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SUMMARY

Vortex-induced vibration (VIV) is a well-known phenomenon for civil and offshore struc-
tures. Currently, the prediction of this type of vibration in practice currently mainly re-
lies on the force-decomposition method. However, the limitations of this method have
restricted the applicability of the method, and alternative models are therefore needed
to meet increasing demands for the more accurate prediction of VIV under more com-
plicated conditions. The wake oscillator model overcomes the main limitations of the
force-decomposition method to some extent, and it is one of the promising models that
has gained popularity in recent years. Although the concept of the wake oscillator was
first proposed over half a century ago and has been developed much since then, the
existing wake oscillator models still have some limitations, which have restricted their
applications.

The main objective of this study is to improve the wake oscillator model for better
modelling of the VIV of cylindrical structures, and efforts are made in this thesis to (a)
reproduce the free and forced vibration experiments by introducing nonlinear coupling,
and (b) develop a single wake oscillator equation that is coupled to both cross-flow and
in-line motions for the prediction of coupled cross-flow and in-line VIV.

An existing wake oscillator model, which serves as the foundation for further im-
provements, is reviewed. Before proceeding to improve the lift force model, different
drag force models, as well as their influence on the dynamic characteristics of the lift
force that conforms to the forced vibration experiment, are investigated. Three different
drag force models are analysed, and it is demonstrated that all three models result in a
similar lift force. The identified lift force exhibits an obvious resonance pattern at small
amplitudes of cylinder oscillation; however, this is no clear resonance pattern at large
amplitudes.

The evolution of the lift force with the amplitude of vibration may be the result of
nonlinearity. Therefore, the possibility of improving the predictive capabilities of the
wake oscillator models by means of tuning their nonlinearity is investigated. Nonlin-
earity is introduced through the coupling between the wake oscillator equation and the
cylinder motion in the form of multiplications of displacement, velocity and accelera-
tion of the cylinder. Both constant and frequency dependent coupling coefficients are
considered. The model with constant coupling coefficients is shown to be able to quan-
titatively reproduce the added damping measured in the forced vibration experiments
over most of the range of frequencies and amplitudes that are of interest. However, it
fails to capture the negative added mass observed in experiments. The model with fre-
quency dependent coupling is formulated in the time domain with the help of convolu-
tion integrals. A single set of frequency dependent, complex-valued functions—which
are the Laplace transforms of corresponding convolution kernels—that reproduce the
forced vibration experiments fairly well is determined over a limited range of frequen-
cies. However, it proved to be not possible to extend these functions to the infinite fre-
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quency domain such that the causality principle and the energy conservation would be
satisfied.

With respect to the development of the wake oscillator model for the prediction of
coupled cross-flow and in-line VIV, the original wake oscillator model without nonlinear
coupling is adopted, and a new in-line coupling term is introduced to include the effect
of in-line motion. The in-line coupling term is inspired by the experimental observation
as well as the heuristic inference from the dynamics of a pendulum. The new wake oscil-
lator model has been validated against experiments with a rigid cylinder and is shown to
be able to predict the appearance of the super-upper branch in coupled cross-flow and
in-line VIV when the mass ratio of the system decreases.

The new wake oscillator model is then applied in the modelling of the coupled cross-
flow and in-line VIV of flexible cylinders, and it is validated against a series of experi-
ments where a top-tensioned riser is subjected to step flows. The model is shown to be
able to capture most features of the VIV of flexible cylinders, and a good agreement is ob-
served between the simulation results and experimental measurements. It is interesting
to note that while it is conventionally expected that the VIV of flexible cylinders sub-
jected to uniform flow is dominated by a single frequency, a multi-frequency response
is observed in the simulation results over the range of flow velocities through which the
transition of the dominant mode of vibration occurs.

The importance of in-line coupling and its influence on the prediction of the cou-
pled cross-flow and in-line VIV of the flexible cylinder is studied through comparisons
of simulation results of the VIV of a flexible riser obtained with different models. Both the
cases of uniform and linearly sheared flow are analysed. It is shown that for the sheared
flow cases, the response of the riser predicted by the models with and without in-line
coupling is similar, while that for the uniform flow cases is significantly different. This
difference is found to be related to the energy transfer between the fluid and the struc-
ture. For the sheared flow cases, the energy transfer predicted by all models is found to
mainly depend on the reduced velocity. For the uniform flow cases, the energy transfer
according to the model without in-line coupling is primarily dependent on the ampli-
tude of vibration, while for that with in-line coupling, the motion trajectory also plays
an important role.

The fatigue damage predicted by the model with and without in-line coupling is also
studied. In general, the model with in-line coupling predicts a higher fatigue damage
rate, compared to the model without in-line coupling, as a result of significant contribu-
tions from higher harmonics.



SAMENVATTING

Wervel-geïnduceerde trillingen (Engels: Vortex-Induced Vibration, afgekort tot: VIV)
zijn een bekend verschijnsel in de civiele en offshore techniek. De voorspelling van deze
trillingen is momenteel voornamelijk gebaseerd op de zogenaamde ‘force-decomposition’
methode. Deze methode is echter slechts toepasbaar in een beperkt aantal gevallen. Er
zijn daarom alternatieve modellen nodig voor een betere voorspelling van VIV in gecom-
pliceerdere gevallen. Het zogenaamde ‘wake oscillator model’ verbetert in zekere mate
de grootste tekortkomingen van de ‘force-decomposition’ methode. Dit veelbelovende
model heeft de afgelopen jaren aan populariteit gewonnen. Alhoewel de basis van het
wake oscillator model meer dan 50 jaar geleden is ontwikkeld, hebben de huidige wake
oscillator modellen nog beperkingen die hun toepasbaarheid begrenzen.

Het doel van deze studie is het verbeteren van de wake oscillator zodat dit model VIV
rond cilindrische constructies beter beschrijft. In deze thesis is gepoogd om: a) de for-
ceerde trilling-experimenten te reproduceren door gebruik te maken van niet-lineaire
koppelingstermen, en b) een wake oscillator te ontwikkelen die slechts met één vergelij-
king bewegingen van de constructie zowel parallel aan, als dwars op de stromingsrich-
ting kan beschrijven.

Een bestaand wake oscillator model wordt besproken, dat dient als de basis voor ver-
dere verbetering. Voordat met verbetering van het model voor de lift kracht wordt begon-
nen, worden eerst verschillende modellen voor beschrijving van de weersstandskracht
onderzocht. Hierbij wordt gekeken naar de invloed van de weerstandskracht op de dy-
namische eigenschappen van de lift kracht tijdens modelering van geforceerde trilling-
experimenten. Drie verschillende modellen voor beschrijven van de weerstandskracht
zijn onderzocht. Er wordt aangetoond dat in alle drie de modellen een vergelijkbare lift
kracht wordt gevonden. De geïdentificeerde lift krachten vertonen een duidelijk reso-
nantie patroon wanneer de cilindrische constructie met een kleine amplitude beweegt.
Dit is in duidelijke tegenstelling met de resonantie patronen wanneer de bewegingsam-
plitudes groot zijn.

De verandering van de resonantie patronen bij het verloop van kleine naar grote be-
wegingsamplituden zou het gevolg van niet-lineariteiten kunnen zijn. Daarom is onder-
zocht of de geforceerde trilling-experimenten beter beschreven kunnen worden door in-
troductie van niet-lineariteiten in de koppelingstermen tussen de wake oscillator verge-
lijking en de bewegingsvergelijking van de cilindrische constructie. Deze niet-lineariteiten
bestaan uit vermenigvuldigingen met de cilinder verplaatsing, snelheid en versnelling.
Zowel constante als frequentie-afhankelijke koppelingscoëfficiënten zijn onderzocht. Het
model met constante koppelingscoëfficiënten is in staat om kwantitatief de toegevoegde
demping te beschrijven, zoals gemeten in de geforceerde trilling-experimenten over een
groot bereik van de frequenties en amplitudes van belang. Het model kan echter niet
de gemeten negatieve toegevoegde massa beschrijven. In het frequentie afhankelijke
model, wordt de frequentie afhankelijkheid gemodelleerd door gebruik te maken van

xiii
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convolutie-integralen in het tijdsdomein. Frequentie afhankelijke, complexe functies
zijn bepaald, waarvan de Laplacetransformatie de convolutie kern is. Het frequentie
afhankelijke model kan de geforceerde trilling-experimenten redelijk goed beschrijven
over een beperkt bereik van frequenties. Het is echter niet gelukt de complexe functies
uit te breiden over het oneindige frequentie bereik, zodat de convolutie op een correcte
manier een causaal signaal beschrijft dat voldoet aan de wet van behoud van energie.

Voor de beschrijving van de gekoppelde cilinder bewegingen door VIV in zowel de
dwarsstroomse richting als de richting parallel aan de stroming is het originele wake os-
cillator model toegepast met een nieuw toegevoegde parallelle koppeling. Deze extra
term is toegevoegd om het effect van de parallelle beweging goed te beschrijven. Deze
term is gebaseerd op zowel experimentele waarnemingen als op heuristische beschou-
wingen gebaseerd op de dynamica van een starre slinger. Deze nieuwe wake oscillator is
gevalideerd tegen experimenten met een starre cilinder en er wordt aangetoond dat dit
model de ‘super-upper branch’ van VIV, in het geval van gekoppelde bewegingen in de
dwarsstroomse richting en de richting parallel aan de stroming, kan beschrijven wan-
neer de massa ratio van het systeem afneemt.

Het nieuwe wake oscillator model is vervolgens toegepast op een flexibele cilinder op
de gekoppelde bewegingen in dwarsstroomse richting en de richting parallel aan de stro-
ming. Het model is gevalideerd tegen een serie experimenten waarin een ‘top-tensioned
riser’ is onderworpen aan een stapsgewijze stroming. Er wordt getoond dat het model
in staat is de belangrijkste kenmerken van VIV van flexibele cilinders te beschrijven. Een
goede overeenkomst tussen simulatie en experimentele resultaten is waargenomen. Het
is interessant om op te merken dat er doorgaans wordt aangenomen dat VIV van flexibele
cilinders onderworpen aan een uniforme stroming gedomineerd wordt door een enkele
frequentie, terwijl de waargenomen responsie in de simulatie gekenmerkt wordt door
meerdere frequenties in het bereik van stromingssnelheden waarin de transitie naar de
dominante trilling vorm plaatsvindt.

De invloed van de koppelingsterm in de richting parallel aan de stroming op het ge-
koppelde bewegingsgedrag van de flexibele cilinder zowel in de stromingsrichting als in
de dwarsstroomse richting is onderzocht door middel van het vergelijken van de simu-
laties met verschillende modellen. Zowel gevallen met uniforme stroming als met over
de diepte verlopende stromingssnelheden zijn onderzocht.

Er wordt aangetoond dat in de gevallen met verlopende stroming, de responsie van
de riser zoals beschreven door de modellen met een koppelingsterm in de richting pa-
rallel aan de stroming sterk overeenkomt met responsie beschreven door modellen zon-
der deze koppelingsterm. Voor gevallen met uniforme stroming is dit duidelijk niet het
geval. Dit verschil is gerelateerd aan de energie overdracht tussen vloeistof en construc-
tie. Er is gevonden dat voor de gevallen met verlopende stroming, de gemodelleerde
energie overdracht voornamelijk afhankelijk is van de gereduceerde snelheid. Voor de
gevallen met uniforme stroming is de energie overdracht in het geval van geen koppe-
lingsterm in de parallelle richting voornamelijk afhankelijk van de bewegingsamplitude,
terwijl voor de gevallen met koppelingstermen in deze richting, het bewegingspatroon
ook een sterke rol speelt.

De vermoeiingsschades die voorspeld wordt door het model met en zonder koppe-
lingsterm in de parallelle richting zijn onderzocht. In het algemeen kan gezegd worden
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dat het model met koppelingsterm in deze meer vermoeiingsschade voorspelt. Dit wordt
veroorzaakt door de aanwezigheid van hogere harmonische componenten in de respon-
sie.





1
INTRODUCTION

1.1. VORTEX-INDUCED VIBRATIONS IN ENGINEERING
Vortex-induced vibration (VIV) is a well-known phenomenon to civil engineers as it
often occurs in flexible cylindrical structures, such as chimneys, cables of suspended
bridges, suspended power lines, offshore risers and mooring cables, that are subjected
to air or water flows. This vibration can lead to the rapid accumulation of fatigue dam-
age, or it can even result in the sudden collapse of a structure. For example, in January
2002, a tall circular steel support structure that was part of the Vertigo thrill ride at Cedar
Point suddenly collapsed as a result of VIV (Klamo, 2007).

The phenomenon of VIV has been extensively studied in the past decades, and the
main driver behind this is the fast development of the offshore oil and gas industry. As
the exploration of fossil sources extends to deep oceans, many structural components
that are used for drilling and production can be several thousand meters long, which
makes them particularly susceptible to VIV. Being dominated by tension, the offshore
risers normally possess natural frequencies that are densely spaced. Therefore, resonant
response due to vortex shedding can take place over a wide range of flow velocities. Also,
with low fundamental frequencies, the VIV of these structures often occurs in higher
modes. The vibration at these high modes leads to significant fatigue damage, and the
prediction of VIV has thus been one of the key issues in the analysis and design of off-
shore structures.

The VIV of offshore structures often manifests itself in a complicated manner. With
flow conditions that change temporally and spatially in the ocean environment, the
global behaviour of a structure is a result of a complicated interaction between the struc-
ture and flow at local positions as well as its influence on the nearby regions. With
vortices being shed at different frequencies along the slender body, the response of the
structure contains multiple frequencies. Under such circumstances, each point on the
structure has a motion that is not simply harmonic, but rather is amplitude-modulated
in both space and time (Gopalkrishnan, 1993). The complexity of the problem and lim-
ited understanding of the underlying mechanism make the prediction of the VIV of flex-
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2 1. INTRODUCTION

Figure 1.1: Van Karman vortex street behind a stationary cylinder (van Dyke, 1982)

ible cylinders difficult. In practice, the fatigue damage of offshore structures due to VIV
is mostly estimated based on empirical methods, and large safety factors are applied.

1.2. THE PHENOMENON OF VORTEX-INDUCED VIBRATION
As a flow passes a circular cylinder, due to the fluid viscosity, a boundary layer will be
formed, and the flow will separate from the cylinder, resulting in vortex shedding down-
stream of the cylinder (Fig. 1.1). The formation of the vortex shedding depends on the
dimension of the cylinder as well as the fluid conditions, which can be characterised by
the Reynolds number

Re = V D

µ
(1.1)

where V is the undisturbed flow velocity, D is the cylinder diameter and µ is the kine-
matic viscosity (about 1.1×10−6 m2/s for sea water). The vortex shedding takes place for
Reynolds numbers larger than 40. For a Reynolds number higher than 300, the vortex
street evolves from laminar to fully turbulent. It should also be pointed out that after
a certain Reynolds number (approximately 200,000–500,000) the two-dimensional (2D)
character of the flow breaks down, and strong three-dimensional (3D) effects are ob-
served. In such a situation, the vortex shedding is no longer coherent in the spanwise
direction, and vortices are shed in cells (Sumer and Fredsøe, 2006).

One main property of vortex shedding is its periodicity. For a fixed cylinder, vortices
are shed alternatively from both sides of the cylinder, and its frequency is given by

ωs = 2π
StV

D
(1.2)

where St is an experimentally measured number known as the Strouhal number. Al-
though influenced by many factors, the value of the Strouhal number remains surpris-
ingly constant around 0.2 over a large range of Reynolds numbers (Norbegr, 2001).

As fluid flows around the circular cylinder, the alternate shedding of vortices in the
near wake gives rise to a fluctuating cross-flow force on the cylinder. In the cases where
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the cylinder is free to move, the fluctuating hydrodynamic force can result in self-excited
oscillation of the body. With certain phase differences between the hydrodynamic force
and body motion, energy may transfer from the fluid to the body, which in turn amplifies
the magnitude of the oscillation. As the amplitude of the body vibration increases, it af-
fects the vortex shedding process and consequently alternates the direction of the energy
transfer. This change of energy transfer results in a self-exciting and self-limiting vibra-
tion of the structure, which is known as VIV. Experiments have demonstrated that for
an elastically-mounted rigid cylinder, the VIV reaches maximum when the vortex shed-
ding frequency approaches the natural frequency of the system. Within a certain range
of flow velocities that brackets the natural frequency of the system, the vortex shedding
frequency will deviate from the Strouhal relation, and it collapses onto the oscillation
frequency of the cylinder, resulting in the sustained vibration of the cylinder over a wide
range of flow velocities. This phenomenon is known as lock-in.

1.3. STATE OF THE ART IN THE PREDICTION OF VORTEX-INDUCED

VIBRATION

Driven by the urgent demand from the oil and gas industry, VIV has been extensively
studied in the past century to develop a prediction tool that can be applied in the design
of offshore structures. Due to the complexity of the fluid-structure interaction prob-
lem, most knowledge about VIV to date has been obtained from physical experiments.
It is the VIV of rigid cylinders that has been the focus of early research. Two types of
experiments have been adopted by the majority of researchers to investigate the prob-
lem: free and forced vibration tests. In the free vibration tests an elastically supported
rigid cylinder vibrates due to the fluid-structure interaction, and the characteristics of
the motion are analysed. The forced vibration test, on the other hand, investigates the
hydrodynamic forces acting on and the wake structure behind a cylinder that is forced
to vibrate with constant amplitude and frequency. Recent reviews of these studies can
be found in the papers by Williamson and Govardhan (2004) and Sarpkaya (2004). The
accumulated results from the investigation of the VIV of rigid cylinders have provided
some insights into the fundamental mechanism of VIV. However, the understanding of
the VIV of a rigid cylinder is still inadequate for the development of proper prediction
models. The strong nonlinearity of the problem cannot be fully understood by studying
only the nearly harmonic oscillation of a rigid cylinder, and the obtained results can only
be applied to the prediction of the VIV of flexible cylinders under specific conditions.

The ultimate solution for the prediction of VIV may lie in the application of advanced
numerical techniques, such as the computational fluid dynamics (CFD). The CFD ap-
proach is based on solving the Navier-Stokes equations numerically for the fluid-structure
coupled system. This approach allows for the modelling of a realistic flow field but re-
quires a large amount of data storage and computational time. A possible approach to
reduce the computational cost is to apply the so-called strip theory according to which
the interaction between the structure and flow is only simulated at certain locations
along the span. With this approach, simulations have been conducted on long flex-
ible cylinders with large aspect ratios at high Reynolds numbers (Schulz and Meling,
2004; Willden and Graham, 2004; Yamamoto et al., 2004). Although the simulation re-
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sults agree quite well with the experiments, the strip theory neglects the 3D effect of the
flow and can only be considered as a reasonable approximation of certain cases (Holmes
et al., 2006). With the advances in computer technology in recent years, it is feasible to
conduct a full 3D CFD simulation of the VIV of long flexible cylinders in a more detailed
manner with an acceptable amount of computation time (Huang et al., 2010). However,
the computational time for single simulation is still significant, which means it is not yet
a practical solution for industry.

The industry currently relies mainly on the force-decomposition method for the pre-
diction of the VIV of flexible structures. This method, originally based on the work by
Sarpkaya (1978), is semi-empirical. The basis of the method is the use of a hydrody-
namic forces database, which is obtained from forced vibration tests. In such tests, a
rigid cylinder is forced to vibrate harmonically in a steady flow with a prescribed mo-
tion, and the hydrodynamic forces acting on the cylinder are measured. The fluid forces
are recorded with a cylinder oscillating over a certain range of frequencies and ampli-
tudes, which are further decomposed into a part in phase with the cylinder acceleration
(acts as added mass) and another part in phase with the cylinder velocity (acts as added
damping). The obtained hydrodynamic forces are directly applied as the forcing term
in the equation of motion of the flexible structure, and the amplitude and frequency of
the response are normally obtained through an iterative procedure in the frequency do-
main. Based on this concept, several prediction tools, such as SHEAR7 and VIVANA, have
been developed. Despite its wide application in the industry, the force-decomposition
approach has several key limitations. First, there are still concerns regarding the use of
the force obtained from forced vibration experiments to predict free vibration (Carberry
et al., 2004; Hover et al., 1998). Second, as mentioned in the previous subsection, the VIV
of flexible cylinders normally exhibits multiple frequency responses. In such circum-
stances, the results obtained from the pure harmonic test at a single frequency cannot
be directly applied (Gopalkrishnan, 1993). Third, the forced vibration experiments are
usually conducted with the motion of the cylinder restricted to one – either cross-flow
(Gopalkrishnan, 1993; Morse and Williamson, 2009) or in-line (Aronsen, 2007) – direc-
tion. However, in reality, the structure almost always vibrates in both directions simul-
taneously. The coupled cross-flow and in-line motion has a significant effect on the dy-
namics of the wake and consequently influences the fluid forces (Dahl et al., 2007; Jau-
vtis and Williamson, 2004). An attempt has been made to conduct two degree of freedom
forced vibrations to build a more advanced force database. However, the large number
of control parameters makes it difficult to build a complete database with sufficient res-
olution, and interpolation of the relatively sparse database is not an ideal option due to
the strong nonlinearity of the problem (Dahl, 2008).

The wake oscillator model is another type of model that is more often used in the
research field than in the industry for the description of VIV. The fundamental idea of
this method is to describe the dynamics of the wake using an effective nonlinear oscil-
lator, whose motion is coupled to the dynamics of the cylinder. Instead of modelling
the real flow field, this model attempts to reproduce the main features of VIV observed
in experiments, and it is thus phenomenological. The concept of the wake oscillator
can be dated back to the 1950s when Birkhoff (1953) tried to find expressions for the
Strouhal frequency and vortex spacing in the wake through a linear oscillator that de-
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scribes the motion of the angle between the wake axis and incoming flow. Bishop and
Hassan (1964) was the first to suggest the idea of using a van der Pol nonlinear oscillator
for the description of the hydrodynamic force. A large number of wake oscillators have
been proposed since then in the 1970s and 1980s (Hartlen and Currie, 1970; Iwan and
Blevins, 1974; Landl, 1975; Skop and Griffin, 1973). For a detailed description of these
models, please refer to the review written by Gabbai and Benaroya (2005). In more re-
cent studies, one main contribution is from Facchinetti et al. (2004) in which a classical
van der Pol oscillator is used to model the near wake dynamics, and the effects of sev-
eral types of linear coupling terms (displacement, velocity and acceleration) modelling
the fluid-structure interaction are investigated. Facchinetti et al. (2004) found that the
acceleration coupling is most appropriate for the modelling of most of the features of
VIV. This van der Pol oscillator model was further improved by properly including the
effect of the stall term, dropping the assumption of a small angle of attack (Ogink and
Metrikine, 2010). As the importance of the effect of the in-line motion on the wake dy-
namics is emphasised by an increasing number of studies, the development of the wake
oscillator model that can describe the coupled cross-flow and in-line VIV becomes the
focus of recent research (Bai and Qin, 2014; Kim and Perkins, 2002; Postnikov et al., 2017;
Srinil and Zanganeh, 2012).

The wake oscillator model has a certain advantage over the force-decomposition
method with regard to the fact that it is a time domain model. Therefore, instead of
using an iterative scheme, as the force-decomposition model does, the model will find
the response’s amplitude and frequency of its own accord. Also, being a time domain
approach, the wake oscillator model can take into account the nonlinearity of the struc-
ture. The promising results in the simulation of the VIV of flexible cylinders with the
wake oscillator model have made it an increasingly attractive alternative to the force-
decomposition model (Bai and Qin, 2014; Ge et al., 2009; Violette et al., 2007; Xu et al.,
2008; Zanganeh and Srinil, 2016).

Apart from the three types of models described above, other models have also been
developed – for detailed information, please refer to the review by Gabbai and Benaroya
(2005). A new method for the time domain modelling of VIV has recently been developed
by Thorsen et al. (2014). This method is based on a synchronization model which simu-
lates how the instantaneous frequency of the lift force reacts to the structure motion. The
phase difference between the synchronized lift force and the velocity of the structure is
defined such that the added damping obtained from the model matches that measured
from the forced vibration tests. This method has been applied in the prediction of the
VIV of flexible cylinders subject to stationary and oscillating flows and the results are
promising (Thorsen et al., 2015, 2016).

1.4. WAKE OSCILLATOR MODELS AND THEIR LIMITATIONS
The wake oscillator model has gained popularity in recent years due to its low compu-
tational cost and acceptable performance in reproducing the experiment results. Espe-
cially with the efforts devoted to derive the reduced-order model from the first-principle
model, the underlying connection between the wake oscillator model and fluid dynam-
ics becomes clearer (Gabbai and Benaroya, 2008; Mottaghi and Benaroya, 2016). How-
ever, the model still has several limitations, which prevent it from being widely applied
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in the prediction of VIV.

Although the wake oscillator model qualitatively captures the main characteristics
of VIV, applying it in the prediction of VIV requires it to reproduce the experiments more
quantitatively. In fact, this has been the focus of recent studies, and much effort has been
placed on the modification of existing oscillator equations such that a better reproduc-
tion of the results from free vibration experiments of elastically supported rigid cylin-
ders can be achieved. Attention has only recently been placed on the development of a
wake oscillator model that can also reproduce the forced vibration experiments (Ogink
and Metrikine, 2010), which, in the authors’ opinion, is of high importance. In contrast
to the free vibration experiments, the forced vibration experiments, in which a certain
amplitude and frequency of the harmonic motion of a cylinder is maintained, provide
additional insights into the interaction mode between hydrodynamic forces and cylin-
der motion. Only with the reproduction of the main features of the forced vibration
experiments can the wake oscillator model be classified as a useful one, as it will con-
tain correct nonlinearities that describe the interaction between the flow and structure.
Based on the wake oscillator proposed by Facchinetti et al. (2004), Ogink and Metrikine
(2010) tried to reproduce the forced vibration experiments using frequency-dependent
coupling terms. After failing to identify a single set of coefficients that satisfy the exper-
iments at different amplitudes, Ogink and Metrikine (2010) concluded that the nonlin-
earity contained in the oscillator equation is not correct.

Another main limitation of the model comes from its capability in the modelling of
coupled cross-flow and in-line VIV. Although a large number of wake oscillator models
have been developed for the prediction of the cross-flow response of a structure, only
a few attempts have been made to model the coupled cross-flow and in-line VIV (Bai
and Qin, 2014; Ge et al., 2009; Kim and Perkins, 2002; Postnikov et al., 2017; Srinil and
Zanganeh, 2012). For the latter, the approach of introducing a second nonlinear wake
oscillator for the description of the oscillating drag force, in addition to the one that
describes the lift force, has been widely employed; see, for example, Kim and Perkins
(2002); Postnikov et al. (2017); Srinil and Zanganeh (2012). Efforts have been made to
tune the model to the experimental measurements, and the influence of the empiri-
cal parameters on the simulation results have been investigated (Postnikov et al., 2017;
Srinil and Zanganeh, 2012). Although good agreements between the simulation and ex-
periments have been achieved, the phenomenon of the ‘super-upper’ branch – charac-
terised by the appearance of a large amplitude of cross-flow vibration at a small mass
ratio (Williamson and Govardhan, 2004) – which is the most important characteristic of
coupled cross-flow and in-line VIV, has not yet been captured. The match between the
simulation and experiments are obtained by applying different tuning parameters as the
experimental condition, such as mass ratio, changes. The use of the second wake oscilla-
tor that is coupled with the in-line motion for the description of the oscillating drag force
seems logical, as experiments have demonstrated that VIVs also occur when the motion
of the cylinder is limited to the in-line direction (Konstantinidis, 2014; Nakamura et al.,
2001; Nishihara et al., 2005). However, it should be kept in mind that both the cross-
flow and in-line hydrodynamic forces have the same origin, which is the dynamics of
the wake. It is physically more reasonable to use only one oscillator to describe the dy-
namics of the wake, and this oscillator should be coupled to both cross-flow and in-line
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motions of the cylinder.

1.5. THESIS AIMS
It can be concluded from above-presented discussion that despite a relatively good un-
derstanding of VIV by the research community, the quantitative prediction thereof still
relies on empirical methods. The conventional force-decomposition approach has reached
a bottleneck due to its incapability to accurately predict the VIV at multiple frequencies
as well as the coupled cross-flow and in-line vibrations. On the other hand, the wake
oscillator model begins to reveal its potential to overcome the drawbacks of the force-
decomposition method, and it is a promising method for further development. However,
there are still several major limitations that restrict the practical application of the exist-
ing wake oscillator models. The first main limitation is that the correspondence between
the results of the cross-flow free and forced vibration tests and the model predictions is
unsatisfactory. The second limitation is that the currently existing wake oscillator mod-
els that describe the coupled cross-flow and in-line VIV by introducing a second wake
oscillator equation violate the physics of the process.

In correspondance with the above-mentioned main limitations of the currently exist-
ing wake oscillator models, the aim of this research is twofold. The first one is to improve
the wake oscillator model proposed by Ogink and Metrikine (2010) such that a better
agreement with the cross-flow free and forced vibration tests is achieved. The second
one is to develop a model that describes the coupled cross-flow and in-line VIV with a
single wake oscillator equation.

1.6. THESIS OUTLINES
This thesis is structured as follows:

In Chapter 2, the wake oscillator model proposed by Ogink and Metrikine (2010) is
first reviewed, and the review provides the basis for further improvements. The correct
reproduction of the hydrodynamic force measured in experiments requires the proper
modelling of both lift and drag forces. A preliminary investigation into the influence of
different drag force models on the characteristic of the fluctuating lift force that satisfies
the test results is conducted.

In Chapter 3, a new wake oscillator model with nonlinear coupling is proposed in
order to have a better reproduction of the forced vibration experiments. First, a set of
nonlinear coupling terms in the form of multiplications of displacement, velocity and
acceleration of the cylinder with constant coupling coefficients is adopted. Although
promising, an obvious discrepancy is still observed between the simulation and experi-
ments. To remove this discrepancy, the model is further enhanced by making the nonlin-
ear coupling terms frequency-dependent by means of introduction of convolution inte-
grals in the time domain. Attempts are made to determine the kernels of the convolution
integrals that satisfy the forced vibration experiments.

In Chapter 4, an advanced wake oscillator equation that is coupled to both the cross-
flow and in-line motions is developed. A new in-line coupling term is introduced based
on the experimental observation as well as heuristic inference. The new model is val-
idated against free vibration experiments regarding the coupled cross-flow and in-line
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VIV of elastically supported rigid cylinders, and it proved to be able to capture the super-
upper branch.

Chapter 5 concerns the modelling of the coupled cross-flow and in-line VIV of flex-
ible cylinders. The structure is modelled as a geometrically nonlinear Euler-Bernoulli
beam, whereas the interaction between the fluid and structure is described by the wake
oscillator model proposed in Chapter 4. The coupled system is solved using the finite
element method and applied to the simulation of a set of experiments where a vertical
flexible riser is subjected to a step flow. A comparison is made between the simulation
results and experimental measurements with regard to the amplitude, frequency and
dominant modes of the riser vibrations in both cross-flow and in-line directions as well
as the mean in-line deflection. A discussion is also presented with regard to the multiple
frequency responses predicted by the model at some flow velocities that are not reported
by the experiments.

Chapter 6 is devoted to the comparison between the proposed model and another
two models without in-line coupling. Comparisons are made based on the simulation
results of the VIV of a flexible cylinder subjected to both uniform and linearly sheared
flows. The differences between the predictions from the three models are highlighted
from the following points of view: response pattern, motion trajectory and fluid-structure
energy transfer. The fatigue damage estimation from the three models is also discussed
in the last section of this chapter, with a focus on the investigation into contributions
from higher harmonics.

Finally, in Chapter 7 the main findings of this thesis are summarised.



2
WAKE OSCILLATOR MODEL BY

OGINK AND METRIKINE

2.1. INTRODUCTION
In the development of the wake oscillator model, most studies have focused on the im-
provement of oscillator equations that are able to reproduce the results of free vibration
experiments. Their goal is to find a model that can simultaneously predict the range of
flow velocities, over which lock-in takes place, and the maximum amplitude of cylinder
oscillation. It is only recently that attention has been placed on the development of the
hydrodynamic force model that can also reproduce forced vibration experiments (Ogink
and Metrikine, 2010; Thorsen et al., 2014).

