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CSDN: Cross-Modal Shape-Transfer
Dual-Refinement Network for Point

Cloud Completion
Zhe Zhu , Liangliang Nan , Haoran Xie , Senior Member, IEEE, Honghua Chen , Jun Wang ,

Mingqiang Wei , Senior Member, IEEE, and Jing Qin

Abstract—How will you repair a physical object with some miss-
ings? You may imagine its original shape from previously captured
images, recover its overall (global) but coarse shape first, and then
refine its local details. We are motivated to imitate the physical
repair procedure to address point cloud completion. To this end,
we propose a cross-modal shape-transfer dual-refinement network
(termed CSDN), a coarse-to-fine paradigm with images of full-cycle
participation, for quality point cloud completion. CSDN mainly
consists of “shape fusion” and “dual-refinement” modules to tackle
the cross-modal challenge. The first module transfers the intrinsic
shape characteristics from single images to guide the geometry gen-
eration of the missing regions of point clouds, in which we propose
IPAdaIN to embed the global features of both the image and the
partial point cloud into completion. The second module refines the
coarse output by adjusting the positions of the generated points,
where the local refinement unit exploits the geometric relation
between the novel and the input points by graph convolution, and
the global constraint unit utilizes the input image to fine-tune the
generated offset. Different from most existing approaches, CSDN
not only explores the complementary information from images but
also effectively exploits cross-modal data in the whole coarse-to-fine
completion procedure. Experimental results indicate that CSDN
performs favorably against twelve competitors on the cross-modal
benchmark.

Index Terms—CSDN, cross modality, multi-feature fusion, point
cloud completion.

Manuscript received 1 August 2022; revised 9 December 2022; accepted 4
January 2023. Date of publication 11 January 2023; date of current version
26 June 2024. This work was supported in part by National Natural Science
Foundation of China under Grants 62172218 and 62032011, in part by Shen-
zhen University-Lingnan University Joint Research Programme under Grant
SZU-LU006/2122, in part by Research Grant entitled “Self-Supervised Learning
for Medical Images” under Grant 871228, in part by Direct Grant of Lingnan
University under Grant DR22A2, in part by General Research Fund under Hong
Kong Research Grants Council under Grant 15218521 and in part by Inno-
vation and Technology Fund-Midstream Research Programme for Universities
(ITF-MRP) under Grant MRP/022/20X. Recommended for acceptance by P.
Guerrero. (Corresponding authors: Mingqiang Wei ; Honghua Chen.)

Zhe Zhu, Honghua Chen, Jun Wang, and Mingqiang Wei are with
the School of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China (e-mail:
zhuzhe0619@nuaa.edu.cn; chenhonghuacn@gmail.com; wjun@nuaa.edu.cn;
mingqiang.wei@gmail.com).

Liangliang Nan is with the Urban Data Science Section, Delft Uni-
versity of Technology, 2628, CD Delft, The Netherlands (e-mail: lian-
gliang.nan@tudelft.nl).

Haoran Xie is with the Department of Computing and Decision Sciences,
Lingnan University,, Hong Kong (e-mail: hrxie@ln.edu.hk).

Jing Qin is with the School of Nursing, The Hong Kong Polytechnic Univer-
sity, Hong Kong (e-mail: harry.qin@polyu.edu.hk).

Digital Object Identifier 10.1109/TVCG.2023.3236061

I. INTRODUCTION

A S A commonly used representation, point clouds express
the geometry of objects in 3D space with a simple and

flexible data structure [1]. The raw point clouds, which are
often captured by scanning devices (e.g., laser scanners), un-
avoidably have missing regions. Some of main reasons include
the inter-object occlusion, self-occlusion, surface reflectivity,
and limited scanning range [2]. It is possible to complete a
partial point cloud by carefully positioning 3D scanners to
carry out multi-pass scanning. However, such remedial mea-
sures are time-consuming and often hopeless due to the limited
scene accessibility. Also, it is promising to learn a completion
mapping with single-modal point clouds. Two challenges of
using the single-modal point clouds will be encountered. First,
the low-scanning resolution of 3D sensors (e.g., Kinect) often
leads to the sparseness of captured data. Determining whether
an arbitrary missing region originates from incompleteness or
intrinsic spareness is very difficult in such sparse point clouds.
Second, the inference uncertainty of missing regions will happen
due to the limited geometry cues available [3].

Cross-sensors (e.g., depth cameras and camera-LiDAR scan-
ners) are now accessible and affordable to continuously and
simultaneously capture color images and point clouds of 3D
scenes. Scene images have two main merits: (1) compared to
3D data acquisition using static/mobile laser scanners, images
of the scene or in particular the concerned missing regions are
easier to acquire [4]; (2) images have high resolutions and rich
textures, potentially facilitating various geometric processing
tasks by providing complementary information to point clouds
[5]. Although recent years have witnessed considerable efforts
of using images to help understand point clouds, it is still
challenging to fuse data from the cross sensors, making them
‘really’ complementary for quality geometric processing tasks.

To address the cross-modal challenge in point cloud com-
pletion, one can absorb the wisdom of physical object repair.
Imagine how a professional restorer repairs a physical object
with some missings. She/he will perceive the object’s original
shape from previously captured images and first recover its
global yet the coarse shape and then refine its local details. We
attempt to imitate the physical repair procedure to design a novel
cross-modal point cloud completion paradigm. To this end, we
propose a cross-modal shape-transfer dual-refinement network
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(termed CSDN), which exploits the complementary information
of images and input partial geometry for quality point cloud
completion.

CSDN is designed to fuse the features of both the image
and point cloud based on their role in conveying a complete
shape. For effective learning of both global and local features
at different completion stages, we exploit different strategies
to tackle the cross-modal challenge. To fully integrate image
information for shape completion in a coarse-to-fine manner,
CSDN consists of a “shape fusion” module to generate a coarse
yet complete shape and a “dual-refinement” module to obtain
the completion result.

First, rather than generating the complete model with only
single modality data, we develop a novel solution called IPAdaIN
(a variant of Adaptive Instance Normalization [6], [7]) to embed
the global features of both the images and the partial point
cloud. To fuse the information from the two modalities, IPAdaIN
adaptively transfers the “shape style” (i.e., the global shape
information) obtained from the image to the point cloud domain
by feature normalization, which facilitates obtaining an initial
complete 3D shape with the aid of images.

