x
λ

]
7→

[
G(x)

NRm≥0
(λ)

]
+

[
0 A>

−A 0

] [
x
λ

]
.

(9)

Therefore, finding a v-SGNE translates in finding a pair (x∗,λ∗) ∈
X × Rm≥0 such that (x∗,λ∗) ∈ zer(A+ B).

To impose consensus on the dual variables, the authors in [1]
proposed the Laplacian constraint Lλ = 0. This is why, to preserve
monotonicity we expand the two operatorsA and B in (9) introducing
the auxiliary variable z ∈ RNm. Let L ∈ RN×N be the Laplacian
of Gλ and set L = L ⊗ Idm ∈ RNm×Nm. Let us define A =
diag{A1, . . . , AN} ∈ RNm×n and λ = col(λ1, . . . , λN ) ∈ RNm;
similarly we define b of suitable dimension. Then, let us define the
extended operatros

Ā :

 x
z
λ

 7→
 F(x)

0
b

+

 0
0

Lλ


B̄ :

 x
z
λ

 7→
 G(x)

0
NRm≥0

(λ)

+

 0 0 A>

0 0 L
−A −L 0

 x
z
λ

 .
(10)

To ensure that the zeros of Ā + B̄ correspond to the zeros of the
operator T in (8), we show that the following result holds.

Lemma 1: Let Assumptions 1-5 hold and consider the operators
A and B, Ā and B̄ in (9) and (10) respectively. Then, the following
hold.

(i) For any col(x∗,z∗,λ∗) ∈ zer(Ā + B̄), x∗ is a v-SGNE of
game in (4), i.e., x∗ solves the SVI(X ,F) in (6). Moreover
λ∗ = 1N ⊗λ∗, and (x∗, λ∗) satisfy the KKT condition in (7)
i.e., col(x∗, λ∗) ∈ zer(A+ B);

(ii) zer(A+ B) 6= ∅ and zer(Ā+ B̄) 6= ∅.
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Proof: See Appendix I.
For the forthcoming convergence analysis, we take the following

assumption.
Assumption 6 (Restricted cocoercivity): F is restricted β-

cocoercive, with β > 0. �
Remark 3: The gradient of a convex function is cocoercive, while

the gradient of a strictly (strongly) convex function is strictly
(strongly) monotone [9]. In a noncooperative game, convexity of the
cost functions Ji in the local variables xi (Assumption 2) does not
imply monotonicity, nor cocoercivity (unless we restrict to the so-
called jointly convex case [6]). �
Then, in light of Assumption 6, the two operators Ā and B̄ in (10)
have the following properties (in the Φ-induced norm).

Lemma 2: Let Assumptions 1-6 hold and let Φ � 0. The operators
Ā and B̄ in (10) have the following properties:

(i) Ā is θ-cocoercive where 0 < θ ≤ min
{

1
2d∗ , β

}
and d∗ is the

maximum weighted degree of Gλ;
(ii) The operator B̄ is maximally monotone;

(iii) Φ−1Ā is θγ-cocoercive where γ = 1
|Φ−1| ;

(iv) Φ−1B̄ is maximally monotone.
Proof: See Appendix I.

Since the expected value can be hard to compute, as the distribution
of the random variable is unknown, we take an approximation of the
pseudo-gradient via the stochastic approximation (SA) scheme with
variance reduction. We note that the preconditioning can be done
independently of the approximation scheme.

We assume that the agents have access to an increasing number
Sk of samples of the random variable ξ and to be able to compute
an approximation of F(x) of the form

F̂ (x, ξ) =

= col

 1

Sk

Sk∑
t=1

∇x1f1(x, ξ
(t)
1 ), . . . ,

1

Sk

Sk∑
t=1

∇xN fN (x, ξ
(t)
N )

 .

(11)
where ξ = col(ξ̄1, . . . , ξ̄N ) and for all i ∈ I, ξ̄i =

col(ξ
(1)
i , . . . , ξ

(Sk)
i ) is an i.i.d. sequence of random variables sam-

pled from P. The random variables should be i.i.d. to avoid correlation
between the variables involved (see [20], [29] for more details).
Approximations of the form in (11) are common in Monte-Carlo
simulation approaches, machine learning and computational statistics.