Ogink and Metrikine (2010) are the first authors who attempted to develop such a
wake oscillator model that is able to reproduce both the free and forced vibration exper-
iments. In their work, they tried to formulate the total hydrodynamic force as a summa-
tion of the ideal inviscid inertia force and a ‘vortex force’. This is a common approach
taken in most wake oscillator models. The novelty of their work lies in the formulation
of the vortex force. Different from other models where only the component of the vortex
force in the cross-flow direction is considered, the vortex force in their model is formu-
lated as a vector normal to the cylinder axis and is decomposed into instantaneous lift
and drag forces. The quasi-steady assumption is adopted regarding the drag force, while
the influence of the wake dynamics is taken into account by relating the lift force to a
wake oscillator that is coupled with the motion of the structure. According to the quasi-
steady assumption, the data measured in the static (fixed cylinder) situation can be di-
rectly applied in the description of the dynamics of the interaction between a structure
and fluid (van der Burgh, 1999). The quasi-steady assumption for the drag force is not
fully correct physically as it disregards the time that the wake needs to adopt to any new
position of the cylinder. However, this assumption is reasonable as a starting point in
the development of the model. In this thesis an attempt is made to improve the model
in this regard. The advantage of this force decomposition is threefold: (a) it provides the

9
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Figure 2.1: Cross-flow VIV of an elastically supported rigid cylinder subjects to uniform flow.

possibility of not only modelling the cross-flow hydrodynamic force but also the in-line
force, and the influence of the wake dynamics on both forces have been accounted for
through the lift force; (b) the assumption of a linearized stall term that has been taken in
previous wake oscillator models is relaxed, and the authors found that the free vibration
experiments can be better reproduced if the nonlinear stall effect is considered; and (c)
when the cylinder oscillates in the still fluid, this force decomposition leads to that given
by the Morison equation.

Despite all of the advantages described above, there are also several problems related
to this force decomposition that need to be investigated. One of them is the quasi-steady
assumption of the drag force. This assumption is physically incorrect, and whether it
provides a reasonable approximation or if another drag force model is required should
be studied. The remainder of this chapter is structured as follows. In Section 2.2, the
basic mathematical description of the wake oscillator model by Ogink and Metrikine
(2010) is briefly presented. Three drag force models, including the one used by Ogink
and Metrikine (2010), are investigated in Section 2.3, and the main conclusions are stated
in Section 2.4.

2.2. MODEL DESCRIPTION
This section contains a recollection of the wake oscillator model proposed by Ogink and
Metrikine (2010). The purpose is to provide a general review of the model.

Fig. 2.1 illustrates the VIV of a rigid cylinder elastically supported in the cross-flow
direction. The cylinder has mass m, and its motion is constrained to the cross-flow di-
rection only where it is supported by a spring with stiffness k and dash pot with damping
b. The cross-flow displacement of the cylinder Y (t ) can be described as

m
d 2Y

d t 2 +b
dY

d t
+kY = FY . (2.1)

On the right-hand side of Eq. (2.1), FY is the cross-flow hydrodynamic force acting on
the cylinder. This force is assumed to be expressible as a superposition of a vortex force
FV Y and an ideal inviscid inertia force FAY associated with the potential added mass of
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Figure 2.2: Decomposition of the vortex force in drag, lift, cross-flow and in-line directions (Ogink and
Metrikine, 2010).

the fluid

FY = FV Y +FAY = 1

2
ρDLV 2CV Y −ma

d 2Y

d t 2 . (2.2)

In Eq.(2.2), ρ is the mass density of the fluid, D is the diameter, L is the length of the
cylinder, CV Y is the cross-flow vortex force coefficient, ma = CaπρD2L/4 is the added
mass and the value for Ca is 1, as follows from the potential theory. Moving the potential
inertia term to the left-hand side of Eq.(2.1) and defining the structural natural frequency

in still water ωn =
√

k/(m +ma) and damping ratio ζ = b/
(
2
√

(m +ma)k
)
, Eq.(2.1) be-

comes
d 2Y

d t 2 +2ζωn
dY

d t
+ω2

nY = FV Y

m +ma
. (2.3)

Note here that FV Y corresponds to the cross-flow component of the total instantaneous
vortex force FV caused by vorticity, which includes the effect of stall. In other studies,
such as Facchinetti et al. (2004) and Skop and Balasubramanian (1997), the stall effect
has been normally taken into account by adding a constant linear damping term at the
left-hand side of the structural equation Eq.(2.1), and the damping coefficient related
to the stall is determined by assuming that the cylinder velocity is much smaller than
the flow velocity V . This assumption has been relaxed in the model proposed by Ogink
and Metrikine (2010), where the total instantaneous vortex force FV is decomposed into
a drag part FV D and a lift part FV L , both of which are illustrated in Fig.2.2. As can be
seen from this figure, the drag force FV D , defined as being in-line with the relative flow

velocity U =
√

V 2 +
(

dY
d t

)2
, models the stall effect, and the lift force FV L that acts in the

direction perpendicular to the U formulates the excitation by vortex shedding. The mag-
nitudes of drag and lift forces are related to the relative flow velocity U and are defined
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as

FV L = 1

2
ρDLU 2CV L ,FV D = 1

2
ρDLU 2CV D (2.4)

where CV L and CV D are lift and drag coefficients. The effects of the wake dynamics are
taken into account by the lift coefficient CV L (with the wake variable that is governed by
the wake oscillator, to be discussed later).

Then, the cross-flow vortex force FV Y is the summation of projections of FV L and
FV D in the cross-flow direction, and it can be written as

FV Y = FV D sinβ+FV L cosβ (2.5)

whereβ is the angle between the direction of relative flow velocity U and the undisturbed
flow V . The angle β is given by

sinβ=−dY

d t

√
V 2 +

(
dY

d t

)2

and cosβ=V

√
V 2 +

(
dY

d t

)2

. (2.6)

Substitution of Eqs.(2.4) and (2.6) into Eq. (2.5) results in

FV Y = 1

2
ρDL

(
−CV D

dY

d t
+CV LV

)√
V 2 +

(
dY

d t

)2

. (2.7)

Furthermore, the corresponding force coefficient CV Y can be obtained as

CV Y = FV Y
1
2ρDLV 2

=
(
−CV D

dY

d t
/V +CV L

)√
1+

(
dY

d t
/V

)2

. (2.8)

Similarly, the in-line vortex force FV X and coefficient CV X can be obtained as

FV X = FV D cosβ−FV L sinβ= 1

2
ρDL

(
CV DV +CV L

dY

d t

)√
V 2 +

(
dY

d t

)2

(2.9)

CV X = FV X
1
2ρDLV 2

=
(
CV D +CV L

dY

d t
/V

)√
1+

(
dY

d t
/V

)2

. (2.10)

The final expression of the total cross-flow hydrodynamic force is obtained by substitut-
ing Eq.(2.7) into Eq.(2.2)

FY = 1

2
ρDL

(
−CV D

dY

d t
+CV LV

)√
V 2 +

(
dY

d t

)2

−ma
d 2Y

d t 2 . (2.11)

As presented in Ogink and Metrikine (2010), by setting V = 0 Eq.(2.11) transforms into

FY =−1

2
ρDLCV D

dY

d t

∣∣∣∣dY

d t

∣∣∣∣−ma
d 2Y

d t 2 (2.12)

which is the Morison equation.
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The wake oscillator that describes the fluctuating nature of the vortex is based on the
van der Pol equation that reads

d 2q

d t 2 +εωs (q2 −1)
d q

d t
+ω2

s q = S (2.13)

where ε is the tuning paramter, and ωs is the Strouhal frequency, ωs = 2πStV /D . The
forcing term S on the right-hand side models the effects of the cylinder motion on the
wake. The dimensionless wake variable q is associated with the lift force coefficient CV L

as
CV L = q

2
CL0. (2.14)

With S = 0, Eq.(2.13) describes the lift force that the wake imposes on a fixed cylinder.
In such case, the steady solution of Eq.(2.13) reaches a limit cycle with the amplitude
qmax = 2. Therefore, the coefficient 1/2 in Eq.(2.14) is used to ensure the amplitude of
oscillation of CV L equals to CL0 for a fixed cylinder.

The usage of the van der Pol type oscillator in Eq.(2.13) is based on the similar char-
acteristics between the vortex-shedding process and self-limitation and self-excitation
of nonlinear oscillators. Any nonlinear oscillator that generates a limit cycle can poten-
tially be used to represent the vortex-shedding process. However, the most commonly
used nonlinear oscillators are the van der Pol and the Rayleigh equations or a combi-
nation of both. The Rayleigh equation is similar to the van der Pol equation except for
the nonlinear damping term, which is in the form of velocity. The damping term of the

Rayleigh equation reads (( d q
d t )2 −1) d q

d t .
With regard to the forcing term on the right-hand side of Eq.(2.13), Facchinetti et al.

(2004) have proven that a linear coupling – with respect to the acceleration of the cylinder
– models most of the important features of the VIV qualitatively. In the model proposed
by Ogink and Metrikine (2010), both acceleration and velocity couplings are used:

S = A

D

dY 2

d t 2 +ωs
B

D

dY

d t
(2.15)

where A and B are coupling coefficients, which can be tuned to meet the experimental
results.

The problem can be made dimensionless using the following dimensionless param-
eters:

τ=ωs t ,Ωn =ωn/ωs , y = Y /D. (2.16)

Substitution of Eq.(2.16) into Eqs.(2.3), (2.13) and (2.15) results in

ÿ +2ζΩn ẏ +Ω2
n y = 1

π(m∗+Ca)

1

2π3St2 CV Y (2.17)

q̈ +ε(q2 −1)q̇ +q = s (2.18)

s = Aÿ +B ẏ . (2.19)

The dimensionless form of CV X and CV Y can be obtained by substituting Eq.(2.16) into
Eqs.(2.8) and (2.10), and they read

CV X = (CV D +2πStẏCV L)
√

1+4π2St2 ẏ2 (2.20)
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CV Y = (−2πStẏCV D +CV L)
√

1+4π2St2 ẏ2. (2.21)

Here, the overdot stands for the derivative with respect to the dimensionless time τ, and
m∗ = m

1
4ρπLD2 is the mass ratio. The lift force coefficient CV L is related to q as defined by

Eq.(2.14), while the definition of the drag force coefficient CV D will be given in the next
section.

The coupled system described by Eqs.(2.17-2.19) and (2.21) governs the VIV of rigid
cylinders in the cross-flow direction. This system can be used in the simulation of free
vibrations of rigid cylinders at different nominal reduced velocities Vn . The definition of
Vn is given as Vn = 2πV

ωn D which can also be expressed with dimensionless parameters as

Vn = 1
StΩn

.
For the forced vibration, the motion of the cylinder is prescribed with a dimension-

less frequency Ω = ω/ωs (ω is the dimensional frequency of the cross-flow motion of
the cylinder) and a dimensionless amplitude y0. This motion is given as y = y0 sin(Ωτ).
The results of forced vibration are normally presented against the true reduced veloc-
ity Vr = 2πV

ωD , which can be alternatively written using the dimensionless parameters

as Vr = 1
StΩ . The forced vibration can be modelled by substituting y = y0 sin(Ωτ) into

Eqs.(2.18) and (2.19), which then gives

q̈ +ε(q2 −1)q̇ +q = s (2.22)

s =−Ay0Ω
2 sin(Ωτ)+B y0Ωcos(Ωτ). (2.23)

The cross-flow force coefficient Cy = FY
1
2ρDLV 2 can be calculated from Eq. (2.11), and its

dimensionless form is given as

Cy = (−2πStẏCV D +CV L)
√

1+4π2St2 ẏ2 −2Caπ
3St2 ÿ . (2.24)

Since the cylinder does not move in the in-line direction, the in-line force coefficient Cx

is equal to CV X and is given as

Cx =CV X = (CV D +2πStẏCV L)
√

1+4π2St2 ẏ2. (2.25)

Then, the component of the cross-flow force coefficient that is in phase with cylinder
acceleration Cy a and in phase with cylinder velocity Cy v , the mean in-line force coeffi-
cient Cx0 and the magnitude of fluctuating in-line force coefficient Cx2 can be obtained
through the Fourier series:

Cy a = 2

T

∫ τ0+T

τ0

Cy sin(Ωτ)dτ (2.26)

Cy v =− 2

T

∫ τ0+T

τ0

Cy cos(Ωτ)dτ (2.27)

Cx0 = 1

T

∫ τ0+T

τ0

Cx dτ (2.28)
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Cx2 =
((

2

T

∫ τ0+T

τ0

Cx sin(2Ωτ)dτ

)2

+
(

2

T

∫ τ0+T

τ0

Cx cos(2Ωτ)dτ

)2
) 1

2

(2.29)

where T = 2π/Ω is the non-dimensional period. It needs to be noticed here that the
definition of Cy v given by Eq.(2.27) is such that a negative value of Cy v corresponds to
the case of energy flows into the structure.

2.3. THE DRAG FORCE MODEL
In the previous section, the basis of the hydrodynamic force model proposed by Ogink
and Metrikine (2010) has been described. To summarise, the total hydrodynamic force
has been assumed to be normal to the cylinder axis and divided into an ideal inviscid
inertia force and a vortex force due to the vorticity. The vortex force is further decom-
posed into a drag force that is parallel to the instantaneous relative flow velocity and
a lift force that is perpendicular to it. Therefore, the proper representation of the total
hydrodynamic force requires the correct modelling of both lift and drag forces. Efforts
have been made by Ogink and Metrikine (2010) to improve the lift force model in or-
der to reproduce the experimental measurements. However, little is known yet about
whether the drag force adopted by Ogink and Metrikine (2010) is appropriate. Trying to
reproduce the experimental measurements, with a drag force model that is likely to be
deficient, by improving the modelling of the lift force may be difficult, if not impossible,
as the lift force model needs to compensate for the errors introduced by the drag force
model. Therefore, in this section, the assumptions made with regard to the drag force
model adopted by Ogink and Metrikine (2010) as well as their limitations are discussed,
and their influence on the modelling of the lift force is investigated.

2.3.1. LIMITATIONS OF THE DRAG FORCE MODEL
The drag force model proposed by Ogink and Metrikine (2010) adopts the quasi-steady
assumption, which assumes that the instantaneous drag force acting on an oscillating
cylinder keeps its stationary value, while the change in the dynamics of the wake is taken
into account through the instantaneous lift force that is coupled with the cylinder mo-
tion. The quasi-steady assumption regarding the drag force is physically not fully ap-
propriate, as it ignores the time that the wake needs to develop. Due to the viscosity,
when the position of the cylinder changes, the wake behind it cannot immediately reach
its steady-state configuration, and the drag force thus no longer keeps its steady value.
Moreover, for the sake of simplification, only the mean value of the steady drag force has
been adopted in the model by Ogink and Metrikine (2010). This is mainly because its
oscillatory part, which should be coupled with the lift, at double the frequency of vortex
shedding, is small and normally ignored. However, due to the increase in the correlation
length of vortex shedding and the strength of vortices when the cylinder moves, the oscil-
latory component of the drag force may become non-negligible. More importantly, this
fluctuating force may contain crucial information regarding the wake dynamics and can
play an important role in the formulation of hydrodynamic forces. Another drawback
related to the current drag force model is that it neglects the added mass introduced by
the dynamics of the wake in the direction parallel to the instantaneous flow velocity. The
limitations of the model as a result of ignoring such an inertial component can be em-
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phasised by the case of a rigid cylinder oscillating in still water. In such a case, according
to Eq.(2.12), the current model is reduced to the well-known Morison equation with a
fixed value of inviscid added mass coefficient. This is contradictory to the experimen-
tal measurements, which show that the added mass coefficient deviates from its invis-
cid value and strongly depends on the amplitude and frequency of cylinder oscillation
(Sarpkaya, 1977).

To summarise, the main shortcomings of the drag force model is threefold: (a) mak-
ing a quasi-steady assumption, (b) ignoring the oscillatory component, and (c) neglect-
ing the inertia force introduced by the dynamics of the wake in the direction of the drag
force. In this section, the influence of the first two drawbacks on the modelling of the lift
force is investigated, while the third one is not studied.

In this section, the investigation is based on three drag force models, which are given
as

CV D =CD0 (2.30)

CV D =CD0
(
Ω, y0

)
(2.31)

CV D =CD0
(
Ω, y0

)+α(
Ω, y0

)
C 2

V L . (2.32)

The first drag force model, Eq.(2.30), is the same one as proposed by Ogink and Metrikine
(2010), where the drag force coefficient is assumed to be constant and to maintain the
steady mean value that is measured on a fixed cylinder. In the second drag force model,
given by Eq.(2.31), the quasi-steady assumption is relaxed to some extent by making the
drag force coefficient frequency- and amplitude-dependent. The third model, Eq.(2.32),
in addition to the mean drag force coefficient, contains an oscillatory component, which
is coupled to the lift force in the same form as derived from the fixed cylinder (Qin,
2004). It needs to be pointed out that introducing only the frequency-dependent drag
coefficient is not correct, as such frequency-dependent damping should always be ac-
companied by a frequency-varying inertial component. However, only the frequency-
dependent damping is considered here in order to understand what the frequency de-
pendence of the drag coefficient could be if the frequency dependence of the added mass
coefficient in the frequency band were weak.

2.3.2. DETERMINATION OF THE LIFT FORCE THAT CONFORMS TO THE EX-
PERIMENTS

In this subsection, the lift force that reproduces the experimental measurements is de-
termined based on the drag force models proposed in the previous subsection. So far,
the most complete, publicly available forced vibration measurements are reported by
Gopalkrishnan (1993). In this work, the component of cross-flow force coefficient in
phase with the cylinder acceleration Cy a and that in phase with the cylinder velocity
Cy v , the mean in-line force coefficient Cx0 and the amplitude of the oscillatory in-line
force coefficient Cx2 are reported. Among these four types of measurements, Cy a and
Cy v are of the highest interest, as they govern the cross-flow response of the structure in
free vibration. The other two measurements regarding the force in the in-line direction
would play important roles when the cylinder is also allowed to move in that direction.
The ideal scenario would be that all four measurements can be reproduced by one and
the same model for the hydrodynamic force. However, this may be impossible for the
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drag force models proposed here. Therefore, the priority of this work is to reproduce the
measurements of Cy a and Cy v .

As for the oscillatory lift force coefficient CV L , although it may physically contain
multiple frequency components, the assumption here is that mainly the part at the fre-
quency of cylinder oscillation contributes to Cy a and Cy v . This assumption, strictly
speaking, is open to discussion, as the other harmonics at an integer multiple frequency
of cylinder motion must have an influence on the results. Since no experimental mea-
surement is available at those frequencies, it is difficult to evaluate whether their influ-
ences are significant or negligible. This leaves no better option than to neglect the in-
fluence of higher harmonics and to assume that the oscillatory lift force coefficient has
the form CV L = CV L0 sin

(
Ωτ+φV L

)
. CV L0 represents the amplitude of the lift force co-

efficient, while φV L designates the phase difference between the lift force and cylinder
motion y = y0 sin(Ωτ).

For the first drag force model, by substituting CV L = CV L0 sin
(
Ωτ+φV L

)
and y =

y0 sin(Ωτ) into Eqs.(2.21) and (2.26–2.29) and applying the numerical integration, the
fluid force coefficient Cy a and Cy v can be obtained with a given CV L0 and φV L . The
values of CV L0 and φV L that satisfy the experimental measurements are identified by
minimising the error between the calculations and measurements:

error = (
Cy a;model −Cy a;meaur ed

)2 + (
Cy v ;model −Cy v ;meaur ed

)2 . (2.33)

The value of CD0 needs to be specified in advance; here, the value CD0 = 1.1856 is taken
as measured on the fixed cylinder. A Matlab built-in function ‘lsqnonlin’, based on the
interior-reflective Newton method (Coleman and Li, 1996, 1994), has been used for the
minimisation procedure, and the values of CV L0 andφV L are obtained at each frequency
and amplitude of cylinder oscillation with an error smaller than 10−6. The results are
plotted in Fig.2.3.

From Fig.2.3 it can be seen that the dynamic characteristics of the lift force coeffi-
cient, regarding its amplitude and phase, change as the amplitude of cylinder oscilla-
tion increases. Three different patterns are generally observed, and they can be cate-
gorised as a small amplitude pattern (y0 = 0.2,0.4), a medium amplitude pattern (y0 =
0.6,0.8,1.0) and a large amplitude pattern (y0 = 1.2). When the cylinder oscillates at
small amplitudes – y0 = 0.2 and 0.4 – then the frequency dependence of the ampli-
tude and phase of the lift force, although not exact, is in good agreement with the phe-
nomenon of resonance; i.e. the amplitude peak is accompanied by a sharp change of
the phase. For y0 = 0.2, as depicted in plot (a) in Fig.2.3, the phase of the lift force re-
mains constant at small frequencies and changes aroundΩ= 0.9 from 0.8π to just below
0. When the cylinder oscillates at y0 = 0.4, the resonance is less obvious than in the case
of y0 = 0.2; however, a peak in the amplitude is still observed and is accompanied by
a phase change around Ω = 0.9. It must be pointed out that the amplitude of the lift
force in the case of y0 = 0.4 is not double of that at y0 = 0.2. When the cylinder oscillates
at medium amplitudes, i.e. y0 = 0.6,0.8 and 1.0, the phase change is observed around
Ω = 0.9. However, instead of a peak in the amplitude, which is seen when the cylinder
oscillates at small amplitudes, the phase change is accompanied by a local minimum in
amplitude, and the trough becomes deeper as the amplitude of cylinder oscillation in-
creases. Finally, when the cylinder oscillates at a large amplitude (y0 = 1.2), the phase
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Figure 2.3: Amplitudes (solid lines) and phases (dashed lines) of the oscillatory lift force coefficient that con-
forms to the forced vibration measurements with first drag force model at different amplitudes of cylinder
oscillation (a) y0 = 0.2, (b) y0 = 0.4, (c) y0 = 0.6, (d) y0 = 0.8, (e) y0 = 1.0 and (f) y0 = 1.2.
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Figure 2.4: Force coefficients obtained from the first drag force model (dashed lines) in comparison with the
measurements (solid lines) for (a) mean in-line force coefficient Cx0 and (b) oscillatory in-line force coefficient
Cx2.

of the lift force is again characterised by a sharp change around Ω = 1. However, differ-
ent from the small and medium amplitude patterns, the phase change is associated with
neither a peak nor a trough of the amplitude-frequency dependence. It seems that after
the amplitude of the lift force reaches a minimum, instead of increasing, as observed in
the case of a medium amplitude pattern, it maintains relatively small values at high fre-
quencies. In general, the lift force determined from the first drag force model follows the
resonance pattern at small amplitudes of cylinder motion, whereas at medium and large
amplitudes of cylinder motion, its pattern is not consistent with the dependence typical
for the resonance phenomenon.

With the obtained lift force, the values of Cx0 and Cx2 are calculated based on the first
drag force model, and the results are depicted in Fig.2.4 in comparison with the exper-
imental results. Fig.2.4(a) illustrates that the calculated mean in-line force coefficients
Cx0 are in qualitative agreement with the measurements. The increasing trend of the
mean in-line force coefficients with respect to the increasing frequency is well captured.
However, over the range ofΩ= 0.7−1.2, where VIV usually occurs, the first model gener-
ally underestimates the mean in-line force. As for the oscillatory in-line force, Fig.2.4(b)
demonstrates good agreement between the results of the model and the measurements
over the range of low frequencies, but at high frequencies, the model significantly un-
derestimates Cx2 for amplitudes of cylinder oscillation larger than 0.2. It is interesting to
notice that the discrepancy starts to emerge aroundΩ= 1.0, which is the point at which
the frequency of cylinder oscillation equals the Strouhal frequency and corresponds to a
wake change between the 2P mode and the 2S mode (Williamson and Roshko, 1988).

For the second drag force model, since one extra coefficient CD0
(
Ω, y0

)
needs to be

identified, the reproduction of the measurement of Cx0 is also considered in the minimi-
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Figure 2.5: Frequency- and amplitude- dependent drag force coefficient obtained from the second drag force
model.

sation procedure, and the definition of error becomes

error =(
Cy a;model −Cy a;meaur ed

)2 + (
Cy v ;model −Cy v ;meaur ed

)2

+ (
Cx0;model −Cx0;meaur ed

)2 .
(2.34)

Applying the same minimisation routine, the values of CV L0,φV L and CD0
(
Ω, y0

)
that

meet the experimental results based on the second drag force model have been deter-
mined. It was found that the values of CV L0 and φV L are almost the same as those cal-
culated with the first drag force model. Therefore, the results of CV L0 and φV L are not
presented here, and only the frequency- and amplitude-dependent CD0

(
Ω, y0

)
are de-

picted in Fig.2.5. At all amplitudes, the variation of the CD0
(
Ω, y0

)
against frequency

follows a similar pattern, which exhibits a local peak aroundΩ= 0.9. No general trend is
observed regarding the variation of CD0

(
Ω, y0

)
with respect to the amplitude. The values

of Cx2 are also calculated for the second drag force model with the obtained oscillatory
lift force coefficient. However, no obvious difference is found compared to those calcu-
lated from the first model, and the results are thus not presented here.

The third drag force model, in addition to the frequency- and amplitude-dependent
drag force coefficient, takes into account the oscillatory component with unknown co-
efficient α

(
Ω, y0

)
. With a total of four unknown coefficients to be determined, the mea-

surements of Cx2 are included in the minimisation procedure, and the definition of the
error becomes

er r or =(
Cy a;model −Cy a;meaur ed

)2 + (
Cy v ;model −Cy v ;meaur ed

)2

+ (
Cx0;model −Cx0;meaur ed

)2 + (
Cx2;model −Cx2;meaur ed

)2 .
(2.35)

Attempts have been made to minimise the errors between the model results and the
measured Cy a , Cy v , Cx0 and Cx2 with Eq.(2.35). However, at many data points, especially
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for a high amplitude y0 = 1.2, it proved to be difficult to minimise the error such that it
is smaller than 10−6. More importantly, the large oscillating in-line forces Cx2 at high
frequencies and large amplitudes of cylinder oscillation can only be reproduced with
the value of α in Eq.(2.32) being extremely large. This could be a result of the quadratic
coupling relation between the lift and drag forces as derived from the stationary cylinder
may to be no longer valid when the cylinder moves. However, it should be pointed out
again that the influence of higher harmonics of the lift force is neglected here, and it is
possible that to correctly model the hydrodynamic force, the higher harmonic compo-
nents of the lift force need to be taken into account.

Since it is not possible to satisfy all four measurements with the third drag force
model, an attempt was made to identify the lift force based on only three measurements,
namely Cy a , Cy v and Cx0. With only three types of measurements to satisfy, one of the
two parameters – CD0

(
Ω, y0

)
and α

(
Ω, y0

)
– in the third drag force model needs to be

specified in advance. From the first and second drag force models, the resulted CV L0

and φV L seem to be insensitive to the value of CD0
(
Ω, y0

)
. Therefore, this study assumes

that the value of CD0
(
Ω, y0

)
is fixed and taken as 1.1856. Then, the values of CV L0, φV L

and α
(
Ω, y0

)
are obtained by minimising the error defined by Eq.(2.34) with tolerance

10−6. The results reveal that, although not exact, the values of CV L0 andφV L have similar
patterns to those obtained from the first and second drag models. The main differences
are observed at high frequencies. Three examples of CV L0 and φV L obtained at y0 = 0.4,
y0 = 0.8 and y0 = 1.2 are presented in Fig.2.6 in comparison with results from the first
drag model. The corresponding values of α

(
Ω, y0

)
are plotted in Fig.2.7. When a cylin-

der oscillates at a low frequency, it is expected that the value of α should be the same
as that obtained from the fixed cylinder. However, it can be seen from Fig.2.7 that the
values of α generally increase from negative values at low frequencies to positive at high
frequencies. This is in contrast to the fact that for a fixed cylinder, the value of α is pos-
itive Qin (2004). With the obtained values of CV L0, φV L and α, Cx2 was calculated, the
values of which are again found to be similar to those calculated with the first and second
drag force models and hence not presented here.

2.3.3. DISCUSSION ON THE DYNAMIC CHARACTERISTICS OF THE LIFT FORCE

In the previous subsection, the lift forces that satisfy the experimental results have been
identified based on three drag force models. The dynamic characteristics of the lift force
obtained from the three models are almost the same. At a small amplitude of cylinder
oscillation, the lift force reproduces the resonance phenomenon, which somehow re-
veals the similarity between the wake dynamics and an oscillator. However, at medium
and large amplitudes, the dynamic characteristics of the lift force are such that the phase
change still follows the resonance pattern, while the amplitude of the lift force does not.
The contradiction to the resonance pattern at medium and large amplitudes of cylinder
oscillation can explain why, in the work by Ogink and Metrikine (2010), the wake oscil-
lator model with frequency-dependent coupling only works well for small amplitudes of
vibration.

One possible explanation for the contradiction could be the neglected added mass
in the instantaneous flow direction (only the ideal added mass is accounted for in this
direction). To fulfil the experimental results, the lift force is designed to compensate
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Figure 2.6: A comparison of the oscillatory lift force coefficients obtained from the first (dashed line) and third
(solid line) drag force models at different amplitudes of cylinder oscillation (a) y0 = 0.4, (b) y0 = 0.8 and (c)
y0 = 1.2.
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Figure 2.7: Frequency- and amplitude-dependent α obtained from the third drag force model.

for the added mass component missed in the instantaneous flow direction, which could
result in the misdistribution between the inertia and damping components of the lift
force. Another possible explanation is the higher harmonic components. In the analysis
conducted in this section, only the component at the frequency of cylinder oscillation
is considered. It is possible that at medium and high amplitudes, the dynamics of the
lift force are such that there are substantial energy transfers to other frequencies at the
point of resonance due to some unaccounted for nonlinear mechanism. This can result
in the reduction in the amplitude of lift force at the fundamental frequency, as observed.

Although taking into account the added mass effect due to the dynamics of the wake
in the instantaneous flow direction may be crucial in the formulation of the hydrody-
namic force model, the form in which the added mass should be incorporated into the
model is still unclear and will not be investigated further. Therefore, in the next chapter
the focus will still be placed on the improvement of the nonlinearity of the wake oscilla-
tor equation.

2.4. CONCLUSIONS
In this chapter, the wake oscillator model proposed by Ogink and Metrikine (2010) has
been reviewed. This model, different from others, involves force decomposition. The
total hydrodynamic force, in addition to the potential added mass, is expressed as the
summation of lift (perpendicular to the relative flow velocity) and drag (parallel to the
relative flow velocity) forces. Therefore, the reproduction of the forced vibration experi-
ments requires the appropriate modelling of both lift and drag forces. The focus of this
chapter has been on the examination of the possible influence of drag force models on
the dynamic characteristic of lift force that satisfies the experimental results.

Three different drag force models have been investigated. The first model is the one
proposed by Ogink and Metrikine (2010). It assumes that the instantaneous drag force
coefficient is constant and keeps the mean steady value measured on a fixed cylinder.
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In the second model, the instantaneous drag force coefficient is still assumed to be con-
stant, but its value varies as the frequency or amplitude of cylinder oscillation changes.
In the third model, in addition to the constant drag force, an oscillatory part coupled
with the lift force is introduced, and the coupling relation maintains the same form as
that identified on a fixed cylinder. Compared to the first model, the second model re-
laxes the quasi-steady assumption of the drag force by making the damping compo-
nent, which was introduced in the relative flow direction, frequency- and amplitude-
dependent, while the third model tries to incorporate the oscillating component of the
drag force.

The oscillatory lift forces, at the frequency of cylinder oscillation, that satisfy the
available experimental measurements have been identified based on the three drag force
models. It has been demonstrated that the lift forces obtained from the three drag force
models are almost the same, and the dynamic characteristics of the lift force can be cat-
egorised into three different patterns that correspond to small, medium and large am-
plitudes of cylinder oscillation. When the cylinder oscillates at small amplitudes, the
evolution of the phase and amplitude of the lift force with respect to the frequency of
cylinder oscillation follows the typical characteristic of resonance, namely the ampli-
tude peak is accompanied by a sharp change in the phase. For medium amplitudes of
cylinder oscillation, a phase change is also observed. However, instead of a peak, a local
trough in the amplitude of the lift force is observed when a phase change occurs. At large
amplitudes of cylinder oscillation, the evolution of the phase of the lift force with respect
to the frequency is again characterised by a jump; however, in contrast to the small and
medium amplitude patterns, the phase jump is associated with neither a peak nor a local
minimum in the lift force amplitude.

The reproduction of the oscillatory in-line force coefficient Cx2 is also presented. It
has been demonstrated that all three models satisfy the measured Cx2 well at low fre-
quencies, while they significantly underestimate it at high frequencies. The discrepancy
happens to occur at the frequency, which, according to other studies, corresponds to the
change of wake pattern from a 2P (for a large amplitude of cylinder oscillation is P+S) to
a 2S mode.