Then, the dual-refinement module takes the generated point
cloud as input and further refines the shape details. Specifically,
we design this module with a pair of refinement units, called
local refinement and global constraint, respectively. To recover
geometric details, we apply graph convolution in the local refine-
ment unit. The global constraint unit leverages image features to
constrain the offset generated by local refinement. This dual-path
refinement strategy enables CSDN to precisely capture both
global shape structures and local details.

CSDN explores the complementary structure information
from images, and it synergizes both point and image features
in the whole coarse-to-fine completion procedure, as shown in
Fig. 1. This makes CSDN distinct from the recently proposed
ViPC [3]. ViPC also exploits an additional single-view image
to provide the global structural priors in its coarse-completion
stage. However, it cannot recover high-frequency details and
local topology for complex shapes in the refinement stage
since the features learned from different modalities are simply
concatenated. As a result, the completed shapes from ViPC
are often noisy and lack finer geometric details. In contrast,
our CSDN enables the recovery of finer details and topology
by disentangling features for local refinement and features for
global constraint.

Extensive experiments clearly show the superiority of CSDN
over its ten competitors. For example, CSDN reduces the Mean
Chamfer Distance by 0.281 compared to PoinTr [8], and it
outperforms ViPC [3] by a large margin of 22.3% on the bench-
mark dataset ShapeNet-ViPC [3]. The main contributions can
be summarized as follows.
� By imitating the physical repair procedure, we propose a

novel cross-modal shape-transfer dual-refinement network
for point cloud completion. Compared with previous cross-
modal methods, CSDN applies the disentangled feature fu-
sion strategy, which significantly improves the completion
performance.

Fig. 1. Image is an important modality to provide complementary information
(both structure and detail information) for 3D (sparse) data. Inspired by how
a man/woman repairs physical objects, we consider that the image should
participate in the whole procedure of coarse-to-fine repair. Differently from
existing efforts in this topic, CSDN is a new point cloud completion paradigm
that exploits cross modalities in the whole coarse-to-fine completion procedure
(Yellow arrows: the shape fusion stage; Orange arrows: the dual-refinement
stage).

� We propose a shape fusion module for generating a coarse
yet complete shape, in which a novel solution called
IPAdaIN is designed to adaptively transfer the global shape
information obtained from the image to the point cloud
domain by feature normalization.

� We propose a dual-refinement module, enabling CSDN to
capture both global shape structures and local details.

II. RELATED WORK

This section reviews recent advances in learning-based point
cloud analysis, point cloud generation, single-view reconstruc-
tion, and 3D shape completion, followed by cross-modal feature
fusion.

A Point Cloud Analysis

Most of recent neural networks for point cloud analysis are
designed to process unordered point clouds directly, rather than
converting them into 2D grids or 3D voxels in advance. As the
pioneer, PointNet [9] proposes to directly process points through
MLPs and uses a symmetric function to aggregate features.
Then, PointNet++ [10] utilizes a hierarchical architecture to
capture local information. To generalize typical CNN to point
clouds, PointCNN [11] learns a transformation matrix for local
points permutation. PointConv [12] and KPConv [13] build
convolution weights with point coordinates. By expressing a
point cloud using a graph structure, DGCNN [14] proposes
EdgeConv for efficient local geometry learning. Several follow-
up works [15], [16], [17], [18] further demonstrate the efficiency
of graph representations for local point clouds. More recently,
Point Transformer [19] and PCT [20] extend the Transformer
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architecture to analyze point clouds. These works greatly facil-
itate the development of point cloud processing in downstream
tasks.

B Point Cloud Generation

Point cloud generation aims to learn generative models on
3D shapes. rGAN [21] first proposes to use GAN to gener-
ate point clouds, followed by some variants [22], [23], [24]
that aim at generating higher quality point clouds by exploit-
ing local structure information. As a representative flow-based
method, PointFlow [25] treats shapes and shape points as a
two-level hierarchy of distributions. To better characterize the
data distribution, ShapeGF [26] generates points by learning the
stochastic gradient of its log density field. Generative methods
are also widely adopted in other 3D vision tasks. For example,
GSPN [27] generates proposals with an analysis-by-synthesis
strategy. More recently, PointGrow [28] and AutoSDF [29]
use auto-regressive models to generate 3D shapes. PointGrow
learns point distribution in a point-by-point manner. AutoSDF
employs Truncated-Signed Distance Field (T-SDF) as the 3D
representation and utilizes the transformer architecture to learn
non-sequential prior over 3D shapes. Note that the goal of most
of the above methods is to generate high-fidelity 3D shapes by
learning and mimicking existing data distributions. Different
from them, Point cloud completion methods [3], [8], [30] and
point cloud upsampling methods [31], [32], [33] are conditioned
by the input partial/sparse point clouds. These efforts focus on
mapping and completing input partial shapes to their complete
versions.

C Shape Completion

Traditional methods are often geometry- or template-based.
The geometry-based methods either fill small holes in 3D models
by local interpolations [34], [35], [36], or infer the complete
shapes by exploiting structure regularities, such as symmetry
and repetitive patterns [37], [38], [39], [40]. The template-based
methods [41], [42], [43], [44] complete the geometry by match-
ing the partial shape with template models from a database.
However, for this conventional wisdom of shape completion,
users have to tweak parameters multiple times to obtain satis-
fied results in practical scenarios. This inconvenience heavily
discounts the efficiency and user experience.