Then, with the SA of the pseudogradient in (11), we approximate
Ā in (10) with

Â :

 (x, ξ)
z
λ

 7→
 F̂ (x, ξ)

0
b

+

 0
0

Lλ

 . (12)

Given any Φ � 0, our fixed point problem reads as

ω = (Id +Φ−1B̄)−1 ◦ (Id−Φ−1Ā)(ω) (13)

and it suggests the stochastic FB algorithm

ωk+1 = (Id + Φ−1B̄)−1 ◦ (Id− Φ−1Â)(ωk, ξk). (14)

where (Id+Φ−1B̄)−1 represents the backward step and (Id−Φ−1Â)
is the forward one. We remark that Â is a sampled and computable,
approximation of the operator Ā in (10).

By expanding (14) and solving for xk, zk and λk, we obtain the
distributed FB steps in Algorithm 1 with Â as in (12), B̄ as in (10)
and

Φ =

 α−1 0 −A>

0 ν−1 −L

−A −L σ−1

 . (15)

In (15), α−1 = diag{α−1
1 In1 , . . . , α

−1
N InN } ∈ Rn×n and

similarly σ−1 and ν−1 are block diagonal matrices of suitable
dimensions. We note that Φ is symmetric and such that ωk is easy to
be computed. Moreover, with Φ as in (15), we overcome the problem
to distribute the computation of the resolvent of B̄, the first operator
in (14) [1].

IV. CONVERGENCE ANALYSIS

Since we use the approximation in (11), for all k ≥ 0, let us
introduce the approximation error

εk = F̂ (xk, ξk)− F(xk). (16)

and consequently εk = Â(ωk, ξk) − Ā(ωk) = col(εk, 0, 0), with
Â is as in (12). The following assumption is widely used in the
stochastic framework [17], [20].

Assumption 7 (Zero mean error): For k ∈ N, E
[
εk|Fk

]
=

0 a. s.. �
To guarantee that Φ is positive definite and in turn to obtain

convergence, the step sizes sequence can be taken constant but it
should satisfy some bounds [1, Lem. 6].

Assumption 8 (Bounded step sizes): For any agent i ∈ I and an
arbitrary γ > 0, the step sizes are such that:

0 < αi ≤ (γ + max
j∈{1,...,ni}

∑m

k=1
|[A>i ]jk|)−1

0 < νi ≤ (γ + 2di)
−1

0 < σi ≤ (γ + 2di + max
j∈{1,...,m}

∑ni

k=1
|[Ai]jk|)−1

where [A>i ]jk indicates the entry (j, k) of the matrix A>i . Moreover,
‖Φ−1‖ < 2θ, where θ is the cocoercivity constant of Ā as in Lemma
2. �

The number of samples to be taken must satisfy some conditions
as well.

Assumption 9 (Increasing batch size): The batch size sequence
(Sk)k≥1 is such that Sk ≥ c(k+ k0)a+1, for some c, k0, a > 0. �
This assumption implies that 1/Sk is summable, which is usual in
variance reduced schemes [20].

Assumption 10 (Variance reduction): There exist p ≥ 2, σ1 ≥ 0,
and a measurable locally bounded function σ : SOL(X ,F) → R
such that for all (x,x∗) ∈ Rn × SOL(X ,F)

E
[
‖F̃ (x, ξ)− F(x)‖p

] 1
p ≤ σ

(
x∗
)

+ σ1

∥∥x− x∗∥∥ .
where F̃ (x, ξ) = col((∇xifi(x, ξi))i∈N) is a single approximation
of the pseudogradient given one realization ξ = col(ξ1, . . . , ξN ). �

Remark 4: For simplicity of presentation, let us consider a stronger
condition that Assumption 10, namely, for all x ∈ X

E
[
‖F̃ (x, ξ)− F(x)‖2

]
≤ σ2 (17)

for some σ > 0. In the literature, (17) is known as uniform
bounded variance. Assumption 10 is more natural when the feasible
set is unbounded and it is always satisfied when the mapping F is
Caratheodory and Lipschitz continuous [23, Ex. 3.1]. Since we are
in a game theoretic setup, our feasible set is bounded, we can to use
(17) as a variance control assumption.