The results obtained in this chapter indicate that making the drag force coefficient
frequency- and amplitude-dependent or introducing an oscillatory drag force compo-
nent does not have a significant impact on the lift force that satisfies the experimental
measurements. Therefore, in the next chapter, the first drag force model will be applied,
and attention will be placed on the improvement of the lift force model by introducing
extra nonlinearity to the wake oscillator equation. However, it should be reminded that
the dynamic characteristic of the lift force at a large amplitude of cylinder oscillation
could be the result of neglecting the inertia force in the direction of relative flow.
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MODELLING OF CROSS-FLOW

VORTEX-INDUCED VIBRATION OF

AN ELASTICALLY SUPPORTED RIGID

CYLINDER BY MEANS OF A WAKE

OSCILLATOR MODEL WITH

NONLINEAR COUPLING

3.1. INTRODUCTION
In the work by Ogink and Metrikine (2010), the main goal was to develop a wake oscil-
lator model that is able to reproduce both free and forced vibration experiments. At-
tempts have been made to achieve this goal by making the linear coupling used in the
classical wake oscillator models frequency-dependent. However, one of the main prob-
lems they encountered is that they were not able to find one set of frequency-dependent
coefficients that would satisfy the forced vibration experiments at different amplitudes
of cylinder oscillation. This is an indication of the improper nonlinearity used in the
model. One of the possible improvements to the model is to use another nonlinear os-
cillator instead of the van der Pol equation. Utilising the van der Pol oscillator in the first
place is barely an assumption, and any nonlinear oscillator that generates a limit cycle
can potentially be used in the description of vortex formation. However, several studies
have demonstrated that the van der Pol equation describes well the vortex shedding pro-
cess (Marzouk et al., 2007; Nayfeh et al., 2003), which makes it unreasonable to replace
that equation. Another possible approach is to introduce nonlinear coupling, which has
not been studied before and therefore forms the focus of this chapter.

25
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Without knowing the exact type of nonlinear coupling that should be used, a reason-
able start would be to represent the nonlinearities in the form of polynomials as mul-
tiplications of the displacement, velocity and acceleration of cylinder oscillation. If the
nonlinearities of the coupling are polynomial in nature, then this representation should
theoretically be able to model the system well for all frequencies and amplitudes of cylin-
der oscillation. If that is not the case, then according to the Weierstrass approximation
theorem, the system can still be approximated to an arbitrary accuracy by polynomi-
als within a given range of frequencies and amplitudes of cylinder oscillation. However,
this is accompanied by the drawback of using high-order polynomials, which make the
model too complicated and potentially unstable. Therefore, a combination of low-order
polynomials is adopted in this chapter.

The remainder of this chapter is structured as follows. In Section 3.2, as a preliminary
test, a set of nonlinear coupling terms in the form of polynomials up to the order of cu-
bic is introduced, and attempts are made to tune the wake oscillator model to both the
forced and free vibration experiments. The nonlinear coupling is further enhanced in
Section 3.3, where the convolution integrals are introduced in the time domain to repro-
duce the forced vibration experiments. The focus is on finding the frequency-dependent
complex-valued functions that meet the experimental measurements and determining
the corresponding kernels of the convolution integrals. The final conclusions are pre-
sented in Section 3.4.

3.2. IMPROVED WAKE OSCILLATOR MODEL WITH NONLINEAR

COUPLING
In this section, a study of the wake oscillator model with one set of nonlinear couplings
in the form of low-order polynomials is presented. The purpose of choosing low-order
polynomials is to avoid instabilities that may be introduced by high-order polynomials.
Notice that the first drag force model, with constant drag force coefficient, as presented
in the previous chapter is adopted in this chapter.

3.2.1. DESCRIPTION OF THE NONLINEAR COUPLING
The nonlinear couplings used in this section are given as

S =
3∑

n=0

[
An

Dn+1 |Y |n d 2Y

d t 2 +ωs
Bn

Dn+1 |Y |n dY

d t

]
, n is interger. (3.1)

The above equation describes a combination of nonlinearities that are dependent on the
displacement of cylinder motion up to a cubic term. Using the dimensionless parame-
ters given in Eq.(2.16), the dimensionless form of Eq.(3.1) is obtained as

s =
3∑

n=0

[
An |y |n ÿ +Bn |y |n ẏ

]
. (3.2)

The nonlinear coupling terms inevitably result in a force on the wake oscillator that con-
tains multiple frequency components. Here, it is assumed that the influence of the fre-
quency components other than that of cylinder oscillation on the response of the oscil-
lator is negligible. By substituting the cylinder motion y = y0 sin(Ωτ) into Eq.(3.2) and
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applying a Fourier series expansion, the force component acting on the wake oscillator
at the frequency of cylinder oscillation can be obtained as

sΩ =− (A0 + 8

3π
A1 y0 + 3

4
A2 y2

0 +
32

15π
A3 y3

0 )y0Ω
2 sin(Ωτ)

+ (B0 + 4

3π
B1 y0 + 1

4
B2 y2

0 +
8

15π
B3 y3

0 )y0Ωcos(Ωτ).
(3.3)

Comparing Eq.(3.3) with Eq.(2.23), the following expressions for A and B are obtained

A = A0 + 8

3π
A1 y0 + 3

4
A2 y2

0 +
32

15π
A3 y3

0 ,B = B0 + 4

3π
B1 y0 + 1

4
B2 y2

0 +
8

15π
B3 y3

0 . (3.4)

Eq.(3.4) demonstrates that by considering only the excitation on the wake oscillator at
the frequency of cylinder oscillation, the new nonlinear coupling terms can be expressed
as acceleration and velocity couplings with amplitude-dependent coefficients A and B.
The amplitude dependency is described by cubic polynomials given be Eq.(3.4). It has
been pointed out by Ogink and Metrikine (2010) that to comply with the measurements
from the forced vibration experiment, the coupling coefficients A and B should also be
frequency-dependent, which is not considered here. Still the model is tuned in the next
subsection to investigate the extent to which it can reproduce the forced and free vibra-
tion experiments.

3.2.2. TUNING OF THE MODEL TO THE FORCED VIBRATION EXPERIMENTS
In this and the following subsections, the improved wake oscillator model with nonlin-
ear coupling proposed in Section 3.2.1 is tuned to both forced and free vibration experi-
ments. When doing this, one can start by tuning the model to the forced vibration exper-
iments and then, with the same tuning parameters, conduct free vibration simulations
and compare the results with experimental data, or vice versa. In this section, the first
approach is taken.

Since the objective of this part is to tune the model to the forced vibration experi-
ments by Gopalkrishnan (1993), it is reasonable to use CD0 = 1.1856, CL0 = 0.3842 and
St = 0.1932, as measured in the experiments. This leaves tuning parameters A0, A1, A2,
A3, B0, B1, B2, B3 and ε to be determined. The large number of tuning parameters makes
the model difficult to be tuned. Therefore, an alternative approach is taken here to de-
termine the values of the tuning parameters.

As described in Section 3.2.1, if only the force component acting on the wake oscilla-
tor at the frequency of cylinder oscillation is considered, then the nonlinear coupling de-
scribed by Eq.(3.2) formulates amplitude-dependent coefficients A and B. The amplitude
dependency is given by Eq.(3.4). The amplitude-dependent A and B can be obtained by
tuning the wake oscillator model Eqs.(2.22) and (2.23) to the forced vibration measure-
ments at each amplitude. Then, the values of the nonlinear coupling coefficients A0, A1,
A2, A3, B0, B1, B2 and B3 can be determined by finding the best fit of A and B against the
amplitude of cylinder oscillation using Eq.(3.4).

To model the forced vibration, Eqs.(2.22) and (2.23) are solved numerically in the
time domain, using a fifth-order Runge-Kutta method. The simulation runs for 150 pe-
riods of cylinder oscillation at a certain reduced velocity, and only the steady response
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of the last 50 periods is used for the analysis. With Eqs.(2.26) and (2.27), the coefficients
Cy a and Cy v are calculated by averaging over the last 50 periods. The coefficients have
been determined over the range of reduced velocities from Vr = 3 to Vr = 12 with a step
size of dVr = 0.1.

When tuning Eqs.(2.22) and (2.23) to the forced vibration experiments, it is found
that a smaller value of ε results in better agreement. However, a smaller ε also means
a weak self-excitation in free vibration, as it decides the magnitude of negative added
damping in the van der Pol kernel. Therefore, ε= 0.05 is taken to achieve a suitable bal-
ance between self-excitation and the proper reproduction of the forced vibration exper-
iments. Another problem encountered by the author is that Eqs.(2.22) and (2.23) cannot
be exactly tuned to the forced vibration measurements at specified amplitudes of forced
motion. This is actually expected, as Ogink and Metrikine (2010) have already demon-
strated that to reproduce the experimental results, the coupling coefficients, namely A
and B , should be frequency-dependent. Despite of this drawback, a tuning result is con-
sidered to be a good one if it covers the main trend of the measurements and quantita-
tively reproduce the negative Cy v over the range of reduced velocities Vr = 5−8, as this is
the main range where the VIV happens. With this criterion, a good set of tuning results is
obtained and shown in Fig.3.1, in which dashed lines represent results of the model and
solid lines are experimental measurements. The corresponding amplitude-dependent
coefficients A and B are plotted in Fig.3.2 by squares.

To achieve the same tuning results by a wake oscillator with nonlinear coupling,
which is described by Eqs.(2.22) and (3.2), tuning parameters A0, A1, A2, A3, B0, B1,
B2 and B3 need to be carefully determined by finding an optimal fit of A and B with
polynomials given by Eq.(3.4). Here, curve fittings are conducted using the least squares
method, indicated by solid lines in Fig.3.2, and the corresponding nonlinear coupling
coefficients are obtained as

A0 = 1.5, A1 = 8.5, A2 =−11.1, A3 = 2.6;

B0 = 4.2,B1 = 11.3,B2 =−68.7,B3 = 50.5.
(3.5)

With the values of the tuning parameters given by Eq.(3.5), Eqs.(2.22) and (3.2) are
solved numerically with y = y0 sin(Ωτ), and the coefficients Cy a and Cy v are determined
by Eqs.(2.26) and (2.27) over the range of reduced velocities from 3 to 12 for amplitudes
y0 = 0.2,0.4. . . , until 1.2. The results are plotted in Fig.3.3 where the simulation results
and experimental measurements are compared. From Fig.3.3, it can be seen that the
simulation results of the wake oscillator model with nonlinear coupling are in fairly good
agreement with the experimental measurements. Especially the excitation region, repre-
sented by negative Cy v , is well captured. According to the simulation results, the values
of Cy v are negative at reduced velocities between approximately 5 and 8 at small am-
plitudes, which means a positive power input to the vibration of the cylinder under this
regime. As the amplitude increases, the net power input into the vibration of the cylinder
drops, and the values of Cy v become positive. For amplitudes larger than 0.8, the values
of Cy v are positive over the whole range of reduced velocities. However, some disagree-
ments from the comparison should also be noted. First, although the general decreasing
trend of Cy a is captured for all amplitudes of cylinder oscillation, the negative values
that are observed in experiments for a high reduced velocity, especially over the range of
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Figure 3.1: Tuning of the model to the forced vibration measurements at different amplitudes of cylinder oscil-
lation. Solid lines represent measurements by Gopalkrishnan (1993) and dashed lines represent tuning results.

Vr = 5−8 where VIV normally occurs, have not been reproduced. This disagreement will
lead to a major discrepancy in the reproduction of the free vibration experiments, which
will be discussed later. Another main difference between the simulation results and ex-
perimental measurements shown in Fig.3.3 is that the model over-predicts the values
of Cy v at low reduced velocities for all amplitudes. Especially for small amplitudes at
y0 = 0.2 and 0.4, the model fails to reproduce the negative Cy v around Vr = 4. Despite
this discrepancy, the results of Cy v illustrated in Fig.3.3 are considered to be acceptable
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Figure 3.2: Determined values of (a) A and (b) B as a function of amplitude of cylinder oscillation (marked by
squares), and curve fit (solid lines) found by least square method.

because it is mainly the other excitation region at Vr = 5−8 that plays an important role
in VIV.

Figure 3.3: A comparison of the nonlinear coupling wake oscillator model and the forced vibration measure-
ments for the force coefficient (a) in phase with acceleration Cy a and (b) in phase with velocity Cy v . Solid lines
represent measurements by Gopalkrishnan (1993) and dashed lines represent model results.

3.2.3. COMPARISON WITH FREE VIBRATION EXPERIMENTS
With the same tuning parameters given in Section 3.2.2, the wake oscillator model with
nonlinear coupling is used to simulate the vibration of an elastically supported rigid
cylinder that is free to move only in the cross-flow direction. The coupled system is gov-
erned by the following equations:

ÿ +2ζΩn ẏ +Ω2
n y = 1

π(m∗+Ca)

1

2π3St2 (−2πStẏCV D +CV L)
√

1+4π2St2 ẏ2 (3.6)
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q̈ +ε(q2 −1)q̇ +q =
3∑

n=0

[
An |y |n ÿ +Bn |y |n ẏ

]
. (3.7)

The above equations are solved numerically using a fifth-order Runge-Kutta method.
The simulation runs for a time duration that corresponds to 150 cycles of vortex shed-
ding (follows the Strouhal relation) at a certain reduced velocity Vn , and only the steady
response of the last 50 cycles is used for analysis. The simulation results are presented
with regard to the maximum amplitude A∗

y of dimensionless displacement and frequency
ratioΩ/Ωn . The A∗

y is determined by finding the maximum displacement recorded in the
last 50 periods, andΩ is determined as the frequency corresponding to the highest peak
in the Fourier spectrum of the analysed time series. This has been done for reduced ve-
locities Vn ranging from 2 to 12 with a step dVn = 0.1. A series of experiments conducted
by Khalak and Williamson (1999) are used for the comparison. The reason for choosing
these experiments is that they are in the range of Reynolds numbers similar to that in
the experiments by Gopalkrishnan (1993). The simulation and experimental results are
depicted in Fig.3.4. Different experiments are characterised by a different mass ratio m∗
and mass-damping ratio m∗ζ.

As seen in Fig.3.4, the main characteristics of the experiments are well captured. With
similar mass-damping ratios m∗ζ, the model predicts almost the same peak amplitudes
for all three cases, and a wider lock-in range at a smaller mass ratio is also captured.
This is consistent with the experimental finding that the peak amplitude is controlled
principally by the product of m∗ζ, whereas the range of lock-in is controlled primarily
by m∗ (Khalak and Williamson, 1999). The maximum simulated amplitudes for all three
cases are found at Vn ≈ 6, with values around 0.8, while the results from the experiments
reveal a slightly higher value at Vn ≈ 5. This can be explained by the fact that the present
parameters, namely CD0, CL0 , St and the tuning parameters, are taken based on the
forced vibration experiments that are conducted under a different condition.

From the comparison, a discrepancy can also be observed regarding the lock-in range
and cylinder oscillation frequency for the small mass ratio case. The lock-in range is sig-
nificantly underestimated by the model for the case m∗ = 2.4. While the model predicts
the vibration of the cylinder to reduce to negligible amplitudes for Vn > 9, the experi-
ments indicate that the cylinder maintains a moderate oscillation until Vn ≈ 12. As for
the frequency of cylinder oscillation, the model predicts that the cylinder will vibrate
at approximately the natural frequency of the system; this is consistent with the exper-
imental results for m∗ = 10.3 and m∗ = 20.6. For the small mass ratio case, m∗ = 2.4,
the experiments demonstrate the deviation of the frequency of cylinder oscillation from
the natural frequency. Within the lock-in range, the frequency of cylinder oscillation
gradually increases with increasing reduced velocity and reaches a maximum value 1.5
times the natural frequency of the system. Although the rising trend of the frequency of
cylinder oscillation is also observed in the simulation results, the model predicts much
smaller values, with a maximum slightly higher than the natural frequency. The source of
these discrepancies can be traced in the simulation results of the forced vibration exper-
iments, as illustrated in Fig.3.3, where the model fails to capture the negative Cy a , analo-
gous to added mass, over the range of oscillation frequencies where VIV takes place. The
added mass introduced by the vortices has a significant influence on the response of
the cylinder, especially for a small mass ratio system, since the natural frequency of the
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Figure 3.4: A comparison of the nonlinear coupling wake oscillator model and the free vibration measurements
by Khalak and Williamson (1999) for (a) m∗ = 2.4,m∗ζ = 0.014; (b)m∗ = 10.3,m∗ζ = 0.017; and (c) m∗ = 20.6,
m∗ζ= 0.019.

light cylinder when VIV occurs can be significantly different from that measured in still
water. Without reproducing the negative added mass, it is expected that the model will
predict a narrower lock-in range as well as a lower response frequency in free vibration
simulations for small mass ratio systems.

Attempts have been made to capture the negative added mass without changing the
added damping too much. This is difficult, as a frequency-dependent added mass is
always accompanied by frequency-dependent added damping. Nevertheless, one pos-
sible way to achieve this goal is to introduce an additional restoring force. For detailed
information and results, please refer to Appendix A.
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3.3. ENHANCED MODEL WITH FREQUENCY-DEPENDENT NON-
LINEAR COUPLING

As described in the previous section, a first attempt to improve the existing wake oscil-
lator model by introducing nonlinear coupling terms is promising. However, one main
drawback of the model is that it is not able to capture the negative added mass at high re-
duced velocities. In this section, the model is further enhanced by making the nonlinear
coupling frequency-dependent.

3.3.1. DERIVATION OF FREQUENCY-DEPENDENT NONLINEAR COUPLING
In the time domain, the frequency dependency can be achieved by means of convolution
integrals, and the nonlinear terms follow the same form as those in Eq.(3.2). To make the
model as simple as possible, this study starts with the coupling

s =
∫ τ

0
h0(τ̃)ẏ(τ− τ̃)d τ̃+

∫ τ

0
h1(τ̃)|y(τ− τ̃)|ẏ(τ− τ̃)d τ̃+

∫ τ

0
h2(τ̃)y(τ− τ̃)2 ẏ(τ− τ̃)d τ̃ (3.8)

which contains less nonlinear terms than Eq.(3.2). The reason for using less nonlinear
terms is that the coupling given by Eq.(3.8) is already sufficient to generate a fairly suit-
able reproduction of the forced vibration measurements, as will be shown later.

Excitation on the wake oscillator, described by Eq.(3.8), contains multiple harmonic
components due to nonlinearity. To have the formulas written in a clear format, the
equations are formulated as a complex-valued form in the following part. Substituting
the cylinder motion y = −i y0

2 (e iΩτ− e−iΩτ) into Eq.(3.8), and assuming that the compo-
nents at a frequency higher than 3Ω have a minor influence on the results, Eq.(3.8) can
be approximated, using Fourier expansion, as

s ≈ K1e iΩτ+ K̄1e−iΩτ− (K3e i3Ωτ+ K̄3e−i3Ωτ) (3.9)

where

K1 = 1

2
y0ΩH0(Ω)+ 2

3π
y2

0ΩH1(Ω)+ 1

8
y3

0ΩH2(Ω)

K3 = 1

3π
y2

0ΩH1(3Ω)+ 1

8
y3

0ΩH2(3Ω)
(3.10)

and when steady state is reached, i.e. τ→∞,

H0(Ω) =
∫ ∞

0
h0(τ̃)e−iΩτ̃d τ̃ (3.11)

H1(Ω) =
∫ ∞

0
h1(τ̃)e−iΩτ̃d τ̃ (3.12)

H2(Ω) =
∫ ∞

0
h2(τ̃)e−iΩτ̃d τ̃. (3.13)

The overbar in the equation above and in the remainder of this chapter designates the
complex conjugation.



3

34 3. WAKE OSCILLATOR MODEL WITH NONLINEAR COUPLING

Eqs.(3.11-3.13) indicate that the time domain kernels h0(t ), h1(t ) and h2(t ) are the
inverse Laplace transforms of H0(Ω), H1(Ω) and H2(Ω) respectively provided that the
Laplace variable s is given by s = iΩ. To find the kernels of the convolution integrals,
H0(Ω), H1(Ω) and H2(Ω) must first be determined. This can be done by tuning the wake
oscillator model described by Eqs.(2.22) and (3.9) to the forced vibration experiments at
each frequency.

The steady state solution of Eqs.(2.22) and (3.9) can be sought for in the form of q =
q1e iΩτ + q̄1e−iΩτ + q3e i3Ωτ + q̄3e−i3Ωτ. Substituting the latter expression into Eqs.(2.22)
and (3.9), a collection of multipliers of e iΩτ and e i3Ωτ yields two equations:

−iεq2
1 q̄3Ω+ q̄1 + iεq̄1Ω−2iεq3q̄3q̄1Ω− iεq1q̄1

2 − q̄1Ω
2 −K1 = 0

−iεq̄1
3Ω+3iεq̄3Ω−9q̄3Ω

2 −3iεq3q̄3
2Ω+ q̄3 −6iεq1q̄1q̄3Ω+K3 = 0.

(3.14)

The hydrodynamic coefficients Cy a and Cy v are measured at the frequency of cylinder
oscillation, and Eqs.(2.26) and (2.27) can be rewritten in the complex form as

−Cy v + iCy a = 2

T

∫ τ0+T

τ0

Cy exp(iΩτ)dτ

= 2

T

∫ τ0+T

τ0

CV Y exp(iΩτ)dτ+ iCaπ
3St2Ω2 y0.

(3.15)

Substituting q = q1e iΩτ + q̄1e−iΩτ + q3e i3Ωτ + q̄3e−i3Ωτ and y = −i y0
2 (e iΩτ − e−iΩτ) into

Eq.(3.15) results in

−Cy v + iCy a ≈
√

1+4π2St 2Ω2 y2
0 (−1

2
q1CL0 − 1

4
q̄1CL0 + 3

2
πSt y0CD0Ω)− 1

2
q1CL0

+ 1

4
q̄1CL0 + 1

2
πSt y0CD0Ω+2iCaπ

3St 2 y0Ω
2

+ 1

4
q3CL0(

√
1+4π2St 2Ω2 y2

0 −1).

(3.16)

The approximation in Eq. (3.16) is obtained using√
1+4π2St 2 y2

0Ω
2 cos(Ωτ)2 ≈ 1

2

√
1+4π2St 2 y2

0Ω
2 (1+cos(2Ωτ))+ 1

2
(1−cos(2Ωτ)) .

(3.17)
At a specific frequency Ω, if the values of H0(Ω), H1(Ω),H2(Ω), H1(3Ω) and H2(3Ω) are
already known, Cy a and Cy v at a certain amplitude y0 can be calculated by solving al-
gebraic equations Eqs.(3.14) and (3.16). Likewise, with measurements of Cy a and Cy v

known, the values of H0(Ω), H1(Ω),H2(Ω), H1(3Ω) and H2(3Ω) can be determined by
solving the equation system formulated by Eqs.(3.14) and (3.16) at five amplitudes y0.

Using the method described above, attempts were made to tune the model to the
forced vibration experiments at different combinations of five amplitudes y0. However,
no solution was found through Eqs.(3.14) and (3.16). Thus, instead of being tuned to
five amplitudes at each frequency, the model is tuned to three amplitudes by solving
Eqs.(3.14) and (3.16), neglecting the third harmonic components by setting K3 = 0. Some
of the tuning results using different combinations of amplitudes are presented in Fig.3.5.



3.3. ENHANCED MODEL WITH FREQUENCY-DEPENDENT NONLINEAR COUPLING

3

35

Figure 3.5: Tuning of the model with nonlinear coupling to the forced vibration measurements at amplitudes
(a)y0 = 0.2,0.4,0.6; (b)y0 = 0.2,0.8,1.2; and (c)y0 = 0.8,1.0,1.2. Solid lines represent measurements by Gopalkr-
ishnan (1993) and dashed lines represent tuning results.
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If the nonlinear couplings used in Eq.(3.8) are correct, then the choice of the three am-
plitudes to which the model is tuned should theoretically not affect the results in a sig-
nificant way. However, from Fig.3.5, it can be seen that this is not the case here. The
tuning results are highly sensitive to the choice of amplitudes, which is a strong indica-
tion that the coupling terms used here do not contain the correct nonlinearities. Despite
this conclusion, it was found that with current model, it is possible to obtain an accept-
able reproduction of experiments by tuning the model to y0 = 0.2,0.8,1.2; see plot (b) in
Fig.3.5. The corresponding H0(Ω), H1(Ω) and H2(Ω) are presented in Fig.3.6.

3.3.2. DETERMINATION OF THE CONVOLUTION KERNELS

In the previous subsection, the values of H0(Ω), H1(Ω) and H2(Ω) have been determined
within a finite frequency range according to the forced vibration experiments. Also, it
has been demonstrated that the kernels h0(t ), h1(t ) and h2(t ) are given by the inverse
Laplace transforms of H0(Ω), H1(Ω) and H2(Ω). However, before performing an in-
verse Laplace transform, the values of H0(Ω), H1(Ω) and H2(Ω) within a finite range
of frequencies need to be extended over the entire frequency domain. This process
of extension is not arbitrary. To obtain a kernel in the time domain that follows the
principle of causality, the frequency domain values need to be extended following the
Kramers-Kronig relations (Elmore and Heald, 1989). For a complex function χ(Ω) =
χ1(Ω)+ iχ2(Ω), the Kramers-Kronig relations are given by

χ1(Ω) = 2

π
P

∫ ∞

0

Ω′χ2(Ω′)
Ω′2 −Ω2 dΩ′

χ2(Ω) =−2Ω

π
P

∫ ∞

0

χ1(Ω′)
Ω′2 −Ω2 dΩ′

(3.18)

where P denotes the Cauchy principle value. In this study, both real and imaginary parts
are available only in a limited range of frequencies, which makes it impossible to extend
them to the whole frequency domain by directly applying Eq.(3.18). Therefore, in this
study, the spectrum of H0(Ω), H1(Ω) and H2(Ω) is extended with complex curve fitting.
The basic idea of this method is to approximate the frequency domain responses with
basic functions that already meet Kromers-Kronig relations. The most widely used gen-
eral fitting methodology was proposed by Gustavsen and Semlyen (1999), and it is used
to fit the measured or calculated frequency domain responses with rational function ap-
proximations. The same method will be used in this paper.

According to Gustavsen and Semlyen (1999), a complex function H(Ω) can be ap-
proximated as

H(Ω) =
N∑

n=1
(

cn

iΩ−an
+ c̄n

iΩ− ān
)+d + iΩh. (3.19)

The residual cn and poles an are either real or complex quantities, while d and h are real.
The inverse Laplace transform of Eq.(3.19) results in the kernel h(τ) as

h(τ) =
N∑

n=1
[2exp(are

n )(cre
n cos(aim

n τ)− c im
n sin(aim

n τ))]+dδ(τ)+h
d

dτ
δ(τ). (3.20)
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Figure 3.6: Frequency-dependent H0 (Ω), H1 (Ω) and H2 (Ω) determined from the forced vibration measure-
ments, represented by solid lines, as well as curve fitting results, represented by dashed lines.

in which δ denotes the Dirac delta function, and the superscripts ‘re’ and ‘im’ denote
the real and imaginary parts of c and a. From Eq.(3.20) it can be noted that the poles a
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should have negative real parts to ensure that limτ→∞ h(τ) = 0.
Using this method, attempts were made to fit the complex curves of H0(Ω), H1(Ω)

and H2(Ω), as illustrated in Fig.3.6, with a well-developed publicly available Matlab pack-
age (vectfit3). The Matlab package is based on the work by Gustavsen and Semlyen
(1999), Gustavsen (2006) and Deschrijver et al. (2008). However, obtaining good fits for
all three curves was found to be impossible. For H0(Ω), positive are

n are encountered for
fitting results with N > 2. For H1(Ω) and H2(Ω), this study did not find any fit, as regard-
less of the number of poles used, poles with positive real parts always exist. By imposing
constraints of are

n < 0 on the process of approximation, it is possible to obtain some fit-
ting results for H1(Ω) and H2(Ω). However, these fitting results are poor. Fig.3.6 presents
the fitting results of three curves with N = 2. Approximations have also been conducted
with N > 2, but it was found that increasing the number of poles does not improve the
fitting results.

3.4. CONCLUSIONS
In this chapter, attempts were made to improve the reproduction of forced vibration
experiments by introducing nonlinear coupling to the wake oscillator equation. A set of
nonlinear terms in the form of multiplications of acceleration, velocity and displacement
of the cylinder up to the order of cubic was taken as a preliminary test. First, the coeffi-
cients of the nonlinear coupling terms were assumed to be constant, and the model was
tuned to the forced vibration experiments. The simulation results reveal that the model
is able to quantitatively reproduce the added damping measured in the forced vibration
experiments over most of the range of frequencies and amplitudes that are of interest;
however, it fails to capture the negative added mass. The model with the same tuning
parameters was then applied to the simulation of free vibration experiments. It has been
demonstrated that the model predictions are in good agreement with the free vibration
experiments with high mass ratios regarding the maximum amplitude of cylinder oscil-
lation, the frequency of cylinder oscillation and the range of lock-in. However, for small
mass ratio experiments, the model significantly under-predicts the frequency of cylinder
oscillation and the range of lock-in.

The model was further enhanced by introducing frequency-dependent nonlinear
coupling. The frequency dependency was formulated in the time domain by means of
convolution integrals. A set of frequency-dependent complex-valued functions that sat-
isfy the forced vibration experimental measurements at all amplitudes fairly well was
determined. These complex-valued functions were calculated by tuning the model to
experimental measurements at three different amplitudes. Choosing the amplitudes to
which the model is tuned has a significant influence on the results, which indicates that
the nonlinearity in the model is still deficient.

The complex-valued functions were determined over a limited range of frequencies
and need to be extended to the infinite frequency domain following the Kramers-Kronig
relations. A widely used online complex curve fitting software was adopted to extend
the spectrum. The theoretical basis of this method is to fit the frequency-dependent
complex-valued functions with rational functions that already conform to the Kromers-
Kronig relations. Using this method, attempts were made to find good fittings. However,
the author has failed to obtain good fittings with rational functions that correspond to
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decaying oscillatory signals in the time domain.
As a preliminary test, the results presented in this chapter highlight the potential

possibility of improving the wake oscillator model by introducing nonlinear coupling.
However, since the nonlinear coupling adopted in this chapter is insufficient in princi-
ple, it will not be used in the rest of this thesis.





4
MODELLING OF COUPLED

CROSS-FLOW AND IN-LINE

VORTEX-INDUCED VIBRATION OF

AN ELASTICALLY SUPPORTED RIGID

CYLINDER

4.1. INTRODUCTION
In the modelling of VIV, the in-line response is normally not of interest, as its amplitude
is small compared to the cross-flow response. However, due to its doubled oscillating
frequency, relative to the cross-flow, the in-line vibration may introduce significant fa-
tigue damage to the structure. Also, studies have demonstrated that the presence of the
in-line vibration may alter the wake pattern and consequently influence the cross-flow
response. More importantly, in practical situations, the flexible structures possess mul-
tiple natural frequencies and are usually allowed to vibrate in different directions. In
such cases, it is possible that resonance occurs in both cross-flow and in-line directions.
Therefore, an advanced model that is capable of predicting the coupled cross-flow and
in-line VIV is necessary and in urgent need for practical purpose.

Introducing a second wake oscillator equation that is coupled with the in-line mo-
tion to describe the oscillating drag force is a common approach taken by the researchers.
However, in most cases, the two wake oscillators are uncoupled, and the one that de-
scribes the lift force is solely dependent on the cross-flow motion of the cylinder, while
the oscillating drag force is predicted by the other oscillator, which is only coupled with
the in-line motion. Bear in mind that the lift and drag forces have the same origin and
are interdependent on each other. Therefore, the model with two wake oscillators may
be said to contradict the fundamental mechanism of coupled cross-flow and in-line VIV.
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This contradiction may be the reason that the existing double wake oscillator models
cannot capture the super-upper branch, which is a distinct characteristic related to the
coupled cross-flow and in-line VIV. It is physically more reasonable to use only one os-
cillator to describe the dynamics of the wake, and this oscillator should be coupled to
both cross-flow and in-line motions of the cylinder. The development of such a wake
oscillator model is the main objective of this chapter.

In Section 4.2, the model that describes the two degrees of freedom VIV of an elas-
tically supported rigid cylinder is presented, with the focus on the introduction of an
in-line coupling term to the wake oscillator equation. The proposed model is then vali-
dated against the existing experiments in Section 4.3. Final conclusions are provided in
Section 4.4.

4.2. MODEL DESCRIPTION
In this section, the governing equations for the motion of an elastically supported rigid
cylinder that is allowed to move in both cross-flow and in-line directions, the definition
of hydrodynamic forces as well as the wake oscillator that is coupled to both in-line and
cross-flow motion are presented.

4.2.1. GOVERNING EQUATIONS FOR THE STRUCTURE
Consider a rigid cylinder that is elastically supported in both cross-flow (represented
by the y axis) and in-line (represented by the x axis) directions; see Fig.4.1. The dis-
placements of the cylinder X and Y along the in-line and cross-flow directions can be
described as

m
d 2X

d t 2 +b
d X

d t
+k X = FX (4.1)

m
d 2Y

d t 2 +b
dY

d t
+kY = FY (4.2)

where m is the mass of the cylinder, and b and k are the viscous damping coefficient
and the stiffness of the supports of the cylinder respectively. It should be noted here
that there are experiments that have been conducted with unequal mass, stiffness and
damping in different directions due to the set-up of the apparatus (Dahl et al., 2006; Moe
and Wu, 1990); this is not considered here as they are generally equal in real applica-
tions. Furthermore, FX and FY on the right-hand side of the equations are the in-line
and cross-flow hydrodynamic forces acting on the cylinder, both of which are assumed
to be expressible as a superposition of vortex force and an ideal inviscid inertia force
associated with the potential added mass of the fluid:

FX = FV X +FAX = FV X −ma
d 2X

d t 2 (4.3)

FY = FV Y +FAY = FV Y −ma
d 2Y

d t 2 . (4.4)

Moving the potential inertia force to the left-hand side of the equation, Eqs. (4.1) and
(4.2) become

d 2X

d t 2 +2ζωn
d X

d t
+ω2

nY = FV X

m +ma
. (4.5)



4.2. MODEL DESCRIPTION

4

43

Figure 4.1: Coupled cross-flow and in-line VIV of an elastically supported rigid cylinder subjects to uniform
flow.

d 2Y

d t 2 +2ζωn
dY

d t
+ω2

nY = FV Y

m +ma
(4.6)

where ωn =
√

k/(m +ma) is the structural natural frequency in still water, and
ζ= b/(2ωn (m +ma)) is the damping ratio.