Early learning-based methods [45], [46], [47] utilize voxel-
based representations for 3D convolutional neural completion
networks, but suffering from expensive computation cost. Later,
the PointNet-based encoder-decoder architecture [9] inspires
many new works. For example, the pioneering one, PCN [30],
generates points in a coarse-to-fine manner and folds the 2D
grids to reconstruct a complex complete shape. This coarse-to-
fine completion framework has also been employed by [47],
[48]. TopNet [49] introduces a hierarchical rooted tree structure
decoder to generate points of different levels of details. The
following work MSN [50] tackles the completion problem by
generating different parts of shape with a residual sub-network
to refine the coarse points. PF-Net [51] extracts multi-scale
features to encode both local and global information and then

fuses them to reconstruct complete point clouds. Besides, the
adversarial training strategy is used to further enhance the point
quality [51]. Also, Wang et al. [52] propose to synthesize the
dense and complete object shapes in a cascaded refinement
manner, and jointly optimize the reconstruction loss and an
adversarial loss. RL-GAN-Net [53] first tries to use an RL
agent to drive a generative adversarial network to predict a com-
plete point cloud. PMP-Net [54] formulates shape prediction
as a point cloud deformation problem, and generates complete
point clouds by moving input points to appropriate positions
iteratively with a minimum moving distance. Researchers have
also introduced Transformer [55] for point cloud completion,
like [8], [56]. PoinTr [8] reformulates point cloud completion
as a set-to-set translation problem, so that a transformer-based
encoder-decoder architecture is naturally adopted. Snowflak-
eNet [56] utilizes transformer and point-wise feature deconvo-
lutional modules to refine the initial point cloud iteratively.

Apart from the above supervised approaches, there are also a
few studies concerning unpaired point cloud completion. AML
[57] introduces a weakly-supervised approach by learning the
maximum likelihood. Pcl2Pcl [58] proposes a GAN framework
to bridge the semantic gap between incomplete and complete
shapes. However, these methods only consider the single-side
correspondence from the incomplete shapes to their complete
shapes. In contrast, Cycle4Completion [59] enhances the com-
pletion performance by establishing the two-way geometric cor-
respondence between complete shapes and incomplete shapes.
Although achieving remarkable performance on point cloud
completion, recent efforts generally use the mono-modality
input. It is difficult to infer an accurate mapping from an in-
complete point cloud with a large-scale incompleteness to its
complete point cloud.

D Single-View Reconstruction

Single-view reconstruction methods can be divided into point-
based, voxel-based, mesh-based, and implicit field-based cate-
gories according to the representation of 3D data. Point-based
methods [60], [61], [62] infer the point coordinates directly from
images. PSGN [60] can reconstruct better shapes by connecting
a 2D encoder and a 3D decoder. GAL [62] proposes a geometric
adversarial loss to constrain the predicted point cloud. Voxel-
based methods [63], [64], [65] solve the reconstruction problem
by using 2D and 3D CNNs. As for mesh-based methods, the
pioneering work Pixel2Mesh [66] and Pixel2Mesh++ [67] fuse
2D features into mesh deformation. The follow-up methods [68],
[69] further extend this framework by improving deformation
with topology modification and self-supervised learning. How-
ever, due to the intersection of meshes, the connection pattern
hinders the generation of details. Recently, the community has
focused heavily on deep implicit representations [29], [70], [71],
[72], [73], [74], where 3D shapes are represented as implicit
functions implemented by neural networks with possible im-
age inputs. This representation has also been used to support
other tasks, such as shape completion [29], pairwise shape
mating [75], and point cloud upsampling [76]. Instead of directly
inferring 3D shapes from single-view images, our approach
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Fig. 2. The architecture of Cross-modal Shape-transfer Dual-refinement Network (CSDN). CSDN is designed as a coarse-to-fine structure, and complementary
images participate in the whole process. CSDN consists of three modules: feature extraction, shape fusion, and dual refinement. Different from the existing wisdom,
cross-modal data are involved in the whole coarse-to-fine completion procedure of CSDN, ensuring the completion result with both rich structures and details.

assists the completion by combining different modalities at the
feature level, where image features are used for both coarse
completion and detailed refinement.

E Cross-Modal Feature Fusion

When it comes to data of “cross-modality” (i.e., 3D point
cloud and 2D image), the main difficulty is to fuse infor-
mation provided by different modalities, which is a well-
recognized challenge in various tasks such as 3D object detec-
tion, point cloud registration, and shape completion. ImVoteNet
[77] fuses 2D detection into a 3D pipeline with camera pa-
rameters and pixel depths. DeepI2P [78] utilizes the atten-
tion mechanism to weight image features by point clouds.
Image2Point [79] investigates the potential for transferability
between single images and points. In the same problem set-
ting, ViPC [3] also infers the missing points guided by an
additional image. It directly maps a color image to the point
cloud domain, explicitly aligns the generated rough geometry,
and finally fine-tunes the coarse geometry. Although exploit-
ing multi-modal information, ViPC heavily relies on the 3D
reconstruction from a single image as well as requires an ac-
curate alignment. Different from ViPC, our CSDN formulates
multi-modal fusion as a shape style transfer problem, and it
disentangles different types of features with a dual-refinement
module.

III. METHOD

A Overview

We assume in point cloud completion with a cross-modal
manner that 1) images supply both the global structure and
local-detail information to facilitate the inference of a complete
and geometry-rich shape, and 2) images should participate in
the whole coarse-to-fine completion procedure. To this end, we
design a Cross-modal Shape-transfer Dual-refinement Network
(CSDN). Following the encoder-decoder architecture to imple-
ment the cross-modal coarse-to-fine effort, CSDN is designed to

have three modules: feature extraction, shape fusion, and dual-
refinement, as illustrated in Fig. 2. DenotePin = {p1, ..., pN} ⊆
R3 with the size of N to be an input partial point cloud, and I
with the size of H ×W to be the corresponding single-view
color image. Our goal is to predict a point cloud Pout from its
dual-domain partial observationsPin and I, andPout represents
the complete underlying shape of the object.

B Feature Extraction

CSDN embeds both the pair of a partial point cloud and a
single-view image into their individual feature space. Since we
adopt a coarse-to-fine strategy (complete its overall shape first,
and then complete its detail), we intend to extract global features
from both Pin and I in this stage: 1) for Pin, the simple yet
effective PointNet [9] is leveraged to yield its global feature
Fp with the size of 1× C; 2) for I , a sub-network with seven
convolutional layers is utilized to extract 7× 7× C feature
maps and then obtain its global feature FI through average
pooling.

C Shape Fusion

We design the shape fusion module to fuse the features
of different modalities, which outputs a coarse but complete
set of shape points. By proposing an image and point cloud
co-supported AdaIN [6] (IPAdaIN for short), we transfer the
intrinsic geometric style from the image to the point cloud.