We emphasize that all the following results hold also in the more
general case given by Assumption 10 and using the Lp norm for any
p ≥ 2. We refer to [20] for a more detailed insight on this general
case. �

We are now ready to state our main convergence result.
Theorem 1: Let Assumptions 1–10 hold. Then, the sequence

(xk)k∈N generated by Algorithm 1 converges a.s. to a v-SGNE
of the game in (4).

Proof: See Appendix III.
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V. COMPARATIVE NUMERICAL SIMULATIONS

Let us propose a number of numerical simulations to corroborate
the theoretical analysis. We also compare our algorithm with the
forward-backward-forward (FBF) [23] and the extragradient (EG)
[20] algorithms. To obtain the two algorithms, let us rewrite the
operator B̄ in (10) as B̄ = C + D, where C contains the local
constraints and D is the skew symmetric matrix. Let us also call
H = Ā + D. Then, in compact form, the FBF algorithm generates
two sequences (uk,vk)k≥0 as follows:

uk = JΨ−1C(v
k −Ψ−1Hvk)

vk+1 = uk + Ψ−1(Hvk −Huk).
(18)

In (18), Ψ is a block-diagonal matrix with the step sizes:

Ψ = diag(α−1, ν−1, σ−1), (19)

where α, ν and σ are diagonal matrices of suitable dimensions. The
convergence of the stochastic FBF with is guaranteed by [23, Thm.
4.5].

Analogously, we can write the stochastic distributed EG algorithm
in compact form as:

uk = JΨ−1C(v
k −Ψ−1Hvk)

vk+1 = JΨ−1C(v
k −Ψ−1Huk).

(20)

In this case, convergence is guaranteed by [20, Thm. 3.18].
As a case study, we consider the electricity market problem

proposed in [11], which can be casted as a network Cournot game
with markets capacity constraints [1], [18].

We consider a set of N = 20 generators (companies) that sell
energy in a set of m = 7 locations (markets). The random variable ξ
represents the uncertainty in the demand. Each company decides the
quantity xi of energy to deliver in the ni markets it is connected with
and its has a local constraint of the form 0 < xi ≤ γi, where each
component of γi is randomly drawn from [1, 1.5]. This constraint
can be seen as the capacity limit of generator i. Each market has
a bounded capacity bj randomly drawn from [0.5, 1]. The collective
constraints are given by Ax ≤ b where A = [A1, . . . , AN ]. Each Ai
specifies in which market a company i participates. This information
can be retrieved from the graph in [1, Fig. 1]. Each company has
a local cost function related to the production of electricity which
is ci(xi) = πi

∑ni
j=1([xi]j)

2 + q>i xi, where [xi]j indicates the
j component of xi. πi is randomly drawn from [1, 8] and each
component of qi is randomly drawn from [0.1, 0.6]. The cost function
is not uncertain as we suppose that the companies are able to
compute their own cost of production. Moreover, ci is strongly
convex with Lipschitz continuous gradient. The prices of the locations
are collected in P : Rm ×Ξ→ Rm. The uncertain variable appears
in this functional. The price P (x, ξ) = P̄ − D(ξ)Ax is taken as
an affine function and each component of P̄ = col(P̄1, . . . , P̄7) is
randomly drawn from [2, 4]. The uncertainty appears in the quantities
D(ξ) = diag{d1(ξ1), . . . , d7(ξ7)} that concern the total supply for
each market. The entries of D(ξ) are taken with a normal distribution
with mean 0.8 and finite variance. The cost function of each agent
is then given by Ji(xi, x−i, ξi) = ci(xi)−E[P (x, ξ)>Aixi]. Since
ci(xi) is strongly convex with Lipschitz continuous gradient and the
prices are linear, the pseudo-gradient mapping is strongly monotone.
Following [1], the dual variables graph is a cycle graph with the
addiction of the edges (2, 15) and (6, 13).