4.2.2. DEFINITION OF HYDRODYNAMIC FORCES
Following the same force decomposition as described in Section 2.2, the total vortex
force is decomposed into an instantaneous drag force FV D that acts along the relative
flow velocity U and an instantaneous lift force FV L in the perpendicular direction. The
magnitudes of both forces are proportional to the square of the relative flow velocity and
are given as

FV D = 1

2
CV DρDLU 2 (4.7)

and

FV L = 1

2
CV LρDLU 2 (4.8)

in which CV D is the drag force coefficient, and CV L is the instantaneous lift force co-
efficient, which is associated with the wake variable as CV L = q

2 CL0. Since the cylin-
der also moves in the in-line direction, the relative flow velocity is now given as U =√(

V − d X
d t

)2 +
(

dY
d t

)2
. With the instantaneous lift and drag force defined above, the vor-

tex forces FV X and FV Y can then be written as

FV X = 1

2
CV LρDLU 2 sin

(
β
)+ 1

2
CV DρDLU 2 cos

(
β
)

(4.9)

FV Y = 1

2
CV LρDLU 2 cos

(
β
)+ 1

2
CV DρDLU 2 sin

(
β
)

(4.10)
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in which the angle β is the angle between the direction of the relative flow velocity U and
that of undisturbed flow velocity V . This angle is given as

sinβ=−dY

d t
/U , and cosβ=

(
V − d X

d t

)
/U . (4.11)

The force definition described above is simply an extension of the one proposed by
Ogink and Metrikine (2010), see Fig.2.2, by releasing the constraint in the in-line direc-
tion. In their model, the drag force coefficient is assumed to be constant and equals
the steady component of the drag force measured from a stationary cylinder. One main
problem with the utilisation of the constant drag force coefficient is that the model is not
able to predict the pure in-line free vibration, since the cylinder, according to the force
definition, is only subjected to a constant drag force when its motion in the cross-flow di-
rection is constrained. One straightforward approach to deal with this shortcoming is to
introduce an oscillating instantaneous drag force that is coupled with the instantaneous
lift force in the following form:

CV D =CDM +αC 2
V L (4.12)

where CDM is constant, and the second quadratic term describes the relationship be-
tween the fluctuating lift and drag forces that are derived from a fixed cylinder (Qin,
2004). According to the definition of Eq.(4.12), the total drag force is composed of a
steady part and an oscillating component. The magnitude of the steady drag force is
the summation of CDM and the mean value of αC 2

V L , and the latter component is pro-
portional to the quadratic of the lift force coefficient’s magnitude. Since the steady part
of the drag force only damps the energy out from the structure, the author found that
the cross-flow motion would be significantly underestimated due to the extra damping
introduced by a large lift force. Recall that the same drag force model has already been
investigated in Section 2.3. It has been shown that to satisfy the forced vibration experi-
ments, the value of α varies much from negative to positive as the frequency of cylinder
oscillation increases. It is thus not a surprise here that applying a positive constant α
does not generate good predictions. Therefore, the instantaneous drag force coefficient
is still assumed to be constant CV D = CDM . Meanwhile, a fluctuating force is directly
introduced in the in-line direction and coupled with the lift force in the same manner as
Eq.(4.12). In this way, the in-line vortex force FV X is reformulated as

FV X = 1

2
CV LρDLU 2 sin

(
β
)+ 1

2
CDMρDLU 2 cos

(
β
)+ 1

2
αC 2

V LρDLUx |Ux | (4.13)

where Ux = V − d X
d t is the in-line component of the relative flow velocity U . When the

cylinder dose not move, i.e. dY
d t = 0 and d X

d t = 0, Eq. (4.13) reduces to

FV X = 1

2

(
CDM +αC 2

V L

)
ρDLV 2 (4.14)

which is in the same form as proposed by Qin (2004) for the coupled lift and drag force
on a fixed cylinder.
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After performing the necessary substitutions into Eqs.(4.5) and (4.6), the structure’s
final equation of motion can be written as

d 2X

d t 2 +2ζωn
d X

d t
+ω2

nY = 1

2
ρDV 2 CV X

m +ma
(4.15)

d 2Y

d t 2 +2ζωn
dY

d t
+ω2

nY = 1

2
ρDV 2 CV Y

m +ma
(4.16)

where

CV X =−CV L
U

V 2

dY

d t
+CDM

U

V 2

(
V − d X

d t

)
+αC 2

V L

(
1− 1

V

d X

d t

)
|1− 1

V

d X

d t
| (4.17)

and

CV Y =CV L
U

V 2

(
V − d X

d t

)
−CDM

U

V 2

dY

d t
. (4.18)

Using the dimensionless parameters in Eq.(2.16) and parameter x = X /D , the dimen-
sionless forms of Eqs.(4.15-4.18) can be obtained as

ẍ +2ζΩn ẋ +Ω2
n x = 1

(m∗+Ca)

1

2π3St2 CV X (4.19)

ÿ +2ζΩn ẏ +Ω2
n y = 1

(m∗+Ca)

1

2π3St2 CV Y (4.20)

CV X =(
CDM (1−2πSt ẋ)+2πSt ẏCV L

)√
(1−2πSt ẋ)2 + (

2πSt ẏ
)2

+αC 2
V L (1−2πSt ẋ) |1−2πSt ẋ|

(4.21)

CV Y = (−2πSt ẏCDM +CV L (1−2πSt ẋ)
)√

(1−2πSt ẋ)2 + (
2πSt ẏ

)2. (4.22)

4.2.3. WAKE OSCILLATOR COUPLED TO BOTH CROSS-FLOW AND IN-LINE

DEGREES OF FREEDOM OF THE STRUCTURE
In the cross-flow VIV, the use of the oscillator to describe the wake dynamics comes from
the experimental observation that ‘the wake swings from side to side, somewhat like the
tail of a swimming fish’ (Birkhoff, 1953) as well as experimental measurements of lift and
drag forces that ‘responded to forcing rather as a simple oscillator would under simi-
lar circumstances’ (Bishop and Hassan, 1964). The dynamics of the wake in the cross-
flow VIV is dominated by alternate vortex shedding; therefore, the resultant lift force
can be reasonably represented by an oscillator driven by the acceleration of cross-flow
motion. Different from cross-flow VIV, for which the dynamics of the wake are domi-
nated by the alternate vortex shedding, the in-line VIV is characterised by two response
branches that correspond to different wake patterns. For the first branch (denoted as
the SS branch) that occurs at a lower reduced velocity – defined as Vn = 2πV

ωn D , within
the range roughly between 1 and 2.5 – symmetric vortex shedding is observed, while for
the second branch (denoted as the AS branch), the vortices are shed alternatively above
Vn ≈ 2.5, (Aguirre Romano, 1978). The priority of this work is to model the second exci-
tation region of in-line VIV, as it corresponds to wake dynamics that are similar to those
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in the cross-flow vibration. To simulate the first response branch due to the symmetric
vortex shedding, another model may be needed and is not in the scope of this thesis.

In the second excitation region, Konstantinidis (2014) pointed out that the response
of the cylinder is steady, and the fluctuation of the wake, represented by the transverse
velocity fluctuation, is synchronised to half of the frequency of cylinder oscillation. From
forced in-line vibration experiments, Aronsen (2007) also demonstrated that the lift force
in this region contains significant components at both 0.5 and 1.5 times the frequency
of cylinder oscillation. These facts suggest that the coupling between the in-line motion
and the wake variable may be in the form that ensures parametric excitation of the lift
force by the in-line vibration. To pursue this idea, the wake oscillator equation is now
extended to include a parametric excitation term, and it is given as

d 2q

d t 2 +εωs (q2 −1)
d q

d t
+ω2

s q −κd 2X

d t 2 q = A

D

d 2Y

d t 2 . (4.23)

The reason for using d 2 X
d t 2 q instead of other combinations, such as d X

d t q , is a reasonable
guess based on the work by Nishi et al. (2008) in which the classic van der Pol wake os-
cillator equation was derived by replacing the wake behind the cylinder by a rigid bar.
The coupling between the dynamics of the rigid bar, represented by the rotation angle,
and the cross-flow motion of the cylinder was assumed to follow the same form as the
dynamics of a rigid pendulum with a moving foundation. If the same assumption holds
in the in-line direction, then the coupling between the wake oscillator and the in-line

motion should be in the form of d 2 X
d t 2 q , as can be derived from the Lagrange equation.

For a more detailed derivation, please refer to Appendix B. The dimensionless form of
Eq.(4.23) is given as

q̈ +ε(q2 −1)q̇ +q −κẍq = Aÿ . (4.24)

If only the in-line vibration is considered, and ignoring the damping term, then substi-
tuting x = x0 sin(Ωτ) into Eq.(4.24) yields

q̈ +q +κΩ2x0 sin(Ωτ)q = 0. (4.25)

Eq.(4.25) is of the type generally known as the Mathieu’s equation, the stability of which
has been widely studied, and the transition curves that separate stable and unstable
regions have been derived (Kovacic et al., 2018). It has been shown that Eq.(4.25) has
several instability zones. The one of most interest to the current study – with Ω corre-
sponding to reduced velocity smaller than 3, which is associated with the in-line VIV – is
plotted in Fig.4.2(a), with κ= 5.

It can be seen from Fig.4.2(a) that Eq.(4.25) is unstable around Ω = 2, and as the
amplitude x0 increases, the system is unstable over a wider range of Ω. The instabil-
ity around Ω = 2 is desirable because it introduces energy to the system and leads to
synchronisation between the wake variable q and external forcing (in-line oscillation x)
as well as the amplification of the magnitude of q . However, the unstable region does
not have an upper bound with respect to the frequency of oscillation. At x0 > 0.1, the
unstable region will extend to infinity as the frequency of oscillation increases. This un-
bounded region of instability is against experimental observation, where the synchroni-
sation as well as the amplification of the lift force is bounded within a certain range of
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Figure 4.2: Stability maps of the model with (a) original in-line coupling term and (b) modified in-line coupling
term. The coefficient of coupling κ= 5 is taken.

reduced velocities (Aronsen, 2007; Nishihara et al., 2005). To achieve a bounded unstable
region, the term ẍq is modified into ẍ

1+ẍ2 q so that Eq.(4.25) becomes

q̈ +ε(q2 −1)q̇ +q −κ ẍ

1+ ẍ2 q = Aÿ (4.26)

and the corresponding dimensional form is given as

d 2q

d t 2 +εωs (q2 −1)
d q

d t
+ω2

s q −κ
ω4

s D d 2 X
d t 2

ω4
s D2 +

(
d 2 X
d t 2

)2 q = A

D

d 2Y

d t 2 . (4.27)

The stability map of Eq.(4.26), after removing the damping term, with external in-line
forcing is plotted in Fig.4.2(b), with κ = 5. The stability map is obtained numerically by
applying the Floquet theory (Bittanti and Colaneri, 2009). As can be seen in Fig.4.2(b),
the unstable region around Ω = 2 is now bounded. To further illustrate the differences
between the two terms, the response of q according to Eqs.(4.24) and (4.26) subjected
to external forcing at x0 = 0.1 is calculated with κ = 5 and ε = 0.08, and the results are
illustrated in Fig.4.3, where the maximum amplitude of the wake variable qmax and the
frequency ratio Ωq /Ω (Ωq is obtained at the peak frequency) are presented. The results
are shown against reduced velocity Vr = 1/St/Ω. It is clear that the original in-line cou-
pling term, as depicted in Fig.4.3(a), results in a lock-in range extended to small reduced
velocities without any sign of lockout. The amplitude of q continuously increases as the
reduced velocity decreases, and it reaches a value as high as 11 at Vr = 0.5. For the mod-
ified coupling term, Fig.4.3(b) demonstrates that the lock-in range is bounded approxi-
mately over the range of reduced velocities between Vr = 1.5 and 3.5. The amplification
of q only occurs within the lock-in range; outside of this range, q oscillates at an ampli-
tude close to 2. The comparison in Fig.4.3 indicates that the modified in-line coupling
term is consistent with the experimental observation and will therefore be used in the
rest of this thesis.
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Figure 4.3: Dynamics of the wake variable q subjected to external in-line forcing at x0 = 0.1 with coefficient
κ= 5 and ε= 0.08 for (a) original in-line coupling term and (b) modified in-line coupling term.

It must be clarified that the modification of the in-line coupling term to formulate a
bounded unstable region is purely a mathematical manipulation, and whether the un-
derlying mechanism of VIV in reality is in the same form is not known. Furthermore,
although the results from the model with the original in-line coupling term do not meet
the forced vibration experiments, it was found that this term actually works well in the
simulations of free vibration of rigid cylinders and that of flexible cylinders subjected to
uniform flow. In such cases, no obvious oscillation of the structure is observed at small
reduced velocities where, according to the simulation results of forced vibration, a sig-
nificant amplification of wake variable q occurs. This means that, different from the case
of forced vibration, the coupled system is stable. However, the modified coupling term
is still preferred. This is because in the cases where the flexible cylinder is subjected to
the sheared flow, the vibration excited at high flow velocities will propagate to the low-
velocity region and lead to instability, as demonstrated in this section.

4.3. MODEL VALIDATION AGAINST EXPERIMENTAL MEASURE-
MENTS

With the coupled system defined by Eqs.(4.19-4.22) as well as the wake oscillator in
Eq.(4.26), the series of 2DOF VIV experiments reported by Jauvtis and Williamson (2004)
have been simulated. In these experiments, the cylinder has the same natural frequency
and mass ratio in the cross-flow and in-line directions.

4.3.1. COUPLED CROSS-FLOW AND IN-LINE FREE VIBRATIONS

Although several experiments have been conducted with mass ratio m∗ varying from
1.5 to 25.0 and (m∗+Ca)ζ = 0.001 to 0.1, detailed experimental data of cylinder re-
sponses are only reported for the cases of m∗ = 7.0 with ζ = 0.0015 and m∗ = 2.6 with
ζ= 0.0036. These two cases demonstrate one of the main characteristics of the coupled
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cross-flow and in-line VIV, namely the phenomenon of the super-upper branch. Jauvtis
and Williamson (2004) discovered that the influence of the in-line freedom on the cross-
flow response is surprisingly small provided that the mass ratio higher is than m∗ = 6.
However, as the mass ratio decreases to be smaller than m∗ = 6, a new response branch,
termed a ‘super-upper’ branch, appears in the cross-flow direction, with a peak cross-
flow amplitude as large as 1.5D . It will be shown later that with the model presented in
the current study, this phenomenon is well captured.

The model is first tuned to the measurements of the experiment, with m∗ = 7. The
hydrodynamic coefficients on a stationary cylinder are assumed to be St = 0.2, CL0 = 0.3
and α= 2.2 (to generate an oscillating drag force coefficient around 0.1). The mean drag
force coefficient is assumed to be 1.2, then CDM = 1.2−αC 2

L0/2. Since the model is not
able to predict both the upper and lower branches of the cylinder response simultane-
ously (Ogink and Metrikine, 2010), two different sets of tuning parameters have been
used to capture those branches separately. The case in which the model is tuned to the
upper branch is referred to as ‘Case U’, and the other case is ‘Case L’. The simulation re-
sults of the model in comparison with the experimental measurements are illustrated in
Fig.4.4 against reduced velocity Vn = 1/St/Ωn . The tuning parameters used for Case U
are A = 8, ε= 0.08 and κ= 5; for Case L, they are A = 20, ε= 0.8 and κ= 5.

The simulation results, as shown in Fig.4.4, are generally in good agreement with the
experimental measurements, and the main characteristics of the coupled cross-flow and
in-line VIV are well reproduced. According to the experiments, apart from the conven-
tional lock-in region that is observed from the cross-flow-only vibration, an additional
lock-in regime, which occurs at lower reduced velocities around Vn ≈ 2.5, is identified.
The latter regime corresponds to the same wake patterns observed in the pure in-line
vibration with two response branches, SS and AS; therefore, it is denoted as an in-line
vibration mode. Since the cross-flow response of the SS branch is almost zero, and the
associated wake dynamics with symmetric vortex shedding are not considered by the
current model, the results presented next are only for the AS response branch. As can
be seen from Fig.4.4(c), the current model captures the lock-in regime associated with
in-line vibration mode well. Within this lock-in range, the simulated frequency of the
cross-flow response locks on to half of the natural frequency, Ωy /Ωn = 0.5 (Ωy is the di-
mensionless cross-flow frequency), which is consistent with the experimental measure-
ments, while the width of the lock-in is smaller than that of the experimental results. This
is because, as discussed previously, in this study’s model, only the AS response branch is
considered. For the response amplitude, as illustrated in Figs.4.4(a) and (b), the upper
and lower response branches are quantitatively captured by Case U and Case L respec-
tively. Coupled cross-flow and in-line motions that are associated with the AS response
branch around Vn ≈ 2.5 are well captured in the Case U, although the predicted AS re-
sponse branch occurs at slightly smaller reduced velocities, and its cross-flow ampli-
tude is somehow underestimated. As for the in-line response, the amplitude of the AS
response is in good agreement with the experiment. The model results of the in-line
response corresponding to the upper branch of cross-flow vibration is larger than the
experimental measurements, and that corresponding to lower branch is slightly over-
predicted by Case L.

With the same tuning parameters, the model is then used to predict the coupled
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Figure 4.4: A comparison of numerical (lines) and experimental response (circles) with m∗ = 7 and(
m∗+Ca

)
ζ= 0.0117 for (a) Cross-flow response amplitude, (b) In-line response amplitude and (c) Cross-flow

response frequency. Solid lines represent "Case U", dashed lines represent "Case L", circles represent experi-
mental data by Jauvtis and Williamson (2004).

cross-flow and in-line VIV of the experiment with m∗ = 2.6 and (m∗+Ca)ζ = 0.013.
Fig.4.5 illustrates the prediction of the model in comparison with the experimental mea-
surements. From Fig.4.5, it can be seen that the agreement between the prediction and
experimental measurements is good. The super-upper branch, with the peak amplitude
reaching 1.5D , which is not observed in the previous case (m∗ = 7) is quantitatively cap-
tured. To the author’s knowledge, this characteristic of the coupled cross-flow and in-line
VIV of rigid cylinders has never been truly captured by any wake oscillator models in the
past. For the moment, the only model in which attempts were made to account for the
effect of the mass ratio on the prediction of coupled cross-flow and in-line VIV is that by
Srinil and Zanganeh (2012) – an empirical formula of tuning parameters with respect to
m∗ or ζ that meet the experimental measurements are derived therein. This is appar-
ently an alternative approach for practical purposes when the model itself is not able to
provide the correct prediction.
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Figure 4.5: A comparison of numerical (lines) and experimental response (circles) with m∗ = 2.6 and(
m∗+Ca

)
ζ = 0.013 for (a) Cross-flow response amplitude, (b) In-line response amplitude and (c) Cross-flow

response frequency. Solid lines represent "Case U", dashed lines represent "Case L", circles represent experi-
mental data by Jauvtis and Williamson (2004).

The phase difference between cross-flow and in-line vibrations and the correspond-
ing trajectory shapes of cylinder motion are plotted in Fig.4.6 in which the phase angle
φx y is defined in the same way as given by (Jauvtis and Williamson, 2004). It can be seen
from Fig.4.6(a) that the model with the tuning parameters of Case U correctly predicts
the general trend of measurements for reduced velocities smaller than 8. However, for
the lower branch, while the experimental data are maintained at a constant close to 320°
with an increased reduced velocity, the predicted phase by Case L continually increases
and finally exceeds 360°. The predicted motion trajectory shapes corresponding to spe-
cific reduced velocities are depicted in Fig.4.6(b) based on the last 40 cycles of steady
response. In general, the trajectory shapes are consistent with the experimental find-
ings (Jauvtis and Williamson, 2004). For the coupled motion around Vn ≈ 3, the typical
figure-of-eight-type motion is predicted. As the reduced velocity increases, the figure
eight starts to become elongated in the cross-flow direction and gradually transforms
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into a crescent pattern. Different from experiments in which the super-upper branch
ends with a crescent pattern at the maximum amplitude, the predicted response contin-
ues to evolve and ends at the maximum amplitude with a shape of eight again.

Figure 4.6: Phase and trajectory of cross-flow and in-line motions with m∗ = 2.6 and
(
m∗+Ca

)
ζ= 0.013 for (a)

phase angle (solid line represents Case U, dashed line represents Case L, circles represent experimental data by
Jauvtis and Williamson (2004)) and (b) trajectory (Case U is represented by color black, Case L is represented
by color grey).

4.3.2. INFLUENCE OF THE MASS RATIO AND GRIFFIN PLOTS
In recent decades, discussions have been had on the main influential factors that affect
the peak amplitude (typically cross-flow) of VIV. Although Govardhan and Williamson
(2006) have proven that for the cross-flow-only VIV, it is possible to collapse the peak
amplitude data of different cylinders against unique parameter (m∗+Ca)ζ if the influ-
ence of the Reynolds number is taken into account, this is most likely not the case for
the coupled cross-flow and in-line VIV, as Jauvtis and Williamson (2004) have explicitly
demonstrated that the magnitude of the mass ratio plays an important role in the ap-
pearance of the super-upper branch that yields large amplitudes in both cross-flow and
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in-line directions. In this subsection, the model proposed in this paper is used to pro-
duce the ’Griffin’ plots for the coupled cross-flow and in-line VIV and to investigate the
influence of mass ratios on the peak cross-flow and in-line amplitudes. Since the max-
imum response is of most interest here, only Case U will be considered, and the same
tuning parameters as those in Section 4.3.1 will be used for the rest of this section.

In the series of experiments conducted by Jauvtis and Williamson (2004), although
the maximum peak amplitudes against (m∗+Ca)ζ are reported, in most cases the exact
values of m∗ and ζ at which the specific experiment is conducted are not given. There-
fore, the simulation results are obtained at several mass ratios picked from the range
that is used by the experiments, while the varied (m∗+Ca)ζ is obtained by altering ζ.
Fig.4.7 presents the predicted peak amplitudes of both cross-flow (A∗

y,max ) and in-line
(A∗

x,max ) peak amplitude against (m∗+Ca)ζ, with each curve representing a constant
m∗. It can be seen from Figs.4.7(a) and (b) that for a specific (m∗+Ca)ζ, the predicted

Figure 4.7: Griffin plots of peak amplitudes for coupled cross-flow and in-line VIV based on experimental
(symbols) and prediction (lines) results for (a) Cross-flow peak amplitude and (b) In-line peak amplitude. Dots
represent experimental data for 2.5 < m∗ < 4, and circles represent experimental data for 6 < m∗ < 25 (Jauvtis
and Williamson, 2004).
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peak amplitudes based on different m∗ and corresponding ζ are different, which clearly
indicates the independent effect of m∗ on the peak amplitude. At a fixed mass ratio,
the variation of peak amplitudes against (m∗+Ca)ζ follows the same trend as that ob-
served from cross-flow-only experiments (Govardhan and Williamson, 2006). In general,
the peak amplitude first increases rapidly as (m∗+Ca)ζ decreases, and it then gradually
reaches a saturation limit when (m∗+Ca)ζ becomes small. The measured cross-flow
peak amplitudes are also plotted in Fig.4.7(a), and it can be seen that these amplitudes
for 2.5 < m∗ < 4 (represented by solid dots) almost collapse between the curves of pre-
diction with m∗ = 1.5 and m∗ = 3. Moreover, those measurements for 6 < m∗ < 25 (rep-
resented by circles) are also well predicted. With regard to the maximum attainable peak
amplitude, the predictions of the model demonstrate the increase in the peak amplitude
from around 0.9D for a cross-flow response and 0.02D for an in-line response at m∗ = 25
to over 1.6D and 0.26D respectively at m∗ = 1.5. It seems that the lower limit of the peak
amplitude is reached at m∗ = 25 for both cross-flow and in-line vibrations, and the up-
per limit is also reached for the cross-flow vibration, while the upper limit of the in-line
peak amplitude can still be extended as m∗ further decreases from 1.5.

To further investigate the influence of m∗, the model is used to predict the peak
amplitude at a specific (m∗+Ca)ζ ≈ 0.013 with a varying m∗, and the results are pre-
sented in Fig.4.8 in comparison with experimental measurements. Overall, there is a
good agreement between the predictions and experimental results. The general trend of
an increasing peak amplitude with a decreasing m∗ is well predicted by the model. For
m∗ higher than 6, the predicted peak amplitudes in both directions are less dependent
on the variation of m∗, and they display a trend of convergence as m∗ further increases.
This is consistent with the experimental observation that at m∗ > 6, the coupled cross-
flow and in-line VIV shows no obvious difference compared to the cross-flow-only VIV,
and the peak amplitude mainly depends on the value of (m∗+Ca)ζ ((Govardhan and
Williamson, 2006; Jauvtis and Williamson, 2004).

Figure 4.8: A Comparison of predicted (lines) and experimentally measured (dots and circles) peak amplitudes
with varying mass ratio for (a) Cross-flow peak amplitude and (b) In-line peak amplitude. Experimental data
is taken from the work by Jauvtis and Williamson (2004)
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4.4. CONCLUSIONS
In this chapter, a wake oscillator model for the prediction of the coupled cross-flow and
in-line VIV of an elastically supported rigid cylinder has been presented. The model
includes improvements with respect to the conventional van der Pol wake oscillator by
introducing a new in-line coupling term as well as by enhancing the expression for the
in-line force such that it can fluctuate when the cylinder moves in the in-line direction
only.

Based on the experimental observation and heuristic inference from the dynamics
of a rigid suspended pendulum, the in-line coupling term, in its dimensionless form, qẍ
has been introduced. The stability of the model with qẍ, when subjected to a pure in-line
forced vibration, has been studied and shown to not be in agreement with experimental
observation. Therefore, a more sophisticated term q ẍ

1+ẍ2 , which has the same qualitative
dynamic effect as qẍ, has been adopted.

First, the new model has been tuned to the free vibration experiment of an elastically
supported rigid cylinder with mass ratio m∗ = 7. Two different sets of tuning parameters
have been applied to reproduce the upper and lower branches separately. It has been
shown that the simulation results are in good agreement with the experimental mea-
surements, and the main characteristics of the coupled cross-flow and in-line VIV are
well captured. With the same tuning parameters, the model has then been applied to
predict another free vibration experiment with smaller mass ratio m∗ = 2.6. It has been
demonstrated that the prediction is in good agreement with the experimental measure-
ments. Most importantly, the appearance of the super-upper branch, as a result of a
decreasing mass ratio, has been well captured.

The new model has also been used to predict the experiments regarding the influ-
ence of mass and damping ratios on the peak amplitude. The comparison between the
Griffin plot generated by the new model and the available experimental data suggests
good agreement. The model also captures the experimental observation of an increas-
ing trend of the peak amplitude as the mass ratio decreases, while keeping (m∗+Ca)ζ
constant.
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MODELLING OF COUPLED

CROSS-FLOW AND IN-LINE

VORTEX-INDUCED VIBRATIONS OF

FLEXIBLE CYLINDRICAL

STRUCTURES

5.1. INTRODUCTION
The VIV of flexible structures is an important source of fatigue damage of the offshore
structures, and the reliable prediction thereof has been a long-standing problem. Al-
though studies of a simpler case of a finite-span rigid cylinder placed in a uniform flow
have shed light on the main mechanisms of VIV and have led to several prediction mod-
els for rigid cylinders, the modelling of the VIV of long, flexible cylinders is more difficult.
The main challenges stem partly from the instinctively more complicated dynamics of
those slender structures and partly from the complexity of the fluid-structure interaction
that varies both spatially and temporally.

In most early studies of the VIV of flexible cylinders, the focus has been on the anal-
ysis and prediction of the vibrations of a top-tensioned riser, which can be adequately
modelled as a tensioned beam or cable with appropriate boundary conditions. With a
small amplitude of vibration, the structural dynamics model is normally assumed to be
linear, and the cross-flow and in-line motions are considered separately. However, in
practical applications, many long, slender structures, such as catenary risers, pipelines
during laying processes and mooring cables, have a curved shape. Due to the high slen-
derness of the structure and complicated environmental loads, the dynamics of these
structures often exhibit strong 3D nonlinear coupling motions. Therefore, a general, re-
alistic, nonlinear model of the structure that is valid for both straight and curved struc-
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tures is needed.
In previous chapters, efforts have been dedicated to the modelling of the VIV of rigid

cylinders; the ultimate goal is to apply the same hydrodynamic force model for the VIV
of flexible structures. Strictly speaking, it is not correct to apply the hydrodynamic force
model developed for rigid cylinders to flexible ones, as the fluid-structure interaction
process in the two cases are not the same. However, since the principal mechanisms of
vortex shedding are similar for both cases, it is expected that the model may be able to
capture the main characteristics of the VIV of flexible structures. In fact, several studies
have applied the wake oscillator model to the simulation of the VIV of flexible cylinders,
and the results are promising.

The remainder of the chapter is structured as follows. In Section 5.2, the models of
both the structure and hydrodynamic force are described. The models are then applied
to simulate the experiments by Chaplin et al. (2005), and the comparison between the
results of the simulations and experiments are discussed in Section 5.3. Finally, the main
conclusions are presented in Section 5.4.

5.2. MODEL DESCRIPTION
In this section, the structural and hydrodynamic force models for the simulation of the
VIV of flexible cylinders are described. The structure is modelled as an extensible Euler-
Bernoulli beam, which can deal with both the straight and curved configurations, and
a 3D nonlinear coupled motion is considered. A local reference frame is introduced at
each location along the cylinder within which the wake oscillator model presented in
Chapter 4 is applied to model the hydrodynamic force.

5.2.1. WEAK FORM OF NONLINEAR EQUATIONS OF MOTION OF THE STRUC-
TURE

The flexible cylinder is simplified into a beam. In line with the Euler-Bernoulli beam
theory, only the axial and bending deformations are considered. This is a reasonable
simplification in most cases when the shear deformation and torsion are negligible, and
it is computationally more efficient. The configuration of the structure is described by
the position vector r

(
p, t

)
of the cylinder axis as

r
(
p, t

)=
x

(
p, t

)
y

(
p, t

)
z
(
p, t

)
 (5.1)

where p is the Lagrange coordinate or arc-length measured along the undeformed cylin-
der, and t is the time. For the convenience of writing, the following notation will be used
to represent the partial derivative with respect to p: r,p = ∂r/∂p and overdots represent
the derivative with respect to time.

The weak form of the equations of motion is given as

δWI +δWS −δWE = 0 (5.2)

where δWI denotes the virtual work of inertia forces, δWS is the virtual work of internal
(elastic) forces, and δWE is the virtual work of external forces.
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The expressions of virtual work of inertia force is given as

δWI =
∫ L

0
m0r̈Tδrd p (5.3)

where L is the length of undeformed beam.
The virtual work of internal forces, as proposed by Gerstmayr and Irschik (2008), is

divided into two parts: one due to the bending moment and another due to the axial
force. That virtual work reads as follows:

δWS =
∫ L

0
(E Aε0δε0 +E I KδK )d p (5.4)

in which E is the modulus of elasticity, A is the cross-sectional area and I is the second
moment of the area. Furthermore, ε0 is the axial strain, which is defined as

ε0 = |r,p |−1 (5.5)

and K , interpreted by Géradin and Cardona (2001) as the material measure of curvature,
is defined as

K = |r,p × r,pp |
|r,p |2

(5.6)

The variation of axial strain ε0 is given by

δε0 = 1

|r,p |
rᵀ,pδr,p . (5.7)

The variation of K reads

δK =−2
|r,p × r,pp |

|r,p |4
rT

,pδr,p

+ 1

|r,p |2|r,p × r,pp |
(
r,p × r,pp

)ᵀ (
δr,p × r,pp + r,p ×δr,pp

)
.