This module takes Fp and FI as input and outputs a coarse
point cloud P0 (see Fig. 3). Specifically, similar to Fold-
ingNet [80], we first sample N ′

r 2D points from a unit square
[0, 1]2. Each of them is appended with the global point cloud
feature Fp. Then, the concatenated feature is combined with
the global image feature FI to fold the 2D grids to a point
surface, by the IPAdaIN layer. Note that we repeat (but without
sharing the network parameters) the above operationsM times to
reconstruct M surfaces, similar to [50], [61]. Finally, all of them
are concatenated to synthesize a complete complex point cloud
P0 with Nr points, i.e., Nr =M ×N ′

r. M is a hyperparameter

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2024 at 14:22:44 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: CSDN: CROSS-MODAL SHAPE-TRANSFER DUAL-REFINEMENT NETWORK FOR POINT CLOUD COMPLETION 3549

Fig. 3. Illustration of the IPAdaIN layer. IPAdaIN normalizes features of the
folding operation by global image features.

fixed to 4 in our experiments. Also, we can change K and N ′
r

to adapt the proposed method to the point clouds of different
resolutions.

IPAdaIN: Inspired by StyleGAN [7] that employs AdaIN for
the style transfer task and SpareNet [81] that generates points
with a similar batch normalization operation, we reformulate the
“cross-modality” fusion as a shape style transfer problem. The
core idea is that the affine parameters in Instance Normalization
generated by different image features can change the point-wise
feature statistics to varying values and thus normalize the output
point cloud to different shapes. Meanwhile, the global features
learned by convolutional neural networks can describe the over-
all shape characteristics. Accordingly, we propose IPAdaIN, a
new solution that is built based on the instance normalization
layer to better capture the image style. Specifically, we feed
the concatenated feature to multiple MLPs, where each MLP is
followed by an IPAdaIN layer and generates a new point-wise
featureFin. By denotingFin ⊆ RB×N×C (B stands for the batch
size during training), the normalization process is formulated as

IPAdaIN(Fin, FI) = γ

(
Fin − μ(Fin)

σ(Fin)

)
+ β

γ = La(FI)

β = Lb(FI), (1)

where γ ⊆ RB×1×C and β ⊆ RB×1×C are the affine parameters
computed by non-linear mappings implemented by two MLPs.
μ(Fin) ⊆ RB×1×C and σ(Fin) ⊆ RB×1×C are the means and
standard deviations of the channel-wise activation of Fin, re-
spectively

μbc(Fin) =
1

N

N∑
n=1

fbcn

σbc(Fin) =

√
1

N

∑N

n=1
(fbcn − μbc(Fin))2 + ε. (2)

Unlike AdaIN, IPAdaIN guides shape folding with the learned
shape characteristics, which can be interpreted as a way to
reconstruct a 3D shape from its style contained in the image.
Considering that different feature channels of an image can
identify certain shape characteristics, the generated affine pa-
rameters γ and β will have high activation in varying channels
according to the 3D shapes. Then the point-wise features change
in every channel according to (1). The fused features are then

Fig. 4. Illustration of the dual-refinement module. The upper path denotes Lo-
cal Refinement and the lower one denotes Global Constraint. Each sub-network
generates an offset feature, and they are added to yield the feature Foff .

decoded back to the spatial space by the 3D decoder of the
folding operation.

D Dual-Refinement

The dual-refinement module aims to generate a set of coor-
dinate offsets ΔC with the dimension of Nr × 3 to fine-tune
the coarse point cloud P0. The whole module contains two units
named Local Refinement and Global Constraint, respectively.
The local refinement finds the relation between points in P0

and Pin and generates one set of offset features, as shown in
Fig. 4. To refine P0 without being corrupted by missing parts,
the global constraint exploits image features to generate another
set of offset features. Finally, the combined feature is fed into
the Offset Regression unit that is built with an MLP to obtain
the set of offsets ΔC. Thus, the two units of local refinement
and global constraint complement each other to capture both the
global structures and local details of the completed object.

1) Local Refinement: It is a very common situation that some
missing high-frequency details already appear in the partial point
cloud. Thus an intuition is to exploit local structure information
with the aid of the partial point cloud. The local refinement unit is
to integrate the structure information of the input partial shape
with the coarse point cloud itself. Since a point cloud can be
naturally regarded as a graph-like structure, we build this unit
with graph convolution, given its effectiveness in point cloud
analysis [17].

A directed graph G(V, E) is established from the partial
point cloud Pin and the coarse point cloud P0, where V =
{1, ..., N +Nr} represents the set of nodes, and E ⊆ V × V
is the set of edges. Observing that certain areas in Pin have
much higher quality than those in P0, like the chair back and the
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three complete legs in Fig. 4, we build E encoding the structure
information from both P0 and Pin. Hence, for each point in
P0, its k-nearest neighbours are respectively searched in Pin

and P0 to build a local graph which has 2k vertices (see Fig.
4). By denoting the central point in the graph convolution as
pi and the neighborhood set as N (i) = {j|(i, j) ∈ E}, we can
formulate edge features as eij = σ([pi, pj − pi]), where σ is
a non-linear function implemented by Shared-MLP and [·, ·]
is a concatenation operation. Finally, each point’s feature is
aggregated by

fi = max
j∈N (i)

eij , (3)

and

F off
P = {fi}Nr

i=1, (4)

where max denotes a channel-wise max-pooling function and fi
is the feature of the i-th point.

2) Global Constraint: We query k-nearest neighbors from
the partial point cloud Pin for each point in P0. Inevitably, the
points in the generated missing areas cannot contain a reliable
local graph similar to the corresponding local shape in the
ground-truth point cloud. Meanwhile, RGB images usually con-
tain underlying 3D-aware shape properties with high confidence
(e.g., boundaries, textures, and local connectivity) [4]. To this
end, we propose the global constraint unit to fix F off

P with
learned image features. The unit first projects 3D points into
the last four feature maps (from 2D encoders) by the camera
parameters and pooling them from four nearby pixels using
bilinear interpolation (see the bottom of Fig. 4). The obtained
point-wise feature is then fed into a residual MLP block to obtain
the offset featureF off

I . Finally, we addF off
I andF off

P to obtain
Foff .

E. Loss Function

The loss function measures the difference between Pout and
the ground truthPgt. We utilize the Chamfer distance (CD) as the
loss function. To achieve the coarse-to-fine generation process,
we regularize the training by calculating the loss function as

L = LCD(P0, Pgt) + αLCD(Pout, Pgt), (5)

where LCD is defined as

LCD(X,Y )=
1

|X|
∑
x∈X

min
y∈Y

||x− y||+ 1

|Y |
∑
y∈Y

min
x∈X

||y − x||.