We simulate the FB, FBF and EG algorithms to draw a comparison
using the SA scheme with variance reduction. The parameters α, ν
and σ are taken to be the largest possible to ensure convergence.
The plot in Fig. 1 shows the relative distance from the unique v-
SGNE x∗. The plot in Fig. 2 shows the computational time needed

to reach a solution. From the figures, our algorithm is comparable in
terms of number of iterations to the FBF algorithm but it is the least
computationally expensive.
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Fig. 1. Relative distance of the primal variable from the solution.
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Fig. 2. Computation time (achieved on Matlab R2019a with a 2,3 GHz
Intel Core i5 and 8 GB LPDDR3 RAM).

VI. CONCLUSION

The preconditioned forward–backward operator splitting is appli-
cable to stochastic generalized Nash equilibrium problems to design
distributed equilibrium seeking algorithms. Since the exact expected
value is hard to compute, the sample average approximation can be
used to ensure almost sure convergence. Convergence holds under
restricted cocoercivity of the pseudo-gradient mapping. This assump-
tion is among the weakest known in the literature and, remarkably,
match well with the deterministic problem setup.

APPENDIX I
PROOFS OF SECTION III

Proof: [Proof of Lemma 1] The proof of (i) follows similarly
to [1, Thm. 2]. Concerning (ii), given Assumptions 1–4, the game
in (4) has at least one solution x∗, therefore, there exists a λ∗ ∈
Rm≥0 such that the KKT conditions in (7) are satisfied [28, Thm.
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3.1]. It follows that zer(A+ B) 6= ∅. The existence of z∗ such that
col(x∗,z∗,λ∗) ∈ zer(Ā+ B̄) follows from properties of the normal
cone and of the Laplacian matrix as a consequence of Assumption 5
[1, Thm. 2].

Proof: [Proof of Lemma 2] First we note that ‖L‖ ≥ 2d∗ and
that by the Baillon-Haddard Theorem the Laplacian operator is 1

2d∗ -
cocoercive. Then Statement (i) follows by this computation:

〈Ā(ω1)− Ā(ω2),ω1 − ω2〉
= 〈F(x1)− F(x2), x1 − x2〉+ 〈Lλ1 −Lλ2,λ1 − λ2〉

≥ β‖F(x1)− F(x2)‖2 +
1

2d∗
‖Lλ1 −Lλ2‖2

≥ min
{
β, 1

2d∗
}

(‖F(x1)− F(x2)‖2 + ‖Lλ1 −Lλ2‖2)

≥ θ‖Ā(ω1)− Ā(ω2)‖2.

The operator B̄ is given by a sum, therefore it is maximally monotone
if both the addend are [9, Prop. 20.23]. The first part is maximally
monotone by Assumption 1 and Moreau Theorem [9, Thm. 20.25]
and the second part is a skew symmetric matrix [9, Cor. 20.28].
Statement (iii) follows from Statement (i) and (iv) follows from (ii)
[1, Lem. 7].

APPENDIX II
SEQUENCE OF RANDOM VARIABLES

In this appendix we recall some results on sequences of random
variables, given the probability space (Ξ,F ,P).

Let us define the filtration F = {Fk}, that is, a family of
σ-algebras such that F0 = σ (X0), for all k ≥ 1, Fk =
σ (X0, ξ1, ξ2, . . . , ξk) and Fk ⊆ Fk+1 for all k ≥ 0.

The Robbins-Siegmund Lemma is widely used in literature to
prove a.s. convergence of sequences of random variables. It first
appeared in [30].

Lemma 3 (Robbins-Siegmund Lemma, [30]): Let F = (Fk)k∈N
be a filtration. Let {αk}k∈N, {θk}k∈N, {ηk}k∈N and {χk}k∈N be
non negative sequences such that

∑
k η

k <∞,
∑
k χ

k <∞ and let

∀k ∈ N, E[αk+1|Fk] + θk ≤ (1 + χk)αk + ηk a.s.

Then
∑
k θ

k < ∞ and {αk}k∈N converges a.s. to a non negative
random variable.