(5.8)

5.2.2. HYDRODYNAMIC FORCE MODEL
In Chapter 4, the wake oscillator model has been developed for the VIV of rigid cylin-
ders subjected to a uniform flow that is perpendicular to their axis. However, in many
engineering applications of long, flexible cylinders, the flow may not be uniform (shear
flow) and, in many cases, not perpendicular to the axis of the cylinder, such as in the
case of a catenary riser. In such cases, the independence principle is normally applied; it
assumes that the flow dynamics are essentially dependent on the normal component of
free stream with respect to the cylinder axis, while the component that is aligned with the
cylinder axis has a negligible impact (Bourguet and Triantafyllou, 2015). Several studies
have demonstrated that the independence principle is only valid within a certain range
of inclination angles (Lucor and Karniadakis, 2003; Ramberg, 1983). Here, the inclina-
tion angle is defined as the angle between the incoming flow and the plane that is per-
pendicular to the cylinder axis. For a fixed cylinder, it is generally shown that the above-
mentioned principle provides an accurate prediction for inclination angles smaller than
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N
VL

VD
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Figure 5.1: Local vortex shedding for a curved beam and definition of the local coordinate system: (a) local
coordinate system and (b) force decomposition in plane beq −neq.

40° (Zhao et al., 2009). As for cases in which the cylinder is free to move in the cross-
flow direction, the principle is qualitatively valid up to 65° but with a decreasing range of
lock-ins and a maximum amplitude of vibration as the inclination angle increases (Jain
and Modarres-Sadeghi, 2013).

To apply the wake oscillator for the modelling of the VIV of flexible cylinders, a local
coordinate must first be established for each cross-section. Since the VIV of a flexible
structure is normally characterised as finite amplitude motions around the equilibrium
position, it is reasonable to build up the local coordinate system based on the equilib-
rium position of the structure. Consider a segment of a cylinder at its equilibrium posi-
tion subjected to the flow, as illustrated in Fig.5.1(a). Using the local frame described by
the tangential unit vector teq, in-line unit vector neq and cross-flow unit vector beq, ac-
cording to the independence principle, the vortex shedding process is assumed to take
place in the plane that is perpendicular to the orientation of the beam, i.e. the beq −neq

plane. Here, the superscript ‘eq’ signifies that the vectors are obtained in the equilibrium
position. According to O’Neill (2006), the tangential unit vector teq is given as

teq = req
,p

|req
,p | . (5.9)

Under the equilibrium configuration, the free stream velocity at a specific location of the
structure is Veq, and its component within the plane of vortex shedding, i.e. beq −neq, is
obtained as

Veq
N = Veq − ((

Veq)ᵀ teq)
teq. (5.10)

The in-line unit vector neq is defined to be in the same direction as Veq
N , and it reads

neq = Veq
N

|Veq
N | . (5.11)

The cross-flow unit vector beq is defined as the following cross product:

beq = teq ×neq. (5.12)
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The unit vectors teq, neq and beq formulate the local coordinate system within which
the wake oscillator proposed in Chapter 4 is applied. The unit vector beq corresponds
to the cross-flow direction of the rigid cylinder, and the unit vector neq corresponds to
the in-line direction. Within the plane beq −neq, the force decomposition is the same as
that for a rigid cylinder and is depicted in Fig.5.1(b). It has to be pointed out that this
local coordinate system is based on the equilibrium configuration of the structure and
does not change as the structure vibrates. The same rule applies to the corresponding
parameters (with the superscript ‘eq’) that are derived from the equilibrium position.
Within the local coordinate, the wake oscillator equation (see Eq.(4.27)) can be written
as

q̈ +ωs
(
q2 −1

)
q̇ +ω2

s q −κ ω4
s D r̈ᵀneq

ω4
s D2 + (r̈ᵀneq)2 q = A

D
r̈ᵀbeq (5.13)

where ωs = 2πSt|Veq
N |/D . The instantaneous lift and drag forces per unit length are de-

fined as

FV L = 1

2
ρD

CL0

2
q |UN |2DV L (5.14)

FV D = 1

2
ρDCDM |UN |UN (5.15)

where UN is the relative flow velocity within plane beq −neq, which is given as

UN = Veq
N − (

ṙ− (
ṙᵀteq)

teq)
(5.16)

and DV L is the unit vector in the b-n plane that is perpendicular to UN and is given as

DV L = teq ×UN

|teq ×UN | . (5.17)

The extra in-line oscillating force, denoted by FOI is given as

FOI = 1

2
ρDα

C 2
L0

4
q2|UN X |UN X (5.18)

where
UN X = Veq

N − ((
neq)ᵀ ṙ

)
neq. (5.19)

Apart from the hydrodynamic force, the structure is also subjected to a hydrostatic force
when submerged in the fluid. The concept of effective tension is normally used in off-
shore engineering to take into account the effect of hydrostatic fluid pressure. The effec-
tive tension approach states that the total effect of the structure’s fluid pressure – internal
or external – on a section of the structure can be replaced by the buoyancy force that fol-
lows the Archimedes’ principle and an axial tension equal to Pe Ae −Pi Ai , where Pe is
the external fluid pressure, Ae is the corresponding external area of the cross-section,
Pi is the internal fluid pressure, and Ai is the corresponding internal area of the cross-
section. The buoyancy force is treated as the external distributed force, while the ten-
sion Pe Ae −Pi Ai will be taken as the internal force and incorporated into the equation
of motion of the structure. For simplicity, the Pe Ae −Pi Ai is calculated based on the
equilibrium configuration of the structure and does not change during the vibration.
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In the current model, the 3D vortex patterns in the fluid are not taken into account.
The dynamics of the wake variable q , as described by Eq.(5.13), are only controlled by
the motion of the structure at the location where the wake oscillator acts on, without any
direct influence from adjacent ones. As a result, the distribution of q along the structure
may be discontinuous. However, this is physically not rigorous, as the hydrodynamic
force should evolve along the span in a continuous manner because of the viscosity of
the fluid. The continuity of the wake variable q along the span is enforced in the next
subsection by applying a Hermite shape function to interpolate q with the finite element
method.

5.2.3. FINITE ELEMENT FORMULATION
Fig.5.2 depicts a two-noded beam element, which is the same as the lower-order element
proposed by Gerstmayr and Shabana (2006), with two nodes A and B at each end. Each
node is defined by six degrees of freedom that consist of the nodal global position vector
and slope vector:

u j =
[

rᵀj rᵀj ,p

]ᵀ
j = A,B. (5.20)

Then, the beam element coordinates are given by the vector

u = [
uᵀ

A uᵀ
B

]ᵀ . (5.21)

The global position vector of an arbitrary point within the beam element, originally
placed at p of the undeformed beam axis, in the deformed configuration can be interpo-
lated in terms of the nodal coordinates and the element shape function as

r
(
p, t

)=
x

(
p, t

)
y

(
p, t

)
z
(
p, t

)
= Su. (5.22)

Hermit shape functions are employed, and the shape function matrix S is written as

S = [S1I S2I S3I S4I] (5.23)

where I is the 3×3 unit matrix, and functions Si = Si
(
p

)
are given by

S1 = 2
( p

L

)3
−3

( p

L

)2
+1, S2 = L

( p

L

)3
−2L

( p

L

)2
+p

S3 = 3
( p

L

)2
−2

( p

L

)3
, S4 = L

( p

L

)3
−L

( p

L

)2

 . (5.24)

By substituting Eq. (5.22) into Eq. (5.3), one obtains the virtual work of inertia force as

δWI = üᵀ
∫ L

0
m0SᵀSd pδu (5.25)

from which the mass matrix of the structure element is determined as

Me
s =

∫ L

0
m0SᵀSd p (5.26)
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A

A,p

B

B,p

Figure 5.2: Two-noded beam element.

where m0 is mass of the cylinder per unit length.
Similarly, by substituting Eq.(5.22) into Eq.(5.4), the stiffness matrix of the structure

element Ke
s is obtained. The detailed derivation, as well as the final expression of Ke

s , is
provided in Appendix C.1.

For the structural damping, the Rayleigh damping model is applied for simplifica-
tion, and it reads as follows:

Ce
s =αMe

s +βJe,eq
s (5.27)

where Je,eq
s = ∂Ke,eqe

∂e is the tangent stiffness matrix calculated under the equilibrium con-
figuration.

The wake oscillators are uniformly distributed along the structure and therefore also
need to be discretised in accordance with the beam element. With the same Hermite
shape function as that used for the beam element, the wake variable q is interpolated as

q
(
p, t

)= Sq q (5.28)

where q is the wake element coordinates and consists of the wake variable as well as its
derivative with respect to p at two nodes of beam element q = [qA qA,p qB qB ,p ]ᵀ.
Sq is the shape function matrix and is written as

Sq = [S1 S2 S3 S4]. (5.29)

Then, the mass matrix, damping matrix and stiffness matrix of the wake variable element
can be obtained from Eq.(5.13) as

Me
q =

∫ L

0
Sᵀ

q Sq d p (5.30)

Ce
q =

∫ L

0
ωs

(
qᵀSᵀ

q Sq q−1
)

Sᵀ
q Sq d p (5.31)

Ke
q =

∫ L

0
ω2

s Sᵀ
q Sq d p +κ

∫ L

0

ω4
s D

(
üᵀSᵀneq

)
ω4

s D2 + (üᵀSᵀneq)2 Sᵀ
q Sq d p. (5.32)
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By applying the principal of virtual work to Eq.(5.14), (5.15) and (5.18), the nodal hydro-
dynamic forces are obtained as

Fe =
∫ L

0
Sᵀ (FV L +FV D +FOI )d p

= 1

2
ρD

CL0

2

∫ L

0
|UN |2SᵀDV LSq qd p

+ 1

2
ρDCDM

∫ L

0
|UN |SᵀUN d p

+ 1

2
ρDα

C 2
L0

4

∫ L

0

(
Sq q

)2 |UN X |SᵀUN X d p

(5.33)

where UN , UN X and DV L are obtained by substituting Eq.(5.22) into Eqs.(5.16), (5.17)
and (5.19) and are given as

UN =V eq
N − (

Su̇− (
u̇ᵀSᵀteq)

teq)
(5.34)

UN X = Veq
N − ((

neq)ᵀ Su̇
)

neq (5.35)

DV L = teq ×UN

|teq ×UN | . (5.36)

Similarly, the external nodal force of the wake oscillator can be obtained as

Re = A

D

∫ L

0
Sᵀ

q üᵀSᵀbeqd p. (5.37)

After discretisation, the dynamics of the coupled system are described by ordinary
differential equations that, in the matrix form, are given as

Me
s ü+Ce

s u̇+Ke
s u = Fe (5.38)

Me
q q̈+Ce

q q̇+Ke
q q = Re . (5.39)

Implicit Newmark time integration method is used to solve the above equation, and
validation of the structural model is also performed, see Appendix C.2 and C.3.

5.3. MODEL VALIDATION AGAINST EXPERIMENTS
In this section, the model of the VIV of flexible cylinders that was developed in the previ-
ous section is used to simulate the experiments conducted by Chaplin et al. (2005), and
the simulation results are compared to the experimental measurements.

5.3.1. EXPERIMENT DESCRIPTION AND COORDINATE SYSTEM
In the series of experiments conducted by (Chaplin et al., 2005), the cross-flow and in-
line vibrations of a vertical tensioned riser were measured when being towed through
the still water by a carriage at different speeds. The riser is 13.12 m long, with a diameter
of D = 0.028 m, and only the lower 45% of its length is submerged in the flume and
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Table 5.1: Properties of the riser model

Parameters Values Dimension

External diameter 0.028 m
Length 13.12 m
Aspect ratio 470 -
Submerged Length 5.94 m
Flexural Stiffness 29.88 Nm2

Mass 1.845 kg/m
Mass ratio 3 -

subjected to a uniform current; the remaining part is in still water – see Fig.5.3. The
two ends of the riser are connected to a stiff frame mounted on the carriage through
universal joints, and the tension is provided by a set of springs at the top that allows the
top end of the riser to move in the vertical direction. The detailed main parameters of
the experiment are summarised in Table 5.1.

To model the experiments, a global Cartesian coordinate system with its origin at the
bottom of the riser has been used; see Fig.5.4. The x-axis is aligned with the flow direc-
tion representing the in-line direction; the z-axis coincides with the vertical axis of the
riser in its initial configuration, and the y axis is perpendicular to both, representing the
cross-flow direction. The riser is pinned to the supporting structure at the bottom, which
only allows rotation, while the top of the riser is pinned to an array of springs hanging
from the supporting structure and is therefore can move in the z direction. When the
riser vibrates, its configuration at any moment is described by the position vector r

(
p, t

)
,

where p is the coordinate along the riser.

When applying the model described in the previous section, an important part is to
determine the equilibrium configuration of the structure, upon which the local coordi-
nate system can be established. However, the mean in-line deflection of the structure,
as a result of amplified in-line force, is not known in advance, and an iterative procedure
thus is required. Here, for simplicity, the iteration is not included and the initial vertical
configuration of the riser is considered to be its equilibrium configuration.

5.3.2. PREDICTED SINGLE AND MULTIPLE FREQUENCY RESPONSES

With the model described in Section 5.2, simulations are performed for the VIV of a riser
under initial top tension T = 810 N at different flow velocities ranging from 0.1 m/s to
1.0 m/s, with a step of 0.02 m/s, resulting in a total of 45 cases. The same hydrodynamic
force coefficients and tuning parameters of the upper case as those used in Section 4.3
have been applied, except that a different Strouhal number St = 0.17 is taken, as mea-
sured in the Delft-Flume experiments. The riser is discretised into 50 elements, and a
convergence test has been conducted to assure the accuracy of the discretisation. For
each case, the flow velocity is applied in a ramped manner, and the simulation time is
chosen such that a minimum time window of steady-state response corresponding to at
least 50 vortex shedding cycles (following the Strouhal relation) is achieved.

For a flexible riser that is subjected to the uniform flow, despite the fact that several
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Figure 5.3: Layout of the experiments (Chaplin et al., 2005).

X

Y

Z

r(p,t)

Flow

Initial configuration

Deformed configuration

Figure 5.4: Schematic of the global coordinate system and riser in its initial and deformed configurations.
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modes may potentially be excited, it is normally expected that one will eventually domi-
nate, and the motion of the riser would be characterised as a single frequency response.
Although in the case of experiments to be simulated in this section, only half of the riser
is subjected to flow, the behaviour of the riser should follow the same pattern, since it
is expected that only one vortex shedding frequency is involved. However, the simula-
tion results of the experiments reveal the presence of both single and multiple frequency
responses. In what follows, two examples of riser responses at two different flow veloc-
ities V = 0.5 m/s and V = 0.56 m/s are presented to illustrate the typical riser response
observed in the simulation results.
Case 1: V = 0.5 m/s, single frequency response.

An example of a simulated single frequency response is demonstrated here at flow
velocity V = 0.5 m/s. The spatial and temporal characteristics of the structural response
are analysed based on a 2D Fourier transform. Denoting the cross-flow displacement of
the riser as y

(
p/L, t

)
, where p is the coordinate along the riser and L is the length of the

riser, the 2D Fourier Transform of the displacement is defined as

ỹ
(

f ,k
)= 1

L

∫ L

0

∫ T0

0
y

(
p/L, t

)
e−i2π f t e−i2πkp/Ld td p (5.40)

where f is the frequency, k is the dimensionless wavenumber and T0 is the duration of
the data set. The above equation is the Continuous Fourier Transform and for the dis-
crete displacements, as those obtained from the simulation, the Fast Fourier Transform
(FFT) has been applied. The 2D FFT of the in-line displacement, with the mean in-line
deflection subtracted, is calculated in the same way. In the following part, the 2D spec-
trum of the displacement of the riser is presented in the form of power spectral density
(PSD), which is obtained as |ỹ|2/T0. In Figs.5.5(a) and (b), the 2D PSD of cross-flow and
in-line non-dimensional displacements are presented against the frequency and spatial
wavenumber. The PSD is normalised by its maximum value. The frequency of oscilla-
tions – fy for the cross-flow and fx for the in-line – is normalised by the vortex shedding
frequency fs . where p is the coordinate along the riser. Only the positive frequency is
presented in Figs.5.5(a) and (b), and positive wavenumbers are thus associated with trav-
elling waves propagating towards p/L = 0 (downwards), while negative wavenumbers
are associated with travelling waves moving in the opposite direction. Figs.5.5(a) and
(b) also illustrate the wavenumbers of free vibration structural modes, indicated by ver-
tical dashed lines, and the corresponding natural frequencies, indicated by red crosses,
which are calculated using the finite element model described in the previous section.
The modal shape and natural frequencies of the structure are obtained under the initial
straight configuration under top tension that is equal to the mean value of the simu-
lated varying top tension. Due to the variation of the tension along the riser as a result
of gravity, the structural mode shapes are slightly different from sinusoidal shapes. For
the sake of simplicity, the wavenumbers of the structural modes are still approximated
using sinusoidal mode shapes.

As can be seen from Figs.5.5(a) and (b), the structural response is dominated by a
single frequency in both the cross-flow and in-line directions. In the cross-flow direc-
tion, the riser oscillates at a peak frequency fy = 0.877 fs , and the in-line motion is dom-
inated by the frequency fx = 1.754 fs , which is twice that of the cross-flow motion. The
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Figure 5.5: Spatio-temporal spectra of (a) cross-flow and (b) in-line displacements at flow velocity V = 0.5 m/s
with (c) cross-flow and (d) in-line complex modes extracted at dominant frequencies which are indicated by
arrows. The wavenumbers and natural frequencies of selected free vibration modes are indicated by black
vertical dashed lines and red crosses respectively.

excited wavenumbers, different from the frequency that concentrates around a single
value, seem to spread over a relatively wide range. This is partially caused by the numer-
ical errors of FFT conducted in the space domain, as only a small number of spatial cy-
cles are excited along the riser, and partially because of the variation of the top tension in
time. Therefore, it is difficult to determine from Figs.5.5(a) and (b) the exact wavenum-
ber at which the structure vibrates. In such cases, the complex modes extracted at the
dominant frequency, as will be demonstrated later, are taken as references to decide on
the main dominant wavenumber. It is clear from Fig.5.5(a) that in the cross-flow di-
rection, the riser vibrates at a wavenumber and a frequency that are both close to the
4th free vibration mode, while in the in-line direction, as illustrated in Fig.5.5(b), the
wavenumber close to the 7th free vibration mode is excited, but at a lower frequency
than the corresponding natural frequency. It is conventionally expected that a single
structural wavenumber will be excited at a given frequency, which is the case for the
cross-flow motion. However, in the in-line direction, apart from the wavenumber close
to 3.5, another wavenumber close to zero is also excited at the same frequency. This is
because the top of the riser is not constrained in the vertical direction, and its vibration,
at the same frequency of the in-line motion, leads to the periodic variation of the in-line
offset, which resembles the shape corresponding to small wavenumbers.

The slightly different weights of positive and negative wavenumber peaks suggest
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that the response of the structure is characterised by mixed standing-travelling waves.
To further investigate the pattern of the riser response, the response modes of the struc-
ture are calculated using Fourier expansion following the same approach as given by
Mukundan (2008). Denoting the cross-flow displacement of the riser as y

(
pr , t j

)
, the

Fourier expansion of the times series of y
(
pr , t j

)
at location pr is given as:

y
(
pr , t j

)= Re

(
Λ∑

l=1
ŷ

(
pr ,ωl

)
eiωl t j

)
(5.41)

where ŷ
(
pr ,ωl

)
is complex-valued and represents the l th Fourier coefficient correspond-

ing to the frequencyωl . Extracting ŷ
(
pr ,ωl

)
at each location along the riser, one obtains

the cross-flow response mode of the riser at a specific frequency ωl , denoted as Y
(
pr

)
.

The same process can be applied to the in-line motion to obtain the in-line response
mode of the riser denoted as X

(
pr

)
.

The spanwise evolution of amplitudes and phase angles of the response modes Y
(
pr

)
and X

(
pr

)
, is presented in Figs.5.5(c) and (d), for the dominant frequencies shown in

Figs.5.5(a) and (b). The shapes of |Y(
pr

)| and |X(
pr

)| suggest that both cross-flow and in-
line motions are dominated by the standing wave. However, the absence of the definite
nodes reveals the underlying travelling character of the riser response in both directions.
The cross-flow vibration, as depicted in Fig.5.5(c), is close to the 4th free vibration mode,
while the in-line vibration exhibits a different pattern compared to the 7th mode, as can
be seen in Fig.5.5(d). The underlying travelling character of the structural response can
be better illustrated by the evolution of the phase of the complex modes. For the cross-
flow motion, the general decreasing trend of the phase angle corresponds to travelling
waves moving from p/L = 0 towards p/L = 1 (upwards). This is consistent with the fact
that only the bottom half of the riser is subjected to the flow, and the energy should
therefore be input over the same segment, carried away in the form of a travelling wave
and dissipated over the upper half of the riser. The spanwise evolution of the phase
angle of the in-line response mode indicates that the wave is excited close to p/L = 0.4
– still within the bottom half of the riser–and propagates in two directions towards both
boundaries.
Case 2: V = 0.56 m/s, multiple frequency response.

Although a single frequency response is observed for most simulation cases, for a
few, especially those within the range of flow velocities where the riser response is in
transition from one mode to another, a multi-frequency response is detected. An ex-
ample of a simulated multi-frequency response is given here at flow velocity V = 0.56
m/s, which lies in the transition of the cross-flow dominant mode from the 4th to the
5th mode. The 2D PSD of the steady-state riser response and the response modes of
the dominant frequency are presented in Fig.5.6. As can be seen from Figs.5.6(a) and
(b), the riser exhibits a response at several frequencies in both the cross-flow and in-line
directions. The cross-flow response, as illustrated in Fig.5.6(a), has main peaks at fre-
quencies fy = 0.810 fs , 0.975 fs and 1.145 fs . Most energy concentrates at the frequency
fy = 0.975 fs , which is the closest of the three frequencies to the Strouhal frequency. The
secondary dominant frequency is fy = 0.810 fs . At frequency 1.145 fs , only small peaks
are observed. The frequencies fy = 0.810 fs and 0.975 fs are close to the 4th and 5th nat-
ural frequencies of the structure respectively, and the wavenumbers excited at these two
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frequencies are consistent with the corresponding free vibration modes. At frequency
fy = 1.145 fs , the response of the riser deviates from the 6th natural frequency, although
the excited wavenumber is close to the 6th free vibration mode. Concerning the in-line
response, as portrayed in Fig.5.6(b), apart from the frequency components around 2 fs as
expected, significant energy concentrates at low frequencies of fx = 0.25 fs and 0.3 fs . The
source of these low frequency components will be discussed later. Three main frequency
peaks are observed around 2 fs : fx = 1.780 fs , 1.949 fs and 2.117 fs . Comparing these in-
line frequencies with their cross-flow counterparts leads to ratios of fx / fy = 2.20, 2.00
and 1.85 respectively. Only the cross-flow frequency close to the Strouhal frequency ap-
parently has a ratio of fx / fy = 2. All three in-line frequency-wavenumber pairs would
not result from the free vibration analysis.
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Figure 5.6: Spatio-temporal spectra of (a) cross-flow and (b) in-line displacements at flow velocity V = 0.56
m/s with (c) cross-flow and (d) in-line complex modes extracted at dominant frequencies which are indicated
by arrows. The wavenumbers and natural frequencies of selected free vibration modes are indicated by black
vertical dashed lines and red crosses respectively. In (c) dash line – fy = 0.810 fs ; solid line – fy = 0.975 fs ; dot
line – fy = 1.145 fs . In (d) dashed line – fy = 1.780 fs ; solid line – fy = 1.949 fs ; dotted line – fy = 2.117 fs .

In Figs.5.6(c) and (d), the response modes of cross-flow and in-line response at fre-
quencies – which are indicated by arrows in Figs.5.6(a) and (b) – are presented. Again,
the well-defined cells in the amplitudes of the response modes – both cross-flow and in-
line – suggest that the response of the riser at each frequency is dominated by standing
waves. The response modes with the highest magnitude are at frequencies that are close
to the Strouhal frequency (double the Strouhal frequency for the in-line response). The
underlying travelling character of the response can be observed in the variations of the
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phase angle along the riser, which suggests that the waves are excited within the bottom
half of the riser and move towards the upper end, and the travelling waves seem to be
more pronounced in the in-line response.

One interesting question that arises is whether the multi-frequency response is a re-
sult of coexisting multiple frequency components or a result of only one frequency that
varies in time. To answer this question, the wavelet transform is performed for selected
time series of cross-flow and in-line displacements at locations p/L = 0.9 and 0.95 re-
spectively, where all dominant frequencies make significant contributions; the results
are plotted in Fig.5.7. In these plots, the predominant response frequencies identified
in the previous analysis are indicated by dashed lines, and for in-line vibration, only the
frequency components around fx / fs = 2 are displayed. It is clear from Fig.5.7 that in the
cross-flow response, the multiple frequency components instantaneously coexist and
remain independent over the entire observation period, while those of the in-line vibra-
tion are characterised by a main dominant frequency that sweeps up and down across
the dashed lines over time.

The multiple frequency response predicted by the proposed model for the VIV of
flexible cylinders fully or partially subjected to a uniform flow has been only scarcely
reported in the literature. The main reason, according to the author, is the difficulty in
capturing and quantifying it in the experiments. First, the multiple frequency response
is normally observed in the transition region, which requires a small increment of flow
velocity to be captured. Second, the multiple frequency response seems to be fragile,
and the balance between the different coexisting frequency components can be easily
jeopardised by, for example, external disturbance. Finally, even though the multiple
frequency response is observed in experiments, it is difficult to decide whether it cor-
responds to a steady response or a transition phase. Therefore, in most experiments,
for example the one by Chaplin et al. (2005), only the time segment corresponding to a
steady periodic motion with a constant amplitude is chosen for post processing; how-
ever, strong modulation of the response of the structure is observed in other time seg-
ments. To the author’s knowledge, this phenomenon is only reported in the work by
Seyed-Aghazadeh and Modarres-Sadeghi (2016). In their experiments, a uniform flexi-
ble cylinder is placed vertically in a re-circulating water tunnel subjected to a uniform
flow. Only low modes of the structure are excited, and the flow velocity is increased in
small increments. Seyed-Aghazadeh and Modarres-Sadeghi (2016) report that at a small
reduced velocity, only first-mode excitation is observed in the cross-flow response of the
cylinder. As the reduced velocity increases to a certain value, a second harmonic contri-
bution, in addition to the first one, with the second structure mode shape is observed.
The contribution from the second harmonic monotonically increases with increasing
flow velocity and finally becomes dominant over the first mode.

It is a pity that in the work by Seyed-Aghazadeh and Modarres-Sadeghi (2016), al-
though the frequency content of the in-line motion demonstrates a significant contribu-
tion from low frequencies when the transition occurs – see Fig.4(f) in Seyed-Aghazadeh
and Modarres-Sadeghi (2016) – it is not clear whether this is due to the multiple fre-
quency response or if it is simply the result of a mean in-line deflection due to the drag
force. Gopalkrishnan (1993) has already demonstrated that for a rigid cylinder that is
forced to vibrate with a prescribed beating motion, the ‘instantaneous mean drag force
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coefficient’, defined as the average value of the drag coefficient over one carrier fre-
quency, follows the envelope of the beating motions. If the fluid-structure interaction for
a flexible cylinder is similar to that of a rigid cylinder, then it is reasonable to expect that
the modulation of the cross-flow motion would lead to the slow variation of the in-line
force that follows its envelope and consequently results in a low frequency component
in the in-line motion.

5.3.3. COMPARISON OF PREDICTIONS AND EXPERIMENTAL MEASUREMENTS
Non-dimensional parameters have been used to present the simulation results. To illus-
trate the variation of riser response with respect to the flow velocity, two different types
of reduced velocity have been applied. The first type, V1, is calculated using the funda-
mental natural frequency f1 in still water, while the second type is obtained based on the
dominant response frequency for the cross-flow fy and in-line fx :

V1 = V

f1D
(5.42)

Vx,y = V

fx,y D
. (5.43)

The fundamental frequency f1 is calculated using the finite element model under the
riser’s initial vertical configuration in still water, subjected to a mean top tension ob-
tained over the time window that has been chosen for analysis. The dominant response
frequency is defined as the frequency of the dominant mode. The same approach as that
used by Chaplin et al. (2005) has been adopted here to determine the dominant modes.
The modal shapes of the riser used in the modal analysis are calculated under an ini-
tial vertical position in still water, with the averaged top tension obtained over the time
widow that has been chosen for analysis. The use of the term ‘modes’ here is not rigor-
ous, as the riser will vibrate around its in-line offset due to the drag force, and the top
tension is also not constant during the vibration. More importantly, the added mass is
not the same in the current as that in the still water. Therefore, the ‘modes’ used here
are only a reasonable approximation. As for the indications of response amplitudes, the
cross-flow response standard deviation σy and σx for in-line, has been calculated as fol-
lows (Chaplin et al., 2005):

σx,y =
√√√√ 1

S

S∑
j=1

[
1

N

N∑
i=1

u2
j i

]
(5.44)

where S is the number of time samples, N is the number of locations along the riser
where the response of the riser is read, u j i denotes the displacement of riser at location
i and time instance j and only the fluctuating component of the in-line displacement is
considered.

With Eq.(5.44), the standard deviations of cross-flow and in-line response amplitudes
(with the mean in-line deflection subtracted) have been calculated, and they are shown
in Fig.5.8 against reduced velocity V1. The cases of single frequency response are repre-
sented by hollow diamonds, while those of multiple frequency response are represented
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Figure 5.8: Standard deviations of (a) cross-flow and (b) in-line displacements. Simulation results are grouped
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approximation of the experimental results by Chaplin et al. (2005) are represented by grey thick lines.
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by black squares. For the multiple frequency response, the standard deviations of the in-
line displacement are obtained after removing the low frequency components through a
high pass filter. The standard deviations of the simulated cross-flow and in-line displace-
ments are plotted in Fig.5.8. Following the same approach taken by Chaplin et al. (2005),
the results are grouped according to the combination of dominant in-line and cross-
flow modes represented by the arrows with dashed lines, and the thick grey lines rep-
resent the linear approximation of the experiment results. As can be seen from Fig.5.8,
the standard deviations of the simulated amplitudes appear to be slightly scattered, with
most cross-flow values varying from 0.1D to 0.4D , which is in good agreement with the
experimental measurements. The standard deviations of the simulated in-line ampli-
tudes, which mostly lie between 0.04D and 0.12D , are generally smaller than those from
the experiments. The underestimation of the in-line amplitude is not a surprise; this is
because in the prediction of free vibration of the rigid cylinder, the in-line vibration is
also underestimated for a small mass ratio system. In general, the response of the riser
predicted by the model follows the same pattern as those observed in the experiments.
For both cross-flow and in-line displacements, there is a trend of increase with an in-
creased reduced velocity within each group. As the reduced velocity further increases
beyond the group, the subsequent group takes over and starts at a much smaller ampli-
tude, generating discontinuities and jumps between groups. Overlaps of groups are also
observed, and multiple frequency response usually takes place within these regions. For
the cross-flow response, the simulated results are in good agreement with the experi-
mental measurements for reduced velocity V1 > 20. However, at small reduced velocities
where the cross-flow mode up to the third is dominant, the simulated cross-flow am-
plitudes are generally smaller than those in the experimental measurements, and the
increasing trends, represented by the slopes of the lines, are less sharp. This may be due
to the fact that in the experiments, all the measurements at small reduced velocities,
corresponding to mode patterns 2/1, 4/2 and 6/3, are obtained at top tensions that are
much higher than the one used in the simulations.

In Fig.5.9, the standard deviations of simulated cross-flow and in-line displacement
are now plotted against the reduced velocities based on the dominant frequency fx,y .
The cross-flow response falls in the region between Vy = 5 and Vy = 7, while the in-line
response collapses around Vx = 3. A clear trend of increasing amplitude with reduced
velocity is observed in both cross-flow and in-line directions.

The dimensionless frequency, which is obtained by normalising the dominant fre-
quency in the form fx,y D/U , is plotted in Fig.5.10 against the reduced velocity V1. In
general, the cross-flow response is around the vortex shedding frequency, which is rep-
resented by the straight line in Fig.5.10(a) at 0.17. The in-line dominant frequency, on
the other hand, is always double that of the cross-flow frequency, and it concentrates
around 0.34. Thick grey lines in the figure represent reasonable linear approximations
of the experimental results, indicating the range as well as the variation of the measured
dominant frequencies, which are in good agreement with the simulation results. The
main difference between the two is observed at high reduced velocities where the ex-
perimental results display a trend of becoming more concentrated around the vortex
shedding frequency, while those of the simulations still spread over a wide range of re-
duced velocities. The jumps of the dimensionless frequency is due to the lock-in, which
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Figure 5.9: Standard deviations of (a) cross-flow and (b) in-line displacements against reduced velocity Vx,y .
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Figure 5.10: Normalised (a) cross-flow and (b) in-line dominant frequencies ( fx,y D/V ) versus V1. In (a), the
straight line represents the frequency corresponding to a Struhal number 0.17; and in (b), the straight line
represents the doubled frequency corresponding to a Struhal number 0.17. Linear approximation of the ex-
perimental results by Chaplin et al. (2005) are represented by grey thick lines.

is illustrated in a better way in Fig.5.11 where the frequency is normalised by the funda-
mental frequency. A clear stair-stepping trend in the dimensionless frequency of both
cross-flow and in-line responses is noticeable.