(6)
In the implementation, we increaseα from 0.01 to 2.0 during the
first 30k iterations since the initial point set P0 is less accurate.

IV. EXPERIMENT

A. Datasets

1) Training Dataset: We use the benchmark dataset
ShapeNet-ViPC [3], which is derived from ShapeNet [85]. It
contains 13 categories and 38,328 objects, including airplane,
bench, cabinet, car, chair, monitor, lamp, speaker, firearm, sofa,
table, cellphone, and watercraft. The complete ground-truth

point cloud is generated by uniformly sampling 2048 points
on the mesh surface from ShapeNet [85]. Each object has a
complete point cloud, 24 rendered images under 24 viewpoints,
and 24 corresponding incomplete point clouds. The incomplete
point cloud is generated from the corresponding viewpoint (with
occlusion) and also contains 2048 points. The image data is ren-
dered from 24 viewpoints as ShapeNetRendering in 3D-R2N2
[63]. During training, the image viewpoint is randomly chosen
for each training data pair and the point cloud will be aligned
with the chosen image. For a fair comparison, we use the same
training setting as in ViPC [3], i.e., 80% of the eight categories
for training.

2) Test Dataset: The test dataset from ShapeNet-ViPC [3]
consists of two parts: one contains the remaining 20% of the
8 categories of objects for training; another one contains 4
categories that are not used during training. For each of the new
categories, we randomly choose 200 pairs of point clouds and
images. For a fair comparison, we follow the same setting as [3],
where images are randomly selected from the 24 viewpoints.
Notably, the ShapeNet-ViPC dataset produces missing shapes
by various kinds of occlusions (not limited to self-occlusion).
Therefore, images from different viewpoints do not necessarily
depict the missing parts. We test our approach when images and
partial point clouds are produced under the same viewpoints.
The results are reported in Section IV-G.

Besides, we test some methods on partial point clouds from
real-world LiDAR scans, the KITTI dataset [86] and RGB-D
scans, the Scannet dataset [87]. Following the setting of [30], we
extract point clouds within the corresponding bounding boxes
and then select point clouds having more than 2048 points.

B. Implementation Details

In our implementation, the number of point surfaces in Shape
Fusion is k = 4 and each surface contains 512 points. The
feature dimension is set to 1024, i.e., C = 1024. Thus, the
generated coarse point cloud has 2048 points. For IPAdaIN, we
set three layers for every surface. In the Local Refinement unit,
the number of nearest neighbors is 16. In the Global Constraint
unit, the size of feature maps used for projection are 56× 56,
28× 28, 14× 14, and 7× 7.

For the 3D encoder, we set a five-layer MLP. The feature
dimensions are 64, 64, 64, 128, and 1024, respectively. For the
2D encoder, its architecture is shown in Fig. 5. Note that we
reuse the last four feature maps in the global constraint unit
and their dimensions are 56× 56, 28× 28, 14× 14, and 7× 7,
respectively. In the local refinement unit, the feature F off

P is
produced by a three-layer MLP whose output dimensions are 32,
128, and 512, respectively. Res-MLP in the global constraint unit
is implemented by a Con1d ResNet block [88]. The final offset
regression is implemented by four Conv1d layers whose output
dimensions are 256, 128, 32, and 3, respectively. The coordinate
offset is calculated through the tanh activation function.

For quantitative evaluation, we use both the Chamfer Distance
(CD) and F-Score as evaluation metrics. The whole network is
trained end-to-end with a learning rate of 5× 10−5 for 50 epochs
and the Adam optimizer. The learning rate also decayed by 0.1
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Fig. 5. The architecture of our 2D Encoder.

Fig. 6. Visual comparisons of recent point cloud completion methods [3], [8], [47], [84] on ShapeNet-ViPC [3]. CSDN produces the most complete and detailed
structures compared to its competitors.

for every 10 epochs. All the networks are implemented using
PyTorch and trained on an NVIDIA RTX 3090 GPU.

C. Result on ShapeNet-ViPC

We compare our CSDN with ten state-of-the-art point cloud
completion methods. They are Point-based, i.e., AtlasNet [61],
PCN [30], MSN [50], Transformer-based, i.e., PoinTr [8], Seed-
former [84], SDT [83], Folding-based, i.e., FoldingNet [80],
TopNet [49], GAN-based, i.e., PF-Net [51], Convolution-based,
i.e., GRNet [47], and Cross-modality-based, i.e., ViPC [3]. For
AtlasNet, FoldingNet, PCN, and TopNet, we directly take the
quantitative statistics from [3]. For the other methods, we retrain
their models using the released codes on ShapeNet-ViPC. For a
fair comparison, we uniformly downsample the results of PoinTr
to 2048 points, the same as the output of the other methods.
Among these methods, ViPC also exploits an additional image,
while the others take only a partial point cloud as input.

1) Qualitative Results on Known Categories: Fig. 6 shows
the point clouds completed by the proposed CSDN and its
competitors. For some cases of symmetric structures and small
missing regions (e.g., plane and car), most methods behave well
and generate complete shapes similar to the ground truths. Our
CSDN recovers more clear overall shapes and more detailed
structures than Seedformer, PoinTr, and ViPC, while GR-Net
generates noisy points. For those challenging cases of complex
shapes and large missing regions, like the table case, our CSDN
generates the complete desktop and leg while the other methods
only predict a coarse result. Compared to ViPC, our CSDN is
better to recover latent geometric structures (e.g., holes in the
desktop and the back of the chair).

2) Quantitative Results on Known Categories: We calculate
both CD and F-Score on the 2,048 points of each object, as
reported in Tables I and II. It can be observed that our CSDN
achieves almost the best results among all the competitors. It
is worth noting that CSDN reduces the average CD value by
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TABLE I
QUANTITATIVE RESULTS ON KNOWN CATEGORIES OF SHAPNET-VIPC USING CD WITH 2,048 POINTS. THE BEST IS HIGHLIGHTED IN BOLD

TABLE II
QUANTITATIVE RESULTS ON KNOWN CATEGORIES OF SHAPNET-VIPC USING F-SCORE WITH 2,048 POINTS. THE BEST IS HIGHLIGHTED IN BOLD

0.281 compared to the result of the second-ranked PoinTr [8].
Also, CSDN outperforms ViPC [3] by a large margin of 22.3%.
Meanwhile, CSDN achieves the best results in all categories in
terms of F-Score.