We also need this result for Lp norms, known as Burkholder-Davis-
Gundy inequality [31].

Lemma 4 (Burkholder-Davis-Gundy inequality): Let {Fk} be a
filtration and {Uk}k≥0 a vector-valued martingale relative to this
filtration. Then, for all p ∈ [1,∞), there exists a universal constant
cp > 0 such that for every k ≥ 1

E

[(
sup

0≤i≤N
‖Ui‖

)p] 1
p

≤ cpE

( N∑
i=1

‖Ui − Ui−1‖2
) p

2


1
p

.

�
We also recall the Minkowski inequality: for given functions f, g ∈
Lp(Ξ,F ,P), G ⊆ F and p ∈ [0;∞]

E
[
‖f + g‖p|G

] 1
p ≤ E

[
‖f‖p|G

] 1
p + E

[
‖g‖p|G

] 1
p .

When combined with the Burkholder-Davis-Gundy inequality, it leads
to the fact that for all p ≥ 2, there exists a constant cp > 0 such
that, for every k ≥ 1,

E

[(
sup

0≤i≤N
‖Ui‖

)p] 1
p

≤ cp

√√√√ N∑
k=1

E (‖Ui − Ui−1‖p)
2
p .

APPENDIX III
PROOF OF THEOREM 1

In this section, we prove convergence of Algorithm 1. Since the it-
erations of Algorithm 1 are obtained by expanding (14), convergence
of the sequence (xk,λk) to a v-GNE of the game in (4) follows by
the convergence of the FB iterations in (14).

We now prove a preliminary result concerning the sequence
generated by Algorithm 1. Due to spacing limitations, we use Â
instead of Â.

Lemma 5: Let Assumptions 1-8 hold. Then, the sequence
(ωk)k∈N) generated by (14) satisfies the iniequality

E
[
‖ωk+1 − ω∗‖2Φ|F

k
]
≤ ‖ωk − ω∗‖2Φ+

+ 2E
[
‖Φ−1εk‖2Φ|F

k
]

+
1

2

(
1

ζ
− 1

)
resΦ(ωk)2.

(21)

Proof: We start by using firmly nonexpansiviveness of the
resolvent [9, Cor. 23.9] and the fact that if ω∗ is a solution then
ω∗ = (Id +Φ−1B̄)−1(Id−Φ−1Ā)ω∗:

‖ωk+1 − ω∗‖2Φ ≤ ‖ω
k − ω∗‖2Φ + 2〈ωk − ω∗,Φ−1εk〉Φ

− 2〈ωk − ω∗,Φ−1(Ā(ωk)− Ā(ω∗))〉Φ+

− ‖ωk − ωk+1‖2Φ + 2〈ωk − ωk+1,Φ−1(Â(ωk)− Ā(ω∗))〉Φ
By Young’s inequality with ζ > 1 and such that Assumption 8 is
satisfied, we have that

2〈ωk − ωk+1,Φ−1(Â(ωk)− Ā(ω∗))〉Φ ≤
1

ζ
‖ωk − ωk+1‖2Φ+

+ ζ‖Φ−1(Ā(ωk)− Ā(ω∗))‖2Φ + ζ‖Φ−1εk‖2Φ+

+ 2ζ〈Φ−1Ā(ωk)− Φ−1Ā(ω∗), εk〉Φ
(22)

Then, by using cocoercivity and including (22), we obtain:

‖ωk+1 − ω∗‖2Φ ≤ ‖ω
k − ω∗‖2Φ + ζ‖Φ−1εk‖2Φ+

+
(

1
ζ − 1

)
‖ωk − ωk+1‖2Φ + 2〈ωk − ω∗,Φ−1εk〉Φ+

+

(
ζ‖Φ−1‖

θ − 2

)
〈ωk − ω∗,Φ−1Ā(ωk)− Φ−1Ā(ω∗)〉Φ

+ 2ζ〈Φ−1Ā(ωk)− Φ−1Ā(ω∗), εk〉Φ

(23)