In Fig.5.12, the simulated dominant modes as well as those observed in the exper-
iments are plotted. The comparison of the simulation and experiment results reveals
good agreements between the two regarding the cross-flow dominant modes. As for the
in-line dominant modes, at low reduced velocities, both simulation and experiment re-
sults demonstrate that only even-numbered modes appear. For high reduced velocities,
both even and odd-numbered modes are observed from the experiments while, interest-
ingly, only odd modes appear in the simulations. The reason for only the odd-numbered
modes to be predicted by the model at high reduced velocities is still unclear to the au-
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Figure 5.12: Dominant mode for (a) cross-flow and (b) in-line displacements. Linear approximation of the
experimental results by Chaplin et al. (2005) are represented by grey thick lines.

thor and requires further study.
With regard to the in-line offset of the riser, since the drag force is proportional to

the square of the flow speed, it is expected that the maximum in-line deflection should
follow a similar trend. In Fig.5.13, the mean of the maximum in-line deflections x̃max are
plotted against the reduced velocity V1, and a general quadratic relationship between the
two can be found. x̃max is obtained by finding the maximum in-line deflections along
the riser at each time instance and then taking the mean value of these maxima. The line
shows that the best quadratic fit to the results yields a coefficient of 6.7e−3, which is in
excellent agreement with the experimental measurements where a coefficient of 6.1e−3

was obtained. This proves that the amplification of the in-line force due to VIV is prop-
erly captured by the model. This reveals one of the main advantages of the current model
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over the original one, which has been shown by Mina (2013) and Kallias Ntroumpis
(2017) to significantly underestimate the mean in-line deflection of the riser.
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Figure 5.13: Mean of maximum in-line deflection. The curve shows the best quadratic fit to the results with the
expression x̃max /D = 6.7e−3V 2
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5.4. CONCLUSIONS
In this chapter, a model has been presented for the simulation of the coupled cross-
flow and in-line VIV of a flexible cylindrical structure. The structure is described as a
geometrically nonlinear extensible Euler-Bernoulli beam, and the interaction between
the structural motion and fluid is modelled by the wake oscillator proposed in Chapter
4 that is uniformly distributed along the cylinder. Although the main focus has been
on the VIV of a straight flexible cylinder, the same model can, in principle, be used for
the prediction of the VIV of curved structures, such as catenary risers. To deal with the
cases where the incident flow is not perpendicular to the cylinder axis, a local coordinate
frame is introduced, and the independence principle is applied.

The dynamics of the coupled system has been analysed using the finite element
method, and the simulation results of a series of experiments where a top-tensioned
flexible riser was subjected to a step flow have been presented. A comparison with the
experimental results has revealed that the model is able to qualitatively predict most fea-
tures of the VIV of flexible cylinders, and the predicted vibration amplitudes, frequencies
and excited modes are in good agreement with the experimental measurements. More-
over, it has been demonstrated that the current model is able to offer good prediction of
the mean in-line deflections, which reflects its superiority over the original model pro-
posed by Ogink and Metrikine (2010), as the latter one significantly underestimates the
amplification of the mean in-line force when VIV occurs.

In contrast to the conventional belief that the VIVs of flexible cylinders subjected to a
uniform flow should be dominated by a single frequency oscillation, the current model
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predicts that over the range of flow velocities through which a transition of the domi-
nant mode of vibration takes place, the riser may exhibit a multi-frequency response.
In such cases, the multiple frequency components in the cross-flow response instanta-
neously coexist, while those of the in-line response are the result of a single frequency
that temporally drifts from one predominant frequency to another one. When the multi-
frequency response occurs, the in-line response contains significant components at a
low frequency, which is caused by the slow variation of the in-line force due to the mod-
ulation of the cross-flow displacements.





6
QUANTIFICATION OF THE EFFECT

OF THE IN-LINE COUPLING IN THE

NEW WAKE OSCILLATOR MODEL

6.1. INTRODUCTION
In Chapter 4, a wake oscillator model that is coupled to both the cross-flow and in-line
motions has been proposed. Combined with a nonlinear Euler-Bernoulli beam model,
the wake oscillator model has been applied to simulate the VIV of flexible cylinders and
is validated against experimental measurements in Chapter 5. In this chapter, the in-
fluence of the in-line coupling is investigated by comparing the predicted VIV of flexible
cylinders using the wake oscillator with and without in-line coupling under uniform and
sheared flows.

As presented in Section 4.2, compared to the original model proposed by Ogink and
Metrikine (2010), there are two aspects to the main improvements of the new model.
The first one is that a term that is proportional to the acceleration of the in-line mo-
tion is introduced in the wake oscillator equation to describe the influence of the in-line
motion on the dynamics of the wake. The second improvement is related to the in-line
force, where a fluctuating component that is coupled to the lift force is added. These
two aspects of improvement introduced a strong coupling effect of cross-flow and in-
line motions on the interaction between the structure and flow. To investigate the effect
of these two improvements, simulations are conducted with different models. Model A
denotes the complete model, which includes both improvements. Model B excludes the
in-line coupling term in the wake oscillator equation but keeps the fluctuating in-line
force. Model C excludes both improvements and is exactly the same as the one proposed
by Ogink and Metrikine (2010). Detailed descriptions of all three models can be found in
Appendix D. The results obtained from these three models are compared to each other,
and the differences are highlighted.

The rest of this chapter is divided into the following sections. The configuration of

81



6

82 6. EFFECT OF THE IN-LINE COUPLING

Table 6.1: Properties of the riser model

Parameters Values Dimension

External diameter 0.03 m
Length 38 m
Aspect ratio 1266 -
Bending Stiffness 572.3 Nm2

Axial Stiffness 7.82×106 N
Mass 1.088 kg/m
Mass ratio 1.54 -

the structure, as well as the definition of the coordinate system, is described in Section
6.2. Then, in Section 6.3, the general structural responses obtained from the three mod-
els are presented. A 2D spatial-temporal spectral analysis is carried out, and vibration
modes are extracted at dominant frequencies. Section 6.4 investigates the phase differ-
ence between the cross-flow and in-line motions. In Section 6.5, the differences between
the results from the three models are highlighted from the viewpoint of energy transfer.
The fatigue damage estimated by the three models is presented in Section 6.6, and final
conclusions are provided in Section 6.7.

6.2. MODEL DESCRIPTION
In this chapter, simulations are performed using parameters used in the experiments un-
dertaken by Shell Oil Company in the MARINTEK Offshore Basin Laboratory (Lie et al.,
2012). In the experiments, a riser of 38 meters is dragged horizontally or rotated around
one end through still water to simulate a uniform and linearly sheared current. The
key properties of the riser are presented in Table 6.1. Consistent with the experiments,
two types of simulations are conducted, namely uniform flow simulations and linearly
sheared flow simulations. The configuration of the riser, as well as the definition of the
coordinate system, is illustrated in Fig.6.1. For each simulation, an initial tension of 6 kN
is applied and one end of the riser is attached to a spring, while the other is pinned. The
reason for using a spring is to simulate the restoring force provided by the pendulum
with heavy clamp weight in the experiments. Without knowing the exact stiffness that
the pendulum provides, the stiffness of the spring in the simulation is set to be 5×104

N/m.

The same simulation procedure, as well as the same parameters as those used in Sec-
tion 5.3, is taken. For each simulation, a convergence test is conducted by doubling the
number of elements to ensure that the results are reliable. However, due to the strong
nonlinear nature of the problem, in some cases, even with the same initial conditions,
the response of the riser predicted by the model with a small and a large number of ele-
ments was found to correspond to different steady-state branches of the system. In such
cases, the convergence tests are performed by taking the steady-state response obtained
from the model with fewer elements and using it as the initial condition for the simula-
tion with more elements. In this way, the results are proved to converge, and only the
steady-state responses are analysed.
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Figure 6.1: Configuration of the riser and the coordinate system .

6.3. RESPONSE OF THE STRUCTURE
In this section, the simulated responses of the riser subjected to uniform and linearly
sheared flows are analysed. Simulations have been conducted at several flow velocities.
Typical responses at two flow velocities V = 0.5 m/s and 1.5 m/s for the uniform flow,
as well as at V = 1.5 m/s and 2.5 m/s for the linearly sheared flow, are presented. For
the linearly sheared flow profile, the notation V represents the maximum flow velocity
at p = 0.

6.3.1. UNIFORM FLOW

In this subsection, the simulated VIV of the riser subjected to uniform flow is discussed.
The structural response patterns are quantified and analysed in the wavenumber-frequency
domain after performing a spatial-temporal spectral analysis based on the 2D Fourier
transform, and the complex modes at dominant frequencies are extracted.

Flow velocity at V = 0.5 m/s
The simulation results of the response of the riser subjected to a uniform flow at

V = 0.5 m/s are depicted in Fig.6.2 and Fig.6.3, where the 2D PSD of non-dimensional
displacements and the corresponding complex modes at dominant frequencies are pre-
sented for all three models. For Model A, the 2D PSD of non-dimensional cross-flow and
in-line displacements, as illustrated in Figs.6.2(a) and (b), indicate that the structural
response is at a single frequency in both directions. The dominant in-line response fre-
quency, indicated by arrows in Fig.6.2(b), is fx ≈ 1.632 fs , which is approximately twice
that of the cross-flow response fy ≈ 0.816 fs . In Figs.6.2(a) and (b), it is difficult to de-
termine the wavenumber at which the riser is excited, since the energy seems to spread
over a wide range of wavenumbers. As explained in previous sections, this is because
the FFT in the spatial domain suffers from a small number of spatial cycles. By observ-
ing the complex modes extracted at the dominant frequencies, it is deduced that the
wavenumbers corresponding to the 3rd and 6th modes are excited in cross-flow and in-
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Figure 6.2: Spatio-temporal spectra of (a,c,e) cross-flow and (b,d,f) in-line displacements at uniform flow V =
0.5 m/s using Model A (a,b); Model B (c,d) and Model C (e,f). The arrows represent the dominant frequencies.
The wavenumbers and natural frequencies of selected free vibration modes are indicated by black vertical
dashed lines and red crosses respectively.

line directions respectively. The natural frequencies of the corresponding free vibration
modes are indicated in Figs. 6.2(a) and (b) by red crosses; those natural frequencies are
slightly smaller than the actual vibration frequencies in both the cross-flow and in-line
directions. In Figs.6.3(a) and (b), the spanwise evolution of the amplitudes and phases
of the complex modes extracted at dominant frequencies of structural responses in both
cross-flow and in-line directions is presented. The cross-flow vibrations predicted by
Model A are clearly in the form of standing waves, as definite nodes and jumps of π in
the phase are observed in Fig.6.3(a). The maximum cross-flow vibrations are observed
at the antinodes, which are as high as 1.4D . In the in-line direction, see Fig.6.3(b), the
structural response exhibits a mixed standing-travelling character. The evolution of the
magnitude and phase of the complex mode suggests that the in-line vibration is excited
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Figure 6.3: Amplitude and phase of (a,c,e) cross-flow and (b,d,f) in-line complex modes at uniform flow V = 0.5
m/s. (a,b) correspond to the response obtained using Model A; (c,d) correspond to the response obtained using
Model B and (e,f) correspond to the response obtained using Model C. The complex modes are extracted at
dominant frequencies identified from Spatio-temporal spectra.

at the middle of the riser and propagates towards both ends, developing strong standing
waves near boundaries. The maximum in-line vibration, around 0.3D , is observed at the
anti-nodes of the standing wave near boundaries.

In Fig.6.2(c,d) and Fig.6.3(c,d), the simulated riser responses are illustrated for Model
B. As can be seen in Figs.6.2(c) and (d), Model B predicts the riser to vibrate at higher
wavenumbers (corresponding to the 4th mode in the cross-flow direction and the 8th
mode in the in-line direction) and higher frequencies ( fy ≈ 1.029 fs and fx ≈ 2.058 fs )
compared to those of Model A. The simulated cross-flow vibrations are in good agree-
ment with the free vibration structural modes regarding the excited wavenumber and
frequency, while slight deviations are observed in the in-line response where the actual
vibration frequency is lower than the corresponding natural frequency. The complex
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modes at the dominant frequencies, as depicted in Figs.6.3(c) and (d), indicate that the
cross-flow vibration is dominated by a standing wave, while a predominant travelling
wave is observed in the in-line direction. Although the evolution of the amplitude of the
in-line complex mode suggests the same response pattern as that predicted by Model
A, the evolution of the phase along the span displays unclear variation patterns. Such
variations in the phase along the span were found to be associated with the fact that two
different wavenumbers are excited in the in-line direction at the same frequency due to
the unconstrained boundary in the Z direction at one end of the riser. Concerning the
maximum magnitude of vibration, Model B predicts that the maximum cross-flow and
in-line amplitudes of vibration are 0.8D and 0.15D ; both are smaller than those of Model
A.

The simulation results of Model C, as pictured in Fig.6.2(e,f) and Fig.6.3(e,f), are sim-
ilar to those of Model B; therefore, they are not discussed in detail here. However, it needs
to be noted that while Model C predicts the same level of cross-flow vibration as Model
B, it predicts the maximum in-line vibration around 0.075D , which is much smaller than
that simulated by the other two models.

Flow velocity at V = 1.5 m/s

For the case of V = 1.5 m/s, the 2D PSD of non-dimensional cross-flow and in-
line displacements and the corresponding dominant complex modes are presented in
Fig.6.4(a,b) and Fig.6.5(a,b), respectively, for Model A. The predominant wavenumbers
corresponding to the 8th and 16th modes are excited in the cross-flow and in-line direc-
tions at frequencies of fy ≈ 0.914 fs and fx ≈ 1.828 fs respectively. In both directions, the
actual vibration frequencies are higher than the natural frequencies of the correspond-
ing modes. The different positive and negative wavenumber peaks for the same fre-
quency imply that the structural response is characterised by mixed standing-travelling
waves. The mixed standing-travelling character of the structural response is confirmed
by the spanwise evolution of the amplitude and phase of the cross-flow and in-line com-
plex modes; see Figs.6.5(a) and (b). The generally decreasing trend of the phase denotes
the travelling wave oriented from p/L = 0 towards p/L = 1. In the case of a pure travel-
ling wave, the variation of the phase is strictly linear. The modulation of the underlying
standing character of the structural response leads to a zigzagging evolution pattern of
the phase in both the cross-flow and in-line directions. From this point of view, the trav-
elling wave is more predominant in the in-line response, as the evolution of the phase of
the in-line complex mode is less modulated. The evolution of the magnitudes along the
span reveals that both cross-flow and in-line displacements gradually increase along the
direction of the travelling wave and reach their maximum – around 1.7D in a cross-flow
direction and 0.3D in the in-line direction – at the end of the riser where standing waves
dominate. This may imply that the energy is continually transferred from the fluid to
the riser as the travelling wave propagates. It is also interesting to notice from Fig.6.5(b)
that the standing character of the in-line displacement seem to be associated with the
cross-flow response. The ripples of the magnitude of the in-line complex mode, as a re-
sult of the modulation of the standing wave, display a pattern of a mixture of large cells
that are consistent with the cross-flow response and small ripples. This is a result of the
nonlinear coupling effect between the cross-flow and in-line motions which can only be
captured by a nonlinear structural model.
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Figure 6.4: Spatio-temporal spectra of (a,c,e) cross-flow and (b,d,f) in-line displacements at uniform flow V =
1.5 m/s using Model A (a,b); Model B (c,d) and Model C (e,f). The arrows represent the dominant frequencies.
The wavenumbers and natural frequencies of selected free vibration modes are indicated by black vertical
dashed lines and red crosses respectively.

Predictions by Models B and C are similar, as can be seen in Fig.6.4(c-f) and Fig.6.5(c-
f ). Both models predict that wavenumbers corresponding to the 9th and 18th modes will
be excited in the cross-flow and in-line directions respectively. However, the cross-flow
and in-line dominant frequencies predicted by Model B are fy ≈ 1.055 fs and fx ≈ 2.110 fs

respectively, which are higher than those predicted by Model C ( fy ≈ 0.992 fs and fx ≈
1.984 fs ). The reason for such a difference is related to the tension increase due to the
amplification of in-line forces. Model C, as will be demonstrated in Section 6.5, under-
estimates the amplification of the in-line force and therefore predicts a smaller tension
compared to Model B. As a result, the lock-in at the same mode for the two cases cor-
responds to different natural frequencies, as indicated by crosses in Figs.6.4(c) and (e).
The dominant frequencies are in good agreement with the corresponding natural fre-
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Figure 6.5: Amplitude and phase of (a,c,e) cross-flow and (b,d,f) in-line complex modes at uniform flow V = 1.5
m/s. (a,b) correspond to the response obtained using Model A; (c,d) correspond to the response obtained using
Model B and (e,f) correspond to the response obtained using Model C. The complex modes are extracted at
dominant frequencies identified from Spatio-temporal spectra.

quencies in the cross-flow direction but are higher than natural frequencies in the in-line
direction for both models. The cross-flow complex modes at dominant frequencies in-
dicate that for both models, the cross-flow vibration exhibits a standing-travelling char-
acter; however, different from Model A, the vibration is dominated by standing waves.
The underlying travelling wave pattern for both Models can be observed by the general
increasing trend of the phase along the span, indicating that the direction of the travel-
ling wave is opposite to that of Model A. The maximum cross-flow vibration of Model B
is around 1.0D , which is similar to the prediction of Model C, while the predicted maxi-
mum in-line vibration of Model B is around 0.13D , which is slightly larger than the pre-
diction of Model C around 0.1D .
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6.3.2. LINEARLY SHEARED FLOW

In this subsection, the simulation results of the VIV of the riser subjected to linearly
sheared flow are presented. The flow profile is such that the velocity at p/L = 1 is zero
and that at p/L = 0 is maximum. The notation V denotes the maximum flow velocity
throughout this subsection.

Flow velocity at V = 1.5 m/s
In Fig.6.6 the 2D PSD of non-dimensional cross-flow and in-line displacements are

presented for all three models. In all plots, the vibration frequencies are normalised by
the Strouhal frequency that was calculated at the maximum flow velocity. As can be seen
from Fig.6.6, all three models predict a single frequency response in both the cross-flow
and in-line directions, and the in-line dominant frequencies are approximately twice

Figure 6.6: Spatio-temporal spectra of (a,c,e) cross-flow and (b,d,f) in-line displacements at sheared flow V =
1.5 m/s using Model A (a,b), Model B (c,d) and Model C (e,f). The arrows represent the dominant frequencies.
The wavenumbers and natural frequencies of selected free vibration modes are indicated by black vertical
dashed lines and red crosses respectively.
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those of the cross-flow responses. A comparison of the results reveals that the models
without an in-line coupling term in the wake oscillator equation (Models B and C) pre-
dict similar responses to the model with in-line coupling (Model A) regarding the excited
wavenumber and dominant frequency. In general, Model A predicts that the riser will vi-
brate at slightly higher frequencies ( fy ≈ 0.933 fs and fx ≈ 1.867 fs ) compared to those
of Model B ( fy ≈ 0.904 fs and fx ≈ 1.807 fs ) and Model C ( fy ≈ 0.891 fs and fx ≈ 1.782 fs ).
For all three models, the wavenumber corresponding to the 10th mode is excited in the
cross-flow direction; moreover, according to Models A and C, the in-line wavenumber
corresponding to the 20th mode is excited, whereas Model B predicts that the in-line
wavenumber corresponding to the 22th mode is excited. The perceptibly larger nega-
tive wavenumber peaks compared to the positive ones imply that the travelling waves
are predominant in the structural responses for all three models in both the cross-flow
and in-line directions, and these waves propagate from the high-velocity region (near
p/L = 0) towards the low-velocity region (near p/L = 1).

The travelling-wave-dominant structural responses of all three models are confirmed
by the complex modes at the dominant frequency, as illustrated in Fig.6.7. In the cross-
flow direction, the maximum amplitude of the structural complex mode of Model A is
observed around p/L = 0.45 and exceeds 0.4D , while that of Models B and C occurs
at p/L = 0.28 and is close to 0.3D . Concerning the in-line vibration, Model A predicts
the highest amplitude of vibration around 0.075D , followed by Model B, with a maxi-
mum around 0.045D , and Model C predicts the smallest maximum amplitude, which is
smaller than 0.02D .

Flow velocity at V = 2.5 m/s

The simulation results of the VIV of the riser subjected to a sheared flow velocity
with maximum velocity V = 2.5 m/s are presented in Fig.6.8, Fig.6.9 and Fig.6.10. In
Fig.6.8, the 2D PSD exhibits a multiple frequency response in both the cross-flow and
in-line directions for all three models. Although several frequencies are excited in the
cross-flow response, only the first two dominant frequencies that contain the most en-
ergy are considered; they are indicated by arrows in Figs.6.8(a), (c) and (e). Here, the
strongest frequency is denoted as the main dominant frequency and the other one as
the secondary dominant frequency. For the in-line response, a substantial amount of
energy concentrates at low frequencies; the reason for this has been explained in Sec-
tion 5.3.2. Apart from this component at low frequencies, the excited frequencies that
are close to twice those of the dominant cross-flow frequencies are chosen as the domi-
nant in-line frequencies, indicated by arrows in Figs.6.8(b), (d) and (f). At each dominant
frequency, the corresponding excited wavenumber and natural frequency are also pre-
sented. For Model A, the main dominant cross-flow frequency is fy ≈ 0.914 fs , with an
excited wavenumber corresponding to the 13th mode. Models B and C, on the other
hand, predict dominant frequencies fy ≈ 0.904 fs and fy ≈ 0.871 fs respectively, with
excited wavenumbers that correspond to the 14th mode for both cases. Concerning
the secondary dominant cross-flow frequency, all three models predict it to be around
fy ≈ 0.3 fs , with an excited wavenumber corresponding to the 4th mode. In the in-line
direction, the main dominant frequencies are fy ≈ 1.838 fs , fy ≈ 1.806 fs and fy ≈ 1.743 fs

for Models A, B and C respectively, and the corresponding excited wavenumbers are at
the 26th, 30th and 29th modes. Similar to the cross-flow case, all three models predict
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Figure 6.7: Amplitude and phase of (a,c,e) cross-flow and (b,d,f) in-line complex modes at sheared flow V = 1.5
m/s. (a,b) correspond to the response obtained using Model A; (c,d) correspond to the response obtained
using Model B and (e,f) correspond to the response obtained using Model C. The complex modes are extracted
at dominant frequencies identified from Spatio-temporal spectra.

the same secondary dominant in-line frequency around fy ≈ 0.6 fs , with a wavenumber
that corresponds to the 8th mode.

The complex modes at the main and secondary dominant frequencies are presented
in Fig.6.9 and Fig.6.10 in both the cross-flow and in-line directions. As can be seen from
Fig.6.9, at the main dominant frequencies, both cross-flow and in-line vibrations are as-
sociated with travelling waves that propagate from the high-velocity region towards the
low-velocity region. All three models predict similar maximum cross-flow vibrations –
close to 0.4D – at the main dominant frequency, while Model A predicts the largest in-
line vibration with a maximum value around 0.1D , followed by Model B around 0.05D
and Model C around 0.02D . For the complex modes at the secondary dominant fre-
quency, as illustrated in Fig.6.10, all three models predict similar cross-flow vibrations,
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Figure 6.8: Spatio-temporal spectra of (a,c,e) cross-flow and (b,d,f) in-line displacements at sheared flow V =
2.5 m/s using Model A (a,b), Model B (c,d) and Model C (e,f). The arrows represent the dominant frequencies.
The wavenumbers and natural frequencies of selected free vibration modes are indicated by black vertical
dashed lines and red crosses respectively.

which are in the form of decaying travelling waves propagating towards the high-velocity
region over a span between p/L = 0 and 0.7 and are dominated by standing waves near
p/L = 1. This implies that the vibrations at the secondary dominant frequency are ex-
cited around p/L = 0.7 and propagate towards both ends of the riser. Models B and C
predict a similar maximum cross-flow vibration around 0.13D , which is slightly smaller
than the prediction of Model A that is close to 0.16D . Concerning the in-line vibration at
the secondary dominant frequency, see Figs.6.10(b), (d) and (f ), the pattern of the mag-
nitude of complex modes are similar for all three cases; however, the evolutions of the
phase are different. All three models predict that the in-line vibration at the secondary
dominant frequency will mainly occur between p/L = 0.7 and 1 and will be standing
wave dominated. Model A predicts the largest vibration magnitude with a maximum
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Figure 6.9: Amplitude and phase of (a,c,e) cross-flow and (b,d,f) in-line complex modes at sheared flow V = 2.5
m/s for main dominant frequency. (a,b) correspond to the response obtained using Model A; (c,d) correspond
to the response obtained using Model B and (e,f) correspond to the response obtained using Model C. The
complex modes are extracted at main dominant frequencies identified from Spatio-temporal spectra.

value close to 0.08D , whereas Models B and C predict smaller values around 0.04D and
0.02D respectively. For the rest of the span, from p/L = 0 to p/L = 0.7, the amplitudes of
the in-line vibrations are small. Over the span p/L = 0−0.7, the almost linearly decreas-
ing phase shown in Fig.6.10(b) indicates that Model A predicts the vibration in the form
of a travelling wave that travells towards the low-velocity region. Model B, on the other
hand, predicts that a large segment of the riser is associated with a travelling wave that
propagates towards the high-velocity region, as indicated in Fig.6.10(d) where the phase
increases over p/L = 0.2−0.6. In Fig.6.10(f), it can be seen that the phase of the in-line
complex mode remains almost constant over p/L = 0−0.7, according to Model C.
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Figure 6.10: Amplitude and phase of (a,c,e) cross-flow and (b,d,f) in-line complex modes at sheared flow
V = 2.5 m/s for secondary dominant frequency. (a,b) correspond to the response obtained using Model A; (c,d)
correspond to the response obtained using Model B and (e,f) correspond to the response obtained using Model
C. The complex modes are extracted at secondary dominant frequencies identified from Spatio-temporal spec-
tra.

6.4. PHASE DIFFERENCE BETWEEN CROSS-FLOW AND IN-LINE

MOTIONS
The phase difference between the cross-flow and in-line motions has a significant in-
fluence on the wake pattern when VIV occurs. It affects the hydrodynamic force acting
on the structure and consequently influences the energy transfer between the fluid and
structure. As a result, in the case of the VIV of flexible cylinders, the phase difference is
naturally related to the distribution of excitation and damping regions. In this section,
the definition of the phase difference, as well as the corresponding trajectory of struc-
tural motion, is presented in subsection 6.4.1. The phase differences for all simulation
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cases are calculated and discussed in subsection 6.4.2.

6.4.1. DEFINITION OF PHASE DIFFERENCE AND MOTION TRAJECTORY
Assume that the motion of a cross-section of the riser in the cross-flow and in-line direc-
tions can be described by the following equations:

y = y0 cos
(
ωt +φy

)
(6.1)

x = x0 cos
(
2ωt +φx

)
. (6.2)

Then, the phase difference is defined as φx y = φx − 2φy . This definition is in accor-
dance with Dahl (2008) but has a shift of 90° compared to the one given by Jauvtis and
Williamson (2004) that is taken in Section 4.3.1 for the purpose of comparison. With such
a definition, the values of φx y in the range of 0°−180° correspond to a counter-clockwise
motion trajectory, and those in the range of 180°−360° correspond to a clockwise or-
bit. Here, the counter-clockwise motion corresponds to the trajectory where the cylin-
der moves against undisturbed flow when reaching the cross-flow oscillation maximum,
while the clockwise motion is associated with the case where the cylinder moves in the
opposite direction.

The in-line and cross-flow phases φx and φy can be obtained by the angle of the
complex modes determined in the previous section as φx = arg(X) and φy = arg(Y).

It must be clarified that the concept of phase difference and the application of φx y =
φx − 2φy only make sense when the cross-flow and in-line motions are synchronised.
Here, synchronisation means that the cross-flow and in-line motions vibrate interde-
pendently at a constant frequency ratio of 2. In the experiments, this is not always the
case, as the noise can sometimes be strong (Chaplin et al., 2005). However, this is not
a problem here, as the simulation results indicate good synchronisation between the
cross-flow and in-line motions along the whole span for all simulated cases. Some ex-
amples of such synchronisation and values of φx y that are specified for different motion
trajectories are presented in Fig.6.11 for Model A.

6.4.2. DISCUSSION
The phase differenceφx y is calculated for all simulation results. The distributions ofφx y

along the riser are presented in Fig.6.12 and Fig.6.13 for the uniform flow cases and in
Fig.6.14 for the sheared flow case. The boundary between the counter-clockwise and
clockwise trajectory (180°) is indicated by a vertical thick line.

For the uniform flow case at V = 0.5 m/s, as illustrated in Fig.6.12, three models pre-
dict different distributions ofφx y along the riser. For Model A, the phase difference along
the riser covers a wide range of values between 0° and 360°, as can be seen in Fig.6.12(a).
Jumps of approximately 310° occur at locations of p/L = 0.64 and p/L = 0.36, which are
close to the locations of nodes between the cells of the cross-flow standing wave. The
phase difference predicted by Model B, see Fig.6.12(b), varies around 0° and alternates
between the counter-clockwise and clockwise regions. As depicted in Fig.6.3(d), the al-
ternation is found to be closely related to the variation in the phase of the in-line motion,
which, as explained in the previous section, is a result of the excitation of two different
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Figure 6.11: Selected trajectories of the cylinder and corresponding phase difference from simulations with
Model A.
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Figure 6.12: Phase difference along the span at uniform flow V = 0.5 m/s for (a) Model A, (b) Model B and (c)
Model C.

wavenumbers at the same frequency in the in-line direction. For Model C, the phase dif-
ference also varies between the counter-clockwise and clockwise regions, as pictured in
Fig.6.12(c).
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For the uniform flow case at V = 1.5 m/s, it is clear that the distribution of φx y for
Model A, as portrayed in Fig.6.13(a), exhibits a different pattern compared to that of
Models B and C, see Figs.6.13(b) and (c). For Model A, the mixed standing-travelling
wave nature of both cross-flow and in-line displacements leads to a zigzagging evolution
ofφx y along the riser. The zigzagging pattern seems to be associated with the cells of the
cross-flow displacement, if one compares Fig.6.13(a) with Fig.6.5(a), within which the
phase difference continuously evolves to higher values at nodes and decreases through
the cell before jumping again at the next node. The variation of φx y is smooth and con-
fined mainly between 0° and 180°, corresponding to a counter-clockwise trajectory, ex-
cept in the region near the upper boundary where the jumps ofφx y at nodes exceed 180°
as a result of dominant standing waves over that region in both the cross-flow and in-
line directions. Concerning Models B and C, the evolution of φx y predicted by the two
models is similar. As illustrated in Figs.6.13 (b) and (c), although φx y is mostly confined
between 0° and 90°, significant segments of the span are associated with the φx y that
sweeps through the range 180°−360°.
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Figure 6.13: Phase difference along the span at uniform flow V = 1.5 m/s for (a) Model A, (b) Model B and (c)
Model C.

The spanwise variation of the phase difference for the cases of sheared flow are pre-
sented in Fig.6.14. At flow velocity V = 2.5 m/s, the structural response contains mul-
tiple frequency components; therefore, only the results for the case of V = 1.5 m/s are
presented here. Since the response patterns predicted by the three models are similar in
sheared flow cases, it is expected that the distribution of the phase difference should also
not be vastly different. The similarities between the predictions by the three models are
obvious in Fig.6.14. For all three models, the phase differences are confined within the
counter-clockwise region over a large segment of the riser near the high-velocity region
as a result of a predominant travelling wave in both the cross-flow and in-line vibrations.
The underlying standing character of the vibration leads to a zigzagging evolution ofφx y

along the span; this is similar to the case of uniform flow velocity V = 1.5 m/s in Model
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Figure 6.14: Phase difference along the span at sheared flow V = 1.5 m/s for (a) Model A, (b) Model B and (c)
Model C.

A. In the low-velocity region, close to the end of the riser where the standing wave be-
comes predominant, the variation of the phase difference becomes large and jumps to
the clockwise region at some locations.

In general, if the distribution of the phase difference is compared with the corre-
sponding response pattern, then when the travelling wave is predominant in the re-
sponse (all the sheared flow cases and uniform flow cases of V = 1.5 m/s for Model A),
the phase difference has a tendency to be confined within a counter-clockwise range.
In contrast, when the standing wave dominates (all the uniform flow cases for Models B
and C and the uniform flow case of V = 0.5 m/s for Model A), the phase difference alter-
natively switches between counter-clockwise and clockwise ranges. The observations
made on the variation of the phase difference shown in this section will be correlated
with the fluid-structure energy transfer in the next section.