3) Results on Novel Categories: We test different methods
on four novel categories which are not used for training, to
evaluate the category-agnostic ability. The quantitative results
are reported in Tables III and IV. PoinTr [8] and PointAttN [82]
achieve competitive results similar to their results on known
categories. ViPC [3] struggles to generalize to new shapes, while
our CSDN generalizes well to novel shapes that have not been
seen during training.

We also present a visual comparison with other meth-
ods, including two Transformer-based methods PoinTr [8] and
PointAttN [82], one Convolution-based method GR-Net [47],
and one Cross-modality-based method ViPC [3], as shown in
Fig. 7. We can observe that the two Transformer-based methods
cannot well recover the missing shapes for previously unseen
categories, although they achieve competitive performance on
quantitative results. Under the guidance of images, CSDN and
ViPC both succeed in inferring the missing parts, and CSDN
produces better details and fewer noisy points. This comparison
further demonstrates that our method successfully exploits the
complementary information provided by the images.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2024 at 14:22:44 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: CSDN: CROSS-MODAL SHAPE-TRANSFER DUAL-REFINEMENT NETWORK FOR POINT CLOUD COMPLETION 3553

Fig. 7. Visual comparisons of recent point cloud completion methods [3], [8], [47], [82] on unseen categories of ShapeNet-ViPC [3]. CSDN produces the most
complete and detailed structures compared to its competitors.

TABLE III
QUANTITATIVE RESULTS ON THE NOVEL CATEGORIES OF SHAPNET-VIPC

USING CD WITH 2,048 POINTS. THE BEST IS HIGHLIGHTED IN BOLD

D. Evaluation on Real-World Scans

We train our CSDN and two other methods on the car category
of ShapeNet-ViPC to evaluate their performance on real-world
scans. Ideally, a point cloud completion network trained on a
cross-modal dataset should produce satisfactory results, since
the cars and their corresponding real-world images cropped
with 2D bounding boxes are provided. As reported in [3], the
real-to-synthetic domain gap led by rendered images in the
training dataset makes ViPC not applicable to real-world point
cloud completion. Thus we replace the input image with the
rendered car image in ShapeNet-ViPC for ViPC [3] and our
method. We also evaluate our method on the chairs and tables
from the Scannet dataset [87]. Since the objects in Scannet

TABLE IV
QUANTITATIVE RESULTS ON THE NOVEL CATEGORIES OF SHAPNET-VIPC

USING F-SCORE WITH 2,048 POINTS. THE BEST IS HIGHLIGHTED IN BOLD

are usually more complete and similar to those in the training
datasets, we directly use the trained model in Section IV-C
without any fine-tuning. Fig. 8 shows that ViPC still cannot
handle the domain gap problem and PoinTr generates coarse
results due to the low resolution of the training dataset. In Fig. 9,
PoinTr fails to complete the missing parts, and ViPC cannot
preserve the original inputs. In contrast, CSDN is capable of
generating more plausible results on real-world scans.

E. Ablation Study

We first remove and change the main components ablate
CSDN. The ablation variants can be classified as ablation on
Shape Fusion and Dual Refinement. Then, we ablate on the input
modality and analyze the contribution of each modality.
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Fig. 8. Visual comparisons with two point cloud completion methods [3], [8]
on the real-scanned point clouds (from KITTI [86]). CSDN produces the most
complete and detailed structures.

Fig. 9. Visual comparisons with two point cloud completion methods [3], [8]
on the real-scanned point clouds from Scannet [87]. CSDN produces the most
complete and detailed structures.

1) Ablation on Shape Fusion: To analyze the contribution of
IPAdaIN, the comparison between three variants on the Shape
Fusion module is shown in Table V. We replace IPAdaIN in
the variant A with a regular instance normalization. Without
the global information provided by images, A cannot guarantee
the completeness of the final shape and typically generates point
clouds with higher CD and lower F-Score. The variant B, switch-
ing the positions of FP and FI , also produces points with higher
CD and lower F-Score. In the variant C, we only utilize the image
feature for the folding operation. Reconstructing shapes directly
from images like [3] leads to more performance degradation. It
further reveals the superiority of IPAdaIN over the single-view

TABLE V
COMPARISONS BETWEEN CSDN AND ITS VARIANTS ON SHAPE FUSION

TABLE VI
COMPARISONS BETWEEN CSDN AND ITS VARIANTS ON DUAL-REFINEMENT

reconstruction method in terms of feature fusion. Moreover,
from the similar performance of A and C, as well as the coarse
result of CSDN, we can conclude that IPAdaIN plays the core
role in the proposed cross-modal fusion strategy.

2) Ablation on Dual-Refinement: Table VI shows the com-
parison between the variants of CSDN on Dual-Refinement.
The variant D, without the Local Refinement unit, leads to
a large performance drop and coarser results. The variant E,
without the Global Constraint unit, typically has lower perfor-
mance. It means both the point cloud and image contribute to
the refinement step, but the point cloud plays a major role.
To understand the contribution of the double-refinement and
dual-branch design, in the variant F we replace the parallel
structure of dual-refinement with a serial structure (i.e., P0 is
sent to Local Refinement for the first refinement, and the refined
result is sent to Global Constraint for final results). In contrast to
the Dual-Refinement module, F only uses information from both
modalities for separate refinement without exploiting comple-
mentary information from each modality. The performance drop
of F demonstrates the superiority of the proposed two-branch
architecture.

3) Ablation of Input Modality: This set of ablative experi-
ments aims at exploring the role of point clouds and images
in our method. First, we change our network into single-modal
versions and analyze the contribution of different input modal-
ities. Specifically, we ablate on the single-view images in the
variant G, where both IPAdaIN and Global Constraint are re-
moved. The variant H is a single-view reconstruction network
based on CSDN. We replace the shape fusion module with a
vanilla foldingnet that uses only image features to reconstruct a
coarse point cloud and remove the Local Refinement unit in the
dual-refinement module. Then, we analyze their performance
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Fig. 10. Visual comparisons between CSDN and its variants when the input images cannot depict the missing parts.