Next, given the residual res(ωk), we have that

resΦ(ωk)2 = ‖ωk − (Id +Φ−1B)−1(ωk − Φ−1Ā(ωk))‖2Φ
≤2‖ωk − ωk+1‖2Φ + 2‖(Id +Φ−1B)−1(ωk − Φ−1Â(ωk, ξk))

− (Id +Φ−1B)−1(ωk − Φ−1Ā(ωk))‖2Φ
≤2‖ωk − ωk+1‖2Φ + 2‖Φ−1εk‖2Φ

(24)
where the first equality follows by the definition of ωk+1 and the
last inequality follows from non expansivity. Then,

‖ωk − ωk+1‖2Φ ≥
1

2
resΦ(ωk)2 − ‖Φ−1εk‖2Φ

Finally, equation (23) becomes

‖ωk+1 − ω∗‖2Φ ≤ ‖ω
k − ω∗‖2Φ +

(
ζ − 1

ζ
+ 1

)
‖Φ−1εk‖2Φ

+ 2〈ωk − ω∗,Φ−1εk〉Φ + 1
2

(
1
ζ − 1

)
resΦ(ωk)2

+

(
ζ‖Φ−1‖

θ − 2

)
〈ωk − ω∗,Φ−1Ā(ωk)− Φ−1Ā(ω∗)〉Φ

+ 2ζ〈Φ−1Ā(ωk)− Φ−1Ā(ω∗), εk〉Φ
By Assumption 8 and by monotonicity, the second last term is
non-positive, hence, by taking the expected value and by using
Assumption 7, we obtain (21).
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Before proving convergence of the algorithm, we prove a prelim-
inary result on the variance of the stochastic error.

Lemma 6: For all k ≥ 0, if Assumption 10 hold, we have that

E
[
‖εk‖2|Fk

]
≤ cσ2

Sk
a.s..

Proof: We first prove that E[‖εk‖2|Fk]
1
2 ≤ c2σ√

Sk
a.s., then

the claim follows immediately. Define the process {MS
S (x)}Si=0 as

M0(x) = 0 and for 1 ≤ t ≤ S

MS
t (x) = 1

S

∑t
l=1 F̃ (x, ξ(t))− F(x).

Let Ft = σ(ξ(1), . . . , ξ(t)). Then {MS
t (x),Ft}St=1 is a martingale

starting at 0. Let

∆MS
t−1(x) = MS

t (x)−MS
t−1(x) = F̃ (x, ξ(t))− F(x).

Then, by Equation (17), we have

E
[
‖∆MS

t−1‖2
] 1
2

=
1

S
E
[
‖F̃ (x, ξ(t))− F(x)‖2

] 1
2 ≤ σ

S
.

By applying Lemma 4, we have

E
[
‖MS

S (x)‖2
] 1
2 ≤ c2

√√√√ N∑
i=1

E

[∥∥∥∥ F̃ (x,ξ(t))−F(x)
S

∥∥∥∥2
]

≤ c2

√√√√ 1

S2

N∑
i=1

E
[
‖F̃ (x, ξ(t))− F(x)‖2

]
≤ c2σ√

S
.

We note that from (11) F̂ (x, ξ) = 1
Sk

∑Sk

t=1 F̃ (x, ξ(t)) and

MSk

Sk
(xk) = εk, hence by taking the square, the claim follows.

We note that if Lemma 6 holds, then it follows that

E
[
‖Φ−1εk‖2Φ|F

k
]
≤ cσ2‖Φ−1‖

Sk
.

We are now ready to prove the main convergence result.
Proof: [Proof of Theorem 1] By Lemmas 5 and 6 we have that

E
[
‖ωk+1 − ω∗‖2Φ|F

k
]
≤‖ωk − ω∗‖2Φ + 2

cσ2‖Φ−1‖
Sk

+ 1
2

(
1
ζ − 1

)
res(ωk)2.

By Lemma 3 we conclude that the sequence (ωk)k∈N is bounded
and has a cluster point ω̄. Since

∑
θk < 0, it follows that

limk→∞ res(ωk) = 0 as k →∞ and res(ω̄) = 0.
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