6.5. HYDRODYNAMIC FORCES AND FLUID-STRUCTURE ENERGY

TRANSFER

In this section, the hydrodynamic forces and the energy transfer between the structure
and fluid are studied in relation to the structural responses analysed in Sections 6.3 and
6.4. The fluid forces, as well as the fluid-structure energy transfer, are representative
of the nonlinear equilibrium state of the coupled fluid-structure system and decide the
global structural behaviour. The prediction of the segments of the structure that the en-
ergy flows into (denoted as power-in region) and out from (denoted as power-out region)
is of fundamental importance for VIV of flexible structures.
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6.5.1. HYDRODYNAMIC FORCES
In this subsection, the hydrodynamic forces, as well as their distribution along the riser,
are discussed based on the simulation results. The hydrodynamic forces exerted on the
structure are calculated at each nodal location of the riser model from the simulated
oscillations of wake variable q using Eqs.(5.14), (5.15) and (5.18). It needs to be pointed
out that the hydrodynamic force calculated here excludes the potential added mass. The
calculated hydrodynamic force is a vector in the space, and only its components in cross-
flow (Fy ) and in-line (Fx ) directions are considered. The cross-flow and in-line force
coefficients, namely Cy and Cx , are obtained by normalising the corresponding forces
using the following equation:

Cx,y =
Fx,y

1
2ρDV 2

. (6.3)

In Fig.6.15 and Fig.6.16, the RMS values of the mean in-line force coefficients, de-
noted as Ĉx ; the fluctuating in-line force coefficients, denoted as C̃x ; and the cross-
flow force coefficients Cy are presented for all three models at uniform flow velocities
of V = 0.5 m/s and V = 1.5 m/s. It is clear in Fig.6.15(a) and Fig.6.16(a) that all three
models predict the amplification of Ĉx compared to its value, around 1.2, on a fixed
cylinder, but at different levels. Model A predicts the most significant amplification of
the mean in-line force coefficient and Model C predicts the least. From all three mod-
els, the amplification of the mean in-line force coefficient is found to be associated with
large cross-flow vibrations of the riser. The maxima of Ĉx are located in the regions of
antinodes of cross-flow motion. The same trend was reported in experiments by Huarte
(2006). Furthermore, the magnitude of the simulated maximum mean in-line force co-
efficient by Model A – as high as 6 – is comparable to those observed in the experiments
under a similar amplitude of cross-flow displacement. At the location where the cross-
flow motion is close to zero, for example the cross-flow nodes at V = 0.5 m/s, the mean
in-line force coefficient predicted by Model A is around 2, which is still higher compared
to the case of a stationary cylinder, while the other two models predict almost no ampli-
fication.

The fluctuating component of the in-line force coefficients, as illustrated in Fig.6.15(b)
and Fig. 6.16(b), has a similar trend to the mean in-line force. In general, the distribution
of C̃x follows a shape similar to that of magnitude of cross-flow complex mode, mean-
ing that it is still primarily affected by the cross-flow motion. In addition, the influence
of the in-line motion is also significant, as the local maxima of fluctuating in-line forces
appear mostly at points associated to the local maxima of the in-line displacements.

The distribution of the cross-flow force, in contrast to the in-line force, exhibits a
more irregular pattern, as depicted in Fig.6.15(c) and Fig.6.16(c). The cross-flow forces
predicted by Models B and C exhibit a similar pattern of distribution, with the magni-
tude calculated by Model B slightly higher than that by Model C. The cross-flow force
obtained with Model A exhibits a different pattern. Also, Model A predicts, in general,
a larger magnitude of cross-flow force. Efforts have been made to relate the variation
of the cross-flow force to the structural motions. However, no obvious trend has been
observed. This may imply that for all three models, the cross-flow force is sensitive to
both the cross-flow and in-line motions. It is interesting to note that for the uniform
flow case at V = 0.5 m/s where the cross-flow motion is dominated by standing waves, at
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Figure 6.15: RMS values of (a) mean in-line force coefficient Ĉx , (b) fluctuating in-line force coefficient C̃x and
(c) cross-flow force coefficient Cy for uniform flow velocity V = 0.5 m/s. Black solid lines represent results from
Model A, black dashed lines represent results from Model B and grey solid lines represent results from Model
C.
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Figure 6.16: RMS values of (a) mean in-line force coefficient Ĉx , (b) fluctuating in-line force coefficient C̃x and
(c) cross-flow force coefficient Cy for uniform flow velocity V = 1.5 m/s. Black solid lines represent results from
Model A, black dashed lines represent results from Model B and grey solid lines represent results from Model
C.

the location where the cross-flow motion is almost zero, the cross-flow force predicted
by Models B and C is close to zero, while that predicted by Model A still has a significant
value.

The hydrodynamic forces for the sheared flow case with maximum flow velocity V =
1.5 m/s are presented in Fig.6.17. Different from the cases of uniform flow, the force
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Figure 6.17: RMS values of (a) mean in-line force coefficient Ĉx , (b) fluctuating in-line force coefficient C̃x
and (c) cross-flow force coefficient Cy for sheared flow with maximum velocity V = 1.5 m/s. Black solid lines
represent results from Model A, black dashed lines represent results from Model B and grey solid lines represent
results from Model C.

coefficients are obtained by normalising the force with the maximum flow velocity. As
a result, all the force coefficients exhibit a gradual decrease from the high-velocity re-
gion to the low-velocity region towards zero. The usage of the maximum flow velocity
in the normalisation makes it difficult to make a direct comparison between the force
coefficients and the response amplitude of the riser, as has been done for the uniform
flow. However, by comparing the positions of the local maxima and minima, it is clear
that the large mean and fluctuating in-line coefficients are normally found at locations
of large cross-flow oscillation amplitude. With regard to the cross-flow force coefficient,
its relation to the cross-flow amplitude is more complex. For example, in Fig.6.17(c), the
local maxima of Cy are observed at the local minima of cross-flow vibration for p/L < 0.5,
while for p/L > 0.5 the trend is the opposite.

6.5.2. FLUID-STRUCTURE ENERGY TRANSFER
Follow the concept used by Bourguet et al. (2011), the energy transfer between the fluid
and structure in this thesis is quantified by the force coefficient that is in phase with
the velocity of the riser; for simplicity, it is denoted as excitation coefficient Ce here. Its
components in the cross-flow and in-line directions are defined as

Ce,y =
2
T

∫
T Cy ẏd t√

2
T

∫
T ẏ2d t

(6.4)

and

Ce,x =
2
T

∫
T Cx ẋd t√

2
T

∫
T ẋ2d t

. (6.5)
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The total force in phase with the velocity vector is defined as

Ce =
2
T

∫
T

(
Cy ẏ +Cx ẋ

)
d t√

2
T

∫
T

(
ẏ2 + ẋ2

)
d t

. (6.6)

A positive excitation coefficient means, on average, the energy transfers from fluid to
structure and hence excites the structural vibration, while a negative excitation coeffi-
cient indicates that the structural motion is damped. The regions corresponding to the
positive excitation coefficient are designated as power-in regions, while those with the
negative excitation coefficient are refer to as power-out regions.

The spanwise distributions of Ce , Ce,y and Ce,x at uniform flow velocities of V = 0.5
m/s and 1.5 m/s are presented in Fig.6.18 and Fig.6.19. At both flow velocities, Model
A predicts the variation of the excitation coefficients along the span in a pattern that is
different from those for Models B and C. For flow velocity V = 0.5 m/s, as can be seen in
Fig.6.18(a), the cross-flow and in-line excitation coefficients share a common power-in
region at the middle of the riser between p/L = 0.4 and p/L = 0.6, according to Model
A. Beyond this region, the energy transfer in the two directions seems to be opposite at
most locations along the span; i.e. within the region where the riser motion is excited
by the fluid forces in the cross-flow direction, it is damped out in the in-line direction
and vice versa. The same phenomena are observed and seem to be more perceptible
for Models B and C, as illustrated in Figs.6.18(b) and (c), where the signs of Ce,x and Ce,y

are opposite to each other over almost the entire span of the riser. The predictions of
the cross-flow excitation coefficient according to Models B and C are almost exact, while
the in-line excitation coefficient predicted by Model B is significantly larger than that by
Model C. At flow velocity V = 1.5 m/s, it has previously been shown that the structural
response, predicted by Model A, is characterised by travelling waves that propagate in
the direction from p/L = 0 towards p/L = 1. As a consequence, the general power-in re-
gion is expected to be located over the span that is close to p/L = 0, while the power-out
region is expected to be close to the other end. This is verified in Fig.6.19(a), which il-
lustrates that the excitation coefficient Ce remains positive over approximately the first
half span of the riser and becomes alternatively positive and negative over the rest. For
Models B and C, in general, the spanwise variation of the excitation coefficient at flow ve-
locity V = 1.5 m/s is similar to that at V = 0.5 m/s, except that at V = 1.5 m/s, the value of
the positive Ce is lightly larger over the span close to p/L = 1. This is consistent with the
insignificant underlying travelling character of the structural response (corresponding
to the travelling wave oriented from p/L = 1 towards p/L = 0).

To study the relationship between the energy transfer and structural motions, the
power-in regions, indicated by grey areas, are portrayed together with the magnitude of
cross-flow complex mode |Y| as well as the phase difference φx y in Fig.6.20 and Fig.6.21
for a uniform flow at V = 0.5 m/s and V = 1.5 m/s. As can be seen in Fig.6.20(a) and
Fig.6.21(a), no clear relation is observed between the energy transfer and the cross-flow
motion for Model A. Nevertheless, it is interesting to note that according to Model A, the
large amplitude of cross-flow vibration does not necessarily correspond to the power-out
region. For example, in Fig.6.20(a), although the cross-flow vibration is at its maximum
around p/L = 0.5, the location is associated with the energy flow into the structure. The
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Figure 6.18: Force coefficients in phase with velocity along the riser for uniform flow at V = 0.5 m/s: (a) re-
sults of Model A, (b) results of Model B and (c) results of Model C. Black solid lines represent total excitation
coefficient Ce , and black dashed lines and grey solid lines represent Ce,y and Ce,x respectively
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Figure 6.19: Force coefficients in phase with velocity along the riser for uniform flow at V = 1.5 m/s: (a) re-
sults of Model A, (b) results of Model B and (c) results of Model C. Black solid lines represent total excitation
coefficient Ce , and black dashed lines and grey solid lines represent Ce,y and Ce,x respectively

same phenomenon is observed in experiments by Song et al. (2016). Furthermore, the
underlying mechanism is believed to be related to the effect of the coupled cross-flow
and in-line motions on the wake dynamics. This reflects the shortcomings of most exist-
ing models, including Models B and C presented here, in the prediction of the coupled
cross-flow and in-line VIV. When dealing with the two degrees of freedom VIV, the cross-
flow vibration is normally treated separately, and based on the force data obtained from
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Figure 6.20: Power-in regions identified from Ce in comparison with the amplitudes of the cross-flow complex
modes |Y| and phase difference φx y at uniform flow velocity V = 0.5 m/s: (a) results of Model A, (b) results
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represent |Y| and circles represent φx y .
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Figure 6.21: Power-in regions identified from Ce in comparison with the amplitudes of the cross-flow complex
modes |Y| and phase difference φx y at uniform flow velocity V = 1.5 m/s: (a) results of Model A, (b) results
of Model B and (c) results of Model C. Power-in regions are indicated by grey colored area. Black solid lines
represent |Y| and circles represent φx y
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the forced cross-flow vibration, the models always predict the power-out region at the
location of a large cross-flow vibration. This can be verified by the energy transfer pre-
dicted by Models B and C, as presented in Fig.6.20(b,c) and Fig.6.21(b,c), which show
clearly that the energy is primarily damped out from the structure at locations corre-
sponding to large cross-flow vibrations. Apart from the power-out regions correspond-
ing to large cross-flow vibrations, the energy is also found to be damped out from the
structure at locations of small cross-flow vibrations, according to Models B and C. For
example, in Figs.6.20(b) and (c), the segments of the riser around the nodes of cross-flow
displacement are associated with power-out regions. Looking into the contributions to
the energy transfer from the cross-flow and in-line excitation coefficients, as illustrated
in Figs.6.18(b) and (c), although the cross-flow excitation coefficients around the loca-
tion of the nodes are almost zero, it is the negative in-line excitation coefficients that
make the total energy transfer at these locations negative.

Concerning the phase difference, no obvious relation is observed between it and the
power-in regions for Models B and C, since the energy transfer is primarily determined
by the amplitude of cross-flow vibration for these two cases. For Model A, although no
solid trend is observed, it seems that the power-in regions are mostly associated with the
phase difference that corresponds to the counter-clockwise trajectory (between 0° and
180°).

The excitation coefficients for cases of a sheared flow profile with maximum flow ve-
locity V = 1.5 m/s are presented in Fig.6.22. As can be seen in this figure, for all three
models, the regions of positive Ce are located in the high-velocity zone, while in the
low-velocity region, the Ce remains negative. The cross-flow and in-line excitation co-
efficients have the same distribution pattern as that of Ce and both make significant
contributions to the total energy transfer within the high-velocity region, while in the
low-velocity region, the in-line excitation coefficients are small. Fig.6.22 also displays
the limit, indicated by a horizontal dashed line, between the power-in and power-out re-
gions. Model A predicts a wider power-in region p/L = 0−0.38 compared to that, around
p/L = 0−0.28, predicted by Models B and C. Different from the uniform flow cases, the
energy transfer between the fluid and structure in the sheared flow cases is normally ex-
pected to be determined by the reduced velocity. The reduced velocity range of 5−7 is
commonly assumed to be associated with the power-in region. Here, for Model A, the
power-in region corresponds to the reduced velocity range of Ur = 3.83−6.15, and that
for Models B and C corresponds to the range of Ur = 4.46−6.25.

The excitation coefficient for the case of sheared flow with maximum flow velocity
V = 2.5 m/s is shown in Fig.6.23. The distributions of Ce and its cross-flow and in-line
components Ce,y and Ce,x exhibit the same pattern and trend as those at V = 1.5 m/s;
therefore, they are not discussed in detail here. The reduced velocity is calculated based
on the primary dominant cross-flow frequency, and the range that corresponds to the
power-in region is found to be Ur = 3.86−6.14 for Model A and Ur = 4.48−6.14 for Mod-
els B and C. These ranges are similar to those at V = 1.5 m/s and suggest that for all
three models, in the sheared flow cases, the power-in regions are primarily affected by
the reduced velocity. Different from the case of V = 1.5 m/s, the structural response at
V = 2.5 m/s contains multiple frequency components, which implies the presence of
several power-in regions that correspond to different frequency contents. Therefore, a
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Figure 6.22: Force coefficient in phase with velocity along the riser for sheared flow with maximum velocity
V = 1.5 m/s: (a) results of Model A, (b) results of Model B and (c) results of Model C. Black solid lines represent
total excitation coefficient Ce , and black dashed lines and grey solid lines represent Ce,y and Ce,x respectively
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Figure 6.23: Force coefficients in phase with velocity along the riser for sheared flow with maximum velocity
V = 2.5 m/s: (a) results of Model A; (b) results of Model B and (c) results of Model C. Black solid lines represent
total excitation coefficient Ce ; black dash lines and grey solid lines represent Ce,y and Ce,x respectively

frequency decomposition of Ce,y and Ce,x based on a Fourier transform is performed.
The contributions from different frequency components to the cross-flow and in-line
excitation coefficients are calculated with the following equations:

Wx
(

f
)= Re

(
F [Cx (t )]F [ẋ (t )]

)
|F [ẋ (t )]| (6.7)
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and

Wy
(

f
)= Re

(
F

[
Cy (t )

]
F

[
ẏ (t )

])
|F [

ẏ (t )
]| (6.8)

where F [·] denotes Fourier transform and the overline denotes the complex conjuga-
tion.

The frequency decomposition of the cross-flow and in-line excitation coefficients
are presented in Fig.6.24 and Fig.6.25 for all three models. The previously identified
dominant frequencies are indicated by arrows. In the cross-flow direction, as illustrated
in Fig.6.24, the frequency decomposition of Ce,y does not display obvious differences
among the models. For all three models, the most significant positive energy transfer
occurs at the main dominant frequency over the same power-in region identified from
the total excitation coefficients. Apart from the main power-in region, another region
corresponding to a positive Ce,y is observed in the low-velocity region around p/L = 0.7
close to secondary dominant frequency. It has previously been shown in Fig.6.8 that the
cross-flow response exhibits two frequency peaks around the secondary dominant fre-
quency. Therefore, in Fig.6.24, it is not surprising that the positive energy transfer occurs
at two distinct frequencies. However, it seems that these two frequencies are well sep-
arated for Models B and C, while they are closely spaced for Model A. Concerning the
frequency decomposition of the in-line excitation coefficient, similar to the cross-flow
case, apart from the strong positive Ce,x that occurs at the main dominant frequency,
all three models predict another positive energy transfer at the secondary dominant fre-
quency. Different from Models B and C, for which the positive energy transfer at the sec-
ondary dominant frequency is mainly located in the low-velocity zone around p/L = 0.7,
a significant positive Ce,x is observed at different locations along the riser for Model A,
even in the high-velocity zone, for example at p/L ≈ 0.15. The difference is believed to
be related to the in-line coupling term in the wake oscillator equation. However, further
analysis is needed to understand the underlying mechanism. In the in-line direction,
apart from the positive energy transfer that occurs at the main and secondary dominant
frequencies, a positive Ce,x is also observed at a frequency that is approximately twice
that of the secondary dominant frequency as a result of the contribution from higher
harmonics.

6.6. FATIGUE DAMAGE

In this section, a fatigue analysis is conducted for the simulation results obtained from
the three models. The main purpose is to investigate the higher harmonics and their
contributions to fatigue damage. Therefore, the characteristics of the structural response
at higher harmonics are presented in the first subsection through the spectra of the
strain, and the fatigue damage is calculated and discussed in the second subsection.

6.6.1. STRAIN AND HIGHER HARMONICS

To highlight the higher harmonics, the frequency domain analysis is performed in this
subsection based on the bending strains at the surface of the riser. The bending strains
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Figure 6.24: Frequency decomposition of the cross-flow excitation coefficient for (a) results of Model A, (b)
results of Model B and (c) results of Model C.

Figure 6.25: Frequency decomposition of the in-line excitation coefficient for (a) results of Model A, (b) results
of Model B and (c) results of Model C.

of cross-flow and in-line deflections are calculated by the following equation:

εx,y = Kx,y
D

2
(6.9)

where subscripts ‘x’ and ‘y ’ denote the in-line and cross-flow directions respectively,
and Kx,y is the curvature calculated as the second derivative of the in-line and cross-
flow displacement with respect to the axial coordinate using a central finite difference
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approximation.
The PSD of in-line and cross-flow strains are evaluated along the riser, and its span-

averaged value is plotted in Fig.6.26–6.29. In these plots, the vibration frequency is nor-
malised by the Strouhal frequency fs , and the PSD is normalised by its maximum value
for the purpose of comparison. The results from Models A, B and C are presented in the
same plot and indicated by black solid, black dashed and solid grey lines respectively.
The spectrum confirms that the in-line response oscillates at a fundamental frequency
twice that of the cross-flow response. In addition, the most important observations from
these plots are the appearance of higher harmonics. In the cross-flow direction, the
riser response is dominated by a strong primary frequency (denoted by 1×) and has odd
higher harmonics (denoted by 3× and 5×), while its even integer multiples (denoted by
2×, 4× and 6×) are found in the in-line direction.
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Figure 6.26: Spanwise averaged PSD of bending strain due to (a) cross-flow and (b) in-line deflections for uni-
form flow V = 0.5 m/s. Black solid lines represent results from Model A, black dashed lines represent results
from Model B and grey solid lines represent results from Model C.

 fy /fs [-]

N
or

m
al

iz
ed

 P
S

D
 [-

]

(a)

0 1 2 3 4 5 6
10-7

10-5

10-3

10-1

101

 fx /fs [-]

N
or

m
al

iz
ed

 P
S

D
 [-

]

(b)

0 1 2 3 4 5 6
10-7

10-5

10-3

10-1

101

Figure 6.27: Spanwise averaged PSD of bending strain due to (a) cross-flow and (b) in-line deflections for uni-
form flow V = 1.5 m/s. Black solid lines represent results from Model A, black dashed lines represent results
from Model B and grey solid lines represent results from Model C.

For the uniform flow cases at V = 0.5 m/s and 1.5 m/s, as illustrated in Figs.6.26 and
6.27, it is clear that all three models predict distinct frequency peaks at higher harmon-
ics. In general, the comparison of the results from the three models reveals that Model
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Figure 6.28: Spanwise averaged PSD of bending strain due to (a) cross-flow and (b) in-line deflections for
sheared flow with maximum velocity V = 1.5 m/s. Black solid lines represent results from Model A, black
dashed lines represent results from Model B and grey solid lines represent results from Model C.
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Figure 6.29: Spanwise averaged PSD of bending strain due to (a) cross-flow and (b) in-line deflections for
sheared flow with maximum velocity V = 2.5 m/s. Black solid lines represent results from Model A, black
dashed lines represent results from Model B and grey solid lines represent results from Model C.

A predicts the most significant components at higher harmonics. The 3× cross-flow re-
sponse, as reported by Jauvtis and Williamson (2004), is a result of the third harmonic
component in the lift force that corresponds to the wake pattern where three vortices are
shed. This wake pattern was found to be associated with the large cross-flow vibration
when the super-upper branch appears for a small mass ratio system. Since Model A is
able to capture this phenomenon of the super-upper branch, it is not surprising that the
model predicts the strongest 3× among the three models. Regarding to the 4×, 5× and
6× harmonics, although often observed in experiments of the VIV of flexible cylinders,
little research is conducted on them. It is clear that their contributions are considerable,
especially the 4× harmonics, whose magnitude predicted by Model A is comparable to
the 2× harmonics.

In Fig.6.28 and Fig.6.29, the spanwise averaged PSD of strain for sheared flow cases
is presented. It can be seen that at both flow velocities, the frequency spectrum of the
strain for Model A is characterised by the richness of the frequency content with small
peaks, and this is much more significant compared to that of Models B and C. The rela-
tive contributions of higher harmonics are clearly smaller in sheared flow than those in
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uniform flow. Nevertheless, Model A still predicts the strongest high-harmonic compo-
nents.

6.6.2. FATIGUE DAMAGE RATE
In this subsection, the fatigue damage is calculated by applying the Miner summation,
and the fatigue damage at a specific location along the riser is given by

Da = ∑
i=1

ni

Ni
= 1

a

∑
i=1

ni (∆σi )m (6.10)

where Ni represents the number of cycles to failure at stress amplitude ∆σi , and ni de-
notes the corresponding stress cycles that take place. The number of cycles to failure for
a given stress amplitude can be found from an S-N curve, which is associated with the
parameters a and m. Here, log a = 11.687 and m = 3.0 are taken as suggested by Trim
et al. (2005). The rainflow counting method is applied to find ni for a given time series of
strain, and the stress amplitude is obtained by simply multiplying the strain with Young’s
modulus. It needs to be clarified that the concept of fatigue damage is used loosely here,
since in practical applications, the effective stress, such as von Mises stress, should be
used in the estimation of fatigue damage. For each simulation result, the fatigue dam-
age is estimated on both the original and a filter version of the signal, where the higher
harmonics have been removed and only the primary harmonics (1× component in the
cross-flow and 2× component in the in-line direction) are kept.

In Figs.6.30 and 6.31, the distributions of the fatigue damage rate along the riser are
presented for the uniform flow cases. It is clear from these figures that while for the cases
of Models B and C, the total fatigue damage shows no obvious difference relative to that
at the primary frequency, Model A predicts the total fatigue damage to be much higher
than its component at the primary frequency. At flow velocity V = 0.5 m/s, all three mod-
els predict a similar order of maximum damage due to the cross-flow vibrations, as can
be seen in Figs.6.30(a), (c) and (e). For Model A, the excited third mode in the cross-
flow vibration leads to a smaller fatigue damage at the primary frequency compared to
that of Models B and C for which the cross-flow vibration is dominated by the fourth
mode. The significant contributions from higher harmonics make the maximum of the
total fatigue damage predicted by Model A comparable to that by Models B and C. In the
in-line direction, Model A predicts the highest fatigue damage at the primary frequency,
and Model C predicts the least damage. Regarding the total fatigue damage, the signifi-
cant higher harmonics make the magnitude of total fatigue damage predicted by Model
A one order higher than that predicted by Models B and C. At flow velocity V = 1.5 m/s,
the general trend of differences among the predictions of the three models is similar to
those at V = 0.5 m/s; therefore, this trend is not discussed in detail here. However, it
must be noted that at V = 1.5 m/s, the differences between the total fatigue damage and
its components at the primary frequency seem to be more significant than at V = 0.5
m/s. According to Dahl (2008), the higher harmonic components in the fluid forces are
associated with certain favourable motion trajectories. Therefore, the higher harmon-
ics are naturally expected to be stronger in a travelling wave response, as it allows for
these favourable motion trajectories to persist over substantial lengths of the riser (Van-
diver et al., 2009). Recall that at V = 1.5 m/s, the structural response in the cross-flow



6

112 6. EFFECT OF THE IN-LINE COUPLING

D
am

ag
e/

se
c 

[s
-1

] 

0 0.2 0.4 0.6 0.8 1

0

1

2

3
10-11(a)

D
am

ag
e/

se
c 

[s
-1

] 

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

1.6
10-11(b)

D
am

ag
e/

se
c 

[s
-1

] 

0 0.2 0.4 0.6 0.8 1

0

1

2

3
10-11(c)

D
am

ag
e/

se
c 

[s
-1

] 

0 0.2 0.4 0.6 0.8 1

0

1

2

3
10-12(d)

 p/L [-]

D
am

ag
e/

se
c 

[s
-1

] 

(e)

0 0.2 0.4 0.6 0.8 1

0

1

2

3
10-11

 p/L [-]

D
am

ag
e/

se
c 

[s
-1

] 

(f)

0 0.2 0.4 0.6 0.8 1

0

2

4

6
10-13

Figure 6.30: Predicted fatigue damage rate due to (a,c,e) cross-flow and (b,d,f) in-line deflections at uniform
flow V = 0.5 m/s for (a,b) Model A, (c,d) Model B and (e,f) Model C. Black solid lines represent the total fatigue
damage and grey solid lines represent the fatigue damage estimated from the strain signal after the higher
harmonics are removed.

direction is dominated by travelling waves, while that at V = 0.5 m/s is standing wave
dominated. This may imply that the relation between the higher harmonics and motion
trajectories are well captured by Model A. However, more studies are needed to confirm
this.

The fatigue damage estimated for the sheared flow cases are presented in Fig.6.32
and Fig.6.33. Similar to the uniform flow cases, both Model B and Model C predict that
fatigue damage mainly occurs at the primary frequency. For Model A, although the total
fatigue damage is observed to be different from its component at the primary frequency,
the difference between the two is much less significant than in the uniform flow cases.
This implies that the contribution of higher harmonics in the sheared flow cases may
not be as high as those in the uniform flow. Nevertheless, in sheared flow cases, Model A
still predicts the highest level of fatigue damage among the three in both cross-flow and
in-line directions. While the fatigue damage due to the cross-flow vibrations is approxi-
mately the same according to Models B and C, the fatigue caused by in-line vibration for
Model C is one order of magnitude smaller than in Model B.
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Figure 6.31: Predicted fatigue damage rate due to (a,c,e) cross-flow and (b,d,f) in-line deflections at uniform
flow V = 1.5 m/s for (a,b) Model A, (c,d) Model B and (e,f) Model C. Black solid lines represent the total fatigue
damage and grey solid lines represent the fatigue damage estimated from the strain signal after the higher
harmonics are removed.
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Figure 6.32: Predicted fatigue damage rate due to (a,c,e) cross-flow and (b,d,f) in-line deflections for sheared
flow with maximum velocity V = 1.5 m/s for (a,b) Model A, (c,d) Model B and (e,f) Model C. Black solid lines
represent the total fatigue damage and grey solid lines represent the fatigue damage estimated from the strain
signal after the higher harmonics are removed.
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Figure 6.33: Predicted fatigue damage rate due to (a,c,e) cross-flow and (b,d,f) in-line deflections for sheared
flow with maximum velocity V = 2.5 m/s for (a,b) Model A, (c,d) Model B and (e,f) Model C. Black solid lines
represent the total fatigue damage and grey solid lines represent the fatigue damage estimated from the strain
signal after the higher harmonics are removed.
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6.7. CONCLUSIONS
In this chapter, three different wake oscillator models are used for simulations of the
VIV of flexible cylinders subjected to both uniform and linearly sheared flows. The three
models differ from each other with respect to the inclusion of the in-line coupling term
in the wake oscillator equation and the in-line fluctuating force that is coupled to the lift
force. Model A is the most complete model, and Model B excludes the in-line coupling
term, while Model C excludes both and is the same as the original one proposed by Ogink
and Metrikine (2010).

In the cases of uniform flow, Models B and C predict similar structural responses,
except that the amplitude of in-line vibration predicted by Model C is much smaller than
that by Model B. Model A, on the other hand, predicted that the structure would vibrate
in a different pattern. Especially at higher flow velocities, according to Models B and
C, the structural response in the cross-flow direction is dominated by a standing wave
that, according to Model A, has a tendency to vibrate in the form of a travelling wave.
Apart from the different response patterns, Model A was found to predict the highest
magnitude of both cross-flow and in-line vibrations among the three models.

For sheared flow cases, no obvious difference was observed regarding the response
pattern. All three models predicted the structural response to be dominated by the trav-
elling wave that propagates from a high-velocity to a low-velocity region. Similar to the
uniform flow cases, Model A predicted the most significant structural response in both
cross-flow and in-line directions.

To further investigate the fundamental mechanism that leads to the differences in
the predictions by the three models, the hydrodynamic forces and energy transfer be-
tween the fluid and structure have been investigated. It has been demonstrated that,
compared to Models B and C, Model A predicted the highest level of drag amplification.
It also predicted larger fluctuating in-line and cross-flow forces. The energy transfer be-
tween the fluid and structure was analysed based on the fluid force that is in phase with
the velocity of the structural motion. For sheared flow cases, it was found that for all
three models, the energy transfer between the fluid and structure mainly depends on
the reduced velocity. Model A predicted that the power-in region would correspond to
a wider range of reduced velocities compared to Models B and C. For the uniform flow,
it has been revealed that for Models B and C, the direction of the energy flow between
the fluid and structure is primarily dependent on the amplitude of the cross-flow vibra-
tion. In principal, for Models B and C, a positive energy transfer was identified at loca-
tions corresponding to small cross-flow vibrations, while a negative energy transfer oc-
curred when the cross-flow vibration exceeded certain values. In contrast, for Model A,
no concrete relations were observed between the energy transfer and the cross-flow mo-
tion. The large cross-flow motion does not necessarily correspond to the negative energy
transfer, according to Model A; this is consistent with the experimental observations. By
further comparing the energy transfer with the phase difference between the cross-flow
and in-line motions, a trend was found for Model A: the positive energy transfer was
mostly associated with the counter-clockwise motion trajectory. The dependence of the
energy transfer on both the amplitude of structural motion and its trajectory reflects the
superiority of Model A over the other two models as a result of an improvement to in-line
coupling.
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Finally, the fatigue damage predicted by the three models has been investigated. It
has been demonstrated that in the cases of uniform flow, Model A predicted highly sig-
nificant contributions to the fatigue from higher harmonics, which resulted in a much
higher rate of fatigue damage compared to the rates predicted by Models B and C. In the
cases of sheared flow, although Model A’s predicted fatigue that is caused by higher har-
monics was not as significant as that in the uniform flow cases, Model A still predicted
the highest level of fatigue damage among the three. This finding suggests that for a VIV
model that does not consider the effect of coupling of cross-flow and in-line motions
on the wake dynamics, the fatigue damage can be significantly underestimated, and the
results therefore need to be taken carefully.
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Vortex-induced vibration (VIV) is a well-known phenomenon for civil and offshore struc-
tures. The effects of such vibrations, such as fatigue damage and collision between ad-
jacent structures, make the accurate prediction of vibrations important for the design
of a structure. Due to the intrinsic complexity of the problem and the inadequate un-
derstanding of the underlying mechanism, the engineering prediction models of VIV
currently mainly rely on the force-decomposition method. However, the fundamental
assumption of this method, namely applying hydrodynamic forces measured on har-
monically oscillating rigid cylinders to the prediction of the VIV of flexible cylinders that
normally contain several frequency components, has restricted the applicability of the
method to limited cases. Moreover, if one wished to extend the force-decomposition
method for the modelling of coupled cross-flow and in-line VIV, then a hydrodynamic
force database that includes both the cross-flow and in-line motions is required. Build-
ing such a database is a serious challenge, since many governing parameters are in-
volved. The aforementioned limitations make the force-decomposition method less
prospective for further development. Therefore, alternative models are needed to meet
increasing demands for the more accurate prediction of VIV under more complicated
conditions. The wake oscillator model overcomes the main limitations of the force-
decomposition method to some extent, and it is one of the promising models that has
gained popularity in recent years.