TABLE VII
COMPARISONS BETWEEN CSDN AND ITS VARIANTS ON THE INPUT MODALITY

from two aspects: (1) missing geometry completion, and (2)
original structure preservation.

Missing Geometry Completion: Table VII shows that the
variants G and H have varying degrees of performance loss.
While G still has competitive results on both known and novel
categories, H has a large-margin performance drop (156% on
known categories and 231% on novel categories). Besides, these
results further demonstrate that our method is an image-guided
point cloud completion network, where point clouds play the
major role.

We demonstrate some cases when images cannot depict the
missing parts in point clouds and visually compare the comple-
tion results of CSDN and its variants G and H in Fig. 10. More
results under such a condition can be found in Fig. 18. We can
see that G struggles to infer the missing parts. Meanwhile, the
single-view reconstruction H can only reconstruct coarse shapes
with a considerable number of noisy points. Both the variants
cannot recover the structures that are unseen in images (e.g.,
the wheels of the car, the upper part of the chair legs and the

TABLE VIII
COMPARISONS OF PARTIAL MATCHING VALUE. LOWER VALUE MEANS A

BETTER PRESERVING ABILITY. G AND H REFER TO THE VARIANTS IN

TABLE VII

table legs). In contrast, CSDN can generate smoother detailed
structures that are missing in both the input point clouds and
images, rather than just reconstructing geometric details from
images. We credit such superiority to our feature fusion strategy.

In Fig. 11, we show one more visual comparison between the
final and coarse results of CSDN and its variant G. It can be
observed that without the input images our method struggles to
infer the missing regions and the coarse point clouds generated
by Shape Fusion are already reasonably complete compared to
the corresponding partial inputs.

Original Structure Preservation: To evaluate how our network
preserves the initial structure of the objects, we also compare
partial matching [59] value betweenPin and the generated result
Pout, which is single-side Chamfer Distance defined as

PM(Pin, Pout) =
1

|Pin|
∑

x∈Pin

min
y∈Pout

||x− y||. (7)

Table VIII shows that the variant H struggles to preserve the
partial shape since it uses only input images. However, our
cross-modal network still has a better shape-preserving ability
than the variant G that inputs only the partial point cloud. The
comparison demonstrates that our method fuses cross-modal
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Fig. 11. Visual comparisons between CSDN and its variants.

features to assist completion without losing the original shape in-
formation contained in point clouds. In other words, our method
can efficiently extract and fuse the complementary information
from the two modalities, rather than just reconstructing shapes
from images. It is noteworthy that CSDN preserves initial points
better than ViPC [3], which could also be concluded from Figs. 6
and 18.

It is also worth noting that CSDN can preserve slender
structures (e.g., the rear wing of the car) better than the two
variants using a single modality input in Fig. 10. To better
reveal its capability in structure preservation, thin cross-sections
of some models are demonstrated in Fig. 12. We can see that
CSDN preserves the original surfaces well while the other two
competitors [3], [8] generate more noisy points inside the object.

4) Ablation on Numbers of KNN: We also conduct an abla-
tion experiment on the number of nearest neighbors in the local
refinement unit. k is set to be 4, 8, 16, and 24, respectively. It
is observed from Table I that CSDN has the best performance
when k = 16. However, we believe that this parameter needs to
be fine-tuned for different datasets.

F. Impact of Point Cloud Resolution

This section studies the stability of CSDN and two other
competitors concerning point cloud resolution. To this end,
we downsample the input point cloud to 1024 and 256 points
respectively, and test the performance of the methods. From the
results reported in Table IX, we observe that the performance

Fig. 12. Visual comparisons of CSDN with [3], [8] on structure preservation.
Cross-sections of the completed point clouds are visualized. For each model,
the 3D red rectangle in the first row indicates the position and orientation of the
cross-section.

drop of all three methods is small when the input is downsampled
to 1024 points. This is because the point cloud can still convey the
geometry of the partial shape. When the input is downsampled
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Fig. 13. Images captured from different views often lead to slightly different completion results. A “good” view that contains more complementary information
for the input partial point clouds tends to produce the completion results with a lower CD value (×10−3).

TABLE IX
MEAN CHAMFER DISTANCE WITH DIFFERENT POINT CLOUD RESOLUTIONS.

THE FIRST ROW DENOTES THE NUMBER OF INPUT POINTS

to 265 points, the performance of all methods degrades signif-
icantly. It is worth noting that the decline of ViPC (11.5%) is
smaller than that of CSDN (30.7%) and PoinTr (49.2%), which
is due to that ViPC reconstructs points directly from images,
while the input points play the major role in our method.

G. Effect of Different-View Images

This section studies the stability of CSDN when images
can be collected from different views. Ideally, any good
method of cross-modal point cloud completion should be view-
independent. However, it is observed that images captured from
different views may slightly affect the completion results. A
“good” view is considered to possess complementary informa-
tion for the input partial point clouds. The images with a good
view tend to produce the completion results with a lower CD
value.

To validate the aforementioned statement, we randomly select
some partial objects and test them with the individual images
from all 24 views as input. As observed in Fig. 13, CSDN
performs better on images that contain more information about
the missing parts. For example, the image containing only the
front or the end of a truck generates the results with the highest
CD losses.

To further demonstrate the stability of CSDN over the other
cross-modal method, i.e. ViPC [3], we select 100 objects from

TABLE X
QUANTITATIVE COMPARISONS WITH DIFFERENT KNN NUMBERS

each known category to evaluate how CSDN and ViPC perform
with the images captured from different viewpoints. Specifically,
we obtain 24 results for each incomplete object with the help
of each image of the 24 different-view images. We calculate the
standard deviations for the 24 CD values to compare the stability
of model performance, as shown in Table XI. The quantitative
results clearly show that our CSDN is more view-independent
than ViPC [3] with a 42.9% drop in the standard deviation.

In addition, we also test our method when images and the
corresponding partial point clouds are acquired under the same
viewpoints, with the results shown in Table XII. The negligible
performance drop (2.6% on the CD metric) indicates that CSDN
is capable of extracting meaningful geometric information from
images even when the images may not depict the missing parts
of the objects. More visual comparisons can be found in Fig. 18.