Although the concept of the wake oscillator was first proposed over half a century ago
and has been developed much since then, the existing wake oscillator models still have
some limitations, which have restricted their applications. One of the main limitations
of the current wake oscillator models is that they cannot reproduce the hydrodynamic
forces measured in the forced vibration experiments. This, in the author’s opinion, is the
reason for the wake oscillator model to be less preferable to the industry than the force-
decomposition method, as the latter directly applies the measured, in the forced vibra-
tion experiments, hydrodynamic force in the prediction of VIV. Another main limitation
of the existing wake oscillator models is that they cannot predict the coupled cross-flow
and in-line VIV properly. The common approach of introducing a second wake oscillator
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equation that is coupled solely to the in-line motion for the description of the fluctuat-
ing drag force is physically not rigorous, as the lift and drag forces have the same origin
and are interdependent. The inadequacy of the wake oscillator models in existence is
emphasised by the fact that none of them is able to capture the distinct characteristic of
coupled cross-flow and in-line VIV, namely the appearance of the super-upper branch
as the mass ratio of the system decreases, without changing the empirical and tuning
parameters.

The main objective of this work is to improve the wake oscillator model for the bet-
ter prediction of VIV. Attempts have been made in this thesis to improve the wake os-
cillator model in two aspects: (a) to reproduce the free and forced cross-flow vibration
experiments and (b) to develop a single wake oscillator equation that is coupled to both
the cross-flow and in-line motions for the prediction of coupled cross-flow and in-line
VIV. To this end, the existing wake oscillator model proposed by Ogink and Metrikine
(2010) has been reviewed, and the influence of the drag force model has been investi-
gated (Chapter 2). Nonlinear coupling terms have been introduced to better reproduce
the forced cross-flow vibration experiments (Chapter 3). A wake oscillator model that
is coupled to both cross-flow and in-line motions has been developed and validated
against free vibration experiments related to the coupled cross-flow and in-line VIV of
an elastically supported rigid cylinder (Chapter 4). The new wake oscillator model has
been applied in the simulation of the VIV of flexible cylinders, and the importance of
the in-line coupling has been highlighted in comparison to the simulation results with
the model without in-line coupling (Chapters 5 and 6). In this last chapter, the most
important conclusions of this work are summarised.

A review of the wake oscillator model proposed by Ogink and Metrikine (2010) in
Chapter 2 has emphasised the fact that the reproduction of the forced vibration mea-
surements requires the appropriate modelling of both lift (a force that is perpendicular
to the relative flow velocity) and drag (a force that is parallel to the relative flow velocity)
forces. A deficient drag force model may make it difficult, if not impossible, to formu-
late the lift force, as the lift needs to compensate for the errors introduced by the drag
force. Three main discussable assumptions regarding the drag force model in Ogink and
Metrikine (2010) have been identified, namely making a quasi-steady assumption, ig-
noring the oscillatory components and neglecting the inertia force in the direction of
the drag force. With regard to the first two assumptions, the characteristics of the dy-
namics of the oscillatory lift force—at the frequency of cylinder oscillation—that satisfy
the forced vibration experimental measurements are analysed based on three different
drag force models. The first model is the one proposed by Ogink and Metrikine (2010);
it assumes that the instantaneous drag force coefficient is constant and keeps the mean
steady value measured on the fixed cylinder. In the second model, the instantaneous
drag force coefficient is still assumed to be constant; however, its value varies as the fre-
quency or amplitude of cylinder motion changes. In the third model, in addition to the
constant drag force, an oscillatory part coupled with the lift force is introduced, and the
coupling relation keeps the same form as that identified from a fixed cylinder. It has
been demonstrated that the oscillatory lift forces determined from the three drag force
models are similar, which suggests that the first drag force model is at least not more de-
ficient than the other two. The characteristic of the dynamics of the identified lift force
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exhibits an obvious resonance pattern at small amplitudes of cylinder oscillation, while
it is contradictory to the resonance pattern at large amplitudes. The contradiction may
be a result of neglecting the inertia force in the direction of the drag force or simply due
to the nonlinearity.

As discussed in Chapter 2, since the drag force models do not have a significant influ-
ence on the reproduction of the forced vibration experiments, the first drag force model
is applied in Chapter 3, and the possibility of improving the reproduction of the forced
vibration experiments by introducing extra nonlinearity in the wake oscillator equation
is investigated. The nonlinearity has been introduced through the coupling between
the wake oscillator equation and the cylinder motion. As a preliminary test, a set of
nonlinear coupling terms in the form of multiplications of displacement, velocity and
acceleration of the cylinder have been introduced. The model with constant coupling
coefficients has been shown to be able to quantitatively reproduce the added damping
measured in the forced vibration experiments over most of the range of frequencies and
amplitudes that are of interest; however, that model fails to capture the negative added
mass. The importance of the negative added mass has been reflected in the simulation
of free vibration experiments where the model was shown to underestimate the lock-in
range as well as the frequency of the cylinder oscillation for the system with a small mass
ratio. To overcome this discrepancy, the model has been further enhanced by making
the nonlinear coupling coefficient frequency-dependent; this is achieved in the time do-
main by means of convolution integrals. A single set of frequency-dependent complex-
valued functions, which are the Laplace transforms of corresponding convolution ker-
nels, that reproduces the forced vibration experiments fairly well at different amplitudes
of vibration has been identified over a limited frequency range. Finding such a set of
frequency-dependent complex-valued functions has been shown to be impossible for
linear coupling (Ogink and Metrikine, 2010). However, the author failed to extend these
functional dependencies to the infinite frequency domain that corresponds to a causal
decaying signal in the time domain using a complex curve fitting method. The underly-
ing reason is not clear yet and requires further study.

In Chapter 4, a wake oscillator model that is coupled to both cross-flow and in-line
motions has been proposed. In addition to conventional coupling to the acceleration of
the cross-flow motion, coupling with the in-line motion has been introduced in the form
of ẍq . This in-line coupling term is inspired by the experimental observation as well as
the heuristic inference from the dynamics of a rigid pendulum. An instability study has
revealed that the term ẍq results in an unbounded unstable region when subjected to
a pure in-line forced vibration which is against experimental observation. Therefore,
instead of ẍq , a more sophisticated in-line coupling term ẍ

1+ẍ2 q , which has the same
qualitative dynamic effect, has been adopted. The new in-line coupling term has been
shown to be able to constrain the unstable region to the same frequency range of cylin-
der oscillation as that observed in the experiments. The new wake oscillator model has
been used to simulate two free vibration experiments of elastically supported rigid cylin-
ders and shown to be able to capture the lock-in corresponding to the in-line vibration
around Vn = 2.5 in addition to the conventional lock-in at Vn = 5. Most importantly,
the new model has been shown to be able to predict the appearance of the super-upper
branch as the mass ratio decreases without changing any tuning parameters. The suc-
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cessful reproduction of this distinct characteristic of the coupled cross-flow and in-line
VIV indicates the superiority of the new model over others. The influence of the mass
and damping ratio on the peak amplitude of the coupled cross-flow and in-line VIV of
elastically supported rigid cylinders has also been analysed based on the new model,
and the results are in good agreement with the experimental data.

Chapter 5 deals with the application of the new wake oscillator model presented in
Chapter 4 to the modelling of the coupled cross-flow and in-line VIV of flexible cylin-
ders. The cylinder is modelled as an extensible nonlinear Euler-Bernoulli beam, and the
wake oscillators are uniformly attached to it. The finite element method has been ap-
plied to solve the dynamics of the coupled system, and the experiments of the VIV of a
top-tensioned straight riser subjected to the step flow have been taken for the valida-
tion of the model. The model has been shown to be able to capture most features of the
VIV of flexible cylinders, and good agreement between the simulation results and the ex-
perimental measurements has been observed with regard to both cross-flow and in-line
vibration amplitude, frequency and excited mode, as well as the mean in-line deflec-
tion due to the amplified in-line force. While it is conventionally expected that the VIV
of flexible cylinders subjected to a uniform flow is dominated by a single frequency, a
multi-frequency response has been observed in the simulation results over the range of
flow velocities through which the transition of the dominant mode of vibration occurs.
In such cases, the multiple frequency components in the cross-flow response instanta-
neously coexist, while those of the in-line response are the result of a single frequency
that drifts from one predominant frequency to another. When the multi-frequency re-
sponse takes place, the in-line response contains significant components at low frequen-
cies, caused by the slow variation of the in-line force due to the modulation of the cross-
flow displacements.

To illustrate the importance of in-line coupling and its influence on the prediction
of VIV, the simulation results of the coupled cross-flow and in-line VIV of flexible cylin-
ders subjected to both uniform and linearly sheared flows – obtained with three different
models – have been studied in Chapter 6. The three models differ from each other with
respect to the inclusion of the in-line coupling term in the wake oscillator equation and
the in-line fluctuating force that is coupled to the lift force. Model A is the most com-
plete model (Chapter 5), and Model B excludes the in-line coupling term, while Model
C excludes both and is the same as the original one proposed by Ogink and Metrikine
(2010). It has been shown that in the cases of uniform flow, Models B and C predict
similar structural responses, while Model A predicts a different response pattern. Es-
pecially at a high flow velocity, according to Models B and C, the structural response in
the cross-flow direction is dominated by a standing wave that, according to Model A, is
travelling-wave-predominant. For the sheared flow, all three models predict the struc-
tural response to be dominated by a travelling wave that is oriented from a high-velocity
to a low-velocity region. For both uniform and sheared flow cases, Model A predicts the
highest response amplitude in both cross-flow and in-line directions among the three
models.

For the uniform flow cases, it has been shown that the energy transfer between the
fluid and structure according to Models B and C is primarily determined by the ampli-
tude of cross-flow vibration. In principal, for Models B and C, a positive energy transfer
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has been identified at locations corresponding to small cross-flow vibrations, while a
negative energy transfer occurs when the amplitude of cross-flow vibration exceeds cer-
tain values. Such a dependency is not observed in the results of Model A. Instead, it
seems that for Model A, the positive energy transfer is mostly associated with a counter-
clockwise motion trajectory. For the sheared flow cases, the energy transfer is found to
mainly depend on the reduced velocity, and Model A predicts the power-in region corre-
sponding to a wider range of reduced velocities compared to Models B and C.

The fatigue damage predicted by the three models has also been studied. It has been
shown that in the cases of uniform flow, Model A predicts significant contributions to the
fatigue damage from higher harmonics, which results in a much higher rate of fatigue
damage compared to the rates predicted by Models B and C. The contributions from
higher harmonics are less significant for the sheared flow; nevertheless, model A still
predicts the highest rate of fatigue damage among the three models.

To conclude, one can say that the new wake oscillator model presented in this the-
sis outperforms the existing wake oscillator models. The main superior aspects of the
proposed model are its ability to predict the super-upper branch and its physical consis-
tency with the fact that the hydrodynamic forcing in both in-line and cross-flow direc-
tions is a result of one and the same fluid motion, which is described in the model by a
single oscillator equation.
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A
CAPTURING THE NEGATIVE ADDED

MASS BY INTRODUCING AN EXTRA

RESTORING FORCE

The added mass plays an important role in VIV, and the negative added mass observed
in the forced vibration experiments is the main reason for the wider lock-in range and
higher lock-in frequency for low mass ratio systems compared to high mass ratio sys-
tems. It has been shown in Section 3.2 that the added mass is well reproduced at a high
frequency of cylinder oscillation, while it does not seem to be possible to capture the
negative added mass at low frequencies of cylinder oscillation. It was found that at a low
frequency of cylinder oscillation, even though the portion of the added mass contributed
by the wake oscillator is negative, the addition of the potential added mass makes the
total positive. It seems the assumption of the potential added mass coefficient Ca ’s con-
stant value of 1 is only applicable at a high frequency of cylinder oscillation, while a
smaller or even negative value should be taken when the cylinder oscillates at a low fre-
quency. To achieve this goal, the cross-flow hydrodynamic force FAY in Eq.(2.2) is refor-
mulated as

FAY =−ma0
d 2Y

d t 2 −ma1ω
2
s Y (A.1)

in which the first term is still the inertia force and added mass ma0 =Ca0πρLD2/4, while
the second term is a restoring force and ma1 =Ca1πρLD2/4. Physically, adding a restor-
ing force in the formulation of a hydrodynamic force seems to be irrational, since for
an immersed cylinder, the fluid forces acting on it should not be dependent on the dis-
placement. However, this addition does improve the model’s performance.

With the new definition of cross-flow inertia force FAY , as given by Eq.(A.1), the
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Figure A.1: A comparison of the nonlinear coupling wake oscillator model with the additional restoring force
(dashed lines) and the forced vibration measurements (solid lines) for the force coefficient (a) in phase with
acceleration Cy a and (b) in phase with velocity Cy v .

equivalent potential added mass coefficient of the system becomes

Ca = FAY

1
4ρπLD2 d 2Y

d t 2

=Ca0 −Ca1ω
2
s

Y
d 2Y
d t 2

. (A.2)

The dimensionless form of above equation is given as

Ca =Ca0 +Ca1
y

ÿ
. (A.3)

By substituting y = y0 sin(Ωτ) into Eq. (A.3), one obtains

Ca =Ca0 − Ca1

Ω2 . (A.4)

Eq.(A.4) demonstrates that the addition of the restoring force makes the added mass
coefficient Ca frequency-dependent, and its value decreases with a decreasing frequency
of cylinder oscillation. WithΩ= 1/St/Vr , Eq.(A.4) becomes

Ca =Ca0 −Ca1St2V 2
r . (A.5)

In still water, when the flow velocity V equals 0, the reduced velocity Vr = 2πV /(ωD) = 0,
and Eq.(A.5) should conform to the potential theory; therefore, the value for Ca0 should
be 1. Regarding the value of Ca1, here Ca1 = 0.4 is used to capture the negative values
of Cy a at high reduced velocities. The forced vibration simulation results of Cy a and Cy v

with Ca0 = 1 and Ca1 = 0.4 are plotted in Fig.A.1 using the same tuning parameters as
those given in Eq.(3.5). It can be seen that with this new term, the model captures the
feature of negative values of Cy a at Vc > 6. According to the measurements, the values of
Cy a decrease rapidly around Vc = 6 with increasing reduced velocity, reaching minimum
negative values around Vc = 7 and then increasing gradually again, converging to a value
slightly smaller than zero. However, the results from the model indicate no minimum
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Figure A.2: A comparison of the nonlinear coupling wake oscillator model with the additional restoring force
and the free vibration measurements for: (a) m∗ = 2.4,m∗ζ= 0.014; (b)m∗ = 10.3,m∗ζ= 0.017; (c) m∗ = 20.6,
m∗ζ= 0.019.

value around Vc = 7, and the values keep decreasing, reaching values smaller than those
observed in the measurements.

With the new added term in the inertia force, the non-dimensional form of the cylin-
der’s equation of motion in Eq. (2.17) now becomes

ÿ +2ζΩn ẏ +Ω2
n y = 1

π(m∗+Ca0)

1

2π3St2 CV Y −Ca1
y

(m∗+Ca0)
. (A.6)

Solving Eq. (A.6), (2.18) and (3.2), the free vibration with m∗ = 2.4 is simulated, and
results are shown in Fig.A.2

Form Fig.A.2 it can be seen that the free vibration of the system with a small mass
ratio is properly modeled with respect to the value of frequency and range of lock-in.





B
SIMILARITY BETWEEN THE WAKE

OSCILLATOR AND A RIGID

PENDULUM

Consider a rigid pendulum with mass m f that is attached to a foundation with mass ms

that is elastically supported in X and Y directions; see Fig.B.1. The governing equations
for the small vibrations of the system can be derived using the Lagrangian formalism,
and they are given as

(
ms +m f

) d 2X

d t 2 +ks X = m f L

(
φ

d 2φ

d t 2 +
(

dφ

d t

)2)
(B.1)

(
ms +m f

) d 2Y

d t 2 +ks Y =−m f L
d 2φ

d t 2 (B.2)

m f L2 d 2φ

d t 2 +m f g Lφ−m f L
d 2X

d t 2 φ=−m f L
d 2Y

d t 2 . (B.3)

Using the following relationship:

τ= tωn , Ω= ωφ

ωn
, x = X

D
, y = Y

D
(B.4)

where ωn =
√

ks /
(
ms +m f

)
and ωφ = √

g /L, the dimensionless form of the equations

of the motion is obtained as
ẍ +x = M

(
φ̈φ+ φ̇2) (B.5)

ÿ + y =−Mφ̈ (B.6)

φ̈+Ω2φ− ẍφ=−ÿ (B.7)

where M = m f L(
ms+m f

)
D

.
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s
s

s

f

Figure B.1: Pendulum with moving foundation

If only the motion of the foundation in the Y direction is considered, corresponding
to the VIV that is constrained to the cross-flow direction, then the equations of motion
become

ÿ + y =−Mφ̈ (B.8)

φ̈+Ω2φ=−ÿ . (B.9)

The above two equations are symmetrically coupled through acceleration; therefore,
they are stable. However, if the sign of the pendulum mass is artificially changed from
positive to negative, i.e. from m f to −m f , then Eqs.(??) and (B.8) become

ÿ + y = Mφ̈ (B.10)

φ̈+Ω2φ=−ÿ . (B.11)

If the above equations are compared to the following simplified form of the wake oscil-
lator equation given by de Langre (2006)

ÿ + y = M̂Ω2q (B.12)

q̈ +Ω2q = Aÿ (B.13)

then the similarity between the two is obvious. Both systems predict a coupled mode
flutter, which, according to de Langre (2006), is the possible fundamental mechanism of
VIV.

The similarity between the wake oscillator model and a rigid pendulum with a neg-
ative mass for the cross-flow vibration, as described above, provides a possible way in
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which to derive the form of coupling between the wake oscillator equation and the in-
line motion. By changing m f to −m f , the equations of the motion of the system in the X
direction are given as

ẍ +x =−M
(
φ̈φ+ φ̇2) (B.14)

φ̈+Ω2φ− ẍφ= 0. (B.15)

From the above equations, it can be seen that the coupling between the oscillator equa-
tion and the in-line motion can be most likely expressed in the form −ẍq , and the force
in the in-line direction is in the form −(

q̈q + q̇2
)
. For the sake of simplification, as well as

for easy implementation, the form of in-line force used in this thesis is q2, which has the
same phase as −q̈q , while the term q̇2 is neglected. Further research is needed to deter-
mine whether using −(

q̈q + q̇2
)

instead of q2 will improve the results. For the cross-flow
vibration, the same form as that given by Eqs.(B.12) and (B.13) is still followed. Additional
studies are also required to find out whether Eqs.(B.10) and (B.11) are more appropriate
for the modelling of cross-flow VIV.





C
FINITE ELEMENT FORMULATION

AND TIME INTEGRATION

C.1. DERIVATION OF THE STIFFNESS MATRIX OF THE BEAM EL-
EMENT

Substituting the variation of ε0 and K , given by Eq. (5.7), and (5.8) into Eq. (5.4) yields

δWS =
∫ L

0

(
E A

|r,p |−1

|r,p |
rT

,pδr,p −2E I
|r,p × r,pp |2

|r,p |6
rT

,pδr,p

+E I
1

|r,p |4
(
r,p × r,pp

)T (
δr,p × r,pp + r,p ×δr,pp

))
d p.

(C.1)

In three dimensions, Binet-Cauchy identity asserts that, for four vectors a, b, c and d, the
following relation holds

(a×b)T (c×d) = (
aT c

)(
bT d

)− (
aT d

)(
bT c

)
. (C.2)

Applying Binet-Cauchy identity to Eq. (C.1), one obtains

δWS =
∫ L

0

(
E A

(
1− 1

|r,p |
)

rT
,pδr,p +E I

1

|r,p |2
rT

,ppδr,pp

−E I
1

|r,p |4
(
|r,pp |2rT

,pδr,p + rT
,p r,pp

(
rT

,ppδr,p + rT
,pδr,pp

))
+E I

2

|r,p |6
(
rT

,p r,pp

)2
rT

,pδr,p

)
d p.

(C.3)
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By substituting r = Se into above equation, one obtains the expression of δWS in the
form of element coordinates, and it reads

δWS =uT
∫ L

0

(
E Iγ2ST

,pp S,pp −E Iγ4
(
ST

,p S,p

)
uuT

(
ST

,pp S,pp

)T

−E Iγ4
((

ST
,pp S,p

)T +ST
,pp S,p

)
uuT

(
ST

,pp S,p

)
+2E Iγ6

(
uT ST

,p S,pp u
)2

ST
,p S,p +E A

(
1−γ)

ST
,p S,p

)T

d pδu.

(C.4)

where γ= 1
|r,p | . To make the element computationally more efficient for the cases where

the axial deformation of the beam is very small, the γ is approximated as

γn ≈ n +1−n|r,p | = n +1−n
√(

S,p u
)T (

S,p u
)
. (C.5)

From Eq. (C.4), the stiffness matrix Ke
s of the beam element is derived as

Ke
s =

∫ L

0

(
E Iγ2ST

,pp S,pp −E Iγ4
(
ST

,p S,p

)
uuT

(
ST

,pp S,pp

)T

−E Iγ4
((

ST
,pp S,p

)T +ST
,pp S,p

)
uuT

(
ST

,pp S,p

)
+2E Iγ6

(
uT ST

,p S,pp u
)2

ST
,p S,p +E A

(
1−γ)

ST
,p S,p

)
d p.

(C.6)

To make the expression of the stiffness matrix brief, we denote

Q1 = ST
,pp S,pp , Q2 = ST

,pp S,p and Q3 = ST
,p S,p . (C.7)

Then, the expression of the stiffness matrix of the beam element becomes

Ke
s =

∫ L

0

(
E Iγ2Q1 −E Iγ4Q3uuT Q1

−E Iγ4 (
QT

2 +Q2
)

uuT Q2

+2E Iγ6 (
uT QT

2 u
)2

Q3 +E A
(
1−γ)

Q3

)
d p.

(C.8)

From Eq.(C.8), it can be seen that it would not be possible to factorise the element co-
ordinates vector u out of the integrals because of the presence of γ. Therefore, here, the
integrals in Eq.(C.8) are approximated using a Gaussian quadrature with five integration
points.

The last term of Eq.(C.8), namely E A
(
1−γ)

Q3, can be replaced by
(
E A

(
1−γ)+

γ (Pe Ae −Pi Ai )
)

Q3 if the effective tension is taken into account. Here, Pe and Pi are the
external and internal fluid pressures, which, in offshore applications, usually depend on
the depth of the water and are therefore functions of the position vector. The above-
mentioned term will be treated separately in different cases with a specific definition of
the water depth.
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C.2. NEWMARK-BETA TIME INTEGRATION SCHEME AND JACO-
BIAN MATRIX

To solve the nonlinear equations of motion described by Eqs.(5.38) and (5.39), a step-
by-step time history analysis must be employed. The Newmark-β method is one of the
most widely used numerical integration approaches and will be used in this thesis.

For a dynamic system with a degree of freedom defined as e, the finite difference
approximations for the time interval ∆t = ti+1 − ti are

ei+1 ≈ ei +∆t ėi +∆t 2
[(

1

2
−β

)
ëi +βëi+1

]
(C.9)

and
ėi+1 ≈ ėi +∆t

[(
1−γ)

ëi +γëi+1
]

. (C.10)

The above two equations can be rewritten as

ëi+1 = 1

β∆t 2 (ei+1 −ei )− 1

β∆t
ėi +

(
1− 1

2β

)
ëi (C.11)

and

ėi+1 = γ

β∆t
(ei+1 −ei )+

(
1− γ

β

)
ėi +∆t

(
1− γ

2β

)
ëi . (C.12)

By substituting Eqs.(C.11) and (C.12) into the equilibrium of Eqs.(5.38) and (5.39) at time
ti+1, one obtains

Me
s,i+1 [a1 (ui+1 −ui )+a2u̇i +a3üi ]+Ce

s,i+1 [b1 (ui+1 −ui )+b2u̇i +b3üi ]+Ke
s,i+1ui+1 = Fe

i+1
(C.13)

Me
q,i+1

[
a1

(
qi+1 −qi

)+a2q̇i +a3q̈i

]+Ce
q,i+1

[
b1

(
qi+1 −qi

)+b2q̇i +b3q̈i

]+Ke
q,i+1qi+1 = Re

i+1
(C.14)

where

a1 = 1

β∆t 2

a2 =− 1

β∆t

a3 = 1− 1

2β

b1 = γ

β∆t

b2 = 1− γ

β

b3 =∆t

(
1− γ

2β

)
.

(C.15)

With the response of the system known at time ti , the displacement at time ti+1 can
be obtained by solving algebraic equations Eq.(C.13) and (C.14). However, Eqs.(C.13)
and (C.14) are nonlinear, since both the damping and stiffness matrix and the nodal
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forces are response-dependent, and they need to be solved through iteration. Here, the
Newton-Raphson method is applied, and the tangential stiffness (Jacobian matrix) of
the system needs to be determined first.

The jacobian matrix of Eqs.(C.13) and (C.14) can be obtained by differentiating them
in terms of the element coordinates ui+1 and Qi+1. For the sake of simplicity, the sub-
script i +1 is not used in the following derivations. Differentiating Eq.(C.13) with respect
to u gives

Je
s,u = a1Me

s +b1
∂
(
Ce

s u
)

∂u
+ ∂

(
Ke

s u
)

∂u
− ∂Fe

∂u
. (C.16)

Differentiating Eq. (C.13) respect to q yields

Je
s,q =−∂Fe

∂q
. (C.17)

Similarly, differentiating Eq. (C.14) respect to u and q yields

Je
q,u =

∂
(
Ke

q q
)

∂u
− ∂Re

∂u
(C.18)

Je
q,q = a1Me

q +b1

∂
(
Ce

q q̇
)

∂q
+Ke

q . (C.19)

Rayleigh damping has been applied to the structure, and from Eq. (5.27) it can be derived
that

∂
(
Ce

s u
)

∂u
=αMe

s +βJe,eq
s . (C.20)

With the expression of beam stiffness matrix given by Eq. (C.8), it can be derived that

∂
(
Ke

s u
)

∂u
=

∫ L

0
E I

(
γ2Q1 −2γ4Q1uuT Q3

−γ4 ((
uT Q1u

)
Q3 +Q3uuT (

Q1 +QT
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))+4γ6Q3uuT Q1uuT Q3
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uT Q2u
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2
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2
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uuT (
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Q2 +QT

2
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uuT Q2uuT Q3

+2γ6
(
2Q3uuT QT

2 uuT (
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2
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uT QT

2 u
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Q3
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uT QT
2 u
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Q3uuT Q3
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+E A
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1−γ)

Q3 +γ3Q3uuT Q3
)

d p.
(C.21)

As to the external nodal hydrodynamic forces Fe , its derivative respect to u reads

∂Fe

∂u
=1

2
ρD

CL0

2
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Sq q
)(

2DV LUT
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∂UN
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N X

|UN X |
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∂UN X
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d p

(C.22)
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where
∂UN

∂u
= b1

[
teq (

teq )T − I
]

S (C.23)

∂DV L

∂u
= b1

[
I

|teq ×UN | −
(
teq ×UN

)(
teq ×UN

)T

|teq ×UN |3
][

teq]
×

[
teq (

teq )T − I
]

S (C.24)

∂UN X

∂u
=−b1neq (

neq )T S. (C.25)

In Eq. (C.24), the operator []× denotes the skew-symmetric matrix, which is normally
used to represent the cross products as matrix multiplications. The derivative of Fe with
respect to q reads

∂Fe

∂q
=1

2
ρD

CL0

2

∫ L

0
ST |UN |2DV LSq d p + 1

2
ρDα

C 2
L0

4

∫ L

0
2
(
Sq q

) |UN X |ST UN X Sq d p.

(C.26)

From Eq. (5.32), it can be derived that

∂Ke
q q

∂u
= a1

κ

D

∫ L

0
ST

q Sq q
(
neq )T Sd p. (C.27)

Similarly, from Eqs.(5.37) and (5.31), the following is obtained.

∂Re

∂u
= A

D

∫ L

0
ST

q

(
beq )

Sd p (C.28)

∂Ce
q q̇

∂q
= 4πSt/D

∫ L

0
|Veq

N |(Sq q
)(

Sq q̇
)

ST
q Sq d p +b1Ce

q . (C.29)

C.3. VALIDATION OF THE FINITE ELEMENT MODEL
In this section, two numerical examples that are frequently used in the literature on non-
linear beams are used to demonstrate the performance of the proposed finite element
model. The first example is of the large deformation of a cantilever beam subjected to a
tip load. The second example pertains to the dynamics of a 3D flexible pendulum.

C.3.1. STATIC EXAMPLE, CANTILEVER BEAM
The static problem of the large deformation of a cantilever beam subjected to a tip load,
as illustrated in Fig.C.1, has already been used in literature for comparison, and the it-
erative solutions by means of the extensible elastic theory are given in Gerstmayr and
Irschik (2008).

The parameters of the beam consist of length L = 2 m, the equivalent bending stiff-
ness E I = 1.725×106 N/m2 and the equivalent axial stiffness E A = 2.07×109 N. The tip
load has been chosen according to F0 = 3E I /L2, which leads to a large deformation. Dis-
placements of the tip in X and Y directions, obtained with different numbers of elements,
are presented in Table C.1 wherein they are compared with the classical extensible elastic
solution given in Gerstmayr and Irschik (2008). The proposed model, with 128 elements,
already generates a result that matches the extensible elastic solution up to six digits.
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Figure C.1: Cantilever beam subjected to tip load.

Table C.1: Axial and transverse displacement of the tip of the cantilever beam using the proposed beam ele-
ment model and comparison to the analytical solution of the extensible elastica

Elements ux uy

4 0.509715120993764 1.209144995093078
8 0.508604452895885 1.207351964767034
16 0.508541687577717 1.207246521801250
32 0.508537806636057 1.207240038638574
64 0.508537557824162 1.207239635075415
128 0.508537541233588 1.207239609883485
Ext. elastica 0.508537304325877 1.207239854549824
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Figure C.2: Dynamic response of a large deformation pendulum. (a) Plot of the Z versus X co-ordinate of the
mid-point of the three-dimensional pendulum; (b) Y-displacement of the mid-point of the three-dimensional
pendulum as function of time. Simulation results with the proposed model are represented by dashed lines
and reference results are represented by solid lines.

C.3.2. DYNAMIC EXAMPLE, LARGE DEFORMATION PENDULUM
The goal of the second example is to evaluate the performance of the proposed model
in the case of 3D motion with a large rotation. The initially straight pendulum that is
parallel to the X-Z plane has an initial angular velocity of 4 rad/s about the Y axis. Un-
der the effect of gravity, the flexible pendulum will undergo a large rotation as well as
deformation. The parameters of the pendulum consist of length L = 1 m, the equiva-
lent bending stiffness E I = 8.3×10−5 N/m2, equivalent axial stiffness E A = 40 N and the
mass m = 0.008 kg/m. With only four elements, the implicit Newmark-beta method as
described in C.2 is used to calculate the response of the pendulum with time steps of
0.1 ms. Fig.C.2(a) illustrates the position of the tip projected in X-Z plane, and Fig.C.2(b)
shows the Y position of the middle point of the pendulum. A comparison are made be-
tween the solution of the proposed model and the cable element in Gerstmayr and Sha-
bana (2006). Both figures indicate that the proposed model performs well in the case of
3D motion with a large rotation.





D
THREE DIFFERENT HYDRODYNAMIC

FORCE MODELS

In this section, the equations for the three models compared in Chapter 6 are presented.

Model A

q̈ +ε(q2 −1)q̇ +q −κ ẍ

1+ ẍ2 q = Aÿ (D.1)

CV X =(
CDM (1−2πSt ẋ)+2πSt ẏCV L

)√
(1−2πSt ẋ)2 + (

2πSt ẏ
)2

+αC 2
V L (1−2πSt ẋ) |1−2πSt ẋ|

(D.2)

CV Y = (−2πSt ẏCDM +CV L (1−2πSt ẋ)
)√

(1−2πSt ẋ)2 + (
2πSt ẏ

)2 (D.3)

where CV L = q
2 CL0.

Model B

q̈ +ε(q2 −1)q̇ +q = Aÿ (D.4)

CV X =(
CDM (1−2πSt ẋ)+2πSt ẏCV L

)√
(1−2πSt ẋ)2 + (

2πSt ẏ
)2

+αC 2
V L (1−2πSt ẋ) |1−2πSt ẋ|

(D.5)

CV Y = (−2πSt ẏCDM +CV L (1−2πSt ẋ)
)√

(1−2πSt ẋ)2 + (
2πSt ẏ

)2 (D.6)
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where CV L = q
2 CL0.

Model C

q̈ +ε(q2 −1)q̇ +q = Aÿ (D.7)

CV X =(
CDM (1−2πSt ẋ)+2πSt ẏCV L

)√
(1−2πSt ẋ)2 + (

2πSt ẏ
)2 (D.8)

CV Y = (−2πSt ẏCDM +CV L (1−2πSt ẋ)
)√

(1−2πSt ẋ)2 + (
2πSt ẏ

)2 (D.9)

where CV L = q
2 CL0.

The three models differ from each other with respect to the inclusion of the in-line
coupling term, namely κ ẍ

1+ẍ2 q , in the wake oscillator equation and the in-line fluctuat-

ing force, namely αC 2
V L (1−2πSt ẋ) |1−2πSt ẋ|, in the definition of CV X .
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