H. Effect of Different Similar-Images

There may exist objects that have similar structures. Hence,
we randomly select some models and replace the corresponding
input images with similar images in the same category. Fig. 14
shows the results of one example. When inputting the pair of
the original image and the partial point cloud, CSDN generates
the completion result with a CD loss of 0.707× 10−3. Then, we
replace the original image with seven images of the other models
in ShapeNet-ViPC [3]. It is found that our method still works
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TABLE XI
STANDARD DEVIATIONS OF CD ON DIFFERENT-VIEW IMAGES. THE LOWER THE VALUE IS, THE MORE VIEW-INDEPENDENT THE METHOD IS

Fig. 14. Results of using similar but intrinsically different images to bind the partial point cloud for completion. The object’s structures and colors affect the
completion results. The partial point cloud with its original image can infer a completion result with the smallest error of CD (×10−3).

TABLE XII
RESULTS ON DIFFERENT EXPERIMENT SETTINGS. “DIFFERENT” MEANS IMAGES

ARE RANDOMLY SELECTED FROM 24 VIEWPOINTS. “SAME” MEANS IMAGES

AND PARTIAL POINT CLOUDS ARE PRODUCED FROM THE SAME VIEWPOINTS

with similar images as input but produces results with a higher
CD loss. Fig. 14 shows that the model performs better when the
input image has similar structures and colors. However, the last
two images have nearly the same shape as the original image, but
our method generates results with higher CD losses. We believe
that it is caused by the remarkable differences in colors. Please
note that we do not use such unpaired data during the training
stage.

I. Comparisons About Model Sizes

We compare and report the model size of ViPC, PoinTr, and
our CSDN in Table XIII. The comparison indicates that our
CSDN has a slightly larger model size than ViPC but a much
better performance, while PoinTr has the largest model size
owing to its transformer architecture.

J. Feature Visualization

To better understand the role of IPAdaIN, this section provides
visualizations of the features before and after IPAdaIN in the

TABLE XIII
COMPARISONS ON MODEL SIZES AND PERFORMANCE

Shape Fusion module in two different ways. Specifically, we
define the point-wise features before the last layer of IPAdaIN
as Fbefore = {f1, ..., fN} ⊆ RC , the corresponding point-wise
features after IPAdaIN asFafter, and the generated coarse points
as Pcoarse = {p1, ..., pN} ⊆ R3. Note that the affine transfor-
mation in IPAdaIN is the only step where image features are
involved for point generation in the Shape Fusion module.

We first explore how features change before and after
IPAdaIN. During the folding operation, points that are close
in the 3D space should also be close in the feature space (i.e.,
fa should have a relatively small euclidean distance to fb if
pa and pb are spatially close). Fig. 16 visualizes the coarse
shapes Pcoarse generated by the Shape Fusion module, and the
target points were randomly selected in the originally missing
parts. Then, we compute the euclidean distances between the
target point and other points in the feature space. The visual-
ization is generated by coloring points based on the distances.
As shown in Fig. 16, points similar to the target point in the
feature space are spread across the entire point cloud before
IPadaIN. After IPadaIN, the similar points in the feature space
become closer in the 3D space. It should be noted that IPAdaIN
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Fig. 15. Failure cases. Similar to its competitors [3], [8], [84], our CSDN may generate poor completion results (the small structures cannot be reconstructed)
when the partial point cloud lacks the main body and the assembled image has very low resolution. Please note that in such challenging cases, our CSDN can still
recover the overall shape, which its competitors are not.

Fig. 16. Visualization of euclidean distances between the target points (in
blue) and other points in the feature space. For each set, Left: Input partial point
cloud; Middle: Distance before IPAdaIN; Right: Distance after IPAdaIN. The
target points are randomly selected in missing parts.

does not involve any learnable parameters other than the affine
parameters generated by the image features. This means that
the affine transformation of IPAdaIN changes the feature dis-
tributions and normalizes the generated points to the complete
shape.

In addition, we plotFbefore,Fafter, andPcoarse as 2D images
by t-SNE [89] in Fig. 17 to disclose the change in feature distri-
bution after IPAdaIN. It can be concluded that IPAdaIN makes
the distribution of point-wise feature Fafter more similar to its
direct result Pcoarse than Fbefore. These results further explain
that IPAdaIN fuses modalities by changing feature statistics.

Fig. 17. Visualization of feature distributions by t-SNE: Fbefore (in blue),
Fafter (in red) and Pcoarse (in yellow).

V. LIMITATIONS AND FAILURE CASES

Table XIV summarizes the limitations among these com-
pared methods to provoke further research insights. Besides,
we visualize some failure cases whose CD losses are rather
larger than the average error of that category, as shown in Fig.
15. Although the shape fusion step succeeds in recovering the
complete shape to a certain extent, and the dual-refinement
module also removes noisy points, the final results are still
less pleasing. This is especially the case when the partial point
clouds have large missing regions both in their main bodies and
detailed structures. Meanwhile, the input images are of very
low resolutions, which can only provide limited complemen-
tary information for the recovery of fine geometries (e.g., the
ship cabin). This problem could be solved by training on a
dataset that has real-world high-resolution images and dense
point clouds. Besides, although the motivation of the proposed
CSDN is to reconstruct better shapes with the help of single-view
images, multi-view images and neural rendering techniques
would also help point cloud completion, which is our future
work.
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TABLE XIV
SUMMARY OF THE LIMITATIONS OF OUR CSDN AND ITS COMPETITORS

Fig. 18. Comparisons between CSDN and its competitors [3], [8] when images and partial point clouds are captured under the same viewpoints.
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VI. CONCLUSION

We present a novel point cloud completion paradigm that
mimics the physical object-repairing process. The paradigm is
implemented as a cross-modal shape-transfer double-refinement
network (CSDN). Experiments on standard point cloud comple-
tion benchmarks demonstrate the significant improvement of our
CSDN over the pioneer multi-modal method ViPC and the other
SOTAs. Our work has revealed that the fusion of features from
cross-modalities facilitates the generation of reliable geometries
to complete partial point clouds. This benefits from the fact that
features learned from images not only constrain the generation
of the overall shape of an object but also help to refine its local
details, indicating the potential of using images to recover finer
geometry of objects from partial point clouds.
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